AN ABSTRACT OF THE THESIS OF

<u>Chloe C. Hanson</u> for the degree of <u>Master of Science</u> in <u>Integrative Biology</u> presented on August 26, 2021.

Title: Experimental Evolution of RoundupTM Resistance in Outcrossing Populations of Saccharomyces cerevisiae

Abstract approved: ____

Molly K. Burke

Evolve & Resequence (E&R) experiments subject laboratory populations to environments controlled by investigators, who then document the phenotypic and genomic changes that take place over many generations. These experiments provide powerful tools for testing of a wide variety of evolutionary questions, especially questions about the nature of adaptive traits. While any organism could be studied in this context, microbes are most practical, due to their quick reproductive cycles. One drawback to using microbes in E&R studies is that they reproduce asexually, which generally leads to slower adaptation that is mutation-limited. By comparison, E&R experiments with sexually-reproducing populations that maintain high levels of standing genetic variation have an improved ability to dissect the genetics of complex adaptive traits. My thesis takes advantage of this powerful experimental technique by subjecting highly diverse, sexually-reproducing populations of the yeast Saccharomyces cerevisiae to a ten week E&R experiment to investigate the genetics of resistance to the herbicide $\operatorname{Roundup}^{TM}$, a trait with significant ecological relevance for a variety of species. The first major objective of my thesis was to identify specific genomic regions that might underlie RoundupTM resistance by tracking allele frequencies over time in evolving populations. A second objective was to determine whether two different selection treatments – a typical treatment involving strong constant selection pressure versus an increasing selection treatment starting with a low dose of RoundupTM that increased over time - led to different evolutionary outcomes. Our results uncovered several potential candidate regions that may underlie RoundupTM resistance and warrant further investigation. While the two selection treatments led to similar evolved phenotypes, and similar ability to localize potentially causative genes, we did observe evidence for a unique trait architecture that suggests that different regions may be selected for depending on the strength of the RoundupTM dose used. Our results provide insight into the consequences of chronic RoundupTM exposure on non-target organisms, and they also inform the general design strategies of future E&R experiments.

©Copyright by Chloe C. Hanson August 26, 2021 All Rights Reserved

Experimental Evolution of Roundup TM Resistance in Outcrossing Populations of Saccharomyces cerevisiae

by

Chloe C. Hanson

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

Presented August 26, 2021 Commencement June 2022 Master of Science thesis of Chloe C. Hanson presented on August 26, 2021.

APPROVED:

Major Professor, representing Integrative Biology

Head of the Department of Integrative Biology

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request.

Chloe C. Hanson, Author

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my advisor Dr. Molly K. Burke for sharing her immense knowledge of evolutionary biology with me. Her dedication and mentorship throughout the thesis process was essential for my success. Our weekly dialogues helped me hone my scientific communication and critical thinking skills that will guide me throughout my career.

I would also like to thank Dr. Dee R Denver, Dr. Joseph W. Spatafora, and Dr. Michael Freitag for their support and criticism of my work. Their feedback helped me think more deeply about my research and broadened my understanding of the scientific process.

I'd also like to extend my gratitude to undergraduate researcher Savannah Taggard for her assistance implementing the selection experiment. Her willingness to help despite all the Covid-19 challenges was imperative to my thesis. I would also like to thank Dr. Mark Phillips for taking the time to discuss analysis methods and sharing coding techniques. A final thanks to all members of the Burke and Denver labs for their feedback on my work during our monthly lab meetings.

TABLE OF CONTENTS

			Page
1	Int	troduction	. 1
2	Ma	aterials and Methods	. 6
	2.1	Experimental evolution of $S.$ cerevisiae in media supplemented with	_
		$\operatorname{Roundup}^{IM} \dots \dots$. 6
	2.2	Estimating population size and number of evolved generations	. 11
	2.3	Relative growth rate in evolved populations	. 13
	2.4	DNA Extraction, Library Prep and Sequencing	. 15
	2.5	Variant Calling and Coverage	. 16
	2.6	Characterizing allele frequency differentiation	. 17
3	Re	sults	. 21
	3.1	Relative growth rate in evolved populations	. 21
	3.2	SNP identification, average coverage and $de novo$ mutations \ldots	. 24
	3.3	Allele frequency characterization in evolved populations	. 25
	3.4	Annotations and allele frequency trajectories of most significantly dif- ferentiated SNPs in each neak region	31
		3.4.1 Roundup-specific peaks	. 31
		3.4.2 Constant-specific peaks	. 32
4	Di	scussion	. 35
	4.1	Evolved populations grow faster than the ancestor in the presence of Roundup ^{TM} with no obvious phenotypic trade-offs	. 35
	4.2	Putative regions identified that may improve yeast growth in Roundup ⁷ media	гм . 38
	4.3	Increasing treatment does not enhance ability to detect candidate regions	. 41
5	Co	onclusion	. 46
В	iblio	graphy	. 49

TABLE OF CONTENTS (Continued)

	-	
Apper	ndices	54
А	Sample Coverage	55
В	SNPeff annotations for significant SNPs	60
С	Genes that fall under the six major peaks of this study $\ . \ . \ . \ .$	71

Page

LIST OF FIGURES

Figure

- 2.1 The Burke Lab's weekly selection protocol for evolution experiments in outcrossing yeast. The protocol involves 48 hours of liquid culture in YPD media (constant and increasing treatments were supplemented with RoundupTM as per Table 2.2) followed by steps for inducing sporulation, spore isolation and random mating. Selective media will ensure that only randomly-mated diploids that have both the *nat*MX and *hph*MX cassettes continue on to the next week of competitive growth in RoundupTM. The *nat*MX and *hph*MX expression cassettes, which replace the *ycr043C* pseudogene provide *MATa* founder strains with resistance to nourseothricin and *MATa* founders with resistance to hygromycin B respectively.

Page

9

22

23

LIST OF FIGURES (Continued)

Figure

- 3.3 PCA of high-coverage standing variants. Each color in this PCA represents an independent replicate population belonging to one of the three experimental treatments (N=16 per color, except for the ancestor) at a specific timepoint. Replicates of the two RoundupTM treatments cluster tightly together at each timepoint, which is indicative of parallel evolution within each treatment. Replicates of the control treatment do not cluster tightly, which is indicative of genetic heterogeneity produced among them.
- 3.4 (A) Final week comparisons of the allele frequencies from the constant vs. control (A), increasing vs. control (B) and constant vs. increasing (C). Roundup-specific peaks that showed significant changes in plots A and B, but not in C are highlighted in purple. Constant RoundupTM selection specific peaks that are observed in plots A and C are highlighted in orange. Peak names are designated with the first letter (C or R) corresponding to the either a Roundup- or constant-specific peak, the number matches common peaks between plots and the final letters (i.e. a, b or c) signify the CMH test that each test is from as described above.
- 3.5 Significant genomic changes were not observed in *a priori* genes *ARO1*, *PDR5* and *DIP5* (highlighted in purple) as these genes did not fall within significant peaks of the final week comparisons of the allele frequencies from the constant vs. control (A), increasing vs. control (B) and constant vs. increasing (C). We did, however identify two genes *ENA1* shown in chromosome 4 and *HAL9* on chromosome 15 (highlighted in red) that fell within Roundup-specific peaks. These genes were of interest since *HAL9* activates both *ENA1* and several transcription factors including *PDR5*. . . . 30

Page

26

27

LIST OF FIGURES (Continued)

Figure

Page

3.6	Allele trajectories of the most significant SNP from the four Roundup-	
	specific peaks (3.6.A-D) show stasis (or slight increase) in the con-	
	stant (red) and increasing (green) treatments, and a decrease in the	
	controls (blue). The allele change shown in the most significant SNP	
	of the two constant-specific peaks $(3.6.E-F)$ demonstrate how the ef-	
	fects of $\operatorname{Roundup}^{TM}$ selection on the genome may be dose dependent	
	as the increasing treatment diverges from the constant regime with	
	an adaptive signature independent from the control replicates. The	
	SNP being plotted here is the non-reference allele, relative to the	
	S288C canonical sequence.	34

LIST OF TABLES

Table		Page
2.1	Founding strains of the 12X ancestor population, from the Saccharomyces Genome Resequencing Project (SGRP). Strains were previously modified to facilitate crossing (Cubillos et al., 2009; Linder et al., 2020)	. 7
2.2	An overview of the constant and increasing Roundup ^{TM} selection treatments. The percentage of Roundup ^{TM} mixed in rich liquid media (YPD), and the total estimated number of cell doublings (including both competitive growth in liquid media and the diploid recovery stage on solid media) per week are listed below. Each week one round of induced outcrossing occurs.	. 10
3.1	A summary of the treatment-specific peaks implicated by the experiment. Each peak listed in this table technically exists as a pair (e.g. C1a and C1c), as to be considered a peak, a particular genomic location must include significant SNPs in two out of three CMH tests. While peak regions share a general genomic location, the width and number of SNPs implicated differs for each pair. Two constant-specific peaks, four Roundup-specific peaks, and zero increasing-specific peaks were observed. Considering only the Roundup-specific peaks, width, SNP number, and gene count suggest that neither treatment type is better than the other in terms of the ability to detect candidate regions.	. 28

LIST OF APPENDIX TABLES

Table

- A.1 Average genome wide sequence coverage depth across 90,510 SNPs of the ancestor and each treatment population from each sequencing time point. The standard deviation of coverage was used to calculate the coefficient of variation within samples. Low variation in coverage was observed across the genome in every sample, providing no clear evidence for large-scale structural variation in any population . . . 56
- B.1 SNPeff annotations for significant SNPs under the six major peaks of this study. Below is the output from the program SNPeff, which predicts the functional consequences of single-nucleotide variants, for all SNPs we observed to be significantly differentiated by treatment. The significance score, which is the -log10(p) value of a CMH test between two treatments, is provided for each SNP. Some SNPs are listed twice because they were identified as significant in more than one CMH test. SNPs are organized by peak type (C = constant-specific; R= Roundup-specific) as well as by CMH test type (a=constant vs. control; b=increasing vs. control; c=constant vs. increasing). The "alternate allele" listed here is the non-canonical allele with respect to the canonical S288C reference genome (R64-2-1). 61
- C.1 Genes that fall under the six major peaks of this study. We observed a total of 58 genes under the Roundup-specific peaks, and 44 genes under the constant-specific peak. Peaks are organized by peak type (C = constant-specific; R= Roundup-specific) as well as by CMH test type (a=constant vs. control; b=increasing vs. control; c=constant vs. increasing). When a gene is included in more than one peak (e.g. C1a/c), it is indicated as such. Bold font indicate genes under peaks that were identified in our study and also by Ravishankar et al. (2020) in their classic QTL and/or RNA-seq experiments, but did not contain a significant SNP within the gene bounds in our results. Red font indicates genes that were identified again in both our experiment and the previously mentioned study, but did contain a significant SNP within the gene details were provided by the Saccharomyces Genome Database (SGD) YeastMine tool.

Page

72

Chapter 1: Introduction

Experimental evolution provides a powerful framework for testing a variety of evolutionary questions by investigating how model organisms evolve under controlled laboratory conditions. Saccharomyces cerevisiae is an important model organism for biology research for many reasons, and is particularly well-suited for experimental evolution. It can easily be reared in the lab and has rapid generational turnover, such that dozens of generations of evolution can occur in a matter of weeks. Typically, evolution experiments with yeast feature an isogenic strain as the ancestor, and track the accumulation of *de novo* mutations that occur over time; this allows the identification of large-effect alleles underlying fitness (e.g. Kao and Sherlock (2008)). While yeast typically reproduce as exually, sexual reproduction can also be induced in the lab with specific media. This allows the creation of recombinant populations for experimental evolution in which genetic variation is initially high, and can be maintained over many generations of evolution (e.g. Linder et al. (2020)). This approach provides several advantages over the traditional approach featuring isogenic, asexual yeast (reviewed by Long et al. (2015)). Chief among these advantages is the ability to track how standing genetic variation evolves over time under different environmental conditions (Burke et al., 2014; Phillips et al., 2020). Sexual reproduction also promotes faster adaptation by decoupling deleterious alleles from causative sites that are under selection (McDonald et al., 2016). In sexually-reproducing eukaryotic organisms, adaptation is generally driven by the evolution of standing genetic variation, and not beneficial *de novo* mutations reviewed by (reviewed by Burke (2012)). Thus, experimental evolution with initially recombinant, outcrossing yeast populations is emerging as a powerful tool for studying the effects of particular environmental influences (e.g. stresses brought about by climate change, or chemicals in pollutants), that may apply generally to a variety of organisms.

RoundupTM is a widely used, glyphosate-based broad-spectrum herbicide that was first introduced commercially in 1974. Since the advent of genetically modified RoundupTM resistant crops in the mid-1990s, global RoundupTM use has increased 15-fold (Benbrook, 2016). The increased use worldwide has prompted questions about the effects of RoundupTM on organisms other than plants. While manufacturers have claimed that glyphosate, the main active ingredient in RoundupTM has few or no effects on non-target species, multiple studies suggest it is toxic (Lévesque and Rahe, 1992; Baier et al., 2016; Aristilde et al., 2017). There is also evidence to suggest that the undisclosed, non-active ingredients added to commercial formulas to enhance their efficacy might also be more toxic than glyphosate alone (Janssens and Stoks, 2017; Mesnage et al., 2019). There is a need for more studies of the effects of RoundupTM on organisms other than plants to gain a better understanding of the general consequences of its widespread use.

Previous work investigating the effects of glyphosate-based herbicides on yeast have revealed varying levels of toxicity when testing wild isolates and lab strains (Barney et al., 2020). In plants, glyphosate targets the shikimate pathway by inhibiting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme, which is a necessary part of amino acid production (Amrhein et al., 1980; Powles and Preston, 2006). It is well established that yeast and many other microorganisms share this same pathway; however, it is not present in any known animal species (Herrmann and Weaver, 1999). In yeast it has been shown that different variants within the yeast ARO1 gene, which is homologous to the EPSPS gene in plants, cannot fully explain the differential growth of yeast in the presence of glyphosate based herbicides (Rong-Mullins et al., 2017). Further work implementing classic Quantitative Trait Locus (QTL) mapping (Rong-Mullins et al., 2017), RNAseq and experimental evolution experiments in clonal strains (Ravishankar et al., 2020) has identified several other putative regions that may contribute to improved growth and viability in the presence of commercial glyphosate formulas. Specifically, Rong-Mullins et al. (2017) highlight DIP5, an amino acid permease, and PDR5, an ABC multiple drug transporter, as potential genes that may contribute to resistance, and the authors hypothesized that these two genes modulate how RoundupTM gains entry into yeast cells. In addition, Ravishankar et al. (2020) identified over a thousand additional potential genetic candidates, so it is clear that more work needs to be done to dissect the complex genetics of RoundupTM resistance in yeast.

Evolution experiments, particularly those that feature whole-genome sequencing of evolved populations (also known as Evolve & Resequence or E&R experiments) offer a unique platform for investigating the genetics of complex phenotypes, and recently, these experiments have emerged as a popular complement or alternative to classic QTL mapping (Schlötterer et al., 2014; Long et al., 2015). In model systems, distinct genotypes (i.e. strains or inbred lines) representative of the species' natural genetic variation can be crossed to create an ancestral population for an E&R study that is highly diverse; in theory this allows opportunities for efficient and high-resolution trait mapping (Baldwin-Brown et al., 2014). In addition to shedding light on the genetics of the phenotype of interest, imposing artificial selection on replicates of a diverse starting population can reveal insight into the evolutionary dynamics that are at play over the course of an evolution experiment (Phillips et al., 2020). Pooled sequencing techniques allow affordable surveying of allele frequencies in large numbers of individuals, providing a snapshot of the genetics of a whole population at any time point during a population's evolutionary trajectory (Futschik and Schlötterer, 2010; Schlötterer et al., 2014).

For my master's thesis, I use an E&R experiment in outcrossing yeast to investigate the complex phenotype of RoundupTM resistance in a model organism. Over the course of a ten week evolution experiment in which experimental populations were cultured in media supplemented with RoundupTM I documented the changes in phenotypes that occurred with high-throughput growth rate assays, and I also documented the changes in allele frequencies that occurred with pooled-population genome sequencing. I evaluated how evolved populations become differentiated from the ancestor and one another over time. I also assessed the degree to which experimental populations as the experimental populations, but without the addition of RoundupTM to the media. In this work, I use the term

"Roundup resistance" to describe improved growth in the presence of RoundupTM compared to a reference population, in this case the ancestral population, but it should be noted that my work technically cannot distinguish whether this phenotypic change might be due to improved tolerance or resistance. Similar work published by other investigators also uses this term (Rong-Mullins et al., 2017; Ravishankar et al., 2020), and I have chosen to follow this convention in my thesis.

