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A robust estimator of population size (N) is developed based

on a model for livetrapping, the main features of which are a) popu-

lation closure, and b) capture probabilities remain constant over

trapping occasions, but vary among animals. Moreover, the set of

capture probabilities is modelled as a random sample from a

probability distribution F(p), p E (0, 1]. Given this model the

capture frequencies are a sufficient statistic for N and. F, and

they have a multinomial distribution.

First a parametric approach is investigated by assuming F

is a Beta distribution, B(a, (3). Some general results are developed

for Maximum Likelihood estimation with the multinomial distribution

when sample size, N, is an unknown parameter of interest in

addition to the cell probabilities being functions of an unknown



parameter. These results are then applied to Maximum Likelihood

estimation of N, a and p . It is found that NMI,E will generally

be unsatisfactory for values of N, a and p likely to apply to real

livetrapping data.

A nonparametric estimator of population size is developed by

restricting attention to linear combinations of the capture frequencies,
t

Athat is, N= a.f. for some constants al, ... , at. Because the cap-

i= 1

ture frequencies are multinomial random variables N has approxi-

mately a Normal distribution, and the variance of N can easily be

estimated.

An extension of the jackknife method of bias reduction is devel-

oped and used to generate some specific linear combinations which

have good properties as estimators of N. A procedure based on the

data is then suggested for choosing one of these estimators for use in

any given study. This estimator, NJ, can be validly used whenever

the capture frequencies have a multinomial distribution and the

expected number of animals seen, E(St), has approximately an
2

expansion as N +
b1

+
b

+ , where b
1,

b2, ... are constants.
t2

Simulation evaluation of the properties of N show it to be quite

robust.
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ESTIMATION OF POPULATION SIZE IN MULTIPLE
CAPTURE-RECAPTURE STUDIES WHEN CAPTURE

PROBABILITIES VARY AMONG ANIMALS

1. INTRODUCTION

There is a, large amount of work in the statistical literature on

capture-recapture methods (see Cormack, 1968 for a recent review),

but most of it has been developed around the idea that capture proba-

bilities are equal for all animals in the population, The purpose of

this thesis is to investigate the statistical problem of estimation of

population size given a model for livetrapping in which capture

probabilities vary among animals. The main feature of this model is

the assumption that individual capture probabilities are a random

sample from a distribution on the unit interval.

This model was originally used by the author as the basis for a

simulation study of livetrapping and estimation of population size

(Burnham and Overton, 1969). For a population of size 100, the

simulation study investigated a variety of capture probability distribu-

tions, mostly Beta distributions, and the degenerate case of constant

capture probabilities. The range of average capture probabilities was

.01 to .24. Thirty days of trapping were simulated.

This simulation study showed the model was capable of generat-

ing data with a very wide range of properties, including those prop-

erties commonly found in real livetrapping experiments. Also, it
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showed that some conventional estimators based on equal capture

probabilities performed poorly when capture probabilities varied

among individuals. Because of these results it appeared worthwhile

to pursue the problem of estimation of population size given this

model.

The first chapter of this thesis gives the model and shows that,

in general (i.e. , without specifying the distribution of capture proba-

bilities), the frequencies of capture are a sufficient statistic for

estimation of population size. Furthermore, these capture frequen-

cies have a multinomial distribution.

After Chapter 1, most of the thesis is oriented to examining

two approaches to estimation of population size given the model.

First, the Maximum Likelihood estimator is derived assuming that

capture probabilities have a Beta distribution. This Maximum Likeli-

hood estimator turns out to be unsatisfactory. A nonparametric

approach is then examined and found to be more rewarding.

The nonparametric approach to estimation of population size is

based on linear combinations of the capture frequencies. An extension

of Quenouille's (1956) jackknife method of bias reduction in estimation

is used to generate a finite sequence of estimators of population size.

These estimators are also linear combinations of the capture frequen-

cies. A procedure is then proposed for selecting one estimator of

this sequence as the estimator of population size to be used.
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Advantages of this approach are several. A simple to compute,

robust estimator is achieved, based on the sufficient statistics.

Because the capture frequencies have a multinomial distribution, the

variance of any linear combination of these frequencies can be esti-

mated from the frequencies themselves. Finally, approximate

confidence intervals for the population size can be found based on the

asymptotic normality of linear combinations of multinomial variables.

The final chapter of the thesis again deals with the model. A

test is given for the hypothesis that individual capture probabilities do

not change during the livetrapping study. Second, an extension of the

model is examined.
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2. THE MODEL AND SOME BASIC RESULTS DERIVED FROM IT

2.1 A Model for Multiple Capture-Recapture Studies

Assume that there is a defined population of animals on which

livetrapping is to be conducted for a specified number of occasions.

A general structural model for this situation may be given as follows:

N. = the number of individuals in the population on the ith

trapping occasion, i = 1, 2, . , t

p,. = probability of capturing the jth individual in the popula-

tion on the ith trapping occasion.

1 if the jth individual is captured on the ith trapping

X. occasion,ji
0 otherwise.L

By introducing some simplifications and relationships a model can be

generated that will be useful for making statistical inferences. A key

assumption which will be maintained throughout this thesis is popula-

tion closure: no births, deaths, immigration or emigration affect

the population. This implies the population size is a constant (N).

Moreover, the same individuals compose this population on each

trapping occasion, thus they can be considered as uniquely identified

and numbered 1 through N.
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The capture probabilities are the crucial part of this model.

They will be regarded as constant for any given individual, but vari-

able among individuals. In order to introduce a relationship among

these capture probabilities it is assumed they are a random sample

from some probability distribution on the unit interval.

Finally, the basic random variables, the X..'s, will be
31

assumed mutually independent. An assumption like this is necessary

because the specification of capture probabilities only gives the

marginal distribution of each X...
31

The model may now be given as follows

(2. 1. la) Population closure is assumed,

N = population size.

(2. 1.1b)
P

= the probability of capturing the jth individual on any

given trapping occasion, j = 1, N, and

p1, , pN are a random sample from a probability

distribution F(p), p E (0,1].

(2. 1.1c) The random variables X.., j = 1, ,N, i = 1, ,t,

are mutually independent for given p1, , p
N

When this model was first conceived it was intended that the

capture probabilities have a Beta distribution and estimation of

population size would involve estimating the parameters of this
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distribution. But many aspects of this model (e. g. , the sufficient

statistic) do not depend upon the distribution of capture probabilities.

It is not necessary in the model to specify what the trapping

occasions are. It is anticipated they will be equal, short periods of

time such as days. For convenience it will be assumed throughout

that trapping occasions are consecutive days, but days can be trans-

lated into more general occasions and the consecutive restriction is

not necessary.

2.2 The Sample Space and Some Basic Capture-Recapture Variables

The basic data are the trapping histories of the individuals in

the population. These data can be expressed in matrix form as

[x..]
31

=

X11

X21

xN1

X12 . .

X22 ..

XN2

. X lt
X2t

XNt

Row j gives the trapping results on individual j, while column

i gives the results for the ith day of trapping.

The sample space is the set of all possible 2
Nt matrices

[X..] where each element is either zero or one. Let an element of
31

this space be denoted by w, and let the space be denoted by E-2.

Some basic capture-recapture variables will now be defined as
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functions of the matrix [X..]. In what follows, 5 is the
31 r, s

Kronecker delta.

yjt
i=1

X.. = the number of times individual j has been
31

t

Ct =

i=1

N

St = N -
Y.Yitj=1

fit =

j=1

captured by the end of t days of trapping.

= the total number of captures on day i.

= the total number of captures on all t days

of trapping.

= the number of individuals seen at least once

during the t days of trapping.

= the number of individuals captured exactly i

times in t days of trapping. For i = 1,,t,
these are the capture frequencies, while f

Ot

is the number of individuals never captured.

It is useful to note the alternative expressions for St and Ct

as linear functions of the capture frequencies:

St = L fit
i=1
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Ct = if.

i=1

Another useful relationship is N fOt + St

St is observable, but f
Ot

can not be observed.

in which

Finally, note that the matrix [X..] can not be observed in its
J1

entirety. Only St rows will be observed, but this is sufficient for

computing the above capture-recapture data because the fot

unobserved rows are composed entirely of zeros.

2.3 The Sufficient Statistic and Its Distribution

Let P = (p1, . ,pN)1, be the vector of capture probabilities

for the population. For . given, X. - Bernoulli (p.), thus
PJ 31 PJ

X. 1-X..
313{Xji-11D.} = P3 "(1- .) 1 X.. = 0, 1.

31

For P given, the X.. are mutually independent, therefore their
31

probability distribution is given by

N t X.. 1-X..
P {[X..JIP} = II it p. 31(1-p.) 31

31 j=1 i=1 3

N y. -t .
3t (1-p.) Y3t

j=1
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This probability distribution is not useful for estimation of N.

A useful distribution is obtained by treating P as a random sample

and averaging over it to obtain the compound distribution of the ran-

dom variables X...
31

P{[X ]I
31

which reduces to

(2.3.1) Pf[Xji ] I

Define

1

= .

0

=
TIN

J =1

1

. . P{[ X..] I P}dF(p1)
0

31

ic 1pYjto

0

dF(pN),

Further simplification is now possible because the take
Y3t

on only the values 0, 1, t:

t .

P 1{[X..] F} H

1

p1(1-p) t-idr(p) fit
31 1. 0 0

1 N-S t[ fit
t

= S' (1-p)tdF(p) n F 1

pi(1-p)t-idr(pil
0 i=1 0

1

= [51 (1 -p)tdF(p-)
0

N t
II

i=1

1

°

. t-
1(1-p) ldF(p) fit

_ 0
(1-P)tc1F(P)

The last form clearly shows that for this compound distribution of the
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X.., the sufficient statistic is the set of capture frequencies
31

f f .It' tt

Given this sufficient statistic what is its distribution? This

problem can be approached by first finding the distribution of the

variables fit, , ftt for P given, then taking the expectation of

this distribution with respect to the distribution of P. Note that
t

because N = fOt + fit , the distribution of f f f is
Ot' it' tt

i=1
the same as that of f flt, tt

Let f = (f lt' ftt )1 be a fixed, arbitrary set of capture

frequencies. Let A C 0 be the subset of all W E - such that

f(w) = (f It' 'ftt)' By definition

P{f1P} = P {AIP} = p{(4112}

w EA

The unconditional distribution of the capture frequencies is defined as

P{f I Fl = EpP{ f I P} = Ep{A1P} ,

0

=

CO EA

so
iP{w I P } dF(pi). . . dF(pN)

1

1P{w I P}dF(pi). . . dF(pN)
0 0



EP P{w I P} =

EA w EA

From (2.3.1) it is known that

p{0)11-} .

N 1 yjt( co yjt() t- w)

P{co F} = p (1-p) dF(;)].
j =1 ^0

The individual values ), j = 1, ...,N are not known but for all
Yjt(w

E A the capture frequencies are the same, hence it follows that

t
P{wl F} = H

l f.
p

i (1-p) t-1dF(p)] V (4) E A.
i=0 0

Combining this result and the formula P{f IF} -----

(2.3.2)

P{co F} gives

EA

f.
P{f1F} = C(A) pi(1p) t-idF(p)

i=0 0

11

where C(A) denotes the cardinality of A. This cardinality will

now be determined.

The element co, or equivalently, the matrix [X..] is in A
J1

if and only if the corresponding frequencies are f. First consider

the number of ways to assign N individuals to the t+1 capture

categories such that the given frequencies result. This can be done in



N N!

Ot
f tt (f

Ot
!)...(ftt!)

different ways, as can be shown by elementary arguments.

But this does not give C(A) because given the number of

times each individual is captured there is still considerable freedom

to assign the actual days on which captures occurred. In general, if

individual j is captured i times there are (t ) different

combinations of days giving exactly i captures. For the fit
f

individuals captured i times there are exactly (ti
i)

t ways this

can occur.

Consequently, for each assignment of individuals to capture

classes there are

n t fit

.

different elements in A. It follows that

N 1 t f
iC(A) = 11

(t
. )

t

f
Ot

...f / i=0

Substituting this formula for C(A) into (2. 3. 2) gives the

final result:

(2.3.3) P{fIF} =
N t

..f )i.r1=o Uoot t

f.
t pi(1-p)t-idF(p) it

12
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This is a multinomial distribution with cell probabilities being known

functions of the distribution of capture probabilities.

For convenience, define these cell probabilities to be

(2.3.4)
1

t 1 t-i
Tr. = Tr.(F) = (i)p (1-p) dF(p) i = 0, 1, , t,

0

then (2.3.3) can be written simply as

(2.3.5)
N t fit

Plflt' f I

f . . . f i=0
II (Tr.) .

tt 1

Ot tt

Many results concerning the capture frequencies and linear

combinations of them can be derived from (2.3.4) and (2.3.5), for

example the unconditional expectations of St and Ct.

St = N f
Ot

(2. 3. 6)

Using

it follows that

(2.3.7)

E(St) = N(1-Tr0).

tom` t

Ct = ifit = ifit
i=1 i=0

E(Ct) = NtE(p) .

Because
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2.4 Some Basic Results for the Case When Capture Probabilities
Have a Beta Distribution

The Beta distributions on the unit interval are a class of two

parameter, absolutely continuous distributions with the density func-

tion given by (Johnson and Kotz, 1970):

F(a+13) a-1 13-1

f(13; a' /3) r(a)r(P) P (l-P) p E (0, 1), a > 0, 13 > 0 .

The mean and variance of this distribution are given by

E(p)

V(p) E(p)(1-E(p))
a+ 13+ 1

This is a very rich class of distributions in the sense that the density

function can take many different shapes depending upon the values of

the parameters a and (3.

If E(p) is fixed, then letting a and pi + 00 gives a limit

distribution that is degenerate at E(p). Thus the case of constant

E(p),probabilities (p. = (p), all j) can be thought of as included
PJ

in the Beta distributions.

Because the Beta distributions are indexed by the parameters

a and P., it is convenient to rewrite (2.3.4) as



1

Tr.(a, P) =
t

)p
i
(1-p)t-if(p;a, 13) dP

1

Carrying out the above integration yields

(2.4.1)

i = 0, 1, , t.

t F(a+P) 1-(a+i)F((3+t-i)
i R) = (i) r(a)r((3) r(a+p+t)

15

In order to compute the value of Tr. a recursive relationship will be

developed between Tr, and Tr
+11 i+1

(2.4.2)

t r(a+p) r(a+i+1)r(p+t-(i+1))
Tri+1 = ) r(a)11(3) r(a +p +t)

t-i a+i t 1-(a+P) F(a+i)1-((3+t-i)
i+1 ( i+1)( f3+t-i-1)( i) r(a)r(p) F(a+13+t)

(t-i)(a+i) i= 0, 1, , t-1.
1+1 iriLi+1)(13+t-1-1)

Given TT

0
formula (2. 4. 2) can be used to compute

Setting i = 0 in formula (2.4. 1) yields

r(a+p) r(p+t)
iT0 r(a+p+t) r(p)

Trt

Repeated application of the basic property of Gamma functions,

1-(x) = (x-1)F(x-1), to r(p+t) and F(a+13+t) in the above formula

gives

(2.4.3)
t

13+i-1
Tr 0

= II (a+13+i-1 )
i=1
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For any values of t, a and p , formulae (2.4.3) and (2.4.2) are

all that are needed to compute Tr.(a, (3), i = 0, 1, , t.

Maximum Likelihood estimation of N, a and p will require

the partial derivatives of the cell probabilities. For Tr
0

, repeated

application of the rule for taking the derivative of products gives

aTr
t

a(
13+i-1

o ci+p+i-1 as+P+i-1)
a(a or (i) 'To p+i_l a(a or ()

i=1

It follows that

(2. 4. 4)

and

(2. 4. 5)

a
Tr 0

as

o
ap "o

- -Tr

_t
1

((3 +i-1)(a+(3+i-1)
i =1

Formulae for recursive computation of the partial derivatives

of Tr. for i > 0 are developed from (2.4. 2):

(2. 4. 6)

and

(2.4.7)

i= 0,1, ..., t-1.

an-
i+1 - (

Tr
i+1

ar
i

+

Tr
i+1

as Tr. aa ) a+i '
1

aTri+1 1Ti+1 ar1 Tr1

ap TT. 8r3 P+t-i-1



17

2.5 Estimation of Population Size Given the Model

The purpose of this thesis is to investigate the statistical prob-

lem of population size estimation given the model of Section 2.1. A

natural approach is to assume capture probabilities have a Beta dis-

tribution and then use a standard parametric technique such as

Maximum Likelihood (ML) estimation with the multinomial distribu-

tion given by (2.3.5). Maximum Likelihood estimation of N, a and

p with this model is seen to be a special case of a general problem:

ML estimation with truncated multinomial data where the cell proba-

bilities are known functions of unknown parameters. Let truncated

multinomial data be defined as data having a multinomial sampling

distribution with one or more categories which can not be observed

and with sample size, N, not known.

Maximum Likelihood estimation for the multinomial distribution

when N is known is a standard problem and has been discussed in

the statistical literature (Rao, 1958). The problem of ML estimation

for the multinomial distribution when N is a parameter of interest

does not appear to have received any attention in the literature.

Because of this, a decision was made to investigate this general prob-

lem in Chapter 3 and then apply those results in Chapter 4 to popula-

tion size estimation when the capture probabilities have a Beta

distribution.
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As discussed in Section 4.2 this ML estimator of N was

found to be unsatisfactory. However, prior to this discovery a deci-

sion had been made to investigate a nonparametric approach to esti-

mation of population size.

Chapters 5 and 6 are devoted to developing and investigating a

nonparametric estimation procedure. In Chapter 5 an extension of

the technique called jackknifing is developed. In Chapter 6 this

extension is applied to the problem of population size estimation to

derive a nonparametric estimation procedure which is easy to apply

and reasonably robust.
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3. MAXIMUM LIKELIHOOD ESTIMATION WITH TRUNCATED
MULTINOMIAL DATA

3.1 The Problem and Some General Considerations

Let a random sample of N entities be drawn from a real or

conceptual population. Let there be a finite number of mutually

exclusive, exhaustive categories into which these entities can be

classified. Finally, let the observed frequency of entities belonging

to category i be fi, i = 1, ...,f, > 2. Then fl, ...,fs are

multinomial random variables (Johnson and Kotz, 1969) and the

probability of any given sample of frequencies is specified by

where

N f f.
P{fi, , N, pi, ,pi} = II (.

f1...f i=1

N

i=1

, 0 < pi, i = 1, . . . , I , and

i=1

= 1.

A common generalization of this situation is to let the cell

(i.e., category) probabilities be known functions of r unknown

Tr1parameters 01, ..., Or for r < 1-1. Let TT1 . = .(0) denote the

ith cell probability with 0 = (0l, 0 r )' the vector of unknown

parameters. It will be assumed that the parameter space Q is
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an open set in r dimensional Euclidean space.

This multinomial probability distribution with N known is a

very common model; but, it can, and does, arise when N as well

as 0 are unknown parameters. The remainder of this section will

be devoted to examining some of the consequences which arise when

N is unknown and to looking at some heuristic considerations regard-

ing estimation of N and 0.

Because N = 1 f. , the assumption that N is not known

i =1

after sampling is equivalent to the assumption that N is not known

prior to sampling from this multinomial distribution and at least one

of the categories cannot be observed. Let = t+m, t > 1, m > 1

and assume without loss of generality that fl, , ft are observable

but f ft+1' ' t+m are not observable. In this situation the sample

can be called truncated since not only are certain outcomes not

observable, but the number of such outcomes is not known.

Since unobservable entities can not be distinguished, a new

category may be defined as the union of the unobservable categories.
t+m

Correspondingly f0, and Trr0 may be defined as f0 =
t+m i=t+1

and Tr
0

= Tr.. Now the model for truncated multinomial sampling

i=t+1
can be reduced without loss of generality to the following canonical

f. ,

form: f0' f1" f
t

for t > 1, are distributed as multinomial
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random variables. The probability of any sample can be given as

(3.1.1) P{fi, . . . , ft I N, El} =
t

11

...ft/ 1=0

fi
(rile))1(0))

for N = > f., and for all 0 EC) Tri(0) > 0, i = 0, ... , / with
t i=0

/Tri (0) = 1 and neither N nor f0 are known because N is

i=0
not known prior to sampling and f0 can not be observed.

Let the observed frequencies fl, ... , ft be referred to simply

as the frequencies. Let S be the sum of the frequencies, i.e.,
t

S f. . The marginal distribution of S is b(N, 1 -Tro), hence

i=1
P{S > 01 N, 0} = 1 - TroN. It will be assumed that this probability is

virtually one, so that it is not of practical importance to make

inferences conditional on S > 0.

To find the exact ML estimates of N and 0 it appears

necessary to carry out a two stage maximization procedure to find

NMLE and 6MLE which satisfy

(3. 1. 2) P{f
1

. . . , ft I RMLE' 0MLE} = max
N >5

where N assumes only integer values, and

maliP{f In,1}
0 E

em 1 t

_givenN=n

is the closure of

O. This approach has the advantage that P{fi, , f IN, 0} is a
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usual multinomial distribution for any fixed value of N and there is

a great deal known about the problem of finding the ML estimator of

0 in this situation (e. g., Rao, 1958). This method of finding the ML

estimates may require considerable computation, but this is not a

serious disadvantage given the ubiquity of high speed computers. A

real problem will occur when closed form solutions to (3.1.2) do not

exist: there will be no way to derive estimates of the variance-

covariance matrix of the ML estimators. In order to derive approxi-

mate ML estimators and approximate formulae for the variance-

covariance matrix of these estimators two alternative approaches to

(3.1.2) will be investigated in this chapter.

One alternative is to treat N as a continuous variable by

writing

N -Sr (N+1)70
(7.)fiPlir ft N' -(±} 1-(N-S+1)(fi!). (ft!) 1

This gives a continuous function in both A and N, for N > St,
t

which corresponds exactly with the true likelihood function at all

integer values of N in {St, St+1, It is reasonable to call

this continuous function of 0 and N the pseudo-likelihood func-

tion; let it be symbolized by

mode of L (N, 0);

L (N, 0). Let N and 0 give the

it is reasonable to expect N = NMLE and
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As an example of this sort of approach consider the case t = 1

and Tro known. Then f1 = S a b(N, 1-n-0) and Feldman and Fox

(1968) have shown that the exact ML estimator of N in this case is

the greatest integer part of S/(1-n-0), denoted by [S/(1-Tr0)].

Treating the likelihood function as a continuous function of N in

this case leads to N = S/(1-Tr
0

); and, it can be shown that even for

the exact value of IV, P-(194S/(1--rr0)]i < 1} = 1.

