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Abstract 
 
Structural time series methods are applied to modeling endogenous fishing effort in 
the German North Sea shrimp fishery. The effects on fishing effort of shrimp price, 
catch per unit effort and environmental variation are examined. Preliminary results 
suggest that fishing firms do not respond much to price changes but they are highly 
responsive to variation in catch per unit effort and environmental conditions, which 
have a significant impact on the fish stock. 
 
1. Introduction 
 
Central to the commercial success of fishing firms is the information that they use, 
and manner in which they use it, to determine the amount of effort they expend in a 
fishery. In attempting to evaluate the bio-economic stability of the North Sea shrimp 
stock, McDonald and Hanf (1992) specified fishing effort as a control variable. The 
decision-making process was then modeled by assuming that fishing firms choose 
the level of effort that maximizes the net present value of harvests over time. The 
stochastic control framework used yields a non-linear stochastic differential equation 
for effort which implies that effort is determined endogenously by fishing firms in 
response to information on output price, the firm's production function and the 
abundance of fish. 
 
The model used by McDonald and Hanf (1992) provided the basis for analyzing 
annual data to address the question of stock stability. It also provides guidance as 
to plausible relationships between fishing effort and the state of the fishery's bio-
economic system when monthly data are available. Naturally, the use of monthly 
data leads to a new set of modelling considerations that were not addressed in the 
above-mentioned study. Formal modelling of the intra-year variation in effort could 
clearly command a great deal of thought, for example. In the meantime, an 
empirical study might be of considerable interest. This is the point of departure for 
the present paper. 
 
Available monthly data for the German North Sea shrimp fishery consist of 257 
observations during the period March 1970 - July 1991 on fishing effort, shrimp 
price, catch per unit effort (CPUE), mean daily seawater temperature and rainfall. 
Examination of these data reveals persistent seasonal cycles. Structural time series 
modelling (Harvey, 1989; Harvey and Shepherd, 1993) is therefore a natural means 
by which one might characterize cyclical patterns in effort; perhaps as the prologue 
to a more ambitious use of stochastic control methods for development of a detailed 
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structural econometric model. 
 
2. An empirical model of the annual cycle in the German north sea shrimp 
fishery 
 
As mentioned above, previous modelling of the German North Sea shrimp fishery 
has suggested that fishing effort is determined by fishers, to varying degrees, in 
response to shrimp price, catchability and the abundance of fish. The available data 
include shrimp price and a number of variables that, as a set, are proxies for 
catchability and abundance. At first blush in an empirical study of cyclical patterns in 
fishing effort, therefore, it is tempting to simply regress effort on price, CPUE, 
seawater temperature and rainfall to see whether these patterns can be explained 
adequately using such explanatory variables. Unfortunately, such action is likely to 
yield misleading results because of features, those are common to effort and the 
regressors. That is, because they have common features that arise from common 
causes, the ability of the regressors to explain effort may be exaggerated when 
using standard regression techniques1. 

 

The risk of obtaining spurious evidence of causal relationships between effort and 
the regressors can be diminished by taking account of common features and then, 
examining the power of the regressors in explaining effort. Within the structural time 
series framework of Harvey (1989), the features found to be common to effort, 
seawater temperature, shrimp price, rainfall and CPUE for the German North Sea 
shrimp fishery are a local trend, a monthly seasonal effect and a non-specific 
cyclical effect. These common features can be combined linearly to form a general 
structural model (GSM). 

The GSM for each variable takes the form of a measurement equation and a 
multivariate stochastic equation of motion that includes dynamic unobservable 
variables. Each pair of differential equations within the multivariate stochastic 
equation of motion satisfies a pair of difference equations with trigonometric 
transition matrices, thus admitting periodicity. The general form of the GSM for the 
present application is given by:  

 

Yt  = Ut+t
s  +t + y dzy       (1) 

 

 

where Ut  is a trend that represents long-term movements in the data which can be 

extrapolated into the future, t
s  is a seasonal component, t is an unobserved 

cyclical component with frequency  radians and damping factor , and zy is a 
standard Wiener process (that is, dzy is white noise). The unobserved cyclical 
component evolves according to the stochastic differential equation. 

