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Posting advisory speed signs at sharp horizontal curve sites is a practice well 

established in the United States. The purpose of these signs is to provide the 

driving public with a safe speed to negotiate such curves; however, the link 

between these signs and safety has not yet been clearly established.  

The first manuscript in this dissertation presents an effort to model safety as it 

relates to curve advisory speed signs. It proposes a statistical model relating crash 

frequency at 2-lane rural highways in Oregon to curve advisory speed signs and 

other influential factors. The Advisory Speed Crash Factor (ASCF) emerges as a 

sub-model that characterizes the safety effect of advisory speed signs. Results 

indicate that safety may be compromised if the advisory speed is either 

excessively prohibitive or excessively permissive. 

The second manuscript extends the use of the proposed ASCF to develop the OSU 

posting method, a new procedure that procures the “optimal” advisory speed 

derived from the ASCF. A field validation analysis, also presented in this 

manuscript, verified the meaningfulness of the proposed ASCF sub-model. 

The third manuscript outlines another methodology, named ‘the Hybrid OSU 

Posting Method’ in an effort to mitigate the well documented variability 

associated with using the Ball Bank Indicator (BBI). This method determines the 

advisory speed using the BBI in combination with the ASCF. Though benefits in 

safety performance and consistency resulted from using the Hybrid OSU method, 

this method is still outperformed by the computational OSU method.  
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1. General Introduction 

In the United States it is common practice to post advisory speed signs at sharp 

horizontal curve sites. The purpose of these signs is to provide the driving public with a 

safe speed to negotiate such curves. Current literature has repeatedly verified that the 

driving public tends to choose speeds above the speeds indicated on these signs. This 

author verified such trend in a previous research effort, which showed that 73% of 

drivers in western Oregon drive above the advisory speed (Avelar, 2010).  

Current literature offers a myriad of studies with conflicting results regarding 

the effectiveness of these signs. Some argue that these signs are ineffective; some that 

researchers cannot draw conclusions about the signs; and some argue that these signs 

are  costly or even counterproductive (Chowdhury, Warren, Bissell, & Taori, 1998), 

(Courage, et al., 1978), (Gates, Carlson, & Hawkins Jr., 2004), (Kanellaidis, 1995), 

(Koorey, et al., 2002), (Lyles, 1982), (Lyles & Taylor, 2006), (Ritchie, 1972), 

(Zwahlen, 1987), (Zegeer, Stewart, Council, Reinfurt, & Hamilton, 1992). 

In any case, the link between these signs and the safety performance at posted 

sites has not yet been clearly established. In spite of the well documented fact of 

operating speeds exceeding the speeds displayed at these signs, it is still not clear if 

drivers use the signs as a reference to select their speeds at posted sites, and if so to 

what extent. These signs would be associated with a safety benefit if they conveyed 

information that drivers may find useful to choosing their speeds around curves.  

1.1. Background and Relevant Premises on Traffic Control Devices at 

Horizontal Curves 

In general, the use of traffic control devices (TCDs) at horizontal curves intends 

to provide guidance to safe operation at these locations. Zegeer et al. (1992) performed 

an assessment of the effectiveness of typical curve countermeasures, including TCDs. 

The authors also recommend general guidelines on horizontal alignment design. These 

guidelines encompass cost-effective strategies, such as signing, marking and 
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delineation. NCHRP report 500 in its seventh volume (Torbic, et al., 2004) presents a 

detailed set of strategies to reduce the likelihood of curve related crashes, or to reduce 

the consequences of departing the travel lane at horizontal curves. The strategies that 

this report outlines include recommendations on the use of TCDs. 

Curve-specific TCDs include a wide variety of warning signs (that may be 

supplemented with flashers), chevron signs, advisory speed signs, and various types of 

pavement signs and markers. The specifications and recommended uses of these TCDs 

are contained in the Manual on Uniform Traffic Control Devices (MUTCD).  

 

 

Figure 1-1: Warning and Advisory Speed Signs 

 

The most common curve TCDs are the horizontal alignment warning sign, the 

advisory speed warning sign, the chevron sign, and the large directional arrow sign. 

Figure 1-1 shows a curve warning sign and its companion advisory speed.  

The wide array of possible combinations of curve TCDs intends to inform 

drivers about various degrees of hazardous conditions at horizontal curves.  There are 

two widely used supplements to the MUTCD (FHWA, 2009): the Traffic Engineering 
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Handbook (Institute of Transportation Engineers, 2009) and the Traffic Control Devices 

Handbook (Pline, 2001). These documents intend to promote consistency in the use of 

TCDs, extending specific guidelines for practitioners. 

Low-Cost Treatments for Horizontal Curve Safety, a Federal Highway 

Administration publication (McGee & Hanscom, 2006), offers a set of guidelines for 

applying TCDs at curve locations, including the ones in the MUTCD, other traditional 

TCDs, and some innovative configurations.  

Another set of guidelines is provided by Bonneson, Miles and Carlson in their 

Curve Signing Handbook (2007). This document stresses the importance of consistency 

in determining the need of curve TCDs. The authors argue that lack of consistency may 

explain, to a significant extent, driver disregard for these types of signs.  

There is a body of work suggesting that current advisory speed posting practice 

is not consistent, and there are several different views on their effectiveness, as 

discussed in the literature review sections of chapters 2, 3, and 4 of this dissertation.  

 

 

Figure 1-2: Advisory Speeds in the Context of Horizontal Curve Safety 
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Given this brief background review, a need to study advisory speed signs safety 

becomes apparent. This dissertation will add to that discussion from a stand point that 

has been minimally explored: safety performance.  

It is expected that advisory speeds play a role on curve safety as contextually 

depicted in Figure 1-2. Chapter 2 in this dissertation provides a meaningful articulation 

of such a safety effect, from the stand point of a statistical model provided in that 

chapter.  

1.2. Research Questions Addressed in this Dissertation 

The purpose of this dissertation is to provide robust scientific answers to the 

following research questions: 

 

1. After accounting for other relevant factors with known safety effects, is 

there a safety benefit associated with the use of advisory speed warning 

signs?  

 

If there is indeed such a safety benefit: 

 

2. Is it dependent on the advisory speed value displayed in these signs?  

3. Is this benefit also dependent on the criteria that were used to determine 

the advisory speed? 

4. How robust is the evidence in favor of such a safety benefit? 

5. Is it possible and feasible to determine an advisory speed value such that 

it will yield maximum safety benefit? 

Chapter 2 in this dissertation presents a safety performance evaluation of curve 

sites, an effort that sheds light on research questions one through three. The fourth and 

fifth research questions are addressed by chapters 3 and 4, where the focus is on 
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expanding the evidence favoring the safety effect of these signs -as just established in 

chapter 2- and on developing new methodologies to post better safety performing 

advisory speeds. 

1.3. The Organization of this Dissertation 

Chapter 1 of this dissertation presents a general introduction to advisory speeds, 

introduces the research questions addressed in this work, and presents a general outline 

of the document. The main body of this dissertation consists of three journal research 

papers, henceforth referred to as manuscripts, presented as chapters 2, 3, and 4 

respectively. The research questions are addressed, to this author’s satisfaction, 

throughout these three manuscripts. 

The first two manuscripts have already appeared in the proceedings of national 

and international conferences. The first manuscript is under review for publication by 

Accident Analysis & Prevention, a well-known international Journal; the second 

manuscript was accepted for publication by the Transportation Research Record, 

Journal of the Transportation Research Board of the National Academies, a referential 

journal in the United States. The third manuscript is under consideration for publication 

by the Journal of Transportation of the Institute of Transportation Engineers. 

The first manuscript, chapter 2 in this dissertation, presents a statistical analysis, 

an effort to modelling the safety performance of horizontal curve sites as it relates to 

advisory speed signs and other influential factors. Though two candidate statistical 

specifications were explored, this modelling effort ultimately utilized a Poisson 

Generalized Linear Model linking the crash frequency at 2-lane rural highways in the 

state of Oregon to geometric, operational and posting characteristics. The Advisory 

Speed Crash Factor (ASCF) is a sub-model that characterizes the safety effect of 

advisory speed signs, after accounting for other influential factors. This manuscript also 

explores and explains the engineering and human factors implications of the proposed 

ASCF sub-model. A closer examination to the distribution of ASCF values throughout 
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the available sample suggests that safety performance may be compromised at sites with 

either excessively prohibitive or excessively permissive advisory speeds. Finally, this 

manuscript also presents an assessment and a brief discussion of the adequacy of the 

model and the fulfillment of its underlying assumptions in the available sample. 

The second manuscript develops a new computational posting procedure, named 

“the OSU posting method”, based on the “optimal advisory speed”, a concept derived 

from the ASCF formulation. Additionally, this manuscript shows a comparison between 

the expected performance of the new method and two reference sets of advisory speeds. 

Finally, this chapter includes a brief review of a series of field validation tests this 

author performed using a new sample of sites in order to test the robustness of the 

proposed ASCF function. Chapter 5 provides more ample coverage of the details of 

these validation analyses.  

The third manuscript outlines a mixed methodology, named ‘the Hybrid OSU 

Posting Method’, focusing on mitigating the well documented variability of using the 

Ball Bank Indicator (BBI), while producing an advisory speed based on safety 

performance. Inherent variability to the BBI is an issue that inevitably affects advisory 

speeds determined using this device. But since the BBI is the most widely used posting 

method, the Hybrid OSU method emerges in anticipation of practitioners being 

reluctant to stop using the BBI, despite the well documented volatility of its readings. 

The proposed methodology uses the BBI in combination with the ASCF to arrive at an 

advisory speed that is based on the optimal advisory speed value, as outlined in the 

second manuscript. 

Complementary, chapter 5 presents relevant material that was not included in 

the manuscripts, and chapter 6 provides a general conclusion to the dissertation. Finally, 

Appendices A and B supplement this dissertation with materials that are related to this 

work, but without which this dissertation can sustain itself as a coherent whole. 
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ABSTRACT 

Posting advisory speed signs at sharp horizontal curve sites is a practice well 

established in the United States. The purpose of these signs is to provide the driving 

public with a safe speed to negotiate such curves; however, the link between these signs 

and safety performance has not yet been clearly established. This paper presents a 

recent Oregon effort to model the safety performance as it relates to these curve 

advisory speed signs. The authors developed a Generalized Linear Model that 

parameterizes the crash frequency at 2-lane rural highways in the state of Oregon in 

terms of curve advisory speed signs and other factors. This paper presents an analysis 

based on the Poisson model, as it provided the most appropriate fit to the data. The 

authors also tested an alternative Negative Binomial (NB) model. This research found 

that a bi-linear polynomial, contained in the selected statistical model, convincingly 

establishes a link between the presence of advisory speed signs and the expected 

numbers of crashes at these sites. Such a link also proved meaningful from the 

engineering and human factors perspectives. By using the developed sub-model, the 

authors estimated the safety effectiveness of advisory speeds. This research estimates 

that, for the state of Oregon, these signs are linked to an approximate reduction of 27% 

in the expected number of crashes. In general, this research found that advisory speed 

signs tend to enhance safety. However, the authors also determined that, under certain 

conditions, advisory speed signs may not be displaying the value that offers the greatest 

potential for safety enhancement. Furthermore, some advisory speeds can actually be 

negatively associated with safety performance. Based on the findings of this research, 

this negative relation can occur at sites with either excessively prohibitive or 

excessively permissive advisory speeds. 

 

Keywords: advisory speed, safety, Side Friction Demand 
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2.1.  Introduction 

Curve advisory speed signs are companions to curve warning signs. Their 

purpose is to recommend a safe speed for vehicles to negotiate horizontal curves. 

Although the practice of posting these signs is well established, a convincing linkage 

between these signs and their hypothesized long term safety benefit has not been clearly 

established. Current literature includes repeated documentation of poor adherence to 

these signs, but the authors of this paper believe that such lack of operational 

compliance may not directly translate into similar safety expectations. This paper 

presents a statistical analysis in pursuit of quantifying a potential safety benefit of 

advisory speed signs.  

The research effort as summarized in this paper includes six general sections: 

(2.2) past and current advisory speed posting practices, () data characteristics and 

filtering, (3) statistical analysis, (4) the effects of advisory speed signs, (5) an evaluation 

of the resulting model adequacy, and (6) conclusions and recommendations. 

2.2.  Past and Current Advisory Speed Posting Practices 

Advisory speed signs in the United States have been in use since the 1930s. The 

standardized practice of posting these signs dates back to the 1948 Manual on Uniform 

Traffic Control Devices (MUTCD), where the use of the ball bank indicator is 

recommended to determine safe speeds for horizontal curves. In its latest edition, the 

2009 MUTCD recognizes the potential use of alternative methods to establish advisory 

speeds. According to this document, advisory speeds shall be determined by an 

“engineering study that follows established engineering practices” (FHWA, 2009, p. 

Section 2C.08). This version of the MUTCD indicates that using the ball bank indicator, 

the geometric design equation, or an accelerometer are examples of such advisory speed 

engineering assessment practices. The most widely implemented assessment technique 

is the ball bank indicator. The thresholds for this method have been continually updated 

through subsequent editions of the MUTCD (FHWA, 2009). 
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Available literature consistently indicates that advisory speed values, developed 

using the standardized ball bank indicator procedure, have a large variation in 

recommended values (Chowdhury, et al., 1998; Courage, et al., 1978). Furthermore, a 

recent study by Dixon and Rohani (2008) found that a large proportion of curve sites in 

the state of Oregon do not comply with the state policy. Various authors argue that such 

lack of consistency results in poor adherence to advisory speeds (Lyles, 1983; 

Bonneson, et al, 2009). 

Surprisingly, there does not appear to be any available literature that quantifies 

how advisory speed signs actually play a role in enhancing safety performance at 

horizontal curve locations. The only reference that assigns a flat effect to the mere 

presence of these signs is that of Elvik and Vaa (Elvik & Vaa, 2004), from which it 

appears that the signs are beneficial. This paper investigates the possibility that these 

signs, despite potentially poor operational compliance, are conveying additional and 

meaningful information to the public about the severity of downstream horizontal 

alignments. Accordingly, drivers may respond by adjusting, in some way, their driving 

behaviour at posted horizontal curves, and this heightened awareness at these locations 

may result in fewer crashes. 

2.3. Data Characteristics and Filtering 

This research is based upon the data from a probability sample of 210 

directional horizontal curve sites located at 2-lane rural highways in Oregon. The sites 

were selected from the road inventory database of state maintained highways in Oregon. 

