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Evaluating Preconditioning Options for the Jacobian-Free Newton
Krylov Method Applied to Radiative Transfer With Matter Coupling

1 Introduction

In the field of nuclear engineering, as well many other science and engineering

disciplines, it is important to understand the distribution of radiation energy fields.

Such fields can be as simple as heat coming from a fire or as complicated as the

spectrum of energy emitted from a supernova. Regardless of the complexity, elec-

tromagnetic waves, or photons, are being absorbed and re-emitted continuously in

all materials that we encounter.

The representation and modeling of such energy fields and interactions is im-

portant for many applications. One such application is inertial confinement fusion.

It is also important in atmospheric modeling, where the interaction between so-

lar radiation and cloud particles determines weather patterns. An understanding

of the radiation distribution is also important in oxy-coal combustion and other

power generation systems, where radiative heat transfer is a dominant process.

In many of these applications of interest, the problem involves multiple physical

processes that are tightly coupled together. Multi-physics problems are found in the

aforementioned examples as well as in coupled neutronics and thermal hydraulics in

a nuclear reactor, material strain and stress coupled with thermal transfer processes

in nuclear fuels, and biogeochemical transport. Any time there are competing

and/or interacting physical processes, it can be described mathematically as a

non-linear multi-physics problem.

Non-linearly coupled systems of partial differencial equations are difficult to

solve accurately and often are mathematically intractable for calculating an ana-
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lytical solution. It may be possible to make general assumptions to simplify the

problem, but the solution of this simplified problem may not preserve features of

the original system (for example, assuming a steady state solution will eliminate

any transient solution information). These simplified problems are useful as bench-

marks, but ultimately an experiment or computer simulation is needed to allow for

a better understanding of a coupled model, especially when full analytical solutions

are not available.

In many of these applications, particularly nuclear engineering, it is prohibitively

expensive to construct experimental facilities to gather data about radiation field

interactions. It is more cost efficient to perform computer simulations of the phys-

ical system in order to characterize its behavior and to perform design analysis—

provided the code is verified and validated. Verification and validation of computer

codes is necessary for code users, consumers of the product designed with the codes,

and for regulatory agencies.

When attempting to resolve nonlinearities in a system of partial differential

equations, one generally has two options available: fixed point iteration or the

Newton-Raphson method. The fixed point iteration scheme (sometimes known as

Picard or Richardson iteration) is very simple to implement and has a linear con-

vergence rate with respect to the error reduction per iteration. A Newton-Raphson

iteration scheme can be more challenging to implement, but allows for quadratic

convergence rate with respect to the error reduction. The usual difficulty in us-

ing the Newton-Raphson method is forming the Jacobian matrix for the system.

Sometimes this is very expensive to do analytically, especially for tightly coupled

systems where the partial derivatives can be complex. Both methods may not

converge, but Picard iteration is generally more stable than the Newton-Raphson



3

method.

One may instead form an inexact Newton method that approximates the action

of the Jacobian on a vector rather than requiring the full formation of the matrix

itself. Such inexact methods lose their guaranteed quadratic convergence, but the

convergence rate can be close to quadratic with proper preconditioning. Choosing

a good preconditioner is not always an easy task, and generally requires knowledge

of the dominant physics of the system in question.

The focus of this thesis is the radiative transfer equation for photon transport

coupled with the equation for material energy balance. The coupling of these two

equations creates a highly non-linear system that is difficult to solve efficiently

and accurately with numerical methods. This thesis seeks to answer whether the

method formulated is effective with a variety of physics based preconditioning. This

thesis also seeks to understand what is the most efficient form of physics based pre-

conditioning for this particular problem. The physics-based preconditioners being

evaluated in this thesis are: infinite medium, radiation diffusion, grey transport,

S2 transport, grey coupling, multi-frequency coupling, and the temperature deriva-

tive of the material energy balance equation. The following sections look into the

current work that has been done in the fields of radiative transport theory and

multi-physics modeling. After this a short description of this thesis is presented.

1.1 Literature Review

The following section is a review of the literature concerning the developement

and implementation of the Jacobian Free Newton Krylov method for converging

non-linear systems. A review of literature concerning solution techniques to the

linear Boltzmann transport equation is also conducted.
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1.1.1 Multi-physics Methods

In many practical situations where numerical modeling and simulation is re-

quired, there exist non-linearities that pose difficulties in the solution. Linear

problems are generally much easier to solve and methods for these problems have

been well expounded upon throughout the 20th century.

Conventional means of dealing with non-linearities generally involve an ap-

proximation to eliminate multi-physics coupling and nonlinear terms. Fixed point

iteration can be used to converge non-linear terms and multi-physics coupling at

each time step, but the many nested loops can result in prohibitive computation

time when simulating a very large problem. The easiest way to accommodate

troubling non-linearities is to ”lag” the parameter at the previous step. This is

dangerous since it trends a problem more towards an explicit formulation which

can be unstable and potentially inaccurate for prolonged steps. Instead, a common

method is to ”linearize” non-linear terms in an equation and/or split the problem

physics into separate problems that are solved in sequential order.

Linearization is a technique that involves performing a two term Taylor series

expansion of the non-linear term about the solution at the previous step. This

method is useful because it will make a system mathematically tractable via linear

algebra. A study characterizing time integration errors of two numerical schemes

(Linearly Implicit and Implicitly Balanced) found that a semi-implicit scheme does

not always preserve the maximum principle and large time steps produce significant

error in the linear implicit scheme [19].

Use of the operator split method is common in industry. Splitting multiple

physics into sequentially solved single physical systems is generally straightforward

and easy to accomplish. Production codes that solve single physics systems are
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amenable to this method since the results from one code (i.e. a neutronics code

for neutron flux profile) can be used in the second code as an input parameter to

calculate the desired data (i.e. thermal profiles from a reactor thermal-hydraulics

code). The danger with this approach is that the time scales for the different

physics are dissimilar. This creates a system that could diverge if explicit numerical

algorithms are being used. Even if the system is being solved implicitly, the proper

transient behavior may be lost and the method may even converge to the wrong

solution [17].

Before the JFNK method was seriously considered, fixed point methods were

the norm to resolve the non-linearities. Szilard [37] attempted to treat the T 4

non-linear term by treating T 4 as the variable of interest as opposed to T alone.

He then set Cv to be proportional to T
−3
4 such that the equations could be lin-

earized. However, Szilard noted that this may not have been the best choice for

test problems that start initially cold since it introduces a division by zero for Cv.

In his study, Szilard looked at the grey radiation diffusion equation.

Another approach is to resolve the non-linearities within each time step using

the Jacobian Free Newton Krylov method (JFNK). This method is similar to the

well known Newton-Raphson method, but with several key differences. In JFNK,

one does not form the Jacobian matrix. Instead, its action is approximated using

a finite difference perturbation approximation. Because the Jacobian matrix is

no longer formed explicitly, the quadratic convergence rate of the error reduction

between iterations of the Newton-Raphson method is lost; however, the method is

still super-linearly convergent (close to quadratic) [28]. Another feature of JFNK

is that the internal linear solver is a Krylov iterative solver. Krylov solvers are non-

stationary iterative methods that compute approximations to the solution in the
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Krylov subspace. Some examples of these solvers are GMRES, Arnoldi Iteration,

and Conjugate Gradient [38].

Research on the JFNK method has largely concerned its application in the field

of neutron and photon transport with coupled physics. Most of these studies have

focused on the one group (or grey) problem and are generally one dimensional

in space. Knoll et al. have compared JFNK against a non-linear Picard solver

for non-linearly coupled grey radiation diffusion [21]. This study highlighted the

differences between linearization of the problem and using the JFNK method.

Linearization was found to be a good preconditioner for the JFNK method and

significant speedup in convergence was observed when using the JFNK method.

Knoll and Park have applied the method in k-eigenvalue criticality calculations [22].

Knoll and Smith have also applied the method for non-linear diffusion accleration

of source iteration in neutron transport problems [20].

Current research concerning the JFNK method concerns the choice and formu-

lation of the proper preconditioner for various physical systems. Preconditioning

is the key to an effective JFNK solver. Without a good preconditioner, the JFNK

method cannot compete with current accelerated fixed point schemes. An effective

preconditioner is one that approximates the Jacobian matrix and is computation-

ally efficient to construct and invert. Often, the operator describing the dominant

physics involved in a system is a good preconditioner. Mousseau et al. have inves-

tigated the operator-split approach as a physics-based preconditioner [28]. It was

found that the operator-split method is quite easy to formulate and implement,

and works effectively as a physics-based preconditioner. In tightly-coupled multi-

physics systems, it is important to capture the coupling between equations in the

preconditioner since this is often where the stiffness in a system comes from.
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With regards to multi-frequency radiative thermal transport, Britton Chang [5]

[6] has implemented the JFNK method in a unique way that treats the coupled

system as having just one variable of interest–the temperature. In this ”photon

free” method (PFM), he showed that greater time steps can be taken with reduced

time discretization error. However, it takes more work to resolve the problem for

larger time steps. His work focused on comparing the PFM against other com-

mon Picard approaches such as the semi-implicit linear approximation. However,

the preconditioning options for PFM are limited to the material energy balance

equation. Chang only used a heat conducting preconditioner.

There is extensive work being done to implement the JFNK method in codes

to specifically solve difficult tightly-coupled multi-physics problems. The multi-

physics research team at INL has developed a coding framework called MOOSE [12]

that provides methods to implement the JFNK algorithm in a general sense for a va-

riety of multi-physics problems. Using this framework, researchers have successfully

implemented a parallelized JFNK algorithm to solve neutronics-thermalhydraulics

problems for pebble bed reactors (PRONGHORN) [31] and thermal effects coupled

with material science for fuel performance (BISON) [29].

Other applications of JFNK exist in disciplines outside of the nuclear industry.

For instance, Hammond et al. [14] utilized JFNK in the modeling and simulation

of biogeochemical transport and found noteworthy reductions in memory and pro-

cessor time required, but no wall clock time reductions. JFNK research is also

ongoing in the field of weather modeling [32].
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1.1.2 Radiative Transport

A challenging task in computational physics is to correctly simulate the inter-

action between radiation and matter. Interactions between radiation and matter

are described using a discretized form of the linearized Boltzmann problem. The

resulting system of equations are then solved for the desired field distribution [1].