                                                            
1 'This is the well-d acumen led problem of spurious regression that arises frequently in time series. See, for example, Davidson and 

MacKinnon (1993) and Greene (1993) for discussion of this problem. 

 



  

 

  

 

and the trigonometric seasonal component, t
s, takes the form of equation (2) for 

each of 6 monthly pairs, with , set equal to one and  , set to the required 
seasonal frequency2.  These components or features are estimated using a 
Kalman filter, with the Wiener-process errors assumed to be independent. 
 
The solution of equation (2), for example, makes it clear that this equation 
facilitates the modelling of cyclical components that may exist in the data series yt. 
The transition (co-efficient) matrix of the solution to equation (2) contains 
trigonometric terms that are clearly cyclical. Conditioned on the most recent data 
point, this solution satisfies the difference equation 

 

  

 

  

The task now is to make use of this structural time series framework to 
characterize the principal patterns and causal linkages in the German North Sea 
shrimp fishery effort data. The main point to be made is that there is interest in 
examining the common features in the time series on effort, seawater temperature, 
shrimp price, rainfall and CPUE and then, investigating whether the remaining 
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variation in effort can be explained by the remaining variation in the other variables. 
 
On the assumption that fishing effort is an endogenous control variable, the 
stochastic control framework used by McDonald and Hanf (1992) suggests that the 
amount of fishing effort chosen by fishers depends not only on shrimp prices and 
shrimp abundance but also on the level of uncertainty surrounding prices and 
abundance. This dependency is potentially nonlinear and is complicated further 
when one considers monthly data with common cyclical features. The empirical 
characterization reported in the present paper is based on an arbitrary nonlinear 
relationship between effort and price, seawater temperature, rainfall and CPUE. 
Natural logarithms are used for all variables except seawater temperature. This 
imposes nonlinearly and guarantees non-negative predictions for all variables that 
can take only non-negative values.  
 
Parameter estimates are obtained and inferences are made in two steps. The first 
step involves fitting the GSM to all variables either independently or jointly as a 
seemingly unrelated set with the common structural time series features given by 
equations (1) - (3). The second step entails using residuals from the price, 
seawater temperature, rainfall and CPUE GSM's as explanatory variables in the 
model for effort. This second step requires estimation of the effort equation  

yt =Ut +t
s + t +  XB + y  dzy                          (6)  

where B is a vector of regression coefficients corresponding to the columns of the 
regression matrix X, which are the above-mentioned GSM residuals and their inter-
actions .3 

 

3. Results 

 

The first step in characterizing the commercial fishing cycle for the German North 
Sea shrimp fishery involved fitting a common GSM to the variables effort, price, 
seawater temperature, rainfall and CPUE. This was done using equations (1) - (3) 
for each of these variables individually and also, as a seemingly unrelated system. 
The parameter estimates for the system were very similar to those for each 
variable treated separately, except for the damping-factor and frequency 
parameters of the non-specific cycle. The residual diagnostics, especially those 
concerned with serial correlation, were better for the separate analyses, however. 
In addition, analyzing the variables separately (but using the same GSM) is more 
compatible with the second step in which, for consistency of parameter estimates, 
any stochastic regressors must be uncorrected with the effort-equation residuals. 
For these reasons, the first-step results are reported in Table 1 for each of the 
variables analyzed separately. 

 

Table 1 reveals that there are significant cycle frequency and damping factors for 
all variables except CPUE. Interestingly, although not surprisingly, effort and 
seawater temperature have the most similar cyclical patterns. In addition, the 
variance estimates reveal very little randomness around the local trend, seasonal 
and cyclical features. Except for temperature, however, there is noticeable 
observation error. The diagnostic results point to heterskedasticity in CPUE. The 
structural time series R2, which is an indication of goodness of fit around the local 



trend and seasonal components, indicates that price and CPUE are explained by 
the GSM least successfully. 