Working with L (N, 0) allows partial derivatives to be com-

puted with respect to N as well as 01' ..., Or, thus the usual

Fisher information matrix (Rao, 1965) for N and 0 can be com-

puted and its inverse used as an approximation to the dispersion

matrix of (N, 0). This procedure is not rigorously justified, but it

has been successfully used before with integer valued parameters

(e. g. , Lewontin and Prout, 1956).

The other alternative to (3.1.2) is based on the following parti-

tion of (3. 1. 1) into two parts:

(3. 1. 3)

or explicitly

Pffi, , f
t
IN, = P{S IN, (I}P{f

1
, .

t
S

(3. 1.4) P{f
1'

...,f
t

I N, 0} =
S N-S

(S
N

)(1-70)

s \ t Tr, f.
II (

fi.. 1...ft 0

As indicated in (3.1.3) and clearly shown in (3.1.4), the condi-

tional distribution of the frequencies given their sum is completely



24

free of N. Thus if N is only a nuisance parameter this condi-

tional distribution provides a basis for inference about 0 which is

not contingent on any estimated value of N. In case N is a param-

eter of interest, then an estimator of N can be defined as

1V= S/(1-1r0), where = Tr
0

(1;) and 0 is the ML estimator of 0

obtained from P {f1, ,ft1S,0}. There are a number of heuristic

arguments in support of this procedure.

The relationship N = S + f0 shows that point estimation of

N is equivalent to estimating f0, and because S is known after

sampling it would appear reasonable to estimate f
0

conditional on

the observed value of S. These considerations imply using the con-

ditional distribution of the frequencies to estimate N and 0.

Furthermore, the relationships E(f
0

) = NTr
0

and N = S + f0 sug-

gest it is reasonable to expect estimators of N, Tr0 and
0

to

satisfy the relationships =
0

and = S +
0

whether or not

these estimators are conditional on S. These two relationships

imply N = S/(1-0).

While N and 0 may be thought of as reasonable estimators

on their own merits, it is possible to think of them as approximations

to N and 0. The latter estimators maximize the pseudo-_

likelihood function simultaneously in N and 0. The estimators

and 0 have the property that 0 gives max P{f ...,f S,
0 ES t
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N
r4

and then given 0, N approximately determines max P{S I N, 0}.
N >S

It is apparent that P{S1N, 0} supplies very little information about

0 so it is to be expected that

P{S 11}P{f . . . , ft 1 S, PA} = P{f . . . , ft I .

The above two approximations to the exact ML estimators will

be investigated and compared in Section 3. 2. Simple conditions will

be given under which both procedures yield nearly the same estimates.

In Section 3.3 formulae for the corresponding variance-covariance

matrices will be developed and compared.

It has been implied that when closed form solutions to (3.1.2)

exist, it would be unnecessary to consider alternative procedures.

The existence of closed form solutions would seem to depend primar-

ily upon the simplicity of the functions ni, i = 0, 1, , t. But, in

order that meaningful statistical inferences can be made about all the

parameters it is clear that r < t is required, for otherwise the

number of functionally independent parameters would exceed the num-

ber of observations. This practical requirement means that the cell

probabilities are not going to be trivial functions of 0 and it should

be expected that often they will be nonlinear functions. Thus it may

be expected that closed form solutions to (3.1.2) will not generally

exist.

An example in which unique closed form ML estimators of N



and 0 exist yet are quite unsatisfactory because the number of

parameters is t+1 is given by the multinomial distribution with

unconstrained cell probabilities. Let 0 = (p1, , pt) 1, Tri(0) pi,

i= 1, t, and 70(0) = 1 p Pt Po; finally, assume
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that 0 < pi, i = 1, . . . , t. When these functions are substituted into

(3.1.4) it appears that p0 is confounded with every other param-

eter.

The exact ML estimators in this example are found by the

sequential maximization procedure indicated in (3.1.2). For a fixed

integer value of N > S, with f
0

= N S it follows

N t f. f.
max P{fi. , . . , ft I N, 0j =
1E g f O.. ft i=0

N fixed

The estimators corresponding to this maximum are NAN)= f. ,

i = 1, . . . , t and p0(N) = (N-S) /N.

Next, the right hand side of the above formula can be rewritten

in the form of (3.1.4) to get

max Pif
E

N fixed

ft N'2}
N S S S

N
N-S

(S )( N)

The term ( )(S/N)
s (1-S/N)N -S

1
...ft i=1

S t f. f.

n (-P
f

is a binomial probability and it is

easily seen that this term equals one iff N = S. Consequently in this
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max
N E{S,S+1,...}

max P {f1, . . . , ft I N, e}
0 E (15)

_N fixed

TI

f1 i=1

f. fi
(-2) ,

and this absolute maximum is achieved at the unique ML estimators

qMLE = S
f.i

NILE
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i = 1, . . . , t and
p0, MLE

= O. It is clear

that these estimators are not satisfactory.

This example is of particular interest because it represents

the trapping experiment under an arbitrary distribution of capture

probabilities. The above solution, NMLE = S under arbitrary F,

will be employed in the construction of the jackknife estimator of N.

Also the above result stimulates the investigation of means of restrict-

ing the Tr.(0), notably by specifying a Beta distribution for capture

probabilities .

3. 2 The Approximate Maximum Likelihood Estimators

Let f0, f1, , ft for t > 2 be multinomial random variables

with the probability distribution specified by (3.1.1). It is assumed

that these are truncated, that is, N is not known and f0 can not

be observed. Furthermore, it is assumed that 1 <r < t-1, and

that the parameter space 9 is an open set in r dimensional

Euclidean space. It will also be assumed that the cell probability

functions, , Trt, have second partial derivatives with respect
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to all components of 0. These assumptions and two more made

below will be maintained throughout Sections 3.2 and 3.3.

This section, and the following one, are devoted to examination

of the two approximations defined in Section 3.1 to the exact ML

estimators of N and 0. Under the following two assumptions

these two estimators have approximately the same distribution:

a) with probability approaching 1, large sample theory can be used

with the conditional probability distribution of fl, , ft given S,

and b) P{S = NI N, 0} 1-0.

Because Plfi, ft' s''21 is a multinomial distribution,

large sample theory can be used if S is large enough. Assumption

(a) thus implies N must be fairly large, say N > 100, and also

implies P{S = 01 N, 0} = 0. As a consequence then of assumption (a),

it is not necessary to make inferences conditional on S > 0. It is

seen that except for the necessity of large N, assumptions (a) and

(b) are really assumptions about the marginal distribution of S.

These assumptions are admitedly vague, but it should be possible to

make a judgement as to their applicability in any given problem.

Corresponding to the factorization

P{f . . . , ft
N, 0} = P{S I N, El}P{f . . . , f

t
I S, 0},

let the pseudo-likelihood function be written as
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F(N+1)
-Tr

0
)S

-rr f.

TrN-S 1L(0 S),
0

.

0 by

L (N, 0) S!F(N-S+1)

where

LEO IS) =
f

1
. . ft

Let N and 0 satisfy

L
*
(N, 0) = max L

N >S
E

and define the conditional ML estimators

(1

FE (

i =1
1

(N, 0)

N

)

Tr 0

,

and

L(6I S) = max L(01 S)
QE

S
N =

By the assumptions made about the cell probabilities and the

parameter space, 0 can be determined as the solution (assuming

uniqueness) to the r equations

(3.2.1) a lnL(al S) 1 S
an0

.
ae.

f1 1 88. 1-Tr
o

88.
i=1

1

0 j = 1,...,r.

The estimators N and 0 may be found as the solution

(assuming uniqueness) to the set of equations



(3. 2. 2a)

(3. 2. 2b)

a lnL (N, 0)
aN

a in L (N,
ae.

N N-1

t

n Tr()

1
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S > 0,

S = 0,

+ + in Tro = 0N-S+1

1
0Tr a Tr

i N-5 0f
1 'f

+
Tr e

- j = 1,...,r.
0 jt ea a

1
i=1

An approximation to (3. 2. 2a) for S > 0 will be developed.

From a standard formula found in many reference texts it follows that

This suggests

1 x+1 1 1ln() = + 0()
2 x-1 x

x3

1 1 x+1
x =

2
ln(x-1 ) which is a good approximation for

x > 10. Now let x = N-i and sum over i = 0, 1, , S-1 to get

S -1

i=0

S-1
N-i+1 1 1

N-i-1ln( ) =
N-1. + 0(

-S)
3

i=0

which is equivalent to

(3.2.3)
5-1

1 N(N+1) 1 1+ 0( )
2

ln [ -S(N)(N-S+1) N-i 3

i=0
(N-5)

The term (1/2) ln [N(N+1)/(N-S)(N-S+1)] can be rewritten:



iln [ N(N+1) 1 N 2 N+1 N-S
In [( ) ( )( )1

2 (N-S)(N-S+1) 2 N-S N N-S+1

1 1 1n(1- 1
+

1 +
) N 2 N-S+1)

Substituting this in (3.2.3) yields

(3. 2.4)

Using
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S-1

)

1N

+_i+-21 ln(1+-1 )+ 1 ln(1- ) 0().1 1

N 2 3N-S+1
i=0

(N-S)

1 1 1 1 2 1ln(1+) = x - 2 (;) + 0(
3 ) Ix' >1,

x

it follows from (3. 2.4) that

where

S-1

)- 1 S 1 1

2-
12] + o(

1

3)N-i 2N(N-S+1)+ 4 [

i=0
(N-S+1) N (N-S)

Formula (3. 2. 2a) can now be written as

a ln
aN
L (N, = ln(

N- S
) + In Tro + er(N,S),

S-1 1 .1

+ 0(
1

3 )er(N, S) 2N(N-S+1) 4
r 1 1

2 2J
(N-S+1) N (N-S)

Clearly an approximation to Equation (3. 2. 2a) is
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in( + ln
1T 0

= 0

N =
1 -Tr

0

Given this equation it follows that

N-S

Tr 0
1 -Tr

0

Therefore the original pseudo-likelihood equations can be replaced by

the approximations

(3. 2. 5a)

(3. 2. 5b)

N
1 -Tr

0
s

S

* ana lnL (N, 0) 1 S
8Tr

0
. +fae. 1 IT, 00. 1-71- 00.

i=i 1 3 0 JJ

j= 1, ..,r.

Equations (3. 2. 5b) and (3. 2. 1) are identical, therefore they

have the common solution 0, implying that N and 0 are
approximately equal to N and 0. The error committed by this

approximation is measured entirely by er(N, S). The smaller

er(N, S) is, the smaller the error made by using IIC and 0 in

place of N and 0. Note that it will be easier to find N and "6

as this only requires solving Equations (3. 2. 5b) for 0 and these

equations do not depend upon N.



Conditions under which er(N, S) will be small relative to

ln(N/N-S) + In (n)
0

33

are not clear because of the term 0(1 /(S1-S)3).

As a useful rule of thumb it is suggested that this term can be ignored

whenever N-S > 10. Then er(N, S) can be taken as

S-1 1 1 1
er(N, S) = 2N(N-S+1) 4 2 N2

(N-S+1) (N)

As N-S increases and S/N decreases, er(N, decreases.

Even for N-S = 10, S/N = .9 and S > 30 (which has high proba-

bility by assumption a), er(N, S) = .04. If an adjusted estimate N1

is computed as

N - =
1 1-

0
Tr exp(er(N, S)) 1-.1(1-.04) .896

then 31/11 = . 9 /. 896 = 1.0045. It is concluded that the conditions
,.. ,.., ..--1

N-S > 10, S/N < .9, S > 30 are sufficient to insure that N is a

good approximation to N.

3.3 Some Large Sample Variance- Covariance Formulae

"
Approximations for variances and covariances of N, 01, ..., Or

and , 8 will now be developed. In both cases the basic

approach is to compute the Fisher information matrix and use its

inverse as the asymptotic, or large sample dispersion (variance-

covariance) matrix. With N and 0 this approach leads directly
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to an approximation for V(N). With N and 6 the approach is

to first compute the dispersion matrix of '.0d from the distribution

P{fi, tIS,0}. Then V(NIS) is found by applying the usual

propagation of error method (Demming, 1943) to N = S/(1-Tro(8)).

The approach used with N and 5 is justifiable as a large sample

technique.

The conditional information matrix 1(01 S) is defined as the

r x r matrix of elements I. (0IS) where

ln L(
I. (0IS) = -E( a

) = 1,...,r.
3-12

ae ae
B.IS)

The indicated expectation is taken with reopect to the distribution

P{fi , , ft I S, 1}.

The a In L(OIS) me. given in (3.2.1) can be rewritten as

Then

a In L(6 IS)
ae.

a2ln
aeiHf

i = 1

i 1 affo
Tr, 0.a . 1-Tr 00.

0 j

2

-1 arr. 0Tri.
1

a
Tr i

2
((ael.) aef) + Tr. ae.ao

1 3
i=1

2

1
(
870

)(
airo

) +
1 a ffo

(1
2 ae ao 1 -TT

0
ae.ae

3-70)
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Using E(fi 1 S) = STri/(1-Tr0), i = 1, . , t, it follows that

I. (01S) =
3/ 1 -Tr

Because

t t:
8 Tr aTr. a Tr a Tr a

2
Tr

1 1 1 0 0 1.)() )(
De. ae 1-TT ae. ae 80.8e

J 1 0
(

3 1
1=0 J 1

= 1 for all 0 E 0 , the term involving second

i=0
partials is identically zero. Adding and subtracting

/Tr (an /ae.)(aTr /ae ) inside the brackets leads to the final formula
0 0 3 0

(3.3.1) (01S) =
1 -Tr

0

S

i=

aTr. aTr air

. (ae. ae Tr (1-Tr )
( a e

0
a 0

)

j Q 0 0 j

3,1 = 1 , . . r .

To get a convenient expression for I(01 S) define an r x r

matrix A = [a ii] by

t
0Tr.

1)( 1.1

Tri 80j 801'
i =0

Define an r x 1 vector b by

3,1 = 1, , r.

1
aTr

0
alTo

I ;b= - [ , .7
TrO ae

1
aer

finally, define a scalar
1 -IT

0
C =

0
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It follows from (3.3.1) that

(3.3.2) = S [A- 1bbl
1 -Tr

0

Assuming the inverse exists, a large sample approximation to

the dispersion matrix D(01 S) is given by I-1(01S):

(3.3.3)
1 -Tr

D(01 = u [A-113131-1

An approximation to VAS) is obtained by use of the Taylor's

series expansion for N about 0, assuming E(0) = 0 and

E(g1S) = S/(1-Tr0):

Then

Or

(3. 3. 4)

aTr a Tr
. s

N =
S 0 0 0_0)

1 -Tr0 2 ae ' ' ao
(1, Tr-o) 1

(STrn)
2

S) u 4b ID(A11S)b ,

(1-1T
o)

V(
-s 2 r[A-bbi] lb .I\4115) = (7--)(T)

12. c
l

The same technique can be applied to find an approximation to

Cov(ICT, 6d1S) [Cov(g, Al I S), , Cov(5, ECr I S)P:
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1 1
Coy (N, 0 IS) = c [A- -lb.

c

All of the above formulae for variances and covariances are

conditional on the observed value of S. This is desirable if N is

a nuisance parameter and only inferences about 0 are being made.

This also seems reasonable with regard to inferences about N

itself since N = S +7
0

(where ido = S 0 /(1-ii-0)) and S is known

after sampling. This consideration implies that inferences about N

should be based on the conditional distribution of N given S.

Unfortunately this conditional probability distribution is unsatis-

factory for making inferences about N, a point which is developed

in the next paragraph.

From large sample theory it follows that

E(NIS) = 51(1-iro) (S/E(S))N. Furthermore N is approximately

distributed as a normal random variable with mean and variance

(S/E(S))N and V(1YIS) respectively. In this conditional distribu-

tion of N, N is confounded with the (conditional) parameter

S/E(S). If S/E(S) was approximately 1 with high probability this

confounding would cause no problems. But in fact S a b(N, E(S) /N)

so it is clear that there can be high probability that S/E(S) will not

be close enough to 1 to be considered unity. Nor can S /E(S) be

estimated except as unity. It is concluded that the conditional proba-

bility model is not satisfactory for making inferences about N
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because the model does not relate N to N in a useful manner.

Consider, for example, confidence interval construction.

With the conditional distribution of N it is possible to construct

confidence intervals for E(NIS), but this is not the parameter of

interest. In the sequence of repetitions of the experiment giving the

same value of S the relative frequence of coverage of N by these

intervals will be less than the nominal confidence level. An appropri-

ate way to handle the problem is to work with the unconditional

tribution of N wherein E(Rd) = E E(RilS) = N.

An approximation to the unconditional variance of -IT can be
"I

found by evaluating E(N-N)
2

with respect to P {f1, . , ftl N, 01.

This will be done later. An interesting alternative is to formally

compute the information matrix for N and A from L (N, e).

It will be shown that this leads to appropriate formula for V(1\.),

thus corroborating the usefulness of treating a discrete parameter

as if it were continuous.

Define I(N, 0) as the (r+1) x (r+1) matrix of elements

I. (N, 0) where
31

821n L (N, a) -,

I (N,e) = -El i ,oo 2
aN

n L
I (N, 0) = -El a

2
laNa* = 1, , r,(N, 0)
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I (N, 0) = -E[ a lanelj.aril) j,
1,

J

From (3.2.2a) and (3. 2. 2b) it follows that

(3.3.5)

and

2 *a In L (N, 0)

8N2
S-1

IT)

1

.=0
(N-i)

2

2 *a ln L (N, 1 o

aNae Tr
0

ae

S= 0,

S > 0,

= 1, , r,

22
ln L

*
(N, 0) N-S air

o
aTr

0 N-S a iro
aej ae ( )( ) +

2 ae ae
1 " j"1

0(7)

t 2

1 1
aTr. a Tr.

fi
2 ae ae fi

Tr. ae.ae
1=1 (Tr i) j 1=1 1 j

= 1, ...,r.

The expectations of the second two sets of formulae above can be

easily determined:

1
aTr

0
I
Of

(N' 0) = -
0 "v/

= 1, ,r,

39



I. (N, 0) = N

i=0

an-, air.

a 1)( a
ei

j, .Q = 1, r.
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By noting the previous definitions of the quantities A, b and c it

is seen that

I00 (N,(N 0)

(3.3.6) I(N, 0) =

The quantity I00(N, 0) equals

N

Sli=0
S-1

b'

NA

2
1

-1
P.) {S I N,} .

As an approximation to 1/(N-i)2,
i=0

suggest the formula S/N(N-S+1). This is a good approximation

Lewontin and Prout (1956)

except when S is very close to N, such as S = N,N-1,..., N-5.

Certainly, for S < N-10 it appears to be an excellent approxima-

tion. By assumption (b), P{S = NIN, 0} =0, and N is large enough

(as a consequence of assumption a) that values of S very near

also have very small probability. When the approximation

S
N(N-S+1)
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is substituted into I00 (N, 0) it will not matter that it is poor for

values of S near N because these values of S have very small

probability.

It follows that a good approximation for I00(N, S) is

N
N

I (N S)
00 ' N(N-S+1)'

IS
TTO

N-S

S=1

1 -Tro
N(1-(1-Tr ))

NTr0 0

But (1-Tr
0

)
N = P{S = NI N, 0} = 0, thus the final result is

(3.3.7) 1-n0 c
I00 0) L = .
00 NTr

o
N

Combining (3 . 3. 7) and (3 . 3. 6) gives

c

N
I(N, 0)

b'

NA

It is worth noting that when N is known the matrix NA is the

exact information matrix for 0 in the corresponding multinomial

distribution. Similarly, if Tr0 is known the minimum variance

unbiased estimator of N is S/(1-Tr0) with variance N/c.

Assuming that I-1(N, 0) exists, an approximation to the

dispersion matrix D(N, 0) is
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(3.3.8)

where

D (N, A) =

X = c - WA-lb. Using

-

1 -1 1- A b
X N

the formula

1 -1
W A

X

1

c
-1

[A --1 bb'] -1
= A-1 +1A-lbbIA-1

c X

D(f\.,4) may be written as

N N -1 1 -1
+ hiA

c xc -
-1 1 -1 -1 -1- x A b N A + x-N A bbiA

As pointed out previously N/c is the variance of S/(1-Tro). Thus

(N/Xc)b'A-lb is the additional variance attributed to lack of knowl-

edge of Tro or rather, in this case, lack of knowledge of 0.

-1Similarily the term (1 /NX)A blaTA
-1 is that portion of the dis-

persion matrix of 0 attributable to lack of knowledge of N.

Formulae for unconditional variances and covariances of

can be developed from the results available on

V(STIS) and Cov(N, (5 I S). For V(N) write

E(KT-E(Ij1"))2 = EsE[(N'-E(Ifl S))2 IS] + Es[E(111S)-N]2 ,

thus (approximately)



and finally

(3.3.9)
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IT (14) = EsV(R. I S) + V( Tt) ,

1 2 1 -1 N= N() b b + ,
c c c

b'
1 2 -1 N= N() (b'A b)(1+ ) + cc

1
blA

-1
b

N + c ,
c

V(N) =A .

The unconditional dispersion matrix of 0 is given by

D(6) = E(6-E(6))(0-E(0))'. For large samples E(61S) 0, there-

fore E(0) = E(41S). It follows that

and finally

(3.3.10)

D(W) Es[E(e-E(61s))(0 -E(els))' I si,

= E
S
D(eIS),

N
1 ,

D(0) 1- LA- b
-1

.
c

A similar approach leads to

Cov(KT, = EsCov(i4, 61S) [A- b
c c

1 -1 1 -1 1
[A + A b b 113
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1
-

1c [A -1
b + A

-1
b(bIA lb)]

1 -1 c-X
= A b [1+

c X

and finally

1x(3.3.11) Cov(N, 0) = - A lb .

From formulae (3.3.9), (3.3.10) and (3.3.11) it is seen that

D(If, Ad) -4-- D(1\i, 'es) where the latter matrix is given by (3.3.8). This

approximate equality has been shown under assumptions (a) and (b)

given at the start of Section 3.2. Under these assumptions the

approximations N = N and 8 = 0 should generally be good, there-

fore it is expected that the dispersion matrices of these estimators

will be approximately the same.

The procedure for evaluating D(N,'.6) is justified as a large

sample technique. The approach of treating N a$ a continuous

variable and using I
-1

(N, 0) = D(N, 0) as the large sample disper-

Sion of N and 0 is not rigorously justifiable. That this

approach gives useful results in this instance is proven by the results

N =- N, 0 = 0 and D(1C1r0/) /13).

3.4 The Method of Scoring

A common iterative method for finding ML estimators is the

method of scoring (Rao, 1965; Kale, 1961, 1962). Because this



method is used in Chapter 4 it will be briefly outlined here.

