
INVESTIGATION OF A TWO-BAY 

FOLDED PLATE STRUCTURE 

by 

JOHN BOSCO CHULSOO YU 

A THESIS 

submitted to 

OREGON STATE UNIVERSITY 

in partial fulfillment of 
the requirements for the 

degree of 

MASTER OF SCIENCE 

June 1962 



APPROVED: 

Professor of Civil Engineering 

In Charge of Major 

Head of Department of Civil Engineering 

Chairman of School Graduate Cornniittee 

u 
Dean of Graduate School 

Date thesis is presented 

Typed by Joleñe Wuest 



AC KNOWLE DGMENT 

The writer wishes to express his gratitude to Thomas 

J. McClellan, Professor of Civil Engineering, for the 

original idea of this thesis and for his continued 

assistance. Special appreciation is due to Professor 

Glenn W. Holcomb, Head of Civil Engineering Department, 

for his invaluable advice and constant encouragement. 



TABLE OF CONTENTS 

Part Page 

I i 

I I THEORY . . . . . . . . e e e e e e e 5 

A. Beam Theory . e o o e e e e e i e e . 5 

i. Assumptions . e a o e e e e e e 5 

2. Method of Analysis . . . . a e o o 5 

B. Simpiified Bending Theory . . . . . 6 

L Assumptions . . e e . e e 6 

2. Method of Anaiysis . . e e a a o 6 

III ANALYSIS OF A STEEL PLATE MODEL . . . 9 

A0 Analysis by Beam Theory . e e e . o 

i. Symmetrical Loading Condition . e 10 

2. Unsymmetrical Loading Condition . 12 

B. Analysis by Simplified Bending Theory 13 

IV EXPERIMENTAL STUDY . . a o e e . . . e e . 23 

A. Description of Model . . . . . e e e e 23 

B. Test Procedure . . . . . . . . . . . . 24 

C. Re s u lt s . . , . i a e e a a e e e a 2 5 

V COMPARISON OF EXPERIMENTAL RESULTS WITH 
ANALYTICAL INVESTIGATION e e a a e a . a a 32 

VI CONCLUSIONS . . . . . e 42 

BIBLIOGRAPHY,.....00 ....... 
APPENDIX.PS . - e . a . a i e e e e a s e a 45 

APPENDIXB .............. 51 



INVESTIGATION OF A TWO-BAY 

FOLDED PLATE STRUCTURE 

PART I INTRODUCTION 

A folded plate structure consists of a series of flat 

plates connected together along their edges, and end 

diaphrams which transmit whole structure load to supports. 

The materials utilized for this type of structure are not 

limited, but reinforced concrete is favorably used over 

wood, steel and aluminum. 

Folded plates which are sometimes called prismatic 

shells orhipped plates are extensivelyused at present 

time, mainly for roof construction0 Other areas where this 

type of structure is able to be applied are bridge, aix- 

plane, and building designes. The popularity of the 

folded plate structures owe to the following advantages: 

(1) These structures are easier to form and fabricate; 

(2) design computations are. generally simple and use of 

complicated mathematical equations are not needed in most 

analyses; (3) folded plate structures have interesting 

architectural appearances. 

The first design theory of folded plate or hipped 

plate structure was publishedin Germany by G. Ehlers and 

H. Craemer in 1930. Since this publication, a great deal 

of roof and bunker structures have been designed in Europe 

by this theory. 
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In the United States, the most widely used design 

method was introduced by G. Winter and M,Pei (, p. 505) 

in 1947. In their analysis, however, the effectsof the 

joint displacement was not considered at ail, This simpli- 

fying assumption sometimes caused erroneous results in the 

analysis and design f the structures. In 1954, therefore, 

the effect of joints displacements was included in the 

analysis proposed byl. Gaafer (2,p. 743). From thenon, 

many technical papers were published in this country on the 

simplified treatment of the folded plates, including the 

publications by H. Simpson (6, p. 1), E. Traum (7, p.103), 

and H. Nilson (3, p. 215). 