Previous simulation work shows that when performing E&R experiments with sexually-reproducing organisms, the ability to detect genomic regions underlying adaptive phenotypes can be enhanced by slowly elevating the selection pressure over time (Vlachos and Kofler, 2019). Strong selection leads to high levels of genetic hitchhiking around selected sites, which in turn reduces the ability to localize candidate genes underlying adaptive phenoytpes; in other words, strong selection leads to large genomic regions, potentially harboring many genes, to increase in frequency. By contrast, weaker selection is expected to lead to decreased hitchhiking and an improved ability to localize individual candidate genes underlying adaptive change. My research has two major objectives: i) to identify potential candidate genomic regions that confer RoundupTM resistance in *S. cerevisiae*; and ii) to compare the genomic signatures left by two different types of selection regimes for RoundupTM resistance – incrementally increasing versus constant selection pressures. Both of these objectives were carried out with a single E&R experiment in sexually outcrossing yeast.

Chapter 2: Materials and Methods

2.1 Experimental evolution of *S. cerevisiae* in media supplemented with RoundupTM

The ancestor of this ten week E&R experiment was a highly recombinant S. cerevisiae population called "12X", which was created by crossing 12 geographically and genetically distinct haploid strains (see Table 2.1 for founder strain information and Burke et al. (2020) for details of how this population was created). All strains have been previously modified with an identifying barcode at the URA3 locus and with the deletion of the HO gene to prevent mating type switching (Linder et al., 2020). The MATa founder strains have been modified with an insertion of natMX expression cassette at the YCR043C pseudogene near the mating type locus. This insertion provides *MATa* mating types with resistance to nourseothricin $(MATa, HO \Delta, URA3::KanMX-Barcode, YCR043C::natMX)$. Similarly, $MAT\alpha$ strains are resistant to hygromycin B due to an insertion of the hphMX cassette, which replaces YCR043C pseudogene (MAT α , ho Δ , URA3::KanMX-Barcode, YCR043C::hphMX). When grown on selective media (YPD + 300mg/mL hygromycin B + 100mg/mL nourseothricin sulfate + 200mg/mL G418) only diploids that carry both resistant cassettes at the YCR043C locus and the KanMX-barcode are selected.

Table 2.1: Founding strains of the 12X ancestor population, from the Saccharomyces Genome Resequencing Project (SGRP). Strains were previously modified to facilitate crossing (Cubillos et al., 2009; Linder et al., 2020).

SGRP Strain	Origin	Genotype		
DBVPG6765	European (Wine)			
DBVPG6044	West African (Palm Wine)			
BC187	North American (Wine)	<i>MATa, ho Δ, ura3::Kan</i> MX- Barcode ycr043C::natMX		
SK1	West African (Laboratory)			
L_1374	South American (Wine)			
YJM975	European (Clinical- Vaginal)			
YPS128	North American (Oak Tree Soil)			
Y12	Japanese (Sake)			
273614N	European (Clinical- Fecal)	MAT a, ho ∆, ura3∷KanMX-		
L_1528	South American (Wine)	Barcode ycr043C::hphMX		
UWOPS05_217_3	Southeast Asian (Bertam Palm Nectar)			
YJM981	European (Clinical-Vaginal)			

Over the course of the experiment, replicate populations derived from the ancestral 12X population were maintained in a rich medium (1% peptone, 2% dextrose, 2% yeast extract, or YPD) supplemented with Roundup Weed & Grass Killer IIITM (2% glyphosate). The two different selection treatments consisted of either: i) a "constant" treatment involving a continuous culture at a single dose (1% of the commercial formula in the final concentration) or ii) an "increasing" treatment which incrementally increased the dose of RoundupTM added to the media each week, starting at a low dose of 0.1% and ending at a high concentration of 1% (Table 2.2). Both experimental treatments experienced complex life-history involving extended periods of competitive asexual growth in liquid media that were frequently interrupted by induced outcrossing (Figure 2.1). Control populations, derived from the same ancestral population and handled following identical protocols, were also maintained in YPD without RoundupTM. For practical reasons, these control populations were generated as part of a previous experiment and were not run in parallel with the RoundupTM selection. All populations were cryopreserved weekly (at -80°C in 25% glycerol), such that populations could be revived at any evolutionary time point for fitness and/or genomic surveys. Comparing phenotypes observed in the experimental populations to those in the ancestor and control populations allows determination of the trait(s) that shifted as a result of selection for RoundupTM resistance, and comparing allele frequencies among these populations may reveal genomic regions harboring causative genomic variants underlying these traits. Examining allele frequency differences between experimental populations (e.g. between the constant and increasing treatments) allows evaluation of the prediction that gradually increasing the strength of selection in an E&R experiment improves the ability to localize candidate regions.

Figure 2.1 shows the weekly sequence of events that involve both growth in RoundupTM supplemented media and frequent outcrossing. To begin, the ancestral population was sampled 36 times to create independent replicate populations, 18 for each treatment. Two replicate populations from each treatment were excluded from the analysis due to sample loss and/or documented experimental mishaps that may have led to contamination. The 16 control populations were generated previously and experienced all steps of the protocol shown in Figure 2.1 except for RoundupTM exposure.

Populations grew in liquid batch culture for a total of 48 hours in the corresponding RoundupTM treatment each week, with a dilution halfway through to increase the total number of generations of growth. During this phase, all cultures were incubated at 30°C and shaken at 200 rpm. After 48 hours of competitive

Figure 2.1: The Burke Lab's weekly selection protocol for evolution experiments in outcrossing yeast. The protocol involves 48 hours of liquid culture in YPD media (constant and increasing treatments were supplemented with RoundupTM as per Table 2.2) followed by steps for inducing sporulation, spore isolation and random mating. Selective media will ensure that only randomly-mated diploids that have both the *nat*MX and *hph*MX cassettes continue on to the next week of competitive growth in RoundupTM. The *nat*MX and *hph*MX expression cassettes, which replace the *ycr043C* pseudogene provide *MATa* founder strains with resistance to nourseothricin and *MATa* founders with resistance to hygromycin B respectively.

Table 2.2: An overview of the constant and increasing RoundupTM selection treatments. The percentage of RoundupTM mixed in rich liquid media (YPD), and the total estimated number of cell doublings (including both competitive growth in liquid media and the diploid recovery stage on solid media) per week are listed below. Each week one round of induced outcrossing occurs.

	Constant Roundup (Replicates 1-18)				Increasing Roundup (Replicates 19-36)			
Week	%	Estimated asexual generations			%	Estimated	asexual gene	rations
Week	Roundup in		Non-		Roundup in		Non-	
	YPD	Competitive	competitive	Total	YPD	Competitive	competitive	Total
1	1.00%	5.8	7.6	13.4	0.10%	9.6	2	11.6
2	1.00%	8.9	4.4	13.3	0.20%	10.3	1.9	12.2
3	1.00%	9.2	3.5	12.7	0.30%	10.7	2.7	13.4
4	1.00%	9	3.6	12.6	0.40%	11.6	2.9	14.5
5	1.00%	9.1	2.8	11.9	0.50%	11.2	2.6	13.8
6	1.00%	9.1	3.7	12.8	0.60%	10.6	2	12.6
7	1.00%	8.6	3.7	12.3	0.70%	9.7	3.1	12.8
8	1.00%	8.8	3.7	12.5	0.80%	9.6	0.9	10.5
9	1.00%	9	2.1	11.1	0.90%	9.2	3.5	12.7
10	1.00%	9	2.8	11.8	1.00%	9.1	1.8	10.9
	Total				Total			
	estimated				estimated			
	asexual				asexual			
	generations	86.5	37.9	124.4	generations	101.6	23.4	125

growth in liquid media, sporulation was induced by transferring populations to minimal sporulation medium (0.1% potassium acetate solution) and incubated for ~ 72 hours (30°C/200 rpm). After sporulation, lytic enzymes and mechanical agitation were used to break down the yeast ascus walls, so that spores could be isolated and mixed to ensure random mating. Mating occurred on selective media agar plates (YPD + 300 mg/mL hygromycin B + 100 mg/mL nourseothricin sulfate + 200 mg/mL G418) and diploids that had successfully mated were allowed to grow for ~ 48 hours. Recovered diploids then underwent the next week's RoundupTM treatment in batch culture, repeating the process again. At every transfer step, cell density was estimated and standardized, as detailed in the next section.

2.2 Estimating population size and number of evolved generations

Before starting the selection experiment, I assayed growth rates and cell viability of the ancestral population in YPD and in 1% RoundupTM in parallel. The data from these assays were used as benchmarks to predict the number of viable cells present in the evolving populations at any point during the selection experiment. The 16 replicate populations from each treatment were standardized to an OD_{600} ~ 0.1 and grown for 48 hours in 1 mL liquid batch culture at 30°C and shaken at 200 rpm. Every ~ 8 hours manual OD₆₀₀ readings were taken from each population and a sample dilution of all replicate populations were grown on YPD agar plates. Plated samples were diluted (10 or 100 fold) such that colony forming units could be counted after 48 hours of growth to calculate the estimated number of viable cells in the population at each time point. Linear least squares regression $(R^2 = 0.9304)$ was performed to model the relationship between an OD_{600} value and the number of viable colonies recovered from the same time point. This predictive model allowed us to use OD_{600} measurements to approximate viable cell density at specific phases of the experiment. OD_{600} was measured in all populations at all transfer points in an attempt to standardize cell density in experimental populations, thus maintaining consistent population demographics and avoiding bottlenecking genetic diversity; the minimum number of cells transferred always exceeded 10^6 .

The cell count estimates derived from this model over the course of the ten week selection experiment were also used to predict the number of cell doublings that occurred during growth in liquid media and diploid recovery after the weekly induced outcrossing. Competitive asexual generations were assessed by measuring the OD_{600} of all populations before and after RoundupTM exposure (Figure 2.1, Step 1). Solving for Equation 2.1 below, (where y is the starting cell density, x is the final cell density, and z is the resulting number of cell doublings), I estimate that over 86 asexual generations occurred in the constant regime and more than 100 generations in the increasing regime over the full ten week experiment (Table 2.2).

$$z = \log_2(\frac{x}{y}) \tag{2.1}$$

Non-competitive asexual generations were also estimated with this equation, though less directly, by comparing estimates of cell counts before and after random mating and diploid recovery (Figure 2.1, Step 4). I estimated the number of viable spores entering the mating step by plating dilutions $(10^{-5} \& 10^{-6})$ of isolated spores immediately following isolation so that the spores did not have time to mate (i.e. cultures at the end of Step 3) on YPD agar media and counting colonies after 48 hours of growth. These spore estimates were divided by 2, since in the experiment two spores would have to mate to survive the experimental protocols, and then these numbers were used as estimates of the "initial" plate cell density. "Final" plate cell density was determined from each experimental replicate population after 48 hours of growth on the agar plates; lawns of cells from each plate were scraped into liquid media and OD_{600} was measured to estimate the total number of cells on the plate.

Using these prediction methods, I estimate that if 100% of the spores successfully mated and survived there would be ~ 38 additional asexual generations in the constant regime and ~ 24 generations in the increasing regime over the course of the experiment. While these are indirect estimates, they can be viewed as conservative lower bounds on the range of generations that likely occurred, since they assume that rates of spore viability and mating were 100%. In reality, we expect these rates to be far lower; meaning, if either spore viability and/or mating efficiency was < 100%, this would decrease the number of viable cells that could initiate growth on the plate, which would require a larger number of cell doublings to have occurred to achieve the observed cell density after 48 hours.

2.3 Relative growth rate in evolved populations

My general strategy for phenotyping evolved populations and determining how they may have diverged from the ancestor involved high throughput growth rate assays using a Tecan Spark multimodal plate reader. These assays allowed simultaneous, replicated assessments of evolved populations (from both constant and increasing selection treatments), the control populations, and the 12X ancestor. All populations were revived from frozen stocks and handled in parallel, including standardization to a starting OD_{600} of 0.05 in 200 µL 1% RoundupTM YPD. Growth rate assays in 96-well plates were carried out over 48 hours at an incubation temperature of 30°C (without agitation), and OD_{600} was measured every 30 minutes. Identical assays were carried out in RoundupTM free YPD media to observe evidence of potential phenotypic trade-offs that may have resulted from long-term adaptation to RoundupTM. Growth rate assays were performed using two technical replicates for each of the 16 evolved populations from each RoundupTM treatment and 13 of the control populations alongside three biological replicates (independent overnight cultures) of the ancestor population. All evolved populations (of the RoundupTM treatments and control treatment) were measured after ten weeks of selection.

Plate reader data were analyzed using the R package Growthcurver to assess differences in growth dynamics between assayed populations (Sprouffske and Wagner, 2016). The following logistic growth equation (Eq. 2.2) was fitted to the absorbance data to generate estimates of carrying capacity and population doubling rate (Kimura, 1971). Carrying capacity (K) refers to the maximum population size that can grow based on the environmental conditions. The intrinsic rate of growth of the population (r) is also referred to as doubling time. The population size at the beginning of the growth assay is (N_0) . The logistic equation describes the population size at a given time (t) as N_t using;

$$N_t = \frac{K}{1 + (\frac{K - N_0}{N_0})e^{-rt}}$$
(2.2)

Growthcurver uses the OD_{600} measurements from the growth curve data to

find the best values of growth rate (r) and the carrying capacity (K). These estimated parameters were used to compare phenotypes among the treatment groups, controls and the ancestor. Assumptions of the one way ANOVA normality and homogeneity of variance were tested using Shapiro-Wilks Tests and Levene's F Tests for Equality of Variances, respectively. Both assumptions were not consistently met, so a nonparametric approach was implemented using the Kruskal Wallis test by ranks to see if there is stochastic dominance in at least one of the groups when analyzing the phenotypes of doubling time and carrying capacity. Pair wise comparisons followed using Mann-Whitney tests with Bonferroni correction.

2.4 DNA Extraction, Library Prep and Sequencing

All populations from this study were sampled for pooled population genomic DNA sequencing (Pool-SEQ). DNA was extracted and sequenced from the initial ancestral population before selection was implemented as described in Burke et al. (2020). Extractions from the 16 extant replicate populations from both the increasing and constant RoundupTM treatment groups were then performed after 3, 6, and 10 weeks of selection. The 16 control populations were generated previously and sequenced after 1, 7 and 15 weeks of selection; in other words, they were not handled in parallel with the RoundupTM treatments, and existing genome data happen not to correspond to the same generations at which the RoundupTM treatments were sampled. All DNA extractions were performed using 1 mL of saturated overnight cultures in liquid YPD media (~ 10^9 diploid cells) using the Qiagen Gentra Pure-

gene Yeast/Bacteria kit (25U zymolase replaced 1.5 μ L Lytic Enzyme Solution). 25ng from each sample (quantified using a Qubit 3.0 Fluorometer) was used to prepare Illumina Nextera libraries, with slight modifications to the manufacterer's protocol to increase throughput, and samples were dual-indexed to facilitate combination into multiplexed libraries. Pooled sequencing was performed at OSU's Center for Genomic Research and Biocomputing using the Illumina HiSeq3000. Libraries were run on 1-2 PE150 lanes to achieve a minimum average genome-wide coverage of 50X per replicate population.

2.5 Variant Calling and Coverage

The Burke Lab has published pipelines for characterizing population genetic patterns from Pool-SEQ data, at the level of individual alleles, and linked haplotypes (Burke et al., 2014; Phillips et al., 2020). DNA sequencing data were first processed by aligning raw reads to the *S.cerevisiae* S288C reference genome (R64-2-1) and calling variants across all biological replicates using GATK v.4.0 (McKenna et al., 2010; Poplin et al., 2018; Van der Auwera, GA and O'Connor, BD, 2020). Base quality was also calibrated by indexing a reference VCF file that catalogs SNP information for a group of natural *S. cerevisiae* isolates (Bergström et al., 2014). The resulting VCF was used to create a SNP frequency table that was used for subsequent analysis. Annotation of genetic variants and the effect that they have on genes and their resulting proteins was investigated using SnpEff v.5.0e (Cingolani et al., 2012). Additional filtering was performed to include only SNPs that had sufficient coverage (> 10X per site per population). Patterns of variation in coverage for individual populations were assessed as this might reveal evidence for potential structural variants (i.e. large scale duplications or deletions) changing in frequency over time. I looked for potential structural variation by finding the coefficient of variation of the genome wide coverage for each population. This was calculated by dividing the standard deviation of coverage by the mean coverage within each population. A low coefficient of variation (< 1) suggests that there is not strong evidence for large scale structural variants (Phillips et al., 2020; Feng et al., 2015).

