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The effect of the mutual inductances between the rotor coils

of a synchronous machine on its defined reactances and predicted

transients are investigated. Two linearized models of the machine

are considered. One uses the Laplace-Transform.approach, with

minimum number of assumptions on the inter-coil couplings, in

developing a model for the machine with short-circuited stator

terminals. The other model is obtained by modifying the commonly

used model and equivalent circuits given by Adkins (4).

In the first model, the root-locus technique of classical

control theory is used as a tool to investigate the effect of mutual

inductances on the short-circuit eigenvalues of the general Park

model. Transfer functions for the short-circuit stator and field



current responses are derived in terms of the mutual inductances.

Numerical examples are presented for two (solid rotor) turbo-

generators and one (salient pole) hydrogenerator unit with dampers.

In the second model, the effect of the rotor coil mutual

inductances on the dynamic behavior of the synchronous machine

are investigated for the machine connected to an infinite-bus via a

transmission line. Small displacements around a fixed operating

point are assumed in order to linearize the nonlinear model; and

the state space approach is used for eigenvalue analysis and

simulation of the model on a digital computer. A numerical example

is given for a hydrogenerator unit.

When the models studied were required to yield a fixed set

of time constants and short-circuit reactances, it was noticed that

the mutual couplings between the rotor coils did not affect the

model eigenvalues G The rotor coil mutual couplings also hold no

effect on the contribution of the eigenvalqes to the short-circuit

stator current components (id, iq ) when the field excitation voltage

was fixed. On the other hand, the rotor currents were significantly

affected by the mutual couplings between the rotor coils, and their

effect should be included in any detailed investigation of synchronous

machine.
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A STUDY OF THE EFFECT OF THE ROTOR COIL
COUPLINGS OF A SYNCHRONOUS MACHINE ON ITS

PREDICTED TRANSIENT RESPONSE

I. INTRODUCTION

With the demand for electric power ever increasing, stability

studies of large-scale power systems have become of more con-

cern, making it necessary to represent the model power system

components more accurately.

The theory of the synchronous machine, the most important

power system component, is based on the two-reaction theory

developed by Park (1). Several authors have discussed the two-

reaction theory in great detail (2-5). The developed theory has

been widely used to study the stability of power systems in recent

years (6-10). However, the effect of such factors as iron loss and

the mutual couplings between the coils of the synchronous machine

were not investigated in the literature cited. The effect of iron

losses on the behavior-of a synchronous machine has been investi-

gated by other authors (11-14), and the conventional equivalent

circuits have been modified to take the iron losses into account.

However, such models are too complex to be used for large-scale

power system studies and will not be considered in this thesis.



The mutual couplings between the rotor and the stator coils

of the synchronous machine were first considered in 1966 by Canay

(15). In his work, he developed a transfer function block diagram

for the synchronous machine in which the mutual coupling between

all the possible combinations of the rotor and stator coils were

explicitly considered. His work was later used to study the torque-

angle loop analysis of the synchronous machine (16), and also

became a cause for modifying the conventional equivalent circuits

of the synchronous machine by different methods (13, 14, 17-24).

However, because of the complexity involved in representing all

the mutual inductances explicitly, and also, because the mutual

inductances cannot be measured, conveniently, the models that

include the mutuals are usually not used in power system studies.

In this work, first the Laplace-Transform technique is used

to develop a Park Domain model for the synchronous machine with

short circuited stator terminals. The model is then used to study

the effect of the rotor coil mutual couplings on the internally defined

reactances and time constants of the model. 1 The rotor-stator

mutual inductances are taken to be equal on each axis (Laf = Lax

and Lay = Lag) by resealing the equivalent damper winding currents.

These mutual inductances are, however, not used explicitly in the

1 The internally defined reactances and time constants of the model
will here on be called the defined model reactances and time
constants (or defined model parameters).
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model equations, but they are used in defining the model reactances,

as previously discussed in the literature. Hence, only two mutual

inductances remain whose effects should be investigated. They are

the mutual inductance between the field and the direct-axis

amortisseur windings (Lfx) and that between the two equivalent

quadrature-axis rotor coils (L ). In the cases that only one
gY

equivalent rotor, coil is assumed on the quadrature -axis, only one

mutual inductan,ce (Lfx) remains, whose effect is to be investigated.

These mutual inductances are given in terms of the direct-and

quadrature-axis leakage factors crd and Cr as defined in Appendix II.
q

The root-locus technique of classical control theory is used

as a tool to study the characteristic equation of the general

linearized short-circuit model of the synchronous machine. The

data for the open-circuit time constants and the short-circuit

reactances, made available by the manufacturer or owners of the

machines, are taken as the basis for obtaining the mutual effect of

the rotor coils on the defined model reactances and time constants,

which are in general unknown. It is assumed that the open-circuit

time constants and short-circuit reactances, provided by the

manufacturer or owners of the machines, are accurately measured

according to IEEE Standards (25) or else found by sophisticated

analytical techniques, such as those given in the literature (14, 17,

19, 24).
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Transfer functions for the field current and the stator

current components of the short-circuited machine model are

developed in terms of the defined leakage factors, with the field

voltage as input-for the transfer functions. The effects of the leakage

factors on these current responses are also investigated.

Secondly, the widely used synchronous machine model pre-

sented in the literature (2-4), in which it is assumed that the mutual

coupling between the rotor coils on each axis is equal to the rotor-

stator mutual coupling, is modified to make the rotor coil couplings

different from the rotor-stator couplings. A state space approach

is used to study the effect of variation of the rotor coil coupling of

a synchronous machine model on its dynamic behavior when con-

nected to an infinite-bus via a transmission line. The nonlinear

model is linearized by assuming that small displacements occur

around a fixed operating point. A digital computer was used for

simulation of the linearized model. The effect of the rotor coil

mutual coupling was obtained on the field and stator currents as

well as on the rotor angle and frequency when the line reactance

was suddenly increased.

Although both, the transform domain and time domain

models obtained are based on the original Parkts equations for the

synchronous machine, they are different in the way their model

reactances and time constants are defined. In the transform
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domain approach, the Park Domain open-circuit time constants and

short-circuit reactances are assumed to be known and the unknown

model parameters (reactances and time constants) are calculated in

terms of the given open-circuit time constants and short-circuit

reactance s. But , in the model for whichtime domain analysis is per-

formed, the Park Domain short-circuit reactances are defined in

terms of the open- and short-circuit time constants, which are

assumed to be known.

From the studies of the transform domain and time domain

models, the following important observations are made:

The rotor coil mutual couplings do not have significant

effects on the stator-current components, rotor angle and

frequency. The mutual couplings, on the other hand, have

significant effect on the rotor coil currents.

Hence, it_can be concluded that the conventional models are

sufficient for studies in which the stator currents and mechanical

oscillations in the rotor are of interest; but the mutual effects

between the rotor coils should be taken into account when the rotor

electrical quantities are of concern. The conventional machine

equivalent circuits should also be modified to make the rotor coil

couplings different from the couplings between the rotor and stator

coils, when they are to be used for the study of rotor electrical

quantitie s .
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II. EFFECT OF THE ROTOR COIL MUTUAL COUPLINGS
ON THE MODEL PARAMETERS AND RESPONSES -

A TRANSFORM DOMAIN APPROACH

2, 1 Introduction

In this chapter, the synchronous machine equations in the

direct- and quadrature-axis reference frame, as derived by Park

(1), are used to, develop a La Place-Transform Domain model for

the synchronous machine with short-circuited stator windings. The

short-circuit model is then used for investigation of the effect of

the mutual couplings between the equivalent rotor coils of the

machine on its defined parameters and current responses.

The root-locus technique of classical control theory is used

in the eigenvalue analysis of the short-circuit model. The results

of this analysis are used to derive an algorithm for determining the

effect of the variation of the mutual couplings (expressed as leakage

factors, G-d and 0- )
2 on the defined model parameters. The con-

ventional (Park Domain) short-circuit reactances and open-circuit

time constants, made available by the manufacturers or owners of

the machines, are used in the derivation of the defined parameters.

2
o-d and o- are defined in terms of the self inductances of the rotor

q
coils and the mutual inductance between them; i.e.,

L2 L2fx gyo-d = 1 - = -Lf Lx L L
g Y
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Numerical examples for two turbogenerators and one hydro-

generator units are presented to show the effect of the mutual

couplings on the model parameters and responses.

2.2 Generalized Machine Equations

The equations for a synchronous machine can be derived

straight-forwardly from a linear two-pole model. The stator is con-

sidered to be three identical, symmetrically placed, lumped

windings called Ita, b, cif. The rotor windings are four unequal

lumped windings. Two of the rotor windings (f, x) are considered

to be on one axis (direct) and the other two (g, y) are placed on

another axis (quadrature) 90 electrical degrees from the direct-

axis. Winding iffu represents the field winding while windings "X",

"g", "y" are fictitious windings which account for the damper bars

and current paths through the iron parts of the rotor. Salient

pole machines with damper windings are normally modeled with

only one winding on the rotor quadrature-axis accounting for the

dampers. However, two quadrature-axis rotor windings are usually

used for solid rotor machines, accounting for the effect of iron

paths, and they can with some justification be replaced with one

winding. The assumption of two rotor windings on the quadrature-

axis yields a six-winding model; and when only one quadrature-

axis rotor winding is assumed, a five-winding model is obtained.
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The development will start with the symmetrical (six-winding)

model, and will later be simplified to consider a five-winding

model.

The assumptions made in the development of the model are

as follows:

1) all inductances are independent of current (saturation

is neglected);

2) all distributed windings may be adequately represented

as lumped _windings;

3) the effects of currents flowing in the iron parts of the

rotor may be represented by three (or two) lumped

rotor coils as previously described.

In order to eliminate the position dependent parameters in

the equations describing the synchronous machine, the stator

quantities can be transformed from the tla, b, c" representation to

a ?Id, q, of! representation. In the work to follow, zero sequence

components will be dropped from the transformation; because only

balanced disturbances will be considered. The rotor quantities

are invariant in the transformation, and the three-phase stationary

stator windings a.re transformed into two windings (d, q) in

quadrature which rotate at rotor speed and in the direction of

rotation of the rotor.
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Figure 2.1 shows a symmetrical (six-winding) model circuit

for the synchronous machine after transformation to the d-q

representation. The polarities shown in Figure 2.1 are used in

Appendix I for derivation of the Park Domain machine equations.

d

q

rx

r

y

of

Figure 2.1 Synchronous machine model circuit.

Let the machine be operating at no-load with a fixed field

voltage Vf' and a sudden three-phase short-circuit be applied on

the stator at time t = 0. Because of the time continuity of flux

linkages and the presence of the leakage inductances, the currents

cannot change instantaneously. Hence, immediately after the
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short-circuit, the value of all currents but if remain at zero, while

the initial value of the field current is obtained from, Vf/rf. From

equation (Al -5), the stator terminal voltages before the short-

curcuit are:

'a (0) Xq (0)

V (0) = ("' (°) (1)Laf

Equations for the winding currents of Figure 2.1 can be written in

the Laplace Transform Domain, with the initial conditions taken

into account, as given by equation (2-3).