A radiation transport problem is a function of seven independent variables–three

spatial, two angular, one time, and one energy variable. Discrete solutions to the

transport equation can be very challenging since the number of unknowns can be

very large.

A common way to discretize the angular variable is to use the SN or discrete-

ordinates approximation. This approximation makes use of numerical quadrature

to approximate integrals over angular space. The resulting transport equation is a

system of differential equations–one for each discrete angle. This method has been

well documented and used by researchers since the 1960’s [1]. An alternative to

the SN method is to use the PN equations from spherical harmonics.

The linear Boltzmann equation may behave differently depending on the type of

physical system being represented. In an optically thick, highly scattering region,

it behaves like an elliptic or parabolic partial differential equation (PDE). However,

in a void, it behaves as a hyperbolic PDE. It is difficult to find a transport dis-

cretization that works well over a wide range of behavior. Advanced discretization

and iteration schemes have been the subject of much research for many years [1].

The simplest iterative solver to implement in a transport system is called Source

Iteration (SI). Essentially, SI is a fixed point iteration about the source term. An

initial estimate of the source is chosen, the transport equation is solved for angular

flux/intensity values, and the quadrature approximation of the SN method is used
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to find the new source. This process is repeated until convergence on the source

is achieved to some prescribed tolerance. A danger with the SI scheme is the

possibility of false convergence [1]. Source Iteration is also known to be very slow in

highly scattering optically thick problems [1]. Many researchers have investigated

acceleration schemes to improve the rate of convergence for these problems.

Some acceleration methods currently in use are the diffusion synthetic, quasi-

diffusion, and spatial multigrid approaches [1]. Diffusion synthetic acceleration

was first introduced by Kopp [15] while the quasi-diffusion acceleration was first

introduced by Gol’din [39]. These methods and many others are described in detail

in a review paper on fast iterative methods for neutral particle transport [1]. DSA

and QD will briefly be described here.

The general idea of diffusion synthetic acceleration is to perform a standard

procedure for a source iteration and then solve an approximate equation for a

correction to the scalar flux. The correction is calculated using the zeroeth and first

angular moment equations to form a low order diffusion approximation equation.

This correction is then added to the source iteration scalar flux to get a more

accurate answer.

The idea of the quasi-diffusion (QD) method is to calculate the 0th and 1st an-

gular moments of the transport equation and combine them in a low-order equation

for the scalar flux. After performing a standard transport sweep, coefficients called

”Eddington factors” are calculated from the high-order angular flux values and

then the low-order equation is solved for the new scalar flux value. It is important

that the low-order equation is discretized in the same way as the high-order equa-

tion, otherwise the QD method will converge to an answer for a slightly different

problem.
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Much of the early work in radiative transport theory for photon fields was per-

formed by Chandrasekhar [4] and has been built upon by Sobolev [34], Modest [27],

and others more recently as the field has gained more prominence. Coupling to

other physical processes such as material absorption and re-emission of photons

as well as heat transfer quickly make the problem challenging to solve iteratively.

Exact solutions to the photon transport equation are rare [27]. Modest describes

four primary difficulties in the formulation of an analytical solution. These four

categories are geometry, temperature field, scattering, and radiative properties.

Geometry issues arise when trying to solve the problem in anything greater

than 1D. Temperature field issues arise when the transport equation is coupled to

heat conduction, convection, and material energy balance. If there is scattering

present in the problem, then the equation becomes an integro-differential equation.

Radiative property issues are encountered when such properties are dependent on

the temperature field and/or the frequency of radiation.

Thus far the work done to solve the radiation transport equation has been

rather extensive. Generally, practical problems of interest have zones of great op-

tical thickness and thus standard source iteration will always be slow to converge.

Generally, coherent scattering is ignored. However, the absorption-emission cou-

pling can be thought of as an effective scattering term.

Acceleration/preconditioning of the standard fixed point iteration has been

considered by Larsen [23] and Gol’din [39]. Larsen specifically focused on the use of

the grey radiative transport solution to precondition the multi-frequency transport

equation system. In his study, Larsen compared a synthetic acceleration method

with the so called Lambda Iteration method, which is functionally the same as a

fixed point iteration. It was found that for cases where strong coupling is present,
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both the fixed point iteration and the proposed acceleration method were slow to

converge. Such strong coupling occurs when the time step is very large and/or

when the opacity is very large. Gol’din used the QD method in a similar manner

to accelerate the convergence of the fixed point tightly coupled radiative transfer

system.

When discretizing the streaming term in the photon transport equation there

are several options available. The simplest and easiest option is to use diamond

differencing–which approximates the cell-average flux as a simple average of the

two cell edge values. However, this method is known to work poorly in the thick

diffusive limit. While it is incredibly easy to implement, there is also a danger of

incurring negative energy densities–which are unphysical.

The step characteristic method is fairly simple to implement and essentially

makes use of an integrating factor to form a characteristic closure equation. How-

ever, the emission source must be assumed constant through the cell. When this

method is used, the thick diffusion limit is not maintained and the numerical

scheme will be in error. The linear characteristic method does maintain the thick

diffusion limit, but is more involved as it assumes that the energy source is linear

over the cell.

Figure 1: 1D Simple Corner Balance Node Cell
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An alternative discretization suggested by Adams [25] is the Simple Corner

Balance, which has been shown to work well in the thick diffusive limit for difficult

problems on coarse grids. This is the scheme used in this thesis to discretize the

streaming term. The transport equation is integrated over each half-cell as shown

in Figure 1. The numerical approximations utilized in this method are further

discussed in the Methods chapter. This method has been successfully implemented

by Palmer [30] in curvilinear geometries.

As an alternative to deterministic methods, Monte Carlo transport can be used.

Here, individual particles (in this case photons) are simulated in the given environ-

ment and statistical distributions are built from the use of psuedo-random number

sampling. Fleck and Cummings [11] have greatly expounded upon the implicit

Monte Carlo method to solve the radiative transport problem and further work

in this field continues to be carried out by Gentile [13], Densmore [8], Urbatsch,

Evans, Brown [26], Cleveland [7], and others.

1.2 Thesis Overview

The remainder of the thesis is organized in the following way:

II . Chapter 2 contains the underlying physical equations of the general problem.

The numerical schemes used to solve the problem on the computer are then

discussed. Concise descriptions of the discretization schemes used for each

phase space element are given with formulations for the different test prob-

lems also presented. The JFNK method is described, followed by various

preconditioner formulations. An overview of the structure of the software

used to test these methods is also provided.
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III . Chapter 3 describes the numerical test problems as well as the results asso-

ciated with each test case. The first problem examined is the Su and Olson

problem [36]. The second problem examined is the more non-linear problem

of Chang [5] with heterogeneous materials. The solutions for each problem

are presented in comparison with previously published solutions. Timing

results for the various preconditioners are also given and remarks are made

concerning the effectiveness of various preconditioners. When solutions could

not be obtained, the causes for the method’s breakdown are given.

IV . Chapter 4 contains the conclusions obtained from this work. A suggested

optimal preconditioning strategy is given based on the various formulations

used here. A more general conclusion is reached on the effectiveness of this

JFNK formulation compared to that of Britton Chang’s Photon Free Method.
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2 Methods

2.1 Introduction

In this chapter the analytic transport equations of interest are presented and the

numerical discretization of each independent variable is discussed. The Jacobian

Free Newton Krylov (JFNK) method is presented and the direct implementation

within the computer simulation is explained. Lastly, the physics-based precondi-

tioners used in this study are derived.

2.2 Analytic Equations

The photon transport equation as given in equation (1) represents the transient

multi-frequency problem in slab geometry. The loss terms on the left hand side

include the streaming operator and the interaction of the radiation intensity with

matter. On the right hand side there are three source terms: the in-scattering term,

the re-emission term from interacting matter, and an arbitrary internal source [Q].

1

c

∂I(x, µ, t, ν)

∂t
+µ

∂I(x, µ, t, ν)

∂x
+ σt(x, ν, T )I(x, µ, t, ν) = (1)

c

2
[σa(x, ν, T )B(ν, T ) + σs(x, ν, T )E(x, t, ν) +Q(x, ν)]

where E is the energy density [E]:

E(x, t, ν) =
1

c

∫ 1

−1

I(x, µ, t, ν)dµ (2)

and B is the Planck function:

B(ν, T ) =
8πhν3

c3

(
e
hν
kT − 1

)−1

. (3)

The re-emission source term is coupled via the energy density and temperature
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to the material energy balance equation (4).

Cv(x, T )
∂T (x, t)

∂t
=

∫ ∞
0

∫ 1

−1

cσa(x, ν, T )
(
I(x, ν

′
, µ
′
)−B(ν

′
, T )
)
dµ
′
dν
′
. (4)

In the photon transport equation the radiation intensity [I] is a function of

position, frequency, angle, and time. Temperature [T ] is a function of spatial

position and time. The Planck distribution is a function of frequency and tem-

perature. Opacity may be a function of spatial location (heterogeneous system),

frequency, and temperature. In the material energy balance equation the specific

heat with respect to constant volume [Cv] may be dependent on spatial location

and temperature. This system of equations is non-linear and non-trivial to solve

numerically.

When integrated over all frequencies, the Planck function yields:∫ ∞
0

dν B(ν, T ) = acT 4. (5)

The radiation constant, a, is:

a =
8π5k4

15h3c3
. (6)

The variables of interest are the energy density and the temperature. The non-

linearities in these coupled equations arise from the T 4 temperature term as well

as temperature and energy dependent specific heat and opacities.