Assume that L(0) is a likelihood function for 0 in some

given parameter space; and, assume that L(0) has second partial

derivatives with respect to all components of 0. The Maximum

Likelihood estimator 0MLE is usually found by solving the set of

equations

a In L(0)

80

a in L(0)

801

a In L(0)

00r

0

0

When explicit solutions are not possible 0 MLE is often found by
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the Newton-Raphson iterative procedure based on the Taylor's series

expansion for a In L(0) iae :

(3.4.1)

where

a In L(e) a In L(00)

ao ao + [A(0 00-0 )o o

a ln L(0)
ae.ae

is an r x r matrix, and 00 is a fixed point.

In the method of scoring the matrix A(0) is replaced by its

expectation:



a 21n L(0)
E(A(0)) = [E ae.ae -I(0)

/

The method of scoring for finding 6MLE is specified by the
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sequence of steps 0' 1'
, where 0

0
is a starting value pre-

sumed to be near /esMLE' and 0., i = 1,2, ... are defined by

(3.4.2)
a ln L(1.)

= + I -1( /12, ) ae

In practice only a few iterations are carried out and the final

value of 1.3.1+1 is taken as the value of MLE'

iteration is often determined by criteria such as

Termination of

or 11 a In L(6.
1+1 )

moll < E for some small E > 0.

< E

Formula (3.4.2) specifies the essence of the method of scoring

for any likelihood function assuming the required mathematical

operations can be carried out. When L(0) derives from a multi-

nomial sampling distribution the method of scoring has a useful

advantage over the Newton-Raphson procedure. The terms

821n L(e)/ae.ae
/

contain the second partial derivatives a
2iyae.ae

/
,

i = 0,1, ..., t. By taking expectations these higher order partial

derivatives drop out and the elements of I(0) involve only first par-

tial derivatives of the cell probabilities.

A general advantage of the method of scoring is that when the

iteration is terminated not only is MLE
determined but so is an

-1 /Nestimate of its dispersion matrix as I (0mLE).
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4. MAXIMUM LIKELIHOOD ESTIMATION OF POPULATION
SIZE WHEN CAPTURE PROBABILITIES HAVE A

BETA DISTRIBUTION

4.1 The Approach Used to Obtain the Solution

Throughout this chapter it is assumed that F(p) is a Beta

distribution. The results of Chapter 3 will be applied to ML estima-

tion of population size given this assumption. Thus, 0 = (a, (3).

for a > 0 and p > 0, and the cell probabilities Tr.(a, (3) are

given by formula (2.4.1). Because of the complexity of these cell

probabilities as functions of a and p , closed form solution for

the ML estimators is not possible. It is noted that modelling capture

probabilities as following a Beta distribution is not new (e. g. ,

Holgate, 1966; Cormack, 1966; Eberhardt, 1969), however no one

has previously done very much with this model.

Initially it was attempted to find the approximate ML estimators

by using the method of scoring with theIS
5i, 15 -)

a , and = St /(1 -700

conditional likelihood function L(a, p ist) = P {fit' ftt St' a' 13}

The computer program necessary for this procedure was written by

the author using formulae (2.4.2) through (2.4.7) for computing the

cell probabilities and their partial derivatives. This program was

then tried with some simulated livetrapping data from Burnham and

Overton (1969), for which the true values of N, a and p were
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known. It was discovered that satisfactory convergence to a and

R did not occur even with the true a and p as starting values.

By examining the likelihood surface more closely with these

same data it was discovered that there was a virtual plateau in the

vicinity of a and Thus the surface L(a, PI St) was in these

cases, and presumably in general, ill conditioned. While it was

apparent at this point that the ML estimators were not going to be

very satisfactory, it still seemed worthwhile to find them.

It was decided to compute the exact ML estimators NMLE'

aMLE and pMLE based on expression (3.1.2). This approach

was successful because for any fixed (integer) value of N, the ML

estimators CZ(N) and /13(N) are easily found by the method of

scoring. Before elaborating on this procedure it is worthwhile to

briefly look at estimation of a and p when N is known.

The discrete probability distribution determined by

Tr
0

(a, 3), , Tr (a, (3) has been known for many years and has a variety

of names (Johnson and Kotz, 1969). It will be referred to here as the

Beta-binomial distribution. Skellam (1948) gives the formulae for the

method of moments estimators of a and p , these formulae are

given in the Appendix. In the same paper Skellam also gives formulae

for an iterative solution of theMaximum Likelihood equations, but he

doubts if the labor involved in finding these more efficient estimators

is worth expending.
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Shenton (1950) has derived an approximate formula for the

efficiency of the method of moments estimators for the Beta-binomial

distribution. He concludes that the method of moments "rarely has

low efficiency."

More recently, the Beta-binomial model is used in a paper by

Chatfield and Goodhardt (1970). They consider the ML estimators

"hard to find," and they use instead the method of mean and zeros.

In this method f
Ot

and Ct are equated to their expectations and

the resulting equations solved numerically for a. and p . This

method and its efficiency are examined in the Appendix.

Chatfield and Goodhardt use the method of mean and zeros

because their data are strongly reverse J shaped (a larger value of

fOt
and they believe this method has higher efficiency than the

method of moments when the underlying distribution has a large value

of Tr
0

. Because most livetrapping data are also strongly reverse J

shaped their conjecture was of interest. As shown in the Appendix

there is some truth to this conjecture; however, the difference in

efficiencies between the two methods of estimation does not appear to

be large except in certain extreme cases.

In 1948 Skellam may have been correct in saying the likelihood

equations are not worth solving when the method of moments is rea-

sonably efficient. Now that computers are readily accessible it is

easy to find the exact ML estimators. Consequently, it is not
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necessary to be concerned about the efficiency of possible alternative

estimators, except when considering the choice of starting values in

numerical solution of the likelihood equations. On the basis of

Shenton's work and the Appendix it is concluded that the method of

moments estimators are satisfactory as starting values in the method

of scoring for a(N) and f3(N).

All of the formulae necessary to carry out the method of scor-

ing with the Beta-binomial distribution have been given at various

places in this thesis. They will be restated here for clarity. The

cell probabilities can be computed for formulae (2. 4.3) and (2.4. 2):

t
13+i-1

Tr
o

i
n

1
a+13+i-1

=

r (t-i)(a+i)
TT = 1T i = 0, 1, , t-1.

1+1 i (i+1)((3+t-i-1)

The partial derivatives of the Tr, can be computed from formulae

(2. 4. 4) through (2. 4. 7):

al-
0 1

as
=

-'r0 (a+P+i-1
i=0

81T. Tr
air i

+
nii +1

= ( ---)
aaTr. aa a+i

1

i = 0,1, ..., t-1,



a
Tr 0

t

1
CI

aa(3
= TT

o ((3+i-1)(a+(3 +i-1)
i=1

aTr. Tr.aTri+1
TT i +1+ 1 1 1

ap Tr p.a p+t_i_l
1

i= 0,1, ...,t-1.
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The information matrix for the Beta-binomial distribution is given by

I(a, 3) =

t

1 i)2
L, Tr. aa
i=0 1

t
1

aTr. air.
1()(p )

Tr. aa a

i=o

t
arr. aTr.()()aa af3Tr

1 1

1
i=0

t
aTr/ ( 1)2

Tr ap
i= o

With a random sample of size N from this distribution the likeli-

hood equations are

a In L(a, f3)
aTr

) 1 i
) = 0,as it Tr. as

i.i=0

1
aTria In L(a, p)

) = o.
ap pitTr. a

1
i=o

The ML estimators a(N) and 13(N) can be found by the

method of scoring. Let a
0

and p
0

be initial values, then



-+ I 1
(a., r3.)

1

a In (3i) /8a

a /8(3
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i = 0,1, ... generates improved approximations to /1.:Z(N) and P(N).

In the program written by the author the iterations are terminated

when 18 In L(a, (3) /Dal < .0001 and 18 In L(a,13)/813I < .0001.

The algorithm for the exact ML estimators of N, a and 13 is

as follows. Choose an integer N equal to or slightly larger than

St. Let f
Ot

= N - St. Then fot, fit, , ftt are considered to be

the frequencies of observations from a random sample of size

from the Beta-binomial distribution. Find the ML estimates CZ(N)

and 13(N) using the method of scoring. Then compute

4(N) = in L(N, il(N)) + K, where K is a constant:

S -1

4. 1. 1) .1)(N) = ln(N-i) + it In Tr
i
(Ci.(N), ((N)).

i=0 i=0

Continue in this manner to compute 4(N+1), ON-F-2), , until

NMLE is found such that

Finally

S5(NMLE) N {S
( N )

tr7tx+ 1 , }

a
MLE = a(NMLE) and MLE = P(NMLE)
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This algorithm is not necessarily the most efficient one,

especially if a large range of values of N must be searched for the

maximum of 4I(N). However it does work quite well because of the

following feature. In the application of this algorithm starting values

a
0

and
3\0

are supplied only for the initial value of N. There-

after the values .(N) and 13(N) are excellent starting values to

use in the method fo scoring for finding a(N+1) and P(N+1).

Because of this feature it is not time consuming to find the exact ML

estimator s.

The dispersion matrix of these estimators is taken as
"

D(N, a,(3) given by (3.3.8), and an estimate of this matrix is obtained

by evaluating it at the estimated values of N, a and 13 .

It will be shown in the next section that the ML estimator of

N is not very satisfactory. In fact, there is almost an identifiability

problem for values of N, a and 13 which seem likely to hold in

livetrapping studies. Consequently, brief consideration will be given

to the question of identifiability with the class of probability distribu-

tions Plflt' ftt I N, a'13} for t >3.

Identifiability is usually discussed in the context of mixtures of

distributions (e.g. , Blischke, 1963) where it refers to the unique

characterization of a given mixture. For a parametric class of

probability distributions identifiability should mean a one-to-one

relationship between the parameter space and the class of distributions.
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Let P. = P {fit,. ,fttl N3., a
3.,

R
3.

}, for j = 1,2. It can be

shown that if P
I
{A} = P

2
{A} for all borel sets A in

t-dimensional Euclidean space, then N1 = N2, al = a2 and pi = P2.

This does not seem to be a strong enough result here; in fact, it is

derivable from the following result.

Let E.(f. ) = N.Tr.(a., p.), j = 1, 2 and i = 1, ...,t. If
3 it 3 1 3 3

Ei(fit) = E2(fit), i = 1, . . . , t, then N1 = N2, al = a2 and pi = P2

Proof: It is assumed that

which implies

NiTri(a1, pi) = N2Tri(a2, pz)

Tr (al, R1 ) N2
-c>0 i=1,...,t.

Tr i
(a

2,
p

2)
N1

Let (i)[h] = i(i-1)...(i-h+1) and consider

t

(i)[h]Tr i (al, 13 1) = c

i=

t

i=1

i)
[h]Tr

(ct 2, 132)

for h = 1, 2,3. This leads to the three equations,

al a2

ca
1

+p
1

a 2 v2
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and

(a1+1)al (a
2
+1)a

2

(a
1
+(1 +1)(a

1
+pi) - c

(a
2

+p
2
+1)(a

2+(32)

((a
1
+2)(a

1
+1)a

1
a

2
+2)(a

2
+1)a

2

(a.
1

+p
1
+2)(a

1
+(31 +1)(a

1
+p

1)
c (a

2
+p

2
+2)(a

2
+(3

2
+1)(a

2+(32)

Eliminating the unknown constant c leads to the two equations

It follows that

ai+j a2+j

al+131+j a24:32-Ei

al132 (1a2 i(P1-132)

j = 1,2.

j = 1,2

and thus P1 = P2. As p1 > 0 is required it follows that al = a2

and finally ni(ai, Pi) = Tri(a2) P2), i = 1, , t, so N1 = N2.

4.2 The Unsatisfactory Nature of Maximum Likelihood Estimation
in this Problem

Examples of ML estimation of N, a and 3 are given in Tables

1 through 5. The estimated standard deviations are obtained by

evaluating 'fV(N) at the estimated parameter values, where V(N)

given by (3.3.9) approximates the unconditional variance of RMLE.

The estimated expected capture frequencies are computed as

2(f it ) = NMLE MLE' MLE ), i = 0,1, ... , t.

Edwards and Eberhardt (1967) have looked at several estimators
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of population size for two capture-recapture studies. In one of these

studies, 135 wild cottontails were placed in a 40 acre enclosure and

livetrapping was conducted on this penned population for 18 days.

These data are given in Table 1. It is seen from Table 1 that

NMLE = 253, with an estimated standard deviation (SD) of 243.72.

Examination of the sequence of points .4:,(N) for 100 < N < 300

shows the extreme flatness of the likelihood function over this wide

range of values of N. Thus while SD(NMLE) = 243.72 may be an

overestimate, it is clear that SD(NMLE) is large.

Using N = 135 and fitting the capture frequencies with the

Beta-binomial model gives ML estimates 6. = 1.2557 and

= 20.20469, with an estimated dispersion matrix

D(a, 3) =
.1606 2.5572

2.5572 46.0643

and the estimated expected capture frequencies shown below:

0

1

2

3

4
5

6
7

8

9

E(fit) fit

60.9 59
37.0 43
19.6 16
9.7 8

4.5 6

2.0 0

.8 2

.3 1

.1 0

.0 0

18 o
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Comparing fit with E(fit), the Chi-square goodness of fit

statistic value is 2.5091 at 3 degrees of freedom. Using these

improved parameter estimates gives SD(NMLE) = 44.66.

There is no basis for saying the Beta-binomial model of live-

trapping does not fit these data, and yet the estimate NMLE = 253

is quite poor. The estimate of its SD does not appear to be very

good either.

Table 2 gives the results of another livetrapping study reported

on by Edwards and Eberhardt in which N is not known. Tables 3

and 4 examine data from two livetrapping studies (N not known)

reported by Nixon, Edwards and Eberhardt (1967). Finally, in Table

5 simulated data are used for which N = 100, a = 1 and 13 = 15.6667.

From Table 5 it is seen that SD(NMLE) = 97.32, while theoretically
.,

SD(NMLE) = 52.43. It is possible that SD(NMLE) has a positive

bias; however, it is clear that the SD(NMLE) is so large in this

case that NMLE is unreliable.

Tables 2, 3 and 4 also indicate a large SD(NMLE), especially

when it is remembered that N > St. The extreme flatness of 4(N)

corroborates these large estimated standard devia-around NMLE

tions. The basic problem seems to be that it is possible to find

parameter points (N1, al, andand (N2, a2,(32) which are quite

different and yet the differences jE1(fit) - E
2
(fit)I, i = 1, ,t are

small. Examples of this are given in Tables 6 and 7.
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In Table 6 the data of Edwards and Eberhardt with known

N = 135 are used. The expected frequencies are given for N, a(N)

and p(N), for N = 220, 253 and 300. There is very little differ-

ence between these expected frequencies.

Table 7 uses the simulated data repoted in Table 5. The ML

estimate of N for these data is 133 (the true value of N is 100),

and as stated in Table 7 the minimum Chi-square estimate of N is

236.

The unsatisfactory nature of NMLE is further indicated in

Table 8. For N = 100 this table gives approximate standard devia-

tions of NMLE for a variety of Beta distributions. Also shown in

Table 8 is SD(NMLE I a, p), which is just the standard deviation of

St /(1-Tro) when Tr
0

is known, and an estimate of SD(IV ) where

NJ is the jackknife estimator discussed in Chapter 6. As explained

in Chapter 6 SD(NJ) is based on 20 simulated livetrapping studies

at each point t, a and p . Finally, E(St) is also shown as a

guide to interpreting the other table entries.

Define the percent standard deviation of NMLE as

SD(N)
10 ^

PSD(NMLE) = 100 MLE
D-S (NMLE1N = 100).

The entries for SD(NMLE)
in Table 8 are automatically in percent

standard deviation. The PSD(NMLE) is a much better measure of
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the reliability of NMLE than is SD(NMLE) because as N

increases, PSD(NMLE) decreases, even though SD(NMLE)

increases.

From Table 8 it is seen that NMLE has a large PSD for

values of t, a and 3 which might reasonably hold for a real live-

trapping study, e.g., t ranging from 5 to 15 and E(p) E [.12, .06]

Consider for example t = 15, a = 1 and p = 7.333 (E(p) = .12).

Then SD(NMLE) = 22.4 when N = 100. In addition consider that

E(S 15) = 67. 2 and NMLE appears to be quite unsatisfactory. Yet

if t, a and p remained the same and N is increased to 10,000,

the PSD(NMLE) = 2.24 --a more acceptable value. In this case

E(S15) = 6, 720, and SD(NMLE) 224. Now NMLE

be satisfactory.

It is concluded that NMLE

appears to

becomes more reliable (satis-

factory) with larger N but for the range of N, t, a and 13 likely

to occur in real livetrapping studies it is expected that NMLE will

often be unsatisfactory, and sometimes completely unreliable.

Because it is known that NMLE >St, it is anticipated that the

distribution of NMLE is skewed to the right. Table 8 indicates that

this skewness may be substantial for small to moderate values of N.

Thus it is to be expected that NMLE has a positive bias in addition

to a large PSD in these cases.

It should be noted that the usual Chi-square goodness-of-fit test
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is virtually powerless, thus worthless, in this problem. This Beta

model for livetrapping appears flexible enough to fit any livetrapping

data. Thus it is pointless to use the ML estimates to test the fit of

the model to the data.

The model for capture-recapture studies given in Section 2.1

was conceived in an attempt to derive estimators that would be robust

to departures from the usual model wherein capture probabilities are

assumed constant, i.e., p. = p, j = 1, , N. It was felt that by

letting F(p) be an arbitrary Beta distribution an estimator of N

could be derived that would have good performance for any set of

capture probabilities pl, , pN A robust estimator would thus be

obtained, at least with respect to variation in capture probabilities

among animals. However, it has been shown that NMLE may not

be a satisfactory estimator even when the model holds true if N is

only moderately large and a and p are unconstrained.

For a fixed value of E(p), it was never anticipated that all

values of a and p were equally likely a-priori. It may be that

certain types of Beta distributions will adequately model livetrapping

experiments. As discussed in the next section there are theoretical

and empirical reasons for considering the restricted approach where-

in a = 1 is assumed.
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Table 1. Maximum Likelihood estimation of N, a and (3 from the
livetrapping data of Edwards and Eberhardt (1967) obtained
from a confined population of 135 wild cottontails.

The livetrapping data t = 18 S18 = 76 C18 = 142

i = 1 2 3 4 5 6 7 8 ... 18

f
18

= 43 16 8 6 0 2 1 0 ... 0

Estimate of
Parameter ML Estimate Standard Deviation

N 253. 243.72
a .37518 .56309

11.66072 6.399105

Estimated expected capture frequencies
1 2 3 4 5 6 7 8 9 10 . .. 18

2(fi. 18) = 41.7 17.6 8.4 4.1 2.1 1.0 .5 . 2 .1 .0 ... .0

Some values of Ci(N), f3\(N) and (1)(N)

N a(N) if!(N) ±(N)

100 3.41061 39.78111 152.33436

150 . 97490 17.54049 155.15068

200 .55144 13.42271 155.48756

225 .45166 12.42944 155.52171

252 .37747 11.68382 155.53040

253 .37518 11.66072 155.53041

254 .37292 11.63790 155.53039

275 .33099 11.21332 155.52698

300 . 29183 10.81485 155.51794
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Table 2. Maximum Likelihood estimation of N, a and 13 from the
livetrapping data of Edwards and Eberhardt (1967) obtained
from a wild population of cottontails of unknown size.

The livetrapping data t = 8 S8 = 69 C8 = 134

i = 1 2 3 4 5 6 7 8

fi
8

= 36 15 13 3 1 1 0 0

Estimate of
Parameter ML Estimate Standard Deviation

N 121. 42.30
a 1.23227 1.28488

8.08683 5.48583

Estimated expected capture frequencies
i = 1 2 3 4 5 6 7 8

E(fi. 8) = 34.2 18.9 9.4 4.1 1.5 .5 .1 . 0

Some values of a(N), 13(N) and (1)(N)

N 'CL(N) 3(N) 4(N)

80 11.19518 44.76740 133.56115

100 2.35204 12.33645 135.71920

120 1.26191 8.31701 135.95412

121 1.23227 8.08683 135.95439

122 1.20431 7.97913 135. 95412

150 .73173 6.14048 135.83570

175 .53943 5.37985 135.68798

200 .42647 4.92865 135.55522
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Table 3. Maximum Likelihood estimation of N, a and p from the
livetrapping data of Nixon, Edwards and Eberhardt (1967)
obtained from a wild population of squirrels in 1962.

The livetrapping data t = 11 S11 = 68 C11 .= 139

i = 1 2 3 4 5 6 7 ... 11

fi
11

= 33 16 10 4 2 3 0 ... 0

Estimate of
Parameter ML Estimate Standard Deviation

N 131. 55.00
a . 7 97 5 2 .77497

7.47337 4.09466

Estimated expected capture frequencies

i = 1 2 3 4 5 6 7 8 9 10 11

2(fi 11) = 31.8 17.3 9.4 4.9 2.5 1.1 .5 .2 .1 .0 .0

Some values of 1/1.(N), 13(N) and 4(N)

N a(N) 13(N) 4(N)

80 4.20876 22.40484 120.66209

105 1.39807 10.20478 123.12923

130 . 81117 7.53650 123.35698

131 .79752 7.47337 123.35706

132 .78431 7.41221 123.35681

160 .53388 6.24154 123.27730

180 . 43378 5.76663 123.19314

200 .36498 5.43752 123.11135
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Table 4. Maximum Likelihood estimation of N, a and p from the
livetrapping data of Nixon, Edwards and Eberhardt (1967)
obtained from a wild population of squirrels in 1963.

The livetrapping data t = 11 S11 = 72

i = 1 2 3 4 5 6 7 8 9

fi
11

= 23 14 9 6 8 7 3 0 2

C11 = 223

10 11

0 0

Estimate of
Parameter ML Estimate Standard Deviation

N 104. 22.12
a .77123 .44692

3.20450 1.12960

Estimated expected capture frequencies
= 1 2 3 4 5 6

F(fi 11) = 20.8 15.1 11.2 8.3 6.0 4.2

Some values of a(N), (N) and (I)(N)

13(N)N a(N)

7 8 9 10 11

2.8 1.8 1.0 .5 .1

90 1.15530 3.97044 98.20172

103 .79031 3.24302 98.54869

104 .77123 3.20450 98.54874

105 .75302 3.16768 98.54682

125 .50900 2.66869 98.30503

150 .36038 2.35864 97.89038

200 . 22658 2.07439 97.31010
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Table 5. Maximum Likelihood estimation of N, a and (3 from
simulated livetrapping data. The data were generated
with N = 100, a = 1 and 13 = 15.667.