2.6 Characterizing allele frequency differentiation

I used a number of methods to describe patterns of genetic variation within and among populations, with the goal of understanding how the control and RoundupTM treatments diverged from the ancestor over the three sequencing time points. First, a principal component analysis (PCA) was performed to broadly investigate patterns of population-level variation and how this changed over the course of the experiment. This PCA was performed using the prcomp() function in R (Stats v.3.6.2) including all polymorphic SNPs common to the ancestor and evolved populations at each sequencing time point. Polymorphic SNPs were defined as all SNPs that had a frequency > 0 and < 1 in the ancestor population and had a coverage > 10 in all replicate populations. To investigate more specifically how standing variant frequencies changed, Cochran Mantel Haenszel (CMH) tests were performed to assess allelic differentiation between pairs of experimental treatments (e.g. replicate populations from two treatments at the same timepoint) using R package lawstat v.3.4. In the context of an E&R study, the p-values from CMH tests can be used to identify regions of the genome that putatively underlie the adaptive shifts occurring during experimental evolution (Kofler et al., 2011).

Compared to other approaches, CMH tests have been identified as an effective and computationally expedient tool for identifying genomic targets of selection in E&R experiments (Vlachos et al., 2019). For each pairwise CMH test a permutation-based approach, similar to the methods used in Burke et al. (2014), was implemented to determine a significance threshold. A null distribution was created by scrambling the associated sample identifiers for each SNP position such that the associated coverage and allele counts were randomized between the two groups being tested. A CMH test was performed on this null data set generating p-values that would result from genetic drift rather than selection. The most significant p-value across the full genome was taken from the permutation data and this process was repeated 1000 times. The threshold associated with a 5% false positive rate was then determined from the thousand lowest p-values by using the quantile function in R.

To characterize allele frequency differentiation among populations of our three treatments, we carried out a total of three separate CMH tests, each revealing genomic regions where differentiation was high for a specific pair. Two of the tests identify regions of the genome potentially underlying adaptation to RoundupTM: comparing allele frequencies from the terminal time points between 1) the con-

stant treatment and the control treatment and 2) the increasing treatment and the control. "Peaks" of $-\log 10(p)$ values exceeding the relevant significance threshold in each test are strong candidates for regions harboring genes and/or variants with functional consequences for RoundupTM resistance (i.e. "Roundup-specific") regions). A third CMH test was carried out to assess allele frequency differentiation between populations of the constant and increasing treatments. The objective of this third test is to provide insight into regions of the genome that exhibit a specific signature of adaptation in these two regimes. If a specific peak presents in two of the three CMH test results, the region can be viewed as specific to the treatment common to those two tests. Meaning, significant peaks that occurred in only one treatment compared to the control were identified as either a "constantspecific" or "increasing-specific" peak, and then were further verified by checking that these same regions also showed significant differences when comparing the constant and increasing treatments directly. Peak regions that present in a single test are less informative; therefore for relevancy to the study objectives, our analvsis is restricted to these so-called treatment-specific peaks shared by two of the three treatment comparisons. Individual SNPs above the significance threshold in each peak were investigated to see if these variants fell within coding or noncoding regions, if they are synonymous or nonsynonymous, and what the downstream effects of these SNPs might be. The Saccharomyces Genome Database (SGD) YeastMine tool was also used to identify the total number of genes that fell under each peak and the GO Term Finder (Version 0.86) was used to discover potential ontological categories that are shared among these verified genes (Balakrishnan et al., 2012; Hong et al., 2008). The genomic signatures of the Roundup-specific peaks in each treatment– in other words, the size, and location of each peak - were also compared to see if the incrementally increasing regime led to different genomic patterns, and perhaps increased resolution to identify putative causative genomic sites, compared to the constant selection regime.

In addition to characterizing allele frequency differentiation at polymorphic SNPs segregating among experimental populations, I also filtered the dataset to search for potential beneficial *de novo* mutations that arose after the experiment started. This was done by first filtering for SNPs that were not present in the initial ancestor population, but then exceeded a frequency of 25% in at least one experimental replicate after the final week of selection. Further filtering was done to identify SNPs where this frequency change was only observed in a single replicate, while absent from the other replicates. It is likely that SNPs with frequency change occurring in more than one replicate were already existing in the ancestor population at a low frequency and were not detected during sequencing. These were omitted since they likely are not true *de novo* mutations that arose over the course of the selection experiment.

Chapter 3: Results

3.1 Relative growth rate in evolved populations

After ten weeks of evolution all the evolved populations were tested alongside the ancestor in rich media with and without RoundupTM. Figure 3.1A shows the 48 hour growth curves generated by plotting the log transformed OD_{600} measurements taken every 30 minutes of growth in 1% RoundupTM media. Nonparametric pair-wise comparisons showed that doubling time was significantly slower in the ancestor compared to both RoundupTM treatment groups, constant (p = 0.002) and increasing (p = 0.002), and the control populations (p = 0.004). The doubling time estimates (Figure 3.1.B) suggested no significant difference between the two RoundupTM selection regimes (p = 0.381), but did exhibit slower growth in the control compared to the constant (p = 0.001) and the increasing (p = 0.015)regimes. There was a significantly higher carrying capacity (Figure 3.1.C) in the ancestor compared to both the constant (p = 0.002), increasing (p = 0.002) and control (p = 0.004) populations. The control also demonstrated a higher carrying capacity compared to both the constant (p = 0.002) and increasing (p = 0.0003)treatments, however, no significant difference in carrying capacity was observed between the constant and increasing regimes (p = 0.669).

The growth rates from the plate reader assay in rich YPD media are shown

Figure 3.1: Growth in 1% RoundupTM media. Evolved RoundupTM resistance is evidenced by growth curves (3.1.A) generated from microplate reader OD₆₀₀ measurements taken every 30 minutes for 48 hours. Points represent the average of two technical replicates of each population per treatment: constant (red, N=16), increasing (green, N=16), control (blue, N=13) and the ancestor (turquoise, N=3). The average doubling times (3.1.B) are significantly shorter in all experimental populations compared to the ancestor, with the two RoundupTM treatments growing the fastest. Average carrying capacity (3.1.C), however, appears to be higher in the ancestor compared to both RoundupTM treatments and the evolved control. No significant phenotypic differences were observed between RoundupTM treatment groups with regards to either growth rate or carrying capacity.

Figure 3.2: Growth in YPD media. Growth curves (3.2.A) were produced for all populations following the same protocols used in Figure 3.1, using YPD without RoundupTM as the culture medium. The average doubling times (3.2.B) provide evidence of improved growth in the control, compared to the ancestor and both RoundupTM treatments. There was no observed difference in doubling time between the RoundupTM treatments and the ancestor. Similarly, average carrying capacity (3.2.C) estimates were slightly higher in the control compared to the increasing and ancestor populations, but no significant differences were found between the ancestor and the RoundupTM treatments.

in Figure 3.2.A. Estimates of doubling time(Figure 3.2.B) demonstrate that the control populations had significantly faster growth compared to the ancestor (p = 0.004), constant (p = 0.008) and increasing (p = 2.947e-08) treatments. There were not significant differences between the ancestor and the constant (p = 0.210) or the increasing (p = 0.5593) populations; however, populations of the constant treatment had slightly higher growth rates compared to those of the increasing treatments (p = 0.004). The controls also had higher carrying capacities (Figure 3.2.C) than the ancestor (p = 0.007) and increasing treatment group (p = 1.326e-06); however, populations of the constant treatment exhibited no significant difference from the controls (p = 0.0683). The carrying capacity of the ancestor was similar to both the constant (p = 0.3591) and increasing (p = 0.7926) populations, and there were no significant differences between the two RoundupTM treatments (p = 0.1835).

3.2 SNP identification, average coverage and *de novo* mutations

A total of 90,510 biallelic SNPs were identified relative to the reference genome in all evolved populations prior to any sort of filtering. The mean genome-wide SNP coverages of individual populations ranged from 10X to 82X (Appendix A). The coefficient of variation of each sample fell below 0.4 demonstrating low variation of coverage depth across the full genome. Pool-SEQ data regions with atypically high or low coverage relative to the mean may indicate potential structural variants (e.g., duplications or deletions) that may have arisen over the course of selection. We found no such regions, and therefore report no obvious evidence for large scale structural variation in any population. Investigation into putative *de novo* mutations also found no strong candidates within the two RoundupTM treatments that met the criteria outlined in section 2.5 and achieved a frequency change of > 25%.

3.3 Allele frequency characterization in evolved populations

To evaluate how standing genetic variation evolved over the course of the experiment, we first ran a PCA using allele frequencies in a subset of SNPs that were polymorphic in the ancestral population, and at which we observed high depth of coverage. There were 32,298 polymorphic SNPs, which met the following quality filters across the entire dataset: 1) SNPs were at a frequency > 0 in the ancestral population and 2) coverage was > 10X in all populations at all sequencing time points.

The PCA of these polymorphic SNP allele frequencies suggests that the replicates of each treatment group (control and both RoundupTM treatments) are more genetically similar to one another than to populations of different treatment groups, and that the populations of each group diverge over time (Figure 3.3). In both the constant and increasing treatments, we observe that replicates are tightly clustered and shift in a consistent direction over time, while the replicates of the control treatment are more loosely clustered, potentially implicating the effects of genetic drift rather than selection.

Figure 3.3: PCA of high-coverage standing variants. Each color in this PCA represents an independent replicate population belonging to one of the three experimental treatments (N=16 per color, except for the ancestor) at a specific timepoint. Replicates of the two RoundupTM treatments cluster tightly together at each timepoint, which is indicative of parallel evolution within each treatment. Replicates of the control treatment do not cluster tightly, which is indicative of genetic heterogeneity produced among them.

Next, we carried out CMH tests comparing allele frequencies at the terminal time points of the experiment (week ten for the RoundupTM treatments, and week 15 for the controls) in order to identify regions of the genome that are differentiated by treatment. A total of 55,105 polymorphic, high coverage SNPs were used to perform each CMH test. Only polymorphic SNP allele frequencies from the final sequencing time point were used in the CMH test and filtered for coverage > 10X;

Figure 3.4: (A) Final week comparisons of the allele frequencies from the constant vs. control (A), increasing vs. control (B) and constant vs. increasing (C). Roundup-specific peaks that showed significant changes in plots A and B, but not in C are highlighted in purple. Constant RoundupTM selection specific peaks that are observed in plots A and C are highlighted in orange. Peak names are designated with the first letter (C or R) corresponding to the either a Roundup- or constant-specific peak, the number matches common peaks between plots and the final letters (i.e. a, b or c) signify the CMH test that each test is from as described above.

therefore, more SNPs were included in the CMH analysis compared to the PCA. As CMH tests require pairs, we conducted three independent CMH tests: constant treatment versus control treatment (Figure 3.4.A), increasing treatment versus control treatment (Figure 3.4.B), and the constant versus increasing treatment (Figure 3.4.C). Peaks of significant SNPs were identified from each pairwise test by independently determining significance thresholds that correspond to a genome wide Table 3.1: A summary of the treatment-specific peaks implicated by the experiment. Each peak listed in this table technically exists as a pair (e.g. C1a and C1c), as to be considered a peak, a particular genomic location must include significant SNPs in two out of three CMH tests. While peak regions share a general genomic location, the width and number of SNPs implicated differs for each pair. Two constant-specific peaks, four Roundup-specific peaks, and zero increasing-specific peaks were observed. Considering only the Roundup-specific peaks, width, SNP number, and gene count suggest that neither treatment type is better than the other in terms of the ability to detect candidate regions.

Peak Type	Peak Name	Position	Peak Width (kb)	Number of genes under each peak	Number of significant SNPs under each peak
Constant-specific	C1a	Chr4:67141-101651	34.51	19	13
	C1c	Chr4:64076-124453	60.38	32	198
	C2a	Chr12:399483-399513	0.03	0	2
	C2c	Chr12:399483-424103	24.62	12	3
Roundup-specific	R1a	Chr4:520955-557161	36.21	19	41
	R1b	Chr4:520955-549376	28.42	14	4
	R2a	Chr4:801527-826151	24.62	13	6
	R2b	Chr4:806513-806514	0.00	0	2
	R3a	Chr15:143876-155276	11.40	5	26
	R3b	Chr15:138539-158650	20.11	9	54
	R4a	Chr16:881189-881189	0.00	0	1
	R4b	Chr16:832084-865361	33.28	17	6

alpha of 0.05 using the permutation methods described in Section 2.6. Figure 3.4 shows all significant peaks that were identified above the corresponding threshold from each pairwise comparison; however, further discussion will only focus on the peaks that we identified as treatment-specific, in other words the peaks that were identified in two of the three CMH tests. We identified four "Roundup-specific" peaks where allele frequencies significantly diverged from the control in both the constant and increasing RoundupTM treatments (i.e. peaks in both Figures 3.4.A & 3.4.B). We identified an additional two "constant-specific" peaks where allele frequencies in the constant treatment significantly diverged from both the control in both the constant reatment treatment significantly diverged from both the control in both the constant reatment treatment significantly diverged from both the control in both the constant treatment significantly diverged from both the control in both the constant treatment significantly diverged from both the control in both the constant treatment significantly diverged from both the control in both the constant treatment significantly diverged from both the control for the control in both the constant treatment significantly diverged from both the control for the control for the control for the constant treatment significantly diverged from both the control for the control for the constant treatment significantly diverged from both the control for the control for the control for both the control for the control for both the contro

and increasing treatment (i.e. peaks in both Figures 3.4.A & 3.4.C). There were no peaks that could be clearly labeled as specific to the increasing RoundupTM treatment. Table 3.1 provides a summary of the Roundup-specific and constant-specific peaks including their position within the genome, number of SNPs per peak, the width with regards to the significance thresholds and the number of genes that fell under each peak. A more detailed summary of all individual SNPs reported in each Roundup- and constant- specific peak are provided in Appendix B including their potential functional consequences as predicted by the program SNPEff.

The GO term analysis of all of the verified genes under all six peaks identified three functional categories relating to sodium and calcium transport as mechanisms of phosphorylation. It should be noted that two of the three GO terms ("sodium-exporting ATPase activity, phosphorylative mechanism" and "calciumtransporting ATPase activity") included only genes that occur within a single peak all clustered together (R1), and these happen to be from the same family (*ENA1*, *ENA2*, and *ENA5*). Therefore, there is no basis to conclude that these two GO terms are enriched from a genome-wide perspective. By contrast, the third and most significantly enriched term, "sodium ion transmembrane transporter activity" (corrected p-value = 1.07×10^{-5}), identified five genes occurring on two different chromosomes in three separate peaks. One of the genes linked to this term was *ENA1*, a P-type ATPase sodium pump that is involved in Na+ and Li+ efflux contributing to salt tolerance (Mendizabal et al., 1998). Also on chromosome 15 the most significant nonsynonymous SNP fell within *HAL9*, a putative transcription factor of the C6 zinc finger class. *HAL9* activates *ENA1* and several ABC

Figure 3.5: Significant genomic changes were not observed in *a priori* genes ARO1, PDR5 and DIP5 (highlighted in purple) as these genes did not fall within significant peaks of the final week comparisons of the allele frequencies from the constant vs. control (A), increasing vs. control (B) and constant vs. increasing (C). We did, however identify two genes ENA1 shown in chromosome 4 and HAL9 on chromosome 15 (highlighted in red) that fell within Roundup-specific peaks. These genes were of interest since HAL9 activates both ENA1 and several transcription factors including PDR5.

multidrug transporters including PDR5, which was previously identified as a gene potentially underlying glyphosate resistance (Rong-Mullins et al., 2017; Mendizabal et al., 1998). Figure 3.5 shows the location of these two putative candidate genes falling within significant peaks, while *a priori* candidates *ARO1*, *PDR5* and *DIP5* did not experience significant genomic changes.

3.4 Annotations and allele frequency trajectories of most significantly differentiated SNPs in each peak region

3.4.1 Roundup-specific peaks

The four pairs of Roundup-specific peaks (R1a/b, R2a/b, R3a/b and R4a/b) identify regions with significantly different allele frequencies in both the constant treatment compared to the controls, and the increasing treatment compared to the the controls (see Figure 3.4.A & B). While these peaks were identified because their position along the genome overlapped, we observe some meaningful differences between the a/b peaks of each pair. As shown in Table 3.1, the two peaks often implicated different numbers of significant SNPs, and had different widths. While any of the significant SNPs under any peak is worthy of further scrutiny (e.g. for functional validation with *in-vivo* experiments), for simplicity, we point out the SNP we observed to exhibit the most significant differentiation under each inclusive peak region (meaning the a/b peaks considered together). Below, we enumerate the predicted functional effects of each of these SNPs, and visualize their frequencies over the course of the experiment. For peak R1 on chromosome 4, the SNP with the highest $-\log_{10}(p-value)$ is a synonymous variant within the RSM10 gene. This gene codes for an essential protein that mediates translation within mitochondria (Saveanu et al., 2001) and was previously identified in a QTL study investigating the effects of glyphosate based herbicides on yeast (Ravishankar et al., 2020). For peak R2 on chromosome 4 the most significant SNP is a synonymous variant in HSP42, which codes for heat shock proteins responsible for cytoskeleton maintenance (Wotton et al., 1996; Haslbeck, Martin et al., 2004). For peak R3 on chromosome 15, the most significant SNP is a synonymous variant in MSH2, which assists in DNA mismatch repair (Earley and Crouse, 1998), and was also previously associated wth RoundupTM resistance by Ravishankar et al. (2020). For peak R4 on chromosome 16 the most significantly differentiated SNP is a modifier upstream of the gene MRP2, a component of the small subunit of the mitochondrial ribosome, which mediates translation in the mitochondrion (Desai et al., 2017).