2.3 Discretized Equations

In order to solve the equations described in the previous section on a computing

system, one must discretize the independent variables: frequency, time, spatial

position, and angle.
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2.3.1 Frequency Discretization

Frequency discretization is handled with the multi-group method. A discrete

set of frequency groups is chosen and a set of coupled photon transport and material

energy balance equations are formed for each group. The group intensity is the

integral of the frequency-dependent intensity over the frequency group:

In(z, µ, t) =

∫ νn+h

νn

dνI(z, ν, µ, t). (7)

Using this definition, and integrating equations (1) and (4) over a group, yields:

1

c

∂In(x, µ, t)

∂t
+µ

∂In(x, µ, t)

∂x
+ σtn(x, T )In(x, µ, t) = (8)

c

2
[σan(x, T )Bn(T ) + σsn(x, T )En(x, t) +Qn(x)] ,

Cv(x, T )
∂T (x, t)

∂t
= c

N∑
n=1

σan(x, T )

∫ 1

−1

dµIn(x, νn, t)−
N∑
n=1

σan(x, T )Bn(T ). (9)

The group averaged cross sections are described as follows:

σzn(x, T ) =
1

νn+ 1
2
− νn− 1

2

∫ ν
n+1

2

ν
n− 1

2

σz(x, ν, T )dν. (10)

The group Planckian distribution is given as follows:

Bn(T ) =

∫ ν
n+1

2

ν
n− 1

2

4πhν3

c2

e
−hν
kT

1− e−hνkT

dν. (11)

For the Su and Olson problem [36], the frequency integrated Planckian source

term is given in (12):

∫ ∞
0

σa(x, ν, T )B(ν, T ) = σ̄a(x)acT 4, (12)
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where σ̄a(x) is the Planckian mean opacity. Chang’s first problem in [5] defines

the frequency integrated Planckian source term as shown in (13):∫ ∞
0

σa(x, ν, T )B(ν, T ) =
N∑
n=1

σan(x, T )Bn(T ). (13)

2.3.2 Time Discretization

The time variable is discretized using a first order backward Euler formulation.

This allows for the problem to be solved fully implicitly as all parameters are

evaluated for the future time step. If the time step size is too large, the problem

will exhibit significant error, even if it is stable. The general discretization of a

first order differential for an arbitrary parameter is given in equation (14).

∂F (t)

∂t
≈ F (tk+1)− F (tk)

∆t
. (14)

The resulting discretized system of equations are given in (15) and (16). Here

the index k is used to represent a discrete point in time.

1

c

Ik+1
n (x, µ)− Ikn(x, µ)

∆t
+ µ

∂Ik+1
n (x, µ)

∂x
+ σtn(x, T k+1)Ik+1

n (x, µ) =

c

2
[σan(x, T k+1)Bn(T k+1) + σsn(x, T k+1)Ek+1

n (x) +Qn(x)], (15)

Cv(x, T
k+1)

T k+1(x)− T k(x)

∆t
=

N∑
n=1

[
σan(x, T k+1)Ek+1

n (x)− σan(x, T k+1)Bn(T k+1)
]

.

(16)

Here the time index k is written as a superscript. The error incurred in each equa-
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tion from this approximation is described below from modified equation analysis:

εI =
1

2c
∆t
∂2Ik+1

n (x, µ)

∂t2
+O

(
∆t2
)

, (17)

εT =
1

2
∆t Cv(x, T

k+1)
∂2T k+1(x)

∂t2
+O

(
∆t2
)

. (18)

2.3.3 Spatial Discretization

Discretization in the spatial dimension is accomplished with the use of the

Simple Corner Balance (SCB) method. Each node is divided into two half nodes

and new angular intensity parameters are introduced (IL and IR). These are the left

and right half cell intensity values. The Simple Corner Balance method makes use

of simple numerical approximations to define the cell edge and whole-cell midpoint

values. These approximations are shown in (19). In the following equations the

spatial node index is i.

Ii =
ILi + IRi

2
(19)

Ii− 1
2

=

{
IRi−1

, µ > 0
ILi , µ < 0

(20)

Ii+ 1
2

=

{
IRi , µ > 0
ILi+1

, µ < 0
(21)

The cell midpoint is calculated using a simple average of the left and right

half-cell averages, and the edge values are calculated using upwind differencing.

Implementing this spatial discretization scheme into the coupled photon transport
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and material energy balance equations gives equations (22) and (23):

∆xi

[
Ik+1
Li,n

(µ)− IkLi,n(µ)
]

+ 2cµ∆tk

[
Ik+1
Li,n

(µ) + Ik+1
Ri,n

(µ)

2
− Ik+1

i− 1
2
,n

(µ)

]
+

c∆xi∆t
kσtn,i(T

k+1
Li

)Ik+1
Li,n

(µ) =
c

2
∆xi∆t

k

[
σan,i(T

k+1
Li

)Bn(T k+1
Li

)+

σsn,i(T
k+1
Li

)Ek+1
Li,n

]
, (22)

∆xi

[
Ik+1
Ri,n

(µ)− IkRi,n(µ)
]

+ 2cµ∆tk

[
Ik+1
i+ 1

2
,n

(µ)−
Ik+1
Li,n

(µ) + Ik+1
Ri,n

(µ)

2

]
+

c∆xi∆t
kσtn,i(T

k+1
Ri

)Ik+1
Ri,n

(µ) =
c

2
∆xi∆t

k

[
σan,i(T

k+1
Ri

)Bn(T k+1
Ri

)+

σsn,i(T
k+1
Ri

)Ek+1
Ri,n

]
. (23)

With these equations it becomes possible to solve for angular intensity values

at discrete points given a previous guess for the energy density. This is commonly

called a transport sweep. A transport sweep works by starting at a known boundary

value and solving the 2x2 system of equation in each cell in the direction of µ until

all angular intensities have been calculated. Figure 2 describes a transport sweep

along the positive ordinate direction.

Figure 2: 1D Simple Corner Balance Transport Sweepe
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2.3.4 Angular Discretization

In order to evaluate the integrals over all angles (µ), the SN method is used.

This involves using Gaussian quadrature with weights and abscissas to numerically

evaluate an integral. For the SN method, the abscissas are discrete parameters of

cos(θ). Equation (24) describes how the angular integration is accomplished with

this method:

E(x, ν, t) ≈ 1

c

Q∑
q=1

wqI(x, µq, t, ν). (24)

2.4 Non-Linear Treatment

The non-linearities in the coupled radiative transfer and material energy bal-

ance equations are treated with the Jacobian Free Newton Krylov method. The

variables of interest that are being converged in the scheme are the energy den-

sity, temperature, and reflecting boundary values. The converged solution to the

system should satisfy equation (25),

F (u+ δu) = 0, (25)

where u represents the composite vector of all variables of interest, F represents all

associated residual equations, and δu represents the step correction for the Newton

iteration.

The Newton method involves evaluation of a residual, F , at the current iteration

step. The Jacobian matrix of the system must also be formed. A step increment

is calculated and added to the solution vector to form the new iteration solution

values. The Newton iteration process is outlined in equations (26)-(28):
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F (up) + δupJp ≈ 0, (26)

Jpδup = −F (up), (27)

up+1 = up + δup. (28)

Here p is the Newton iteration index and J is the Jacobian matrix
(
∂F
∂u

)
. In

the JFNK method, the Jacobian matrix is not explicitly formed. Instead a finite

difference scheme is used to approximate the action of the Jacobian operator on

δu. This finite differencing is given in (29):

Jv ≈ F (u+ εv)− F (u)

ε
. (29)

Different schemes exist to calculate an appropriate ε. The scheme used in this

study is given in (30):

ε =
1

N‖v‖2

N∑
i=1

(a|upi |+ a), (30)

where v is the Krylov vector, N is the system dimension, upi is the system parameter

at the current iterate, and a is a constant with a magnitude close to the square root

of machine precision. In this thesis, a = 1.5× 10−08. There are other methods for

the choice of ε that are described in Knoll and Keyes’ JFNK review paper [18]. The

calculation of δu is performed using GMRES—a non-stationary iterative Krylov

solver. The GMRES algorithm from the PETSC (Portable Extensible Toolkit for

Scientific Computing) framework produced by Argonne National Laboratory [3]

was used in this research.

Approximating the action of the Jacobian on a vector requires that two system

vectors be calculated—one for the solution at the current iteration and one for
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a perturbed solution at the current iteration. The Newton iteration is continued

until the desired norm of the residual vector is smaller than a specified tolerance.

In this study the L2 norm is used for the purposes of determining the error of the

system.

The residual vector is calculated through three variable-specific residual equa-

tions for the parameters E, T , and Iboundary. The residual equations for temper-

ature [(31),(32)] and reflecting boundary intensities (33) are straightforward and

included below. The noted discretization schemes of section 2.3 are applied to the

material energy balance equation and boundary value residual:

F k+1
TLi,n

=
cv(xLi , T

k+1
Li,n

)

∆t

(
T k+1
Li,n
− T kLi,n

)
− c

N∑
n=1

σan,i(T
k+1
Li,n

)
(
Ek+1
Li,n
−BLn(T k+1

Li,n
)
)

,

(31)

F k+1
TRi,n

=
cv(xRi , T

k+1
Ri,n

)

∆t

(
T k+1
Ri,n
− T kRi,n

)
− c

N∑
n=1

σan,i(T
k+1
Ri,n

)
(
Ek+1
Ri,n
−BRn(T k+1

Ri,n
)
)

,

(32)

where σ̄a is the Planck mean opacity.

FIBC = I(0, µq, tk+1, νn)− Ik+1
L1,n

(µQ−q) , µq > 0. (33)

FIBC = I(Z, µq, tk+1, νn)− Ik+1
RZ,n

(µQ−q) , µq < 0.

For known boundary conditions, the boundary residual equations are neglected

since the residual for such cases will always be zero.

The residual equation for the energy densities is obtained by integrating the
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photon transport equation over angle:

FEL(x, t, ν) =
1

c

∂EL(x, t, ν)

∂t
+

(
∂J(x, t, ν)

∂x

)
L

+

σa(x, ν, TL(x, t)) [EL(x, t, ν)−BL(ν, TL(x, t))−QL(x, t, ν)] (34)

FER(x, t, ν) =
1

c

∂ER(x, t, ν)

∂t
+

(
∂J(x, t, ν)

∂x

)
R

+

σa(x, ν, TR(x, t)) [ER(x, t, ν)−BR(ν, TR(x, t))−QR(x, t, ν)] (35)

This has the effect of reducing the overall size of the system being converged–

improving performance by requiring fewer operations and less memory per Newton

step. However, the amount of total work may be more since more Newton iterations

may be required to converge the system to a given tolerance. Unlike the photon

free method developed by Chang [5], the radiative transfer component is included.

This allows for targeted preconditioning of the operators in the energy density

residual.