Dixon and Rohani (2008) collected geometric data at these sites to assess the 

consistency of posting practice in the state. The researchers used probability sampling 

to ensure representativeness of their results to the state of Oregon. A detailed 

quantification of the underlying probability structure of a subset of these sites is 

documented in detail in further work by Avelar (2010). The data collected on site 
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include: curve length, number of lanes, lane and shoulder width, superelevation, vertical 

grade and vertical signage. Dixon and Rohani determined the corresponding horizontal 

radii by analyzing aerial images. Additionally, they also collected the Average Annual 

Daly Traffic, available from the Oregon Department of Transportation (ODOT). 

Subsequently, the authors of the current paper compiled the crash records for the 

sampled sites using ODOT’s State-wide Crash Data System. This research used crashes 

from the period of 2000 to 2004, which closely preceded the site data collection so as to 

ensure the crash records were appropriately linked to the physical site characteristics at 

the time of the crash.  

Before performing the statistical analysis, the authors filtered the crash data to 

exclude those crashes that were likely associated with intersections, driveways, and 

other features not typical to segment locations where the horizontal curve-related 

crashes could be located. In order to draw meaningful comparisons, the authors of this 

paper compiled all the crashes that occurred along the 2-mile study corridors and linked 

them to curve locations, where present. Isolated crash records where mile point 

locations were recorded to a whole number were suspicious due to potential rounding 

errors, and therefore were noted and then excluded from further analysis. More detail 

regarding the data characteristics, sites selected, distribution of crashes, and data 

filtering is available in Dixon and Avelar (2011).  

2.4. Statistical Analysis 

In an effort to assess the associated safety effects of advisory speed signs, the 

authors determined that an univariate statistical test with a simplified direct comparison 

between crashes at sites with and without advisory speed signs would not suffice due to 

the large number of potential factors associated with horizontal curve locations at the 

rural two-lane study sites. For instance, the associated horizontal radius is a natural 

choice to compare the crashes that occurred within horizontal curves with and without 

advisory speeds posted, but the wide range of candidate horizontal curve radii within 
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the study sample prohibited a meaningful comparison. The analysis should 

simultaneously incorporate the effect of radii and other relevant factors, and any 

associated assumptions should be verifiable. The following sections of this paper review 

the types of statistical models available, the model selection process, and the results of 

the modelling procedures. 

2.4.1. Overview of Statistical Models 

Traditionally, Poisson regression models have been used for regressing count 

responses to a vector of potential explanatory variables; however, overdispersion with 

respect to the Poisson distribution is commonly encountered in crash data. The use of 

negative binomial regression models (NB) is an attractive alternative to cope with this 

issue as such models represent Poisson-overdispersion using an additional parameter in 

the conditional variance of the Poisson model, while still preserving the conditional 

expectation of the mean as the regressed parameter. In fact, when the dispersion 

parameter is equal to one, the Poisson model emerges as a particular case of the NB 

model. 

The two simpler forms of NB models are known as NB1 and NB2. The 

difference between these two specifications is represented by the conditional variance 

function, particularly with relation to how the dispersion parameter is specified. The 

conditional variance for the NB1 model is a simple linear function of the conditional 

mean, while the conditional variance for the NB2 model is a quadratic function of the 

conditional mean. Naturally, NB models with more complex parameterizations are also 

available, but were not incorporated as part of this analysis. 

The authors of this paper, therefore, explored the use of Poisson and NB2 

models only. It is the NB2 model and not the NB1 that may be formulated as a 

Generalized Linear Model (GLM), and thus, model evaluation metrics are easily 

obtainable. A quick and more direct comparison with the significance and fit of Poisson 
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models is therefore easily attained. As previously indicated, as long as the data is not 

over-dispersed, the Poisson model results are equally valid to the NB2 model results. 

Although the Poisson and NB2 regression models have a relatively simple 

structure, some complexity arises in this case because the authors chose to explicitly 

account for interactions among the explanatory variables. Explicitly modelling variable 

interactions creates departures from both simple linearity of the mathematical form and 

an independent-like covariance structure among predictors (both typical assumptions of 

non-interacting linear regression models). The authors paid special attention to the fact 

that using interrelated variables as predictors increases the risk of encountering 

multicollinearity and its derived issues. These issues, however, when assessed and well 

accounted for, do not invalidate the procedure; they simply require additional 

computational efforts and further interpretation of the results. 

2.4.2. Model Selection 

Crash occurrences may be understood as a Poisson process.  This Poisson 

process may be homogeneous, in which case a Poisson regression model would be 

appropriate, or heterogeneous, in which case the NB2 specification would be a more 

appropriate choice to develop the corresponding GLM (assuming a Gamma distribution 

as the mix-function for the Poisson parameter). 

It is important to mention that since over-dispersion issues were not present in 

the data, both the Poisson and NB model specifications could be used interchangeably 

in this case. The magnitudes and p-values are essentially the same for the resulting 

parameterization. The authors selected the Poisson model for this analysis, in spite of 

the availability of a dual but comparably well fitted NB model, for the following 

reasons: (1) the principle of parsimony, and (2) the straightforward implications that 

derive from the simpler structure and well known statistical properties of the Poisson 

Model. These properties enabled testing the model goodness of fit beyond the statistical 

software output, by performing a Convoluted Poisson Distribution test. The authors 
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performed an extended assessment of the selected model to dispel any doubts regarding 

the adequacy of the Poisson GLM. This assessment is presented following the model 

results and interpretation. Beyond the preferred statistical distribution, the authors deem 

one contribution of this paper lies upon the parameterization of the mean itself, as the 

interpretation of selected Poisson specifications are equivalent to the more general NB 

model for this particular case. 

The authors performed the statistical procedures summarized in this paper with a 

regression package and the statistical computing language R (Fox & Weisberg, 2011), 

(R Development Core Team, 2011). 

2.4.3. Model Results 

The resulting safety effects model is depicted in Table 2-1. The functional form 

of the expected number of crashes is provided by Equation 2-1.  

 

Table 2-1:  Selected Poisson Regression Model for Crash Data 

Term Estimate Standard 

Error 

z-value p-value Significance
1 

(Intercept) -1.862 2.259 -0.824 0.410  

LnAADT 0.931 0.108 8.635 < 2e-16 *** 

LnCurveLength -0.956 0.246 -3.886 1.02E-04 *** 

LaneWidth -0.282 0.129 -2.182 0.029 * 

Radius 0.001 0.000 1.868 0.062 º 

Angle 0.892 0.686 1.299 0.194  

Radius:Angle 0.002 0.001 2.791 0.005 ** 

Radius:Adv.SpdPresent -0.004 0.001 -4.439 9.03E-06
 

*** 

Adv.SpdPresent:Angle -1.211 0.538 -2.250 0.024
 

* 

Adv.SpdPresent 4.026 0.724 5.563 2.65E-08
 

*** 

ASD 0.024 0.023 1.048 0.295  

SFD 5.799 2.275 2.549 0.011
 

* 

ASD:SFD -0.553 0.151 -3.668 2.44E-04
 

*** 
1
Significance values are as follows: 

º  p<0.1; * p <  0.05; ** p <  0.01; and *** p < 0.001 
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Equation 2-1:  Functional Form of Selected Model 

 

Where: 

AADT  = Annual Average Daily Traffic (vpd); 

CurveLength  = Length of the Curve (ft); 

LaneWidth  = Width of travel lane (ft); 

Radius   =  Horizontal Radius (ft); 

Angle  = Horizontal Curve Central Angle (Radians); 

SFD   =  Side Friction Demand at Advisory Speed (no units); 

ASD  =  Advisory Speed Differential, defined as speed limit minus  

posted advisory speed (mph); and 

AdvSpdPresent  =  Indicator variable equals to one when advisory speed  

signs are present, otherwise the value is zero. 

 

The authors assessed the option of removing the Angle and ASD constituent 

terms from the model since they appear statistically insignificant as shown in  

Table 2-1; however, each variable is associated with significant interactions and 

so their effects cannot be considered independent of these associated interacting 

variables. As a result, the coefficients of the constituent terms should be interpreted in 

conjunction with these identified interactions. This model includes three variables 

associated with advisory speeds:  ASD (the difference between the speed limit and the 

posted advisory speed), SFD (the Side Friction Demand that a vehicle would experience 

if it navigates the curve at the advisory speed), and AdvSpdPresent (a binary variable 

indicating the presence of posted advisory speeds). Based on the statistic AIC used for 

model selection, these variables, although interrelated, improved the information quality 

of the model. The authors also tested and discarded other relevant variables based on 

the model selection algorithm that ultimately converged and stabilized to the model 

shown. The authors monitored this algorithm to avoid simultaneity of variables that 

#𝐶𝑟𝑎𝑠ℎ𝑒𝑠 = 𝑒𝑥𝑝[−1.862 + 0.931𝐿𝑛(𝐴𝐴𝐷𝑇) − 0.931𝐿𝑛(𝐶𝑢𝑟𝑣𝑒𝐿𝑒𝑛𝑔𝑡ℎ) − 0.282(𝐿𝑎𝑛𝑒𝑊𝑖𝑑𝑡ℎ)
+ 0.892(𝐴𝑛𝑔𝑙𝑒) + 0.001(𝑅𝑎𝑑𝑖𝑢𝑠) + 0.002(𝐴𝑛𝑔𝑙𝑒 × 𝑅𝑎𝑑𝑖𝑢𝑠)
− 0.004(𝐴𝑑𝑣𝑆𝑝𝑑𝑃𝑟𝑒𝑠𝑒𝑛𝑡 × 𝑅𝑎𝑑𝑖𝑢𝑠) − 1.211(𝐴𝑑𝑣𝑆𝑝𝑑𝑃𝑟𝑒𝑠𝑒𝑛𝑡 × 𝐴𝑛𝑔𝑙𝑒)
+ 4.026(𝐴𝑑𝑣𝑆𝑝𝑑𝑃𝑟𝑒𝑠𝑒𝑛𝑡) + {5.799(𝑆𝐹𝐷) + 0.024(𝐴𝑆𝐷) − 0.553(𝐴𝑆𝐷 × 𝑆𝐹𝐷) } ] 
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could destabilize the convergence of the algorithm to attain maximum likelihood of 

estimates, or extreme increments in the Variance Inflation Factors (VIFs) as these are 

clear indicators of extreme multicollinearity. For instance, once the working model had 

significantly increased the AIC value by including the ASD variable with an interaction 

term, the inclusion of variables for the advisory speed and the speed limit created 

convergence issues to the fitting algorithm. For these cases, the authors explored two 

separate branches of the step-wise model selection and chose the model with a better 

AIC value. 

2.5. The Effect of Advisory Speed Signs 

It is important to evaluate the influence of relevant geometric design and posting 

practice concepts as they relate to the rather complex vector of predictors generated as a 

result of the structure of the model.  Due to the presence of interaction terms in the 

regression model, it is not possible to gather a simple “independent” effect for some of 

the variables in the model. Instead, the effect of a set of interacting variables is 

interpreted jointly as a composite multivariate entity affecting the number of crashes. 

Before presenting a formal multivariate assessment, however, the authors deem 

appropriate to present an interpretation of the model variables and their perceived 

influence on safety performance. 

2.5.1. Model Interpretation 

Figure 2-1 represents conceptually how relevant variables fall into the three 

influential categories of geometric design, signage, and operations. This diagram only 

includes the significant variables indicated as a result of the statistical analysis. As the 

figure shows, many of the variables do not perform independently and some overlap can 

be expected as a result. For instance, the SFD can be understood as both an operational 

and a geometric variable, since this variable is a function of speed, radius, and 

superelevation. 
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Figure 2-1:  Model Variables Schematic 

 

In addition to the variables shown in the diagram, the step-wise model selection 

procedure included additional interaction terms as indicated by the two-headed arrows 

in Figure 2-1. The researchers did not find these interactions surprising, given that the 

established geometric design methods and MUTCD posting procedures ensure the 

interrelation between the three depicted categories of variables.  

It is important to note that an interaction term between two variables may be 

seen as the conditioning of the marginal effect of one variable to a particular value of 

the other. Additional information regarding the statistical interpretation of this type of 

model can be found in Brambor et al. (2006). Since a purely statistical interpretation 

may tend to disregard known engineering relationships, however, the authors felt that it 
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would be helpful to further articulate an interpretation of the model interactions based 

on a transportation engineering perspective.  

Based on the three categories of variables depicted in Figure 2-1, the authors 

hypothesize that safety performance emerges from the model in the following way: 

geometry and signage impact safety by changing road operations, which will result in 

higher or lower crash frequencies over an extended period of time. According to this 

premise, interactions in the model should translate into a shift in the short-term 

operations, ultimately impacting the long-term likelihood of crashes. As an example, the 

authors believe that the mere presence of the speed plaques (located at warranted curve 

locations) and the information the drivers may gather from the displayed values may 

trigger a change in behaviour, which would translate into a shift in operations.  A mix of 

pre-existing road geometry factors, such as radius and cross-slope, in combination with 

the expected operations upstream (roughly captured by the speed limit) ultimately 

dictate the advisory speed plaque message which then can influence the likelihood of a 

crash. 

Based on this interpretation, if a variable capturing an aspect related to advisory 

speeds was part of an interaction with another model variable, regardless of the direct 

link one may draw from the mathematical form, it may make more sense to think of the 

signage variable shifting the effect of the other, more influential variable. This is a 

relevant observation, since the model contains two such interactions: the presence of 

advisory speeds interacting with a geometric characteristic (Radius and Angle). A shift 

towards fewer crashes in the effects of these geometric variables is indicated by 

corresponding negative coefficients of the interaction terms. However, to quantify the 

total joint effect and draw meaningful conclusions, each advisory speed variable and the 

corresponding interactions should be explored in order to draw a holistic interpretation 

of the effect of advisory speeds in safety performance. 
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2.5.2. The Marginal Effects of Advisory Speed Model Variables 

Although the presence of advisory speed plaques seems to affect the likelihood 

of crashes by shifting the effects of geometric variables, the two other advisory speed 

variables appear to directly contribute to the overall safety of the studied sites. These 

variables are the SFD and the ASD (previously defined in Equation 2-1). The SFD can 

be computed using Equation 2-2, an equation available from any highway design book. 

 

Equation 2-2: Side Friction Demand 

 

Where: 

 

SFD = Side Friction Demand; 

V  = Advisory Speed (mph); 

R  = Horizontal Radius (ft); and 

e  = Superelevation (%). 