 

The second step of the parameter, estimation and inference task involved adding 
explanatory variables to the effort equation, as per equation (4). These explanatory 
variables were constructed by subtracting the local trend, cycle and seasonal 
components from the variables price, seawater temperature, rainfall and CPUE. All 
interactions among these variables were also included. As alluded to above, these 
explanatory variables were added to assess whether, after taking account of 
common structural time series features, there is empirical evidence to support the 
view that commercial fishing decisions interactions are observation-by-observation 
products of the regressors. Two, three and four at a tune are influenced directly by 
uncertain changes in economic, biological and physical variables. 

 

The effort equation, including explanatory variables, was re-estimated in two ways. 
First, the structural time series hyper-parameters were constrained to equal the 
point estimates reported in Table 1 and the regression parameters were estimated, 
as reported in Table 2. Second, the effort equation, including the explanatory 
variables, was re-estimated as part of a seemingly unrelated set, yielding not only 
the regression parameters for the explanatory variables but also estimates of the 
hyper-parameters for a common trend, a common seasonal and a similar non-
specific cycle. This ensures the same GSM for each equation, constraining the 
cyclical frequency and damping factor estimates to be the same for all equations, 
but it admits different degrees of departure from these common features, 
expressed as different variance estimates across equations. This also allows 
account to be taken of contemporaneous covariance among all (dependent) 
variables. Estimates for the second-step seemingly-unrelated equations are 
reported in Table 3. 

 

The second-step results, for the effort equation reported in Tables 2 and 3, are 
broadly similar. The commonly significant explanatory variables are seawater 
temperature, CPUE and the interaction variables price-temperature, temperature-
CPUE and price-temperature-rainfall. All of these variables are related positively to 
effort, as one would expect a priori. In addition to these commonly significant 
explanatory variables, Table 3 indicates a surprising significant negative impact of 
rainfall and a positive significant impact of temperature-CPUE. Also of note is the 
generous overlapping of 95% confidence intervals calculated for each coefficient, 
in turn, from Tables 2 and 3. 

 

The diagnostic statistics for the effort equation are, in the main, similar, although 
some serial correlation appears to persist for the seemingly unrelated results 
reported in Table 3. A comparison of Table 1 with Table 3 also reveals a worsening 
of serial correlation, except for the seawater temperature equation. 

 

4. Concluding remarks 
 
The empirical results presented in Tables 1-3 provide a general characterization of 
the commercial fishing cycle in the German North Sea shrimp fishery. There is 



strong evidence of seasonally, as one would expect, and superimposed on this is a 
non-specific cycle. Structural time series analysis is, therefore, a natural framework 
for tracing patterns in fishing activity. One might view this framework as providing a 
mechanism for mimicking the forecasting of fishers that leads to intended allocation 
of effort on a monthly basis. As information becomes available to fishers, however, 
these forecasts can be updated and effort allocation decisions modified. The 
second-step addition of explanatory variables in the effort equation is intended to 
reflect such information and resultant behavior modification. 

 

The explanatory variables used are the GSM residuals for variables that proxy 
those postulated in previous work to be important in explaining effort. The natural 
conclusion to draw from the estimates in Tables 2 and 3 is that fishers respond 
only weakly to price changes but that they are much more responsive to changes 
in environmental conditions and fish abundance. In addition to common persistent 
seasonal and cyclical patterns, therefore, it is clear that effort is influenced directly 
by residual variation in economic, biological and environmental factors. 

 

The stylized relationships revealed in this paper are consistent with previous 
stochastic-control based work on the German North Sea shrimp fishery. Despite 
the limitations of an empirical study of this type, it seems that a somewhat more 
ambitious use of the control framework in modelling commercial fishing cycles is 
likely to reveal insights of both theoretical and practical importance.  Among other 
things, this would require explicit account to be taken of cost and production 
functions, seasonally and trends, as well as inter-annual economic cycles. Such 
work would need, therefore, to address temporal dynamics from both short-run and 
long-run perspectives. It would also require the setting of fishing cycles within a 
broader bio-economic context than has been achieved to date. 