Here, J is the photon flux. Because Eqs. (34)+ (35) are integrated over angle,

the resulting residual vector will be of a smaller size than if the full set of photon

transport equations were used. Applying the discretization schemes discussed in 2.3

to (34) and (35) gives us equations (36) and (37):

F k+1
ELi,n

=
1

c

Ek+1
Li,n
− Ek

Li,n

∆t
+

Jk+1
i,n − Jk+1

i− 1
2
,n

∆x
2

+

σan,i(T
k+1
Li,n

)
[
Ek+1
Li,n
−BLn(T k+1

Li,n
)
]
−Qk+1

Li,n
, (36)
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F k+1
ERi,n

=
1

c

Ek+1
Ri,n
− Ek

Ri,n

∆t
+

Jk+1
i+ 1

2
,n
− Jk+1

i,n

∆x
2

+

σan,i(T
k+1
Ri,n

)
[
Ek+1
Ri,n
−BRn(T k+1

Ri,n
)
]
−Qk+1

Ri,n
. (37)

The photon flux values are calculated by performing Gaussian quadrature inte-

gration using known angular intensities. These angular intensities are calculated in

a separate transport sweep of the original photon transport equation. The currents

are built using equations (38), (39), and (40):

Jk+1
i,n ≈

1

2

Q∑
q=1

ωqµq

[
Ik+1
Li,n

(µq) + Ik+1
Ri,n

(µq)
]

, (38)

Jk+1
i− 1

2
,n

=

Q∑
q=1

ωqµqI
k+1
i− 1

2
,n

(µq), (39)

Jk+1
i+ 1

2
,n

=

Q∑
q=1

ωqµqI
k+1
i+ 1

2
,n

(µq), (40)

where

Ik+1
i− 1

2
,n

(µq) =


Ik+1
n,q (0) , i = 1, µ > 0,

Ik+1
R,i−1,n , i 6= 1, µ > 0,

Ik+1
L,i,n , µ < 0,

(41)

Ik+1
i+ 1

2
,n

(µq) =


Ik+1
n,q (Z) , i = NZ, µ < 0,

Ik+1
L+1,n,q , i 6= NZ, µ < 0,

Ik+1
R,n,q , µ > 0.

(42)

Here Z is the length of the problem and NZ is the maximum number of cells.

Once all the entries of the system residual vector are calculated then GMRES can

be called to solve for δu at the current Newton iteration step.
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2.5 Preconditioning

When using the JFNK method, good choices of preconditioning are required to

realize improvements in the convergence rate. Without preconditioning, GMRES

may be very slow to converge during each Newton iteration. The goal of a good

preconditioner is to cluster eigenvalues in the linear system, minimizing Krylov

iterations per Newton iteration [20]. Right preconditioning of the linear Newton

problem is expressed in equation (43):

JpM−1Mv = −F (up). (43)

The matrix M is the preconditioning operator and its inverse is the preconditioning

process. The matrix M should be close to J , but not exactly J . This is imple-

mented in the matrix-vector multiply formulation used to approximate the action

of the Jacobian on a vector (44):

JpM−1y ≈ F (up + εM−1y)− F (up)

ε
. (44)

This is generally a two step process involving the calculation of M−1y followed by

the matrix-vector multiply. The calculation of M−1y may be done with direct or

iterative solver methods. This is an added cost to the simulation.

In this work, several different physics-based preconditioners are examined:

multi-frequency radiation diffusion, infinite medium, linearized temperature deriva-

tive of the material energy balance, grey radiation transport, and S2 multi-frequency

radiation transport. Each of these preconditioners neglects the non-linear coupling

gradients in the Jacobian. Two more preconditioners are explored: infinite medium

with grey coupling and infinite medium with full frequency group coupling. These

coupling preconditioners will show the importance of including the non-linear cou-
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pling physics for preconditioning the system. All preconditioners are derived using

the ”delta” method described by Knoll and Keyes [18].

2.5.1 Radiation Diffusion

The radiation diffusion preconditioner is formed by taking the 1st angular mo-

ment of the photon transport equation and using Fick’s Law (45) to replace the

gradient of the flux with a diffusion operator:

∂J

∂x
≈ −D∂

2E

∂x2
, (45)

D =
1

3σt
. (46)

Diffusion allows for direct preconditioning of the energy density variable without

performing any transport sweeps. This saves memory and the time spent in one

call to the preconditioner.

The multi-frequency form of the transient radiation diffusion equation is shown

in equation (47):

1

c

∂δE(x, t, ν)

∂t
− 1

3σt(x, ν, T )

∂2δE(x, t, ν)

∂x2
+ cσt(x, ν, T )δE(x, t, ν) = −FE(x, t, ν).

(47)

The diffusion operator is solved using a Gauss-Seidel iteration. Since the precondi-

tioner need not be perfect in inversion, the number of Gauss-Seidel iterations can

be very few and still give quality preconditioning. The discrete radiation equation

for the left half and right cells are:

1

c

δEk+1
Li,n
− δEk

Li,n

∆t
− 1

3σt(xLi , νn, T
k+1
Li

)

δEk+1
Ri−1,n

− 2δEk+1
Li,n

+ δEk+1
Ri+1,n

∆x2
+

cσt(xLi , νn, T
k+1
Li

)δEk+1
Li,n

= −F k+1
ELi,n

, (48)
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1

c

δEk+1
Ri,n
− δEk

Ri,n

∆t
− 1

3σt(xRi , νn, T
k+1
Ri

)

δEk+1
Li,n
− 2δEk+1

Ri,n
+ δEk+1

Li+1,n

∆x2
+

cσt(xRi , νn, T
k+1
Ri

)δEk+1
Ri,n

= −F k+1
ERi,n

. (49)

2.5.2 Grey Radiation Transport

Preconditioning based on the grey radiation transport operator is relatively

straightforward. The energy density residual is passed into the transport sweep

function as the right hand side term (50):

LδI = −FE
2

, (50)

where L =
[

1
c
∂
∂t

+ µ ∂
∂x

+ σ̄t(x, T )
]
.

The transport sweep action is essentially the inverse of the transport operator.

The transport object that is used to perform the sweep action is constructed with

one energy group. The Planckian mean is used for all opacity values in the grey

problem. Boundary values for the angular intensity, I, are calculated by taking

the group weighted average of the multi-frequency boundary conditions. Since each

group is given equal weight, the evaluation is as shown in (51):

Ī(x, µ, t) =

∫
ν
dνI(x, µ, t, ν)∫

ν
dν

. (51)

The solution for δE is constructed numerically via the SN quadrature approxima-

tion shown in (52):

δE(x, t) ≈ 1

c

Q∑
q=1

wqδI(x, µq, t). (52)

The transport operator, L, is for the grey problem. For this preconditioner with

the transport operator of the transport equation, the non-linear coupling within a
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time step is left untouched. For any kind of significant non-linear coupling, this

preconditioner alone is unlikely to be of much use. The preconditioning process is

accomplished by performing a group collapse of the necessary opacities, boundary

values, residual, and initial guess data. A transport object is created with the ap-

propriate parameters and the current GMRES residual is passed into the transport

sweep function. The calculated angular intensity values are numerically integrated

using gaussian quadrature and the result is stored in the preconditioning vector.

This preconditioner should be most effective when dealing with a problem where

there are heterogeneous materials and many frequency groups. Heterogeneous

materials are poorly modeled by radiation diffusion and a group collapse of the

opacities into a grey model may provides a consistent approximation for efficient

preconditioning.

2.5.3 S2 Multi-frequency Radiation Transport

The S2 preconditioner approximately inverts the transport operator for a sys-

tem of equations with two discrete angles. Equation (50) is used again but with

the transport operator, L, for the multi-frequency problem. The numerical com-

putation of δE is performed with a two point Gaussian Quadrature. Such a pre-

conditioner should be useful for speeding up problems when a very large angular

quadrature is present. The boundary conditions for the S2 problem are computed

by performing a weighted average with respect to the previous Gaussian quadrature

weights:

ĪBC =

Q∑
q=1

ωqI
BC
q

Q∑
q=1

ωq

. (53)

Frequency dependence is maintained since only quadrature reduction is performed.
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2.5.4 Infinite Medium

The infinite medium preconditioner is one way of preconditioning the spatial de-

pendence of the energy density residuals. It is easily constructed since the stream-

ing operator in the transport equation is ignored. A cell by cell calculation of the

preconditioning effect may be accomplished. No iterative solvers are required and

no transport sweeps are needed. This preconditioner option is very cheap, but

not a good approximation when spatial effects are dominant. The infinite medium

residual formulation is given in equation (54):

1

c

∂E(x, ν, t)

∂t
+ σa(x, ν, T )E(x, ν, t) = −FE(x, ν, t). (54)

Using the delta form of preconditioning, equation (55) is used to precondition

the energy density portion of the Jacobian action:

δEk+1
Li,n

=
−FELi,n[

∆x
2c

+ 1
2
∆x∆tσa(xi, νn, T

k+1
Li,n

)
] (55)

This method does not take into account the the non-linear coupling between the

transport and material energy balance equations within the time step.

2.5.5 Grey Non-Linear Coupling

The grey non-linear coupling preconditioner captures the effect of the non-linear

coupling between the energy density and temperature within a time step. The

streaming operator is not accounted for in this preconditioner, allowing for a cell by

cell evaluation of the coupling effect, and may be viewed as a more complex infinite

medium approach. For the grey case, a 2x2 matrix must be inverted after using

the delta method discussed by Knoll and Keyes [18]. One applies the numerical



30

discretizations discussed earlier in Eqs. (36) (37) (31) (32). The streaming term is

neglected and the following substitutions are made:

Ek+1 = E∗ + δE, (56)

T k+1 = T ∗ + δT . (57)

One more approximation must be made for the T 4 term found in the frequency

integrated Planckian. Because this is a preconditioner and it is only required

that an approximate answer be calculated for preconditioning purposes, a simple

approximation of T 4 will be used:

(
T k+1

)4
=
(
T k
)3
T k+1. (58)

Inserting (56)-(58) into the discretized transport equation without the streaming

term yields:

1

c

(E∗i + δEi)− Ek
i

∆t
+ σ̄ai(T

k
i )(E∗i + δEi) = σ̄ai(T

k
i )ca(T ki )3(T ∗i + δTi) +Qk+1

i ,

(59)

cv(xi, T
k+1
i )

(T ∗i + δTi)− T k

∆t
= σ̄ai(T

k
i )(E∗i + δEi)− σ̄ai(T ki )ca(T ki )3(T ∗i + δTi).