Figure 3.6.A-D shows, for the four most-significant SNPs per peak outlined above, the observed changes in allele frequencies over the course of the experiment, starting from the ancestral frequency. When we looked at these allele frequency trajectories, we observe relatively little change from the original ancestor frequency in both the constant and increasing treatments; however, the control populations appear to deviate strongly from both treatments decreasing in frequency. There is one peak (R3) where this pattern is more complicated, and the SNP frequency appears to marginally increase over time in the two RoundupTM treatment groups while the SNP frequency in the control decreases.

3.4.2 Constant-specific peaks

The two pairs of constant-specific peaks (C1a/b, C2a/b) identify regions with significantly different allele frequencies in both the constant treatment compared to

the controls, and the constant treatment compared to the increasing treatment (see Figure 3.4.A & C). For peak C1 on chromosome 4, the most most significant SNP is a synonymous variant in the gene *TIM22* that is critical for yeast survival and encodes a subunit of the Tim22 complex inside the mitochondrial inner membrane. This complex mediates the transport of carrier proteins into the inner membrane space of mitochondria (Sirrenberg et al., 1996). For peak C2 on chromosome 12, the most significant SNP is not in a gene, but occurs upstream of open reading frame YLR126C within a promoter region, and is predicted to modify its expression. While this gene encodes a protein of unknown function, it has been implicated in metal ion homeostasis (Freitas et al., 2004).

The allele trajectories of the most significant SNPs from each constant-specific peaks is shown in Figure 3.6.E-F. For both SNPs, the constant and increasing treatments appear to have imposed opposite selection pressures on these alleles, leading to their divergence. The frequency of each the SNP in the control populations also diverged from the constant populations, though not as dramatically.

Roundup-specific peaks

Figure 3.6: Allele trajectories of the most significant SNP from the four Roundupspecific peaks (3.6.A-D) show stasis (or slight increase) in the constant (red) and increasing (green) treatments, and a decrease in the controls (blue). The allele change shown in the most significant SNP of the two constant-specific peaks (3.6.E-F) demonstrate how the effects of RoundupTM selection on the genome may be dose dependent as the increasing treatment diverges from the constant regime with an adaptive signature independent from the control replicates. The SNP being plotted here is the non-reference allele, relative to the S288C canonical sequence.

Chapter 4: Discussion

4.1 Evolved populations grow faster than the ancestor in the presence of RoundupTM with no obvious phenotypic trade-offs

After ten weeks of selection, populations of both $\operatorname{Roundup}^{TM}$ treatments and the control treatment showed evolved RoundupTM resistance when compared to the ancestor population (see Figure 3.1). Although carrying capacity was also measured, it was not a valuable metric for measuring evolved resistance as all treatments were comparable to the ancestor. Evolved resistance was determined by estimating the average doubling time from 48 hour growth experiments in 1% RoundupTM media. These assays demonstrated that there was no significant difference in average growth rates between the two $\operatorname{Roundup}^{TM}$ treatments. While there was some variation between biological replicates of the same treatment group, this variation was marginal and not consistent across multiple plate reader assays. We therefore judged that this variation was more likely an artifact of methodological inconsistencies in individual plate reader runs and not reflective of true phenotypic differences, so we view the average doubling time across the biological replicates as an accurate representation of treatment-specific phenotypes. The similar evolved phenotypes in both RoundupTM treatments are consistent with the idea put forth by Vlachos and Kofler (2019) that although implementing an increasing selection treatment may enhance the resolution in which we can detect causative genomic loci, it will not necessarily produce a different phenotype compared to a constant selection treatment, at least in experiments with many generations (Vlachos and Kofler, 2019).

After ten weeks of selection we did detect significantly faster growth in the control populations compared to the ancestor in RoundupTM media. The average growth rate of the control populations was intermediate between that of the ancestor and that of populations of the two RoundupTM evolved treatments. This suggests that the trait of RoundupTM resistance might be related to a broad stress response that our experimental yeast handling protocols are also imposing selection for. The weekly sexual outcrossing protocols impose a number of significant and distinct stresses on populations; these include i) culture in sporulation media which lacks nutrients, ii) exposure to heat, mechanical agitation, enzymes and chemicals to isolate individual spores and iii) batch culture which includes periods of alternating high and low nutrient availability as populations grow and reach saturation over time.

A specific aspect of our protocols that may be playing a role in this phenotypic outcome is the use of Y-PERTM(Yeast Protien Extraction ReagentTM, Thermo Fisher Scientific) a detergent used to kill unsporulated diploid yeast cells during the weekly sexual outcrossing protocol (detailed protocol in Burke et al. 2020). This chemical is of specific interest since it might be similar to undisclosed surfactants that are added to the commercial RoundupTM formulas in order to increase the coverage, penetration and overall effectiveness of the herbicide. Some of the surfactants that are commonly used in herbicides have varying tested levels of toxicity (Mesnage et al., 2019; Benbrook, 2016). The acute Y-PERTM exposure may be targeting similar physiological pathways as the non-active ingredients in the commercial RoundupTM formula during our weekly selection protocols. It is unlikely that diploid cells are evolving complete resistance to Y-PERTM as it has been thoroughly tested as an effective methods for killing diploid cells; however, it could be causing spores or the asci to adapt under this selection pressure. Variation in spore viability resulting from acute Y-PERTM exposure might explain some of the RoundupTM resistance we are observing in our control populations.

To test the idea that selection in RoundupTM media might have led to the evolution of a fitness trade-off, we measured the growth of all evolved populations alongside the ancestor in liquid YPD media without RoundupTM. Overall we report no obvious evidence for such a trade-off as we observed no significant difference between the growth rate of the two RoundupTM treatments and the ancestor. If selection in RoundupTM media resulted in a major trade-off for growth rate, we might expect to see populations of either the constant and/or increasing treatments growing slower than the ancestor in plain YPD media. The control populations did show a slight improvement in growth in YPD media compared to the ancestor (p = 0.004) and constant treatment (p = 0.008), and a more dramatic improvement compared to the increasing (p = 2.947e-08) treatment. It is perhaps unsurprising to see this slight improvement in growth, given that these control populations experienced regular batch culture in YPD media, which involves similar circumstances as the growth rate assay itself. The fact that we did not see this

improvement in populations of either of the constant or increasing RoundupTM treatments could be interpreted as suggestive evidence for a trade-off underlying the phenotype; in other words, the RoundupTM evolved populations did not grow as fast as they potentially could have, were a trade-off not constraining them.

4.2 Putative regions identified that may improve yeast growth in RoundupTM media

We identified six genomic regions that are likely to harbor alleles that confer increased RoundupTM resistance. Four Roundup-specific peaks, on three different chromosomes, revealed alleles with frequencies in both the constant and increasing treatments that significantly diverged from the control. There are 58 genes falling under these peaks, warranting further investigation of whether these genes may be contributing to evolved RoundupTM resistance in our two treatment groups (see Appendix C). The allele frequency trajectories of the most significant SNPs in each Roundup-specific peak suggest that the allele frequencies of the constant and increasing treatment are being maintained, while the allele frequencies of the control populations are changing dramatically. We also observe that the variance in allele frequencies at the end of the experiment is generally higher in the control populations compared to the RoundupTM treatments. We interpret these results as evidence that these particular alleles (and/or those linked to them) may be under stabilizing selection in the two RoundupTM treatments, but under weak directional selection in the control populations. While the action of genetic drift could also explain the higher variance in allele frequencies in the control populations, we still see a clear average decrease in allele frequencies in the control populations across all replicate populations; therefore, we invoke weak directional selection as the most likely agent of change, rather than drift alone. Since these alleles are maintained at intermediate frequency under RoundupTM conditions, but they decrease in frequency when populations are cultured in YPD media, it appears that these alleles may have pleiotropic consequences, depending on the environment

We also identified two peaks showing significantly different allele frequencies in the constant treatment compared to both the control and the increasing populations. These two peaks highlight an additional 44 genes that might specifically relate to improved resistance to high RoundupTM exposure (Appendix C). The allele trajectories of the most significant SNPs from the constant-specific peaks visually demonstrate a striking difference in outcomes of selection from the two different RoundupTM treatments. In peak C1, the allele frequencies in the populations of the constant treatment remain high, not deviating much from the ancestral frequency of ~ 0.75 , while the frequencies in the populations of the increasing treatment sharply decrease to ~ 0.25 in all the replicates, followed by a plateau (see Figure 3.6.E). At this same SNP the allele frequencies of the control populations decrease less dramatically, and again we observe more heterogeneity among the control replicates, which may implicate weak selection or drift. In peak C2, we observe more noise in the constant replicates over time; however, the average allele frequency across replicate populations at the end of the experiment is similar to that of the ancestor, so we again suggest stabilizing selection as a possible mechanism underlying this maintenance in allele frequency. The populations of the control and increasing treatments decrease, and we invoke directional selection as a likely mechanism. If the populations of the increasing treatment were not responding to RoundupTM imposed selection, we would not expect to see such a pattern; instead, we would expect to see the populations of the increasing treatment following similar patterns comparable to the control group treatment. While we observe distinct allele trajectories in the control and increasing treatment in peak C1, there is more overlap in peak C2. This peak region should undergo further interrogation before it can clearly be identified as a constant-specific candidate. The constant-specific peaks provide evidence that the phenotype of RoundupTM resistance likely has a complex genetic architecture as it appears that different alleles respond to varying strengths of selection.

Previous research exploring the affect of RoundupTM on *S. cerevisiae* using QTL and RNA-Seq approaches highlighted over a thousand genes that may be correlated with RoundupTM resistance (Ravishankar et al., 2020). We observed 24 of these genes within our peak regions, nine of which were identified within constant-specific peaks and 15 within Roundup-specific peaks (see Appendix C). Although there was some overlap in our findings, we did not see a significant allele frequency change in either *PDR5* or *DIP5*, the two genes that were thought to be involved in yeast uptake of glyphosate (Rong-Mullins et al., 2017). It is not surprising that we did not see changes in *DIP5*, since this gene was identified in experiments that used minimal media instead of YPD. While we did not directly see changes in *PDR5* (a candidate observed in experiments that used YPD), we

did observe significant changes in HAL9, which plays a role in activating PDR5.

The methods previously used by Rong-Mullins et al. (2017) and Ravishankar et al. (2020) focused on testing strains with much less genetic diversity compared to our highly diverse, ancestral population. The classic QTL study of Rong-Mullins et al. (2017), investigated crosses between two isogenic strains, one that was known to exhibit a resistant phenotype in the presence of glyphosate based herbicides and another that was more susceptible. Similarly, a handful of other isogenic strains were used to perform RNA-seq and other experimental evolution experiments. This difference in standing genetic variation may explain why we do not see more overlap between the sets of genes identified. These experiments also used a different commercial formula, Credit41TM, which contains a higher percentage of glyphosate (41%) and not necessarily the same inactive ingredients. So, while there are many reasons why our experiment may have identified different candidate genes than prior work, the genes that do overlap are especially strong candidates for future examination.

4.3 Increasing treatment does not enhance ability to detect candidate regions

Testing two different RoundupTM selection treatments allowed us to investigate the hypothesis that a treatment that increases the strength of selection over time leads to greater resolution in detecting causative genomic regions compared to a treatment featuring constant, strong selection. Vlachos and Kofler (2019) showed with

forward-in-time simulations that strong, constant selection is more likely to identify genomic regions containing neutral hitchhikers that are linked to causative sites compared to an increasing selection regime, which is optimized to detect causative loci. Hitchhikers provide excess noise and make it difficult to narrow down what might be causative alleles driving change in an E&R experiment, therefore an approach that leads to reduced hitchhiking is desirable, Vlachos and Kofler (2019) showed that implementing an increasing selection treatment, which decreases the number of selected individuals over time, reduces such hitchhiking and leads to higher power to detect specific alleles underlying adaptive traits. The increasing treatment, which started at a low dose of 0.1% RoundupTM in YPD media and slowly increased to a high dose of 1% over ten weeks of selection did not improve our ability to detect potential causative regions compared to a constant, high selection pressure of 1% RoundupTM. We expected that comparing allele frequencies between the two RoundupTM treatments and controls, would lead to narrower peak regions in the increasing treatment, with fewer linked SNPs falling under those significant peaks, compared to the same analysis featuring the constant treatment. We did not observe a consistent pattern that aligned with this expectation as two of the pairs of Roundup-specific peaks were narrower and identified fewer SNPs in the increasing treatment comparison to the control (i.e. peaks R1a/b & R2a/b), while the two other peak pairs revealed the opposite pattern (i.e. peaks R3a/b & R4a/b, see Table 3.1).

There are several possibilities for why we did not observe obviously narrower peaks from the analysis featuring the increasing treatment. One reason might be that while the dose of Roundup TM steadily increased over the weeks of the experiment, this may not have led to concomitant increases in selection pressure each week, since over time we would expect the populations to become more resistant to RoundupTM with repeated exposure. A more pronounced weekly increase in the dose of RoundupTM might have alleviated this concern, but would have been difficult to design in advance. As it stands, we chose 1% RoundupTM as the "high" dose as it resulted in approximately 90% reduction in cell viability after acute exposure, and we observed a nearly linear relationship between cell viability and RoundupTM dose; in other words, we reasoned that the 0.1% starting "weak" dose incurred about 1/10 the selection pressure as the final strong dose. But, this linear dose-response may not have been realized in the context of a selection experiment, where adaptation rapidly occurs. Measuring such adaptation in real time during the experiment, and adjusting the Roundup TM dose accordingly, would have been difficult to achieve, and to justify since it was not obvious which aspect of life-history (e.g. growth, sporulation, mating) to track. It is possible that since we were not able to precisely measure these population dynamics, the increasing treatment may have been more similar to a constant selection pressure in terms of the percent of the population's standing genetic variation that was maintained in the population after each weekly treatment. Similarly, the constant treatment may have imposed a stronger selection pressure at first, but as the populations evolved resistance, the selection pressure may have actually decreased over time. In short, while there are many ways in which our experiment was imperfect, the simplest design we could imagine did not lead to an obvious pattern. Therefore, we conclude that implementing an experimental design that increases the strength of selection over time provides no obvious benefit, compared with a simpler design featuring constant selection, to an investigator whose primary interest is identifying potentially causative regions.

Another important aspect to consider is the number of generations that occurred under RoundupTM selection. The simulation work by Vlachos and Kofler (2019) investigating the effect of the number of generations in E&R experiments in Drosophila melanogaster suggest that more than 40 generations of selection are needed to see an enhanced resolution in an increasing selection treatment compared to a constant selection treatment. The yeast populations in this study system have much more complex life-histories compared to fruit flies, so it is difficult to relate this generation threshold directly to our experiment. The populations in the experiment reproduced both asexually and sexually, which brings up the questionwhat constitutes a generation? While our experiment featured over 100 asexual generations in the RoundupTM selection treatments only ten discrete cycles of sexual recombination occurred. As yeast have much higher average recombination rates (by approximately 100-fold) than *Drosophila*, it is not appropriate to equate a sexual cycle in our yeast system with a single generation in flies. But it is also possible that with a longer experiment, we might have observed larger and more consistent differences between the two treatments.

Implementing two different selection regimes revealed that $\operatorname{Roundup}^{TM}$ resistance is a more complex trait than we expected, with an underlying genetic architecture that likely depends on the strength of selection. Our constant-specific

peaks revealed allele frequencies that were maintained in the populations experiencing constant, high RoundupTM but that changed dramatically in populations experiencing gradually increasing RoundupTM treatment (a pattern distinct from the control populations). In spite of not seeing an improved ability to detect candidate variants in the increasing regime, we did, however, provide evidence for this complex and interesting trait architecture. These constant-specific peaks suggest that certain alleles may be selected for under high RoundupTM conditions, but selected against at low doses.

Chapter 5: Conclusion

This study identified several genomic regions that may contribute to improved RoundupTM resistance in yeast, and these regions provide a useful resource for future investigations into the effects of Roundup TM on eukaryotic organisms. While we cannot definitively say that any of the genes in these regions are causative based on the experiments performed to date, they are promising candidates and further add to the body of work that is seeking to understand how non-target organisms evolve in response to chronic exposure to this herbicide. Next steps would include performing functional genomic assays of these strong candidates to further verify their potential contribution to improved RoundupTM resistance, especially the genes that overlap with results from similar studies in other laboratories. If naturally-occuring allelic variants in genes can be definitively linked to a functional increase in resistance to RoundupTM these variants could have value in an applied context. Herbicides like RoundupTM appear to affect natural microbial communities, particularly in soils whose health is critical for large-scale agriculture. By identifying alleles and that allow microbes to thrive in the presence of this product and potentially also directly metabolize it, our basic research may inform applied bioengineering efforts to optimize soil microbial communities for increased crop yield, and for bioremediation of soil toxins (such as broad-spectrum herbicides). These efforts could lead to improved farming practices that increase yields and safety.