 

The SFD variable emerges from the known associations of the geometric and 

operations categories as depicted in Figure 2-1. Since this value is a function of vehicle 

dynamics as well as road geometrics, it plays an important role in establishing the 

appropriate advisory speed at curve locations. The authors hypothesize that the SFD 

variable implicitly captures the drivers' expected discomfort associated with negotiating 

the curve safely. Although the actual SFD would vary among drivers (e.g. varying 

vehicle capabilities, driving aggressiveness, etc.), research shows that ultimately drivers 

would tend to respond similarly to a higher degree of discomfort (Bonneson, Pratt, & 

Miles, 2009), (Chowdhury, Warren, Bissell, & Taori, 1998), (Avelar, 2010). On the 

other hand, drivers may judge the severity of an approaching curve based on how small 

the posted advisory speed is, or relative to the speed limit, how large they perceive the 

Advisory Speed Differential (defined as the speed limit minus the advisory speed 

value). This value would provide information supplemental to their individual visual 

𝑆𝐹𝐷 =
𝑉2

15𝑅
− 0.01𝑒 



 

22 

 

 

assessment (based on perceiving the curvature and length of the curve as the driver 

approaches the curve). For this reason, the ASD spans the signage category as well as 

the operations and geometric categories in Figure 2-1.  

As previously indicated, the resulting statistical model included an interaction 

between the SFD and ASD. A simple description of this effect may prove challenging; 

however, the authors speculate that the underlying relationship captured by this 

bivariate function is as follows: The long-term safety benefit of advisory speeds would 

emerge as drivers adjust their behaviour considering information these variables carry 

jointly (how much slower should they be taking the curve as suggested by the ASD, and 

how severe the associated discomfort can be expected as represented by the SFD 

variable).  

From a mathematical stand point, this bivariate function may be seen marginally 

for each of the involved variables. This perspective implies, however, that both the 

marginal effect and the statistical significance of one variable will depend on the 

particular values of the other variable.  The authors judge that a brief review of both 

marginal effects may prove helpful. 

2.5.3.  Marginal Effect of ASD and SFD 

A simplified approach to understanding the effect derived from the interaction 

of the ASD and SFD is to look at the marginal effect of the involved variables. Figure 

2-2 displays the marginal Effect of ASD. 

Three items are worth noting regarding the marginal effect of the ASD: (1) all 

factors are smaller than one, which means that this effect is beneficial; (2) as the SFD 

increases the marginal effect improves; and (3) the model does not exhibit a statistical 

significance for the marginal effect at SFD values smaller than 0.14.  Complementary, 

Figure 2-3 shows the marginal effect of Side Friction Demand at different levels of the 

ASD. 
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There are two features worth noting in the case of the marginal effect of the 

SFD. First, this marginal effect appears severely adverse for an ASD of 5 mph, and 

mildly adverse for ASDs of 10 mph. It is worth noting that these marginal effects are 

not statistically significant, given the data set available. 

 

 

Figure 2-2:  Marginal Effect of ASD at Different SFD Levels 

 

An ASD value of 5 mph means that the advisory speed is 5 mph below the speed 

limit. However, this marginal effect should be interpreted in a different way. In Oregon 

the standard posting procedures do not require an advisory speed sign if the 

recommended advisory speed is only 5 mph below the speed limit. Since the drivers are 

not presented with an advisory speed plaque, it would be expected that the effect is null. 

This is suggested by the lack of statistical significance. Similarly, the marginal effect of 

SFD is not significant for ASD values of 10 and 15 mph. That is not surprising for the 

case of ASD=10mph, since this value falls very close to a flat line of 1.0. In general, the 
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authors speculate that these two marginal effects may have actually proven to be 

statistically significant for a larger data set with more observations in these boundary 

regions. 

 

 

Figure 2-3:  Marginal Effect of SFD at Different ASD Values 

 

By examining the marginal effects for both the SFD and ASD, the authors 

emphasize the following points: (1) advisory speeds tend to be beneficial (both marginal 

effects are smaller than one when advisory speed signs are present); (2) advisory speed 

signs provide more safety benefits as their values tend to differ from the regulatory 

speed limit (larger SFD marginal effect for larger ASDs); and (3) advisory speed signs 

are more beneficial when greater driver discomfort results from driving at the suggested 

speeds (larger ASD marginal effect for larger SFDs).  

The use of marginal effect trends, as those shown in Figure 2-2 and Figure 2-3, 

is most useful when the purpose is to isolate the effect of a single variable and its 
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interaction with a less critical variable in the model. However, the authors recognize 

that a disjoint interpretation of the marginal effects in this particular case may appear 

contradictory from the traffic engineering stand point: to reap the safety benefit of 

posting advisory speeds, one needs to increase both the ASD and the SFD, but to 

increase the ASD one needs to post low advisory speeds, which in turn have small SFD 

associated. These marginal effects are closely intertwined, and their isolated view, as 

discussed here, is merely informative. Both the SFD and the ASD should be considered 

jointly. Thus, the authors recognize that the global effect of advisory speeds may be 

more informative by interpreting the complete bi-linear interpolant polynomial of ASD 

and SFD as a single entity. 

2.5.4. The Advisory Speed Crash Factor 

In a Poisson regression model, the effect of a non-interacting variable is a 

multiplicative factor to the average expectancy of the response variable. The 

corresponding multiplicative factor emerging from the unconditional bi-linear 

interpolant polynomial may be computed by disregarding the marginal effects and 

evaluating directly the ASD and SFD values in the polynomial. An additional benefit of 

this procedure is that the mathematical form is simple and clear enough to provide a 

direct interpretation in the scale of the response.  

This section focuses on deriving and describing the corresponding multiplicative 

factor of the bi-linear interpolant polynomial of ASD and SFD. This newly developed 

multiplicative factor is denoted as the Advisory Speed Crash Factor (ASCF) from this 

point forward. Equation 2-3 depicts the mathematical form of the ASCF. Notice that 

this value is derived directly from Equation 2-1. As a result, the ASCF functions as a 

sub-model contained in the full Poisson regression model. 

Equation 2-3: The Advisory Speed Crash Factor 

 
𝐴𝑆𝐶𝐹 = 𝑒𝑥𝑝 5.799 𝑆𝐹𝐷 − 0.5528 𝐴𝑆𝐷 × 𝑆𝐹𝐷 + 0.0237 𝐴𝑆𝐷    
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The authors explored the mathematical properties of the ASCF to determine if 

this sub-model is meaningful in describing the safety effect of advisory speeds. Because 

the ASCF is the ordinate of two explanatory variables, it can be represented as response 

surface or by a contour map. Figure 2-4 and Figure 2-5 are, respectively, the response 

surface and the contour map representations of the ASCF.  

 

 

Figure 2-4: Response Surface Representation of the ASCF 

 

The dotted line in Figure 2-5 corresponds to a multiplicative crash factor equal 

to 1.0. This is the level at which there is no effect on the expected number of crashes. 

The region to the left and below this dotted line corresponds to ASCF values larger than 

one, indicating more crashes.  

 

SFD 0.07

SFD 0.21

SFD 0.35

SFD 0.49

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

5
10

15
20

25
30

35
ASD (mph)

4.5-5

4-4.5

3.5-4

3-3.5

2.5-3

2-2.5

1.5-2

1-1.5

0.5-1

0-0.5



 

27 

 

 

 

Figure 2-5: Contour Map Representation of the ASCF 

 

Finally, the region to the right and above the dotted line corresponds to ASCF 

values less than one, suggesting fewer expected crashes. This mathematical 

representation of the ASCF corresponds with the marginal view of its two components, 

the ASD and the SFD.  

2.5.5. Effectiveness of Advisory Speeds in Oregon 

Given the complexities of the model structure, it is not simple to draw a 

generalized conclusion about the effectiveness of advisory speeds. According to the 

model, such effectiveness depends jointly on how much the advisory speed differs from 

the speed limit and on the degree of discomfort associated with navigating the curve at 

such an advisory speed.  Furthermore, as of the steep areas in Figure 2-5, it appears that 

ASCF= 1.0

-0.05

0.05

0.15

0.25

0.35

0 5 10 15 20 25 30 35

Si
d

e
 F

ri
ct

io
n

 D
e

m
an

d
 a

t 
A

d
vi

so
ry

 S
p

e
ed

Advisory Speed Differential (mph)



 

28 

 

 

advisory speeds may have a detrimental effect if they are either too low for the 

associated SFD or too high in general. 

In order to assess the effectiveness of current posting practices, the authors used 

the available probability sample of advisory speeds from the state of Oregon. This 

assessment consists of a theoretical exercise of “virtually removing” advisory speed 

signs and observing the expected safety effect, as predicted by the model. The actual 

effect for this hypothetical scenario would likely be very different: informational 

campaigns about the change would result in an immediate rise in familiar drivers’ 

awareness of the altered signage and would initially reduce the likelihood of crashes. 

Eventually, drivers would reach a new generalized perception of the driving 

environment, at which point the ASCF surface would be completely unrepresentative of 

the new operations and associated safety. However, the authors consider this exercise of 

some use, in order to extract the extent of the safety benefit of advisory speed plaques. 

The computed measure of effectiveness is the ratio of ASCF before the 

hypothetical removal of advisory speed plaques to the ASCF after the removal. This 

quantity is referred to as absolute ASCF, or AASCF.   Figure 2-6 shows a graphical 

display of AASCF versus ASD. This trend has an AASCF overall average of 0.728. 

This value suggests that advisory speed plaques may reduce crash frequency, on 

average, by 27.2% in the state of Oregon. It is reasonable to consider, however, that the 

AASCF values ranging from 0.951 to 1.05 correspond to sites with virtually no benefit 

associated with advisory speeds. Interestingly, 99 out of 210 sites exhibit AACSF 

values within this range.  Additionally, there is 1 site in the sample for which the model 

predicts an adverse effect of advisory speeds (i.e. AASCF larger than 1.0).  
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Figure 2-6:  AASCF vs. Advisory Speed Differential 

 

The authors recognized some important elements from this assessment: (1) 91 

out of 99 sites with values of AASCFs close to 1.0 have an associated ASD of 5 mph. 

This ASD value corresponds to sites without advisory speeds signs; (2) the absolute 

effect on crashes appears beneficial for most of the remaining sites (i.e. AASCFs 

smaller than 1); (3) the AASCF diminishes systematically as the ASD increases, which 

in general indicates a good balance of ASD and SFD values underlying current posting 

practices in Oregon; (4) the range of AASCF values roughly remains the same as the 

ASD increases; and (5) despite the observed general benefits of advisory speed signs, 

there is one site in the sample with AASCF slightly larger than 1.0 (suggesting an 

advisory speed value that mislead rather than guide drivers). This preliminary 
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evaluation suggests that cost-effective measures, such as changing the advisory speed 

displayed at such sites or even removing the plaque, have a potential to improve safety.  

 Table 2-2 demonstrates the impact of modifying advisory speeds at 5 of the 

sites with different advisory speed values. 

 

Table 2-2: Effect of Modifying Advisory Speeds at Selected Sites 
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1 55 1770 11 NA 1.000 NA 1.000 

2 55 900 11 NA 1.000 45 0.906 

3 55 575 14.5 45 0.743 40 0.738 

4 55 700 12.5 35 1.058 45 0.814 

5 55 520 11 35 0.588 40 0.528 

6 55 300 14 25 0.519 35 0.202 

 

Except for site 3, it is expected that all of the sites already displaying advisory 

speed plaques would benefit by increasing their posted advisory speed (sites 4, 5 and 6). 

Incidentally, these three sites display 25 and 35 mph advisory speeds. This observation 

is not surprising, given that previous research indicates that the posting policy in 

Oregon is among the most conservative in the United States (Dixon & Avelar, 2011). 

An extreme case is site 4, which would require an increment of 10 mph. This site is also 

abnormal in that it has the only AASCF larger than one in the whole sample. Site 3, 

though, would benefit from lowering its advisory speed, which suggests that the plaque 

may be too permissive. Finally, while site 1 would still not require an advisory speed 
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plaque, site 2 would improve its safety performance by displaying a new one.  

Conditions at all sites except site 1 are such that an AASCF value smaller than 1.0 is 

achievable. According to this research, therefore, current advisory speeds in Oregon 

may not be exploiting all of their potential safety benefit. Though this simplistic 

example demonstrates how the AASCF can be used as an indicator of expected safety 

performance, it is clear that the use of this AASCF method (similar to the common 

crash modification factor) can help engineers assess the potential for safety 

improvements as one consideration in advisory speed selection. 

2.6. Evaluation of Model Adequacy 

Prior to developing concluding comments, this section addresses concerns that 

may arise regarding the adequacy of the selected model. Specifically, this section 

explores the following three associated issues: structural correlation in the response 

data, multicollinearity for both potentially correlated covariates and the statistical 

structure of interactive models, and general goodness of fit to the data. 

2.6.1. Assessing the Structural Correlation in the Response 

Variable 

For the rural 2-lane 2-way study corridors used for this analysis, every "curve 

site" in the study comprises two directions of travel, and each pair contains relevant 

common factors (e.g. driving population, traffic volume, and horizontal radius). As a 

result, the authors expect a high correlation between the numbers of crashes from each 

pair of directions of travel. It would be problematic to use both directions of travel in 

fitting the regression if such a correlation is substantial and beyond the explanatory 

power of the statistical model. Doing so would be equivalent to artificially duplicating 

the number of data points; however, assessing both directions of travel as one site is 

also problematic since issues such as direction of curve and relative cross slope would 

differ (be exactly opposite for most locations).  
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It is reasonable to expect that many similarities exist for the pairs of directions 

of travel and that these characteristics are, to some extent, explicitly accounted for by 

the corresponding regression variables. The horizontal radius, AADT and curve length, 

for instance, are the same for the two directions of travel at each location. Rather than 

simply eliminating 50% of the candidate sites and given this potential correlation, the 

authors then assessed how the correlation in the paired data compared to the predicted 

(based on regression) correlation from pairs of independent Poisson variables stemming 

from the fitted univariate model. 

The authors paired the data by site and computed the correlation for the total 

sample of 105 pairs of crash counts and found a correlation value of 0.698. The authors 

compared the correlation in the sample to the distribution of correlations that arise from 

repeated realizations of the theoretically independent Poisson distributions. 

The authors developed a synthetic sample of the paired-sites correlation 

distribution by using the technique of static simulation of paired but independent 

Poisson distributions, so that the observed distribution of correlations emerges only 

from the pairing of similar independent, univariate realizations such as from the 

regression model. The synthetic sample consisted of 200 replications of the overall 

correlation.  