(60)

These equations can be manipulated into the form:

1

c

δEi
∆t

+ σ̄ai(T
k
i )δEi − σ̄ai(T ki )ca(T ki )3δTi =

−
(

1

c

E∗i − Ek
i

∆t
+ σ̄ai(T

k
i )E∗i − σ̄ai(T ki )ca(T ki )3T ∗i +Qk+1

i

)
, (61)

cv(xi, T
k+1
i )

δTi
∆t
− σ̄ai(T ki )δEi − σ̄ai(T ki )ca(T ki )3δTi =

−
(
cv(xi, T

k+1
i )

T ∗i − T ki
∆t

− σ̄ai(T ki )E∗i − σ̄ai(T ki )ca
(
T ki
)3
T ∗i

)
, (62)
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which is very similar to the original form of the equations:

1

c

δEi
∆t

+ σ̄ai(T
k
i )δEi − σ̄ai(T ki )ca(T ki )3δTi ≈

−F k+1
Ei

∆t
, (63)

Cv(xi, T
k+1
i )

δTi
∆t
− σ̄ai(T ki )δEi − σ̄ai(T ki )ca(T ki )3δTi ≈

−F k+1
Ti

∆t
. (64)

Equations (61) and (63) can be written as a linear system where F represents

the residual of the system: Mδup = −Fup

The solution vector is:

δup =

[
δE
δT

]p
. (65)

The source vector is:

F p
u =

[
FE
FT

]p
. (66)

The preconditioning matrix M is a 2x2 matrix in each spatial cell, and is defined

as:

M =

[
A B

C D

]k+1

i

, (67)

where

Ak+1
i =

1

c
+ ∆tσ̄a(xi), (68)

Bk+1
i = −∆tσ̄ai(T

k
i )ac

(
T ki
)3

, (69)

Ck+1
i = −∆tσ̄ai(T

k
i ), (70)

Dk+1
i = cv(xi, T

k+1
i ) + ∆tσ̄ai(T

k
i )
(
T ki
)3

. (71)

This 2x2 system of equations is directly solved in the grey coupling preconditioner

algorithm.
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2.5.6 Multi-Frequency Non-Linear Coupling

It is generally not sufficient to simply precondition based on the dominant

physics associated with each residual equation. For tightly coupled systems, it

may be important to capture the coupling in order to maintain accuracy. The

following derivation constructs the multi-frequency preconditioning matrix for the

coupling physics. The streaming term is neglected so the linear system of equations

can be solved cell-by-cell. Opacities may be lagged at the previous time step since

preconditioning need not be exact.

In this preconditioner, we perform a first order Taylor series expansion of the

Planckian distribution about the old time step value for temperature. This lin-

earizes the Planckian emission term. This is acceptable in the preconditioner since

strict accuracy is not generally required.

Bn

(
T k+1
i

)
≈ Bn

(
T ki
)

+
(
T k+1
i − T ki

) ∂Bn(T ki )

∂T ki
(72)

Using equations (59), (58), and (72) we find the residual equations become:

1

c

(E∗i,n + δEi,n)− Ek
i,n

∆t
+ σai,n(T ki )(E∗i,n + δEi,n) =

σai,n(T ki )

[
Bn

(
T ki
)

+
(
T ∗i + δTi − T ki

) ∂Bn(T ki )

∂T ki

]
+Qk+1

i,n , (73)

Cv(xi, T
k+1
i )

(T ∗i + δTi)− T ki
∆t

=
N∑
n=1

σai,n(T ki )(E∗i,n + δEi,n)

−
N∑
n=1

[
Bn

(
T ki
)

+
(
T ∗i + δTi − T ki

) ∂Bn(T ki )

∂T ki

]
. (74)
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After minor rearrangement, the equations become

1

c

δEi,n
∆t

+ σai,n(T ki )δEi,n − σai,n(T ki )
∂Bn(T ki )

∂T ki
δTi ≈

−F k+1
Ei,n

∆t
, (75)

cv(xi, T
k+1
i )

δTi
∆t
−

N∑
n=1

σai,n(T ki )

[
δEi,n −

∂Bn(T ki )

∂T ki
δTi

]
≈
−F k+1

Ti,n

∆t
. (76)

A linear system is constructed as in the grey coupling case. The preconditioning

matrix M is given in (77) and is of size (N + 1) × (N + 1). Use of the SCB

discretization doubles the row and column size. Solving this linear system gives

the updated approximate step values for energy density and temperature in the

general preconditioning procedure. The matrix M and vectors δu and −Fu are

shown below.
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M =



1
c

+ ∆tσai,1(T
k
i ) 0 · · · 0 −∆tσai,1(T

k
i )

∂B1(Tki )

∂Tki

0 1
c

+ ∆tσai,2(T
k
i ) 0 · · · −∆tσai,2(T

k
i )

∂B2(Tki )

∂Tki

...
. . .

...

0 · · · 0 1
c

+ ∆tσai,n(T ki ) −∆tσai,n(T ki )
∂Bn(Tki )

∂Tki

−∆tσai,1(T
k
i ) −∆tσai,2(T

k
i ) · · · −∆tσai,n(T ki ) cv(xi, T

k+1
i ) + ∆t

N∑
n=1

σai,n(T ki )
∂B1(Tki )

∂Tki


, (77)

δ~u =
[
δE1, δE2, · · · δEn, δT

]T
, (78)

~F (u) =
[
FE1 , FE2 , · · ·FEn , FT

]T
. (79)
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This matrix has a peculiar structure that can be taken advantage of when

inverting. There is a single diagonal with the end row and column terms present.

In fact, given our system of equations, there are essentially four term structures to

account for: the diagonal terms, the end row terms, the end column terms, and the

bottom right corner term. Since these coefficient structures are known, one only

needs to worry about the correct frequency group data. The procedure follows

thus: put all step values of the energy density at each group in terms of the step

value of temperature, solve the last row equation for the step temperature value,

then loop back and solve for all step energy density values.

A simple symbolic representation of the solution method is presented below.

First the matrix is formed given known coefficient forms a, b , c, and d.



a1 0 · · · 0 b1

0 a2 0 · · · b2

...
. . .

...

0 · · · ag bg

c1 c2 · · · cg d


(80)

Then the system of equations is formulated and all step values of the energy density

are put in terms of the step value of temperature–δT .



36

a1δE1 + b1δT = −FE1

a2δE2 + b2δT = −FE2

...

agδEg + bgδT = −FEg (81)

g∑
i=1

(ciδEi) + dδT = −FT (82)

δEi =
(−FEi − biδT )

ai
(83)

g∑
i=1

(
ci

(−FEi − biδT )

ai

)
+ dδT = −FT (84)

With every δEi in terms of δT , the last equation can be solved for the value of

δT at the current node. Once δT has been solved for on the current node, one can

substitute the answer back into the system to calculate δEi for each energy group.

δT =

−FT +
g∑
i=1

(
FEi

ci
ai

)
d−

g∑
i=1

(
bici
ai

)
 (85)
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2.6 Code Execution Algorithm

First the initial environment data needs to be established (such as cross sec-

tions, global constants, initial conditions, boundary conditions, etc.). Then the first

time step solution is undertaken. Inside the time loop, the Newton loop is formed

to converge the non-linearities within the time step. Inside the Newton loop, the

residual of the system is formed. Then the L2 norm of this residual is calculated

as a means of measuring the error of the solution. If the error is greater than

the prescribed tolerance, the Newton loop continues. Using the already formed

Figure 3: Basic Code Execution Algorithm

residual, the Krylov solver–GMRES–is called with a pointer to a matrix free Ja-

cobian evaluation function. Matrix free preconditioner functions are applied to δu

as GMRES attempts to solve the internal linear system for the step size to add to
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the solution vector. After GMRES finishes, δu is added to the previous solution

vector and a new solution vector is determined.

The Newton loop continues onwards until the residual error is small enough.

Then the Newton loop exits and the system advances forwards a time step until

the maximum time is reached for the problem. After determining the final solution

vector, the results are output into a data file. The program then deletes/frees all

assigned dynamic memory and quits.



3 Results

There are two test problems used to examine the effectiveness of the various

preconditioners in the JFNK code. The first problem examined is the Su and Ol-

son benchmark for multi-frequency radiative transport [36]. Su and Olson have

provided an analytic equation to evaluate the answer for given spatial and tem-

poral coordinates. The second problem is defined in Chang’s paper concerning

the Photon Free Method [5]. The specifications and results for these problems are

presented in this section. Table 2.6 contains the acronyms used for the various

precondition options tested.

Table 1: Preconditioner Options

Acronym Preconditioner
NULL PC No preconditioning is used
DT Derivative with respect to Temperature on Material Energy Balance
RD Multi-frequency Radiation Diffusion
RDDT Rad-Diffusion + DT
GT Grey Transport
GTDT Grey Transport + DT
S2 S2 Quadrature Multi-frequency Transport
S2DT S2 + DT
INF Infinite Medium
MC Multi-frequency Coupling
INFMC Infinite Medium + MC
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3.1 Su and Olson Multi-Frequency Problem

In this problem, the opacities for the different frequencies are given by the

picket fence model. The non-linearities in the system are found in the T 4 and

Cv(T ) terms. Su and Olson have defined the specific heat with respect to volume

as Cv(T ) = 4aT 3 such that the equation is linearized by solving for T 4. In this code,

T is the parameter updated from one Newton iteration to another. This preserves

the non-linear treatment of the specific heat. All tabulated results are compared

against the analytic results generated from the functional evaluation derived by Su

and Olson [36].

This transport problem is essentially a two frequency group problem. More

groups may be defined, but the result is the same as source distribution is evenly

divided amongst groups. This suggests that the grey transport preconditioner may

not be very effective with only two distinct frequency groups present.

3.1.1 Problem Specifications

This one-dimensional slab geometry problem has a reflecting boundary condi-

tion on the left and a vacuum boundary on the right. The slab is ten length units

longer than the reported significant analytic results in Su and Olson’s paper [36].