-(ra+sLd)

-cad

-3/ 2sLaf

-3/ 2sLax

0

0

-(r 4sL )
a q

0

0

-3/2sL
ay

-3/2sL
ag

sLaf

af

rf4sLf

sLfx

0

0

sL
aX

COL

sLfx

r
x

-+sL

0

-CDL
ay

sL
ay

0

r +sL

sL
Yg

-03L
ag

sL
gg

0

0

sL

r +EL
g g

1 I

Id
I

Lafif(0)

0

If Vf+Lif(0)
=

I
x

L
fx

i
f
(0)

I 0
Y

I 0
g

In equations (2-3) s is the operator in the Laplace-Transform

Domain, and the capital letters I and V indicate the transformed

electrical quantities (current, voltage).

(2-3)



The current variations following the short-circuit can be

determined from equations (2-3), provided the inductances in the

above equations are known. The inductances are combined to

t rdefine the model reactances3
d

(X ,X tt

d' X X, X' x,X q
, X"

q
, X'

Y
,

X" ). The expression for these defined reactances are given in

Appendix II.

In order to reduce the algebra involved in the work that

follows, equations (2-3) are put in the following form:

all

a
61 a66

Id

If

U6

Equation (2-4) is used in Appendix II for simplification of the

characteristic equation.
3 Defined model reactances and time constants are:

X' , XI X, Xq, X' X" , X' , X" , T T T , Ty f' x' y
T" . The measured reactances and time constants
Xudrn' Xqm' X'qm.' T T" T'

q 0
T"qd0' dO" ' 0'

subscript ?limn denotes itrneasuredn value.

11

(2-4)

X X "d d'
T` T" ,q
are Xdm, dm'
where the



2. 3 Root-Locus Study of the Characteristic Equation

At this point, the characteristic equations of six-winding and

five-winding machine models will be considered.

a. Six-winding machine model

The poles of the short-circuit current transfer functions are

the roots of the characteristic equation of equation (2-4). The

characteristic equation can be factored as4

4 6
=a) r (s+ zm,)+ r (s +pn)

m=1 -1-1=1

12

(2-5)

where w is the electrical frequency in rad. /sec. By inspection of

the work in Appendix II, it can be seen that the polynomials on the

right-hand side of equation (2-5) can be factored as

and

4

mil (s z +Ads +Bd) (s2+A s+B )
=1 q q

(2-6)

6
7r (s+p

n
) = (s

3
+ Cd s

2+D
d s+E d ) s

3+C
q

s
z

+D
q

s+E
q

) (2-7)
n=1

4 The characteristic equation is derived in Appendix II.



where, expressions for the parameters A through E are given in

Appendix II.

The eigenvalues of equation (2-4) can be obtained when

equation (2-5) is set equal to zero The resultant equation can be

written in the following form;

(Az 7 (S Zni)
M=1

1+
6

(s pn)
n=1

0

13

(2-8)

Equation (2-8) represents a polynomial ratio suitable for appli-

cation of the root-locus technique of classical control theory. This

technique will be used to investigate the general behavior of the

eigenvalues.

The zeros of the polynomial ratio of equation (2-8), which are

the roots of equation (2-6) can be written as follows:

s
2

+ s + Bd = (s + z1) (s + z2)

sz+ A s +B = (s + z 3) (s + z4)
q q

(2-9)

(2-10)

By expanding the formula for the roots of a quadratic by using the

binomial theorem, the roots of equations (2 -9, 10) can be written as

follows:



where

X X
d

Ad
ti

z (1 4- 21 ad
ad

ad
z =

2 Ad 1

X X A
(1+ c__Laz3 = 2

q a

z
4

= - z3
q

ad = Xrx Tx + X'd Tf

Ad= Xud crd Tf Tx

a Xl T + X' T
q qg

= X" o- T T
q qqYg

14

X
d

ZA
2

d
I- 2 ....) (2-11)1

4
ad

(2-12)

X
2L2

+2 ° ) (2-13)4

(2-14)

(2-15)

(2-16)

(2-17)

(2-18)

The expressions for the model parameters appearing in equations

(2-15) through (2-18) are given in Appendix IL

It has been found that for most machine parameter values,

each of the expressions inside the parentheses in equations (2-11)

and (2-13) are much less than unity. Hence, z1 and z3 can be

approximated as (- Xd /ad) and (- Xci/aq), respectively. Also,



15

Ad and A are normally much smaller than a
d

and a , respectively.

It can therefore be concluded that, for most machine parameter

values, lzi I<< 1z2 I and 1z31<<lz41

The poles of the polynomial ratio are the roots of equation

(2-7), which can be written as

s
3 + Cd s 2 + Dd s + Ed = (s + p1) (s + p2) (s + p3) (2-19)

3 2+ C ss +D s +E = (s + p ) (s + p )
q q q

(2-20)

The roots of the above polynomials are approximated in Appendix

III using the root-locus technique.

Figure 2.2 Root-locus plot for the characteristic equation of a six-
winding machine model.
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The estimated locations of the zeros and poles of the poly-

nomial ratio in equation (2-8) are shown plotted on the s-plane in

Figure 2.2. In this figure, the heavy lines indicate the loci of the

values of s which satisfy equation (2-8) as co is varied. As co is

increased from zero, the solutions move from the poles to the zeros,

as indicated in Figure 2.2. Since u.)
2, the gain-factor of the root-

locus polynomial ratio, is very large compared to unity for the

synchronous machine (when running at normal operating conditions),

four eigenvalues are expected to lie very near the zeros (z
1

to z 4).

The other two eigenvalues will form a complex pair and approach

the asymptote shown in Figure 2.2. Physically, the effect of the

complex pair of eigenvalues is observed in the field current wave

form obtained during a short-circuit test. The real part of, the

complex eigenvalues indicates the rate of decay of the direct-

current offset component in the stator current components, and the

imaginary part is proportional to the field current frequency

resulting from an actual short-circuit test.

The study of the characteristic equation of the five-winding

machine model will now follow.

b. Five- winding machine model

When only one equivalent damper coil is assumed on the

quadrature-axis, as for a salient pole (or hydro) generator, the
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order of synchronous machine model becomes five. The character-

istic equation and the current transfer function can then be obtained

by deleting one of the two equivalent quadrature-axis damper

circuits in Figure 2.1, say the circuit with coil "g". The character-

istic equation will then be obtained by simplifying and factoring

equations (2-6) and (2-7). The result in simplified form is as

follows:

5

Tr (s +pj
j=1

2
= (1)

3 5

7r + z ) + 7 (s + pn)
m=1 n=1

where z and pn are roots of the following polynomials:

3 X
7- ( S + Zin) W (s

X "qT
) (s 2 +Ad s +Bd)

m=1 q y

5 X (T +T ) X
2(si-pn) (S + S+ ) XX" T T X" T T

n=1 q q Y q q Y

(s 3+C
d

s2+D
d

s+E
d

)

The solution of equation (2-2) occurs when,

2 3
d 7r (S + Zrn)

m =1
1 +

5
7T (S + pn)

n=1

(2-21)

(2-22)

(2-23)

0 (2-24)
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The polynomial ratio in equation (2-24) has three zeros. Two

zeros are the same as those for the polynomial ratio of the six-

winding machine model (z1, z
2
), and one zero is at z

3
= - X /(X" T ).1, q Y

Three poles of the above polynomial ratio are also the same as

those for the six-winding machine model (p1, p2, p3), and the other

two, which are functions of the quadrature-axis parameters, can be

approximated, as done previously, using the binomial expansion.

The expression for p
4

and p
5

then become,

ti -1
P4 T + T

Y q

T T X
Y q .

P5 T T X"
Y q

(2-25)

p4 (2-26)

It is noticed that for most model paramater values, each of the

three zeros are near a pole as follows:

z
1

near p
1

and I z
11>1

z2 near p2 and I z2 1<1P21

z3 near p5 and I z3 l< I p5 I

The estimated locations of the poles and zeros on the s-plane

are shown plotted in Figure 2.3. Thus, when co is increased from

zero, the solutions move, on the root-locus plot, from the poles
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to the zeros. At normal operating conditions since the angular speed

of the rotor is again large compared to unity, three eigenvalizes lie

very near the zeros and the other two form a complex conjugate

pair, as in the case of the six-winding model.

0

asymptote

Im s

P2 z2 p5
z

3 p3 p4 z1
PI Re s

Figure 2. 3 Root-locus plot for the characteristic equation of a
five - winding machine model.

The assumption that the real roots of the characteristic

equation are very near the zeros of the root-locus polynomial ratio

at normal operating conditions of the machine will be used in the

next section to develop an algorithm for derivation of the unknown

model parameters as a function of the leakage factors.
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The five-winding, short-circuited stator- and field-current

transfer- functions can be obtained from equation (2-4) by deleting

the equations for the quadrature-axis rotor coil Itgif. Assuming that

the short-circuit occurs at time t = 0 and the field voltage remains

fixed during the short-circuit, the current expressions can be

written as follows:

I (s)=
5

2
X

, 2
T f+Tx

1cDE
"

(s1 q )i.s + s+X T o-ciTfTx CT Ti
Id (s) = q Y

5

x"a 7r (s + p.)
j=1

x

0

Xd
T

T +XI T

T
fE co (s+1 3

X"
) [s + 2

cr

x
Xx T T s +

y
"d d d dfx

(2 -Z7)

(2 -28)

Xd(T f.+T +T
d

) Xd
s+

craXudT fTxT crdX'dTfTxTd

s X
q

7' (s + p.)
3 =1

where, E
0

= af if (0) is the stator open-circuit voltage. And

the expression for the field current becomes

5
(s + zk)

K=1
If(s) 5

s r (s + p.)
j =1 3

if (0) (2-29)



where
5 T +XI T Xd X (T +T )5{ xx df 94Y
'Tr (s+z )Rs +

d
k cr X"

d
T

f
T

x
X"dTd Xu

K d
T

q
Ty

=1.

4
s +

21

(T +T ) X (XIxTx d f d f
+XIT) + X(T+Tx

d
+T) X n

q
,R2v

x 39 Y d

X" T T
X" Td

cr T T T X" T T
+X"

Y d dfxd Y

(T +T
Y

) Xd (T f+Tx+Td) X
q

X
d

XI
d

Tf+X' Tx

X" (TT T X"
d

T T T X" T T (X" Tqyq d fxd qqy dd 0-dfd T
f
Tx

Xd
2

)(ix T
x

+Xldrf X'x X
q

(
TX" T

f
T

x
T

d

+ (13
'17 X" T T

+ X" X Td dfx d q yd d

2
s +

r Xg(T4I-Ty) Xd X X
d

(T
f
+T

x
+T

d
)

[ X" T T 0-dX"
dTfTxTd

X" T T crdX"dTfTxTd
Y Y

2
X

q
x' Xd X

d
X

q
(1+(.0

2
T

x
T

q
)

(I) ( X" T Cr X
n

T +13"X"dTf xT) + CX" X" T T T Tq y d d f d d qxyqd

XdXq (1+
2
T dTq)

crX"X"TTxTTT
d d qfydq

The newly defined reactances X' and )(Ix' are given as follows:
x

L2ax

(2-30)

(2-31)
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(2-32)

Note that by definition, the quadratic equation in the numerator

of the transfer function for Id(s)' equation (2-27), is the same as

the open-circuit characteristic equation; i.e.,

2
Tf + Tx

s + s +
d Tf Tx

1 1

T'd0 ) (s 4. 11

dO

where, Tid0 and VdO are the open-circuit transient and subtransient

time constants, respectively.