To present the detailed discussions of each simplified 

design method was not intended by the writer. However, 

Simpson's and Traum's methods deserved some description. 

In i95, H. Simpson simplified the theory such that the 

bending moments and stresses of a foldedplate structure 

were determined by just assuming a unit rotation of each 

plate and superimposing the results to a no rotation case. 

E. Traum introducedanother simplified method of analysis in 

1959. His method was similar to the Sirnpsons in using the 

superimposing idea, but was different in dealing directly 

with deflections rather than rotations. The writer further 

simplified the theory in analyzing a steel model by uti- 

lizing merits of each theory by Simpson and Traum. This 



3 

method of analysis will be called "simplified be-riding 

theory" in this aper. 

In some cases, basic beam theory of strength of 

materials was engaged in computing folded plate stresses. 

This method will be defined as "beam theory". The detailed 

descriptions of these two theories are presented in the 

next part of the discussion. 

As mentioned briefly above, for the last two decades, 

numerous papers have been written on the subject of 

analyzing foldedplate structures in the United States as 

well as in European countries. On the other hand, there 

has been little information published concerning the 

experimental study of the same structures. In his paper 

I, Gaafer (2, p. 743) compared the analytical values with 

experimental results of an aluminum model with uniform 

loads applied symmetrically about the centerline of the 

model cross section. In 1961, A.Scordelis, E. Croy and 

I. Stubbs (5, p. 139) investigated a folded plate model 

with unsymmetrical cross section, and the results were 

compared with stress and deflection values computed by a 

few simplified methods, In their experiment, uniform 

loads were applied on the entire model. 

For the experimental investigation of this report, a 

steel folded plate model was loaded along the top ridges 

such that line loadings were created instead of uniformly 

distributed loads. Furthermore in this experiment, the 
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model was loaded symmetrically first and then unsymmetri- 

cally about the center of cross section. Accordingly the 

purposes of this thesis are summarized to be: 

(1) To compare the longitudinal stress and ridge 

deflection values of sirnplifiedbending theory with the 

experimental results for both symmetrical and unsymmetrical 

line loading cases; 

(2) To compare the same values computed by heam 

theory with. the same experimental results for both loading 

cases. 

The discussions of this thesis will be presented in 

order, the theory, analysis of a model, experimental study, 

comparison of analytical and experiment results, and 

conclusion 



PART II THEORY 

A. Beam 

L Assumptions: 

(1). The structure is monolithic. 

(2). The material is elastic and homogeneous. 

(3). There is no distortion of cross section in 

transverse direction. 

(4). Twisting caused by unsymmetrical loading is 

negligible. (Since the plates are very thin, 

twisting moment is negligible comparing with 

flexure moment.) 

(5). Longitudinal strain varies linearly acrcc. 

the depth of structure. 

2. Method of Analysis 

In beam theory, the structure is treated as a box 

beam. Accordingly the general flexure formula and simple 

beam deflection formula are used to determine the longi 

tudinal stresses and vertical deflections of the structure. 

A step by step outline of this analysis is shown below: 

( 1). Find an equivalent rectangular cross section 

for each bay and find the moment of inertia 

of the equivalent section. 

( 2). Determine the moment caused by the external 

loads. 



(3). Applying the flexure formula, compute the 

longitudinal stesses of the structure. 

(4). Find the vertical deflections of the structhre 

by usingthe beam deflection formula for uni- 

form loads. 

B. lifl B e ndi Theory 

1, Assumptions: 

(1). The material is homogeneous and elastic. 

(2). The structure is monolithic. 

(3). Longitudinal stresses vary linearly over the 

depth of each plate. 

(4). Individual plates possess negligible torsiDrialL 

resistance. 

(5). End diaphragms are infinitely stiff in 

vertical piane, but flexible in horizontal 

plane. 

2. Method of Analysis 

The following procedure will be used for analyzing 

a steel plate model in Part III. 