The slab is initially cold, but an internal source is present from 0 ≤ x ≤ x0, from

time t = 0 to t = τ0. The data for this problem is included in Table 3.1.1. Imple-

mentation of the picket fence model in addition to the definition of Cv(T ) we arrive

at equations defined by Su and Olson in their benchmark paper (86) and (87). The

picket fence model allows for a full integration over frequency space. The opacities

are homogeneous within their respective frequency group and can be treated as

constants when dealing with frequency discrete equations.
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The radiative transport and material energy balance equations for this problem

are:

1

c

∂In(x, µ, t)

∂t
+ µ

∂In(x, µ, t)

∂x
=

σan

[
pn
acT (x, t)4

4π
− In(x, µ, t)

]
+ pn

Q0

4π
, n = 1, 2, (86)

4ac (T (x, t))3 ∂T (x, t)

∂t
=

2π
2∑

n=1

σan

∫ 1

−1

dµ In(x, µ, t)− σ̄aac (T (x, t))4 , (87)

where pn is the fractional contribution of a source associated with the frequency

group. In a dimensionless form described by Su and Olson, they are

ε
∂Un(x, τ)

∂τ
+ µ

∂Un(x, τ)

∂x
= wn

[
pnV (x, τ)

2
− Un(x, τ)

]
+ pn

Q̃(x, τ)

2
, n = 1, 2

(88)

∂V (x, τ)

∂τ
=

2∑
n=1

wn

∫ 1

−1

dµ un(x, τ)− V (x, τ), (89)

where n is the group-opacity index for the picket fence model. Note that the

JFNK algorithm solves for T (x, τ) instead of V (x, τ). The analytic solution for

this problem solves for V (x, τ), but with a reference temperature, T0, of 1.0 it is

trivial to convert between the two.
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The non-dimensionalized parameters are defined by:

κ̄ = κa + κs, (90)

wn =
κn
κ̄

, (91)

ε =
4a

α
, (92)

x = κ̄z, (93)

τ = εcκ̄t, (94)

1 = p1w1 + p2w2, (95)

Un(x, µ, τ) =
In(x, µ, τ)

aT 4
0

, (96)

V (x, τ) =

[
T (x, τ)

T0

]4

, (97)

Q̄(x, τ) =
Q0(x, τ)

acσ̄(x)T 4
0

, (98)

W (x, τ) =

∫ 1

−1

dµU(x, µ, τ). (99)

Table 2: Opacity Specification for Su and Olson Test Cases
Parameter Case A Case B Case C

w1 1 2/11 2/101
w2 - 20/11 200/101

w2/w1 - 10 100

Case A is the grey case and of little interest in this study of preconditioner

behaviour. Case A was used to verify that the code was working properly before
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Table 3: Su-Olson Problem Data
Parameter Value

∆τ 0.01
τ0 10.0

∆x 0.025
NZ 1200

Length 30
SN Quadrature 12

x0 5
Q 10

GMRES Tolerance 1e-6
Newton Tolerance 1e-3

Table 4: Table of Physical Constants used for Simulation
Constant V alue Units

h 6.626E-34 Joule-sec
k 1.381E-23 Joule/K
c 299.8 Mm/sec

simulating Cases B and C. The more interesting problems are the multi-frequency

cases: Case B and Case C. The only difference between Case B and Case C is the

ratio w2

w1
.

Initially the slab is cold and the energy density, angular intensity, and temper-

ature are all specified at 0.0. For the first Newton iteration we choose E = 2.0 and

the angular intensity as constant , isotropic, and equal to 1.0 for the anticipated

solution. The initial guess for the temperature distribution in the slab is chosen

as 1.0. These chosen anticipated solutions are sufficient to start the Newton it-

eration converging a solution. Every subsequent time step uses the old time step

parameter values as the anticipated solution to start the Newton iteration.

Total CPU time required to reach the simulation end time is tabulated for

each preconditioner. The numerical solution is reported graphically and compared
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against the analytic solution provided by Su and Olson [36]. The relative error is

reported in the tables for the various spatial locations. The analytic benchmark

requires a numerical double integration that oscillates from positive to negative

depending on the integration boundaries. The analytic integration bounds are from

zero to infinity, but discrete boundaries must be chosen for numerical evaluation.

An upper limit of 2000π ensures three stable significant figures in the numerical

integration.

3.1.2 Results

The total CPU time (seconds) required for each simulation is reported in Ta-

bles 5 and 6. The time taken for the NULL PC option–where no preconditioning

exists–is prohibitive. Beyond τ = 1.0 it becomes obvious that running without

preconditioning is pointless with the JFNK method. However, where a decent

preconditioner exists, the JFNK method converges much more quickly.

It is clear that the simple derivative with respect to temperature of the material

energy balance equation (DT) is the best preconditioner for this problem. The

most effective preconditioners for this problem incorporate this treatment of the

material energy balance terms. The dominant physics appears to be the Planckian

absorption in the material energy balance equation.

The radiation diffusion (RD) preconditioner is only effective when the DT por-

tion is included. Even the infinite medium preconditioner fails without precon-

ditioning of the material energy balance equation. The time scale of the energy

density equation must be well within the time step taken in the simulation or the

energy density portion of the problem would require significant preconditioning

to run quickly. It is interesting that the increasing number of Gauss-Seidel iter-
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Table 5: Case B - Timing Results for Different Preconditioners
Preconditioner τ=0.1 τ=1.0 τ=10.0 τ=30.0
NULL PC 74.62 210860 - -
RD1 86.5 204363 - -
INF 86.0 205922 - -
DT 6.18 31.7 223.7 547.1
RDDT-1 6.66 34.0 238.8 583.0
RDDT-2 6.76 34.5 242.5 591.1
RDDT-4 7.61 38.8 271.1 660.1
INFGC 8.69 38.4 298.4 778.5
INFMC 6.31 32.3 228.6 558.8
GTDT 8.14 95.8 3658.1 20342
S2DT 3.68 41.3 847.6 3875.8

ations yields no net gain. This could be because the Planckian re-emission term

causes a loss of diagonal dominance, or that the cost of the Gauss-Seidel iterations

outweighs the benefits from reduced GMRES iterations.

An interesting comparison is the performance of the diffusion and the grey

transport preconditioners. Because the S2 equations in 1D are equivalent to the

diffusion approximation, the S2 transport preconditioner can be compared against

the grey transport preconditioner since the implementation for each is similar.

However, the S2DT transport preconditioner failed for the case C problem. The

solution diverged on the second time step in the GMRES iterations. It is believed

that this is due to ray effect phenomena causing a divergence in the GMRES iter-

ation when S2DT preconditioning is applied. In Case B, the S2DT preconditioner

was faster than the GTDT preconditioner, especially as the simulation progressed

and the shock front slowes and the problem is more diffuse. Because the material

is homogeneous, there is not much value in using the transport preconditioners. If

there were many material interfaces to deal with, these transport preconditioners

would likely help capture this physics.



46

Table 6: Case C - Timing Results for Different Preconditioners
Preconditioner τ = 0.1 τ = 1.0 τ = 10.0 τ = 30.0
NULL PC 60.4 205,264 - -
RD1 86.4 156813 - -
INF 170.4 189866 - -
DT 6.23 31.4 218.3 507.8
RDDT-1 6.61 33.2 229.8 537.1
RDDT-2 6.91 35.0 240.8 560.9
RDDT-4 7.39 37.4 258.4 600.1
INFGC 5.15 35.4 298.9 1038.9
INFMC 6.78 36.1 265.9 619.7
GTDT 7.94 94.0 3513.9 19575.8
S2DT - - - -

The numerical results for Case B of the Su and Olson benchmark that are

produced by the JFNK code are given in the many tables and plots that follow.

There is appreciable error in the temperature at early times, but this is due to the

time step size chosen. The error in the temperature is reduced as the simulation

progresses.

There is also a concern at the point when the internal source is turned off. At

τ = 10.0 the solution in the first frequency group, U1, is less smooth than the

analytic solution. The opacity associated with this frequency group is: ω1 = 2/11.

When the internal source is turned off there is nothing driving the transport except

the re-emission source term and the previous time step values.

It is possible that with a small re-emission source this degradation in smooth-

ness is caused by ray effects. Aside from these mentioned problem areas, the

results are usually within a couple percent of the analytic solution. There was no

failure of any of the preconditioner options in this problem. Effectiveness of each

preconditioner option is measured by the CPU time required to perform the sim-

ulation. All tabulated and plotted results are produced using the infinite medium
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multi-coupling (INFMC) preconditioner.

Case B Results for τ=0.1: The tabulated results for the Su/Olson case B

problem at τ = 0.1 are listed here along with a plot of the data. The only data

point of concern is at x = 0.5375, the leading front of the propagating wave.

Table 7: Case B - Relative Error for U1 at τ = 0.1
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.04956 0.050 0.084
0.4625 0.04322 0.043 1.508
0.5125 0.01521 0.016 1.669
0.5375 0.00634 0.007 9.621

The non-dimensionalized energy densities are within 10% of the predicted ana-

lytical solution. The temperature field is 30% in error compared with the analytic

result. This error is associated with the temporal discretization and relatively

large timestep being used. As time progresses and the time step is not such a large

fraction of the total time taken, this error diminishes.

Table 8: Case B - Relative Error for U2 at τ = 0.1
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.04585 0.045 0.799
0.4625 0.04024 0.039 2.053
0.5125 0.01378 0.014 0.777
0.5375 0.00561 0.006 8.19
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Table 9: Case B - Relative Error for V at τ = 0.1
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.00458 0.004282899 6.487
0.4625 0.00431 0.003899737 9.52
0.5125 0.00105 0.001020441 2.815
0.5375 0.00027 0.000352789 30.66

Figure 4: Case B at τ = 0.1 solution



49

Case B Results for τ=1.0: The tabulated results for the Su/Olson case B

problem at τ = 1.0 are listed here along with a plot of the data. The relative error

of each data point is small as the wavefront propagates further in the simulation.