The simulated livetrapping data t = 15 S15 = 53 C15 = 89

i = 1 2 3 4 5 6

fi.
15

= 32 12 5 2 2 0

Estimate of
Parameter ML Estimate Standard Deviation

N 133. 97.32
a . 80440 1.25472

17.22885 14.49051

Estimated expected capture frequencies
i = 1 2 3 4 5 6 7 8 15

E(fi. 15) = 31.0 12.9 5.4 2.2 .8 .3 1 0 . 0

Some values of Cl(N), 13(N) and (1)(N)

N a(N) F)(N) c(N)

65 30.60280 304.64662 95.09474

100 1.61044 25.52182 97.55716

132 . 81702 17.36122 97.68589

133 .80440 17.22885 97.68590

134 . 79215 17.10031 97.68581

150 . 63 627 15.45574 97.67426

175 .48559 13.84846 97.63926

200 .39213 12.84131 97.60113

250 . 28274 11.65122 97.53466
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Table 6. Comparison of observed and expected freyen-
cies for selected values of N, a(N) and 13(N)
for the data of Edwards and Eberhardt when N
is known to be 135.

Expected Frequencies

Observed
Frequencies

N = 220
f:^\t(N) = .46867
p(N) = 12.59947

E(fi
18)

253
.37518

11.66072
E(fi

18)

300
.29183

10.81485
E(f i 18)i fi

18

1 43 41.13 41.74 42.31

2 16 17.95 17.64 17.33

3 8 8.56 8.38 8.20

4 6 4.19 4.13 4.08

5 0 2.05 2.05 2.06

6 2 .99 1.01 1.03

7 1 .46 .49 .51

8 0 .21 .23 .25

9 0 .09 .10 .11

10 0 .04 .04 .05

11 0 .01 .02 .02

12 0 .01 .01 .01

13 0 .00 .00 .00

18 0 .00 .00 .00
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Table 7. Comparison of observed and expe5ted frequencies for
selected values of N, a(N) and 13(N) for the simulated
data with N = 100, a = 1.0 and p = 15.6667. N = 236 is
the minimum Chi-square estimate of N.

Expected Frequencies

Observed
Frequencies

N = 100
i(N) = 1.61044
13(N) = 25.52184

E(fi
15)

133
.80440

17.22885
E(fi.

15)

180
.46354

13.61158
E(fi.

15)

236
.30294

11.74649
E(fi.

15)i fi.
15

1 32 29.23 30.99 31.97 32.30

2 12 13.87 12.95 12.31 11.90

3 5 5.78 5.38 5.13 5.00

4 2 2.19 2.18 2.17 2.18

5 2 .76 .84 .90 .95

6 0 .24 .31 .36 .40

7 0 .07 .11 .14 .17

8 0 .02 .03 .05 .06

9 0 .00 .01 .02 .02

10 0 .00 .00 .01 .01

11 0 .00 .00 .00 .00

15 0 .00 .00 .00 .00



Table 8. Approximate standard deviations (SD) of NMLE
when N = 100. Also shown is the estimated standard/deviation of the jackknife estimator, NJ; these esti-
mates were obtained by simulation with N = 100.

t E(St)

a = .3158 p = 1.0

5 48.2
10 57.6
15 62.5
20 65.6
25 67.9
30 69.6

a = 1.0 p = 3.1667

5 61.2
10 76.0
15 82.6
20 86.3
25 88.8
30 90.5

a= 6.0 p = 19.0

5 71.7
10 90.0
15 95.9
20 98.1
25 99.0
30 99.5

a = 250 p = 1. 0

5 41.2
10 49.8
15 54.4
20 57.5
25 57.7
30 61.5

SD(NMLE) SD(1\7MLE I a, p) SD(S1--s )

E(p) = . 24

80.9 10.4 6.7
43.6 8.6 6.3
33.1 7.8 6.3
27.9 7.2 6.4
24.7 6.9 7.6
22.5 6.6 5.2

E(p) = .24

35.9 8.0 7.6
15.1 5.6 6.1
10.0 4.6 5.6
7.7 4.0 5.9
6.4 3.6 5.9
5.5 3.3 4.5

E(p) = . 24

19.8 6.3 11.2
5.6 3.3 6.7
2.7 2.1 5.7
1.7 1.4 3.5
1.1 1.0 2.8
.8 .7 1.9

E(p) = . 20

117.9 12.0 5.7
64.2 10.0 6.3
49.2 9.2 5.7
41.6 8.6 5.6
36.9 8.2 6.0
33.7 7.9 7.2

68
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Table 8. Continued.

t E(St) SD(PMLE) SD(1TMLE I a, p) NSD(IT\ )

a = 1.0 p = 4.0 E(p) = . 20

8.9
6.3
5.2
4.5
4.0
3.6

8.7
8.3
7.8
5.6
5.4
4.7

5

10
15
20
25
30

55.6
71.4
79.0
83.3
86.2
88.2

46.7
19.0
12.4
9.4
7.7
6.6

a = 4.0 P = 16.0 E(p) = . 20

5 63.5 29.8 7.6 12.2

10 83.7 8.9 4.4 7.1
15 91.6 4.7 3.0 5.8
20 95.3 3.0 2.2 4.6
25 97.1 2,1 1.7 3.7
30 98.2 1.6 1.4 2.8

a = .1905 p = 1.0 E(p) = 16

5 33.7 181.7 14.0 6.6

10 41.3 100.1 12.0 7.0
15 45.4 77.1 11.0 5.1
20 48.3 65.5 10.4 5.6
25 50.4 58.4 10.0 5.7
30 52.0 53.4 9.6 7.1

a = 1.0 3 = 5.250 E(p) = . 16

5 48.8 64.5 10.3 10.2
10 65.6 25.1 7.3 8.1
15 74.1 16.0 5.9 9.2
20 79.2 12.0 5.1 7.6

25 82.6 9.7 4.6 5.6
30 85.1 8.3 4.2 5.5

a = 4.0 R =21.0 E(p) = .16

5 55.3 44.0 9.0 14.1

10 77.1 13.0 5.5 8.7

15 87.1 6.0 3.9 7.2

20 92.2 4.4 2.9 5.6

25 95.0 3.1 2.3 4.8

30 96.6 2.4 1.9 4.2



Table 8. Continued.

/s.

t MLE)SD(NE(St)

a = .1364 ( 3 = 1 . 0 E(p) = .12

5 25.8 307.5
10 32.0 171.0

15 35.5 132.4

20 37.9 113.1

25 39.7 101.1

30 41.2 92.8

a = 1.0 p = 7.3333 E(p) = .12

5 40.5 97.9

10 57.7 36.2

15 67.2 22.4

20 73.2 16.5

25 77.3 13.2

30 80.4 11.1

a = 3.0 p 22.0 E(p) -12

5 44.6 74.6

10 66.2 22.8

15 77.9 12.3

20 84.7 8.1

25 89.0 5.9

30 91.8 4.6

a = 0989 p = 1.0 E(p) = 09

5 19.7 506.9

10 24.6 283.9

15 27.4 220.8

20 29.4 189.1

25 30.9 169.4

30 32.1 155.7

a= 1.0 p = 10.0000 E(p) = .09

5 33.1 149.0

10 49.7 52.6

15 59.7 31.7

20 66.4 22.8

25 71.2 18.0

30 74.8 15.0

SD( 1\TMLE P) SD(11:.)

17.0 5.3

14.6 5.5

13.5 4.7

12.8 4.9

12.3 5.0

12.0 5.0

12.1 10.5

8.6 8.8

7.0 7.8

6.1 6.1

5.4 6.9

4.9 6.1

11.1 13.0

7.2 11.1

5.3 9.0

4.3 7.0

3.5 5.9

3.0 5.4

20.2 5.1

17.5 5.1

16.3 4.1

15.5 4.1

15.0 5.7

14.5 4.6

14.2 11.0

10.1 11.3

8.2 8.9

7.1 8.6

6.4 7.5

5.8 8.0
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Table 8. Continued.

t E(St)

a = 9.0 p = 91.0

5 37.0

10 59.4
15 73.3
20 82.1

25 87.8

30 91.6

a = 1.0 p = 15. 6667

5 24.2
10 39.0
15 48.9
20 56.1
25 61.5
30 65.7

a = 3.0 3 = 47.0

5 25.7
10 43.3
15 55.8
20 64.8
25 71.6
30 76.7

a = 1.0 p = 24.0

5 17.2
10 29.4
15 38.5
20 45.5
25 51.0
30 55.6

a = 2.0 p = 48.0

5 17.8
10 31.3
15 41.7
20 49.9
25 55.5
30 61.8

SD(lcsmLE) SD(NmLE I a, (3) SD(NJ)

E(p) = 09

106.4 13.1 13.3

29.9 8.3 14.6
14.9 6.0 10.3

9.2 4.1 8.4

6.2 3.7 7.2
4.5 3.0 6.7

E(p) = . 06

270.4 17.7 9.8
90.3 12.5 11.6
52.4 10.2 10.0
36.8 8.9 9.6
28.4 7.9 9.9
23.3 7.2 7.9

E(p) = . 06

225.4 17.0 10.9
67.0 11.4 14.4
35.3 8.9 12.2
22.7 7.4 12.4
16.6 6.3 9.7
12.6 5.5 10.5

E(p) = . 04

492.5 21.9 8.4
157.7 15.5 11.5
88.7 12.7 12.1
60.8 11.0 13.3
46.1 9.8 11.4
37.1 8.9 10.5

E(p) = . 04

443.6 21.5 9.1
133.6 14.8 12.9
71.3 11.8 12.4
46.7 10.0 11.5
34.0 8.8 10.6
26.4 7.9 10.4
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4.3 The Special Case a = 1

For the special case a = 1, the ML estimators of N and

13 are given by the obvious modification of the algorithm used in the

general case. For a fixed value of N, I3(N) is the solution of

d ln L(1, p) 1
dTri

cip it TT. dP
= o.

i=0

The method of scoring for finding P(N) is given by

where

d In L(1, /1.)
1

j+1(N) = 3
(N) + i( P)

( )

t

From (2.4.3) Tro is given as

t
13+i-1

Tr 0(a,P) = (a+P+1-1. )

i=1

j= 0, 1, ...,

This expression for
Tr 0

will simplify if a is an integer in the

range 1 < a < t-1. In particular, for a = 1

Tr
0

= .
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Consequently for a = 1

and

t i
Tr. = Tr (

1+1 i (3+t-i-1)

thr
0

dP
(t+P)

2

= 0, 1, . . . , t 1,

dTr. Tr.
diri

Tr.
1+1 1+1

d(3 n. (3 +t -i -1
i= 0,1,...,t-1.

Finally, the estimators NMLE and pMLE are defined by

L( MLE' 1,13
MLE

) = max L(N, 1, (3(N)).)).
NE{ St' St

+1,}

It should rarely, if ever, be necessary to compute these exact

ML estimators because with a = 1 there exists highly efficient

closed form estimators of N and p . Because
0

simplifies

when a = 1 this gives

Also

E(St) = N .
t+P

E(Ct) = N
1-Fp

By setting St and Ct equal to their expectations, estimators of

N and p are found to be



(4.3.1)

(4.3.2)

1
N 1-S

t
/C (1-

t
)

t t

tSt Ct
R = c t

-St '
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provided St Ct. From St =
t

and. Ct = i ,
i

it follows

i=1 i=1
that Ct

S t iff flt St, that is, only if there are no recaptures.

If there are any recaptures then 0 < P < + co and S
t

< N < + oo.

A A
The dispersion matrix D(N, p) is approximated by

AD(S
t
, C

t
)A ' where D(St, Ct) is the dispersion matrix of St and

Ct, and A is the Jacobian matrix

- A
aN aN
as ac

t

aR
as ac_ t t

evaluated at St = E(St) and Ct = E(Ct):

A=

(t+() 2

t(t-1)

(t+P)2(1+13)
Nt (t -1)

From Section 6. 1, if L
1

=

t

i=1

aif it
and. L2 = b.f. are

i=1



linear combinations of the capture frequencies, then

Cov(L1, L2) = N
E(L

1)
E(L

2)
a.b.Tr.

N N
i=1
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Using this formula V(St), V(Ct) and Cov(S
t
,C

t
) are easily found

in general. For a = 1

D(S
t

C
t
) =

It follows that

(4. 3. 3) D(1T',F) =

Nt
413

Nt
(1+13)4+13)+)2

Nt Nt
13(1 +13 +t)

(1+13)(t+P)
(1+13)

2(24-13)._

Np i+p (t+13)(1+13) 2p(t+1 )t(t-1) z+p t(t-1)(2 +p)

(t(t +13)(1 +13)213 (t+P)
2

(1+13)
2

P
t(t-1)(2+13) Nt(t-1)(2+13)

By approximating these estimators by the first three terms of

their Taylor's series expansion it follows that

13(1+P)(t+13)E(N) = N + t(t-1)(2+13)

E43\) = p 13(1 +P)(t+13) t+13 p+1
Nt(t-1) L 2+p t-1

Usually with the multinomial distribution N is the sample

size and it is assumed known. Then the asymptotic distribution of any
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linear combinations LI and L2 of the frequencies is bivariate

normal. In the present situation N is not known but it is still true

that if N is large, then St and Ct will be approximately

bivariate normal random variables. Because the estimators N and

are totally differentiable functions of St and Ct (except for

St = Ct, a set which has zero asymptotic probability, it follows

(Rao, 1965) that N and R are for large N approximately

bivariate normal random variables with mean vector (N, p) and

dispersion matrix D(N, fi) given above.

The efficiency of N and R is given in Table 9 for t = 5(5)30

and a range of values of p . As discussed in the Appendix, the

efficiency is defined as

where

I(N, p) =

N

(N,
,

dTri
2

Tr. dP P(t+p)
i=0

i

p(t+p) NR

may be taken as the information matrix for N and p when a = 1.

From the formula for D(N, p)
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3) [ (1+3)(t+p)p 12
(t+1) (2+13)

No convenient analytic expression for 1I(N,P) I appears possible.

It is easily seen that the efficiency depends only upon t and p ,

thus Table 9 is valid for all N large enough so that D(N,13) is a

good approximation to the exact dispersion matrix.

As seen from Table 9 the efficiency is excellent for p and t

in the range anticipated to apply to livetrapping studies, say p > 5

which corresponds to E(p) < .167. It can be expected that the

efficiency achieved in practice will be greater than .98.

The question now arises, of how much importance is this

special case a = 1? This is an empirical question for which no

definite answer exists at present. It may be that this case is

especially valid and useful as a model for the distribution of capture
f3-1probabilities. The density function in this case is f(p) = 13(1-p) ,

0 < p < 1. It is seen that f(p) is strictly monotone decreasing with

f(0) = p and f(1) = 0 whenever p > 1, that is, whenever

E(p) < 5. For E(p) in the range anticipated for livetrapping this

density indicates that most capture probabilities will be small to

moderate, with only a small percent of large capture probabilities.

Conversely, it is unlikely that there will be many extremely small

capture probabilities.

In an attempt to derive an estimate of population size when
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capture probabilities varied, Eberhardt, et al. (1963) chose to model

the capture frequencies as a sample from a geometric distribution

(P{Y=i} = (1-Q)Qi 1, i = 1,2, ). They did this because it was noted

that the geometric model gave a good fit to many capture frequency

records. On the basis of this model they suggested the estimator

S
t

N
G 1-S t /Ct '

which will be called the geometric estimator. Note that 110 and

N given in (4.3.1) differ only by the constant term 1-1 it.

Skellam (1948) has shown that the Beta-binomial distribution

converges to a limiting negative-binomial distribution when a is

held fixed and p, tT + 00 subject to Pit is held constant. With

a = 1 and p and t large enough, the Beta-binomial distribution

will be approximately the same as the geometric distribution with

Q = t/(t+(3 +1) , except for the obvious restriction that only a finite

number of integers have positive probability with the Beta-binomial.

Thus it is not surprising that N and NG are very similar.

Eberhardt (1969) in a paper discussing population estimates

based on the capture frequencies, recognized this relationship

between the geometric distribution and the Beta-binomial distribution

with a = 1. However, the only use he made of it was to derive the

estimator N for t=2 from the expressions for E(f12) and E(f22).
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The geometric model was an ad-hoc model introduced on empiri-

cal grounds. By taking a more fundamental approach the estimator

N is derived for a situation where the capture frequencies will

approximately fit a geometric distribution. This will be a useful

estimator if capture probabilities follow a 3(1, (3) distribution. It

would be worthwhile to find aMLE and ifm LE for a variety of

livetrapping data to determine if a = 1 is generally a reasonable

assumption. For the livetrapping data examined in Tables 1 through

4, a value of a = 1 appears tenable.

S
1

Table 9. Efficiency of the estimators N = (1--) and1-S /Ctt t
tSt -Ct

R Ct-St when a = 1 for selected values of 3. The

value of N is arbitrary since the efficiency depends only
upon t and p .

3 E(p)
Efficiencies

t = 5 10 15 20 25 30

1 .50 .920 .878 . 843 . 827 .817 . 809

2 .333 .964 .939 .927 .920 .915 .911

3 .250 .981 .967 .960 .955 .952 .950

4 .20 .989 .980 .975 .972 .970 .969

5 .167 .993 .987 .983 .981 .980 .980

6 .143 .995 .991 .988 .987 . 986 .985

7 .125 .997 .993 .991 .990 .989 .989

8 .111 .997 .995 .993 .992 .992 .991

9 .10 .998 .996 .995 .994 .994 .993

10 .091 .998 .997 .996 .995 .995 .994

12 .077 .999 .998 .997 .997 .996 .996

14 .067 .999 .999 .998 .998 .997 .997

16 .059 1.000 .999 .999 .998 .998 .998

18 .053 1.000 .999 .999 .999 .999 .998

20 .048 1.000 .999 .999 .999 .999 .999

30 .032 1.000 1.000 1.000 1.000 1.000 1.000
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5. AN EXTENSION OF THE JACKKNIFE METHOD
OF BIAS REDUCTION

5. 1 Introduction

The jackknife was originally devised by Quenouille (1949, 1956)

as a bias reduction technique. Tukey adopted the name "jackknife"

for this procedure (see Miller, 1964) and suggested it could be used

to obtain approximate confidence intervals. Since then a, number of

papers have justified this inference procedure for selected situations

(Brillinger, 1964; Miller, 1964, 1968; Arvesen, 1969). There have

also been papers examining the bias reduction achieved with the

jackknife in certain estimation problems (Durbin 1959; Rao, 1965;

Rao and Webster, 1966; Mantel, 1967). These papers are only con-

cerned with the elimination of a bias that is 0(-1 ),

1 2estimator may be biased to 0((;') )

the resulting

Quenouille, in his 1956 paper, gave a method for eliminating

bias of higher order than 1/n. Robson and Whitlock (1964) have

actually used this procedure, in a slightly modified form. In this

chapter a better formula is developed for the elimination of higher

order bias. At the same time the procedure is generalized for use
1

)
with biases that are 0( g(

After this work was completed the
n

author discovered other people had been working on an extension of

jackknifing (Schucany et al., 1971; Adams et al. , 1971).
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Independence of development is established by a manuscript submitted

March 31, 1971 to the Annals of Mathematical Statistics.

Let 01, , ek be estimators of a real valued parameter O.

The problem of combining these estimators to get an improved esti-

mator is a common one in statistics. The usual approach is to

assume a linear combination will be used and choose coefficients to

achieve a criterion such as minimum variance. Clearly, it is con-

ceivable to combine these estimators to achieve minimum bias or even

minimum mean square error. It will be seen that the extended jack-

knife is just a linear combination of estimators with coefficients

chosen to reduce bias. The unique aspect of jackknifing is the nature

of the estimators so combined; they are constructed from one initial

estimator.

Schucany's approach to bias reduction has been motivated by

sequence to sequence transformations for accelerating the convergence

of sequences. Consequently, he defines the extended jackknife in a

very nonintuitive manner, and ends up failing to get closed form

results (nor does he consider generalizing the nature of the biases).

My approach is the familiar one of forming a linear combination of

estimators to yield an improved estimator.

The nature of the jackknife is as follows: Let Y1, ..., Yn be

a random sample from a distribution involving an unknown, real

valued parameter 0. Assume On = On(Y1, , Yn) is an estimator



of 0 and assume

a
2n

E(0n) = 0 + + +

al
n 2 'n

where a 1,a 2, ... are constants. Define

and

82

0 =
6

( n - 1 ) , i (n-1)(Yr-"Yi-1, Yi+1,-"Yn) 1 1' '11'

, -
(n-1) n

i=1

n

The jackknife estimator is defined as

-/-7;

OJ1 = n6n - (n-1)0( n-1)

n 1 1 2
The bias of On is O(-n ), but the bias of (3JI is 0((i.V )

a a
1

E(6J1) = 0
n(n2-1) n(n3-1) -n + n-1 / +

The jackknife can be used to set an approximate confidence

interval on 0 by defining n estimators, sometimes called

pseudovalues, by

0 = nOn (n-1)0(
n n-1), i

n
n ^(i)Note that 0J1 On

i=1

i,-- 1, ...,n.



(i)^The 0
n

are identically distributed random variables, and

by treating them as if they were iid, an approximate Student's t-

statistic can be constructed. When this is done the variance of 0

is estimated by

J1
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This inferential aspect of jackknifing will not be considered here;

however, some consideration will be given to the possibility of using

the jackknife approach to estimate the variance of higher order jack-

knife estimators.

It is assumed that On has been chosen to estimate 0 either

because no other estimator is available, or on the basis of some

criterion such as sufficiency or Maximum Likelihood. Whatever the

case, it is assumed that the only estimators of 0 available are the

statistics 0 '
defined below. The jackknife must be(n-1),ji,...,ji

constructed from these estimators, as no other information is avail-

able.

Because Y1, , Yn is a random sample, it may be assumed

without loss of generality that 0n (Y1, Yn) is a symmetric func-

tion of its arguments. It is assumed below (see (5.2.1)) that E(?
n)

is such that if n1 n2, then E(6 ) E(6. ).
n1 n2



Let i be an integer such that 0(n-i) is defined, and let

be a combination of i integers from the set {1, , n}.di

84

For any such combination define 0
(n-1),Ji, ,ji

based on the n-i random variables remaining after Y. Y.
j1, - I

are dropped from the sample. By assumption the only available

unbiased estimators of E(0(n-i)) are these (n-i), ji, , ji

Thus the MVUE of E(A\(n-i)) is the U-statistic (Fraser, 1957)

as the estimator

0(n-i)
( i )

.0\
0

j. < n ,ji1
For notational convenience let 0(n) = On.