With regards to the objective of distinguishing between evolutionary outcomes of different types of selection treatments, we observed no evidence that a treatment that incrementally increases selection pressure over time in an E&R study has a higher power to detect potentially causative variants compared to a high, constant selection pressure. We also observe no different phenotypic outcomes between the two types of selection regimes. We conclude that implementing an increasing selection regime does not offer obvious benefits in terms of genomic resolution that outweigh the challenges of implementation; we observed no clear pattern of narrower peaks that might suggest fewer false positives in the increasing selection treatment. It is important to note that the results comparing the effectiveness of the constant vs. increasing treatments are limited to our yeast model system and perhaps should not be extrapolated to E&R experiments using organisms where it is easier to measure the strength of selection (i.e. the viability and death of individuals within each population over generations of selection). Simultaneously implementing both a constant and increasing treatment did, however, offer some unexpected benefits as it uncovered a unique trait architecture of RoundupTM resistance that implies that the Roundup TM exposure dose influences selection outcomes and different dosage levels may lead to different alleles being favored and rising in frequency. It is possible, however, that exposing yeast to a constant, low dose of RoundupTM would have also revealed this pattern. Regardless, this observation of dose-dependent genetic responses to selection may have applications for fostering healthy microbial populations in agricultural settings that are exposed to high amounts of RoundupTM directly within the spray path and also for populations exposed to spray drift and runoff where the exposure is far less. Ultimately, our results support the idea that implementing multiple types of selection regimes in an E&R experiment could be valuable for revealing complexities underlying particular quantitative traits, such as pleiotropic variants that respond differently depending upon the strength of selection. Such pleiotropic consequences could not possibly be detected from a classic E&R design featuring a single, constant selection regime.

Bibliography

- Amrhein, N., Deus, B., Gehrke, P., and Steinrücken, H. C. (1980). The Site of the Inhibition of the Shikimate Pathway by Glyphosate: II. Interference of glyphosate with chorismate formation in vivo and in vitro. *Plant Physiology*, 66(5):830–834.
- Aristilde, L., Reed, M. L., Wilkes, R. A., Youngster, T., Kukurugya, M. A., Katz, V., and Sasaki, C. R. S. (2017). Glyphosate-Induced Specific and Widespread Perturbations in the Metabolome of Soil Pseudomonas Species. *Frontiers in Environmental Science*, 0.
- Baier, F., Gruber, E., Hein, T., Bondar-Kunze, E., Ivanković, M., Mentler, A., Brühl, C. A., Spangl, B., and Zaller, J. G. (2016). Non-target effects of a glyphosate-based herbicide on Common toad larvae (Bufo bufo, Amphibia) and associated algae are altered by temperature. *PeerJ*, 4:e2641.
- Balakrishnan, R., Park, J., Karra, K., Hitz, B. C., Binkley, G., Hong, E. L., Sullivan, J., Micklem, G., and Michael Cherry, J. (2012). YeastMine—an integrated data warehouse for Saccharomyces cerevisiae data as a multipurpose tool-kit. *Database*, 2012(bar062).
- Baldwin-Brown, J. G., Long, A. D., and Thornton, K. R. (2014). The Power to Detect Quantitative Trait Loci Using Resequenced, Experimentally Evolved Populations of Diploid, Sexual Organisms. *Molecular Biology and Evolution*, 31(4):1040–1055.
- Barney, J. B., Winans, M. J., Blackwood, C. B., Pupo, A., and Gallagher, J. E. G. (2020). The Yeast Atlas of Appalachia: Species and Phenotypic Diversity of Herbicide Resistance in Wild Yeast. *Diversity*, 12(4):139.
- Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. *Environmental Sciences Europe*, 28(1):3.
- Bergström, A., Simpson, J. T., Salinas, F., Barré, B., Parts, L., Zia, A., Nguyen Ba, A. N., Moses, A. M., Louis, E. J., Mustonen, V., Warringer, J., Durbin, R., and Liti, G. (2014). A high-definition view of functional genetic variation from natural yeast genomes. *Molecular Biology and Evolution*, 31(4):872–888.

- Burke, M. K. (2012). How does adaptation sweep through the genome? Insights from long-term selection experiments. *Proceedings of the Royal Society B: Biological Sciences*, 279(1749):5029–5038.
- Burke, M. K., Liti, G., and Long, A. D. (2014). Standing Genetic Variation Drives Repeatable Experimental Evolution in Outcrossing Populations of Saccharomyces cerevisiae. *Molecular Biology and Evolution*, 31(12):3228–3239.
- Burke, M. K., McHugh, K. M., and Kutch, I. C. (2020). Heat Shock Improves Random Spore Analysis in Diverse Strains of Saccharomyces cerevisiae. *Frontiers* in Genetics, 11:597482.
- Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., and Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. *Fly*, 6(2):80–92.
- Cubillos, F. A., Louis, E. J., and Liti, G. (2009). Generation of a large set of genetically tractable haploid and diploid Saccharomyces strains. *FEMS Yeast Research*, 9(8):1217–1225.
- Desai, N., Brown, A., Amunts, A., and Ramakrishnan, V. (2017). The structure of the yeast mitochondrial ribosome. *Science*, 355(6324):528–531.
- Earley, M. C. and Crouse, G. F. (1998). The role of mismatch repair in the prevention of base pair mutations in Saccharomyces cerevisiae. *Proceedings of* the National Academy of Sciences, 95(26):15487–15491.
- Feng, Y., Chen, D., Wang, G.-L., Zhang, V. W., and Wong, L.-J. C. (2015). Improved molecular diagnosis by the detection of exonic deletions with target gene capture and deep sequencing. *Genetics in Medicine*, 17(2):99–107.
- Freitas, J. M. D., Kim, J. H., Poynton, H., Su, T., Wintz, H., Fox, T., Holman, P., Loguinov, A., Keles, S., Laan, M. v. d., and Vulpe, C. (2004). Exploratory and Confirmatory Gene Expression Profiling of mac1 *. *Journal of Biological Chemistry*, 279(6):4450–4458.
- Futschik, A. and Schlötterer, C. (2010). The Next Generation of Molecular Markers From Massively Parallel Sequencing of Pooled DNA Samples. *Genetics*, 186(1):207–218.

- Haslbeck, Martin, Braun, Nathalie, Stromer, Thusnelda, Richter, Bettina, Model, Natascha, Weinkauf, Sevil, and Buchner, Johannes (2004). Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. *The EMBO Journal*, 23(3):638–649.
- Herrmann, K. M. and Weaver, L. M. (1999). The shikimate pathway. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1):473–503.
- Hong, E. L., Balakrishnan, R., Dong, Q., Christie, K. R., Park, J., Binkley, G., Costanzo, M. C., Dwight, S. S., Engel, S. R., Fisk, D. G., Hirschman, J. E., Hitz, B. C., Krieger, C. J., Livstone, M. S., Miyasato, S. R., Nash, R. S., Oughtred, R., Skrzypek, M. S., Weng, S., Wong, E. D., Zhu, K. K., Dolinski, K., Botstein, D., and Cherry, J. M. (2008). Gene Ontology annotations at SGD: new data sources and annotation methods. *Nucleic Acids Research*, 36(suppl_1):D577–D581.
- Janssens, L. and Stoks, R. (2017). Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae. *Aquatic Toxicology*, 193:210–216.
- Kao, K. C. and Sherlock, G. (2008). Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. *Nature Genetics*, 40(12):1499–1504.
- Kimura, M. (1971). Theoretical foundation of population genetics at the molecular level. *Theoretical Population Biology*, 2(2):174–208.
- Kofler, R., Orozco-terWengel, P., De Maio, N., Pandey, R. V., Nolte, V., Futschik, A., Kosiol, C., and Schlötterer, C. (2011). PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. *PloS* one, 6(1):e15925–e15925.
- Linder, R. A., Majumder, A., Chakraborty, M., and Long, A. (2020). Two Synthetic 18-Way Outcrossed Populations of Diploid Budding Yeast with Utility for Complex Trait Dissection. *Genetics*, 215(2):323–342.
- Long, A., Liti, G., Luptak, A., and Tenaillon, O. (2015). Elucidating the molecular architecture of adaptation via evolve and resequence experiments. *Nature Reviews Genetics*, 16(10):567–582.
- Lévesque, C. A. and Rahe, J. E. (1992). Herbicide Interactions with Fungal Root Pathogens, with Special Reference to Glyphosate. Annual Review of Phytopathology, 30(1):579–602.

- McDonald, M. J., Rice, D. P., and Desai, M. M. (2016). Sex speeds adaptation by altering the dynamics of molecular evolution. *Nature*, 531(7593):233–236.
- McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., and DePristo, M. A. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Research*, 20(9):1297–1303.
- Mendizabal, I., Rios, G., Mulet, J. M., Serrano, R., and Larrinoa, I. F. d. (1998). Yeast putative transcription factors involved in salt tolerance. *FEBS Letters*, 425(2):323–328.
- Mesnage, R., Benbrook, C., and Antoniou, M. N. (2019). Insight into the confusion over surfactant co-formulants in glyphosate-based herbicides. *Food and Chemical Toxicology*, 128:137–145.
- Phillips, M. A., Kutch, I. C., Long, A. D., and Burke, M. K. (2020). Increased time sampling in an evolve-and-resequence experiment with outcrossing Saccharomyces cerevisiae reveals multiple paths of adaptive change. *Molecular Ecology*, 29(24):4898–4912.
- Poplin, R., Ruano-Rubio, V., DePristo, M. A., Fennell, T. J., Carneiro, M. O., Auwera, G. A. V. d., Kling, D. E., Gauthier, L. D., Levy-Moonshine, A., Roazen, D., Shakir, K., Thibault, J., Chandran, S., Whelan, C., Lek, M., Gabriel, S., Daly, M. J., Neale, B., MacArthur, D. G., and Banks, E. (2018). Scaling accurate genetic variant discovery to tens of thousands of samples. *bioRxiv*, page 201178.
- Powles, S. B. and Preston, C. (2006). Evolved Glyphosate Resistance in Plants: Biochemical and Genetic Basis of Resistance. Weed Technology, 20(2):282–289.
- Ravishankar, A., Pupo, A., and Gallagher, J. E. G. (2020). Resistance Mechanisms of Saccharomyces cerevisiae to Commercial Formulations of Glyphosate Involve DNA Damage Repair, the Cell Cycle, and the Cell Wall Structure. G3 Genes|Genomes|Genetics, 10(6):2043–2056.
- Rong-Mullins, X., Ravishankar, A., McNeal, K. A., Lonergan, Z. R., Biega, A. C., Creamer, J. P., and Gallagher, J. E. G. (2017). Genetic variation in Dip5, an amino acid permease, and Pdr5, a multiple drug transporter, regulates glyphosate resistance in S. cerevisiae. *PLOS ONE*, 12(11):e0187522.

- Saveanu, C., Fromont-Racine, M., Harington, A., Ricard, F., Namane, A., and Jacquier, A. (2001). Identification of 12 New Yeast Mitochondrial Ribosomal Proteins Including 6 That Have No Prokaryotic Homologues *. Journal of Biological Chemistry, 276(19):15861–15867.
- Schlötterer, C., Tobler, R., Kofler, R., and Nolte, V. (2014). Sequencing pools of individuals — mining genome-wide polymorphism data without big funding. *Nature Reviews Genetics*, 15(11):749–763.
- Sirrenberg, C., Bauer, M. F., Guiard, B., Neupert, W., and Brunner, M. (1996). Import of carrier proteins into the mitochondrial inner membrane mediated by Tim22. *Nature*, 384(6609):582–585.
- Sprouffske, K. and Wagner, A. (2016). Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. *BMC Bioinformatics*, 17(1):172.
- Van der Auwera, GA and O'Connor, BD (2020). Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. O'Reilly Media, 1 edition.
- Vlachos, C., Burny, C., Pelizzola, M., Borges, R., Futschik, A., Kofler, R., and Schlötterer, C. (2019). Benchmarking software tools for detecting and quantifying selection in evolve and resequencing studies. *Genome Biology*, 20(1):169.
- Vlachos, C. and Kofler, R. (2019). Optimizing the Power to Identify the Genetic Basis of Complex Traits with Evolve and Resequence Studies. *Molecular Biology* and Evolution, 36(12):2890–2905.
- Wotton, D., Freeman, K., and Shore, D. (1996). Multimerization of Hsp42p, a Novel Heat Shock Protein of Saccharomyces cerevisiae, Is Dependent on a Conserved Carboxyl-terminal Sequence (*). Journal of Biological Chemistry, 271(5):2717–2723.

APPENDICES

Appendix A: Sample Coverage

Table A.1: Average genome wide sequence coverage depth across 90,510 SNPs of the ancestor and each treatment population from each sequencing time point. The standard deviation of coverage was used to calculate the coefficient of variation within samples. Low variation in coverage was observed across the genome in every sample, providing no clear evidence for large-scale structural variation in any population

Replicate	Treatment Group	Week	Mean Coverage	Standard Deviation	Coefficient of Variation
	Ancestor	0	92.71	13.05	0.14
rep02	Constant	3	67.46	11.55	0.17
rep02	Constant	6	35.81	7.39	0.21
rep02	Constant	10	59.06	11.45	0.19
rep03	Constant	3	83.59	14.87	0.18
rep03	Constant	6	48.01	9.29	0.19
rep03	Constant	10	66.55	12.51	0.19
rep04	Constant	3	67.63	12.35	0.18
rep04	Constant	6	37.11	8.08	0.22
rep04	Constant	10	70.03	12.56	0.18
rep05	Constant	3	61.34	11.30	0.18
rep05	Constant	6	58.95	10.76	0.18
rep05	Constant	10	61.19	11.54	0.19
rep06	Constant	3	64.80	11.73	0.18
rep06	Constant	6	38.05	7.77	0.20
rep06	Constant	10	67.73	12.09	0.18
rep07	Constant	3	64.00	12.06	0.19
rep07	Constant	6	41.47	8.89	0.21
rep07	Constant	10	61.60	12.28	0.20
rep08	Constant	3	65.60	12.46	0.19
rep08	Constant	6	58.35	10.81	0.19
rep08	Constant	10	80.05	13.72	0.17
rep10	Constant	3	75.75	13.03	0.17
rep10	Constant	6	48.47	9.06	0.19
rep10	Constant	10	76.68	13.06	0.17
rep11	Constant	3	64.42	12.36	0.19
rep11	Constant	6	56.02	10.20	0.18
rep11	Constant	10	49.00	9.92	0.20
rep12	Constant	3	28.02	7.90	0.28
rep12	Constant	6	75.36	12.26	0.16
rep12	Constant	10	62.20	11.29	0.18
rep13	Constant	3	51.29	11.10	0.22
rep13	Constant	6	72.55	11.75	0.16
rep13	Constant	10	54.10	10.08	0.19

Replicate	Treatment Group	Week	Mean Coverage	Standard Deviation	Coefficient of Variation
rep14	Constant	3	58.46	12.35	0.21
rep14	Constant	6	65.04	11.53	0.18
rep14	Constant	10	73.62	12.71	0.17
rep15	Constant	3	55.86	11.80	0.21
rep15	Constant	6	58.00	10.41	0.18
rep15	Constant	10	66.61	12.17	0.18
rep16	Constant	3	69.03	13.09	0.19
rep16	Constant	6	72.63	12.17	0.17
rep16	Constant	10	65.49	12.18	0.19
rep17	Constant	3	59.57	12.49	0.21
rep17	Constant	6	37.42	8.27	0.22
rep17	Constant	10	66.56	12.19	0.18
rep18	Constant	3	60.12	12.44	0.21
rep18	Constant	6	61.10	10.94	0.18
rep18	Constant	10	82.26	13.27	0.16
rep01	Control	1	35.23	8.82	0.25
rep01	Control	7	43.90	9.43	0.21
rep01	Control	15	22.95	7.13	0.31
rep02	Control	1	37.41	9.40	0.25
rep02	Control	7	48.68	9.83	0.20
rep02	Control	15	34.72	8.96	0.26
rep03	Control	1	36.33	9.10	0.25
rep03	Control	7	44.28	9.19	0.21
rep03	Control	15	25.57	6.49	0.25
rep04	Control	1	63.82	11.77	0.18
rep04	Control	7	52.19	10.21	0.20
rep04	Control	15	48.81	10.37	0.21
rep05	Control	1	55.60	11.18	0.20
rep05	Control	7	63.47	11.17	0.18
rep05	Control	15	50.91	10.43	0.20
rep06	Control	1	40.27	9.56	0.24
rep06	Control	7	67.18	11.75	0.17
rep06	Control	15	58.07	10.90	0.19
rep07	Control	7	55.19	10.51	0.19
rep07	Control	15	51.74	11.48	0.22