When the field excitation voltage is not fixed, the assumption

of Rf if (0), will no longer hold, after the short circuit is applied

and the Laplace-Transform of vf(t) will not be Vf is For this

condition, the expressions for the short-circuit stator, current

components of a five-winding machine model become

(0=
5

crd S + pi)
i=2

cu
fxL

L
a x 1+--

s X
L V (s)[ s(1- ) ][(1)2 +s

2+ (s+)/(s+X /X" )1af f x a
T X" T

1

q
T

1
Lfx L

w
2

LafXdVf(s)(s-1---1,---)[s(1-
ax

) +

I (s)- x of
5

X" X"qX"TdLfo-d q q y(s +X / X" T) + r
i=2

4- pi)

(2-33)

(2-34)
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Note that the transfer functions given by equations (2-33, 34) will

be non-minimum phase; i.e., zero being in the right half s-plane,

if the quantity Lfx Lax/Lx Laf is greater than unity. Further

investigation is therefore in order, to determine whether a non-

minimum phase condition is physically possible for the problem at

hand; and therefore put restriction on the numerical value of the

quantity Lfx Lax/Lx Lai. This investigation is out of the scope of

the present work.

The model parameters appearing in equations (2-27) through

(2-34)are considered to be unknown. An algorithm is presented in

the next section to express the unknown parameters in terms of the

open-circuit time constants and the short-circuit reactances, which

are given for a machine and assumed to be measured or otherwise

well-defined. Numerical examples will then follow to show how the

defined parameters match their corresponding measured values,

and how they are affected by the variation of the leakage factors.

2. 4 Derivation of Model Parameters
From Measured Data

In this section, an algorithm will be presented for deter-

mination of the unknown model parameters from the measured

open-circuit time constants and short-circuit reactances. The

above time constants and reactances are used in contrast to the
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short-circuit time constants; because, for most machines, the short-

circuit time constants given by manufacturers are not obtained from

test. The given open-circuit time constants and short-circuit

reactances are considered to be more reliable to use, as the for-

mer can be obtained from a load rejection test, and the latter can

be reasonably accurately computed from the machine geometry. It

is assumed that the open-circuit time constants are either accurately

determined by the manufacturer or measured according to IEEE

standards (25).

Figure 2.4 shows a flow-chart form summary of the cal-

culation sequence of the direct-axis model parameters in terms of

the assumed known time constants and reactances. The calculation

sequence for the quadrature-axis model parameters is obtained by

replacing all the known direct-axis time constants and reactances

in Figure 2. 4 with the corresponding quadrature-axis values. The

details of the calculation sequence are discussed in Appendix IV.

The assumption that the eigenvalues of the short-circuit model

are very near the zeros of the root-locus polynomial ratio (discussed

in section 2. 3) is used in the derivation of the model parameters.

It is also assumed that the mutual couplings between the rotor-

stator coils are equal; i.e. , Laf =Lax and Lag = Lay. This

assumption can be implemented by scaling the damper-winding

currents such that the flux linkages and the winding time constants
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Xd = Xdm

Xd Xdm

X
find T'd fromt2dm,,,11,,t II I"

in
T - (T +T )T +T T (X -X +X X / )/X

ill
=0

d X dO dO d dO dO dm dm dm ddm

find T from
2 ,

Tx -(T
dO+T" dO)Tx+T dO

T"
dO

/a
d

=

T = Ti T
f dO dO x

Q = (X T' +T' Tfl /TI -XI T )/Tcmd dOdOdddf x

Use an iterative method to find X
d

from

1/2 1/2 12
crd (X

d-X (I) +cr (X
d
-X I

d
)
1/2

-(X
d

-Q+X
d
T

f
/T

x
)1/2 = 0

d

XIx =
dTf

/Tx

X" = [X' -(1- cr ) Xd+((1-0-
d
)(X

d
-XI

d
)(X

d
-X1

x
))1/21 /ad

Figure 2, 4 Summary of calculation sequence of direct-axis parameters,

*Subscript "m" indicates the measured or given values.
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remain unchanged. The above scaling requires changes in the

inductance and resistance values of the effective damper coils, to

leave the individual coil time constants unchanged.

Using the calculated value of the model parameters obtained

from the calculation sequence in Figure 2.4, the effect of the leakage

factors, o-
d

and -Cr_ on the model eigenvalues can be obtained byq'

solving the characteristic equations (2-5) and (2-21) for the six-

and five-winding machine models, respectively. The effect of the

leakage factors on the observable currents (id, iq and if) can also

be obtained by finding the zeros of the current transfer functions

from equations (2-27) through (2-29).

The eigenvalues nearly have the same value as the zeros of

the root-locus polynomial ratio, given by equations (2-11) through

(2 -14). The zeros are expressed in terms of ad, a andd' q' (1!

given by equations (2-15) through (2-18). However, these terms

are expressed in terms of the known open-circuit time constants

as follows:

ad = XTx Tx + XTd Tf = T
dO

+ Tud0 = constant

5

(2-35)

= T + X' T = T + T" = constant (2-36)
q0Y Y q g q0

5 See Appendix IV.
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A= cr T T= T
q0

T"
q0

= constant
q q g y
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(2-37)

(2-38)

Hence, the short-circuit model eigenvalues will remain unaffected

by the variation of the leakage factors as long as a given set of

measured values are to be yielded by the model. The contribution

of each eigenvalue to the two stator current components (id, i )

will also remain unaffected with the variation of leakage factor(s),

when the field excitation voltage is fixedjas in the standard short-

circuit test. This is because the expression for the currents id

and i , given by equations (2-27, 28), are also given in terms of

the constants defined in equations (2-35) through (2-38). However,

the stator current components are functions of the rotor coil mutual

couplings when the field excitation voltage is not constant. This is

because their transfer function expressions, equations (2-33, 34),

are given in terms of the quantity Lax Lfx/Laf Lx. However, when

it is assumed that the damper winding currents initially completely

compensate for sudden changes in the armature current, Olive (8)

has shown that the ratio Lax Lfx/Laf Lx is unity. In this case, the

effect of the rotor coil mutual coupling on the stator current com-

ponents is zero.
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In Chapter -III, a time domain simulation of the synchronous

machine connected to an infinite bus is performed, in which it is

shown that the effect of the rotor coil mutual coupling on the stator

current components is quite negligible.

The contribution of the eigenvalues to the field current also

vary with the leakage factor(s); because, as shown by expression

(2-30), the zeros of the field current transfer function are functions

of the defined reactance X" and this reactance, as given by equation

(2-32), is a function of the direct-axis leakage factor, (rd. Hence,

the field current expression is affected by the leakage factor.

Numerical examples presented in the next section will

support the theory developed so far.

2.5 Numerical Examples

The calculation sequence presented in section 2. 4 is used

here to compute the model parameters of two turbogenerators and

one hydrogenerator unit. The turbogenerators are represented by

the six-winding model, and the five-winding model is used to

represent the hydro unit. The data for the above units are given in

Table 2.1. They are standard case data given to the Western System

Coordinating Council (WSCC) by the machine owners. For all three

units, the data are given in per-unit on the machine MVA base.

Note that T'
q

is equal to zero for the hydrogenerator unit.
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a. The model parameters

Tables 2.2 through 2. 4 show the defined model parameter

values as a function of.the leakage factors, cr d and o- , for the

three units considered. Note that o- and o- affect only the direct-
q

and quadrature-axis parameters, respectively. Also, note that

the numerical value of X" does not appear in the tables, but as

shown in the calculation sequence of Figure 2.4 and discussed in

Appendix IV, the value of defined X"
d

equals to its measured value.

The numerical values of the model eigenvalues and the

predicted short-circuit time constants, which are defined to be the

inverse of the real part of the eigenvalues, are given in Table 2.5

for the three units considered. The short-circuit time constants

provided by WSCC are also shown for comparison with the calculated

time constants. The fact that the imaginary part of the pair of

complex eigenvalues is not exactly equal to the rotor synchronous

speed (120 r rad. /sec.) indicates that the net magnetic field is

moving with respect to.the rotor during transient.

As predicted earlier in this chapter, the variation of the

leakage factors did not affect the eigenvalues of the short-circuit

model with fixed excitation voltage. Hence, the eigenvalues and

the calculated short-circuit time constants remained unchanged as

the leakage factors were varied, and they are given independent of
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Table 2.1. W. S. C. C. data for three generators used in the
numerical examples. '

Parameter** Machine 1 Machine 2 Machine 3

rated MVA 834,60000 1300.0000 142.1000
rated KV 20.0000 25.0000 13.8000
X

d 2.1830 2.1290 0.9299
Xd 0.4130 0.4670 0.3570
X"

d 0.3390 0.3150 0.2480
X

q
2.1570 2.0740 0.6510

X'
q

1.2850 1.2700 0.6510
X"

q 0.3320 0.3080 0.2970
Xo 0.1740 0.1838 0.1480
ra 0.0017 0.0020 0.00360
T' (sec.) 0.9500 1.3400 3.0600
T" (sec.) 0.0350 0.0350 0.0200
TdO (sec.) 5.6900 6.1200 8.0000
T"

dO
(sec. ) 0.0410 0.0520 0.0300

T' (sec.)
q

0.1540 0.1850 0.0000
T" (sec.)

q
0.0350 0.0350 0.0200

T' (sec.)
q0 1.5000 1.5000 0.0000

T" (sec. )q0 0.1440 0.1440 0.0600
T

A
(sec. ) 0.4400 0.4000 0.2000

Machines 1, 2 are turbogenerators (Pittsburgh 7 and Diablo
Canyon 1) owned and operated by the Pacific Gas and Electric
Company, and machine 3 is a hydrogenerator unit installed at
the John Day Project on the Columbia River.

Resistance and reactance values are given in per unit and the time
constants are in seconds.
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Table 2.2 Predicted parameters for Pittsburg 7 turbogenerator (Machine 1 of Table 2.1).