The basis for the jackknife method of bias reduction is the set

\-76(n-i)of estimators

5. 2 The Extension

Repeating some of the above, Y 1, Yn is a random sample

from a probability distribution depending upon 0. These variables

may be vector-valued. Let A be an estimator of 0 which is

defined for all n > k , where / is a fixed integer > 1. Finally

assume

(5. 2.1) E(6n) = +

CO

a.

g.[ (n)]j
3=1

n >
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where a1,a 2, ... are constants.

The function g is assumed to have certain properties:

(5. 2. 2a) g is strictly monotone increasing and unbounded from

above. Thus g(y)i +00, implying E(9 n) 0, and

(5. 2. 2b) g(l) > 0, thus g(n) > 0, V n >1.

(5. 2.2c) Let c be a constant, then

lim [ g(y) ] - 1.
g(y+c)

This implies that for any fixed integer j,

lim [ g(Y) = 1 .
g(y+c)

An example of such a function is g(y) = (y+P)a, a > 0, y >

Consider a linear combination of the estimators 0 ,(n-i)

i = 0, ...,k, where n-k > :

0Jk =

k

i=0

7
x.0

i (n-i)

Using (5.2.1) it is easy to write the expected value of 0Jk. After

rearrangement of terms



(5.2.3) E(E/3.k) = 0
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Let x = (x0, x1' ,x )'. It is desired to choose a vector of coeffi-

cients, x, which gives "good" bias reduction.

By looking at (5.2.3) it is apparent that x should satisfy

x
0

+x
1+

...+xk = 1. The imposition of k additional, independent

linear restraints on x will uniquely determine this vector. Pre-_

sumably the initial terms of the bias expression in (5. 2.3) are the

dominant ones, consequently a reasonable approach to choosing

is to adopt the following k+1 restrictions:

= 1,

i=0

- 0 j = 1, 2, ... , k.
g.( (n-i))3

1=0

This system of equations has a unique solution vector x, which can

be found in closed form. The linear combination of the 8 's(n-i)

generated by the solution to these equations will be symbolized here

by 0jk, and called the kth order jackknife based on the initial

estimator On. For a further justification of 'OJk, note that if

a. = 0 for all j >k, then E(O\Jk) = 0.



Theorem 1. Given i' with eo\n) as in (5.2.1) and given
n

k such that n-k > / , there exists a unique linear combination of
T

3n''g(n-1), '-'(I(n-k)

(5. 2. 4)

such that

(5.2.5)

0Jk =
1

x.0 (n-i)
i=0

(-1) k+1
ka co

E(6Jk) = 0 + + a 0((--1)k+i)
g(n)g(n-1)...g(n-k) k+j g(n)

j =2

sFurthermorethe x.' can be explicitly given:

(5. 2. 6)

[g(n)]k
x0 k

[g(n)-g(n-j)]
j=1

x. .
1-1
II [g(n-j)-g(n-i)] TI [g(n-i)-g(n-j)]

j=0 j=i+1

(-1)1[g(n-i)]k

(-1)k[g(n-kdk
x =

k k-1
H [g(n-j)-g(n-k)]

j=0
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i = 1,...,k-1,

The proof of this theorm will be given in two parts: first show-

ing the uniqueness of, and deriving the x vector, second proving
A

the assertions (implicit in (5.2.5) about the bias of 0 Jk.
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Before going on to the proof, consider the case where

g(y) = y + p , p > . This is the only functional form for which the

sx.` simplify. In this case

(5.2.7)
k

1
E.)\Jk k!

i=0

( -
k )(n+vok§

(n-i)

Setting p = 0 gives the form of E(On) Quenouille considered.

Thus, in this commonly considered case, here is an explicit kth

order jackknife with bias 0((1 /n)k+1) (and it is not the same as the

one proposed by Quenouille).

Proof of Theorem 1: The vector of coefficients x used in

constructing 0 Jk is determined by the equation

(5. 2. 8) Ax= c,

where c = [1,0, , O]', and A is a (k+1) by (k+1) matrix:

A =

1

1

1

1

1

1

1

1

--

g(n) g(n-1) g(n-2) g(n-k)

1 12 1 2 1 2 1
)2g(n) g(n-1)) g(n -2)) g(n-k)

k
1 k 1 k 1 1

)kg(n) ) ( g (n- 1 )
) ( g(n- 2) ) (g(n-k)

Because A is a Vandermande matrix (Perlis, 1952), its
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determinant is well known:

A1
1 1

g(n-i) g(n-j)0<j<i<k

Because of the strict monotonicity of g, it follows that for j <

1 1

0,g(n-i) g(n-j) >

which implies All > 0. Thus there is a unique solution to (5.2.8)

given by x = A 1c
.

Let A(i +l) denote the matrix that results from replacing

column i+1 of the matrix A by the column vector c, for

i = 0,1, ...,k. By Cramer's rule (Perlis, 1952)

A(i+1)1
xi I A I

i = 0, ... ,k.

It turns out that A(i+1)1 is proportional to a Vandermode determi-

nant. For example with i = 0,

k
IA(1)1 =

j=1 g(n-j)

1 1 1

1 1 1

g(n-1) g(n-2) g(n-k)

1 1 k-1 1
)
k-1

g(n-1))1c-"g(n-2)) (g(n-k)

The determinant on the LHS of this formula contains most of the



terms of I A I :

Thus,

A(1)1 = I A I [g(n)]k

n [g(n)- g(n -j)]

[g(n)]k
x0

n [g(n)-g(n-j)]
j=1

In the same manner xl, , xk are found; however, for

,.,x
1 k-1

90

the computations are tedious and care must be taken not

to get confused by notation. The author found it useful in these cases

to first transform by 1 = f, evaluate x., then transform back.
1g

sItis convenient to have a single formula for the x.' . This is

achieved by using the conventions

and

H [g(n-j)-g(n)] = 1 (used for i = 0),
j=0

k

n [g(n-k)-g(n-j)] = 1
j=k+1

Using these conventions,

x. .
1 1-1

H [g(n-j)-g(n-i)] H [g(n-i)-g(n-j)]
j=0 j=i+1

(-1)1[g(n-i) ]k

(used for i = k).

i = 0, ...,k.
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Note that from the strict monotonicity of g, it follows that

> 0. Thus the x.'s alternate in sign. Also lim Ix. co,

which makes it difficult to investigate the asymptotic properties of

Jk.

The bias of 0Jk can be written

00

E(6Jk) - 6 = / a .
k+i

j=1

Define a triple sequence

(5. 2. 9) Q(n, k, =

Then

k

[g(n-idk+j
_i=0

[g(n-ink+i=0
j

j > 0, k > 0, n-k >

E(/ONJk ) - 0 = > ak+i (.Q n, k, j)

The a , a
k+1 k+2'

the bias of 6Jk

j=1

are constants, thus the investigation of

reduces to an investigation of the quantities

Q(n,k, j). This task is approached by first deriving a recursive rela-

tionship among these quantities.

For all n-i > the following is an identity:

1 1 [1+ g(n) -g(n-i)
g(n-i) g(n) g(n-i)
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Multiply this by 1 /[g(n-i)] ic+i-1 and substitute the result in (5.2.9)

to derive

1
Q(n, k, j) = g(n)

Q(n, k, j -1) +

k

i=0

gx.[ (n)-g(n-i)]

]k+j

The second term in the bracket above may be simplified. For k > 1:

i =0

gx.[ (n)-g(n-i)]

[g(n_oik+j

k
(-1)1[g(n)-g(n-i)]

i-1
i=1 [g(n -i)]3 II [g(n-h)-g(n-i)] lI [g(n-i)-g(n-h)]

h=0 h=i+1

The term in the denominator for h = 0 will cancel with the term in

the numerator. Then changing the indexing to = i-1 and

h' = h-1 gives

k -1
(-1)(-1)i'

i'-1 k-1
i1=0 [g(n- 1 -ir)}3 II [g(n- 1 -h ') -g(n 1 -ir)] fI [g(n-1 -ic)-g(n-I-111)]

h'=0 hl=i1+1

= -Q(n -1,k 1,j).

Provided k > 1, Q(n-1,k-1,j) is defined, as originally n-k >

was required => (n-1)-(k-1) >.Q holds. It follows that
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(5. 2. 10) 1Q(n,k,j) = g(n) [Q(n,k,j-1)-Q(n-1,k-1,5)] ,

j > 1, k >1, n-k >.Q.

Some boundary conditions will be needed. First consider

Q(n, k, j) when k = 0; this makes sense if 0
JO

= 13\n , x
0

= 1, and

1Q(n, 0, j)
[g(n)]3

The case j = 0 and k >1 is trivial:

Q(n, k, 0) = 0 k > 1.

j= 0, 1, .

With these boundary conditions it is possible to solve (5.2.10)

for Q(n,k, j) by induction. First, two additional relationships are

derived. Note that the presence of n causes no difficulties, it is

the variables k and that are important.

From (5.2.10) write (for j > 2)

r
Q(n, k, j -1) = g(1

n)
LQ(n,k,j-2)-Q(n-1,k-1,j-1)] ,

and substitute this back into the LHS of (5. 2. 10) to derive

Q(n, k, j) =
1

2
Q(n, k, j -2) -

1 Q(n-1, k-1, j -1)
n[g(n [g(n)]

2

1

g(n) Q(n -1, k -1, j).



Continuing in this manner to eliminate the term involving k

(rather than k-1) gives

(5.2.11)

j -1
, 1 ,r+1

Q(n, j) = L g(n)1 Q(n-1,k-1,j-r) k > 1, j >1.
r=0

The term involving j in (5. 2. 10) is eliminated by the same

approach, though it takes more work:

(5.2.12) Q(n, k, j) =

r=0

Q(n, r, 1)Q(n-r, k-r, j-1) k > 1, j >1.

The first term in the bias of 0 Jk is ak+1 Q(n, k, 1). To

evaluate this term put j = 1 in (5. 2. 11) to derive

Q(n, k, 1) = - g(1
n)

Q(n-1, k-1,1) .

Induction on k leads immediately to

(5.2.13) Q(n, k, 1) -
(_1)k

g(n)g(n-1)...g (n -k) k > 1.

To evaluate Q(n,k, 2), set j = 2 in (5.2.12) and use

(5.2.13):

Q(n, k, 2) = Q(n, k, 1)

k
1

L g(n-r)
r=0

k > 1.

94
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for

It is possible to continue using (5.2.12) to evaluate Q(n,k, j)

j > 2, but there is no point in doing this. From (5.2.13) it

follows that the leading term in the bias of Jk is

(-1) ka
k+1

/g(n)g(n-1)... g(n-k). To finish the proof of Theorem 1 it

will suffice to determine the asymptotic behavior of the terms

Q(n, k, j).

Lemma 1. When the function g satisfies the conditions

(5.2.2a, b, c) and Q(n, k, j) is defined by (5.2. 9), then

(5.2.14) lim { [g(n) ]k+jQ(n, k, j)} = (-1)k( j+k1
) k > 0, j > 1.

n--00

The proof of Lemma 1 is by induction on k, allowing j to

be an arbitrary integer. A useful formula in this proof is (Jolley,

1961):

r+m-2
) (

j+m-1
m-1

r=

m >1, j > 1 .

Proof of Lemma 1: If k = 0 then [g(n)]aQ(n, 0, j) = 1 for

all j > 1. This establishes (5.2.14) for the case k = 0, j > 1.

Let m be an arbitrary integer > 1. From (5.2.11)



[g(n)frIfiQ(n,m,j) = -

r=0

[g(n)]lia-i+j-rQ(n-1,m 1,j-r),
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j-1 m-l+j-r
N'

g(n
g(n-1)

)
[g(n-1)]m-1+j-rQ(n-1,m-1,j-r).

Z.,
r=0

Assuming (5. 2. 14) is true for k = m-1 and all j > 1, it follows

that

lim { [g(n)]m+iQ(n, m, j) } = ( -1
n-00

= (-1

j-1

(-1)
m-1

(
j-r+m-2)

,m-1
r=

r=1

r+m-2
m-1 ) ,

.+MM -
= ( -1) (

3 1

)M
j >1.

Because (5.2.14) is true for k = 0, which corresponds to m = 1,

it follows by induction that Lemma 1 is true.

This completes the proof of Theorem 1, since (5. 2.5) follows

from (5.2.13) and Lemma 1.

The jackknife is often introduced by specifying the sample is

partitioned in groups of size r > 1. It is easy to extend Theorem 1

to the case r > 1, and it is not required that n/r be an integer.

Let r and k be positive integers such that n-kr > f. For



1 < i < k, let
1 iir

gers 1, .. ,n. Define 0(n-ir), to be the estimator of 0

'Ili Jir
based on the remaining (n-ir) sample variables after

be a subset of size it from the inte-
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are deleted, and let

10(n-ir)
)ir 1 < < jir< n

0 (n -ir) . , jir

k
/N.

A kth order jackknife is defined by 0Jk, r = xi., r0(n-ir)
i=0

where the coefficients x, satisfy the k+1 independent linear
1, r

equations

= 0,x. r

[g(11-11')] j = 1, , k .

J-ir

/Theorem la. Given On, with E(0 ) as in (5. 2. 1), and

given r, k such that n-kr > Q , there exists a unique linear com-

bination of 0(n-ir), i = 0, ...,k, call it 0Jk, r such that

(-1) ka
co

E(E)Jk, r) = 0 + k+1 ik+j)
g(n) g(n-r). . . g(n-kr) k+j g(n)

j=2

The coefficients of this linear combination are



x.
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(-1)1[g(n-ir)]k
r i-1

H [g(n- jr)- g(n -ir)] II [g(n-ir)-g(n-jr)]
j=0 j=i+1

i = 0, ...,k.

The proof of Theorem la is essentially the same as the proof of

Theorem 1.

It is doubtful that it would be useful to have r > 1 if the goal

is bias reduction. To justify this statement, define

Qr(n, k, j)
[g(n-ir)]k+

i=0
j

Then the bias of 0 isJk, r

and

00

E(Eljk, r) 0 = a Q (n, k, j) .
+3 r

j=1

k > 1, j >0.

The approach used for r = 1 can be used to derive the results

(-1)kQ(n, k, 1)r g(n)g(n-r)... g(n-kr)

(5.2.15) Qr(n, k, j)

i=0

Qr(n,i, 1)Q r (n-ir,k-i,j-1),
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for k > 1, j > 1. It is seen that Qr(n, k, 1) = ( -1)klQr(n, k, 1)1, and

it follows from (5. 2. 15) by induction that

k

Qr(n,k,j) = Qr(n,i,1)11Qr(n-ir,k-i,j-1)1 ,

i=0

= (-1)k 1Qr(n,k,j)1 k > 1, j > 1.

Because g is strictly monotone increasing it follows that

min 1Qr(n, k, 1)1 = 1 (n, k, 1)1 and by induction

min 1Qr(n, k, j) I = 1Q1(n,k,j)1 k > 1, j > 1.
r

This result suggests it would be best to use r = 1 when the goal is

bias reduction.

5.3 Higher Order Jackknifing Considered as a Recursive Procedure

In the previous section it was shown that removal of biases of

higher order than 1 /g(n) can be achieved with an explicit kth

order jackknife. This is desirable for computational purposes, but

it gives no hint as to how to extend the notation of pseudovalues, and

hence generalize the variance estimation aspect of jackknifing. A

recursive formulation of 1:;Jk is possible.

Define a sequence of jackknife type estimators via



(5.3.1) k = Z
Ak-1 + (1-Z :Kk-1

On n,kOn n,k )0(n-1)

AO Afor k = 1, . . . , n -. where On = On and Zn,
k

7Ck-1
and k only. The function 0(n-1) is defined by

Ak-1where 0(n-1),
i

n
7.1( -1 1 k-1
e (n-1) = n-1),i

i=1
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is a function of n

is the k-1 order "jackknife" computed for the

n-1 sample variables after Y. has been dropped out. For k = 1,

Zn,
1

= n gives the usual first order jackknife.
AlFor k = 1, On is seen to be a linear combination of 0(n) and

74(n-1). Assume that 8k is a linear combination o
7(\

for(n-i)

i = 0, k < n-/ -1, and consider

Now

-AAk+1 Ak k
On = Zn,

k+1
On + (1-Zn,k+1 )0(n-1)

n

7-0k

n-1)
A
0

k
(n-1),i

1=1

Akand by assumption each 0(n-1),
i

is a linear combination of

is computed by drop-(n-l-r),i , r = 0,...,k where 0(n-1 -r),i.

ping Yi from the sample and computing the usual 0 ((n-1)-r)

estimator from the remaining sample values:



(n-l-r),i n-1
( )
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(n-l-r),i, iv jr

where ji, .. , jr is a combination of r integers from the set

{1, , i-1, i+1, ...,n} and the summation extends over all such

combinations. Thus for some coefficients br

k0(n-1)
n

b r0(n-1 -r ), i
i=1 r=0

_ n _
= br 1 7

0
n (n-l-r),i

r=0 i=1

n
\-- 1 1br

n (n-1
r=0 _i= 1

1 1br n n-1
( )r=0

n

i=1

-1-r), i, ji, ...,jr

The quantity in brackets is seen to be equal to

(r+1) 0(n-(r+1),m
'mr+1

for m
1,

,m r+1

r+1)),i,j1,...,jr

a combination of r+1 integers out of {1,...,n},

and the summation extends over all such combinations. Thus



102

k

7\lc 7\-
0 (n-1) = br 0(n-(r+1))

r=0

-7..
is seen to be a linear combination of 0(n-i) i = 1, ... , k +l, which

shows that O
"k is a linear combination of 7 i = 0, ...,k+1.

n
+1

e(n-ir
7\--Because AB 1 is a linear combination of 0 and 1 it

n n (n-1)'

follows by induction that for all k = 1, ... ,n4, there exists coeffi-

cients x0, ,x such that

Ak
On =

i=0

x.0
i (n-i)

A
Theorem 2. Assume that E(0n

) is given by (5. 2. 1) with

satisfying assumptions (5.2.2a, b, c). Let

g(n)
Z =n,k g(n)-g(n-k)

then On = 03k. Proof: For k = 1 it is obvious that On = 031 .

Thus

00
-a

2
.E (E1nl = 0 + ag(n)g(n-1) 1+J
Q n, j)

j=2

Ak A
For arbitrary k such that k < n-/ -1 assume that On = 03k .

Thus

g



(-1)ka oo

k+1
E(E)k) = 0 + + / a Q(n, lc, j)n g(n)...g(n-k) k+j

It follows that

i=2

Ak+1
g(n)E(6k)-g(n-k-1)E(e )

n (n-1)
n

E(O ) - ,g(n)-g(n-k-1)

CO

= 0 + O.ak+l + b.a
J k+ j

j=2

(the nature of the coefficients b. is not important). This shows

that the coefficients x. in
1

must satisfy

k+1

OAk+1n
, 7\

(n-i)
i=0

j= 0,

j= 1, ... ,k+1 ,

Ak+1 ^hence, by Theorem 1, On = 0Jk
...

The value of this recursive expression for 0 Jk

an extension of the concept of a pseudovalue: Let

is it allows
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ti =

g(n)fJk
- 1

-g(n-k)tJk
- 1 , i

Jk g(n)-g(n-k)

e'for i = 1, . . . , n, where 0 Jk -1, i is the k-1 order jackknife

estimator computed from the n -i sample elements after Y. is

dropped. Because 1:1.0 = en, this is the usual definition of a

pseadovalue when k = 1. Finally, /(Tjk
n

i =1
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Jk suggests that

the quantity (0Jk-OJk)
2 may be used in constructing an estimator,-,

i= 1

of the variance of 0Jk.

Consider the simple case 0 = E(Y), 8n = Y and g(n) = n.

Then Jk =

and

Y -Y.

Jk- 1,i -Y+ n-1

n

,2 1 n-k 2
QJk uJk) k n-1 )

i= 1

If V(Y) = o-
2 < oo,

Moreover

then

n

i= 1

Y Y) 2
.

1,2
Ai AiCorrelation(0Jk' Jk

k
2

1\-

+2k+n
n-1 1

i # j.
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n

/o (i )2Jk Jk
i =1

n-1
1 2> -- 0- .

P k2

Asymptotically the correlations go to zero, but for small n they

^
may be very large. It is seen that an estimate of V(0Jk) should be

(in this case)

( )

k 2 n-
n-k n

n

i =1

'ei -/O\ )2Jk Jk

It is reasonable to think similar results will hold for higher order

jackknifing in non-trivial cases such as Miller (1964, 1968) and

Arvesen (1969) examined.

Expression (5.3. 1) is also useful for extending a result of

Adams et al. (1971). Adams shows that if 0
/\

1
is unbiased, thenJ

so is 0J2 unbiased for 0. Assume that

Ak
E(0 n ) = 0

Assuming n-k > / then

V n >FF.k.

Ak Ak Xlc
E(On

+ 1
) = Zn,kE(0n) + (1-Zn,k)E(0(n-1)) ,

Al(= zn,ke + (1-Zn,k)E(0(n-1),1) ,

=Z 0 + (1-Z )0 = 0.n,k n,k
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/1Thus it is seen that if E(8
n

) = 0 for all n > /+k, then all higher

order jackknife estimators computed from (5.3.1) will also be

unbiased.

In this section it has been shown that any kth order jackknife

estimator defined by (5.3.1) is equivalent to some linear combination
7C ,.

of the statistics 0(n-i), i = 0, ... ,k. Consequently, if E(0n), n > i
k

is known it will always be possible to write down E(AIdk
n)

x.E(6 )
1 (n-i)

i=0
and it may then be possible to choose the coefficients to achieve good

bias reduction. In Section 5.2 this was done assuming E(gn)

as in (5.2.1), a power series in 1 /g(n).

to be,



107

6. A NONPARAMETRIC APPROACH TO ESTIMATION
OF POPULATION SIZE

6.1 Linear Combinations of the Capture Frequencies as
Estimators of Population Size

The main features of the model for multiple capture-recapture

studies are population closure and the capture probabilities are a

random sample from an arbitrary distribution, F, on the interval

(0, 1]. In Section 2.3 it was shown that without specifying F the

capture frequencies, flt' 'ftt are a sufficient statistic and they

have a multinomial distribution:

where the

N t fit

Plflt' f tt I

. . . f i =0
(ni)

Ot tt/

Tr., given by (2.3. 4), depend only upon F.

In this chapter a nonparametric procedure for estimating N

will be developed. In this procedure F is neither specified nor

estimated. The basic motivation for considering such a nonparamet-

ric approach is the desirability of having a robust estimator of

population size. It will be shown that this goal of robustness has

been substantially realized.
t

N
If N = aif. , then it can be expressed in the form

i=1
N = St +

Ot,
where IsOt is an estimator of the number of
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individuals never captured. It seems reasonable to use the conditional

(on St) variance to measure the uncertainty associated with the

estimator N. Unfortunately, the same problem arises here as was

discussed in Section 3.3 with regard to ML estimation of N.