Table 10: Case B - Relative Error for U1 at τ = 1.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.3988 0.397 0.403
0.3125 0.3492 0.348 0.269
0.5125 0.2163 0.221 2.41
0.6625 0.1226 0.121 1.57
0.9375 0.0439 0.044 0.986

Table 11: Case B - Relative Error for U2 at τ = 1.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.26669 0.265 0.477
0.3125 0.23551 0.234 0.486
0.5125 0.12879 0.131 1.77
0.6625 0.05723 0.057 0.986
0.9375 0.01439 0.014 0.195

Table 12: Case B - Relative Error for V at τ = 1.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.23881 0.236 1.174
0.3125 0.21399 0.211 1.22
0.5125 0.10731 0.109 1.185
0.6625 0.03873 0.039 0.564
0.9375 0.00673 0.007 2.13

Case B Results for τ=10.0: The tabulated results for the Su/Olson case B

problem at τ = 10.0 are listed here along with a plot of the data. The relative

error in the U1 solution has increased significantly. This could be attributed to

the internal source turning off, but data from the next future time point suggests

that this is likely due to ray effects.
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Figure 5: Case B at τ = 1.0 solution

Table 13: Case B - Relative Error for U1 at τ = 10.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.9918 0.950 4.17
0.3625 0.9056 0.873 3.56
0.7625 0.6089 0.659 8.18
1.8125 0.3118 0.292 6.23
3.2875 0.1455 0.152 4.32

Table 14: Case B - Relative Error for U2 at τ = 10.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 1.0932 1.095 0.333
0.3625 0.9607 0.958 0.25
0.7625 0.5425 0.544 0.357
1.8125 0.1486 0.147 0.864
3.2875 0.0346 0.035 0.067
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Table 15: Case B - Relative Error for V at τ = 10.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 2.0400 2.0282881 0.572
0.3625 1.7902 1.7811676 0.504
0.7625 0.9951 1.0051479 1.01
1.8125 0.2782 0.27425488 1.433
3.2875 0.0722 0.072286217 0.085

Figure 6: Case B at τ = 10.0 solution
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Case B Results for τ=30.0: The tabulated results for the Su/Olson case B

problem at τ = 30.0 are listed here along with a plot of the data. The wavefront

for U1 seems to have slowed while U2 has decreased since the internal source was

turned off. The relative errors associated with U1 are still large compared to the

analytic solution. This large error is not observed with the U2 parameter. Case C

results shed more light on the issue at hand.

Table 16: Case B - Relative Error for U1 at τ = 30.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.9918 0.950 4.17
0.3625 0.9056 0.873 3.56
0.7625 0.6089 0.659 8.18
1.8125 0.3118 0.292 6.23
3.2875 0.1455 0.152 4.32

Table 17: Case B - Relative Error for U2 at τ = 30.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 1.0932 1.090 0.333
0.3625 0.9607 0.958 0.25
0.7625 0.5425 0.544 0.357
1.8125 0.1486 0.147 0.864
3.2875 0.0346 0.035 0.067

Table 18: Case B - Relative Error for V at τ = 30.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 2.0400 2.028 0.572
0.3625 1.7902 1.781 0.504
0.7625 0.9951 1.005 1.01
1.8125 0.2782 0.274 1.433
3.2875 0.0722 0.072 0.085

Time Evolution of Wavefronts for Case B: In this sub-section three plots

are given that graphically demonstrate the evolution of the variables U1, U2, and V



53

Figure 7: Case B at τ = 30.0 solution

as a function of time. The solution for U1 demonstrates some type of stratification

as time passes (most easily seen in τ = 10.0 case) where the shape of the wavefront

no longer appears to be differentiable. The solution in the U1 parameter begins to

look piecewise continuous. This is not readily observable to the naked eye in U2

and V results. Since U1 is the frequency group with the smallest opacity, a greater

effect should be observed in Case C, where the opacity is even smaller.
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Figure 8: Case B - Time Evolution of U1(x,τ)

Figure 9: Case B - Time Evolution of U2(x,τ)
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Figure 10: Case B - Time Evolution of V(x,τ)
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Case C Results for τ=0.1: The tabulated results for the Su/Olson case C

problem at τ = 0.1 are listed here along with a plot of the data. The only data point

of concern is once again when x = 0.5375, at the leading front of the propagating

wave. The non-dimensionalized energy densities are within 10% of the predicted

analytical solution. The temperature field is once again 30% in error compared

with the analytic result.

Table 19: Case C - Relative Error for U1 at τ = 0.1
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.04993 0.050 0.041
0.4625 0.04351 0.043 1.397
0.5125 0.01536 0.016 1.788
0.5375 0.00642 0.007 9.735

Table 20: Case C - Relative Error for U2 at τ = 0.1
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.04548 0.045 0.816
0.4625 0.03994 0.039 2.042
0.5125 0.01365 0.014 0.678
0.5375 0.00555 0.006 8.014

Table 21: Case C - Relative Error for V at τ = 0.1
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.00454 0.0042 6.74
0.4625 0.00427 0.0039 9.67
0.5125 0.00103 0.0010 2.70
0.5375 0.00027 0.00035 28.9

Case C Results for τ=1.0: The tabulated results for the Su/Olson case C

problem at τ = 1.0 are listed here along with a plot of the data. All data points

agree with the analytic solution to within 2%.
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Figure 11: Case C at τ = 0.1 solution

Table 22: Case C - Relative Error for U1 at τ = 1.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.42034 0.419 0.385
0.3125 0.36813 0.367 0.217
0.5125 0.23121 0.237 2.49
0.6625 0.13404 0.132 1.59
0.9375 0.04947 0.050 1.16

Table 23: Case C - Relative Error for U2 at τ = 1.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.25588 0.255 0.492
0.3125 0.22651 0.225 0.508
0.5125 0.12236 0.124 1.71
0.6625 0.05285 0.052 0.977
0.9375 0.01279 0.0128 0.088
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Table 24: Case C - Relative Error for V at τ = 1.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.22352 0.221 1.23
0.3125 0.20139 0.199 1.28
0.5125 0.09899 0.100 0.946
0.6625 0.03367 0.0334 0.684
0.9375 0.00531 0.00541 1.82

Figure 12: Case C at τ = 1.0 solution
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Case C Results for τ=10.0: The tabulated results for the Su/Olson case C

problem at τ = 10.0 are listed here along with a plot of the data. The relative error

of points for U1 are again larger than at early times. This could be attributed to

the internal source turning off, but data from the next future time point suggests

that this is likely due to ray effects.

Table 25: Case C - Relative Error for U1 at τ = 10.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.98996 0.849 14.2
0.3625 0.91519 0.837 8.58
0.7625 0.64933 0.787 21.2
1.8125 0.40745 0.333 18.3
3.2875 0.25501 0.288 12.8

Table 26: Case C - Relative Error for U2 at τ = 10.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 1.04982 1.0488 0.197
0.3625 0.90944 0.908 0.165
0.7625 0.47289 0.473 0.017
1.8125 0.08680 0.0862 0.721
3.2875 0.01029 0.0103 0.387

Table 27: Case C - Relative Error for V at τ = 10.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 1.96445 1.958 0.306
0.3625 1.69481 1.691 0.242
0.7625 0.85229 0.854 0.168
1.8125 0.14889 0.147 1.27
3.2875 0.01994 0.0201 0.964

Case C Results for τ=30.0: The tabulated results for the Su/Olson case C

problem at τ = 30.0 are listed here along with a plot of the data. The relative
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Figure 13: Case C at τ = 10.0 solution

error in the U1 solution is very large. The bears no resemblence to the analytic

solution. However, U2 and V both appear to be correct. U1 contributes trivially

to V since the opacity for group one is very small. The opacity in group 2 appears

to be large enough to be computed accurately.

Table 28: Case C - Relative Error for U1 at τ = 30.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.11346 0.0455 59.9
0.3625 0.11308 0.0456 59.7
0.7625 0.11182 0.0458 59.1
1.8125 0.10568 0.0436 58.7
3.2875 0.09598 0.3174 230.6
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Table 29: Case C - Relative Error for U2 at τ = 30.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.39036 0.385 1.435
0.3625 0.36106 0.376 4.112
0.7625 0.35123 0.348 1.054
1.8125 0.22255 0.226 1.329
3.2875 0.08083 0.0836 3.369

Table 30: Case C - Relative Error for V at τ = 30.0
x Analytic Result Numerical Result Relative Error (%)
0.0125 0.79475 0.782 1.559
0.3625 0.77484 0.763 1.477
0.7625 0.71124 0.703 1.176
1.8125 0.44191 0.448 1.307
3.2875 0.15656 0.163 4.359
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Figure 14: Case C at τ = 30.0 solution

Time Evolution of Wavefronts for Case C: In this sub-section three plots

demonstrate the evolution of the variables U1, U2, and V over simulation time. It

is easily observed that the solution for U1 demonstrates some type of stratification

as time passes. The problem is most evident when the internal source has been

turned off. Turning off the source itself likely did not cause the issue, but was

merely masking the full extent of the problem. The issue is not readily observable

in the U2 and V results, probably because the opacity in frequency group one is

again very small and the opacity for group two is large enough to be computed

accurately.
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Figure 15: Case C - Time Evolution of U1(x,τ)

Figure 16: Case C - Time Evolution of U2(x,τ)
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Figure 17: Case C - Time Evolution of V(x,τ)
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Remarks on Oscillations: The space, time, and angular variables were refined

to further investigate the character of the solution to this problem. Refinement

of the spatial mesh did not improve the solution. Refinement of the temporal

treatement with much smaller timesteps also did not improve the solution. How-

ever, refinement of the angular quadrature did produce a distinct improvement.

Figure 18 shows a set of results for various angular quadrature sets up to S32.

Figure 18: Solution with respect to angular refinement

The research by Chai et.al. [16] discusses a known issue called ray effects when

using the SN method. This phenomenon occurs because of the approximation that

a continuous angular distribution can be represented as a set of discrete ordinate

equations. Ray effects are a function of the quadrature approximation and are

independent of the spatial discretization. The U1 parameter is associated with

the smallest opacity. In the Case C problem, the opacity is small enough that

the phase space is essentially a vacuum with negligible absorption and re-emission.

The main driving sources are from the previous timestep and the internal source.
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While the isotropic distribution of the internal source helps dampen the observed

effects, the previous time step source causes the ray effect error to persist as the

simulation progresses through each time step.

3.2 Chang’s Model Problem

The second model problem studied is found in a journal article by Britton

Chang [5]. The problem is a derivative of one used by Fleck and Cummings to test

their Implicit Monte Carlo method [11] and was later reformulated by Larsen for

multi-group deterministic transport and with added heterogeneous opacities [23].

The problem is non-linear in the opacities and the coupling between the radiation

transport and material energy balance through the absorption/re-emission term.

The increased non-linearity provides a more significant challenge for the physics-

based preconditioners. The heterogenous materials will stress most diffusion based

preconditioners.

This problem has been successfully solved by Larsen using the Grey Transport

Acceleration [23] technique for fixed point iteration. It has also been solved by Fleck

and Cummings using the Implicit Monte Carlo Method [11]. Chang solved it using

the Photon Free Method (PMT) [6] in which the transport sweep is hidden as a

functional evaluation to create the energy flux values through Gaussian quadrature.