Replicate	Treatment Group	Week	Mean Coverage	Standard Deviation	Coefficient of Variation
rep08	Control	1	49.82	10.28	0.21
rep08	Control	7	69.17	11.49	0.17
rep08	Control	15	62.92	12.64	0.20
rep09	Control	1	23.41	6.51	0.28
rep09	Control	7	54.58	10.46	0.19
rep09	Control	15	33.81	9.13	0.27
rep10	Control	1	15.82	5.32	0.34
rep10	Control	7	27.74	7.21	0.26
rep10	Control	15	22.59	7.26	0.32
rep12	Control	1	44.99	10.28	0.23
rep12	Control	7	25.22	6.42	0.25
rep12	Control	15	19.90	6.33	0.32
rep13	Control	1	45.78	10.00	0.22
rep13	Control	7	33.55	7.82	0.23
rep13	Control	15	48.61	9.88	0.20
rep14	Control	1	63.34	13.57	0.21
rep14	Control	7	49.69	9.66	0.19
rep14	Control	15	58.34	10.48	0.18
rep15	Control	1	54.03	10.58	0.20
rep15	Control	7	34.64	7.94	0.23
rep15	Control	15	42.12	9.01	0.21
rep16	Control	1	48.55	9.62	0.20
rep16	Control	7	50.08	9.75	0.19
rep16	Control	15	44.43	10.69	0.24
rep17	Control	1	39.72	8.67	0.22
rep17	Control	7	50.41	9.85	0.20
rep17	Control	15	40.48	10.09	0.25
rep19	Increasing	3	18.51	5.79	0.31
rep19	Increasing	6	55.55	10.05	0.18
rep19	Increasing	10	50.66	9.98	0.20
rep20	Increasing	3	10.63	4.07	0.38
rep20	Increasing	6	56.01	11.01	0.20
rep20	Increasing	10	31.72	7.57	0.24
rep21	Increasing	3	66.96	12.23	0.18
rep21	Increasing	6	54.15	10.20	0.19
rep21	Increasing	10	30.55	6.94	0.23
Replicate	Treatment Group	Week	Mean Coverage	Standard Deviation	Coefficient of Variation
-----------	--------------------	------	------------------	-----------------------	-----------------------------
rep22	Increasing	3	64.98	11.90	0.18
rep22	Increasing	6	70.29	11.39	0.16
rep22	Increasing	10	58.95	10.80	0.18
rep23	Increasing	3	71.30	12.83	0.18
rep23	Increasing	6	72.86	12.03	0.17
rep23	Increasing	10	52.11	9.78	0.19
rep24	Increasing	3	62.70	12.25	0.20
rep24	Increasing	6	64.69	11.58	0.18
rep24	Increasing	10	53.24	10.23	0.19
rep25	Increasing	3	52.69	10.69	0.20
rep25	Increasing	6	78.67	11.91	0.15
rep25	Increasing	10	70.97	11.89	0.17
rep26	Increasing	3	57.90	11.37	0.20
rep26	Increasing	6	63.61	11.16	0.18
rep26	Increasing	10	60.52	11.95	0.20
rep28	Increasing	3	36.84	8.61	0.23
rep28	Increasing	6	30.79	7.39	0.24
rep28	Increasing	10	28.00	6.73	0.24
rep29	Increasing	3	58.08	12.40	0.21
rep29	Increasing	6	59.10	11.01	0.19
rep29	Increasing	10	33.86	7.59	0.22
rep30	Increasing	3	62.29	11.85	0.19
rep30	Increasing	6	31.09	6.85	0.22
rep30	Increasing	10	25.81	6.60	0.26
rep31	Increasing	3	58.22	11.15	0.19
rep31	Increasing	6	63.08	11.21	0.18
rep31	Increasing	10	45.96	9.70	0.21
rep32	Increasing	3	52.53	10.34	0.20
rep32	Increasing	6	50.69	9.88	0.19
rep32	Increasing	10	40.95	8.50	0.21
rep33	Increasing	3	70.48	12.28	0.17
rep33	Increasing	6	58.45	10.75	0.18
rep33	Increasing	10	55.79	10.44	0.19
rep34	Increasing	3	56.01	10.94	0.20
rep34	Increasing	6	65.46	11.37	0.17
rep34	Increasing	10	72.10	11.86	0.16
rep35	Increasing	3	63.50	11.64	0.18
rep35	Increasing	6	51.25	9.37	0.18
rep35	Increasing	10	56.17	10.44	0.19

Appendix B: SNPeff annotations for significant SNPs

Table B.1: **SNPeff annotations for significant SNPs under the 6 major peaks of this study**. Below is the output from the program SNPeff, which predicts the functional consequences of single-nucleotide variants, for all SNPs we observed to be significantly differentiated by treatment. The significance score, which is the -log10(*p*) value of a CMH test between two treatments, is provided for each SNP. Some SNPs are listed twice because they were identified as significant in more than one CMH test. SNPs are organized by peak type (C = constant-specific; R= Roundup-specific) as well as by CMH test type (a=constant vs. control; b=increasing vs. control; c=constant vs. increasing). The "alternate allele" listed here is the non-canonical allele with respect to the canonical S288C reference genome (R64-2-1).

C1c	C1c	C1c	C1c	C1c	C1c	C1c	C1c	C1c	C1c	C1c	C1c	C1c	C1c	C1a	C1a	C1a	C1a	C1a	C1a	C1a	C1a	C1a	C1a	C1a	C1a	C1a	Peak	
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	Chr	
105260	104069	103768	103617	103444	103111	102979	102955	102076	101871	101707	101704	101651	101608	98318	97693	84201	79852	79801	79782	76541	76252	69812	68451	68400	67141	101651	Position	
c	G	-	-	-	-	-	-	G	A	-	-	A	A	-	-	c	G	G	c	A	A	٦	c	G	A	Þ	Alternate allele	
missense_variant	synonymous_variant	missense_variant	upstream_gene_v ariant	upstream_gene_v ariant	synonymous_variant	missense_variant	synonymous_variant	upstream_gene_v ariant	synonymous_variant	upstream_gene_v ariant	synonymous_variant	synonymous_variant	missense_variant	missense_variant	missense_variant	missense_variant	synonymous_variant	synonymous_variant	missense_variant	missense_variant	Annotation							
MODERATE	LOW	MODERATE	MODIFIER	MODIFIER	LOW	MODERATE	LOW	MODIFIER	LOW	MODIFIER	LOW	LOW	MODERATE	MODERATE	MODERATE	MODERATE	LOW	LOW	MODERATE	MODERATE	Effect							
ASF2	GGC1	<u>66C1</u>	MGT1	MGT1	YDL199C	YDL199C	YDL199C	HEM3	ACK1	YDL211C	YDL211C	YDL211C	YDL211C	PRR2	PRR2	RRI1	TIM22	TIM22	YDL218W	YDL199C	Gene							
p.Glu412Gly	p.lle161lle	p.Val262IIe			p.Pro81Pro	p.Ser125Ser	p.Leu133Leu	p.Tyr426Tyr	p.Leu495Leu	p.Leu549Leu	p.Lys550Lys	p.Thr568lle	p.Thr582Thr		p.Gly87Gly		p.lle187lle	p.Gly204Gly	p.Thr211Ala	p.Ser2Leu	p.Lys98Asn	p.Asp170Asn	p.Thr52Thr	p.Tyr69Tyr	p.Ala217Thr	p.Thr568lle	Amino acid substitution	
84.31649	80.77012	95.76027	80.49314	82.86369	87.79947	107.5467	103.6339	92.33782	90.52772	88.22815	92.16795	118.6153	95.38333	81.07375	78.99633	82.584	85.25125	79.33519	81.18436	77.76351	84.42698	82.1319	91.46759	81.84333	86.79157	87.10836	-log10(<i>p</i>)	

87.82216		HBT1	MODIFIER	upstream gene variant	A	65027	4	C10
81.81745	p.Thr160Thr	CDC13	LOW	synonymous variant	G	64539	4	C1c
90.37548	p.Val315IIe	CDC13	MODERATE	missense_variant	-	64076	4	C1c
96.94155	p.Leu182Leu	PPH22	LOW	synonymous_variant	G	124453	4	C1c
84.05637	p.Leu300IIe	RBS1	MODERATE	missense_variant	A	123113	4	C1c
80.22689	p.Ser170Asn	RBS1	MODERATE	missense_variant	A	122724	4	C1c
85.50197	p.Ser42Ser	RBS1	LOW	synonymous_variant	G	122341	4	C1c
83.23875	p.Ser15Ser	UFD2	LOW	synonymous_variant	A	121548	4	C1c
82.46053	p.Tyr35Tyr	ARF1	LOW	synonymous_variant	-	116425	4	C1c
80.28218	p.Ala219Ala	NUS1	LOW	synonymous_variant	c	115328	4	C1c
83.13558	p.Arg823Gln	SNF3	MODERATE	missense_variant	A	114047	4	C1c
86.68146	p.Leu794Leu	SNF3	LOW	synonymous_variant	G	113961	4	C1c
84.80433	p.Pro631Pro	SNF3	LOW	synonymous_variant	-	113472	4	C1c
87.45449	p.Leu587Leu	SNF3	LOW	synonymous_variant	c	113338	4	C1c
86.20207	p.Val403Val	SNF3	LOW	synonymous_variant	-	112788	4	C1c
86.29913	p.Ala399Ala	SNF3	LOW	synonymous_variant	c	112776	4	C1c
89.24403	p.Tyr398Tyr	SNF3	LOW	synonymous_variant	c	112773	4	C1c
83.79882	p.Asn389Lys	SNF3	MODERATE	missense_variant	A	112746	4	C1c
88.96968	p.Arg289Arg	SNF3	LOW	synonymous_variant	A	112446	4	C1c
80.9846	p.Ser97Ser	SNF3	LOW	synonymous_variant	c	111870	4	C1c
93.72558	p.Arg13His	SNF3	MODERATE	missense_variant	A	111617	4	C1c
90.97977		SNF3	MODIFIER	upstream_gene_v ariant	A	111567	4	C1c
85.91892		SNF3	MODIFIER	upstream_gene_v ariant	C	111501	4	C1c
90.04221		ASF2	MODIFIER	upstream_gene_v ariant	٦	111482	4	C1c
93.1062		ASF2	MODIFIER	upstream_gene_v ariant	A	111373	4	C1c
103.0113	p.Ser1095Ser	SEC31	LOW	synonymous_variant	A	110492	4	C1c
83.33399	p.Ser1037Ser	SEC31	LOW	synonymous_variant	A	110318	4	C1c
83.63056	p.Ala1035Ala	SEC31	LOW	synonymous_variant	c	110312	4	C1c
98.23539	p.Lys928Lys	SEC31	LOW	synonymous_variant	A	109991	4	C1c
89.04228	p.Leu805Leu	SEC31	LOW	synonymous_variant	-	109620	4	C1c
96.67132	p.Arg103Arg	SEC31	LOW	synonymous_variant	G	107516	4	C1c
91.09892		YDL199C	MODIFIER	upstream_gene_v ariant	-	107148	4	C1c
82.68602	p.Arg69Arg	ASF2	LOW	synonymous_variant	G	106288	4	C1c
90.13848	p.Glu179Glu	ASF2	LOW	synonymous_variant	c	105958	4	C1c
92.76538	p.Gly180Gly	ASF2	LOW	synonymous_variant	c	105955	4	C1c
99.89424	p.Ser194Thr	ASF2	MODERATE	missense_variant	G	105914	4	C1c
85.79166	p.Thr304Ala	ASF2	MODERATE	missense_variant	c	105585	4	C1c
-log10(p)	substitution	Gene	Effect	Annotation	allele	Position	Chr	Peak
	Amino acid				Alternate			

90.00318	p.His798His	GDH2	LOW	synonymous variant	൭	71525	4	C1c
91.03789	p.Leu1020Phe	GDH2	MODERATE	missense variant	Þ	70859	4	C10
83.25105	p.Val1043Val	GDH2	LOW	synonymous variant	A	70790	4	C1c
96.84985	p.Asp1071Asp	GDH2	LOW	synonymous_variant	G	70706	4	C1c
93.55984		TIM22	MODIFIER	upstream_gene_v ariant	A	70614	4	C1c
91.47015		TIM22	MODIFIER	upstream_gene_v ariant	G	70556	4	C1c
82.90808		TIM22	MODIFIER	upstream_gene_v ariant	-	70481	4	C1c
96.56958	p.Ser51Ser	RRI1	LOW	synonymous_variant	A	70167	4	C1c
101.1863	p.Leu57Leu	RRI1	LOW	synonymous_variant	c	70149	4	C1c
119.4274	p.Asp170Asn	RRI1	MODERATE	missense_variant	-	69812	4	C1c
90.02683	p.Arg312Arg	RRI1	LOW	synonymous_variant	-	69384	4	C1c
82.74795	p.Phe382lle	RRI1	MODERATE	missense_variant	٦	69176	4	C1c
88.38434	p.Asp402Asp	RRI1	LOW	synonymous_variant	G	69114	4	C1c
85.61611	p.Lys417Lys	RRI1	LOW	synonymous_variant	C	69069	4	C1c
111.4532		CDC13	MODIFIER	upstream_gene_v ariant	C	68918	4	C1c
125.7352		CDC13	MODIFIER	upstream_gene_v ariant	A	68897	4	C1c
98.56802		CDC13	MODIFIER	upstream_gene_v ariant	-	68799	4	C1c
104.2771		CDC13	MODIFIER	upstream_gene_v ariant	-	68729	4	C1c
130.253	p.Thr52Thr	TIM22	LOW	synonymous_variant	C	68451	4	C1c
129.5166	p.Tyr69Tyr	TIM22	LOW	synonymous_variant	G	68400	4	C1c
84.51647	p.Glu144Glu	TIM22	LOW	synonymous_variant	-	68175	4	C1c
97.79272	p.Ala170Ala	TIM22	LOW	synonymous_variant	G	68097	4	C1c
87.25601		CDC13	MODIFIER	upstream_gene_v ariant	A	67588	4	C1c
87.39902		CDC13	MODIFIER	upstream_gene_v ariant	c	67491	4	C1c
88.57478	p.Asn312Asp	YDL218W	MODERATE	missense_variant	G	67426	4	C1c
111.6387	p.His298His	YDL218W	LOW	synonymous_variant	٦	67386	4	C1c
119.788	p.Ala217T hr	YDL218W	MODERATE	missense_variant	A	67141	4	C1c
123.4119	p.Leu151Leu	YDL218W	LOW	synonymous_variant	G	66945	4	C1c
112.4893	p.Ala121Ala	YDL218W	LOW	synonymous_variant	൭	66865	4	C1c
119.2777	p.Gly117Gly	YDL218W	LOW	synonymous_variant	-	66843	4	C1c
116.1999	p.Tyr115Tyr	YDL218W	LOW	synonymous_variant	٦	66837	4	C1c
117.0377	p.Pro114Pro	YDL218W	LOW	synonymous_variant	-	66834	4	C1c
91.4698	p.Ala78Ala	YDL218W	LOW	synonymous_variant	A	66726	4	C1c
86.97193		FMP45	MODIFIER	upstream_gene_v ariant	C	66345	4	C1c
92.5163		FMP45	MODIFIER	upstream_gene_v ariant	-	66328	4	C1c
85.59418	p.Pro86Gln	DTD1	MODERATE	missense_variant	A	65570	4	C1c
96.24896		HBT1	MODIFIER	upstream_gene_v ariant	c	65327	4	C1c
-log10(<i>p</i>)	substitution	Gene	Effect	Annotation	allele	Position	Chr	Peak
	Amino acid				Alternate			