The conditional distribution of the frequencies is also multi-

nomial and can be written as

S E(fitIst ) f.
P{f . . . , ftt I St} = II

S
tflt...ftt 1=1

where E(f.
t

) = (St /E(St))E(fit). It follows that

and

V(NISt)

E(IV\1St) E(N) ,

t

i=1

The MVUE of V(ICT)St) is

(6.1.1)

[E (NA )]2
2 E(f it St) t

St t n 2

i

^
(a.)2f (1\11

t
V(N1St) = t StS-1

1=1

It is well known that any linear combination of multinomial

random variables is asymptotically normally distributed. It follows

that for large enough St, both the conditional and unconditional
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distributions of N are approximately normal. In the conditional

distribution of N the parameter N appears only in conjunction

with the multiplier St/E(St) which is an unknown nuisance param-

eter. Thus it is not appropriate to construct confidence intervals on

N using the estimated conditional variance of N. It is possible to

use the conditional distribution of N in testing the equality of two

linear combinations of the expected frequencies; the value of this

will be shown below.
t

A
t

If NI = a.f. and N2 = b.f. , then a test of the null

i=1 i=1
hypothesis E(N 1) = E(N2) versus E(N

1)
E(N2) can be conducted

conditional on St because E(N 1) = E(N2) <=>E(giilSt) = E(11"
2

1St).

Given H
0

: E(N 11St) = E(INT21St) then

N1 N2 =

t

i=1

A "
a.

1
-b. )f. N(0, V(N

1
-N2ISt ))

1 it

n
and (6.1.1) can be used to get an estimate of V(Ni -N21 St).

For testing hypotheses of the form E(N) = N0 versus

E(N) N0 a conditional test can not be used because under

H
0

:E(N) = N0, the distribution of N N
0

conditional on St is

St
approximately N(( -1)N V(NISt)). To carry out such a test,

E(St)

or construct confidence limits on N from N, requires the uncon-

ditional probability model for N. This is unfortunate in that V(N)



depends upon N.

AThe unconditional distribution of N is approximately
A A

N(E(N), V(N)), where

V(N) =

t

i=1

2E(fit) - [EN )]
2

If E(N) is not too different from N, then a reasonably good

estimator of V(N) is

(6.1.2) V(N) =

t

i=1

2
a.) itf N ,

1
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A A /A A
and (N-E(N)) /N/V(N) has approximately a standard normal distribu-

tion. Let coa/2 be the 1 - a/2 percentile point of the N(0, 1)

distribution. If N-E(N) /Ni<1.1) is small (such as < . 2) then

the interval

V(N),cd2 ),N+wct/2 V(N)j

should provide a useful approximation to a 1 -a level confidence

interval on N.

Because V( ) depends upon N it does not appear possible
Ato improve to any significant extent (6. 1. 2) as an estimator of V(N).

But a slightly improved confidence interval can be found by using the

pivotal quantity
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It A 2
2f. (N)

ii=1
N

N(0, 1) ,

and solving for NL and Nu such that

and

that

NL = N coo.

A
)

2
2f (NNU = N + coa it N

i=1

Let NL = N - wa/24V(1q) and NU N + coa/24\r?(IC\T). Observe

t

(ai)2fit -
(a)2

V
A f\j"(N) + N(1- )

N
i=1

A A n f\j-
and N < N

NN(1- ) < 0 while N > N => N(1- °) > 0. It fol-

lows that

N/17( > r\IC- (R)+1\T` (1 1,4-\

L
n

N co a/2NIV(N) < N coa/2 N
NiV(N)+N(1- )

L

NL < NL.
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Similarly it follows that N < NU. Hence, the improved confidence

interval [NL, Nu] is not symmetric about N, but is skewed to

the right which is appropriate considering that St < N is known

to hold.

In addition to these results for one linear combination of the
t

frequencies, note that if L. = a..f. , j = 1, ,k then for large
13 it

i=1
N, L = (L1, L k )1 has approximately a multivariate normal

distribution (Rao, 1965) with mean vector E(L), and dispersion

matrix X = [Cov(L., L.)] where
1 3

t E(L.)E(L.)
1 1Cov(L., L.) = .)(aij )E(fit )
N

- ,i 3

1 = 1

j = 1, , k.

6.2 Application of the Jackknife in the Present Problem

As given in Section 2.2 the basic data are the individual cap-

ture records which are conveniently expressed in matrix form as

[X..], j = 1, i = 1, t. In what follows the order of the
31

indexing of the population is unimportant. Let it be assumed that

y. = is greater than zero for j = 1, , St, with y. 0it X
y3t

i=1
for j = St+1, , N. Thus the data which are in fact observed are
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(6.2.1) X =

X11

X21

X
St 1

X12

X22

X

... Xlt

X2t

... XStt

For application of the jackknife the most appropriate units of

sampling effort appear to be days. Let the sample be represented as

X1, X2, .. where X.
1

is column i of X, i. e. , X.
1

gives

the capture records for day i. Let the initial estimator N be
3.0

St, the number of individuals known to be in the population. As

shown at the end of Section 3.1, St is the nonparametric ML esti-

mator of N. Clearly St is biased and this bias decreases as t
al a

2increases. It will be assumed that E(S t) = N + t + + ..., for
t

some constants al' a2, ... . This should be at least approximately

valid for most reasonable distributions of capture probabilities.

The results of Chapter 5 will be used to compute NJ1 through

making the identifications n t, /6N
35, n

St and g(t) = t.

From (5.2.7)

(6. 2. 2)
1

NJk = k!
j=0

)j (k )(t--j) (t-j)

It remains only to compute the U-statistics j = 1, , 5.(t-j)

Let
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Then

and

Z
1 i

= the number of individuals seen exactly once, that one

time being on day i, i = 1, , t.

7\ 1e(t-1)
t

A
0(t-1),

i
= St - Z 1;i

i=1
t-1), i = St t

Setting k = 1 in (6. 2. 2) it follows that

In general define

i=1

A t - 1
N

J1
= S

t t
+ f It .

1

;i = St
t

f lt .

Z. . = the number of individuals captures exactly j
j;]. , ,

.

1 j
times (j < t), once on each day i

1,
, i.

(and not captured on any other days), where

, i, is a combination of the integers

1, ..., t.

Because each individual has its own capture history, it is counted

once and only once in the set of numbers Z. , j = 1, ..., t.
3;i 1, , ij

In particular it is seen that



f. =it
{i

Z.
3;11, ,1.

..,t}
3
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where the notation associated with the summation sign indicates sum-

mation is to be over all combinations of j integers out of the set of

integers {1, ...,
If days i. are dropped from the sample, then the

number of individuals captured at least once in the remaining sample

is

=e(t-j),
3

St r;m1,,mr

The summation in brackets is over (i ) possible combinations of

integers i. }.{i1, , i.} Finally, it follows that

1
0 (t-j) = St t

-

(j) {i ,,
1

At St -
t

( j ) r=1

r = 1 {m1 , .,m

t -r
j -r

fm m rIC

r;m ,.,m
1 r

i

r;m ,m r



1(6.2.3) 0(t-j) = St -
t

t-r
j-r )frt

( j ) r=1

There is only one difficult step in the above sequence of equations.

To justify it, observe that for any
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{m1, , mr} C {1, , t}, there

are j-r integers to be chosen from the remaining t-r integers

to complete the set {i1, , i.} containing {ml, ,m r1.

Equation (6.2.3) may be substituted into (6.2.2) but this accom-

plishes nothing useful. It appears necessary to derive the formula

for NJk for given k by straightforward but lengthy algebraic

manipulations. For k = 1, 2,3,4,5 this has been done and the

results are given in Table 10.

Given the expected frequencies, or the distribution F, the

results of Section 6.1 can be used to compute E(N Jk ) and V(N Jk
).

This has been done by the author for a variety of Beta distributions

of capture probabilities, with the conclusion that the sequence

N N generally has decreasing bias and increasing variance.

The pattern generally found in applying the jackknife to live-
n

trapping data is exemplified by computing NJk and

SD(NJk) = iiV(NJk) for the data of Edwards and Eberhardt given in

Table 1 (in this study N = 135).



Table 10. Jackknife estimators of population size starting with St as the initial estimator,
a

2

2
and assuming E(St) = N + t

1
a

+ +
t

t-1
N = S + ()f

J1 t t It

2t-3 (t-2) 2

N = S + ()f f
J2 t t It t(t-1) 2t

3t-6 3t 2 -15t+19 (t-3) 3

N = St ( )f - ( )f +J3 t t It t(t-1) 2t t(t-1)(t-2) f3t

N = St + ( 4t-10
)f

(6t2- 36t+55
)f2t + (

4t3-42t 2 +148t-175
)f

(t-4) 4
f

t t t(t-1)(t-2) 3t t(t-1)(t-2)(t-3) 4t

5t-15 10t 2 -70t+125 10t3-120t 2 -485t -660
N = S + ( )f ( )f 2t + ( )f3tJ5 t It t(t-1) t(t-1)(t-2)

, (t-4) 5 -(t-5) 5

)f +
(t-5) 5

ft(t-1)(t-2)(t-3) 4t t(t-1)(t-2)(t-3)(t-4) 5t
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k NJk

0 76
1 116.61
2 141.45
3 158.58
4 170.28
5 176.45

6.3 A Proposed Estimation Procedure

121(1(1Jk)

8.89
14.90
21.93
31.11
43.45

/s.
Because the bias of NJk generally is decreasing while the

variance is increasing as k increases, it is anticipated that the

mean square error of NJk will initially decrease, then rise again.
/.By examining the theoretical mean square error of N for

Jk

k = 1, .. , 5 over a variety of distributions for 5 < t < 30, it was

observed that the minimum was usually achieved at k = 1,2, or 3.
A

The exact NJk which achieved the minimum mean square error

varied considerably according to the distribution of capture proba-

bilities and the value of t. Accordingly, no rule can be formulated

independent of the data to specify a value of k such that NJk

should be used for any given study. An objective procedure is needed

whereby the data themselves can be used to indicate which NJk

should be used as the estimator of N for that study. The following

procedure is proposed.

Test the hypothesis that there is no difference between the
A

expected values of NJ1 and N i.e. , test
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H 01
:E(N -N31) = 0 vs.

H :E(.s- ) 0al 32 31

A
(a two sided test is used because the direction of the biases of N

J1

and N is not known for certain). If H01 is not rejected this is

interpreted as evidence that the change (decrease) in bias effected by

using I\
n

T

32
rather than N

31
is small relative to the variance of

N32. Given the generally smaller variance of '1'I it is concluded

that there is no reason to use N32, rather N should be taken

as the estimator of N.

If H01 is rejected this is interpreted as evidence of signifi-

cant bias reduction relative even to the increased variance of NJ2
A

The estimator N
32

should be preferred to N31. But further bias

reduction may be possible. Before accepting NJ2
as the estimator

to be used with the study at hand, test

A A
H 02 :E(NJ3 -N J2) = 0 vs

/ A
Ha2 :E(N33 -N 32 ) 0.

A
If H02 is not rejected, use NJ2,

otherwise continue the process

in the obvious manner. Let that estimator chosen by this process

be called NJ, the jackknife estimator.

The general procedure for choosing N is as follows:



Test the hypotheses

A
H

Oi
:E(NJi+1 -11

Ji.
.) = 0 vs.

A n
Hal.:E(NJi-1 -NJi ) 0 ,

A A
sequentially for i < and choose N = NJ N.
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such that HOi is

the first null hypothesis not rejected. These null hypotheses are not

expected to be true, rather the procedure is a reasonably objective

guide for choosing an estimator for any given study. There is room

for judgment in this choice, for example it may enter via the choice of

significance level for a given test.
^ A

The actual test of HOi is based on the fact that NJi+1 - NJi

is a linear combination of the capture frequencies, therefore for some
t

A A
coefficients a

1'
... , at' NJi+1 - N

J1
. =

1
a.fit. It follows from

(6. 1. 1) that

Given H
Oi'

AA A St
V(NJi+1 -NJi I St) = St -1

T.
1 N/ \?(IT -R is )Ji+1 Ji t

i=1

1\1' -IV\Ji+1 Ji

A A 2
(N -N )Ji+1 Ji

iti S
t

has approximately a N(0, 1) distribution.
A A

Given that NJ = NJk has been chosen as the estimator of N,
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then an estimate of V(IT ) is given by (6.1.2) with N = NJk. This

will be an unbiased estimate of V(NJk) if E(NJk) = N. For large

st

NJk -E(NJk )
,

,J-\(NJk)

and assuming IN-E(Tj.k)14
Jk

N(0, 1),

A
NJk-N

A
N(0, 1)

V(NJk)

is small it follows that

which allows approximate confidence intervals for N to be con-

structed. As discussed in Section 6. 2 improved confidence intervals

can be constructed using

NJk-N

i=1

where
t

NJk = a.f. .

i=1

N(0, 1) ,

The procedure of testing the hypotheses H0., i = 1,2,3,4,

should be viewed as a very useful guide to the choice of 1V .

Obviously there is no significance level a such that if H is
Oi-1
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A /.
rejected at this level, and Hoi is not rejected, then NJ = NJi is

clearly indicated. It is anticipated that the significance levels

Pactuallyachieved, P. = T.1 > I T. 11, will be increasing. Here

T. - N(0,1), and T. is the observed test statistic value. If P.
1 1 1-1

is small, such as smaller than .05, while P. is much larger than

.05 it is reasonable to take N = N .. One possible procedure of

course is to carry out all the tests at the 5% level.

When these hypothesis tests are carried out for data of Edwards

and Eberhardt shown in Table 1, the results are

Null hypothesis T. P.

H01 4.053 <.0001

H02 2.071 . 03 83

H03 1.071 .2842

H04 .417 .6766

This suggests N
J3

as the estimate to use for these data.
A

Analytic investigation of the properties of N is theoretically

possible because the approximate distribution of (T1, T2, T3, T4)'

is multivariate normal with mean vector elements

E(T.) =
1

E V(I1 .1s )st Ji+1 t

E(1. -11 )Ji+1 Ji

and a dispersion matrix

i = 1,2,3,4,

the elements of which can also be
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computed for any given distribution of capture probabilities. Let
A A

P. {N = NJi } and let q5 be the probability that all 1-10i are

rejected so no estimator is chosen. Assume a fixed significance

level a. and let coal
2

be the 1 - al 2 percentile point of the

standard normal distribution. Then

and

q1

q2

q 3

q4

= p{1 Ti I

= pfl Tz I

= T31

= P{I T4I

< }a/2 '

<6.)a12, 1
IT >co a/21'

--wa/2' 11'11 >wa./2' IT21 >wa/2}'

T. >coa/2' i = 1,2,31,

q5 = P{ I Til> wa/2, i = 1, 2,3,4} .

It is seen that ql = 1. Assuming that q5 is small a good
i=1 A

approximation to E(NJ) should be

4
q.

.E(1(1\)1-q Ji
i =1 5

Similarly, other properties of NJ could be found.

It is easy to find q 1,
but q2, q3 and q

4
are not easily

found, as these latter quantities basically require the ability to evalu-

ate the multivariate normal distribution function for 2, 3, or 4

variates.
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To get an idea of the properties of NJ, this estimation pro-

cedure has been applied to some simulated livetrapping data from

Burnham and Overton (1969). Table 11 gives the results of this study.

For these simulated livetrapping studies N was always 100. There

may be some loss of generality because of this for it is seen that the

bias of NJk is proportional to N, while SD(NJk) is propor-

tional to Nr-N--.

These simulated data were generated as follows. For a given

distribution of capture probabilities, a random sample p1, ...,pp100

was drawn to represent the population. Livetrapping was then simu-

lated for 30 days. Twenty such studies were done for each of a

variety of distributions, a different set of capture probabilities being

used each time. Three types of distributions were used: Beta = B(a,

uniform on (0, 0), (symbolized as U(0, 0)), and the constant dis-

tribution C(0) which assigns probability 1 to 0. This last class

of (degenerate) distributions correspond to the model wherein all

individuals have constant and equal capture probabilities.

For this simulation evaluation the hypothesis tests were all

conducted at the 5% level. A problem which arises when doing this

is that sometimes all HOi. are rejected when t > 5. When this

Ahappened the frequencies, the estimators NJk and the test statistic

values were printed out and examined. Under certain circumstances
A
NJ < St is possible. These cases were also examined in detail. In
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Table 11. Simulation evaluation of the jackknife estimation procedure
for N = 100. All hypothesis tests conducted at the 5%
significance level. The entries are based on 20 simulated
livetrapping studies carried out to 30 days with each dis-
tribution of capture probabilities. Entries are explained
in the text.

SD(NJ) Coverage St NSH
" "

SD(NSH)

Distribution = B(.3158, 1.0) E(p) = .24

5 1.7 65.7 6.7 1 48.1 48.3 5.4
10 1.4 72.6 6.3 3 57.0 53.2 4.7
15 1.4 77.7 6.3 4 62.2 56.7 4.4
20 1.4 80.5 6.4 5 65.1 59.1 4.4
25 1.7 86.1 7.6 6 67.9 61.0 4.3
30 1.2 80.2 5.2 3 69.1 62.5 4.3

Distribution = B(1.0, 3.1667) E(p) = . 24

5 1.6 83.8 7.6 9 59.3 65.8 6.6
10 1.1 91.6 6.1 14 74.1 72.4 5.2
15 1.1 95.3 5.6 17 80.8 76.9 4.5
20 1.2 99.7 5.9 19 85.3 79.2 3.7
25 1.2 101.9 5.9 15 87.7 81.2 3.4
30 1.0 99.2 4.5 17 89.7 82.9 3.1

Distribution = B(6.0, 19.0) E(p) = . 24

5 2.2 115.0 11.2 14 71.8 92.8 10.8
10 1.1 110.6 6.7 15 89.7 93.9 4.2
15 1.2 109.3 5.7 19 95.9 95.6 2.7
20 1.0 103.8 3.5 20 98.1 96.6 2.0
25 1.0 102.6 2.8 20 99.1 97.3 1.6
30 1.0 101.3 1.9 18 99.5 97.7 1.3

Distribution = U(0, . 48) E(p) = . 24

5 1.8 99.5 9.4 18 67.0 80.4 9.6
10 1.1 98.5 6.2 19 81.3 82.3 5.1
15 1.0 99.2 5.0 18 87.2 84.8 4.0
20 1.0 99.8 4.5 20 90.3 86.6 3.3
25 1.0 99.3 4.0 20 92.1 87.9 2.8
30 1.0 99.3 3.6 18 93.2 89.0 2.5
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Table 11. Continued.

41)(11 ) Coverage S/I)(NSH)

Distribution C(. 24) E(p) = . 24

14
9

14
20
20
19

75.5
93.5
98.2
99.7
99.9
99,9

102.0
100.4
100.2
100.3
100.2
100.1

7.2
3.2
2.2
1.6
1.2
1.1

5

10
15
20
25
30

2.2
1.1
1.0
1.0
1.0
1.0

122.4 12.0
111.0 6.4
106.9 4.3
102.7 2.5
100.9 1.4
100.2 . 6

Distribution = B(. 25, 1.0) E(p) = . 2

5 1.5 56.7 5.7 0 43.3 43.1 5.6
10 1.5 67.0 6.3 1 51.9 48.0 5.4
15 1.3 69.0 5.7 1 55.8 50.9 5.4
20 1.3 72.0 5.6 2 59.3 53.3 5.4
25 1.3 75.1 6.0 2 61.5 55.1 5.4
30 1.6 80.2 7.2 5 63.4 56.6 5.3

Distribution = B(1.0, 4.0) E(p) = . 2

5 2.1 87.6 8.7 12 55.5 66.8 7.0
10 1.5 97.0 8.3 16 72.1 72.5 4.8
15 1.4 101.7 7.8 18 79.8 79.5 4.1
20 1.0 98.8 5.6 20 84.2 79.2 3.6
25 1.1 100.5 5.4 20 87.3 81.3 3.3
30 1.0 99.4 4.7 19 89.1 83.0 3.0

Distribution = B(4.0, 16.0) E(p) = . 2

5 2.6 110.7 12.2 16 64.8 89.6 11.4
10 1.1 105.9 7.1 19 83.1 89.4 5.0
15 1.0 105.9 5.8 18 91.4 91.6 3.5
20 1.0 104.9 4.6 17 94.9 93.1 3.0
25 1.0 103.2 3.7 18 96.8 94.3 2.6
30 1.0 102.1 2.8 18 98.0 99.0 2.2

Distribution U(0, .4) E(p) = 2

5 2.3 96.6 10.6 17 58.6 77.5 8.4
10 1.1 97.1 6.7 18 76.4 80.7 5.7
15 1.1 97.9 5.8 16 83.2 82.9 4.5
20 1.0 96.9 4.7 15 86.6 84.4 4.0
25 1.0 97.5 4.3 15 89.1 85.7 3.8
30 1.1 98.5 4.3 15 90.4 86.7 3.7
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Table 11. Continued.

SD(NJ) Coverage S
t

^

NSH
5D(NSH)

Distribution = C(. 2) E(p) = .2

5

10

15

20

25

30

2.4

1.1

1.1

1.0

1.0

1.0

116.8 12.5

113.7 7.6
105.8 5.1

103.6 3.2
101.6 2.1

100.9 1.3

17

11

18

19

20

19

67.7

88.9

95.8

98.6
99.4
99.9

100.1

99,0

99.1

99.4
99.5

99.6

11.0
4.2

2.6

1.7

1.3

1.1

Distribution = B(.1905, 1.0) E(p) = .16

5 2.1 51.4 6.6 0 35.1 35.9 3.5

10 1.7 58.9 7.0 2 42.3 39.8 2.6

15 1.2 57.0 5.1 0 46.0 42.2 2.6

20 1.4 61.3 5.6 2 48.5 44.0 2.7

25 1.3 63.8 5.7 2 51.2 45.7 2.8

30 1.7 69.2 7.1 4 52.9 47.0 2.9

Distribution = B(1.0, 5.25) E(p) = .16

5 2.4 79.2 10.2 10 46.5 63.2 9.6

10 1.4 89.2 8.1 9 64.0 67.5 4.5

15 1.6 101.0 9.2 16 73.4 71.8 3.5

20 1.1 98.5 7.6 18 79.2 75.0 2.9

25 1.0 97.7 5.6 17 83.0 77.4 2.9

30 1.1 99.1 5.5 18 85.7 79.3 2.9

Distribution = B(4. 0, 21.0) E(p) ---- .16

5 3.4 110.0 14.1 19 55.4 87.0 13.2

10 1.3 108.8 8.7 18 77.9 90.0 5.8

15 i.1 110.3 7.2 15 87.7 91.6 4.4

20 1.0 107.6 5.6 16 92.6 92.9 3.6
25 1.0 106.1 4.8 19 95.3 93.9 3.1

30 1.0 104.7 4.2 19 96.8 94.7 2.6

Distribution = U(0, .32) E(p) = .16

5 3.0 97.8 12.3 17 53.5 77.4 10.5

10 1.2 98.6 7.9 18 72.1 80.0 4.9

15 1.2 101.1 6.9 19 80.6 82.3 3.6

20 1.0 98.3 5.4 19 84.6 83.8 3.0

25 1.0 98.5 4.9 18 87.4 85.0 2.9

30 1.0 98.8 4.6 18 89.2 86.0 2.8
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Table 11. Continued.