3.2.1 Problem Specification

This model problem has a blackbody Planckian source at a temperature of

1 keV isotropically distributed on the left side of a 1D slab 4 cm thick. A vac-

uum boundary condition is imposed on the right hand side. There is no internal

source other than the re-emission coupling with the material energy balance. The

numerical parameters for this simulation are given in Table 31. The various pre-
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Table 31: Numerical Specification for Chang’s Model Problem
Parameter Value Units

∆t 30 ps
∆x 0.2 cm
NX 20 -

Length 4 cm
SN Quadrature 32 -

GMRES Absolute Tolerance 1e-6 -
GMRES Relative Tolerance 1e-6 -

Newton Tolerance 1e-3 -

Table 32: Physical Constants for Chang’s Model Problem
Name Parameter V alue Units

Planck’s Constant h 4.13567E-6 KeV-ps
Boltzmann Constant k 8.61734E-08 KeV/K

Speed of Light c 0.02998 cm/ps

conditioners described in section 2.5 are also used in this problem. The physical

constants used in this problem are given in Table 32.

The frequency and temperature dependent opacity is defined by:

σa(x, ν, T ) =
γ(x)

(hν)3

(
1− e−

hν
kT

)
, (100)

and the group averaged data are computed using (10). Numerical integration of

the opacity and Planckian distribution over a group is performed using Simpson’s

Rule. The coefficient,γ(x), is defined in the following way:

γ(x) =


1.0 0 ≤ x ≤ 2

1000.0 2 ≤ x ≤ 3

1.0 3 ≤ x ≤ 4

(101)

The frequency domain is discretized into fifty groups logarithmically spaced

from 0.00001[keV ] to 10.0[keV ]. The boundary and initial conditions are given in

Eqs. (102) - (106) respectively:
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In(0, µ, t) = 0.0

[
keV

cm3 − str

]
, (102)

In(4, µ, t) = Bn(1.0[KeV ]), (103)

In(x, µ, 0) =
1

2
Bn(0.001[keV ]), (104)

En(x, 0) = Bn(0.001[keV ]), (105)

T (x, 0) = 0.001[keV ]. (106)

3.2.2 Chang’s Problem Results

After extensive testing of the method, no results could be converged for the

Chang non-linear problem. No preconditioning method worked. No refinement of

phase space helped. A modification of the code to run the Photon Free Method

(PFM) was performed and results were obtained that matched those in Chang’s

paper. His results are plotted along with the results generated from the PFM

formulation of the code developed for this thesis in Figure 19. Several variants of

this test problem were investigated to determine the limits of the method proposed

in this thesis. These tests were: lagging opacities, use of the Photon Free Method,

altering the Newton Centering, and running fewer frequency problems.

If the opacities are held fixed at the previous timestep values, a non-linearity

is removed from the problem. However, the JFNK solver does not converge with

any choice of preconditioner.

The results generated from implementation of the Photon Free Method using

the developed code for this thesis are plotted as orange dots on the plot from in
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Chang’s paper [5].

Figure 19: PFM Comparison with Chang’s Results for ∆t=30ps

Another factor possibly contributing to the code instability is the energy density

of values within the Newton scheme. With the PFM scheme, the energy density

is calculated by performing a transport sweep within the Newton loop. This value

of E lies at the iteration index k + 1
2

for the Newton loop index k.

In the method used in this thesis, only the spatial gradient of flux, ∂J
∂x

is eval-

uated at k + 1
2
. The energy density remains at the current Newton iterate, k, for

the purpose of converging quadratically within the JFNK framework. This also

allows for direct preconditioning based on the dominant physics associated with

the energy density. This centering issue is an important difference between the
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methods.

In an attempt to converge an answer, the centering for the energy density

was altered in the following ways shown in Figures 20 and 21. Figure 20 with the

right diagram in Figure 21 is essentially the PFM formulation but with the residual

equation for the energy density solved within the JFNK framework. Figure 20 with

the left diagram in Figure 21 is a hybrid where the energy density residual equation

is evaluated at p + 1
2

and the material energy balance residual for temperature is

evaluated at p, where p is here defined as the Newton iteration index.

Figure 20: Newton Centering for FE

Figure 21: Newton Centering Options for FT

The centering method expressed in the right diagram of Figure 21 did work,

but only when the residual values had been so scaled as to be essentially zero–

recovering the PFM scheme that Britton Chang used. The other centering method

proved unstable.
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When trying to run this problem with fewer frequency groups–or even the one

group case–the problem is able to converge at the GMRES inner iteration level for

calculating the non-linear step. However, the problem does not converge in the

Newton iteration on the non-linearities.

3.2.3 Remarks

It is interesting that the PFM formulation of the problem works quite well, but

not the formulation that converges both E and T non-linearly. Perhaps ray effects

seen in the previous Su/Olson model problem are causing issues in the convergence

of the energy densities in the JFNK framework. It may also be possible that the

equations for the energy density residuals are simply hard to get into the zone of

convergence for Newton type methods. If this is the case, then the embedding of

the transport sweep in the material energy balance equation would require only

that the JFNK application on the material energy balance equation be within the

zone of convergence. However, the difficulty in the internal GMRES convergence

points to some other cause for this behaviour.

It may be that widely varying magnitudes of E could be causing difficulty

within the JFNK framework in approximating the action of the Jacobian. GMRES

struggles when eigenvalues are widely varying, so this would seem to make sense.

Two methods were used to try and address this. First, conversion factors were

used to change the units of E such that the maximum values were comparable to

the temperature. This approach did not address the widely varying magnitudes.

The second method was to allow for the value of ε used in the finite difference

approximation of the Jacobian action (29) to vary for each element of the residual
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vector. This different method is shown in equation (107):

εz =
(
1.5 ∗ 10−8

)
(uz + 1) . (107)

Both of these methods failed to provide for a stable convergence in the GMRES

iterative solver within the JFNK framework.

The possibility that a bug could exist in the code must still be mentioned, but

the success of the developed code in replicating the Photon Free Method suggests

that the transport solver works, the JFNK algorithm works, and the time stepping

is on target. The only possible errors would have to occur in the energy density

residual formulation, a formulation that worked in the Su and Olson problem. It

would seem that the developed method simply fails in the presence of extreme

non-linearity.



4 Conclusions

4.1 Introduction

In this chapter, we discuss the effectiveness of the physics-based preconditioners

for the model problems considered. We also present conclusions on the practical

value of the methods used in this thesis and reasons for the lack of convergence in

the tightly coupled case. We also discuss ideas for further investigating phyisics-

based preconditioning of JFNK for non-linear radiative transfer.

4.2 Preconditioning Conclusions

Based on the results of the Su/Olson problem, the most effective precondition-

ing was performed just on the material energy balance residual for the temperature

dependent Planckian absorption term. The absorption/re-emission of photons ap-

pears to be the dominant physics present and the very simple DT preconditioner

sufficient to produce a rapidly convergent solution. While the INFMC precondi-

tioner includes the coupling terms between equations, the added matrix inversion

cost seems to outweigh the benefits when used with problems where the coupling

is not very strong.

Added time to converge (increased Gauss-Seidel sweeps) with the radiation

diffusion preconditioner suggests that the system may not be diagonally dominant

and care should be taken to check for this if an iterative inversion scheme is used.

Grey preconditioners do not seem to be worthwile as the simulation time was

greater than other alternatives. Specifically the INFMC preconditioner performed

generally better than INFGC. The transport-based preconditioners were unreliable,

possibly due to the ray effect issues present in the problem. They are also costly

when compared to the simpler direct Planckian preconditioners.
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Preconditioning the streaming term alone was about as effective as no precon-

ditioning at all. This is evident from the results in Table 5. The reductions in

simulation time were negligible. All of these results are generated with relatively

large time steps for the simulation. When time steps are smaller, simulations

without preconditioning become more efficient due to the zero added computation

cost.

4.3 Method Conclusions

The Chang model problem is truly tightly coupled and significantly non-linear.

No comparison of preconditioners could be achieved because no solution could

ever be converged with the approach utilized in this thesis. Much time was spent

attempting to ascertain the cause of the failure. Chang’s Photon Free Method was

successfully used within the written code for this thesis by altering variable usage.

While it is impossible to prove the code developed is free from mistakes, these

results indicate that the code failure is not due to human coding error. Rather,

the set of energy density balance residuals being converged simultaneously with

the material energy balance equation overstresses the inner GMRES solver. The

variables do have dimensions and the varying magnitudes of the energy density

within the many frequency groups might spread the eigenvalues too far in the

GMRES operator. None of the preconditioners constructed in this thesis could

overcome this problem.

When the problem was coarsened in the frequency domain, the problem would

fail to converge at the Newton iteration level. This problem is sensitive to the

region of convergence associated with the Newton method. The energy density

residual equation seems to specifically be the culprit here. Since the PFM scheme

is convergent for this problem, it can be said that the material energy balance
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residual has a more stable zone of convergence.

Choice of iteration order and convergence parameters (i.e. energy density and

temperature) in the Newton method is vital and can drastically change the stability

of the problem. While there is greater flexibility with preconditioning using the

approach in this thesis, the added problems of instability prevent this method from

being more effective than Chang’s PFM scheme. Perhaps a better formulation for

operating residual equations can be found than those used in this body of work. A

different treatment of the angular discretization such as the Pn equations [30] may

help overcome the influence of ray effects.

4.4 Overall Conclusions and Future Work

Use of the next angular moment of the photon transport equation in the op-

erating residual norm may improve convergence. The Eddington tensors present

in this formulation should be slowly varying and provide more stability within the

JFNK framework for converging non-linearities. There are many other precon-

ditioner options that could be tried. Several mathematically based options may

improve GMRES convergence. Continuation methods might provide a better ini-

tial guess to start the problem. Higher order finite differencing could be used as

well for approximating the action of the Jacobian on a vector. Initial efforts in this

direction do not appear to yield substantial performance gains. Other choices for

the parameter ε, which impacts approximated action of the Jacobian on a vector,

could also be explored.

The objective of this thesis was to compare the effectiveness of various physics

based preconditioners for the solution of a tightly coupled non-linear radiative

transfer problems. This goal was only partially achieved. The comparison was
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possible for the Su/Olson problem, but this problem has been formulated such that

it is linearized around the integrated Planckian distribution source. Though the

code written for this thesis doesn’t specificially rely on this property, it is difficult

to claim that this is a tightly coupled non-linear problem. This is especially true

since the opacities alternate between two values across the frequency range. Many

questions were raised through the research conducted in this thesis and much work

remains to be accomplished in this field.
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