(i). Assuming temporarily that the joints are held 

against translation, take one inch center 

strip and treat this as a continuous beam. 

Determine the ridge moments at each joint 

ana the ridge reactions caused by the moments. 
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(2). Resolve the ridge reactions into plate loads 

and compute plate moments and longitudinal 

stresses caused by the moments. This longi 

tudinal stress is called free edge stress. 

(3). Because of continuity of the structure, 

stresses in two adjacent plates should be 

the same at their common edges. To satisfy 

this condition the free edge stresses are 

distributed in the same manner as suggested 

by E. Traum (6, p. ll). (See page 17) 

(4). Deflections of plates parallel and perpendi- 

cular to their own planes due to the longi- 

tudinal stresses are computed. 

(5). Assuming all the plates can rotate, above 

solutions should be corrected. This 

correction is made by assuming an arbitrary 

rotation of each plate and repeating the 

steps (1), (2), and (3) for the slab moment 

caused by these rotations. The rotation 

angle is assumed to vary, as a half sine wave 

along length of the structi,ire. 

(6), The actual rotations of each plate are now 

equated to the arbitrary rotations of the 

plates multiplied by proportionality factors 

X and Y. These equations are solved for the 

proportionality factors. 



(7). The final solution is obtained by adding 

the results of no rotation to each of the 

rotation solution multiplied by its res 

pective proportionality factor. 



PART III ANALYSIS OF A STEEL PLATE MODEL 

A steel plate model, four feet long and two feet wide 

as shown in Figure 1, will be analyzed by two methods; the 

first method is based on the beam theory and the second on 

the simplified bending theory. The analysis is composed 

of determining the longitudinal stresses and vertical de- 

flections of points A B, C D and E (Figure 1.) at the 

half and quarter points of the model length. 

The loading conditions for this analysis are: 

(1) Total load of 1200 pounds uniformly distributed 

on ridges AA' and BW 

(2) Total load of 600 pounds uniformly distributed 

along the ridge AA' only. 



A. Beam 

TwoBay Folded Plate Model 

Figure 1 

1. Symmetrical Loading Condition 

Cross Section with Symmetrical Loading 

Figure 2 

'o 
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i 

Equivalent Rectangular Cross section 

Figure 3 

Siflce Section A is identical to S?ctiorl B, only 

Section A is analyzed. 

Uiforn line load Tota1. Load 1200 15Ó lbs per ft. 
, 

L 4(2') 

Width oi equivalent seotion (1/16) .:(2) 0.177 in. 
! 

'6 

Neutral axis, 3 in. from top or bottom 

lxx .b 3 = 0.177(6)3 3.l in.4 

l 

M = _ wL2 = l5O () (12) 3600 in.-lbs. 
(*Y e 8 

M() _ 2700 in.-lbs. 

Longìtudínal stresses, 

S(1) = _a ¿!P 
(±3) = ±34OOp5L 

I- 3.la 

S(*) =73r%.3) 25Opi. 
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Vertical deflection, 

V(1) = 5 WL1+ 5(150) (l6)4(l72) 0.00905 in. down 

34 E I 34(30,oOO,ò00)(3.l) 

V(1) = w X (L3 - 2Lx2 + x3) = 0.00596 in. down 

24E1 

2. Unsymmetrical Lo.ding Condition 

IA 

IO'4f 

3iiÌfl 

- ---aX17' O,77' ;* 

Unsymmetrical Loading and quiva1ent Section 

Figure 4 



For Section A the loading conditionis exactly 

the same as the one in symmetrical cae Accordingly the 

results are: 

= ±3400 psis 
2i 

S(I) = ±2550 psis 

= 0,00905 in. down 
2) 

= 0.00596 in. down 

For Section B. no vertical deflections and longi 

tudinal stresses are introduced because there is no 

external load applied on the section. 