01.00000		F		a boundarin Bound an analis	•	00010		0
92 96 299		PRR/	MODIFIER	Instream gene variant		80679	<u>م</u>	
90 05691		PRR/	MODIFIER	unstream dene variant	ß	80546	4	C12
91.26576		PRR2	MODIFIER	upstream gene variant	c	80506	4	C1c
84.83409		PRR2	MODIFIER	upstream_gene_v ariant	G	80483	4	C1c
80.58384		PRR2	MODIFIER	upstream_gene_v ariant	Þ	80419	4	C1c
101.7757	p.Thr50Lys	YDL211C	MODERATE	missense_variant		80264	4	C1c
110.2294	p.lle95Val	YDL211C	MODERATE	missense_variant	c	80130	4	C1c
100.1219	p.Phe108Phe	YDL211C	LOW	synonymous_variant	A	68008	4	C1c
91.67378	p.Thr160lle	YDL211C	MODERATE	missense_variant	A	79934	4	C1c
128.8134	p.lle187lle	YDL211C	LOW	synonymous_variant	G	79852	4	C1c
115.6847	p.Gly204Gly	YDL211C	LOW	synonymous_variant	G	79801	4	C1c
116.0041	p.Thr211Ala	YDL211C	MODERATE	missense_variant	c	79782	4	C1c
89.20881	p.lle242lle	YDL211C	LOW	synonymous_variant	A	79687	4	C1c
90.00475	p.Lys251Asn	YDL211C	MODERATE	missense_variant	A	79660	4	C1c
95.47002	p.Thr291lle	YDL211C	MODERATE	missense_variant	A	79541	4	C1c
81.0627	p.Val150Val	SHR3	LOW	synonymous_variant	A	78875	4	C1c
97.42586	p.Tyr101Tyr	SHR3	LOW	synonymous_variant	-	78728	4	C1c
98.19852	p.Gly73Gly	SHR3	LOW	synonymous_variant	A	78644	4	C1c
87.25537	p.Val64Val	SHR3	LOW	synonymous_variant	c	78617	4	C1c
91.58407	p.Tyr54Tyr	SHR3	LOW	synonymous_variant	-	78587	4	C1c
91.91313	p.Leu51Leu	SHR3	LOW	synonymous_variant	A	78578	4	C1c
83.20264	p.Ser2Leu	PRR2	MODERATE	missense_variant	A	76541	4	C1c
79.54663	p.Gly43Asp	PRR2	MODERATE	missense_variant	-	76418	4	C1c
99.04071	p.Lys98Asn	PRR2	MODERATE	missense_variant	A	76252	4	C1c
120.0276	p.Glu222Asp	PRR2	MODERATE	missense_variant	A	75880	4	C1c
97.79535	p.Asn295Thr	PRR2	MODERATE	missense_variant	G	75662	4	C1c
98.47564	p.lle310Val	PRR2	MODERATE	missense_variant	c	75618	4	C1c
103.1674	p.Ser323Ser	PRR2	LOW	synonymous_variant	G	75577	4	C1c
91.89538		RRI1	MODIFIER	upstream_gene_v ariant	c	74440	4	C1c
99.66641		RRI1	MODIFIER	upstream_gene_v ariant	G	74428	4	C1c
95.08527		RRI1	MODIFIER	upstream_gene_v ariant	c	74090	4	C1c
97.32866		RRI1	MODIFIER	upstream_gene_v ariant	c	74079	4	C1c
91.47491		RRI1	MODIFIER	upstream_gene_v ariant	G	74013	4	C1c
88.14998	p.Glu322Glu	GDH2	LOW	synonymous_variant	-	72953	4	C1c
80.30042	p.Lys551Lys	GDH2	LOW	synonymous_variant	c	72266	4	C1c
80.06366	p.Gly582Gly	GDH2	LOW	synonymous_variant	A	72173	4	C1c
86.95275	p.Leu726Leu	GDH2	LOW	synonymous_variant	A	71743	4	C1c
-log10(<i>p</i>)	substitution	Gene	Effect	Annotation	allele	Position	Chr	Peak
	Amino acid				Altornato			

100.2152	p.Leu470Leu	UGA4	LOW	synonymous variant	c	85677	4	C10
92.65552	p.Leu447Leu	UGA4	LOW	synonymous variant	A	85610	4	C10
82.8825	p.His298His	UGA4	LOW	synonymous_variant	C	85163	4	C1c
97.95503	p.Val196Val	UGA4	LOW	synonymous_variant	-	84857	4	C1c
100.6232	p.Leu121Leu	UGA4	LOW	synonymous_variant	-	84632	4	C1c
114.4966	p.Ala51Ala	UGA4	LOW	synonymous_variant	c	84422	4	C1c
86.81913	p.Thr41Thr	UGA4	LOW	synonymous_variant	c	84392	4	C1c
100.4255		YDL211C	MODIFIER	upstream_gene_v ariant	c	84201	4	C1c
91.22244		YDL211C	MODIFIER	upstream_gene_v ariant	c	84159	4	C1c
84.33744		YDL211C	MODIFIER	upstream_gene_v ariant	-	83830	4	C1c
102.318		YDL211C	MODIFIER	upstream_gene_v ariant	c	83513	4	C1c
95.55448		YDL211C	MODIFIER	upstream_gene_v ariant	A	83501	4	C1c
96.42072		YDL211C	MODIFIER	upstream_gene_v ariant	-	83327	4	C1c
109.7696		YDL211C	MODIFIER	upstream_gene_v ariant	٦	83299	4	C1c
104.317		YDL211C	MODIFIER	upstream_gene_v ariant	G	83270	4	C1c
97.4871		YDL211C	MODIFIER	upstream_gene_v ariant	٦	83205	4	C1c
94.17113		YDL211C	MODIFIER	upstream_gene_v ariant	A	83002	4	C1c
107.4386		NOP6	MODIFIER	upstream_gene_v ariant	c	82949	4	C1c
106.9218		NOP6	MODIFIER	upstream_gene_v ariant	c	82807	4	C1c
82.73204		NOP6	MODIFIER	upstream_gene_v ariant	c	82548	4	C1c
87.97663		NOP6	MODIFIER	upstream_gene_v ariant	-	82114	4	C1c
87.37944		NOP6	MODIFIER	upstream_gene_v ariant	-	82113	4	C1c
88.55808		NOP6	MODIFIER	upstream_gene_v ariant	A	81963	4	C1c
85.0362		NOP6	MODIFIER	upstream_gene_v ariant	A	81648	4	C1c
85.54431		PRR2	MODIFIER	upstream_gene_v ariant	G	81257	4	C1c
101.0106		PRR2	MODIFIER	upstream_gene_v ariant	G	81181	4	C1c
93.90474		PRR2	MODIFIER	upstream_gene_v ariant	G	81156	4	C1c
94.72701		PRR2	MODIFIER	upstream_gene_v ariant	c	81145	4	C1c
98.72643		PRR2	MODIFIER	upstream_gene_v ariant	ഒ	81001	4	C1c
97.72402		PRR2	MODIFIER	upstream_gene_v ariant	Þ	80964	4	C1c
97.71987		PRR2	MODIFIER	upstream_gene_v ariant	A	80961	4	C1c
103.7933		PRR2	MODIFIER	upstream_gene_v ariant	c	E6808	4	C1c
100.5412		PRR2	MODIFIER	upstream_gene_v ariant	A	85808	4	C1c
102.8571		PRR2	MODIFIER	upstream_gene_v ariant	ഒ	80852	4	C1c
107.4414		PRR2	MODIFIER	upstream_gene_v ariant	A	80820	4	C1c
99.40504		PRR2	MODIFIER	upstream_gene_v ariant	A	80784	4	C1c
109.8948		PRR2	MODIFIER	upstream_gene_v ariant	c	80753	4	C1c
-log10(<i>p</i>)	substitution	Gene	Effect	Annotation	allele	Position	Chr	Peak
	Amino acid				Alternate			

100.1100				abancan Jone Vananc	2	000000	F	020
106 1753		VI P1260	MODIFIER	unstream gene viariant		200755	3	3
87 /018		TDM8		-		80000		212
96.23752	p.Gln74Ara	TRM8	MODERATE	missense variant	ഹ	99781	4	C1c
89.94002	p.Asn24Asp	TRM8	MODERATE	missense_variant	G	99630	4	C1c
112.715	p.Phe30Leu	MRPL11	MODERATE	missense_variant	C	98562	4	C1c
91.3215		HEM3	MODIFIER	upstream_gene_v ariant	-	98318	4	C1c
92.50729	p.Pro9Pro	ACK1	LOW	synonymous_variant	c	97927	4	C1c
86.08574	p.Pro42Pro	ACK1	LOW	synonymous_variant	G	97828	4	C1c
128.4447	p.Gly87Gly	ACK1	LOW	synonymous_variant	-	97693	4	C1c
98.54586	p.Asn208Asn	ACK1	LOW	synonymous_variant	A	97330	4	C1c
99.06126	p.Ser223Ser	ACK1	LOW	synonymous_variant	c	97285	4	C1c
92.20715	p.Ser231Phe	ACK1	MODERATE	missense_variant	A	97262	4	C1c
99.83955	p.Leu266Leu	ACK1	LOW	synonymous_variant	٦	97156	4	C1c
84.33925	p.Pro385Pro	ACK1	LOW	synonymous_variant	c	96799	4	C1c
87.3768	p.Leu144Leu	RTN2	LOW	synonymous_variant	A	95036	4	C1c
98.99651	p.Asn29Ser	RTN2	MODERATE	missense_variant	G	94690	4	C1c
81.39285		HEM3	MODIFIER	upstream_gene_v ariant	A	94411	4	C1c
90.5734		HEM3	MODIFIER	upstream_gene_v ariant	-	94319	4	C1c
86.42096	p.Asp641Asp	YDL206W	LOW	synonymous_variant	c	92098	4	C1c
82.57616	p.Leu598Ser	YDL206W	MODERATE	missense_variant	c	91968	4	C1c
84.57039	p.Tyr492Tyr	YDL206W	LOW	synonymous_variant	٦	91651	4	C1c
85.05766	p.Ala175Ala	YDL206W	LOW	synonymous_variant	G	90700	4	C1c
90.28123	p.lle31Val	YDL206W	MODERATE	missense_variant	G	90266	4	C1c
81.45873	p.Pro122Thr	GLE1	MODERATE	missense_variant	A	88611	4	C1c
85.59221	p.Lys136Asn	NHP2	MODERATE	missense_variant	-	87919	4	C1c
103.3205		CWC2	MODIFIER	upstream_gene_v ariant	G	87260	4	C1c
117.8206	p.Gly68Gly	CWC2	LOW	synonymous_variant	A	87023	4	C1c
105.9608	p.Phe72Phe	CWC2	LOW	synonymous_variant	A	87011	4	C1c
90.24543	p.Leu151Leu	CWC2	LOW	synonymous_variant	٦	86774	4	C1c
91.58603	p.Ala154Thr	CWC2	MODERATE	missense_variant	-	86767	4	C1c
82.06951	p.Gln189Gln	CWC2	LOW	synonymous_variant	c	86660	4	C1c
85.26164	p.Val285Val	CWC2	LOW	synonymous_variant	-	86372	4	C1c
92.60865	p.Glu297Gly	CWC2	MODERATE	missense_variant	c	86337	4	C1c
80.40926		NHP2	MODIFIER	upstream_gene_v ariant	G	86178	4	C1c
90.18666		NHP2	MODIFIER	upstream_gene_v ariant	-	86153	4	C1c
83.17814	p.lle525Val	UGA4	MODERATE	missense_variant	G	85842	4	C1c
105.1331	p.Pro484Pro	UGA4	LOW	synonymous_variant	c	85721	4	C1c
-log10(p)	substitution	Gene	Effect	Annotation	allele	Position	Chr	Peak
	Amino acid				Alternate			

	Position	allee	Annotation	LIIect	Gene	noinnisdns	-log10(p)
12	399513	A	upstream gene variant	MODIFIER	YLR126C		84.47153
12	399483	A	upstream gene variant	MODIFIER	YLR126C		121.2158
12	399513	A	upstream gene variant	MODIFIER	YLR126C		88.95991
12	424103	G	missense variant	MODERATE	RRN5	p.Thr141Ala	82.33565
4	520955	G	upstream gene variant	MODIFIER	YDR034C-D		114.1554
4	520956	-	upstream gene variant	MODIFIER	YDR034C-D		113.8651
4	523585	A	missense variant	MODERATE	EHD3	p.His377Tyr	78.19606
4	526558	c	synonymous variant	LOW	KRS1	p.lle373lle	79.697
4	526864	G	synonymous variant	LOW	KRS1	p.Leu475Leu	77.16579
4	526927	A	synonymous variant	LOW	KRS1	p.Lys496Lys	77.85547
4	526942	A	synonymous_variant	LOW	KRS1	p.Ala501Ala	81.79141
4	527002	G	synonymous_variant	LOW	KRS1	p.Gln521Gln	79.01902
4	527056	c	synonymous variant	LOW	KRS1	p.Ala539Ala	147.2882
4	527080	c	synonymous_variant	LOW	KRS1	p.Thr547Thr	85.46554
4	527095	c	synonymous_variant	LOW	KRS1	p.Cys552Cys	84.19345
4	527108		synonymous_variant	LOW	KRS1	p.Leu557Leu	89.16248
4	527122	A	synonymous_variant	LOW	KRS1	p.Leu561Leu	84.82915
4	527128	-	synonymous_variant	LOW	KRS1	p.Asp563Asp	84.97659
4	527134		synonymous_variant	LOW	KRS1	p.Asn565Asn	86.41589
4	527179	C	synonymous_variant	LOW	KRS1	p.Val580Val	78.39516
4	539061	-	upstream_gene_v ariant	MODIFIER	ENA2		78.37517
4	539068	G	upstream_gene_v ariant	MODIFIER	ENA2		81.93324
4	539123		upstream_gene_v ariant	MODIFIER	ENA2		83.33778
4	540228		synonymous_variant	LOW	RSM10	p.Phe142Phe	190.6178
4	540965	c	missense_variant	MODERATE	YDR042C	p.Thr80Ser	85.43279
4	542170	٦	upstream_gene_variant	MODIFIER	ENA1		106.1966
4	543278	С	missense_variant	MODERATE	NRG1	p.Glu31Gly	116.4681
4	543502		upstream_gene_v ariant	MODIFIER	YDR042C		92.28692
4	545265	-	upstream_gene_v ariant	MODIFIER	YDR042C		117.5308
4	545330	c	upstream_gene_v ariant	MODIFIER	YDR042C		113.1582
4	547565	C	synonymous_variant	LOW	HEM13	p.Ala308Ala	124.3932
4	547646	A	upstream_gene_v ariant	MODIFIER	NRG1		120.9063
4	547728	G	upstream_gene_v ariant	MODIFIER	NRG1		110.8768
4	547747		upstream_gene_v ariant	MODIFIER	NRG1		103.1199
4	547789	c	upstream gene variant	MODIFIER	NRG1		90.99699
4	547794	-	upstream_gene_v ariant	MODIFIER	NRG1		91.63565
4	547848	A	upstream_gene_v ariant	MODIFIER	NRG1		102.2006
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	12 399513 A 12 399483 A 12 399513 A 12 424103 G 4 520955 G 4 526927 A 4 526942 A 4 526942 A 4 527002 G 4 527086 C 4 527086 C 4 527086 C 4 527128 T 4 5391068 G 4 543061 T 4 543170 T 4 543278 C 4 543502 T 4 545265 T 4 545765 C 4 547728 G	12 399513 A upstream gene variant 12 399483 A upstream gene variant 12 399513 A upstream gene variant 12 424103 G missense variant 14 520956 G upstream gene variant 14 526927 A synonymous variant 14 527080 C synonymous variant 14 527128 T upstream gene variant 14 540965	12 399513 A upstream gene variant MODIFIER 12 399483 A upstream gene variant MODIFIER 12 399483 A upstream gene variant MODIFIER 12 4249513 G missense variant MODIFIER 12 424913 G upstream gene variant MODIFIER 14 520956 T upstream gene variant MODIFIER 14 526827 A synonymous variant LOW 14 526927 A synonymous variant LOW 14 527095 C synonymous variant LOW 14 527108 T synonymous variant LOW 15 527128 T synonymous variant LOW 16 527128 T upstream gene variant MODIFIER <	12 39513 A upstream gene variant MODIFIER YLR126C 12 399433 G upstream gene variant MODIFIER YDR034C-D 12 520956 G upstream gene variant MODIFIER YDR034C-D 4 526668 C synonymous variant LOW KRS1 4 526967 A synonymous variant LOW KRS1 4 526968 C synonymous variant LOW KRS1 4 527002 G synonymous variant LOW KRS1 4 527066 C synonymous variant LOW KRS1 4 52707 T upstream gene variant LOW KRS1 52707 R </td <td>12 399513 A upstream gene variant MODIFIER YLR126C 12 399513 A upstream gene variant MODIFIER YUR034C-D 12 520955 G upstream gene variant MODIFIER YUR034C-D 14 520957 A synonymous variant LOW KRS1 p.Hs37TVr 14 526927 A synonymous variant LOW KRS1 p.Lead75Leu 14 527056 C synonymous variant LOW KRS1 p.Lys496Lys 14 527058 T synonymous variant LOW KRS1 p.Lys496Lys 14 527134 T synonymous variant LOW KRS1 p.Lys496Lys 14 527136</td>	12 399513 A upstream gene variant MODIFIER YLR126C 12 399513 A upstream gene variant MODIFIER YUR034C-D 12 520955 G upstream gene variant MODIFIER YUR034C-D 14 520957 A synonymous variant LOW KRS1 p.Hs37TVr 14 526927 A synonymous variant LOW KRS1 p.Lead75Leu 14 527056 C synonymous variant LOW KRS1 p.Lys496Lys 14 527058 T synonymous variant LOW KRS1 p.Lys496Lys 14 527134 T synonymous variant LOW KRS1 p.Lys496Lys 14 527136