6d
Tf(sec) T (sec) X' X' cr T (sec) T (sec) X' X'

0.1 5.2900 0.4410 0.4258 0.3585 0.4 1.1904 0.4536 1.4418 0.4110

0.2 5.5197 0.2113 0.4193 0.4549 0.5 1.3156 0.3284 1.3614 0.3395

0.3 5.5919 0.1391 0.4166 0.5840 0.6 1.3839 0.2601 1.3111 0.3395

0.4 5.6274 0.1036 0.4149 0.7329 0.7 1.4279 0.2161 1.2723 0.3974

0.5 5.6484 0.0826 0.4137 0.8980 0.8 1.4589 0.1851 1.2384 0.5182

0.6 5.6623 0.0687 0.4127 1.077 0.9 1.4821 0.1619 1.2040 0.7299

Table 2.3. Predicted parameters for Diablo Canyon 1 turbogenerator (Machine 2 of Table 2.1).

crd T
f
(sec) T

x
(sec) X' X' T (sec) T (sec) X' )0

0.1 5.6041 0.5679 0.4864 0.3152 0.4 1.1904 0.4536 1.4243 0.4033

0.2 5.9024 0.2696 0.4756 0.3619 0.5 1.3156 0.3284 1.3474 0.3220

0.3 5.9951 0.1769 0.4711 0.4554 0.6 1.3839 0.2609 1.2989 0.3107

0.4 6.0403 0.1317 0.4683 0.5769 0.7 1.4279 0.2161 1.2616 0.3561

0.5 6.0671 0.1049 0.4663 0.7207 0.8 1.4589 0.1851 1.2288 0.4626

0.6 6.0848 0.0872 0.4647 0.8844 0.9 1.4821 0.1619 1.1956 0.6576
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Table 2.4. Predicted parameters for John Day hydrogenerator
unit (Machine 3 of Table 2. 1).

crd T
f(sec) T (sec)

x
X' X'

x
X"
x

0.1 7.7191 0.3109 0.3616 0.2546 0.0542

0.2 7.8777 0.1523 0.3595 0.2495 0.3140

0.3 7.9291 0.1009 0.3586 0.2665 0.4354

0.4 7.9546 0.0754 0.3580 0.3018 0.5204

0.5 7.9698 0.0602 0.3576 0.3411 0.5733

0.6 7.9799 0.0501 0.3572 0.3908 0.6171

0.7 7.9871 0.0429 0.3569 0.4529 0.6576

0.8 7.9925 0.0375 0.3566 0.5324 0.6999
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Table 2. 5. Predicted eigenvalues and the defined and given short-
circuit time constants for machines 1, 2 and 3.

Model
eigenvalues

Calculated s. c. time
constants (sec.)

Given s. c. time
constants (sec. )

- 1. 9065 +
j376. 9281

TA = O. 5245 TA = O. 440

-29. 5492 T"
d

= O. 0338 T"
d

= O. 035

-25. 3516 T" = O. 0394 T" = 0. 035
q q

- 1. 1868 T' = O. 8426 T' = O. 154
q q

0. 9342 Td ' = 1. 0704 T',
Q

= O. 950

2. 4145 + TA = O. 4142 TA = O. 400
j376. 8941

-28. 2216 T"
d

= O. 0354 T"
d

= O. 035

-27. 0989 T" = 0.0369 T" = O. 035
q q

- 1. 1511 T' = 0. 8687 T' = O. 185
q q

- O. 7525 T' = 1. 3289 T' = 1.340
q d

- 5. 0001 + = 0.1999 T
A

= o. 200
j376.7652

-47. 9149 T" = O. 0208 T" = 0. 020

-36. 5786 T" = O. 0273 T" = O. 020
q q

- O. 3262 T° = 3.0656 Td = 3. 060
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leakage factors in Tables 2.5.

Comparison of the calculated and given short-circuit time

constants in Table 2.5, shows an inconsistency between the calculated

and given values. The inconsistency is more apparent in the quadra-

ture-axis time constants, T` and T" . This is because the measure-
q q

ment or computational methods used in obtaining the quadrature-

axis time constants are less reliable, especially because of the iron

paths in the rotor body.

In the preliminary work leading into this thesis, the values

of the short-circuit time constants, given in Table 2.1, were used

to determine the defined model parameters. However, the resultant

short-circuit model had two complex pairs of eigenvalues, which

contradicts all the available measured short-circuit data for

synchronous machines. On the other hand, when the short-circuit

time constants were calculated from the algorithm of Figure 2. 4,

and used to compute the eigenvalues in the manner described,

only a single pair of complex eigenvalues was obtained. As a

result, it is concluded that the machine short-circuit time constants,

given in Table 2.1, are in error, or at least inconsistent with all

the other parameters in that table.

Using the predicted value of the short-circuit reactances

and time constants, given in Tables 2. 2 through 2. 5, it is noticed

that the conventional expressions relating the reactances and time



Table 2.6. Reactance values as a function of the leakage factors for machines 1, 2 and 3.

Machine 1 Machine 2 Machine 3

6
d

XI X" X' X" X' X"

New Cony. New Cony. New Conv. New Cony. New Cony. New Cony.

0.1 0.426 0.410 0.339 0.351 0.486 0.462 0.315 0.331 0.362 0.356 0.248 0.251

0.2 0.419 0.410 0.339 0.346 0.476 0.462 0.315 0.324 0.360 0.356 0.248 0.249

0.3 0.417 0.410 0.339 0.343 0.471 0.462 0.315 0.321 0.359 0.356 0.248 0.249

0.4 0.415 0.410 0.339 0.342 0.468 0.462 0.315 0.319 0.358 0.356 0.248 0.248

0.5 0.414 0.410 0.339 0.341 0.466 0.462 0.315 0.317 0.357 0.356 0.248 0.248

XI X" X' X" X' X"

q New Cony. New Cony. New Cony. New Cony. New Cony. New Cony.

0.4 1.442 1.212 0.332 0.395 1.424 1.201 0.308 0.365 0.297

0.5 1.361 1.212 0.332 0.373 1.347 1.201 0.308 0.345 0.297 Not
A ppli-

0.6 1.311 1.212 0.332 0.359 1.299 1.201 0.308 0.333 Not 0.297 cable
Applicable

0.7 1.272 1.212 0.332 0.339 1.262 1.201 0.308 0.323 0.297

0.8 1.238 1.212 0.332 0.329 1.196 1.201 0.308 0.315 0.297



constants, as used in the literature (2-5) and given by equations

(2-39) through (2-42), are only approximate and become more

accurate as the leakage factors approach unity.

)(Id -1= X
d

T'd0

X" d = )(Id T"d/T"d0

X T' IT'q q q q0

X"q =
q

T" /T"
q q0

36

(2-39)

(2-40)

(2-41)

(2-42)

The calculated reactances obtained from the derived algorithm and

those obtained from equations (2-39) through (2-42) are given in

Table 2.6 for comparison. Since the difference between the field and

the direct-axis time constants (Tf' Tx) is quite large as compared

to the difference between the two equivalent quadrature-axis time

constants (T , T ), 6 the expressions for the direct-axis reactances

given by equations (2-39) and (2-40) hold more accurately than those

for the quadrature-axis reactances, when the leakage factors are

varied.

6 See the numerical value of the time constants in Tables 2.2 and
2.3.
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b. Poles and zeros of the root-locus
polynomial ratio

The numerical values of the poles and zeros of the polynomial

ratio, equation (2-8), used in the eigenvalue analysis of the model

are given in Table 2.7 for the three machines considered. From

these values it is noticed that the poles of the root-locus polynomial

ratio are all real, as predicted in Appendix III. Also, in calculating

the defined model reactances (Xd.' rid etc. )yit was assumed that

the eigenvalues were close to the zeros of the root-locus polynomial

ratio in equation (2-8) or (2-24). The fact that the calculated eigen

values are quite close to, but not exactly at the zeros (see Table 2.7),

would indicate that the calculation method, with its inherent approxi-

mations gives consistent results; i.e., the eigenvalues are

practically on the top of the zeros.

c. Short-circuit current responses

As shown in section 2.4, the zeros of the transfer functions

for the short-circuited stator current components are not functions

of the leakag factors when the field voltage is fixed. However, it

was shown for a five-winding machine model, that the zeros of the

field current transfer function are functions of the direct-axis

leakage factor. Table 2.8 gives the values for the zeros of the



Table 2.7. Short-circuit model eigenvalues and the zeros and poles of the root-locus polynomial ratio.

Machine 1 Machine 2 Machine 3

zeros poles zeros poles zeros poles
eigenvalues (z

1
to z 4) (p

1
to p6) eigenvalues (z1 to z4) (p

1
to p

5) eigenvalues (zi to z3) (p1 to p3)

- 0.9342 - 0.9342 - 0.1152 - 0.7525 - 0.7525 - 0.1175 - 0.3262 - 0.3262 - 0.1185

-29.5492 -29.5475 -29.9056 -28.2216 -28.2245 -29.0504 -47,9149 -47.9025 -49.7127

- 1.1868 - 1.1868 - 2.3517 - 1.1511 - 1.1511 - 2.2026 -36.5786 -36.5544 - 3.8714

- 25.3516 -25.3451 - 0.9986 -27.0989 -27.0834 - 0.8235 - 5.0001 + - 1.9441
j2376.7652

- 1.9065 + -26.8044 - 2.4145 + -28.9771 -39.1806
j376.9281 j376.894I

- 1.4237 - 1.4323

The subscripted numbers on p's and z's correspond to those on Figures 2.2 and 2.3.
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model field current transfer function for the John Day hydro unit

(machine 3). The values in Table 2.8 are obtained when the cal-

culated model parameters are used in equation (2-30), and indicate

that the contribution of each eigenvalue to the field current varies

with the value of the leakage factor.

Table 2.8. Zeros of the field current transfer function as a function
of o-d for the John Day hydrogenerator unit.

d Zeros of the field current transfer-function

0.1

0. 2

0.3

0. 4

0. 5

0. 6

0. 7

0.8

83. 3996+j257. 3399, -245.2739, -16.0636, -0.2815

17.5685±j431.1761, -123.5641, - 5.7829, -0.6100

5.6119-±j502.7568, -102.2290, - 2.6126, -1,2022

0.2289±j548.1696, 92.6026, - 1.3376 j1.0619

- a. 3662-±j574.8103, - 86.2818. 1.0312 + j1. 3143

-4.1987-1-5596.0419, - 84.7493, - 0.8367 + jl. 4127

- 5.6830±j614.9998, - 82.0501, 0.7019 + j1.4569

- 7.0621+j634.2583, 79.4919, - 0.6020 + jl. 4750

The zeros of the field current transfer function can be obtained

from Table 2.8 by predicting an approximate value for the leakage

factor o-d. As discussed in section 2. 4, Olive (8) has shown that,

when it is assumed that the damper winding currents initially

completely compensate for sudden changes in the armature current,
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the following relations hold:

Lax Lfx
1 (2-43)Laf Lx

L Lay gy
L Lag y

1 (2-44)

When the above assumptions are used, the defined expression for

X"d becomes the same as X and that for Xi! becomes equal to
q

Xy. Hence, the approximate values of crd and 6q, for a given

machine, are those for which the values of X"d and XH are
q

respectively the same as X'x and X' . It should however be noted
y

that because of the assumption made in this thesis, that Lot = Lax

and Lay = Lag' equations (2-43) and (2-44) yield Lfx = Lx and

L = L , which will put restriction on the values of the mutual
gY

inductances L and L . Hence, the predicted value of Crd and 6
gY q

obtained from equations (2-43) and (2-44) are only approximate

values.

If the assumption to make X`x = Xud and Xi = Xi I is imposed,
y q

it is noticed from the values of X'x and Xr in Tables 2.2 through
y

2.4 that the mutual coupling between the rotor coils are quite strong

(weak leakage factor,)for, the machines considered and the coupling

is stronger on the direct-axis.
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2.6 Conclusions

In this chapter, a linear model is developed for the synchronous

machine with short-circuited stator terminals which takes the effect

of the rotor coil mutual couplings into account and make ?Minimum

of assumptions on the inter-coil couplings. An algorithm is developed

to evaluate the defined model parameters in terms of the defined

leakage factors and the machine short-circuit reactances and open-

circuit time constants given by the manufacturers or owners of the

machines.