B. m lified Bending Theo 

The methods of analyzing the structure by the simpli 

fied bending theory are almost identical in symmetrical 

and unsymmetrical loading conditions, In this analysis 

therefore, only the unsymmetrical case is investigated in 

detail. The final results of symmetrical loading 

condition are tabulated at the end of Part V. (See 

tables 1 and 2). 

(1) Takingone inch wide centerstrip of the cross 

section of the model, we treat this as an oneway slab on 

unyieldingsupports. Ridge moments do not eist since 

the external line load is acting on the ridge. 

The external forces are resolved into the plate loads 

as shown in Figure 5. 



Total load on the model 600 pounds 

Sign convention for plate loads is shown below: 

A 
(-) 

w = Uniform line load = 600 = 12,5 lbs, per inch 
(') 4(12) 

(2) 

25% 

D 

One Inch Center Strip 

Figure 5 

14 
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= Moment of Inertia of a plate 

= 3.19 in.4 

Section modulus of a plate 

3.19 = 0.75 in.3 
4.25 

M() of plate I or II = w L2 = 5(4)(48) 

8 

2545 in.1bs, 

1VIi of plate I or Ii = j1Jj 
2 

1910 irì.-lbs. 

S(f e) = Free edge stress at center 

= M 2545 = ±3400 psi 
T 0.75 

(3) Since the longitudinal stresses in two 

adjacent plates should be the same and there exist an 

unknown shearing force at each ridge, the free edge 

stresses are distributed in order to determine the final 

stresses. The distribution is performed in Figure 6. 

(4) After final longitudinal stresses for the top 

and bottom of the plates are found, the deflections of 

plates in their own planes are determined by assuming 

the individul plate deflects just like a simply 

supported beam does. The deflection formula is derived 

as follows: 



l 

Beam length L 

MwL2 
Beam Depth = d 

S =Md 
21 

Deflection at center = D 5 wL4 5 L2M() 
(2) 34 EI 34 EI 

5 ML2 

4 EI 

= 
5 L2 21S 

4EI d 

Substituting the average of top and bottom stresses 

for S: D(i) 5 L2 2 ( Sn 5n-l) 

4Ed 2 

= L2 

9.6 d E 

Using the deflection formula presented on page 16 

and substituting C 5n - n-1 values shown in Figure 6: 

4(4) 
D1 = 9.6(.5)(3)(lO)7 (s S1 

= 9.42 (lO)7 (+6073.7) = +0.00572 in. 

Similarly, 

D11 = -0.00435 in. D111 +0.00206 in. 

Div -0.00069 jfl 

. 
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: A D E Ridges 
Ö, 5 3 0, 5 3 o 5 3 o Plate Areas Z 

0.5 O.5 0.5 05 Dís+rìbu±iori Fc±or 

>4 O5 ;>< ;:< -o 5 >< . 0,5 C. a r r y Oye i- Facto r 

1-340Ö -3400 34ÖO o ô Free Edge 

+850 
Aa5 425 ____ -425 

, 
tZf2,5 -Z2.5 t22.5 

I2 
=Zi2L +225 

+10625 -10626 

- S3J2 --53(2 -53,12 

-26 t26.6 -26,6 1-26,6 

.r:_Z&6 +266 

+13,3 -3,3 
37665 ._ 66& -. 6,65 -665 ±.37 

:F3I575 2(62 -t-1700 -484S tZ42.5 Fínô S'ftess, p 

I -jP1 rn-11- - 
Free Edge Stress Distrubution 

Figure ô 

op 

Deflected Structure 

Figure 
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Vertical deflections of ridges are easily found 

from Figure 7: 

V(A) = 1 (0.00572 + 0.00435) 
1.414 

= 0.00756 in. down 

0.706(0.00435 ± 0.00206) 

= 0.00453 in. down 

V(B) = 0.706(0.00206 + 000069) 

0.00194 in. down 

V(c) = 0.706(0.00572) = 0.00404 in. down 

V(E) 0.706(0.00069) = 0.00049 in. down 

From Figure 7 also, perpendicular deflections of 

plates are found as shown below: 

P(11) = 0,00572 - 0.00206 0,00366 in, 

P(111)= 0,00206 - 0.00069 = 0.00137 iii. 