Simulation results suggest that a normal curve could approximate this 

distribution (simulated data have very small 3
rd

 and 4
th

 moments; a -0.10 skewness 

indicating rough symmetry and a normalized kurtosis of -0.623 indicating a peakness 

that is close to the normal distribution). The authors used the mean and the standard 

deviation of the simulated data to assess the statistical significance of the correlation 

from the crash data. The actual correlation of 0.698 compares very closely to the mean 

simulated correlation (0.581). Using the simulated standard deviation (0.088), a 0.184 

two-sided p-value may be obtained from the standard normal distribution. Comparably, 

an empirical one-sided p-value of 0.09 may be computed from the raw synthetic sample 
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as the proportion of simulated correlations that resulted in values larger than 0.698, the 

sample statistic. 

From the results, the authors conclude that the correlation observed between the 

pairs of directions of travel in the sample is not atypical, and that it is reasonable to 

expect such a degree of correlation from pairs of truly independent Poisson variables 

with similar parameters such as those associated with the regression model. 

2.6.2. Discussion on Multicollinearity among Regressors 

It is worthwhile to notice that a certain degree of multicollinearity was 

unavoidable in the model, despite the variable selection procedure that included 

strategies to minimize multicollinearity. One such strategy, for instance, was to avoid 

including two highly correlated variables simultaneously as predictors. However, the 

authors included interaction terms to contribute to improving the quality of information 

in the model (i.e. significant drops in AIC), but also included these terms because the 

joint interpretation with their constituent terms explain reasonably expected 

transportation engineering safety behaviour. The mathematical structure of the ASCF, 

the main sub-model developed in this paper, similarly rests upon a bi-linear interpolant 

polynomial emerging from two interacting variables. The only drawback of choosing an 

interacting model, as of this paper, is the requirement of slightly more complex 

procedures for joint interpretation of the co-dependent terms. 

It is recognized that the degree of multicollinearity increases when the 

covariates are no longer independent. If the severity and the effects of multicollinearity 

among predictors are properly treated in the modelling process (mainly monitoring 

VIFs and algorithm convergence issues) and with adequate interpretation of the results, 

the authors advocate for the use of interactive models, especially because of their ability 

to represent complex interrelationships. Furthermore, the explicit account of 

multicollinear predictors may become attractive because of the need to account for 

factors that are not entirely independent. Such interdependency may transcend into 
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explaining the response variable, and if that is so, interactions between variables are a 

useful tool to explicitly model such joint effects. However, a model structure that 

includes interactions implies a potential source of multicollinearity due to the model 

structure itself in addition to that resulting from the use of co-dependent covariates. 

Multicollinearity manifests itself as an inflation of the standard errors from the 

regression. This circumstance, in turn, results in convergence issues in the fitting 

algorithm. The authors observed convergence issues in the early and intermediate stages 

of the step-wise procedure, for both the NB and Poisson models. Some judicious 

decisions were necessary in order to manually exclude some of the correlated variables 

as a requirement of the step-wise procedure. One such decision was to exclude advisory 

speed related variables in favor of keeping horizontal geometry covariates in the early 

models. Later the model selection procedure allowed advisory speed and synthesized 

variables, such as the ASD and SFD. Ultimately, some of these variables were included 

in the model because of their significant contribution to the quality of the information in 

the model (i.e. significant drops in AIC). 

After the adjustments described in this section, the fitting algorithm did not 

indicate convergence issues, nor did the VIFs exhibit extreme values. Additionally, 

almost all of the coefficients in the model present small enough standard errors to 

indicate statistically significant results. Only two terms are not statistically significant, 

but each of them is of prime importance to derive statistically significant marginal or 

joint effects, as shown in previous sections of this paper. After this assessment, the 

authors believe that no serious multicollinearity issues required further attention. 

2.6.3. Goodness of Fit 

It is important that a representative statistical model have an overall good fit to 

the data.  To establish the appropriateness of the Poisson model in describing the data, 

the authors tested the goodness-of-fit at three different conceptual levels: residual 

deviance, dispersion, and Poisson distribution suitability. 
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2.6.4. Approximate Chi-Squared Test on Model Residual 

Deviance 

The authors used an approximate chi-squared test to assess the residual 

deviance. This quantity, obtained from the Maximum Likelihood Estimation (MLE) 

algorithm, is expected to converge in distribution to the chi-squared function as the 

sample size increases (i.e. by virtue of the Central Limit Theorem). This test resulted in 

a p-value of 0.6413 from a 184.35 chi-squared statistic (i.e. the residual deviance) for 

197 degrees of freedom suggesting a lack of evidence against the appropriateness of the 

model fit to the data. 

2.6.5. Approximate Dispersion Parameter 

A good fit to the Poisson distribution can be evaluated when the ratio of the 

variance to the mean of the response variable is approximately equal to one. This 

expected mean-variance relationship can be estimated using the ratio of the residual 

deviance to its degrees of freedom from the regression algorithm. This ratio is referred 

to as the dispersion parameter in some literature. In this case, a value of 0.961 indicates 

that there is no significant over-dispersion present in the data. Since the expected value 

of a chi-squared distribution is its associated degrees of freedom, a corresponding p-

value for this statistic assumes a null hypothesis that the expected ratio parameter was 

1.0. This value corresponds to the p-value of the residual deviance statistic of 0.6413 as 

previously shown. This result also suggests that if a NB regression were used instead, 

the magnitude and statistical significance of the coefficients would have been virtually 

the same.  

2.6.6. Convoluted Poisson Distribution Test on Total Number of 

Crashes 

The discrete convolution theorem applied to Poisson distributions (Samaniego, 

1976) states that the distribution of a sum of independent Poisson variables is also a 
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Poisson variable with a scale parameter equal to the sum of the scale parameters for 

each data point. This evaluation is depicted by Equation 2-4.  

 

Equation 2-4: Convoluted Poisson Probability Function 

 

Where:  

   = Observed number of crashes at site i;  

     z = Arbitrary value from the domain of Y; and 

    = Predicted number of crashes at site i per the regression model. 

 

The test statistic is the total number of crashes and the associated p-value is 

obtained from the convoluted Poisson distribution. Since the statistic percentile is rather 

large (one tailed p-value of 0.4914 from a convoluted Poisson random variable statistic 

of 180 with an expectation of 180.67), the test clearly failed to reject the hypothesis that 

the sample is a realization of the convoluted distribution emerging from the model fitted 

values. 

Given the results of these tests, the researchers are confident that the Poisson 

model is appropriate to describe the available crash data. Since the Poisson is a 

particular case of the NB2 distribution, these tests also mean that an NB2 model with 

dispersion parameter approximately equal to 1.0 also describes the data satisfactorily. 

2.7. Conclusions and Recommendations 

The authors of this paper developed a mathematical model to describe the safety 

impact of advisory speed signs. The purpose of this paper is to quantifiably link the 

displayed value of advisory speeds to the safety performance of the sites.  

The basis of this mathematical model is a statistical analysis involving 210 

randomly selected directional sites located in the state of Oregon. The functional form 

𝑃   𝑌𝑖 = 𝑧 = 𝑒−  𝑙𝑖 ×
  𝑙𝑖 

𝑧

𝑧!
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of the model included a bi-linear interpolant polynomial of two quantities linked to 

advisory speeds: the advisory speed differential (ASD) and the side friction demand 

(SFD). This effect was named the advisory speed crash factor (ASCF). Because the 

Poisson regression model did not suffer from overdispersion when fitting the data, 

either the Poisson or the NB2 specifications can be used interchangeably when 

accounting for the ASCF. This is convenient, as the NB2 specification is the naturally 

assumed posterior distribution (i.e. Safety Performance Function) for widely accepted 

Empirical Bayes and Full Bayes analyses for before-after studies. 

The ASCF consists of a multiplicative value that directly affects the expected 

number of crashes for a curve rural 2-lane road location. The concept of the ASCF is 

analogous to the crash modification factor (CMF). Currently, the most closely 

associated reference work (Elvik & Vaa, 2004) proposed the use of a CMF that suggests 

a single value that ranges from 0.71 to 0.87 depending on crash severity. The ASCF 

resulting from the work outline in this paper, however, is more suitably referred to as a 

crash modification function as it varies based on the specific advisory speed value and 

site conditions. 

This paper introduced a new element referred to as the absolute ASCF (AASCF) 

that helps to assess the notional impact of advisory speed signs as opposed to a 

theoretical scenario where the plaques are not displayed. The values proposed by Elvik 

and Vaa (2004) are aligned with the derived AASCF average value of 0.728 which 

functions as a measure of the overall effectiveness of advisory speeds in Oregon. 

Although most of the sites included in this study appeared to benefit from the 

practice of posting advisory speeds, there was one instance in which the posted advisory 

speed seemed detrimental to safety. The ASCF further provides a computational tool to 

assess the safety effect of particular values of advisory speeds. Therefore, the authors 

expect that the concept developed in this paper is a useful function to evaluate safety 

performance.  
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Additionally, the authors recognize that the AASCF is a detailed functional form 

that results in a value comparable to the crash modification factor for advisory speeds 

similar to that recommended by Elvik and Vaa (2004). As such, the authors anticipate 

that the AASCF may be used as a crash modification function to improve the accuracy 

of current HSM procedures.  

The authors believe that the ASCF may also be used as the criterion for an 

improved safety-based posting procedure. Recent work by Dixon and Avelar (2011) 

proposed such a procedure as a computational alternative to the currently wide-spread 

ball-bank indicator method. The authors recognize that such a method allows for further 

improvement, particularly with the potential combination of instrumentation based 

procedures, such as those developed by Pratt, Bonneson and Miles (2011). To enhance 

this method for transferable posting procedures, the authors recommend further research 

in order to field validate the concept of ASCF in Oregon and other states. 

Finally, the authors also recommend future work to explore and strengthen the 

link of the ASCF to field operational data, since this type of data would closely 

contribute to the overall validation of the ASCF concept. Specifically future research 

should explore how the operating speed relates to the components of the ASCF 

bivariate function. 
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ABSTRACT 

 

Posting advisory speed signs at sharp horizontal curves to provide the driving public 

with a safe speed is a practice well established in the United States. The operational 

effectiveness of these signs has long been questioned in the current literature. The 

authors of this paper recently developed a function to model the expected safety effect 

of these signs. The function stems from a statistical analysis on crash data from 2-lane 

rural highways in the state of Oregon.  

In general, that research effort found that advisory speed signs tend to enhance 

safety. However, the authors also determined that advisory speed signs may not be 

displaying the value with the greatest potential safety benefit. Since the derived function 

proved meaningful from the engineering and human factors perspectives, these authors 

then extend the use this function to compute and recommend the theoretically “optimal” 

advisory speed. A new posting procedure resulted from this effort. The authors 

compared the expected performance of advisory speeds from the proposed procedure to 

the speeds derived from current posting guidelines. A comparable performance suggests 

that current guidelines are close to the hypothetically “optimal” advisory speed. In 

general, both the current and new computational methods performed better than speeds 

determined by the ball bank indicator method. 

This paper also presents a field validation analysis of the engine function of the 

new posting method. The results confirmed the meaningfulness of the function, and 

therefore, of the potential benefit for determining safety-based advisory speeds with the 

method proposed in this paper. 

 

Keywords: advisory speed, safety, Side Friction Demand, optimal advisory speed, 

ASCF 
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3.1. Introduction 

The authors of this paper have recently proposed a new crash modification 

function (CMF) to account for advisory speeds in their recently completed effort for the 

Oregon Department of Transportation (ODOT) (Dixon & Avelar, 2011). The authors 

coined this CMF the “Advisory Speed Crash Factor” or ASCF. The ASCF models how 

the displayed advisory speed relative to the speed limit and the associated side friction 

demand jointly associate with the likelihood of crashes. A recent paper by these authors 

(Avelar & Dixon, 2011) discusses a plausible human factors interpretation of the ASCF 

and establishes some of its basic mathematical properties. Because the main objective 

of the current paper is to use the proposed ASCF concept to develop a new posting 

procedure, it is necessary to provide a brief overview of that paper as presented in the 

section following the literature review. 

This paper also further defines the mathematical properties of the ASCF. The 

authors only highlighted key issues as they pertain to the derivation of a basic equation 

for an “optimal” advisory speed. 

The main section of this paper focuses on the proposed procedure (named the 

OSU method) and compares the resulting advisory speeds to advisory speeds from 

currently established procedures. 

This paper includes a section on the robustness and field validation of the ASCF 

function. The material in this section is presented as a review of the relationship 

between the ASCF function and its meaningfulness for the proposed engineering 

application.  

The authors performed all statistical procedures summarized in this paper using 

an open source statistical package (The R Development Core Team, 2009), (Venables & 

Ripley, 2002), and (Fox & Weisberg, 2011) but similar analyses can be performed with 

comparable software.  
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3.2. Background 

The practice of posting advisory speed signs is well established in the United 

States. The procedures to determine advisory speeds have been evolving since the 

1930s, and the practice has been standardized since 1948. The Manual on Uniform 

Traffic Control Devices (MUTCD) states that advisory speeds shall be determined by an 

“engineering study that follows established engineering practices” (4 Section 2C.08). 

The document mentions three commonly accepted such practices: the use of a ball bank 

indicator (the most widely implemented), geometric design equation, and the use of an 

accelerometer. The thresholds for the ball bank method have been continually updated 

through subsequent editions of the MUTCD (FHWA, 2009). 

There is a wide variety of advisory speed-posting thresholds currently in use in 

the United States. ODOT has recently adopted the thresholds suggested by the latest 

edition of the MUTCD. Previously, Oregon used more conservative thresholds (Dixon 

& Avelar, 2011).  

3.3. Literature Review 

A recent research effort (Bonneson, Pratt, & Miles, 2009) performed at the 

Texas Transportation Institute (TTI) for the Texas Department of Transportation 

observed that there were considerable inconsistencies for advisory speed posting 

procedures.  This shortcoming appeared linked to the ball-bank and accelerometer 

approaches.  Ultimately the TTI team recommended the use of the design speed 

equation approach, which yields more consistent values. The TTI team modified the 

approach to also incorporate a speed variable. 

A recent study by Dixon and Rohani (2008) suggests other sources of variation, 

since they found that a large proportion of curve sites in the state of Oregon do not 

comply with the state policy. Various authors argue that such lack of consistency results 
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in poor adherence to advisory speeds (Bonneson, Pratt, & Miles, 2009), (Courage, et al., 

1978), (Lyles & Taylor, 2006),(Chowdhury, Warren, Bissell, & Taori, 1998), (Lyles, 

1982). 