From the comparison of the calculated short-circuit reactances

and time constants, given in Tables 2.2 through 2.5, with their

corresponding given values in Table 2.1, inconsistency in the

available machine data, particularly, in the quadrature-axis

reactances and time constants is noticeable. As explained in

section 2.5, the inconsistency is due to the error in the given shor-

circuit time constant values appearing in Table 2.1.

It is also noticed that when the field voltage is kept constant,

the leakage factors (if
d

and cr ) have no effect on the model short-

circuit time constants and the short-circuit stator current com-

ponents. It is also established that the field and damper bar current

responses are affected by the leakage factors. In order to obtain

the proper leakage factor(s) for a generator, it is necessary to
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observe the response of the generator field current to a disturbance

and compare it with the field current response of the model, when a

similar disturbance is -applied to the model.

If the assumption proposed by Olive (8) is imposed, from

which )(ix becomes equal to X"
d

and X' equal to X"
q

, it is noticed

from the values of Xlx and X' in Tables 2.2 through 2.4, that the
y

mutual couplings between the rotor coils are quite strong and the

coupling is stronger on the direct-axis.

It is also noticed that the open-circuit field time constant, Tf,

is approximately equal to the machine open-circuit time constant,

Trdo. If this assumption is made, the product of 6d and Tx will be

equal to T"do. It can therefore be concluded that as 6
ci

approaches

unity, Tx approaches the value of vac However, a similar con-

clusion can not be drawn for the quadrature-axis, except when o-

approaches unity. This is because T and T are in the same order

of magnitude, where as Tf is much larger than Tx. T is, in general,
g

not close to T`q0 except for values of sq near unity.

In summary, it can be concluded that:

1. the leakage factor(s) have no effect on the short-circuited

stator current components when the field voltage is fixed

and the model is to yield a fixed response.

2. The leakage factor(s) affect the stator current responses

when the field excitation voltage is not fixed, whether the
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stator terminals are shorted or not. However, as will

be shown in Chapter III for a one machine infinite-bus

system, the effect of the leakage factor on the stator

current components is very small.

3. The leakage factor(s) do affect the field and equivalent

damper currents. Hence, in order to observe the proper

field current response from the model, the leakage

factor(s) must be known.
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III. EFFECT OF THE ROTOR COIL MUTUAL COUPLING
ON THE MACHINE DYNAMIC BEHAVIOR

A TIME DOMAIN APPROACH

3. 1 Introduction.

In the conventional linear models and equivalent circuits of the

synchronous machine presented in the literature (2-4) and widely

used in the investigation of machine transients, it is assumed that

the mutual coupling between the rotor coils on each axis is the same

as the rotor-stator mutual couplings on the corresponding axis.

However, as shown in Chapter II, variation of the mutual couplings

between the rotor coils have significant effect on the rotor current

responses. It therefore becomes necessary to make the rotor

coil mutual couplings different than those between rotor and stator.

Although the original Park's Equations are also used in the

derivation of the model considered in this chapter, the present

model differs from that discussed in Chapter II in that the model

discussed herein considers the short-circuit reactances to be defined

in terms of the conventional open- and short-circuit time constants,

which are assumed to be known; whereas, in the model discussed

in Chapter II the conventional open-circuit time constants and short-

circuit reactances were assumed to be known and the defined model

reactances and time constants were calculated in terms of the known

reactances and time constants.
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In this chapter, the conventional model given in the literature

(2-4) is modified to make the rotor coil mutual inductance (Lfx, Ligy)

the sum of the rotor-stator mutual inductances (Lmd' Lmq) and the

unknown inductances (ifx ,
gy). The modified model is then used to

investigate the effect of variation of the rotor coil mutual coupling

on the predicted transients of a synchronous machine with short-

circuited stator terminals, and a synchronous machine infinite-bus

system. A five-winding machine model is used in this investigation.

The state space approach is used in the development and digital

simulation study of the model, and the given data for the John Day

hydrogenerator units (Table 2.1) are used in presenting a numerical

example.

The eigenvalues of the machine model with short-circuited

stator terminals are compared with those obtained for the model

derived in Chapter II. Rotor angle, frequency and current responses

of the one machine infinite-bus system to a sudden change in the

transmission line reactance are also presented as a function of the

rotor coil mutual coupling.

3.2 Equivalent Circuits

The direct- and quadrature-axis equivalent circuits, which

represent the classical machine model developed in the literature

(2-4) are shown in Figure 3.1. The basic equations from which the



equivalent circuits are derived, are given in Appendix V. The

equivalent circuit elements represent the armature resistance and

leakage inductance,

46

a and fa; rotor-stator mutual inductances, Lmd

and Ling; field resistance and leakage inductance, r
f

and .17,f'- and the

amortisseur winding resistances and leakage inductances r , r , £ '
and . Note that in the derivation of the equivalent circuits of

Y

Figure 3.1 it is assumed that the rotor-stator and the rotor coil

mutual inductance are equal; i.e., Lat, L L and theax fx Lm.d

armature resistance ra is external to the networks.

Direct-axis

Quadrature -axis

Figure 3.1 Equivalent circuits of classical machine model.
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However, the conventional formulation used in deriving the

above equivalent circuits represent only the stator circuit reasonably

accurately (15). Hence, when the rotor coil current responses of

the machine are to be studied, the mutual coupling inductance

between the field and the direct-axis damper winding (Lfx) should

be different from the rotor-stator mutual inductance. In what

follows, it will be assumed that the direct-axis rotor coil mutual

inductance (Lfx) is the sum of the rotor-stator mutual inductance

(Lmd) and an extra mutual inductance (2
fx), which is normally

unknown. The reactances corresponding to ifx, Lmd and Lfx are

respectively xfx' Xmd and X' such that X = X + x.
and fx and fx

The basic equations, which represent a classical machine model

are modified in Appendix V to include the effect of the extra mutual

coupling inductance ifx. Figure 3.2 shows the modified equivalent

circuits for a five-winding machine model, which are derived on

the basis of the modified machine equations given in Appendix V.

It should be noticed that if a six - winding machine model, with

two lumped-equivalent amortisseur windings on the quadrature-

axis is desired, the extra mutual coupling inductance between these

two windings (i ) should also be taken into account. Addition of
gY

the dotted parts to Figure 3.2 makes that figure the modified

equivalent circuit for a six-winding machine model.
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id Fa

pfd

Pfx rf if

Dire ct-axis

Quadrature -axis

Figure 3.2 Modified equivalent circuits.

The expressions for the circuit parameters of Figure 3.2 are

derived in Appendix V for the five-winding machine model. As

shown in that appendix, the circuit parameters for the modified

equivalent circuit of Figure 3. 2 are obtained in terms of the given

or measured open- and short-circuit time constants and the direct-

axis leakage factors o- .7 The leakage factor, which is a measure

2L
o-
d

=1- LfLx , where L
f f+L L x +L

rn.
L =L In+2

f x m.d, x fx d' fx d fx
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of the mutual coupling between the rotor coils, is introduced to

modify the conventional equivalent circuit of Figure 3.1, by assuming

the mutual inductance between the rotor coils (f and x) to be different

from the rotor-stator mutual inductance Lind. This assumption is

true, because the mutual coupling between the rotor coils (f and x)

is stronger than the rotor-stator mutual couplings. Hence, the

modified Park's, Equations and the equivalent circuits are developed

by using the expression (L
and

+ ffx) as the mutual inductance between

the coils frflf and rrICir on the rotor, instead of using just the term

tIL
md tr, which is used in the conventional machine models given in

the literature (2-4).

Once the mutual inductance ifx, or its corresponding leakage

factor crd' is determined for a given machine, all the equivalent

circuit parameters become known.

Formulations similar to those in Appendix V will also yield

the equivalent quadrature-axis parameters as a function of o- when

a six-winding machine model is to be used.

In the derivation of the above equivalent circuit parameters,

it is assumed that the armature leakage reactance, X
a , is equali

to the zero sequence reactance of the machine. It is further assumed

that, as mentioned in Chapter II, the following equalities hold true

between the direct-axis reactances and time constants:



T 'd
X' = Xd d T

dO

T"d
X = X'

d d T"
dO

3. 3 System Studied
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(3-1)

(3-2)

The one-machine infinitebus system considered consists of a

synchronous generator connected to an infinite-bus through a trans-

mission line, as shown in the one line diagram of Figure 3. 3. It is

assumed that voltage and frequency of the infinite-bus are not

altered by real and reactive power flow. Excitation control is not

incorporated in this study.

Generator Infinite -bus

Figure 3. 3 One line diagram of the synchronous machine infinite-
bus system.
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Parkas equations for the five-winding synchronous machine

model connected to an infinite-bus, and including the effect of the

leakage factors are given in Appendix VI. These equations are non-

linear and the small displacement technique is employed to linearize

them around an operating point by letting all variables change from

their steady state value by a small amount L; e. g. , id= Id +Lid,

where the capital I denotes the steady state value. Since Lis

assumed to be small, terms including L and higher order may be

neglected without losing accuracy. Since the machine equations are

expressed in a reference frame fixed in the rotor, it is convenient

to transform the transmission line equations into the same rotor

reference frame by using Parkas transformation. The resulting

linearized small displacement equations of the one-machine infinite-

bus system are given by equations (3-3). A step voltage for

Lef is used. Constant prime mover torque is considered, making

LTm = O.



0

0

0

ref

T
m

0

- (ra+re) (Xq+X
e)

0 -Xmq 0 (X +X
e

)I -V
B

osb-
q q 0

- (Xd +X e) -(ra +re ) Xmd Xmd Xmd If VB Sin b
0

-(Xd+Xe )Id

0 0 r 0 0 0 0
x

O 0 0 r 0 0 0

O 0 0 0 Xmd 0

(X q-Xd)Iq (Xq-Xd)Id Xmd I
q

-XmqId -XmdI
q

0

+XmdIf

O 0 0 0 0

+X
e)

0 Xmd 0 Xmd 0

O - (X
q+X e) 0 X

mq
0 0

-Xmd 0 Xx 0 Xmfx 0

O -X 0 X 0 0
mq V*

X2
and
rf

0

0
Xmd Xmfx Xmd X

f
0 0

rf rf

0

0

0

0

0

0 0 0 0 Mtllb DI

O 0 0 0 0

0

P

b

52

Aiq

Aix

Af

AU)
CO
b

A8

Aid

,L1

Al

q

Ai
x

Y

Z\if

b

(3-3)
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where,

X
mfx

= XInd + xfx

Xx = X + X
fx mix

Xf
= X + Xff mix

X - X X
D D + I + I I

I b
d q w

b
f q

Equation (3-3) is not in standard state variable form (px=Ax+Bu);

and in order to arrange it in this form, it is convenient to define

the following terms:

AV = [ 0 0 0 00ef]T (3-4)

AT = [dTrn 0] T (3-5)

V =
1 -V Cos V

B
Sin 6o

q
+Xe) I

q
XmdIf-(X

d
+X

e
)Id 0 0

0 0
(3-6)



(X
q-X d)I q

vz
0

(X
q-X d)Id+XmdIf

0

Xmd Iq

0

-XmqId

0

V3 =
-1 0

-(ra+re) (X
q
+Xe) 0 -Xmq

111,

-(X
d-f-X e)