(5) The longitudinal stresses and vertical 

deflections computed on previous pages should now be 

corrected for the stresses resulting from the rotation 

of plates II and III. The computation for the rotation 

of plate II is illustrated in Figure E. 

First the arbitrary rotation 'r' of plate II is 

shown in Figure e(a). In Figure (b), the Fixed End 

Moment is determined by assuming the ridges A and D 

are fixed and assuming EI equals 1000 ftlbs. 

d 



Accordingly: 

F,E.M. = 6 E.I P 

d2 

= 6 EI(?r?) 

d 

= 6000 in.-lbs. 

19 

'r' P and E I 'r' l000"# 
d 

The final moments in Figure (b) are applied to the 

plates and reactions are computed in (c). In igure (d), 

the known reactions act on the structure and create plate 

loads. The longitudinal moments and the free edge stresses 

are found below: 

M1 = M111 = L2 = 625(4)(4)(12) = 15,000 in.-lbs. 

M11 M = 375(2)(12) = 9,000 in.-lbs. 

3(f.e.) =j= ±20,000 psi for plates I and III. 

= ±12,000 psi for plates II and IV. 

The free edge stresses are distributed in Figure 

a(e) by the same method illustrated in Figure 6. 

(6) Let 'R'11 and 'R'±11 be the actual rotations 

of plates II and III which are easily computed from P11 

arid P111. 



Cd) 

Cb) 

(C) 

Cd) 

() 

AJ 

I 

o 
j 

lös JJFJ Ds+t-i. Facto- 

-60ÖÖ--60ÒO , , 
i. 

t3000 +30Ö0 
tt5 *1500 

-4500 -3000-t-3OÒ0 -15OO Fnot Momenti 

gg 883 53 530 

I4I3 f53° Recìc-$-ion 

625 625 375 375 

Ö Ö.5 DistfrIb. F(1cf0r- 

><-o5 -Q5 ;:;z;. -O5 -O Ccffry Over Rict 

-20 t20 -12 *12 *20 -20 i-12 -2 KT 
-2 -4 

-rr iJL - 85 -7:5 t-5 
+?:5 

+&5 

-0.125 
tÖo65 

-Ö2S 
tO.Z5 

1-Ö.& O25 
IZ5 tO ÖE 

- I lA-25 taßl5 -tOOO g875 -t253 Fíä( Stie, p 
-14310 -5125 j-10,875 + 88 S, 5, p 

Stresses due to the Arbitrary Rotation 
of One inch Strip of Plate II 

Figure 
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Assuming X and Y are constants: 

'R' X 'r', (1) 
II 

'R'111 Y 'r' (2) 

Using numbers: 

'R'11 = P11 = 0.00366" = 0.000432 

d 

'R'111 0.00137" = 0.000161 

From E I 'r' = 1000 in.-1bs. on page 19 
d 

'r' d(1000) .5(1000) = L16 
E I 30(2.45)(100) 

Substituting values for 'R'11, TR'111 and 'r' into 

Equation (l)and Equation (2): 

0.000432 X (1.16), 

0.000161 = Y (1,16). 

Solving far X and Y: 

X = 0.000372, Y 0.0001. 

Since X and Y values are very small, the effect of 

the plate rotation on the model is negligible. In this 

analysis, therefore, the corrections of stress and 

deflection are not required. The final computed 
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longitudinal stresses and vertical deflections at half 

and quarter points are summarized in Table 1 and Table 2 

for both symmetrical and unsymmetrical cases. 
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PART IV EXPERIMENTAL STUDY 

A, of Mo de i 

As shown in Figure 1 and Figure 9, the model was 4 

feet long and 2 feet wide. The cross section was of a 

double triangular shape (Figure 10) and it was composed 

of two bays CAD and DBE, while each bay was composed of 

two plates. The material of the model was cold rolled 

steel plate (A 366- 5 T ). The thickness of plate was 

1/16 inch everywhere except for two i/ inch thick end 

diaphragms. 