In an operational evaluation, Chowdhury et al. (1998) argued that posting 

criteria are not adequate, since modern vehicles can generate side friction values from 

0.65 to 0.90 before skidding out. Such vehicle performance amply exceeds the side 

friction demands associated with the ball bank indicator thresholds. Along those lines, 

Lyles and William in their report “Communicating Changes in Horizontal Alignment” 

(2006) argue that advisory speed signs are largely ineffective if the goal of the signs is 

that drivers adhere to the posted speed. They report that practitioners and the driving 

population perceive advisory speeds to be too low. This was also operationally verified 

by Avelar (2010). 

In the area of currently accepted safety modelling (AASHTO, 2010), Elvik and 

Vaa (2004) suggest a flat CMF for advisory speeds ranging from 0.71 to 0.87, 

depending on crash severity. 

This literature review found only one paper by Ritchie (1972) suggesting that 

advisory speeds may, contrary to expectation, incite drivers to higher speeds. The 

author speculates that overconfidence may result from availability of information about 

the “sharpness” of curves immediately downstream, as the plaques convey. 

3.4. The Safety Effect of Advisory Speed Signs 

Recent work by Oregon State University (OSU) researchers found a link 

between advisory speed signs and their hypothetical long term safety benefit (Avelar & 

Dixon, 2011). The findings of the Oregon research effort do not necessarily contest 

current literature, which has repeatedly documented poor adherence. On the contrary, 

the authors of this paper deem a safety improvement possible, despite poor operational 

compliance, if these signs are successful in conveying meaningful information about the 
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severity of downstream horizontal alignments. Drivers may then adjust their driving 

thus reducing their chances to be in a crash. 

The authors proposed the ASCF function to model the safety impact of advisory 

speed signs. The function is directly derived from a statistical analysis performed on a 

probability sample of 210 directional horizontal curve sites representative of rural two-

lane two-way state highways in Oregon. The data included geometric and signage 

features collected from field visits for a previous work by Dixon and Rohani (2008), as 

well as the crash record for the years 2000 through 2004 at the study sites. The authors 

proposed a full statistical model for non-intersection crashes, that is, excluding turn, 

rear and angle crash types. The data set included curves with radii ranging from 100 to 

2150 ft, and deflection angles ranging from 1.5º to 200º. The next sub-sections sumarize 

the highlights of that work and further advances regarding the ASCF function. 

3.4.1. Model Selection 

Since crash data is random by nature, modelling techniques must be 

appropriately based on their stochastic variability. The authors applied a step-wise 

selection procedure based on the Akaike Information Criterion (AIC) to select a 

statistical model considering both the Poisson and Negative Binomial (NB) 

specifications for fitting a Generalized Linear Model (GLM). If the variance to mean 

ratio in the model is close to one, then two model specifications are adequate: the 

classical Negative Binomial (NB2) and the simpler Poisson. A ratio larger than one 

indicates Poisson-overdispersion and in that case only the NB2 specification is 

appropriate. Since a goodness-of-fit evaluation from the regression output indicated no 

evidence of Poisson-overdispersion, both candidate specifications are equally adequate 

to describe the data. After some consideration, the authors endorsed the Poisson 

specification for its simplicity and because it allowed an alternative goodness-of-fit 

assessment. Equation 3-1 shows the resulting full model.  
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Equation 3-1: Full Model 

   𝐶𝑟𝑎𝑠ℎ𝑒𝑠          𝐴𝐴𝐷𝑇      𝐶𝑢𝑟𝑣𝑒𝐿𝑒𝑛𝑔𝑡ℎ           −      𝐿𝑎𝑛𝑒𝑊𝑖𝑑𝑡ℎ  

      𝐴𝑛𝑔𝑙𝑒        𝑅𝑎𝑑𝑖𝑢𝑠        𝐴𝑛𝑔𝑙𝑒  𝑅𝑎𝑑𝑖𝑢𝑠 −       𝐴𝑑𝑣𝑆𝑝𝑑𝑃𝑟𝑒𝑠𝑒𝑛𝑡  

𝑅𝑎𝑑𝑖𝑢𝑠 −       𝐴𝑑𝑣𝑆𝑝𝑑𝑃𝑟𝑒𝑠𝑒𝑛𝑡  𝐴𝑛𝑔𝑙𝑒        𝐴𝑑𝑣𝑆𝑝𝑑𝑃𝑟𝑒𝑠𝑒𝑛𝑡  

{      𝑆𝐹𝐷        𝐴𝑆𝐷 −       𝐴𝑆𝐷  𝑆𝐹𝐷 }       

 

Where: 

 

#Crashes  = Total non-intersection crash frequency (no units); 

AADT  =  Annual Average Daily Traffic (vpd); 

CurveLength  = Length of the Curve (ft); 

LaneWidth  = Width of travel lane (ft) 

Radius   =  Horizontal Radius (ft); 

Angle  = Horizontal Curve Central Angle (Radians) 

SFD   =  Side Friction Demand at Advisory Speed (no units); 

ASD  =  Advisory Speed Differential, defined as speed limit minus  

posted advisory speed (mph); and 

AdvSpdPresent  =  Indicator variable equals to one when advisory speed  

signs are present, otherwise the value is zero. 

 

All variable coefficients Equation 3-1 satisfied at least a 0.95 level of 

confidence, except Radius, Angle and ASD. The authors retained these coefficients 

because the model includes statistically significant interactions for their variables 

(confidence levels of 0.995 or better). Based on the magnitudes of Variance Inflation 

Factors (VIFs), the authors determined that the standard errors in the final model were 

stable. The result is said to balance a minimum  level of multicollinearity with the 

meaningfulness of the predictors from the engineering standpoint. Further details on the 

scope of application and statistical modeling can be found in references (Dixon & 

Avelar, 2011) (Avelar & Dixon, 2011) and (Dixon & Rohani, 2008). 

3.4.2. Interpretation of the Full Model 

Although the proposed model specification is relatively simple, there is some 

complexity in the model interpretation emerging from the use of interaction terms 
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among the covariates. However, the inclusion of interaction terms was crucial to 

reducing the model entropy (per the AIC statistic), increasing the goodness of fit, and 

ultimately, to developing the ASCF function.  

Some predictors are inevitably interrelated in this case, even without modelling 

interactions. For instance, the horizontal radius and the deflection angle determine the 

curve length, and thus these three variables are correlated. It is no simple task to isolate 

the effect for any of these variables from the full model because it includes them 

simultaneously. However, characterizing such behaviour is not the focus of this 

research. The authors interpret the inherent complexity in the model as a necessary 

mathematical way around the very probable case of non-linear underlying structures. 

Linear models are useful and powerful tools as far as they reasonably fit real world data. 

The actual relationship between crash occurrence and the relevant covariates, however, 

is likely not the convenient linear combination of relatively independent terms. 

Covariates that are expected to have more direct effects on crash occurrence shall be 

accounted for, but their simple interpretation becomes more challenging, as noted 

above. Further details on marginal effects for a model with interactions may be found in 

a previous work by these (Avelar & Dixon, 2011) and in Brambor et al. (2006). 

3.4.3. The Advisory Speed Crash Factor 

Equation 3-2 represents the functional form of the ASCF. Basically, the ASCF is 

a multiplicative factor applied to the “baseline” number of crashes, which is determined 

by the rest of variables in the statistical model. This is the reason why the ASCF is 

referred to as a sub-model throughout this paper.  

 

Equation 3-2: Functional Form of the ASCF 

𝐴𝑆𝐶𝐹  𝑒𝑥𝑝       𝑆𝐹𝐷 −       𝐴𝑆𝐷  𝑆𝐹𝐷        𝐴𝑆𝐷   
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The concept of the ASCF is analogous to what existing literature refers to as a 

crash modification function (CMF). Two variables are involved in the ASCF functional 

form: the Advisory Speed Differential, or ASD (defined as the speed limit minus the 

advisory speed) and the Side Friction Demand associated with the advisory speed, or 

SFD (AASHTO, 2004). In the case of sites not displaying advisory speeds, both the 

ASD and the SFD were computed using an advisory speed of 5 mph below the speed 

limit.  

The ASCF proved a useful tool to estimate the safety benefit of the advisory 

speed signs in Oregon. These signs may be responsible for an average of 27% crash 

reduction at curve sites (Avelar & Dixon, 2011). The Oregon study indicates that 

advisory speeds are, in general, safety enhancing elements at horizontal curve sites. 

Such results confirm the safety benefit associated with the signs, as long time assumed 

by the transportation community. To a certain extent, the results also abide current 

posting practices, despite of well documented consistency issues in the case of the ball 

bank indicator (Bonneson, Pratt, & Miles, 2009), (Lyles, 1982). 

A closer examination of the mathematical properties of the ASCF function 

suggests an opportunity to develop a new computational posting procedure based on 

safety performance. The next section briefly explores such properties and their potential 

use for a posting procedure. 

3.5. Mathematical Properties of the ASCF  

The two variables that constitute the ASCF function are not mathematically 

independent. Both variables include the advisory speed in their formulation, though the 

ASD also includes the speed limit, while the SFD incorporates the radius and 

superelevation. For posting purposes, the authors considered the speed limit, radius, and 

superelevation as fixed parameters. 

After applying a natural logarithm transformation, the ASCF can be expressed 

as a third degree polynomial representation of the advisory speed, as shown in Equation 
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3-3. This equation results from re-expressing Equation 3-2 as a polynomial of 

Adv.Speed when expressing ASD and SFD in terms of Speed limit, Advisory Speeds, 

radius and superelevation. 

 

Equation 3-3: Advisory Speed Univariate Parameterization of ln(ASCF) 

𝑙𝑛 𝐴𝑆𝐶𝐹              

     𝑆𝑝𝐿𝑖 −    𝑆 −    𝑆  𝑆𝑝𝐿𝑖    −    𝑆        𝐴𝑑𝑣 𝑆𝑝𝑒𝑒𝑑     

 (
   𝑆𝑝𝐿𝑖    

   𝑅
)   𝐴𝑑𝑣 𝑆𝑝𝑒𝑒𝑑  − (

  
   𝑅

)   𝐴𝑑𝑣 𝑆𝑝𝑒𝑒𝑑   

Where: 

       =  ASD coefficient from the ASCF function (
 

   
); 

       =  SFD coefficient from the ASCF function (no units); 

       =  ASD x SFD coefficient from the ASCF function (
 

   
); 

SpLim =  Speed Limit (mph); 

Adv.Speed =  Advisory Speed (mph); 

R  = Radius (ft); and 

SE  =  Superelevation (no units);  

 

Equation 3-3 directly links the advisory speed to a factor associated on the 

expected number of crashes. Most important is the known mathematical relationships of 

polynomials of the second or higher order to their local maximum and minimum values. 

Such local extremes are referred to as “optimal” values in the operations research 

literature. 

3.6. The Theoretically “Optimal” Advisory Speed 

If two different potential advisory speed values are compared using Equation 

3-3, the “safer” advisory speed would be the one associated with the smaller ASCF 

value. This observation leads to the following question: Is there an advisory speed such 
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that the ASCF has a practical minimum value?   From this point on, this particular 

advisory speed value is referred to as the optimal advisory speed. 

A relatively simple application of univariate calculus imposes the convexity and 

extreme point conditions on Equation 3-3 if an optimal advisory speed actually exists. 

These conditions can be expressed as:  

  

            
                    ;  

and   
 

           
                      

The convexity is independent of the radius and the curve superelevation. 

Mathematically, it only requires the advisory speed be lower than the speed limit and 

that both variables have positive values. This condition holds for all advisory speed and 

speed limit candidate values. Therefore, the optimal advisory speed exists for virtually 

every 2 lane, 2 way rural highway situation. 

There are two points satisfying the extreme point condition, but only the result 

shown in Equation 3-4 also achieves the convexity condition as discussed above. 

Equation 3-4, therefore, is the closed functional form of the theoretically optimal 

advisory speed. 

Equation 3-4: Theoretically Optimal Advisory Speed 

𝐴𝑑𝑣𝑆𝑝𝑒𝑒𝑑        
− (

   𝑆𝑝𝐿𝑖    
  𝑅

)  √     𝑆𝑝𝐿𝑖     
 

   𝑅  
     𝑆    −    

 𝑅

−
   
 𝑅

 

 

It is important to note that the solution for Equation 3-4 depends on the 

coefficient estimates determined empirically. The Oregon State University posting 

method, presented in the next section, results in values directly applicable to Oregon 

rural highways. The authors later demonstrate that this equation tends to agree more 

with the national guidelines for posting signs than with the historically conservative 

Oregon policy values. 
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3.7. The Oregon State University Posting Method 

In order to propose a posting procedure based on Equation 3-4 the authors 

addressed relevant shortcomings inherent to the process of translating a purely 

theoretical result into a specific engineering application. In this section, the 

shortcomings are discussed and the solutions outlined. The emerging procedure is 

coined “The OSU method”, named after the Oregon State University, the institution of 

affiliation for the authors. 

The first shortcoming lies in the functional form of Equation 3-4. There is a 

mathematical singularity when the radius of the curve approaches zero. This 

mathematical caveat is verified when testing the equation at small radii curves. Large 

SFDs can be expected for sharp curve (smaller radii) locations. Because of modern 

vehicle performance, SFDs of 0.5 or more are not unfeasible for many passenger cars, 

but these larger SFDs would introduce a safety concern of other vehicle types such as 

trucks and trailers.  

The authors then implemented a practical solution to this issue: If the side 

friction demand resulting from Equation 3-4 exceeds an acceptable threshold (e.g. 0.23, 

0.25 or 0.3), then the preferred advisory speed shall be the largest speed that does not 

exceed that threshold. 

The second issue of concern is the role of the regression coefficient estimates 

Equation 3-4. The posting application of the ASCF coefficients is limited by the fact 

that Equation 3-1 does not only account for these three ASCF terms, but also includes 

an indicator variable for the presence of advisory speeds. This means that Equation 3-1 

assigns a different baseline of crashes to curves without advisory speeds than it does to 

posted curves. This makes sense in safety evaluation, where the ASCF is an effect of 

the advisory speed on expected crashes when comparing similar curves. 