Peak R3a	15 15	Position 152215 152922	Alternate allele T	Annotation missense variant missense variant	Effect MODERATE MODERATE	Gene HAL9 HAL9	p.Gl
R3a	5	153116 153242	٦G	synonymous variant	MODERATE	HAL9	
R3a	5	153362	A ر	synonymous variant		HALS	
Ra	; 5	153761	ရ	upstream gene variant	MODIFIER	HA	50
R3a	5	155276	-	upstream gene variant	MODIFIER	Ŧ	9
R3b	15	138539	A	synonymous variant	LOW	8	ğ
R3b	15	139013	G	synonymous_variant	LOW	0	003
R3b	15	139015	c	missense_variant	MODERATE) ÖQ3
R3b	15	139408	C	missense_variant	MODERATE		HMI1
R3b	5	141731	0	synonymous_variant	LOW		RFC4
	허허	142001	- ا	synonymous variant	MODIFIER		RFC4 WRS1
R3b	15	142732	Þ	upstream gene variant	MODIFIER		WRS1
R3b	15	142835	G	missense_variant	MODERATE		TRM10
	5 5	143022	ດ ດ	missense variant	MODERATE		TRM10
R3b	15	143405	A	synonymous_variant	LOW		TRM10
R3b	15	143696	A	splice_region_variant & stop_retained_variant	LOW		TRM10
먉	카라	143787	ר ה	upstream_gene_variant	MODIFIER		2002
R3b	15	143890	C	upstream_gene_v ariant	MODIFIER		COQ3
R3b	15	143915	G	upstream_gene_v ariant	MODIFIER		003
묽쯚	75	144354 146789	א פ	missense_variant	MODERATE		SPO31
	;			splice_region_variant &			
R3b	5	147591	-	synonymous_variant	LOW		MSH2
R3b	15	147729	-	synonymous_variant	LOW		MSH2
찙쮾	러러	147735		synonymous variant	LOW		MSH2 MSH2
R3b	15	147783	0	synonymous_variant	LOW		MSH2
R OB	5	14/040	G	synonymous_vanant	LOW		

			Alternate				Amino acid	
Peak	Chr	Position	allele	Annotation	Effect	Gene	substitution	-log10(p)
R3b	5	148176		synonymous_variant	LOW	MSH2	p.Cys265Cys	94.9254
R3b	15	148362	A	synonymous_variant	LOW	MSH2	p.Thr327Thr	89.36349
R3b	15	148704	-	synonymous variant	LOW	MSH2	p.Pro44 1Pro	77.07497
R3b	15	150501	G	missense variant	MODERATE	HAL9	p.Gly997Ala	94.40134
R3b	15	150554	൭	synonymous variant	LOW	HAL9	p.Thr979Thr	91.99713
R3b	15	150756	A	missense variant	MODERATE	HAL9	p.Glu912Val	88.98567
R3b	15	150803	A	synonymous variant	LOW	HAL9	p.Ala896Ala	86.3389
R3b	15	150859	A	synonymous variant	LOW	HAL9	p.Leu878Leu	83.67315
R3b	15	151265	G	synonymous_variant	LOW	HAL9	p.Ser742Ser	107.2426
R3b	15	151772	G	synonymous_variant	LOW	HAL9	p.Asp573Asp	89.75271
R3b	15	152215	c	missense_variant	MODERATE	HAL9	p.lle426Val	121.468
R3b	15	152922	٦	missense variant	MODERATE	HAL9	p.Gly190Glu	103.3301
R3b	15	153116	G	synonymous_variant	LOW	HAL9	p.Gly125Gly	101.4599
R3b	15	153242	٦	missense variant	MODERATE	HAL9	p.Met83IIe	110.6201
R3b	15	153362	A	synonymous_variant	LOW	HAL9	p.Thr43Thr	103.3218
R3b	15	153516	A	upstream_gene_v ariant	MODIFIER	HAL9		80.7814
R3b	15	153722	c	upstream_gene_v ariant	MODIFIER	HAL9		101.5538
R3b	15	153733	Þ	upstream_gene_v ariant	MODIFIER	HAL9		80.51727
R3b	15	153740	G	upstream_gene_v ariant	MODIFIER	HAL9		80.53226
R3b	15	153761	G	upstream_gene_v ariant	MODIFIER	HAL9		100.8128
R3b	15	154056	C	synonymous_variant	LOW	MPD2	p.Arg230Arg	90.55246
R3b	15	154073	A	synonymous_variant	LOW	MPD2	p.Leu225Leu	85.12242
R3b	15	154310	C	missense_variant	MODERATE	MPD2	p.Lys146Glu	93.18563
R3b	15	155276		upstream_gene_v ariant	MODIFIER	HAL9		101.6321
R3b	15	157540	Þ	synonymous_variant	LOW	DUF1	p.His366His	82.7514
R3b	15	158074	C	synonymous_variant	LOW	DUF1	p.Lys188Lys	79.13539
R3b	15	158575		synonymous_variant	LOW	DUF1	p.Ala21Ala	84.53663
R3b	15	158650	G	upstream_gene_v ariant	MODIFIER	MPD2		78.59774
R4a	16	881189		upstream_gene_v ariant	MODIFIER	MRP2		77.9704
R4b	16	832084	C	missense_variant	MODERATE	URN1	p.Asn459Asp	87.74308
R4b	16	833382		missense_variant	MODERATE	URN1	p.Arg26Gln	82.07888
R4b	16	837416	C	upstream_gene_v ariant	MODIFIER	URN1		81.07874
R4b	16	839499	C	synonymous_variant	LOW	TPO3	p.Leu93Leu	78.75222
R4b	16	841702	G	missense_variant	MODERATE	TDA6	p.His146Arg	78.48837
R4b	16	865361	-	synonymous_variant	LOW	SGV1	p.Arg354Arg	76.88374

Appendix C: Genes that fall under the six major peaks of this study

significant SNP within the gene bounds. Gene details were provided by the Saccharomyces Genome Database (SGD) YeastMine tool. constant-specific; R= Roundup-specific) as well as by CMH test type (a=constant vs. control; b=increasing vs. control; c=constant vs. increasing). When a gene is included in more than one peak (e.g. C1a/c), it is indicated as such. Bold font indicate genes under peaks that were identified in our study and also by Ravishankar et al. (2020) in their classic QTL and/or RNA-seq experiments, but did not contain a significant SNP within the gene bounds in our results. Red font Roundup-specific peaks, and 44 genes under the constant-specific peak. Peaks are organized by peak type (C = indicates genes that were identified again in both our experiment and the previously mentioned study, but did contain a Table C.1: Genes that fall under the 6 major peaks of this study. We observed a total of 58 genes under the

Peak	Chr	Start Position	End Position	Systematic Gene Name	Gene Feature Type	Standard Gene Name	Full Gene Name
C1a/c	4	100501	101067	YDL200C	ORF	MGT1	O-6-MethylGuanine-DNA methylTransferase
C1a/c	4	99561	100421	YDL201W	ORF	TRM8	Transfer RNA Methyltransferase
C1a/c	4	98475	99224	YDL202W	ORF	MRPL11	Mitochondrial Ribosomal Protein, Large subunit
C1a/c	4	96082	97953	YDL203C	ORF	ACK1	Activator of C Kinase 1
C1a/c	4	94605	95786	YDL204W	ORF	RTN2	ReTiculoN-like
C1a/c	4	92762	93745	YDL205C	ORF	HEM3	HEMe biosynthesis
C1a/c	4	90176	92464	YDL206W	ORF		
							GLFG (glycine-leucine-phenylalanine-glycine)
C1a/c	4	88248	89864	YDL207W	ORF	GLE1	LEthal
C1a/c	4	87512	87982	YDL208W	ORF	NHP2	Non-Histone Protein
C1a/c	4	86207	87226	YDL209C	ORF	CWC2	Complexed With Cef1p
C1a/c	4	84270	58658	YDL210W	ORF	UGA4	Utilization of GAba
C1a/c	4	79294	804 12	YDL211C	ORF		
C1a/c	4	78426	79058	YDL212W	ORF	SHR3	Super high Histidine Resistant
C1a/c	4	77289	77966	YDL213C	ORF	NOP6	NucleOlar Protein
C1a/c	4	74446	76545	YDL214C	ORF	PRR2	Pheromone Response Regulator
C1a/c	4	70640	73918	YDL215C	ORF	GDH2	Glutamate DeHydrogenase
C1a/c	4	76689	70319	YDL216C	ORF	RRI1	Regulator of Rub1 specific Isopeptidase
C1a/c	4	67983	68606	YDL217C	ORF	TIM22	Translocase of the Inner Mitochondrial membrane
C1a/c	4	83548	83618	YNCD0001W	tRNA gene		
C1c	4	122216	123589	YDL189W	ORF	RBS1	RNA-Binding Suppressor of PAS kinase
C1c	4	118707	121592	YDL190C	ORF	UFD2	Ubiquitin Fusion Degradation
C1c	4	117664	118517	YDL191W	ORF	RPL35A	Ribosomal Protein of the Large subunit
(1r	4	116321	116866	VDI 192W	ORF	ARF1	ADP-Ribosvlation Factor

HEMe biosynthesis	HEM12	OR I	YDR047W	552948	551860	4	R1a
Branched-chain Amino acid Permease	BAP3	ORF	YDR046C	550576	548762	4	R1a
RNA Polymerase C	RPC11	ORF	YDR045C	548310	547978	4	R1a/b
HEMe biosynthesis	HEM13	ORF	YDR044W	547628	546642	4	R1a/b
genes	NRG1	ORF	YDR043C	543369	542674	4	R1a/b
Negative Regulator of Glucose-repressed							
		ORF	YDR042C	541203	540601	4	R1a/b
Ribosomal Small subunit of Mitochondria	RSM10	ORF	YDR041W	540414	539803	4	R1a/b
Exitus NAtru (Latin, "exit sodium")	ENA1	오 주	YDR040C	538467	535192	4	R1a/b
Exitus NAtru (Latin, "exit sodium")	ENA2	ନ୍ମ	YDR039C	534582	531307	4	R1a/b
Exitus NAtru (Latin, "exit sodium")	ENA5	ORF	YDR038C	530697	527422	4	R1a/b
Lysyl (K) tRNA Synthetase	KRS1	ORF	YDR037W	527215	525440	4	R1a/b
	EHD3	유	YDR036C	524713	523211	4	R1a/b
AROmatic amino acid requiring	ARO3	ORF	YDR035W	522928	521816	4	R1a/b
		ORF	YLR140W	423800	423474	12	C2c
Synthetic Lethal with SSM4	SLS1	ORF	YLR139C	423473	421542	12	C2c
Na+/H+ Antiporter	NHA1	ORF	YLR138W	421394	418437	12	C2c
Ribosomal lysine (K) Methyltransferase 5	RKM5	ORF	YLR137W	418109	417006	12	C2c
gene family	TIS11	0RF	YLR136C	416658	415801	12	C2c
similar to the mammalian TPA Induced Sequence							
Synthetic Lethal of unknown (X) function	SLX4	ORF	YLR135W	415527	413281	12	C2c
Pyruvate DeCarboxylase	PDC5	ORF	YLR134W	412414	410723	12	C2c
Choline KInase	CKI1	ORF	YLR133W	410193	408445	12	C2c
U Six Biogenesis	USB1	ORF	YLR132C	408155	407283	12	C2c
Activator of CUP1 Expression	ACE2	ORF	YLR131C	406822	404510	12	C2c
Zinc-Regulated Transporter	ZRT2	ORF	YLR130C	404062	402794	12	C2c
DOM34 Interacting Protein	DIP2	오 자	YLR129W	402488	399657	12	C2c
D-Tyr-tRNA(Tyr) Deacylase	DTD1	ORF	YDL219W	65765	65242	4	C1c
		ନ୍ନ	YDL218W	67446	66493	4	C1c
		ନ୍ନ	YDL199C	103353	101290	4	C10
GDP/GTP Carrier	GGC1	ORF	YDL198C	104551	103649	4	C1c
Anti-Silencing Function	ASF2	ORF P	YDL197C	106494	104917	4	C1c
		ନ୍ନ	YDL196W	107070	106741	4	<mark>C1</mark> c
SECretory	SEC31	ନ୍ମ	YDL195W	111029	107208	4	Clc
Sucrose NonFermenting	SNF3	ନ୍ମ	YDL194W	114234	111580	4	C1c
Nuclear Undecaprenyl pyrophosphate Synthase	NUS1	ORF	YDL193W	115799	114672	4	C1c
Full Gene Name	Name	Туре	Gene Name	Position	Position	Chr	Peak
	Gene	Gene Feature	Systematic	End	Start		
	Standard						

R4b	R4b	R4b	R4b	R4b	R3b	R3b	R3b	RЗb	R3a/b	R3a/b	R3a/b	R3a/b	R3a/b	R2a	R2a	R2a	R2a	R2a	R2a	R2a	R2a	R2a	R2a	R2a	R2a	R2a	R1a/b	R1a/b	R1a/b	R1a	R1a		R1a	Peak	
16	16	16	16	16	15	15	15	15	15	15	15	15	15	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4		4	Chr	
841266	837909	835563	834565	833689	139227	141584	142815	155287	144204	145334	147382	150398	153912	803195	802731	821295	819433	818708	817950	816878	814452	813193	812110	810565	808324	806621	521314	520972	541602	555726	553254		553084	Position	Start
842669	839777	837413	835212	834245	141347	142555	143696	158637	145130	147163	150276	153490	154745	804517	802802	825776	820824	819196	818495	817525	816560	814152	812850	811632	810381	807748	521469	521043	541700	556472	555152		553398	Position	End
YPR157W	YPR156C	YPR155C	YPR154W	YPR153W	YOL095C	YOL094C	YOL093W	YOL087C	YOL092W	YOL091W	VOL090W	YOL089C	YOL088C	YDR170W-A	YNCD0016C	YDR180W	YDR179W-A	YDR179C	YDR178W	YDR177W	YDR176W	YDR175C	YDR174W	YDR173C	YDR172W	YDR171W	YDR034W-B	YNCD0009W	YNCD0010C	YDR050C	YDR049W		YDR048C	Gene Name	Systematic
ORF	ORF	ORF	ORF	ORF	ORF	ORF	ORF	ORF	ORF	ORF	ORF	ORF	ORF	transposable element gene	tRNA gene	ORF	ORF	ORF	ORF	ORF	ORF	OR F	ORF	ORF	ନ୍ମ	ORF	유 유	tRNA gene	snoRNA gene	ORF	ORF		R	Туре	Gene Feature
TDA6	TPO3	NCA2	PIN3	MAY24	HMI1	RFC4	TRM10	DUF1	YPQ1	SPO21	MSH2	HAL9	MPD2			SCC2	NVJ3	CSN9	SDH4	UBC1	NGG1	RSM24	HM01	ARG82	SUP35	HSP42			SNR47	TPI1	VMS1			Name	Gene
Topoisomerase I Damage Affected	Transporter of POlyamines	Nuclear Control of ATPase	Psi+ INducibility	genetic interaction profile similarity to MTC Annotated Yeast genes MTC2 and MTC4	Helicase in MItochondria	Replication Factor C	Transfer RNA Methyltransferase	DUB-associated Factor 1	Yeast PQ-loop protein	SPOrulation	MutS Homolog	HALotolerance	Multicopy suppressor of PDI1 deletion			Sister Chromatid Cohesion	Nucleus-Vacuole Junction	Cop9 SigNalosome subunit	Succinate DeHydrogenase	UBiquitin-Conjugating		Ribosomal Small subunit of Mitochondria	High MObility group (HMG) family	ARGinine requiring	SUPpressor	Heat Shock Protein			Small Nucleolar RNA	Triose-Phosphate Isomerase	responsive	VCP/Cdc48-associated Mitochondrial Stress-		Full Gene Name	

		ORF	YPR160W-A	862014	861934	16	R4b
		아쮸	YPR160C-A	862861	862577	16	R4b
		ORF	YPR159C-A	860415	860314	16	R4b
		element gene	YPR158W-B	849980	844709	16	R4b
		transposable					
		element gene	YPR158W-A	846031	844709	16	R4b
		transposable					
		element gene	YPR158C-D	856257	850989	16	R4b
		transposable					
		element gene	YPR158C-C	856257	854935	6	R4b
		transposable					
		tRNA gene	YNCP0023W	860449	860379	16	R4b
		tRNA gene	YNCP0022W	856974	856902	16	R4b
Glycogen PHosphorylase	GPH1	유	YPR160W	864014	861306	16	R4b
Killer toxin REsistant	KRE6	유	YPR159W	859745	857583	16	R4b
Curing of [URe3]	CUR1	ORF	YPR158W	844020	843262	16	R4b
Full Gene Name	Name	Туре	Gene Name	Position	Position	대	Peak
	Gene	Gene Feature	Systematic	End	Start		
	Standard						