-(ra+re) Xmd Xmd

Z = 0 0 rx 0 0

0 0 0 r 0
Y

0 0 0 0 X
and

rAi
d

Li Aix Ai Lifj
qL

AA
b

a)b
G

0

T

54

Xmd Iq

0

(3-7)

(3-8)

(3-9)

(3-10)

(3-11)

(3-12)
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X =

Y=

-(Xd+Xe)

0

-Xmd

0

X2md

0

0

0

-(X
q

+X
e

)

0

-Xmq

0

T
0 0]0

0 0

Xmd

0

Xx

0

X Xmd mfx

0

Xmq

0

X

0

Xmd

0

Xmfx

0

Xmd Xf

(3-13)

(3-14)

rf

0

[0 0

rf rf

Using the above definitions and rearranging,equations (3-3) can be

written in the form, px = Ax + Bu, as follows:

p

LA]

-
-cob X 1Z -cpbX1V1 rol ct) X-1

bG 1V
2

-cob G
1
V3 LA yT

where, the system matrix A is

A

-1

b G
-1

V
z -co bG V3

-a) X Z X-1V

-1

1

and the control matrix B is

WO"

(3-16)



-1

B = [(1)
yT

y
01,
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(3-17)

Equations (3-15) give a seventh order system in the small displace-

ment form; and they are arranged in the desired state variable form,

where the system eigenvalues are calculated from det[XI - A] = 0,

I being the identity matrix. The short-circuited synchronous

machine eigenvalues can also be calculated by neglecting the state

variables in equation (3-11), and the control variables in equation

(3-5). Equations (3-15) will then become

p [LI] = [-cobX-1Z] [LI] + [a bX-1] OV (3-18)

where, r and X
e

are set equal to zero in the matrices X and Z, and
e

the eigenvalues are obtained from det [N.I+u)
b

X
-1Z] = 0. From

equations (3-18), it is clear that the order of the machine model is

five, and the eigenvalues of the above equations correspond to the

conventional machine short -circuit time constants.

3.4 System Data

John Day per-unit machine parameters, given in Table 2.1,

are used to study the effect of the leakage factor, ci-d, on the eigen-

values of the new short-circuit model and the response of a
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synchronous machine infinite-bus system, with a sudden change in

the transmission line reactance. The per-unit inertia constant and

damping coefficient for the John Day unit, and the transmission line

parameters used in the above studies are as follows:

M = 0.01833

D = 2.0

X = 0.3
e

re = 0.0

3.5 Analysis of Short-Circuit Model Eigenvalues

Equations (3-18) represent the linearized model of the short-

circuited synchronous machine in state variable form. The eigen-

values of the above system of equations are obtained as a function of

the leakage factor for the John Day generators, using a digital

computer. The eigenvalues are given in Table 3.1 for three values

of the leakage factor.

As noticed from Table 3.1, the model eigenvalues, which

represent the machine transients, are not significantly affected by

the leakage factor. These eigenvalues are very close to those

obtained for the short-circuit model derived in Chapter II, although

a different approach has been used in developing the present model.
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Table 3.1 Short-circuit model eigenvalues for the John Day hydro-
generator unit.

crd Eigenvalues

0.1 -4. 998±j 376. 766, -0. 324, -36. 541, -48.259

0.5 -4. 998±j376. 766, -0.324, -36.541, -48. 217

1.0 -4. 9985376. 766, -0.325, -36. 541, -48. 058

3.6 Eigenvalue and Time Response Analysis of the
One Machine Infinite-Bus System

When a synchronous machine infinite-bus system is represented

in full detail with only one damper coil on each axis, a seventh order

system results. Equations (3-15) represent the linearized, small

displacement differential equations given in state variable form. The

A-matrix given by equation (3-16) is solved, using a digital com-

puter, to give the seven eigenvalues at the chosen operating point.

Table 3.2 shows the eigenvalues of the John Day machine connected

to an infinite-bus, via an external reactance (with the machine

operating at full capacity of 142.1 MVA and with 0.95 lagging power

factor) as a function of the leakage factor crd.

Table 3.2 Eigenvalues of one machine infinite bus system as a
cr

d
function of crd.

0.05 -6. 07±j358. 46 - 54.97+x'141.12 -0.1375 -23.98 -34.81
0.5 -6.07±j358. 46 -54. 97±j1 41.1 2 -0.1380 -23..97 -34.78
1. 0 -6. 07±j358. 46 -54. 97+5141.12 -0.1386 -23.96 -34.59
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From Table 3.2 it is noted that variation in the leakage factor does

not affect the system eigenvalues significantly.

A digital computer simulation of the system is also performed

according to equations (3-15). In the simulation study, the effect

of variation of the leakage factor on the stator and rotor current

responses are observed when the transmission line reactance is

suddenly increased from 0. 3 to 2. 0 (p. u. ) Although this sudden

change in the transmission line reactance is not small, the changes

in the responses shown in Figures 3.4 and 3. 5 are all within one

percent from the operating point, which is small for all practical

purposes. Hence, the assumption of small displacement around the

operating point, which was used in linearizing the nonlinear one-

machine infinite-bus system, holds.

Figure 3. 4 shows the change in the peak stator current respon-

ses, Aid and Ai , the normalized rotor frequency, Au) /a) and
q

rotor angle, A as a function of time. It is noticed that variation

of leakage factor has negligible effect on the above quantities. This

effect that only showed, in the first swing, was very small for

different values of o-d and could not be detected on the continuous

responses. This is to be expected, as it was shown in Chapter II,

that the stator current responses are not significantly affected by

the leakage factor o-d The rotor angle and frequency are also

expected to be unaffected by the leakage factor, as they represent



the energy balance in the system. Since the input mechanical

energy is only a function of the prime mover, the final rotor

frequency and angle should not be affected by the leakage factor.

Figure 3.5 shows the peak values of the direct-axis rotor

currents, Ai and Aix, for three values of ad' From this figure

60

it is noticed that the leakage factor has significant effect on the

rotor currents, if and ix. Similar observation was made from the

short-circuit model derived in Chapter II. It is therefore essential

to obtain the proper value of the leakage factor for studies in which

the rotor coil currents have important parts.

3. 7 Conclusions

In this chapter, it was again established that the mutual

coupling between the direct-axis rotor coils of a five-winding

synchronous machine model largely affects the rotor current respon-

ses during transients. However, the stator current components

and the rotor angle and frequency remain essentially unaffected by

the variation of the above mutual coupling when the model was to

yield a fixed set of time constants. These observations were made

by modifying the widely used model of the synchronous machine to

have a rotor coil mutual inductance different from that between the

rotor and the stator. Modified equivalent circuits for the direct-

and quadrature-axis equations were also derived. These equivalent
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circuits must be used when a detailed study of the rotor electrical

quantities are desired during transients. The conventional equivalent

circuits are, however, sufficient for the study of the stator quantities

and rotor oscillations, as it was observed that these quantities are

not significantly affected by the rotor coil mutual coupling. However,

the mutual inductance between the rotor coils is not normally known.

It is therefore essential that the value of the above mutual inductance

(or its corresponding leakage factor) be determined by comparing

the field current response of the actual machine and that of the

model, with similar disturbances applied to the machine and the

model.



64

IV. CLOSURE

4. 1 Conclusions

In this research it has been shown that in order to obtain a

detailed model of a synchronous machine, the mutual inductances

between the concentrated coils of the model should be accounted for.

The rotor-stator mutual inductances on each axis were made equal

(Laf = Lax and Lay = Lag) by rescaling the damper winding currents,

and only the effect of the rotor coil mutual inductances (Lfx and L )
gY

on the behavior of the synchronous machine were investigated.

Park's Equations and a Laplace-Transform Domain approach

were first used to develop a model for the synchronous machine

with short-circuited stator terminals. In this model, the numerical

value of the rotor-stator mutual inductances, or their corresponding

reactances, were not necessary, as they were only used in defining

expressions for the transient and subtransient reactances. The

defined model reactances and time constants were then obtained in

terms of the rotor coil mutual inductances. The given or measured

short-circuit reactances and open-circuit time constants were

assumed to be known and were used in investigating the effect of

the rotor coil mutual couplings on the defined model reactances and

time constants as well as the observable current responses (id, if).
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Parkts Equations were also used to modify the widely used

synchronous machine model presented in the literature (2-4). The

modification was made to make the rotor- coil mutual inductances

different from that between the rotor and stator coils. The rotor-

stator mutual reactances of each axis were approximated in terms

of the corresponding axis synchronous reactance and the armature

leakage reactance. The direct-axis rotor coil mutual reactance

was assumed to be different from the rotor-stator mutual reactance,

and its effect on the machine behavior was investigated. The effect

of the rotor coil mutual coupling was also investigated on the

current responses of the machine, when connected to an infinite-bus.

In this model, the short-circuit reactances were defined in terms of

the conventional open- and short-circuit time constants, which were

assumed to be known. The state space approach, in the time

domain, was used in this investigation.

Although the two models considered are based on Parkts

equations, they are different in the way their inductances are

defined. However, the results obtained from the study of both

models were quite in agreement and can be stated as follows:

The rotor coil mutual couplings largely affect the rotor coil

currents during transients. On the other hand, the stator current

components, the rotor angle and rotor frequency remain essentially

unaffected by the rotor coil mutual couplings when the models were
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to yield a fixed set of parameters. Hence, in the studies that only

the stator quantities, the rotor torque-angle, or the rotor frequency

are of concern, the conventional models provide sufficient infor-

mation; but, when the rotor electrical quantities are of concern,

proper value of the leakage factor(s) should be used in the models

considered.

Precise knowledge of the field current transients is important

in the stability investigations of the synchronous machine with

regard to the action of the regulator if the output characteristics

of the exciter are taken into account. The above knowledge is also

very important in the selection of the proper discharge resistor for

the main circuit breaker in the field circuit . Hence, when such

information is necessary, it is important to have the rotor coil

mutual coupling effect included in the model.

Modified equivalent circuits for the synchronous machine were

also obtained on the basis of the modification made to the conven-

tional equations derived in the literature (2-4). These equivalent

circuits can be used in calculation of the effective damper currents.

Through a digital simulation of the machine model and the

eigenvalue studies, it can be concluded that, in order to obtain the

proper mutual couplings for the rotor coils of a synchronous machine,

the field current response of the machine, under a given disturbance,

should be compared with the model field current response when the
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model is also disturbed with a similar model disturbance. The

leakage factor values that make the model field current response the

same as that of the actual machine represent the mutual couplings

between the rotor coils.

4.2 Further Re search

Further research in the following areas will enhance the

present study:

1) In the transfer functions obtained for the stator current

components of the synchronous machine, it was noticed

that the transfer functions have one zero that was a

function of the quantity Lax Lfx/Laf Lx. It was further

noticed that these zeros could be positive or negative

depending on the value of the quantity L L /L L .ax fx af

Further studies could be conducted to determine if

positive zeros are physically realistic.

2) Consideration of the induced voltages in the field winding

of the synchronous machine, due to the mutual couplings

between the rotor and stator coils, when a disturbance is

applied to the machine. This study will be helpful in

making the present excitation system models more accurate.