For the ASCF to accommodate the case of no-advisory speed needed (which 

occurs if the recommended advisory speed is within 5 mph of the posted speed limit), 

the authors repeated the statistical estimation of the function coefficients after removing 
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the indicator variable for advisory speed from Equation 3-1. Doing this forces the only 

advisory speed coefficients remaining in the equation (i.e. the three ASCF coefficients) 

to account for as much variation associated with advisory speeds as structurally 

possible. The cost of this procedure, naturally, is a reduced goodness of fit. However, 

the authors advocate for the modified model because the meaning of the coefficients is 

more appropriate for a posting procedure; in that case two decisions are being made 

explicitly: the appropriate advisory speed value, and if such advisory speed should be 

posted. Conversely, the coefficients from Equation 3-1 are estimated discounting that 

the effect of the later decision is accounted for somewhere else in the model. The 

coefficients resulting from the reduced model are shown in Equation 3-5. 

 

Equation 3-5: ASCF from Reduced Model 

𝐴𝑆𝐶𝐹  𝑒𝑥𝑝      𝑆𝐹𝐷 −       𝐴𝑆𝐷  𝑆𝐹𝐷        𝐴𝑆𝐷    

 

The authors are aware that these coefficients differ from those shown in 

Equation 3-2, as well as do the advisory speeds resulting from the two sets of 

coefficients. Even so, the authors deem each set useful for differentiated applications, 

Equation 3-2 for safety performance evaluation and Equation 3-5 for the proposed 

posting procedure. 

The third and final issue with Equation 3-4  is the simplest to solve. Since posted 

advisory speeds are multiples of 5 mph, the new procedure shall recommend the 

advisory speed as such multiple of 5 value with the smallest ASCF possible, which 

occurs in the vicinity of the optimal advisory speed.  
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Start

Determine speed limit, radius and 

superelevation for candidate site

End

Determine advisory speed corresponding 

to maximum SFD threshold. Select the 

multiple-of-five speed immediately below 

as the maximum allowed advisory speed. 

(Vmax)

Compute optimal advisory speed 

(Vopt)

Is Vmax < VoptNo

Determine the two multiple-of-five 

speeds immediately adjacent to Vopt 

(V1 and V2)

Select recommended advisory speed 

from the set {Vmax, V1, V2} as the 

one with  the smallest ASCF 

associated

Select Vmax as the 

recommended advisory 

speed

Yes

 

Figure 3-1: Logical Steps to the OSU Posting Method 
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The logical steps to implement the proposed posting procedure are represented 

in Figure 3-1. 

3.8. Relationship with Current Posting Criteria 

The authors computed the OSU method advisory speed for the entire available 

Oregon state-wide sample using a maximum SFD of 0.23.  Similarly, the authors also 

computed the theoretical MUTCD 2009 values for the sample of sites and compared the 

performance of these values to the current advisory speeds. This section reviews these 

comparisons.  

Both computational methods yielded larger values than currently posted 

advisory speeds in Oregon. The OSU method recommended, on average, higher 

advisory speeds. This observation can be summarized by comparing the raw averages: 

42.69 mph for the current plaques, 44.95 mph for MUTCD and 45.16 mph for OSU. 

This result is not surprising, since a previous study identified the historic Oregon 

advisory speed policy as among the most conservative across the United States (Dixon 

& Rohani, 2008). It is interesting to note, however, that the OSU and the MUTCD 

trends are more similar to each other than they are to the historic Oregon policy.  

When the authors contrasted the advisory speeds from the three methods to their 

associated SFDs, they observed that the current Oregon values were smaller than those 

obtained using the two computational methods (0.101 for the current plaques, 0.121 for 

MUTCD, and 0.124 for OSU).  

When comparing how the associated SFD varied by curve radius, the authors 

observed that the three sets of speeds tended to exhibit larger SFDs at smaller radii. On 

average, the MUTCD and OSU speeds result in SFDs 0.03 above the current values all 

across the radii range, as also suggested by the raw averages. 

Figure 3-2 shows a comparison of posting methods using the contour map of the 

ASCF function (a higher number of crashes correspond to the higher points in this 

surface).  
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Figure 3-2: Comparison of Posting Methods over the ASCF Contour Map 

 

It is important to notice that OSU advisory speeds do not land along the diagonal 

of symmetry for the surface (as they would be expected) precisely because these speeds 

were calculated using Equation 3-5 but the contour correspond to the Equation 3-2 

coefficients for the reasons exposed when deriving the OSU method. Current advisory 

speeds are notably more dispersed than any of the two computational methods. It is also 

obvious that current advisory speed tend to favor low advisory speeds that are coupled 

with lower SFDs, and as a result, they fall closer to the “horizontal ASCF hill” that is 

located along the ASD axis. Advisory speeds from the MUTCD method tend to fall in a 

roughly horizontal line when they are explicitly posted (i.e. ASD>5mph). This trend is 

probably reflecting that this method mostly ponders SFD as a criterion disjoint from the 
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corresponding ASD to certain extent. Finally, though OSU speeds tend to favor larger 

SFDs but this trend also draws very close to the MUTCD set. Though this comparison 

is somehow informative, the authors consider that the posting methods should better be 

contrasted to the theoretical scenario when advisory speeds are not present. 

Figure 3-3 displays the theoretical safety performance as it relates to the 

Advisory Speed Differential (Speed Limit minus Advisory Speed). The Absolute ASCF 

or AASCF is the ratio of the ASCF at the advisory speed to the ASCF if the advisory 

speed was set just below the speed limit. This reference ASCF is particularly 

meaningful for advisory speeds close to the speed limit. Figure 3-3 demonstrates that 

regardless of the posting criterion, lower advisory speeds tend to be more beneficial.  

 

 

Figure 3-3: Absolute ASCF by Posting Method vs. Curve Radius 
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The trend is less distinct for the case of currently posted speeds, as they relate to 

more disperse AASCF values as the ASD increases. Interestingly, as in Figure 3-2, both 

the OSU and MUTCD criteria do not exhibit excessive variation. This observation 

resonates with previous work that suggested consistency issues may be associated with 

the use of the Ball Bank indicator method (Bonneson, Pratt, & Miles, 2009), (Lyles & 

Taylor, 2006).  

Finally, the trends in Figure 3-3 suggest that both the MUTCD and the OSU 

criteria are expected to have a safety performance better than the currently posted 

speeds. Although the trend lines are very comparable, the OSU criterion appears to 

improve its safety performance at the fastest rate as the advisory speed differential 

increases. 

Given these comparisons, it is not surprising how closely the OSU and the 

MUTCD methods performed. It is possible to map both constituent elements of the 

ASCF directly to the current posting guidelines. Table 2C-5 of the MUTCD 2009 

encourages the inclusion of advisory speed and other signage, such as chevrons, based 

on the difference between the advisory speed and the speed limit (the ASD value in this 

analysis). At certain thresholds, their postage becomes mandatory. It is also possible to 

theoretically establish a cause-effect relationship between the Ball-Bank indicator angle 

and the SFD through the articulation of vehicle dynamics and road geometry (the 

original basis for the ball-bank application). 

3.9. Discussion of Results and their Scope 

The authors recognize that, similar to determining speed limits, posting criteria 

for advisory speeds are affected by technical and social trends. The authors expect that 

Equation 3-4 incorporates such elements implicitly through the use of ASCF 

empirically determined coefficients.  

The authors rely on the fact that the statistical analysis was performed based on 

a probability sample and believe that the coefficients in this paper are not biased 
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towards particular site characteristics, and that they represent a balanced average of 

factors such as the various levels of laxity in posting advisory speeds, severity of law 

enforcement at different jurisdictions, current vehicle fleet, curve sharpness, proportion 

of crashes by type, severity or conditions, among others. The authors recognize that 

operating speeds upstream of horizontal curves are influential on traffic operations at 

the curves. The authors expect, however, that operating speeds are roughly accounted 

for in the ASD by the speed limit, as operating speed would rise or fall to a significant 

extent as a response to higher or lower speed limits. In this regard the authors consider 

that the fact that advisory speeds obtained from the OSU method positively correlates 

with speed limit, as verified in a sensitivity analysis, is an indication that the OSU 

method is sensitive to traffic operations prevailing upstream the curve, as has been 

suggested by other researchers (Bonneson, Pratt, & Miles, 2009), (Bonneson J. A., 

1999). 

3.10. Robustness of the ASCF Function: Field Validation Analysis 

This section presents the field validation analysis of the full-model and the 

ASCF sub-model, and is provided as supplemental evidence of the substance behind the 

ASCF model. 

3.10.1.  Field Validation Based on a New Sample of Sites 

During July of 2011, the authors collected another independent sample 

consisting of 44 new curve sites so as to field validate both the full model and the ASCF 

sub-model. These sites were selected randomly from the state-maintained rural 

highways in Oregon including a regional subset distributed across four counties. This 

new sample comprised a wide variety of geometric and operational characteristics: radii 

ranging between 110 through 1800 ft, superelevations between 1% and 15%, and 

AADTs between 474 and 6160 pcph. The data set also included six sites without speed 

plaques and three sites that were located at 45 mph speed zones. 



 

61 

 

 

The researchers obtained crash records for the period 2003 to 2007 and 

identified a total of 29 crashes at the validation sample sites. The largest number of 

crashes at a particular location was five. The authors could not locate any recorded 

crashes at 27 of the sites. 

3.10.2. Overall Goodness-of-fit 

Some literature cautions that traditional goodness of fit criteria may be 

misleading for count models where the mean is predicted as a small value in 

combination with a small sample size (Lord & Miranda-Moreno, 2007). Due to this 

concern, the authors developed an alternative goodness-of-fit test metric so as to relax 

the assumption of large sample sizes that the Maximum Likelihood Estimation methods 

rely upon. 

The regression model is the parameterization of the expectation of a random 

“response” variable conditioned to the values of a vector of covariates. Statistical theory 

(Wackerly, Mendenhall III, & Scheaffer, 2008) relates the conditional, joint, and 

marginal expectations of random variables as shown in Equation 3-6. 

 

Equation 3-6: Conditional, Marginal and Joint Probabilities Relationship for Random 

Variables 

𝑃(𝑌     ⃗  �⃗�)  𝑝   �⃗�  𝑝 ⃗ �⃗�  𝑝  |�⃗�  

Where: 

y     =  predicted variable; 

�⃗�    = vector of predictors; 

𝑝 𝑌      �⃗�  = joint probability of y and �⃗�; 

𝑝 ⃗ �⃗�   = marginal probability of  �⃗�; and 

𝑝  |�⃗�   = conditional probability of y given �⃗�. 

 

In the frame of this proposed test, every data point is equally weighed. It is 

simple then to obtain the joint probability of both the response variable and the vector 

of predictors. The marginal probability of y, the response variable, can be obtained in 
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turn by integrating the joint probability over all the available realizations of �⃗�, the 

vector of predictors.  

This logic is valid without any assumptions regarding the relationships between 

the variables, and it may be applied to any given conditional probability distribution, 

such as Equation 3-1.  

Finally, it is possible to predict the expected frequencies for values of Y by 

substituting the Poisson probability function in Equation 3-6 and solving as described, 

by integration, for the marginal distribution of ‘y’. This marginal distribution is then 

used to predict the frequency of sites with ‘y’ crashes, for a sample of size of n. 

Equation 3-7 shows this result. 

 

Equation 3-7:  Expected Frequency of Sites with “Y” Crashes in the Validation Sample 

  𝐹      
𝑒[  ⃗⃗⃗  ⃗         ⃗⃗⃗  ⃗   ]

  

 

   

 

 

Where: 

  𝐹      = Expected Frequency of sites with “y” crashes. 

 

This equation may be used to assess the overall goodness of fit of the model 

without the need to mandate any assumptions about the sample size or the size of the 

predicted mean. In fact, the concern about a low count in the response variable is now 

removed, because the new count variable is in this context the number of sites with a 

particular number of crashes, as opposed to evaluating Equation 3-1, where the 

corresponding count is the number of crashes. Table 3-1 shows the results of the 

goodness of fit test just outlined. The resulting p-value supports the hypothesis of the 

model adequately fitting the validation data set. 
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Table 3-1: Goodness-of-fit Test over the Observed Distribution of Crashes 

Observed Number of 

Crashes 

Actual Frequency of 

Sites 

Expected Frequency of 

Sites 

0 27 30.3398 

1 9 9.9078 

2 6 2.5815 

3 and more 2 1.1709 

Total 44 44 

 Chi-Squared Statistic 5.5649 

 p-value 0.1348 

 

3.10.3. Validation of the ASCF 

The authors developed and performed a GLM estimation for a partition of the 

vector of covariates in order to find the statistical significance of the predicted values 

for the ASCF and the associated crash baselines.  

The analysis revealed that both partition coefficient estimates were statistically 

different from zero (p-values of 0.012 and <2x10
-16

 respectively). The estimation found 

no significant evidence of Poisson-overdispersion (p-value of 0.09 for a 54.812 residual 

deviance on 42 degrees of freedom, for a dispersion parameter estimate of 1.3), which is 

also evident at an aggregate level from Table 3-1.  

The authors computed a global estimate of the probability of a type I error. A 

very small p-value of 2.03x10
-11

 from a Hotelling’s T
2
 test (which considers 

simultaneously both the partition coefficients) increases the confidence on the validity 

of the full model. This p-value represents the probability of both the baseline and ASCF 

terms being as significant under the assumption that they were significant in the original 

sample only by chance (this is the default assumption, the null hypothesis).  
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Additionally, it was possible to estimate the statistical power of this analysis, 

since it is testing specific coefficient expectations, which implies a single point 

alternative hypothesis. The probability that the analysis would result in a type-II error 

was found as a p-value of 0.084. This value was computed from a Hotelling’s T
2
 test, 

which considers both the partition coefficients simultaneously. The corresponding 

statistical power of the validation is 91.6%. The statistical power is the probability that 

this analysis rejects the null hypothesis when both the baseline and ASCF terms are in 

fact as found in the original analysis (this is the alternative hypothesis).   

Similarly, both type-I and type-II errors can be obtained for the ASCF partition 

alone. In this case, the probability of a type-I error was 0.0057, which indicates that it is 

unlikely that the ASCF sub-model effect may be attributed to chance only. However, 

the statistical power in this case is moderate, 71.7%, which indicates the need of a larger 

sample to increase the confidence on the actual ASCF coefficients. 

3.10.4. Final Remarks on the Validation Analysis  

Based on the field validation analysis, the authors are confident about the 

relevance and validity of the model as a safety performance function. Adequate 

goodness of fit on a second independent sample of curve sites indicates a good 

predictive power. 