) Coverage St NSH SD(NSH)

Distribution = C(. 16) E(p) = . 16

5 3.3 118.2 14.6 16 58.9 100.7 10.0
10 1.2 114.6 8.5 15 83.2 99.9 4.8
15 1.1 112.5 6.6 9 93.2 100.3 2.9
20 1.0 107.7 4.8 19 96.8 100.0 2.0
25 1.0 105.0 3.6 18 99.0 100.1 1.5
30 1.0 102.6 2.5 18 99.4 100.0 1.3

Distribution = B(. 1364, 1.0) E(p) = . 12

5 1.8 36.5 5.3 0 25.5 26.3 5.3
10 1.4 44.2 5.5 1 32.2 30.2 5.4
15 1.2 46.0 4.7 0 36.1 32.6 5.7
20 1.2 49.3 4.9 1 39.0 34.5 6.1
25 1.6 50.4 5.0 1 40.3 35.9 6.3
30 1.2 51.7 5.0 1 41.5 37.0 6.3

Distribution = B(1.0, 7.333) E(p) = . 12

5 2.7 74.4 10.5 8 39.3 59.0 9.7
10 1.5 84.9 8.8 5 57.0 64.0 6.6
15 1.3 90.9 7.8 10 66.7 67.9 6.2
20 1.0 90.0 6.1 12 72.8 70.6 6.2
25 1.2 97.6 6.9 18 77.7 73.4 5.2
30 1.1 98.1 6.1 19 81.2 75.7 4.8

Distribution = B(3.0, 22.0) E(p) = . 12

5 3.3 93.2 13.0 17 45.0 80.1 18.3
10 1.7 104.7 11.1 16 64.6 81.6 8.7
15 1.3 108.1 9.0 17 76.6 84.7 6.6
20 1.1 105.8 7.0 19 83.5 86.6 5.0
25 1.0 104.3 5.9 18 87.8 88.1 4.7
30 1.0 104.5 5.4 18 91.0 89.4 4.0

Distribution = U(0, . 24) E(p) = . 12

5 3.5 92.2 13.2 15 43.9 79.2 16.2
10 1.7 101.0 10.5 18 64.2 80.9 10. 0
15 1.2 101.0 8.0 18 74.6 81.8 6.2
20 1.3 105.3 7.5 18 81.4 83.5 4.3
25 1.2 103.2 6.6 18 84.8 84.7 3.8
30 1.1 101.2 5.5 18 87.4 85.7 3.3
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A
) Coverage St

11S1-1 n(a5H)

Distribution = C(. 12) E(p) = .12

5 3.8 110.6 14.9 17 48.6 111.8 33.4

10 1.8 119.7 11.4 12 73.3 101.6 13.5

15 1.2 114.9 8.3 12 85.8 99.8 7.1

20 1.0 109.2 6.0 13 91.7 99.2 5.6

25 1.0 107.3 5.2 15 95.7 99.5 4.5

30 1.0 105.9 4.1 19 97.9 99.6 3.6

Distribution = B(1.0, 10.1111) E(p) = .09

5 3.1 69.3 11.0 8 33.2 64.5 25.5

10 1.9 89.5 11.3 10 51.4 66.1 11.4

15 1.4 90.1 8.9 13 60.8 67.5 8.7

20 1.4 94.5 8.6 11 67.1 69.5 7.4

25 1.2 94.8 7.5 13 71.9 71.6 6.8

30 1.3 97.6 8.0 14 75.1 73.1 6.5

Distribution = B(9.0, 91.0) E(p) = .09

5 3.8 88.3 13.3 17 37.2 110.5 48.5

10 2.3 112.0 14.6 16 58.6 92.7 12.4

15 1.4 111.3 10.3 17 73.2 93.4 8.8

20 1.2 112.4 8.4 15 82.4 94.3 7.0

25 1.0 112.6 7.2 10 88.8 95.5 5.3

30 1.0 112.0 6.7 12 92.4 96.1 4.4

Distribution = U(0, . 18) E(p) = 09

5 3.7 79.1 12.6 12 34.2 84.2 22.9

10 2.4 105.4 14.4 18 54.1 78.4 10.5

15 1.3 98.5 8.8 14 66.7 80.0 8.0

20 1.3 102.4 8.6 17 74.0 81.4 6.3

25 1.1 101.1 6.9 20 79.4 83.1 5.7

30 1.0 99.8 6.2 20 84.4 83.8 5.0

Distribution= C(. 09) E(p) = .09

5 3.9 94.5 14.0 18 38.7 117.1 34.2

10 2.5 123.4 16.2 18 60.9 104.7 15.2

15 1.5 117.1 10.8 14 75.6 101.2 9.9

20 1.1 115.6 8.4 10 84.7 101.2 6.6

25 1.0 111.6 6.9 12 89.9 100.4 4.7

30 1.0 111.1 6.0 13 94.0 100.5 3.3
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Table 11. Continued.

SD(NJ) Coverage St NSH SD(NSH)

Distribution = B(10, 15, 6667) E(p) = . 06

5 3.4 50.8 9.8 0 23.0 47.1 11.1
10 2.2 74.7 11.6 8 38.2 54.0 8.6
15 1.6 82.9 10.0 9 49.3 60.0 8.0
20 1.5 87.7 9.6 9 56.3 62.9 7.2
25 1.6 92.7 9.9 11 61.5 65.1 6.9
30 1.3 88.9 7.9 10 65.1 66.5 6.6

Distribution = B(3.0, 47.0) E(p) = .06

5 3.6 61.0 10.9 3 24.5 85.0 52.6

10 2.6 92.6 14.4 18 41.8 81.2 20.7

15 1.9 98.6 12.2 20 54.1 79.9 9.6
20 1.8 108.5 12.4 17 63.5 82.6 8.4

25 1.4 104.7 9.7 18 70.1 83.5 7.4

30 1.2 106.3 10.5 17 75.5 84.8 6.0

Distribution = U(0, . 12) E(p) = .06

5 3.8 61.8 11.1 4 24.6 98.0 45.1

10 2.6 94.7 14.5 17 42.2 83.0 14.8

15 1.9 98.3 12.3 18 54.0 80.9 9.7

20 1.5 97.1 10.0 12 62.0 79.9 8.1

25 1.2 96.3 8.1 16 69.0 80.9 6.4

30 1.1 98.0 7.5 18 73.1 81.3 5.5

Distribution = C(. 06) E(p) = . 06

5 3.9 68.4 11.8 6 26.7 122.5 65.8

10 2.6 103.8 15.3 18 45.5 101.6 22.4

15 1.8 106.3 12.3 16 59.3 96.7 13.0

20 1.6 114.4 11.6 15 70.1 98.6 11.1

25 1.2 111.5 9.0 17 77.6 98.3 7.9

30 1.0 111.5 7.7 17 83.4 98.7 6.5

Distribution = B(1.0, 24.0) E(p) = .04

5 3.2 40.2 8.4 0 17.5 44.3 21.0

10 2.4 65.7 11.5 6 29.4 58.3 27.8

15 2.1 79.2 12.1 10 39.0 59.1 13.5

20 2.2 90.5 13.3 13 45.8 60.9 11.4

25 1.8 89.2 11.4 14 51.6 62.8 10.3

30 1.6 91.1 10.5 11 56.5 64.2 8.7
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Table 11. Continued.

/\.
SD(NJ) Coverage St NSH SD(ITsH)

Distribution = B(2.0, 48.0) E(p) = .04

5 3.4 44.3 9.1 0 17.7 66.9 31.8

10 2.7 72.2 12.9 8 30.7 67.3 23.1

15 2.2 80.2 12.4 12 40.3 67.6 12.5

20 1.8 89.8 11.5 13 48.8 71.1 10.3

25 1.6 92.2 10.6 11 55.6 73.7 8.7

30 1.5 98.3 10.4 13 61.8 75.2 7.5

Distribution = U(0, . 08) E(p) = .04

5 3.4 43.1 8.9 0 17.5 72.3 46.0

10 2.3 68.6 11.6 8 30.2 76.5 21.9

15 2.4 89.4 14.0 17 41.4 77.6 14.8

20 2.1 98.2 13.8 15 49.7 78.3 11.1

25 1.6 96.1 11.6 13 56.3 77.7 8.3

30 1.5 97.8 10.4 17 62.5 79.0 5.9

Distribution = C(. 04) E(p) = .04

5 3.5 48.2 9.6 0 18.5 104.3 41.2

10 2.6 82.7 13.8 13 33.3 102.5 34.0

15 2.5 107.6 16.1 20 45.8 101.8 18.1

20 2.2 116.8 15.4 17 55.9 102.0 14.1

25 1.8 115.2 13.5 17 63.6 98.6 12.4

30 1.7 118.9 13.1 14 70.2 98.0 10.2
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both cases, as explained below, a subjective decision was then made

as to the value k to be used.

The entries in Table 11 are mostly averages. For each distri-

bution,
A

and each value of t, the 20 values of NJ = NJk were

averaged as were the 20 values of k. These averages are identified

in Table 11 simply as "k" and "NJ:' The standard deviation of

N was computed for each study, and then averaged to obtain the

estimate of SD(NJ) given under that column heading. For each
A

study the approximate 95% confidence interval [N - 2SD(N ),
A A

N + ZSD(N )] was computed and it was recorded whether or not the

interval covered N. The column headed "Coverage" gives the

total times, out of 20 possible, that the interval covered N = 100.

The last three columns of Table 11 came from the original

study, they are included here to aid in interpreting the properties of
A

NJ. The Schnabel estimator (Schnabel, 1938), NSH' is very well

known and widely used to estimate population size. Because of this

the average of NSH over the 20 studies is given in Table 11 so that
A

it may be compared to the estimated E(N ). The estimated SD(NSH)

is also given.

In Table 11, 32 different distributions of capture probabilities

are used, with E(p) ranging from . 24 to .04. This gives a total

of 640 independent studies examined. Each study was examined on

days 5(5)30, making a total of 3, 840 different, though not independent,



simulated livetrapping studies. For t = 5, it is seen that

= NJ4 J5'
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which results in H04 never being rejected. However,

for the 3, 020 studies where t > 5, there were a total of 111 cases

where H i = 1, 2,3,4 were all rejected at the 5% level. For the
01

2500 studies where t > 5 and E(p) E {. 09, .12, .16, .2, .24}

there were only 42 such instances of all null hypotheses being

rejected, while for E(p) E {. 04, .06} there were 69 such occur-

rences out of 800 studies. For E(p) > . 09 there was no apparent

pattern over distribution or days for these 42 cases. For

E(p) E {. 04, .06}, there was no apparent pattern by distribution, but

there was a pattern with respect to days of trapping, with 31 cases at

t = 10, and only 6 cases at t = 30.

Based on an examination of these 111 cases when all four null

hypotheses were rejected at the 5% level it was concluded that N
J5

should not be taken as NJ. Rather a choice should be made from

N
J1

NJ2 or NJ3. By examining all information available it was

often not difficult to make what seemed like a reasonable choice.

In all other cases the objective procedure arrived at a decision
A A
NJ = N Jk for k < 5. However, in some of these cases it happened

A
that NJ < St. All of these cases were examined, there were 119 of

them, and almost without exception this only occurs when St > 85

and usually St was > 90, that is 90% of the population had been

seen. In terms of distributions 81 cases occurred for constant
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distributions with E(p) > .09. Only 38 cases occurred for all other

distributions. When NJ < S
t

did happen it was always the case
A A

that NJ2
< S

t
< NJ1 (note that S t < NJ1

is always true), so that
A A

it is sufficient to take NJ = NJ1' which always provided a good

estimate in these cases.

By examining Table 11 it is seen that N is quite robust.

For those distributions examined it only performs poorly when F

is a B(a, 1) type distribution. But for these distributions of capture

probabilities no estimators examined were found to have good prop-

erties. It is also seen that the standard deviation of N

A
lar magnitude to that of NSH.

is of simi-

The order of the jackknife chosen by this procedure is seen to

vary. The chief factors appear to be number of days of trapping and

average capture probability. At day 5, k may easily be 2, 3 or 4.

But by day 10, k is probably 1, 2 or 3. Beyond day 10 it is
A

doubtful if N J4 should ever be used.

The coverage of N by the approximate 95% confidence inter-

vals constructed with this procedure is seen to be fairly good,

especially considering the range of distributions of capture probabili-

ties examined. Table 11 indicates that the nominal confidence level
A

will not be achieved if the absolute value of the bias of N is as
A

large or larger than the standard deviation of NJ. Often this is not

the case and then the frequency of coverage of N appears to be 70%
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or more. In general, ignoring the B(a, 1) distributions, the

coverage appears to be 50% or better. Furthermore, slightly

improved coverage might be achieved by using the improved confi-

dence intervals previously discussed.

Most estimators do well under particular circumstances. For

example, NSH performs well if capture probabilities are constant

over individuals. However, when capture probabilities vary it is

apparent from Table 11 that NSH has a negative bias which may be

quite large. The jackknife estimator is often biased but this bias may
A

be either positive or negative. Consequently, N tends not to have

a large absolute bias. In fact, when the results in Table 11 for N

are averaged over all (28) distributions except the B(a, 1) type the

results are

t

A
NJ

5 84.2
10 97.6
15 99.7
20 102.2
25 101.6
30 101.7

6.4 Possibilities for Generalizing the Jackknife Estimation
Procedure

The jackknife estimator of the previous section may be general-

ized by retaining St as the initial estimator and using a different

expression for E(St); alternatively, a different initial estimator
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of N may be assumed. The assumption that

a a
E(St) =N+ 1 +2 +..

t

is a useful omnibus assumption which leads to an easy-to-compute,

robust estimator. However, if it were the case that capture proba-

bilities were approximately B(1,(3) variables, then

E(St) = N + N(3 /(t+(3) would be approximately true (note that

1/4+() has a formal expansion in powers of lit for any ,

and a valid expansion if Pit < 1). This generalization is undesir-

able because N will depend upon an unknown parameter.

An alternative possibility for generalizing the jackknife pro-

cedure is to assume a different initial estimator but retain the

assumption that its bias is expressible as a power series in 1 /t.

In general let N = 0, and assume

t

N = 0
t

= / aitfft
/=1

for a set of coefficients aft, f = 1, . . . , t, t = 1, 2, ... . Application

of the jackknife now requires that the quantities 0 (t-j) be com-

puted for this new initial estimator.

Define
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h h t-j
f1, t-j = the number of individuals captured exactly / times,

Then

for f = 1, t-j, in the t-j days h1, ,htj

which remain after the j days i1, ..., i. are dropped

from the sample.

t-j hl, h
' t-j

/8\ . a.= .f(t-j), t-i 1,t-3

t7j

0(t-j) =

1=1

1

{h
1

11=1

t-j}C {1,...,t}

1

f/, t-j
,h

t-3

(j)

and finally

(6.4.1)
t-j

/e(t-j) a
1

7,t-j t-j
1=1

To evaluate f define the indicator variables/,t-j
wr (i) = 1 if individual i was captured exactly / times in/ ..., h t-j

the t-j days h1, ...,ht_i, and was captured

exactly r times during all t days, for

r = 1, ...,1+j, and i= 1, N,

= 0 otherwise.



Let

Wrfh h
' t-j

N

i=1
h . . . ht -j(i)

Then Wr h h
is the total number of individuals captured

. . . t-j
exactly times in the t-j days h1, , ht..; which were cap -

hl, ..,ht-j
tured exactly r total times. Finally, the term f.e,t-j

be partitioned into individuals captured exactly r total times, and

exactly times in the days h1, ...,hei, for r = 1, . . .

Thus
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may

+j

I =,e,t-j t / 1 wr
i;h' .. ,h

( .)
J {la ...,h {1,...,t} r=1

1 t-3
l' t3

+j
1

( j ) r..1 {h ...,h
-J

Wr ...,ht-j
C {1,...,t}

The term in brackets above may be expanded as

E =r
Yit

wr
h (i)

1' t-j

where the first summation is over frt values of i.



Let i be arbitrary subject only to yit = r. Then there

exists a fixed set of r days, {m1, ..., ,m}
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such that individual

i was captured on these days and on no other days. It follows that

r
W (1) = 1 iff {h1, ...,h contains a subset of sizei ;h1, . . . , h t-r t-j}

I from {m1, ... , mr} and the other t-j-I elements of

{h1, . .. ,ht-i} are a subset of the t-r elements of

{1, ..., t} {m1, ...,m r }. There are (r
1

) subsets of size I from

{m
1,

, mr } and for each of these there are (t-j-t -r
i ) remaining

choices to complete a combination hl, ...,h
t-3

. for which

Wr (i) = 1. Consequently
12 ;hi' . . . , ht-j

and finally

. r t-rWr1;h . .,h .
(1) = ( )(t-j-.12)

t-i}
t-i

I . =
1

t-3 (t

From (6.4.1),

r=1

r t-r
I)( t-j-1)frt

t-j 1+j r t-r
.27 )( )

0(t-j) = f
(t )

rt
1=1 r-=.12

By extending the range of definition of the constants alt, this
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formula can be rewritten as an explicit linear combination of the

frequencies. Let aft = 0 if either / < 0, or f > t. For

= 1, , t, and t = 1, 2, ..., these constants are assumed

known already. Also assume that ( ) = 0 if either n < 0, or

n > m. Using these conventions

t i

0(

t t - i
'7* ( ) (

t - j
)

(6.4.2) t-j) = a j
1, t-j t

- i fit

i=1 J
( . )

It is clear that NJk will be a linear combination of the cap-

ture frequencies but it is not at all clear what the coefficients of this

combination will be. If the alt are not all equal it may not be

convenient to express NJk in closed form. However, if it is

desired to use the jackknife estimation procedure developed in Section

6.3 for an initial estimator

necessary formula for 0(t-j).

t

a fft .Qt
1=1

then (6.4.2) gives the
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7. ANOTHER LOOK AT THE MODEL

7.1 Testing the Assumption that Capture Probabilities do
not Change

A number of assumptions are part of the model for capture-

recapture studies, for example closure, independence of captures

over individuals and days, and individual capture probabilities are

constant during trapping. Given the first two of these three assump-

tions are true, a test can be derived for the hypothesis that the cap-

ture probabilities of the observed individuals do not change.

Consider an arbitrary individual with capture record

Xj1, ...,Xit. Given arbitrary capture probabilities then

J.-X..
P{X. , ..., X. } = II (p..) J1(1

ijtj Ji1=1

and no reduction of the data is possible. But given the hypothesis
t

that
i

p..
J1

= p.J , i = 1, ... , t, then
Y . t J1

= X.. is a minimal suffi-
i=1

cient statistic for .. It follows that if p.. = p. the conditional
PJ ji j

distribution of Xj1, , Xit, given yjt is independent of p.:

(7.1.1) P{X . . . , Xjt I yjt =
1

= k = 0,1,
(k)
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where the X.. are 0 or 1 only and their sum is k.
31

Let the individuals which have been captured at least once be

indexed from I through St. Define the conditional random vari-

ables 1C = (X , Xidi given that yjt = k. Given the

hypothesis that p..
J1

= p., i = 1, t and j = 1, ...,5t, then the

distribution of X.,3 k
is given by (7.1.1). By the assumption of

mutual independence of the X.. variables, it follows that the con-
31

ditional random variables X
j 1

I

k
are independent.

Consider some properties of the components of X.,
3 1 k

, such

as E(X..1y.
3t 31

= k) = P{X.. = 11 Y . = k }. If X. = 1, then there areji it 31

t-1(k-1) ways to complete the vector X.,
3 1 k

, hence

P{X31.. = 11
Yjt

t-1
( k-1 ) k

(t ) t

and E(X..1y. = k) = kit. Using the same technique it is found that
31 3t

and

V(X..Iy. k) = k (1- k) ,
31 jt

Cov(X.., X. 1 = k) = - (1 -
31 t1 1

Now define the conditional random variables

i 1 .
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zki = the number of individuals captured on day i that were

captured exactly k total times.

Analytically zki = X which is a sum over fkt inde-

5 Yjt=k
pendent random variables. Also let Z (zkl' 'zktr !k jX.,

k
.

ki3Yj =t
Given 13_ = p. for all j k, thenji j Yjt

E(z .If ) =
t
f ,kl kt kt

k kV(z .Ifkt ) = fkt t t(1- ) o-
2

,

and
2

k k 1 crkCov(zki, z. )
kJ/ I fkt -fkt t T' t-i t-1

for i .

Finally ni = z
kJ.

= total captures on day i. Given

k=1
H

0
:p.. = j j = 1, , St, thenji

E(n. I f , , f ) 1f = n'lt tt t kt t
k=1

t

k kV(n If f ) = f (1- ) =lt' tt kt t t
k=1

and

k=1

2 2
c r = o-

k
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2
0

Cov(n.1 , nflf lt' 'ftt) t-1

It is tempting to think that a conventional Chi-square goodness -
t

of-fit test can be used to test H
0

by treating
i=1

n. --fa)
2

t-ri as
1

approximately x 2(t-1). This is not the case under the present

approach of conditioning on the frequencies. This line of thought is

valid only for the hypothesis

subset of the data for which

zi, given fit, is multinomial:

all j 9 yjt 1. For the

the conditional distribution of

1
zliflt t

P {z11, 'zltiflt} (-t )

z 11...

1For large enough E(z, . I )flt t 'It it follows that

(7.1.2)
t z .f )2t lt 2

X (t-1)
1

1=1 t
flt

If fkt is large enough that a test of H :p.. = p., all
0 31 3

j yit = k, seems feasible then given this null hypothesis,

(7.1.3) ki t f )kt
2

f
i=1 t kt

for k = 1, ..., t-1.

t-1 2
X (t-1)k-1



Under the general hypothesis that

(7.1.4) i=1
t

fkt t t
k=1
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P3
= 1, , St' then

t-1 . 2X (t-1) .

t

This test is conditional on the frequencies flt' ftt, while the

individual tests indicated by (7.1.3) are conditional on just fkt.