 

 

 

 

 

 

 

 

 

 

 



Table 1: GSM Estimates (Step 1) 

  

Cycle Parameter 95% Confidence Interval for Each Equation 

Effort 
Price 
  

Temperature Rainfall CPUE 

 cycle damping 0.493-
0.838 

0.970-0-
996 

0.050-0,830 0,875-
0.880 

0.998-
0.99 

 cycle frequency 0.500-
0.770 

0.911-
1.435 

0.467-0.956 3.115-
3,116 

0.000-
999 

Variance 
Parameter 

Point Estimate for Each Equation 

² 
u*2 
  

local trend 
variances 

0.001       
0,000 
  

0.040 
 0.000 

0,000 
 0.000 

0,000  
0.000 

0.055 
0.000 

²c  cycle variance 0.0155 0.000 0.000 0.000 0,000 

²s seasonal 
variance 

0.001 (1.000 0.000 0.000 0.000 

²y observation 
variance 

0.013 0,003 0,000 0.381 0.030 

Diagnostic 
Statistics 

  
  

Heteroskedasticity 1.193 0,315 1.277 1.112 3,477 

H(8l)~F(81,81)   
  

  
  

  
  

  
  

  
  

Dirbin-Watson 1,940 2.010 2.000 1.856 1.967 
Ljung-box 
Q05)~X ²(9) 

9.930 19.220 19.890 15.610 17.660 

Structural Time 0.303 0.016 0.281 0.457 0.029 
Series R²   

  
  
  

  
  

  
  

  
  

         
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2: Univariate Effort Equation Estimates (Step 2) 

  

Explanatory 
Variable 

Coefficient 
Estimate 

Standard Error Statistic 

P (Price 
T(Temperature) 
R(Rainfall) 
C(CPUE) 
 PT 

-0.032 
11.230 
-0.034 
0.296 
39.327 

0,129 
2.676 
O.047 
0.092 
10,608 

-0.248 
4.197 
-0.733       3.208 
  3,707 

PR 0.043        0.206 0.210 
PC 0.481        0.438 1.099 
I'R -4.339        3.823 -1.135 
TC 9.628        6,450 1.493 
RC -0,038        0.154 -0.247 
PTR -2,385        13.672 -0.174 
PTC 125.180        27.767 4.508 
TRC 7,509        10.970 0.684 
PTRC 15,249       54.705 0.279 

Diagnostic Statistics 

Heteroskedasticity H(76) ~ F(76,76)  1.577 
Durbin-Watson                                   2.036 

Ljung-Box    Q(14) ~ X²(8)                  12.330 
Structural Time Series R²                    0,510 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3: Effort Equation Estimates from Seemingly Unrelated Set (Step 2) 

  

Explanatory Variable Coefficient 
Estimate 

Standard Error t Statistic 

P(Price) 0.163 0.120 1.351 
T( Temperature) 
R(Rainfall)  
C(CPUE)  
PT 

6.132 
-0.379 
0.291 44.477 

2.451  
0.042 
0,085  
9.675 

2.502 
-9.016  
3.419 
 4.597 

PR -0-002 0.190 0.012 
PC 0-552 0.391 1.411 
TR -3.979 3.605 -1.104 
TC 15.918 5.696 2.797 
RC -0.038 0.143 0,269 
PTR -4.292 12,386 -0.347 
PTC 114.170 26,190 4.359 
TRC 11.695 9.795 1.194 
PTRC 10.007 49.160 0.204 

Common cycle damping factor  =0.593 
 Common cycle frequency   = 0,579 

Diagnostic 
Statistics 

Effort Eqn. Price Eqn. Temp 
Eqn. 

Rainfall 
Eqn. 

CPUE Eqn. 

Heteroskedasticity 1.604 0,384 1.143 0.995 3.231 
H(76) ~ F(76,76)   

  
  
  

  
  

  
  

  
  

Durbin-Watson 1.819 1.795 1.997 1.997 1.833 
Ljung-Box 15,430 18.980 18.250 16.660 13.680 

Q(14) ~X² (8)   
  

  
  

  
  

  
  

  
  

structural Time 0.450 0.048 0.286 0.469 0.237 
Series R²   
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