This confidence also extends to partitioning the model in baseline crashes versus 

the ASCF sub-model. Although this further analysis deems the ASCF contribution to 

the full model statistically significant (i.e. its coefficients are statistically different from 

zero), a mild statistical power for the given sub-model indicates that such a result may 

not be almost certainly expected as are the overall fit and predictive power of the full 

model. However, the authors embrace the postulate of an actual ASCF effect, 

considering the favorable evidence in the modelling and validation samples (both 

rejecting the hypothesis of a null ASCF), as well as the plausible human factors 
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articulation of such an effect, as described in a previous work by these authors (Avelar 

& Dixon, 2011). 

3.11. Conclusions and Recommendations 

The main objective of this paper is to develop a procedure to post advisory 

speed plaques directly based on their expected safety performance. Such a procedure is 

based on the main criterion of the Advisory Speed Crash Factor. The ASCF describes, 

to the authors’ satisfaction, how safety performance is statistically related to the two 

covariate functions associated with the advisory speed: the Advisory Speed Differential 

and the Side Friction Demand. 

The authors derived a closed-form equation to determine the theoretically 

optimal advisory speed. Such a theoretical optimal is thought to balance the human 

factors effects that the authors induce underlie the ASCF: Drivers adjust their behaviour 

considering and balancing the information the ASD and SFD variables carry jointly. 

The ASD is thought to indicate how much slower drivers should be navigating the curve 

while the SFD is thought to indicate the level of discomfort the driver will experience 

for a given advisory speed. 

The authors identified and addressed the issues naturally expected from deriving 

an engineering application from a theoretical concept. The resulting procedure is the 

OSU method. They then contrasted this newly developed method with both the 

MUTCD recommended values as well as the currently displayed advisory speeds in 

Oregon. Both the OSU method and the MUTCD produced advisory speed values that 

are believed to perform better than currently posted speeds. In that comparative 

analysis, it became apparent that advisory speed values based on a computational 

method (either the OSU or MUTCD) offer, in general, more consistent values than 

actual advisory speeds that most likely have been determined by the ball bank indicator 

method. As a result, the authors share the opinion of researchers who encourage the use 

of computational alternatives (Bonneson, Pratt, & Miles, 2009). The authors deem the 
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safety-performance-based OSU formulation a viable alternative among other 

computational methods already available in the literature. 

The close performance of the OSU method and the MUTCD criterion is not 

surprising. It is possible to link the ASCF components to the MUTCD posting 

guidelines in a meaningful way. This finding suggests that MUTCD procedures yield 

values that are almost optimal, if indeed there is an “optimal” advisory speed under the 

current conditions of generalized driver understanding of the signs. 

The authors performed a field validation analysis in order to test the robustness 

of the ASCF function. The analysis verified the predictive power of the function over 

the number of crashes of an independent sample of curve sites. As a consequence, the 

authors recommend two direct engineering applications stemming from the ASCF 

function: for safety assessment, as previously demonstrated in the case of Oregon rural 

highways, and the determination of advisory speed values for new sites, by using the 

OSU method, as outlined in this paper. 

Finally, the authors recommend future work to explore the link of the ASCF to 

field operational data. Specifically, future research should explore how the operating 

speed relates to the components of the ASCF bivariate function. The authors also 

recommend future research exploring alternative analysis tools to verify these results, as 

well as calibrating the OSU method using data from other states because general driver 

awareness and understanding of the signs probably varies significantly across 

jurisdictions. 
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 ABSTRACT 

Posting advisory speed signs at sharp horizontal curves is a practice well established in 

the United States. The intent of these signs is to aid the driving public in selecting 

appropriate speeds to negotiate such curves. The authors recently completed an 

assessment of advisory speed safety in the state of Oregon, a study that suggests that 

updating to the latest posting guidelines may be beneficial in terms of safety 

performance.  The authors also observed unwarranted variability of advisory speed 

values when these values were determined using the ball bank indicator posting method 

(BBI).  

Since the BBI is a straightforward and widely accepted tool, it is likely that practitioners 

may be reluctant to stop using the BBI in spite of this well documented variability in 

results. This paper outlines an analysis of BBI data to develop a methodology to help 

mitigate this undesirable variability in BBI readings. For the purposes of this paper, this 

proposed methodology is referred to as ‘the Hybrid OSU Posting Method’ because it 

uses the BBI in combination with the Advisory Speed Crash Factor (ASCF), which is 

the engine function for the OSU posting method previously proposed by these authors. 

The ASCF is a safety criterion to characterize safety performance of advisory speed 

signs. Therefore, the researchers expect this methodology will result in advisory speeds 

associated with an improved safety performance.  

This research uses 3114 BBI readings from a sample of 425 horizontal curves at two-

lane rural highways in the state of Oregon. The authors used half the available BBI data 

to develop a methodology and reserved the other data for testing the proposed 

methodology. The results indicate that despite the variability inherent to the BBI, the 

advisory speeds resulting from the Hybrid OSU method are more consistent than those 

from the traditional BBI method, but less consistent than the OSU method. 

Accordingly, the results indicate that the expected safety performance of the Hybrid 

OSU method is better than the traditional BBI method, but not as good as the 

computational OSU method. 

 

Keywords: advisory speed, ball bank indicator, safety, body roll angle, Side Friction 

Demand, optimal advisory speed, OSU method, Hybrid OSU method. 
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4.1. Introduction 

Following a review of current literature on the topic of advisory speeds and a 

brief description of the data available for this research effort, this paper consists of two 

main parts: Part one deals with an in depth analysis of the physics involved in a vehicle 

negotiating a curve, and how such analysis relates to quantities involved in the ball bank 

indicator reading (BBI) and the advisory speeds that stem from accepted methodology 

based on this instrument. Since scarce information about the influence of body-roll 

angle in using the BBI is available, the authors performed an assessment on horizontal 

curve data to gain a better insight on how this angle behaves and affects the variability 

of the BBI reading. 

The second part of this paper reviews the development of a methodology to 

mitigate the well-known variability of the BBI as a way of confidently making advisory 

speed decisions based on expected safety performance. This methodology is then 

compared to the computational OSU method and the advisory speeds posted in the 

sample data. The improved performance of the Hybrid OSU method (i.e. the proposed 

methodology) is explained by it being based on a ‘smooth’ estimate obtained from 

several BBI data points for a broad range of speeds, as opposed to current BBI 

procedures which are based only on the BBI readings that are at or around the advisory 

speed that will ultimately be recommended.  

4.2. Literature Review 

This literature review focuses on published literature that addresses determining 

appropriate advisory speed values and assessing their effectiveness. This effectiveness 

is generally presented in terms of expected speed reduction or long term safety impact.  

4.2.1. A Brief History of Current Practices 

The practice of posting advisory speeds dates back to the 1930s, but standard 

procedures became available as late as 1948. Currently, the reference document in the 
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United States for any type of signage is the Manual on Uniform Traffic Control Devices 

(MUTCD) (FHWA, 2009). This document recognizes three accepted procedures to 

determine advisory speed recommended values: estimated values identified using the 

BBI (this is the most widely implemented approach), calculated values based on the 

geometric design equation from “the Green Book” (A Policy on Geometric Design of 

Highways and Streets) (AASHTO, 2004), and values determined by using an 

accelerometer.  

Currently in the United States, there are several available speed-posting 

thresholds used by agencies. Until 2010, Oregon used a 13-10-7 degree threshold (for 

less than 30 mph, 35 to 55 mph, and greater than 55 mph values respectively). In 2010, 

they adopted the thresholds suggested in the latest edition of the MUTCD. In the 2009 

edition of the MUTCD, BBI thresholds of 16-14-12 degrees now correspond to speed 

thresholds of up to 20 mph, up to 30 mph, and above of 30 mph, respectively. 

4.2.2. Driver Response to Advisory Speeds 

There are various studies that concentrated directly on measuring curve speeds 

and comparing these values to the posted advisory speeds. This difference is expected to 

range between 7 to 10 mph (Chowdhury, Warren, Bissell, & Taori, 1998), (Koorey, et 

al., 2002), and (Lyles & Taylor, 2006). However, for the case of Oregon and its known 

history of using more conservative thresholds, a probability sample suggests that the 

average such differential is likely 13.8 mph for that state, as found by Avelar (2010). 

Lyles and Taylor (2006) argue that if the intent of these signs is for drivers to 

adhere to the suggested speed, then the signs are largely ineffective. They also report 

that both practitioners and the driving population in general perceive the posted speed to 

be too low. 

From the Human Factors point of view there are research works with conflicting 

results. On the one hand Zwahlen (1987) performed a study on 40 drivers on a driving 

loop for which curves were posted at advisory speeds. The drivers were equipped with 
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eye scanners and this information was contrasted with the driving task parameters. 

Although the drivers consistently fixated their sight to the warning signs, the author did 

not find any correlations between values such as the driver speed and the displayed 

advisory speed. The author also did not find evidence of a difference between the two 

runs of each driver, nor the status of a familiar and unfamiliar driver. Zwahlen 

concluded that advisory speeds add very little information to the drivers, and thus 

posting and maintaining them should be of low priority. On the other hand Ritchie 

(1972) suggests that advisory speeds may be associated with higher operating speeds, 

since the additional information they convey may give drivers confidence about speed 

selection thresholds over the posted speed. 

4.2.3. Advisory Speed Consistency Issues 

For a recent study in Oregon by Dixon and Rohani (2008), the project team 

conducted field visits for sites with posted advisory speeds across the state. This effort 

verified that the actual posted speeds differed from recommended speeds based on the 

threshold values in use by Oregon at the time of the study. A study by Bonneson, Pratt 

and Miles (2009) suggested that a main reason for this observed difference between 

posted and expected advisory speeds may be due to the lack of consistency of results 

when using the BBI. Various authors argue that such lack of consistency could explain 

to a great extent the observed lack of adherence to advisory speeds (Bonneson, Pratt, & 

Miles, 2009) and (Lyles, 1982). 

Recently, Avelar and Dixon (2012) proposed a function to estimate the expected 

safety performance of advisory speeds, and found that when comparing different 

posting criteria, curve locations that were expected to perform better in terms of safety 

were also the more consistent, both in the variability of the posted values, as well as in 

the expected safety performance itself. In general, their results agree with the 

conclusions of Bonneson et al. in that computational methods should be preferred for 

their enhanced consistency, if compared to the ubiquitous BBI method. Finally, Avelar 

and Dixon developed a new recommended computational methodology, named the 
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OSU posting method that performed slightly better than a computational version of the 

MUTCD 2009 thresholds. 

4.3. Available Data 

The data utilized for this research includes geometric characteristics for 425 

curves, located at 166 randomly selected sites, with a total of 3114 BBI records and 

their corresponding speed runs. The source of this data is from a study performed for 

the state of Oregon by Dixon and Rohani (2008). 

Dixon and Rohani selected two large random samples of roads in Oregon: 80 

state-maintained, and 90 county-maintained rural highway sites. At least two curves 

were surveyed at each site for data collection, the number of curves in a site depending 

on the how the curves were located within the sampling scheme and in relation to each 

other. It is important to mention that the samples from that research work are actually 

probability samples, and thus are representative of the prevailing conditions across the 

state of Oregon. More details about the probability structure of the state-maintained 

sample are available at a subsequent effort by Avelar (2010). Dixon and Rohani 

instrumented a vehicle with both a manual and a digital BBI in an effort to reproduce 

the advisory speeds corresponding posting different criteria, those of the 2009 version 

of the MUTCD (FHWA, 2009). 

4.4. Part One: The Physics of the Ball Bank Indicator and the Side 

Friction Demand 

To fully understand the dynamic environment associated with the BBI, Figure 

4-1 shows a schematic of the forces and the angles affecting a BBI-equipped vehicle. 
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Figure 4-1: Geometry and Dynamics of the BBI 

 

It is important to notice that r, the ball equilibrium angle measured from an 

inertial frame of reference, does not depend on the vehicle or road geometry, but that β, 

the BBI reading, does deviate from r as a function of the superelevation angle (q) and 

the vehicle roll angle (α). 
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Equation 4-1 shows the basic relationship between the relevant angles when 

considering only the schematic for the BBI. 

 

Equation 4-1: Relationship between the BBI and Vehicle Dynamics 

   −     

Where: 

  = Ball Bank angle, measured from the BBI dial (degrees); 

  = Equilibrium angle of the ball, measured from the vertical, to the radial  

(degrees); 

  = Superelevation angle, measured from the horizontal to the pavement  

surface (degrees); and 

  = Vehicle roll angle, measured from the vertical to the vehicle symmetry  

plane (degrees). 

 

In addition, if one uses the information in the free-body diagram, it is easy to 

demonstrate that 𝑇𝑎𝑛    
  

   
, where V is the speed, R radius and g the local earth 

gravitational field.  It is worth noting that 𝑇𝑎𝑛    𝑒, where e is the superelevation 

rate depicted as a ratio and as commonly used in highway design. 

An analysis on the forces required by a vehicle to traverse a horizontal curve 

yields a definition for the side friction demand (SFD): 

 

Equation 4-2: Side Friction Demand 

𝑆𝐹𝐷  
𝑉 

𝑔 𝑅
− 𝑒 

 

This relationship derives from the single-point-mass analysis of the forces over 

the vehicle as shown in the central scheme of Figure 4-1. It represents the ratio of the 

forces necessary to achieve the dynamic equilibrium shown in Figure 4-1. In other 

words, the SFD is the ratio of the lateral force required on the surface of the road (i.e. 
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the friction force provided by the tires) to the normal force generated over the banked 

surface.  

It is important to notice that the SFD is a simplified quantification of the 

dynamic requirements of the circular movement of a vehicle. Although the SFD is not 

influenced by the amount of vehicle roll, the friction in the tires is not necessarily 

uniform and very likely exhibits some distribution that depends on the geometry and 

weight distribution of the vehicle. A similar case occurs for the normal forces generated 

by the superelevated surface. The rolling angle is direct evidence of a significant 

difference between the Side Friction Supply (SFS) available for the tires at both sides of 

the vehicle. This occurs because the maximum SFS should be proportional to the 

normal force in every tire, so it follows that the normal forces at each side of the vehicle 

necessarily differ in order to create a moment that prevents the vehicle from overturning 

outside of the curve. 