In constructing the model, two triangular bays CAD 

and DBE were made separately by bending a half of the 

model section 90 degrees along the ridges AA' and BB' 

(Figure 1) and then two bays were welded together along 

one edge of each bay. Finally the model was painted 

white. 

To measure the longitudinal and transverse stresses, 

4 SR4 rosettes and 4 SR-4 type A-7 strain gages were 

attached to the surface of bay CAD as shown in Figure li(a). 

Before these gages had been mounted on the specified spots 

(Figure 9(a) and (b)), the paint was carefully removed and 

plate surface was cleaned. 



Six Ames dial gages were installed at different places 

for different loading conditions to measure the vertical 

deformations of inside ridges and vertical and horizontal 

deflections of two outer edges at half and quarter points 

of the modellength. On the test data in the Appendix, 

the exact locations of the Ames dial gages for each test 

will be found. 

B. Test Procedures 

It was assumed under the symmetrical load that both 

sides (bay CAD and DBE) of the model would behave in the 

same way, and so the test data obtained from one baywas 

substituted for the other half of the sections In the 

unsymmetrical case, however, it was necessary to load the 

structure twice to get the data for both sides since the 

strain gages had been mountedon the surface of bay CAD 

only. 

For this experimental study, two sets of tests were 

conducted in identical manner, Each set of tests was 

composed of three different loading conditions which are 

listed below: 

(1) Symmetrical line loading along ridges AA' and BB' 

(2) Unsymmetrical line loading along the ridge AA' 

only 
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(3) Unsymmetrical line loading along the ridge BB' 

only 

The first loading condition was obtained by placing 

23 inch long copper plates weighing 55 pounds each sym 

metrically between the ridges AA' and BB' Second and 

third loading conditions were satisfied byplacing the 

same copper weights symmetrically between just one ridge 

of the model and a 24. by 6 inch wood beam supported from 

outside. Figure 12(a) an« (b) show the symmetrical and 

unsymmetrical loads respectively 

The maximum loads applied for this study were 1122 

pounds for the first set and 1496 pounds for the second0 

The complete experimental data are tabulated in the 

Appendix A0 

C. Results 

After the longitudinal and transverse strains were 

measured by SR-4 rosettes and A7 strain gages, these 

strains were converted to longitudinal stresses and 

transverse moments by utilizing Hook's law and the standard 

flexure formula. Since the dial gauges were able to read 

as accurately as 1/2,000 inch of deflections, no conversion 

was needed. 



The stress and deflection values obtained from the 

tests were plotted againstloads. Because the, stress 

(or deformation) should increase linearly, straight lines 

were drawn to represent the plotted values. 

The results of the first set of tests did not agree in 

the straight-line relationship between the stress (or 

deflection) and total load. The reason for this disagree- 

ment was assumed to be that two bottom edges resting on 

supports were not straight, and this caused an initial 

distortion of structure. 

After the irregular bottom edges were straightened, 

the second set of tests were conducted, and the results 

satisfied the straight-line relationship'. The results of 

secònd set, therefore, represented whole experimental 

values, and'used for comparing with theoretical values. 

Before the experimental values were compared, one 

correction was made for longitudinal stress. As shown in 

Figure 9, the longitudinal stresses were measured at 3/4 

inöh from the top or bottom of each plate, but the 

theoretical values were computed for extreme fibers. Thi5 

correction was done by increasing the experimental values 

in proportion to the distance from neutral axis to extreme 

fiber and to the locations of the strain gages. The 



final experimental values of longitudinal stress and 

deflection are listed in Part V for the comparison 

with theoretical results. 
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(a) Side Elevation 

/p 

(b) Section b b 
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(e) Section a a 
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General View of Model and Locations of Gages 