Proofs of these results will now be given.

Let 1
t

be a t x 1 vector every element of which is 1.

Then

E(z
k

Ifkt t
) = k fktt1 ,

and letting the dispersion matrix of zk be itk

0-
2r I-t 1

k k t-1 t-1 iti t]

The rank of t
k

is t-1.

zk
j 3y = kjt

Because x,ilk

then

is the sum of fkt independent,

identically distributed vectors, it follows (Rao, 1965) that, for large

enough fkt,

z MVN( 1 , ) ,
k t kt t



i.e. , approximately multivariate normal.

Let n = (ni, .. , Yid', then

n / zk
k=1 k=1

t

Xjlk

3Yjt=k
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is the sum of St independent vectors from t different distribu-

tions. For large S

where

t

n MVN( ,

2 t 1

cr. t-1

Proof: Let ., j = 1, 2, ... be a sequence of iid random
PJ

variables from the distribution F(p), p E (0, 1]. Let X. beji

independent Bernoulli (p.) random variables, i = 1, .. . , t. Then
J

the conditional distribution of X., is given by (7.1.1) and

IP ky.= } = (
t

)(p.)
k
(1-p.)

t-k
k j

Let fm (k) = 1
{k}

(v ) = the number of times y. = k, for

j=1
j = 1, ,m. Consider



m m
1 t 1 t-k1 p{i (y-.)=1)=( ) / (pi)

k(1-13

i
){k} 1 k m

j= 1 j=1

iidp. - id it follows that
PJ

m
1

(p.)k(1 _p.)t -k pko ..p)t -kdF
m

0j=1

a. s. , and this latter quantity is greater than zero because

P{p > 0} = 1. It is concluded that

(7.1.5)
m

j=1
P{1 {klYi)='}-- °°

a. s.
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The event fm (k) y + 00 occurs iff infinitely many of the independent

events {1
{k}

(y.)=1} occur. It follows from the Borel-Cantelli lemma

and (7.1.5) that P{fm(k) + 00} = 1, k = 1, t.

The z vectors are mutually independent and because

fm (k) --4" + 00 a. s. it follows that z
k

L MVN(k mf (k)1
t
$

k
) for large

t
t

m, and finally n = /
k tz -:' MVN(ri 1 , ) for large m.

k =1
To establish (7.1.3) and (7.1.4) consider a random vector

t
1

X = (X ... X
t
r MVN(Tlt,$), where X = X., and

i=1for arbitrary 6 > 0. Then for any gener-=
2 t

cr I-4 41
alized inverse 2t (Rao, 1965):



(x )7 1 t ) 'V (X 3 tC 1 ) - x 2 ( t 1 ) .

Let X = (X1, . .,Xt 1)1, and let I be the t by t matrix

whose upper (t-1) by (t-1) submatrix is given by

t-1

tcr2
[1+- 1 t-1-1't-11'

and the remaining elements of are all zero. Then

t - 1
(x - )7 1

t )' (x -3T1
t
) = (x-3 t-1i r t-1[I+1 1 t-1' ](x*- -Ix 1 )

2
tcr

* - * - t 1
= [II x - 1 (X -X1Xt-1 II + II-1 it-1 t-1 )11 ] 2

to

-t - 1

= x
i
-7(-) 2 + (xt -5T) 2

_i= 1

t

X. -X)2

i=1 t-1
2 t

o-

t-1

tcr
2
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t
2 kInterpreting X as n and o- as L fkt it (1 ) givest

k=1
2 k kl

(7. 1.4). Interpreting X as z
k

and cr2 as
crk j'kt t --t '

gives (7. 1.3).

This approach to testing the hypothesis that capture probabil-

ities do not change is based on a number of assumptions. If any one



of these assumptions is false the test statistic given in (7.1.4) may

be large enough to imply rejection of the hypothesis that P.
31

= P,
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j = 1, ... , St. In particular, the rejection may be a result of lack of

closure or failure of independence of captures. Robson (1971) has

developed (7.1.4) as a test of association of plant species based on

sampling a series of plots, and he suggestdd to the author it could be

used to test independence of captures in livetrapping studies.

Clearly, two different hypothesis can not be tested simultan-

eously by the same test. If closure and independence seem likely to

be true, then the test developed here should be considered as testing

that capture probabilities do not change. If no one assumption stands

out as weaker, or more doubtful, than the others then (7.1.4) consti-

tutes a general test of the conformity of the data to the specified

model.

7.2 A Generalization of the Model Indicating Robustness of
the Jackknife Estimator

Capture probabilities may vary over days due to external

influences such as weather. It is reasonable to think this sort of

variation, if it occurs, is independent of the basic capture proba-

bilities .. Furthermore, if this variation is infrequent, or small
P3

relative to V(p) the capture frequencies may still have an approxi-

mate multinomial distribution.
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Assume that p.. = p, plus a small perturbation that is induced
31 3

by external factors independent of the value of p, but which acts on

the individuals differentially according to the value of

to model this is to let
PJ

One way

+ P.8.
3 3 1

5. < 0
1

,

P31

p. + (1-p.)6.
1

6. > 0
1

and assume 61, , 6t iid G(6), 5 E ( 1 , 1) It is convenient to

assume G(6) is symmetric about 0, i.e. , 1 G( -5) = G(8).

Then

1

E (p..) = (1)(p.) = P. + ( 6dG)(1 -2p.) ,
8 31 J J 0

which is a function of . only.
PJ

The distribution of the basic variable [X..] is now
31

N t X.. 1-X..
P{[X..31 ]IN,P,b). = 11

J1
(p..) 31(1-p..) 31 .

1 =1j=1 1=1

Averaging over the minor component of variation in capture proba-

bilities gives
N t X.. 1-X..

= (0(
P

31(1-0(p.)) 31 ,
31 Jj=1 i=1

N y. t-yjtit
)-=OP) (1-0

J
. .)

j=1 P
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Then averaging over P gives

t
P { [X.1. ] N,F,G} =

1

S (0(p)1(1-4)(p)) t-i F fit
d

3
i=0 0

It follows that the capture frequencies are sufficient for the param-

eters N, F and G.

The unconditional distribution of the frequencies is again multi-

nomial. This can be established with the same argument as used in

Section 2.3. The sample space Sl is the same as before, so

P{flt' . . , ftt I N, P, 5} =

A

P{
1

[X3 .,] 1N, P,

where A C S2 is the set of all 0.) E S2 with corresponding capture

frequencies flt, ...,ftt. Taking expectations over 5 and P ,

where

N t f.
P{flt , , ftt I N, F, = II (Tr.) ,

Ot
. . . ftt i=0

1

= (
t

)4)(p)
i (1-4)(p)) t-idF

0

1

Because 0 <S 6d.G < 1 it follows that for p E (0,1], 0 < 4(p) < 1.
0

This clearly implies IT. > 0, i = 0, ...,t and

i=.0
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The jackknife estimation procedure of Chapter 6 can be applied

any time the frequencies have a multinomial distribution with "sam-

ple size" N. If the frequencies are sufficient, or contain most of the

information from the sample about N and. E(St) N is approxi-

mately a power series in 1 it then this jackknife estimation pro-

cedure should perform fairly well. Consequently, one reason for

investigating generalizations of the model is to see if the jackknife

estimation procedure can be extended; or alternatively, to see if the

procedure will be robust to certain types of departure from the

original model.

The above examination of a generalization of the model shows

that the jackknife estimator, NJ, should have a degree of robust-

ness to small or infrequent perturbations of the capture probabilities

pi, , pN. This sort of deviation from the model could result in a

rejection of the hypothesis that capture probabilities do not change

and yet the jackknife estimator may perform satisfactorily.
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8. SUMMARY

This thesis was motivated by the need for a robust estimator of

population size in livetrapping studies, that is, an estimator with

good properties even when capture probabilities vary among animals.

Accordingly, a model is postulated in Section 2. 1 which involves three

assumptions, the most restrictive one being population closure. The

main part of the model is the assumption that individual capture

probabilities remain constant during trapping, but the set of capture

probabilities D
1

,pN is a random sample from a probability

distribution F on (0, 1]. Finally, it is assumed that individual

captures are independent events.

Given this model the capture frequencies f lt f
tt , are a

sufficient statistic for N and F, and these frequencies have a

multinomial distribution with cell probabilities depending only upon

F.

Initially, a parametric approach is investigated by assuming F

is a Beta distribution, B(a, 3). In Chapter 3 consideration is given

to some aspects of the general problem of ML estimation with

truncated multinomial data. It was shown that N = N under mild

conditions, where both of these estimators are approximations to

NMLE. Formulae are developed for the variance of N and then
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V(NMLE) may be approximated by V(N). Finally, it is shown that

formally treating N as a continuous parameter in the likelihood

and computing the information matrix leads to the appropriate vari-

ance formulae.

Because the conditional likelihood surface L(a, 131St) is ill

conditioned, the estimator N is not easily found. Consequently,

the exact ML estimator, NMLE' is computed using the uncondi-

tional likelihood L(N, a, R). For any fixed N greater than St,

flt' 'ftt are the frequencies from a sample of size N from a

Beta-binomial distribution. By using the method of scoring with

starting values derived by the method of moments the ML estimators

/c1 (N ) and 13(N) are easily found. Then by examining the sequence

of points L(N,q(N), (/(N)) the value of NMLE is found.

This parametric estimator of N is unsatisfactory for values

of N, a and p likely to apply to real data. For values of N in

the range 100 to 200 the standard error of NMLE is often quite

large relative to N. Furthermore, there is no reason to believe

that NMLE will be robust to violations of the assumed model such

as slight variations in individual capture probabilities over days, or

if F is not a Beta distribution. It should, however, be valuable to

compute aMLE and pMLE to obtain some idea of the types of

Beta distributions which would best serve as models for capture

probabilities. This might indicate that the assumption a = 1 is
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generally reasonable; this case is of interest because the B(1, po

distributions are especially convenient and plausible as distributions

of capture probabilities.

In Chapter 6 a nonparametric estimation procedure is developed

which is valid whenever the capture frequencies have a multinomial

distribution and E(St) is, approximately, expressible as
al a2

N + + 2 + .. where a
1
, a

2
, do not depend upon t. In

t
developing this estimation procedure attention is first restricted to

the class of estimators of N which are linear functions of the
t

capture frequencies. If N = b.f. , then for large enough N,
1 it

A i=1
N has an approximate normal distribution, the variance of which can

be estimated from the frequencies alone. If this estimator has

small bias relative to its standard error then approximate confidence

intervals on N can be constructed. An extension of Quenouille's

jackknife method of bias reduction is used to generate some linear

combinations of the frequencies which are reasonable to consider as

estimators of N.

Chapter 5 gives this extension of the jackknife method of bias

reduction. The main result of that chapter: If Y1, ,Yn is a

random sample, and 0n(Y
1, ...,Yn) is an estimator of 0 such

that

E(E)n) = 0 + -a-- a2
g(nI)

[g(n)i2
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where do not depend upon n and g satisfies cer-

tain properties, then

satisfies

k

0 = x.0Jk (n-i)
i=0

(-1)ka
E(e\Jk) = 0 +

k+1 + 0(
1 1k +2)

g(n)...g(n-k) g(n)

where the coefficients x0, , xk depend only upon g.

If this result is applied to estimation of N when the initial
"

estimator N = 0 t
is a linear combination of the frequencies then

the resulting jackknifed estimators are again linear combinations of

the frequencies. Explicit results are computed for the initial esti-
^ al a

2
mator N = St, assuming E(S t) = N +

t
+ + for

t A
k = 1, , 5. A procedure is then given for selecting one of the NJk

as the estimator to use in any given livetrapping study: The

A A
hypotheses Hoi:E(Nji+i-Nji) = 0 are tested and NJ = Njk is

chosen where NJk is the first estimator such that H01, ...,Hok_i

are rejected and HOk is not rejected.
A

The estimator NJ, i. e. , this estimation procedure, is evalu-

ated by applying it to some simulated livetrapping data. It is shown
A

that this procedure generally arrives at a choice of N for

k = 1,2, or 3. This estimator is quite robust to variations in



157

capture probabilities among individuals in the sense that the absolute

value of the bias of N is not generally large. This is quite dif-

ferent from estimators such as the Schnabel which is unbiased if

capture probabilities do not vary, but which may have a large negative

bias when capture probabilities vary among individuals.

A further indication of robustness for N is derived in

Section 7.2 by considering an extension of the model wherein external

influences are allowed to cause slight variations in capture proba-

bilities over days. If V(p) dominates these day-to-day variations

then the capture frequencies still have an approximate multinomial

distribution. It follows that if the hypothesis p.,
31

= p., j = 1, ..., St,

i = 1, , t is tested and rejected, as discussed in Section 7.1, it

does not automatically mean N

population size.

is not a suitable estimator of
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APPENDIX

The Efficiency of the Method of Moments, and Method of Mean and
Zeros for the Beta-Binomial Distribution

Let Pe be a probability distribution for which the informa-

tion matrix I(0) exists, where 0 = (0
1

, , r )'. Let 0 be any

estimator of 0 based on a random sample of size N; and let

D(0) be the dispersion matrix of 0. The efficiency of /6 is

defined as (Shenton, 1950):

-1
OM

E
ID(e)1

Now assume X1, , Xr are statistics, computed from the

sample, such that E(Xi) = g.(0), i = 1, , r. The method of

expectations estimator of 0 is defined as the solution to the equa-

tions

X
1

X r gr(0)

^ -1Assuming the inverse function exists, 0 = g. (X1, . . . , X r). The

dispersion matrix of g may be approximated by

D(6) = AD(Xi, ...,Xr )AI ,

where D(X1, Xr) is the dispersion matrix of X1, , , and
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A is the Jacobian matrix,

A -
-

aR
1

(x1' 'Xr)
X.1 = E(X.)1'
i= 1,...,r

a (c
1

, . . . , X r)

The efficiency of 0 may be determined from

E
1 11 11 12= II(0)11D(X ...,X r )11A

exists but can not be found explicitly, it is still possible to

find the Jacobian A l

1 A 1 =

implicitly as

aR(e l' ex.)

a(ei' er)

These definitions and formulae will be used with the Beta-

binomial distribution making the identification 0 = (a, P)', r = 2. If

Y is a Beta-binomial random variable, then for i = 0,1, ... , t

P{Y = i I a, P} = Tya, P) where . is given by (2.4.1). In keeping

with the derivation of this distribution as a mixing of a binomial and
aBeta distribution let E(p) then E(Y) = tE(p).

The method of moments estimators of a and 13 are found.

as the solution to the equations ml = E(m1) and m2 = E(m
2)

t

where m1 = Ct/N and m2 =
i=1

2
N(i)f it/ . The expectations of
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these statistics are

aE(m 1) = t a+P

p+ta+tE(m2) = E(m )[
1 a+P+1

In the extreme cases f
Ot

= N or ftt = N the method of

moment estimators are essentially arbitrary. However, the ML

estimators are also arbitrary in these cases. When these extreme

cases do not obtain closed form solution for the method of moment

estimators exists provided (ml /m2)t + ml - mit - t 0:

mlt -m2
a* -

R =

m2

m t+ml-mlt-t
1

za

where z = (tN/Ct) 1 (this result is originally due to Skellam

(1948) ).

The method of mean and zeros estimators are found as the

solution to the equations fot = Nero and ml = E(mi). In the

extreme case f
Ot

= 0 these equations have no solution and if

fot = N the solution is arbitrary. For fot = 0, , N-1, the

equations to be solved are
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f
Ot

=
za+i-1

N ) =( g(a)
1=1

and p = za . The derivative of g is

t
dg(a) -g(a) 1 (i-1) < 0da (az+i-1)(a(z+1)+i-1)

i=1

for all a > 0 (because f
Ot

< N, it follows Ct > 0, thus

0 < z < + 00). Thus, g(a) is strictly monotone decreasing. By

continuity, g(0) = 1 and g(+00) = (z /(z +l))t = (1-C t/tN)t > 0. It

follows that a unique solution exists to the equation fot/N = g(a) iff

f Ot/N > (1-C titN)t. When a solution exists it can easily be found

because of the monotonicity of g(a).

The efficiency of the method of moments for the Beta-binomial

distribution has been examined by Shenton (1950). The efficiency of

the method of mean and zeros for the Beta-binomial distribution does

not appear to have been investigated. Formulae for both efficiencies

will be given below. Shenton's formula is not used here because it is

an approximate derived before computers were readily available.

When the efficiency of these two estimation methods is com-

puted the sample size, N, drops out of the final result. Without

loss of generality then let N be set equal to one. For the method

of moments the elements of D(m 1,m2) are given by
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t -t - 2
= (i)

1 1
in.

2
1T.

i=1 i=1

-t
V(m2) (i)

4
Tr. Tr

is
(i)2.

i= 1 1=1

2

t -t -t -
Cov(m

1
,m

2 1 1
) = (i)

3n. in. (021T1.

1=1 1=1 i=1

The Tacobian I A I for this transformation is conveniently computed

implicitly:

1

A l

an t an.
(i) aai ap

i =1 i=1

an an
co act' i (i) ap

\ 2 i

1=1 1=1

Formulae for aI(a,p), aniaa and an. / 13 are given in Section 4.1.

A program was written by the author to compute the efficiency

of the method of moments for any values of a and p . The effi-

ciency of the method of mean and zeros is computed simultaneously

using the formulae



and

D(f
Ot

,m
1

) =

1

I A

'0)1T0

-TT
0
E(p)

- rr0E(p)

E( )(1-E( (a+ +t)
t(a-F(3+1)

ano
0

as 813

-a

(a+P)2 (a+P)
2
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It is required that t > 2 holds in order to estimate both a

and 13 For t = 2 these two estimators and the ML estimator are

all equivalent. Thus for t = 2 the efficiencies are 1. Table Al

gives the efficiencies of the method of mean and zeros (M+Z) and

method of moments (MM) for a variety of values of a and 3 with

t = 5(5)30. Also shown in this table is Tro for each value of t.

For the range of a., p and t examined it is evident that the method

of moments estimators are efficient enough to use as starting values

in an iterative solution for the exact ML estimators. In fact, the

method of moments shows good efficiency relative to the method of

mean and zeros in all but a few extreme cases (e.g., a = .1 and

13 = 9. 9).



Table Al. Efficiency of the method of mean and zeros (M+Z) and method of moments (MM) for
selected Beta-binomial distributions. Also shown is the value of Tro(a, (3).

M+Z MM
0

M+Z MM
Tro

t M+Z MM
110

a= 10 3= 10. E(p) = .5 a= 10. p = 31.67 E(p) = .24 a= 10. p = 73.33 E(p) =.12
5 .445 1.000 .047 5 .761 .998 .272 5 .890 .998 .536

10 .113 1.000 .005 10 .469 .994 .086 10 .726 .994 .298
15 .031 . 999 .001 15 .282 .991 . 031 15 .5 87 . 991 .171
20 .009 .999 .000 20 .168 .989 .012 20 .470 .988 .101
25 .003 .998 .000 25 .100 .987 .005 25 .372 .985 .061
30 .001 .998 .000 30 .060 .985 .002 30 .297 .982 .038

a = 1. 0 13 = 1.0 E(p) = .5 a = 1. 0 P = 3.167 E(p) = . 24 a = 1.0 3 = 7 333 E(p) = .12
5 .657 .979 .167 5 .847 .967 .388 5 .935 .952 .595

10 .478 .932 .091 10 .722 .923 .241 10 .862 .894 .423
15 .3 98 . 899 .063 15 . 650 . 891 . 174 15 .811 .854 .328
20 .348 . 876 .048 20 .599 . 868 .137 20 .770 . 823 . 268
25 .3 14 . 858 .038 25 .561 . 851 . 112 25 .736 . 800 .227
30 .288 .845 .032 30 .529 .837 .095 30 .708 .781 .196

a= .1 p = .10 E(p) = .5 a = . 1 p = .3167 E(p) = . 24 a = .1 (3= .7333 E(p) = .12
5 .771 .939 .414 5 . 811 .935 . 642 5 . 872 . 928 .766

10 . 667 . 832 .3 85 10 .721 . 827 . 599 10 . 807 . 823 . 716
15 . 622 . 765 .369 15 . 681 .760 .575 15 .778 . 757 . 688
20 .596 .718 .358 20 .658 .714 .558 20 .762 .712 .669
25 .577 . 684 .350 25 . 643 . 681 .546 25 .751 . 678 . 655
30 .564 . 658 .344 30 . 631 . 655 .536 30 .743 . 653 . 643



Table Al. Continued.

t M+Z MM "o M+Z MM

a = 10. p = 156.7 E(p) = .06 a = 10, p = 990.0 E(p) =

5 .947 .998 .737 5 .992 1.000
10 .864 .996 .548 10 .978 .999
15 .785 .994 .411 15 .964 .999
20 .712 .991 .310 20 .950 .998
25 .644 .989 .236 25 .937 .998
30 .582 .987 .181 30 .923 .997

Tr

0
M+Z MM

.01 a = 10. p = 9990. E(p) =
.951 5 .999 1.000
.905 10 .998 1.000
.861 15 .996 1.000
.819 20 .995 1.000
.780 25 .994 1.000
.743 30 .992 1.000

"o

.001

.995

.990

.985

.980

.975

.970

a = 1.0 p = _15.67 E(p) = .06 a = 1.0 p = 99.0 E(p) = .01 a = 1.0 = 999.0 E(p) = .001

5 .973 .957 .758 5 .996 .988 .952 5 1.000 .999 .995
10 .935 .902 .610 10 .991 .969 .908 10 .999 .997 .990
15 .904 .861 .511 15 .985 .952 .868 15 .999 .994 .985
20 .877 .828 .439 20 .980 .936 .832 20 .998 .992 .980
25 .853 .801 .385 25 .974 .921 .798 25 .997 .990 .976
30 .832 .779 .343 30 .969 .907 .767 30 .997 .988 .971

CL = 1 3= 1.567 E(p) = .06 a= 1 p = 9.9 E(p) = .01 = 1 p = 99.9 E(p) = .001

5 .937 .911 .846 5 .997 .907 .958 5 1.000 .983 .995
10 .901 .803 .797 10 .994 .800 .930 10 1.000 .955 .990
15 .885 .735 .768 15 .992 .726 .909 15 1.000 .930 .986
20 .876 .688 .748 20 .991 .671 .893 20 1.000 .907 .982
25 .871 .653 .732 25 .989 .629 .879 25 1.000 .885 .978
30 .867 .626 .719 30 .989 .595 .867 30 .999 .865 .974