Parameter identification of the synchronous machine,

with the effect of the mutual couplings taken into account.
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APPENDIX I

Park's Equations for a Generalized.
Six-Winding Synchronous Machine Model

The quantities such as flux-linkage, voltage, or current are

transformed to the corresponding Park Domain quantities by the

following transformation:

EUParkl
[T] RT

71

(Al -1)

where U represents flux-linkage (X), voltage (v), or current (i).

The variable vectors for a six-winding machine model are defined

as follows:

Eupark3

ud

q

of

ux

y

g

[Ureal1

ua

ub

uc

of

ux

y

g

and the transformation matrix in (Al -1) is defined to be
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Cos 9 Cos(9-120°) Cos(e+120°) 0 0 0

-Sin 9 - Sin(9-120°) -Sin(9 +120) 0 0 0

0 0 0 3/2 0 0
[T] RT.:2/3

(A1-2)
0 0 0 3/2 0

0 0 0 0 0 3/2

The transformation of the Park variables to the "real"

variables is performed by

[Urea]) LT] [UParkl (Al -3)

where

Cos 9 -Sin 0 0 0 0

Cos(8-120°) -Sin(9-120°) 0 0 0

Cos(0+120°) -Sin(9+120°) 0 0 0

[T] 0 0 1 0 0 (A1-4)

0 0 0 1

0 0 0 0 1

Applying the above transformation and assuming that the

amature resistance in the three phases are equal, say ra, and

with reference quantities as chosen in Chapter II, it follows that



v d

v (t)

vf(t)

0

0

0

p 0 0 0 0 Xd(t)

p 0 0 0 0 q(t)

0 0 p 0 0 0 X f(t)

0 0 0 p 0 0 X x(t)

0 0 0 0 p 0 X (t)

0

-ra

0

-ra

0

rf

0 0 X t( )

d(l)

i (t)

if(t)

0

rx

r

ix(t)

i (t)

i (t)

(Al -5)
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where p is the operator TIT and cu = p8 . The direct and quadrature

damper winding equivalents are taken to be short circuited; hence,

their terminal voltages have been set to zero.

With the reference direction adopted above, the flux-linkages

can be written in terms of the terminal currents, in the Park

Domain, as follows:

{x' pa rki [L] [ipa rkl

where

(Al -6)
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-Ld

0

0

-L
q

Laf

0

Lax

0

0

Lay

0

L ag

L
2 af 0 Lf Lfx 0

[Li] = (A1-7)
Lax2 ax Lfx 0 0

0
-2

3 Lay 0 0 L L
Y Yg

0
3 L 0 0 L2 ag Yg

Substituting (A1-7) in (A1-5) and taking Laplace Transform yields

-(ra+ad) w Lq
of

sL sL W
ax

- Lay - L
ag

Id

-03Ld -(ra+sLq) CULaf WI,
ax

sL sL sLag I
cl

-3 sL 0af rf+sL1 sLfx 0 P If
2

'2 0
2 ax sLfx r +sL 0 0x x

0 r +sL sL I
Y Y Yg Y

0 sL r +sL
Yg g g

0

0

-22

3-2
2

ay

ag

0

0

V
d

V
q

f [L] (I
Park

(0)i

0

0

0

(A1-8)
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where the capital letters for voltage and current indicate the

quantities in the Laplace Transform Domain. The vector [Ipar40)]

contains the initial values of the untransformed, Park Domain

currents.



APPENDIX II

Derivation of the Characteristic Equation for a
Six-Winding Machine Model with Short-Circuited Stator

From Equation (2-4),the unobservable rotor coil currents

(Ix, I
y,

I g) can be obtained in terms of Id, I
q, If as follows:

where

Ix = (u
4

- a
41

Id - a
43 If) / a 44

I = -a I
Y Y q

I = -a Ig q

ay (a52 a66 a62 a56)/(a55 a66 a56 a65)

ag (a62 a55 - a52 a65)/(a55 a66 - a56 a65)

(A2 -1 )

(A2-2)

(A2-3)

(A2-4)

(A2-5)

Substituting expressions (A2-1) through (A2 -3) (2 -4), yields

all a44 a41 a14

a21 a44 a41 a24

a31 a44 -
a41 a34

a44 [a 12 - a 15 ay
a
16

agl

a44(a22 a25 2y a262g]

0

244 u1 a14 u4

244 u2 a24 u4

244 u 3 - a 34 u 4

213 a44 a43 a14
Id

a23 244- 243 a24

a33 a44 a43 a34 If

(A 2 -6)
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The characteristic equation, which is the determinant of the matrix

on the left hand side of (A2-6), can be forced into the following form:

03
2

( s
2

+Ads+Bd)(s
2+A s+B (s 3+C s 2

+D
ds+E )X

q q d d

where

Ad = (Xix Tx+ )(d Tf)/Ad

Bd = Xd Ad
d

(s
3+C

q
s

2+D

q
s+E

q
)

(A2-7)

= (X T + X T )/A
Y Y q g q

Bq = X/ A
q q

Xd X
Cd = =

X
+ A

X" T + Ad II Td d q q

Xd f(T + Tx + Td)
Dd A T

d d

Ed

and

X
d

=
X

q
(T + T + T

q
)

g.
T

q q

X
=

T
q q

Ad =(3-dxdT Tx A = o Xt1 T T
q q qYg

X
dTd = wr
a

and

T
q

X

cura



L fx
2

o-d = direct-axis leakage factor d I
f"x

L2
o- = quadrature-axis leakage factor A 1 - gY

L L
g Y

Xd
= A (1)1,

= d

X =A 03L
q = q

X` =
d

2
3 of

(Ld Lf

3
Lzag

q (I)(Lq 2 Lg )

X"
d = )]3

2af L2L ax 2LafLaxLfx
A (.0 [L LfLxd 2 (rd.

X" =Q 03
q =

2 L2
L - 3

(
ag

2LagLayLyg

q 2o- L L L L
q g Y g Y

2

3
Lax

X x = (Ld -
2 Lx

Lzax
AX' (1)(L

g

and
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APPENDIX III

Derivation of Poles of Root-Locus
Polynomial Ratio

Root-locus technique can also be used to approximate the

poles of the root-locus polynomial ratio in equation (2-8). The

poles of the above polynomial ratio are the roots of equations (2-19)

and (2-20), rewritten below.

s3 Cd s 2 + Dds + Ed = (s + p
1
) (s + p )

s
3+C

s
2 +D s+E =

q q q
+ p4) (s

Equation (A3-1 ) can be rewritten as,

+ p3)

) (s + p )

Dd (s + Ed/Dd)
1 + = 0 (A3-3)

sz (s + C
d)

Equation (A3-3) is suitable for application of the root-locus technique.

The estimated locations of the zeros and poles of the polynomial

ratio in (A3-3) are shown plotted on the s-plane in Figure A3. 1.



- Cd

asymptote -Ed/D = -1/(T
f
+T

x
+T

d
)
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Figure A3.1. Root-locus plot for approximating the roots of a third order polynomial.

Since for most machine-parameter values the gain factor of the

root-locus polynomial ratio (Dc/ = Xd/Ad Td) is much larger than

unity, and the zero lies very near the origin, one root of equation

(A3. 1) is expected to lie very near the zero. Once one root (p1) is

determined, the remaining two roots can be obtained by dividing

(s + p1) into the polynomial in equation (A3-1), from which a second

order polynomial is obtained. Solution of the second order poly-

nomial can then be obtained using the binomial expansion of the

quadratic formula. Since for most machine parameters the zero

at -E
d /D1 and the pole at -Cd are very far apart, the roots

(p
2

and p
3)

of equation (A3-1) are real.

Based on the above discussion, the roots of equation (A3-1)

are approximated as follows:

2Zd Pdti
P1 = Z (1 + (A3-4)

1 d Kd

(A3-5)



and

2 3
Kd K

d
Kd

P3=
+ Zd )3 (Pd + Zd) 5

-1
Z d = T + T + Tf x d

X
d

Pd= X"
d Td

Kd
- Xd

d Td Ad

ad

(A3-6)

(A3-7)

(A3-8)

(A3-9)
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Expressions similar to those for p1 through p3 can be written for

p4 to pelf Dq, Zq, Pq, Kq are respectively substituted for Dd, Zd,

Pd' Kd in equations (A3-7) through (A3-9), where

X
D = _a_

q A
q q

Z =
q T + T + T

g q

1

X a
= q

X" T

-X
K =

q Zq Tq Aq

(A3-10)

(A3-11)

(A3-12)

(A3-13)
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It should be noted that, the assumption that one pole of the

root-locus polynomial ratio in equation (A3-3) lies very near the

zero, holds better for the direct-axis than for the quadrature-axis,

as the gain factor Dd is larger than D for most machine parameter
q

values.
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APPENDIX IV

Derivation of Defined Short-Circuit Model
Parameters from the Measured Data

From Figure 2.1, the rotor direct-axis circuit equations can

be written, in the Laplace-Transform domain, as

0

rf + sLf sL

sLfx rx + sLx

If"

Ix

(A4-1)

The characteristic equation of (A4-1) can be simplified and written

in terms of the Park Domain open-circuit time-constants as,

2 1 1 1

T
1 1 1s + (+ ) s + (s +T ) ( s + - 0

cr d Tf x Cr d Lf x dO dO

From equation (A4-2)

= T Tr "d Tf dO dO

Solving (A4-4) for

T + Tf x + T"d0

Tf and substituting in (A4-3), it yields,

(A4-2)

(A4-3)

(A4-4)

T"2Tx - (T
0

O
+ ) Tx

d dO
+ = 0 (A4-5)

dO
crd



Tx can be obtained from (A4-5), and it is real if,

4T' TTYd0 dO
o-

d (T' + Tu 2)
dO dO

(A4-6)
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Equation (A4-6) gives the lower limit for crd and the upper limit is

(1 - cr, ), where cr is the lower limit of o-.
"min dmin

Similarly, T can be obtained from the following quadratic

equation:

T'
T 2 - (T' + T'' ) T + q0

0 (A4-7)
y q0 q0 y o-

Solution of (A4-7) is also real if

4T' "q0 T
q0

>
q (T' + T" )2q0 q0

q

(A4-8)

Assuming that the real roots of the characteristic equation

for the short-circuit model are very near the zeros of the root-

locus polynomial ratio, as discussed in section 2.3, equation (2-6),

whose roots are the zeros of the root-locus polynomial ratio,

can be written as,

(A4-9)

(2 2 1 1 1
s + A s+Bd)(s +A

q
s+B

qd +7,-,)(s +)(s-F---r)(s +rid
dd V T

q q



Since the direct- and quadrature-axis parameters affect only their

respective time-constants, the direct-axis short-circuit time

constants can be written as follows:

1

'

1 2
S n

Xt T +XI T
(s+ )(s

d
) = s +A s+B = x x df X

d d o- X" T TT
d d f x a-ciX dTfTx
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(A4-10)

Assuming that the quadrature-axis pole(s) make negligible contri-

bution to the direct-axis current component, from equation (2-27),

expression for the above current (in the Laplace-Transform domain)

can be approximated as,

1 1
(s+-7 ) (s -FTi )E co

2
T T

dO dOId(s) sX'
d (s2 2 I 1

+Ks+<6 ) (s +--T ) (s+---7, )Td T

where K is a constant.

or

(A4-11)

From the definition of transient reactance it follows that

E
0 A

Xrdm = Idss + idt (0) =
X

+ i
d

(0)
dm

(A4-12)

(1 - TdI/TdOI (1 T 1d /T. I 1 ;, 1 dO
" m Xdm Xi'd (1 - Tdt/Tc;'),

(A4-13)

where, idt (t) and Idss indicate the transient and steady-state corn-

ponents of the direct-axis current, respectively and subscript m

along with the parameters indicates their measured or given values.