Figure 9 
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Two-bay Folded Plate Model without Load

Figure 10



(a) SR-4 Strain Gages

(b) Ames Dials

SR-4 Strain Gages and Ames Dials

Figure 11

30



(a) Symmetrically Loaded Model

(b) Unsymmetrically Loaded Model

Loaded Model

Figure 12

31
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PART V COMPARISON OF EXPERIMENTAL RESULTS WITH 

ANALYTICAL INVESTIGATION 

The final values of longitudinal stress and vertical 

deflection obtained by the three different methods (Beam 

Theory, Simplified Bending and Experimental Study) are 

summarized in Table 1 and Table 2. Table 1 lists all of 

the longitudinal stress values for the top and bottom 

fibers of each plate at half and quarter points of the 

structure length under both symmetrical and unsymmetrical 

loads. Table 2, on the other hand, lists the corresponding 

values of vertical deflections. 

For the purpose of comparison, three curves repre- 

senting the values of beam theory, simplified bending 

theory and experimental study are plotted using the same 

coordinates Figure 13 shows the longitudinal stress 

variation along the transverse direction under the 

symmetrical load. The same variation but for the unsyrn- 

metrical load is shown in Figure l2. In Figures 15 and 

16, the vertical stresses are plotted for the ridge points 

A, B, C, D, and E for the symmetrical and unsymmetrical 

loads respectively. 
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In plotting the experimental results, the average 

longitudinal stress values of two adjacent plates are used 

to represent the common edge stresses when these two 

values are not the same. In addition, it was necessary 

to compute the stresses and deflections of unmeasured 

points by using the known values and the proportionality 

between the half and quarter point values. 

A comparison of the analytical results obtained by 

the simplified bending theory with the experimental values 

indicates a good agreement everywhere in the cross section 

of the beam except for the two outer edges. The per 

centage difference of the maximum longitudinal stresses 

of interior ridges is 4.4% insymmetrical loading and 

l.2% in unsymmetrical loading. For the vertical 

deflections, the percentage difference is 4.45% for the 

symmetrical case andll.l% for the unsymmetrical 

condition. 

Under the symmetrical loading, the stresses and 

deflections of the interior ridges compute,d by t1ie beam 

theory agree fairly wellwiththe experimental results. 

However in unsymmetrical loading the beam theory yields 

somewhat high discrepancies. The percentage difference 

of the maximum longitudinal stress for the symmetrical 

load is 4.5%, but 52.5% for the unsymmetrical load. The 

same differences for the vertical deflections are 4.75% 

and 61.3% 
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As briefly mentioned above, the most noticeable 

disagreement appears at the outer edges. At these points, 

the maximum percent difference of longitudinal stress 

between the simplified bending theory and experimental 

data is 6%. This percent difference is higher in the 

case of deflection and even the directions of deforma- 

tions of the two free edges are opposite. Both the 

simplified bending and beam theories predicted that the 

two outer free edges would deflect downward, but in the 

experiment, excessive upward deflections were measured. 

This excessive upward deformations of the two outer 

edges are assumed to be resulted from the shear differ- 

ences existing between two adjacent sections of the 

plates with a free end. It is not attempted here to 

correct or modify this disagreement by formulating a 

new analysis method for the free edges since this is 

not the purpose of this thesis. 
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TABLE I 

SY1VIIVTRIGAL LOAD UNSYBIVTRICAL LOAD 

Longitudinal Stress at Longitudiia1Stress at 
1ate Point Result Type 

pt. pt. i i pt. 

+3400 +2550 +3LOO +2550 Beam Theory 
i +3400 +2545 ±31575 +2375 s. Bending 

+4360 + 950 +4130 + 995 Experiment 

-3LOO -2550 -34OO L25O Beam Theory 
i: 2 -3400 2545 2916 -'-213 s. Bending 

-3340 -2160 -2L9O -1940 Experiment 

-34OO -2550 -3400 -2550 Beam Theory 
-34.00 -254.5 -2916 -21g3 s. Bending 

II ______ -2310 -2100 Experiment 
+34GO. +2550 +3400 +2550 Beam Theory 

4 +34OQ.. ±2545 +1700 +1272 S. Bending 
. . **____ +2670 *---=_ + 910 Experiment 

+34QO +25O 0.000 0.000 Beam Theory 
5 +3400 +2545 +1700 +1272 S. Bending 

. * * +2330 
IT]T ______ 

-3400 -25O 
__________________________ 

0.000 0.000 Beam Theory 
6 -3400E -2545 -44 - 363.0 5. Bending 

-1030.0 I Experiment 

Continued on next page . . . . 

'D 



TABLE i (Continued) 

SY1YIIVTRICAL LOAD UNSYIV1VTRTCAL LOAD 

Plate Point 
Longitudinal Stress at LongitudinaiStress at 

Result Type 
pt. pt. pt. pt. 

- 

-3400 -2550 0.000 0.000 Beam Theory 
7 -3400 -2L5 - 363.0 S. Bending 

* --- * --- 376.0 - l2.O Experiment 
Iv ______ 

+3400 +2550 OOOO 0.000 Beam Theory 
. +3400 +2545 + 242.5 + i2.O S Blending 
* ----- * ------- + 515.0 +119.0 Experiment 

Results of Longitudinal Stress in psi 

* These values were not measured in experiment. 

o 



TABLE 2 

SY1VIIVITRICAL LOADING LTJNSYNMTRIGAL 
LOADING 

Ridge 
at Resui Type 

pt pt pt pt 

-o 00905 O.00596 -O.009O5 -OOO596 Beam Theory 
A -OOO91 -0.0069 -OOO-756 -0.00566 S Bending 

* ---- -oQo5 * --- _ Experiment 
- 

-0,00905 -0.00596 0.0000 o.0000 Beam Theory 

B -O.0091 -0.0069 -C.0019L. -O.0015 S. Bending 
-0.0090 * -0.0001 *--------- Experiment 

-0.00596 -OOO9Q5 -O.0096 Beam Theory 
C -0.0091 -0.0069 -0.00404. -0.00302 S Bending 

* ------------- *_ --------- . *____-__. +0.-0095 Exoeriment 

-0.00905 -OQO596 O.009O5 -0.00596 Beam Theory 
D -0.0091 -0.0069 -0.00453 -O00339 S. Bending 

-0.0095 -O.00Q -0.0035 * Experiment 

-0.00905 -OOO59O -C.000 -0.000 Beam Theory 
E -O.O09L -0.0069 -0.0004 -0.00039 S. Bending 

+0.026 * +0.00505 * Experiment 

Results of Vertical Deflections in inch 

- deflection down 
+ deflection upward 
* deflection not measured 
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Part VI CONCLUSIONS 

On the basis of analytical and experimental investi- 

gations carried out in this report and the proceeding 

discussions of comparing results, following conclusions 

are made: 

L The longitudinal stresses and vertical 

deflections computed by the simplified 

bending theory will in general predict 

the actual behaviors of the folded 

plate structures under either snmetrical 

and unsymmetrical loads Accordingly, 

it is safe to design these types of 

structures by simplified bending 

theory within comparable spandepth, span-bay and 

spanthickness ratios to the model tested0 

2. Analysis by the beam theory will agree with 

the actual stresses and deformations resulted 

from the symmetrical load, but will yield 

values seriously in error if the structure 

is unsymmetrically loaded. It is not 

recommended, therefore, to use the beam 

theory in actual design of the folded plates unless 

symmetrical loading only is assured. 
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3. It appears to be unsafe to utilize either 

simplified bending or beam theory for 

analyzing and designing the outer plates 

with a free edge. 

It is hoped that further study and research is to be 

continued along the line of the free edge investigations 

so that one simple method of analysis will satisfy not 

only the interior plates, but also exterior free plates. 
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