From (A4-12) and application of (A4-13), it follows that

1
X

d Td'

T " Td xd. dO dO

Substituting (A4-14) in (A4-13), it yields

that
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(A4-14)

= 0 (A4-15)

Also, from the definition of subtransient reactance, it follows

E E

X0
I
ds s

+i
dt(0)+idst X'(0) = + idst(°) (A4-16)"dm dm

where idst(t) is the subtransient component of the direct-axis

current. From (A4-16), it follows that

140

(A4-17)

1 1 1
(1 - Td"/Td') (1 - Td/T d)

X"dm X'dm "Xd (1 - Td"/Tdt)

Adding (A4-13) and (A4-17) and using (A4-14) it yields

Xir

(W' + W") X "d = 1- (A4-18)
dm



From (A4-18), it follows that

X"d = X"dm
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(A4-19)

Equation (A4-19) indicates that the defined value of the Subtransient

reactance is the same as its measured value. Ttd and T "d can also

be obtained from (A4-15) and (A4-14), respectively.

When the damper winding currents are scaled such that

Lai = Lax, from the expressions for X and )(Ix it follows that,

Lf Xd - x
Lx Xd -Xd

Using the definition of a. equation (A4-20) becomes

(1- ) (Xd
Lfx/Lx -[

o-dd x 1 /2
X

d - Xfd

Using (A4-15) in the expression for Xd" , it follows that

[6d (Xd -X" d)]1 /2 + [ (1-ad) (X d-Xt

(A4-20)

(A4-21)

1/2 = (Xd-X tx)1 /2

(A4-22)

Since the defined value of X
d

is also the same as its measured or

given value, X'd can be obtained from (A4-22), once X is known

in terms of X'
cl.



From equation (A4-10) it is noticed that

XrxTx+XtdTf )(Ix Tx-i-XtdTf
1 1

T d T d cr
d T f Tx X'd " X"dmVd0T"d0

Substituting expression (A4-14) in (A4-23)

and solving for X'x , it yields;

whe re

Xt = Q - )(id T f/Tx

Q =
XdmT1

d + X"dmT1d0T" dO/T'd
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(A4-23)

(A4-24)

(A4-25)

X'd can then be obtained by substituting (A4-24) in (A4-22) and

solving by an iterative method. X'
x can also be determined by

inserting the value of X'd in (A4-24). From equation (2-32),

expression for XI x can also be written in terms of the previously

calculated parameters as

X" = [ xtx -(1 d)Xd +Nr (I -a- d)(Xd
-X'

d)(Xd- x)] (A4-26)
X 0"

d

A summary of calculation sequence of the above parameters

is presented in section 2.4.

Similar expressions to above can also be obtained for the

quadrature-axis parameters by changing all the direct-axis model
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parameters in (A4-1) to (A4-26) by their corresponding quadrature-

axis parameters; because no assumptions involving the magnitude

of the ratio of the open-circuit time constants is involved.
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APPENDIX V

Derivation of Synchronous Machine Parameters

The perunit equations which describe the behavior of a

conventional synchronous machine (Park's Equations) may be

expressed for generator action, for a five-winding model, by

of

vx

-(Lmd+2a)

-Lmdp

-Lmdp

Lmd

rf f+Lmd)p

Lrndp

Lmd

Lmdp

r
x

+(,g
x

+L
md

)p

if

i

x

(A5-1)

v

-(2
a

41
mq

)

-L p
mq

L
mq

r +(g +L )p
y y mq

(A5-2)

where the damper coils (lcu, V) are assumed to be short-circuited,

making vx = v = 0,
y

When the mutual inductance between the direct-axis rotor

coils (41f11 and tlxu) is assumed to be Lmd ifx, equations (A5-1)

become



X
d

- (Lmd +2a) Lmd

of -Lmdp r
f
(2

f
+L

md
fic)p

vx -Lmdp (Lmd+2 fx)p

Lmd

(L + )p

x
r +(Ai +L +2 )px md fx

.
id

f

ix

92

(A5-3)

and equations (A5-2) remain unchanged..

From equations (A5-3), the direct-axis current, id, can be

written as

id

where

Xd L Lmd md

of rf+(2f+Lmd+ifx)p (L md+2fx)p

vx (Lmcfefx)13 rx (2x+Lmd+2fx)p

,= rf r x[1+(T
1
+T

2 )p+T
1
T

3p
2 .1 X -r xLmd (1+T p)vf (A5-4)

d

and



D2 =

- (2+1,md) Lmd Lmd

-Lmdp rf+ (2 f-I-Lmd+ifx)p (Lmd+ifx)p

- Lmdp (L
md+,efx)p

rx+(ix+Lm fx)P

= -rfrxLd [ 1+(T
4T

5
)p+T4T pz]
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(A5-5)

The time constants used in equations (A5 -4, 5) are defined in

terms of the leakage and mutual reactances as follows:

T1 = w rf (XLf
+Xmd xfx)

1T, r (X,ex +Xrrid+xfx )wx

T
1

3 rx
X (X +x )if md fx[ X +ix Xef+Xrnd+xfx ]

Xia
T = 1

[ X tf+x,x+ X +X4
(13

rf
a md

T =
1 (X +x +

XiaX
)

5 w r fx X +Xmia u

(A5-6)

(A5-7)

(A5-8)

(A5-9)

(A5-10)

(x +x x +(x +x )(X '+X )] ,(X +X ,)
1 r rnd if ,ex .m.d fx ,ef .ex mu Bf ix_
rx

I. (X +X )(X +x )+ X Xmd if fx Ba mdk (A5-11)



X
T

Lx
(I)

rx
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(A5-12)

where, X = col, with proper subscript, and xfx = wifx

The direct-axis principle time constants are determined

by the following identitic3( see reference 4):

(1+Tt
dO

p) (1+T"d0p) = 1+(T
1
+T

2
)p+T

1
T

3
p2

(1+T'dp) (1+THdp) = 1+(TeT5)p+T4T6 2

Since the per-unit resistance of the damper winding is much larger

than the field winding (4), T2 and T3 are then much less than T1 and

the right-hand side of (A5- 13) differs very little from (1+Tip)(1+T3p).

Hence

Tt
T1

= Td0 1 d0 T3

Similarly, from equation (A5- 14),

Td T4,

The quadrature-axis time constants can also be derived

similarly. They are

T"q0 w r
1

y

(X + X )

mq
(A5-15)



X_ X
T

1
(X +

ia mq
q (.13 r Xia+Xmq

The known reactances are defined as follows:

Xd = Xia+Xrnd

T'
d X (X +x )md if fxX = X = X +d d ia X +X +x
dO gf md fx

iT T" X [X X +x (X +X )]xo d d md if ,ex fx if ixX X +d TT TH d La X X +(X +x )(XdO dO if tx md fx if+Xix

Xq = X + Xmq

T" X X
X'' m"= x = x +

q TIT q ia X +Xq0 ,ey
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(A5-16)

(A5-17)

(A5-18)

(A5-19)

(A5-20)

(A5-21)

are the leakage reactance of theWhere, Xia, X.ef' Xix' Xty

armature, field, direct- and cuadrature -axis damper windings,

respectively.

With the assumption that the armature leakage reactance,

Xea, is equal to the zero sequence reactance, X0, the unknown

resistances and reactances in equations (A5 -15) through (A5-21)

can be obtained in terms of the additional direct-axis rotor-coil

mutual reactance, and other known reactances as follows:



and

X ,e= X,
a, u

Xmd = Xd - X
0

Xmd(X'd-X
0)X = - = X'f - (A5-24)X

X dX' xfxd
xfx

(Xd -X"d)xf
2

x+[(X"d-X0)(X' f-Xmd)-Xif
x x+ X '1Xmd( Xd"-X 0)

X
,e x XmdX`f-(X"d-X0)(Xmd+X'f)

(A5-25)
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(A5-22)

(A5-23)

r
f

=
(X2f

Xmd xfx) (A5-26)T
dO

r =x
1

dO

x.ef ( Xmd+xfx)
Xix+

Xif+Xmd+xfx

Xmq = Xq - X
0

X (X" - X )mq q 0
X,ey =

X - X"
q q

1r = rr,y (DJ.
q0

(X
,e

+ X )
y mq

(A5-27)

(A5-28)

(A5-29)

(A5-30)

The mutual reactance, xfx9 can be written in terms of the

leakage factor, Tcl' and the direct-axis rotor-coil reactances as

Xfx = -o-d) Xf X x (A5-31)



whe re

Xf Xif + Xmd + xfx

Xx = + Xmd + xfx
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(A5-32)

(A5-33)

Equation (A5- 31) can be used to solve for xfx in terms of Crd' once

the expressions for X and X
2X

, equations (A5 -23, 24), are sub-

stituted in equation (A5- 31). Hence, for a given value of cr
d '

x fx

is obtained from equation (A5- 31) and the other unknown reactances

and resistances are obtained from equations (A5-24) through (A5-30)



APPENDIX VI

Parks Equations for a Synchronous
Machine Infinite -Bus System

Using the generator conventions for the stator currents,

Parks Equations in matrix form can be written as

X
d Cu

Xmd X
mdv

d
-r -p w X X

a b b b
LA., mg co

X X

Vq
-r-a p-51 ci- T xmd

ran
Xd andP

0 = _X X +Xmd fx 0
-1-x Xmdi-xfx

b cu

2 0 Tx x
mdC1) Fr ---13

b b

X X +X
mq0 0

P
0 r+ "

CI)

p 0
b b

X2 X 2md
mdef 0

w'cur
f

P
brf

x

id

q

1

y

0
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x,e
f+Xind

X (1+
md cu

brf

(A 6-1)
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in a reference frame fixed in the synchronous machine rotor. The

transmission line equations can also be written, in the Park Domain,

as

xe
1"-- + VdBV

d = (re +
cub P) d cub

X
e 1q

X
cu

v = X + p) iq + vqB
cuq

b
e di + (r

e cueb

(A6-2)

(A6-3)

Where vdB
and v are the infinite-bus voltages in the direct-

qB

and quad ratu re -axis, respectively. Also

v
dB

= v
B

Sin 3

vqB = vB Cos 3

Electromagnetic torque equation is expressed in per-unit as

Te = qid
q q

id

(A6-4)

(A6-5)

(A6-6)

where LI) =
b

and X is the flux-linkage in per-unit. The mechanical
5

and electrical torque, and rotor speed and angle are related by

and

T - T = Mp + Dp
b 03b

p 3 = w -cub

(A6-7)

(A6- 8)

Equations (A6-1) through (A6-8) give the synchronous machine and

transmission line equations in a reference frame fixed in the rotor.