Finally, it is possible to relate the rotational equilibrium shown in the lower part 

of Figure 4-1 to the vehicle roll angle. When combining the information available from 

the three vector diagrams in Figure 4-1, and under the assumption of equally stiff linear-

elastic suspensions at both sides of the vehicle, it is relatively straightforward to arrive 

to the following relation: 

 

Equation 4-3: Relationship between Body-Roll Angle, Vehicle Dynamics, and Vehicle 

Characteristics 

𝑇𝑎𝑛    
     

  𝑊 
 (

𝑉 

𝑅
𝐶 𝑠   − 𝑔𝑆𝑖𝑛   ) 

Where: 

  = Vehicle roll angle, measured from the vertical plane to the vehicle  

transversal symmetry plane (degrees); 

K = Stiffness constant of linear-elastic suspension springs (lb/ft); 

M = Vehicle mass (lb.s
2
/ft); 

H = Vehicle mass center height (ft); 

W = Vehicle width, as measured from tire to tire (ft); 
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V = Vehicle speed (ft/s); 

  = Superelevation angle, (degrees); and 

g = local gravitational field (ft/s
2
) 

 

The number of unknown variables in the emerging relationship makes it 

impractical to explicitly account for this effect in most situations. There are some 

important observations that are noteworthy about the rolling angle: 

1. It is directly proportional to both vehicle mass and height of the center of mass, 

2. It is directly proportional to the square of the vehicle speed, 

3. It is inversely proportional to the suspension stiffness and squared vehicle width, 

4. It is inversely proportional to the superelevation, and 

5. It is inversely proportional to the horizontal radius. 

Despite these complex relationships, the rolling angle has been treated as an 

insignificant quantity, if compared to the rest of elements that influence the BBI 

reading. Standard procedures do not consider this angle explicitly, in part because of its 

expected insignificance, but also because a procedure directly measuring it would likely 

be very challenging. However, Equation 4-3 demonstrates that the significance of the 

distortion introduced by this angle to the BBI reading can be expected to peak when the 

next set of conditions confluence: (1) when the tested speed is high; (2) at curves with 

small radii and which are poorly superelevated; (3) when the BBI-instrumented vehicle 

is heavy and with a high center of mass (i.e. S.U.V. type vehicles), (4) when the vehicle 

has a narrow frame, and (5) when the vehicle has a soft suspension relative to the 

vehicle mass (i.e. a typical relationship for new suspensions).  

Though a large   is not generally desirable, in practice the value for this angle is 

expected to be toward the outside of the curve, which means that the BBI reading is a 

conservative estimate of the SFD, on average. 

As a result, an assessment of these various vehicle dynamic relationships helps 

to identify several important points: (1) that the BBI reading does not directly translate 

into a corresponding SFD but both quantities are closely related; (2) that the SFD is 

determined by the geometry of the curve, the tire and pavement conditions, and the 
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kinetic parameters of the vehicle; and (3) that the BBI reading is a measure of the 

dynamic equilibrium as perceived in the cabin of the motor vehicle and is subject to 

other factors in addition to those mentioned above. Specifically, the BBI reading 

depends on the suspension stiffness, vehicle width, the location of the vehicle’s center 

of mass, and a distinctively different relationship with speed and superelevation, as 

demonstrated in Equation 4-3. All of these additional factors determine the body roll 

angle, which is a systematic deviation in the BBI reading. The next section focuses on 

explicitly evaluating to what extent the premise of a negligible body roll angle holds for 

the data available from Oregon. 

4.4.1. Investigating the Body Roll Angle influence over the Ball 

Bank Indicator 

In general, it is well known that for higher advisory speed conditions, the BBI 

tends to be more sensitive to small distortions caused by road surface inconsistencies or 

small steering jolts. Equation 4-3 also shows that when other contributing factors are 

equal, the higher speeds are associated with systematically higher body-roll angles. It is 

expected then that in addition to more sensitivity to random driving surface distortions, 

the BBI reading also diverges systematically from the SFD at higher readings. This 

section will use the previously derived relationships to estimate the expected body-roll 

angle using the Oregon-based data. 

As a first step, the authors assessed the level to which the BBI readings are 

influenced by the body-roll angle. Solving for alpha in both Equation 4-1 and Equation 

4-3 and combining the results, one obtains the following relationship:  
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 −      {
     

  𝑊 
}  (

𝑉 

𝑅
 𝐶 𝑠   − 𝑔 𝑆𝑖𝑛   ) 

 

This relationship incorporates the assumption that   𝑇𝑎𝑛   , a reasonable 

simplification for small angles. For the purposes of this assessment, an angle is 

considered small if it does not exceed 10 degrees, a value which would be excessive for 

the body roll angle that is typically assumed to range from 1 to 3 degrees.  

Since  ̂  𝐴𝑡𝑎𝑛  
  

   
 , and   𝐴𝑡𝑎𝑛 𝑒 , there is only one unknown factor in 

the above relationship as depicted in the curly brackets. An important observation about 

this factor is that it depends only on the vehicle fixed characteristics (i.e. mass, 

geometry, and suspension stiffness). From this point forward, this term will be referred 

to as the vehicle index factor (VIF).  

For the Oregon study, the research team acquired all of the BBI data using only 

one vehicle commonly used by the Oregon Department of Transportation for advisory 

speed curve assessments. As a result, the VIF should be a constant value for the 

available data set. In addition, a single driver obtained all the data so it is expected that 

an estimate of the VIF derived from the sample should be relatively free of random 

noise. 

Upon inspection of the BBI data, it is apparent that the manual BBI readings 

appear to consistently yield lower readings than those obtained using the digital version 

of the BBI. In order to explicitly account for the two different types of BBI, the 

researchers performed the estimation of the VIF via an ordinary least squares regression 

(OLS) of the BBI Reading as shown in Equation 4-4. 
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Equation 4-4: Ordinary Least Squares Estimation of the VIF 

   | ̂   𝑉 𝑅 𝑇 𝑝𝑒       (
𝑉 

𝑅
 𝐶 𝑠   − 𝑔 𝑆𝑖𝑛   ) −    𝑇 𝑝𝑒       −      

 

Where: 

Type.M = Indicator variable with a value of 1 for manual BBI readings,  
zero otherwise; 

    = First regression coefficient. This coefficient is such that  

      ̂; 

    = Second regression coefficient. This is           
̂ , the average  

deviation of  the manual BBI with respect to the digital BBI; 

  ,    = Third and fourth regression coefficients, not subject to  

estimation; instead, they were set equal to 1.0, as of Equation 4-1; 

All other variables as previously defined. 

 

The resulting VIF regression estimate and its corresponding standard error are 

shown in Equation 4-5. 

 

Equation 4-5: Vehicle Index Factor Regression Estimate 

   ̂                 
𝑑𝑒𝑔

 𝑡
𝑠 
⁄

 

 

Figure 4-2 shows the body-roll estimate (alpha) resulting from combining the 

newly obtained    ̂ and Equation 4-3.  
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Figure 4-2: Estimated Body-Roll Angle vs. BBI Reading 

 

The estimates are shown by their corresponding BBI reading in gray. A black 

trend line is provided to show the estimated average body-roll angle. Finally, two 

dashed lines that correspond to a 95% confidence level depict the upper and lower 

boundaries around the estimated average. In other words, approximately 95% of the 

body-roll angle estimates are contained by the region delimited by the dashed lines. 

It is important to note, as shown in Figure 4-2, that although the mean body-roll 

angle behaves as expected, increasing BBI readings that range from zero up to 15 

degrees experience a great deal of variation around the mean body-roll angle (generally 
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zero up to 2 degrees). Furthermore, inspection of Figure 4-2 suggests that the body-roll 

angle range of variation is actually larger than the expected mean body-roll angle for 

BBI readings smaller than 6 or 7 degrees (i.e. where the lower limit dashed line crosses 

the BBI axis); however, the body-roll angle is expected to be significant when the BBI 

reading exceeds 9 degrees (i.e. generally where the estimated body-roll angles are 

exclusively positive values). In the extreme region to the right of Figure 4-2, where the 

BBI readings are around 16 degrees, the average body-roll angle is expected to be 

approximately 2 degrees, but it is also expected that this angle would typically vary 

between 1 and 4 degrees. This variation can have a significant impact on the BBI 

reading (between 6% and 25% of the BBI reading could correspond to the body-roll 

angle at this extreme region). 

Figure 4-2 suggests that in some rare instances, the test vehicle is likely to have 

had body roll angles directed toward the center of the curve rather than away from the 

center of the curve, as implied by the expected vehicle dynamics (depicted in Figure 

4-1). This relationship is represented by negative values in Figure 4-2.  Body roll angles 

toward the center of the curve, however, are physically possible in superelevated curves 

if either the speed is very low or the superelevation is too large in comparison. Equation 

4-3 mathematically captures this unexpected condition in the subtraction inside the last 

parenthesis. This difference is negative whenever the projection over the superelevated 

surface of the centripetal acceleration, a speed-dependent quantity, is small compared to 

the projection of the weight of the vehicle. This analysis suggests that a few runs in the 

Oregon study might have met this condition (i.e. whenever the estimated body roll 

angle falls below the zero horizontal line in Figure 4-2).  In these rare cases, the BBI 

underestimates the SFD. For the vast majority of the BBI readings from the Oregon 

sample, the average body roll angle was larger at larger BBIs resulting in a large BBI as 

an overrated estimate of the SFD. This over estimated value would result in advisory 

speeds that are conservative, if one compares them with advisory speeds resulting from 

a computational method based on the SFD (e.g. the curve dynamics formula method 
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suggested in the Manual on the MUTCD, or the OSU posting method proposed by 

Avelar and Dixon (2012)). 

Because the alpha estimates are heteroscedastic, the researchers used a statistical 

package (R Development Core Team, 2011) to parameterize the average and boundary 

lines shown in Figure 4-2. Equation 4-6 shows the empirical relationship obtained for 

the line representing the mean in Figure 4-2. 

 

Equation 4-6: Empirical Relationship between the Body-Roll Angle and the BBI 

Reading 

   ̂|       (𝑒          −  ) 

Where: 

 ̂ = body-roll angle estimate (degrees); and 

  = Ball-bank indicator reading (degrees) 

 

Since this analysis found that the body-roll angle may be exacerbating the 

known variability problem associated with the BBI, the next section uses the empirical 

relationship to mitigate this variability, resulting in a BBI-based but more consistent 

advisory speed that are more likely associated with improved safety performance. 

4.5. Part Two: Mitigation Strategy for Using the BBI -- The Hybrid-

OSU Posting Method 

Previous research recommends determining advisory speeds using more 

consistent computational alternatives rather than the more variable BBI method. Such 

works offer evidence of the expected posting variability inherent to the BBI method 

(Dixon & Rohani, 2008), (Bonneson, Pratt, & Miles, 2009) and (Bonneson J. , Pratt, 

Miles, & Carlson, 2007).  Recent work by these authors (Avelar & Dixon, 2012) 

suggests that a likely consequence of high variability in posted values is an inconsistent 

safety performance. Additionally, the analysis in the previous section suggests that the 

body-roll angle may systematically increase with the BBI reading, resulting in a posted 
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advisory speed associated with relatively low SFDs, which, according to the results of 

(Avelar & Dixon, 2011), could also be associated with a reduced safety performance.  

Regardless, the simplicity of operation and interpretation of the BBI makes this 

equipment option an attractive alternative to practitioners. An additional consideration 

when using a  computational method is that the available site information (i.e. site 

plans, aerial photos, etc.) may be accurate enough without the need for a site visit, but 

practitioners accustomed to the use of the BBI may feel a site visit is preferable to 

estimated conditions applied to a computational approach.   

The authors, therefore, consider that a mitigation strategy to the BBI method is 

necessary, as many practitioners are likely to continue to use a posting method that 

requires field visits and the use of the BBI. This enhanced strategy must incorporate 

procedures to address the known BBI variability.  Such an enhanced procedure can help 

to minimize the amplitude and number of data collection runs required for each curve 

location and to maximize the quality of the information obtained from each run. 

Currently, the BBI method uses sequential data collection runs that attempt to 

limit the BBI angle to a predetermined threshold based on consistently increasing 5 mph 

interval speed values until identifying values directly above and below the designated 

thresholds. In order to increase consistency across the advisory speed range, the new 

methodology does not directly derive the advisory speed from a single series of BBI 

readings. Instead, it uses several BBI readings from runs across a wide range of speeds. 

Such a strategy would also benefit from the advantage of incorporating the information 

from multiple BBI readings at different speeds, as opposed to determining the advisory 

speed based on the last two or three runs and discarding readings that resulted in values 

that were too low (but could still provide meaningful information about the road, 

expected data variability, and the BBI reaction to the surface). However, it is of 

particular importance that the range of test runs should include run tests at the advisory 

speed that will be ultimately recommended, as these runs would serve as field 

verification of the recommended advisory speed.  
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To achieve the objectives previously outlined, the proposed methodology uses 

an explicit formulation of the BBI as a function of the run speed, so as to estimate the 

required parameters from all the data collected in all of the field test runs.  

Based on relationships in Equation 4-1 and Equation 4-2, if the approximations 

 𝐶  𝑇𝑎𝑛      , and 𝑇𝑎𝑛       are deemed reasonable, then: 

   𝐶   
  

   
 − 𝑒   . 

The constant, 𝐶 , merits additional discussion. The approximation 𝑇𝑎𝑛 𝑥   𝑥 

applies to small angles, and as such, it is used throughout this paper for angles that are 

known to range across small values. However, for the case of  , its values could extend 

to values as large as 30 degrees for a curve with a radius equal to 150 ft at a speed of 35 

mph. The constant 𝐶  is then an adjustment that the authors considered necessary. 

Through the application of an OLS procedure, the authors estimated this constant at a 

value of 0.98 for the range of   available from the sample. The authors found that 

linearity is still very strong at this range. The adjustment to the two quantities 

(i.e. 𝑇𝑎𝑛    and  ) systematically explains 99.98% of the variation in between (R-

squared of 0.998). 

Because the only two pieces of information available when performing a test run 

around a curve are the BBI reading and the speed, the previous expression can be 

adapted to perform an estimation of the other variables that are unknown to the 

personnel in the test vehicle: 

 

Equation 4-7: Linear Relationship between the BBI and the Squared Run Speed 

  (
𝐶 

𝑔 �̀̂�
)    𝑉  − �́̂�   ̂ 

Where, 

�̀̂� =  Grave dynamic estimate of horizontal curve radius; and 

�́̂� =  Acute dynamic estimate of curve superelevation; 
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 ̂ = Empirical estimate of  , as of Equation 4-6. 

All other variables as previously defined. 

 

First, to determine the best fit for the available BBI data, the authors estimated 

the vector where both quantities are components of the paired vector [�̀̂�
�́̂�
], which 

dynamically approximates the horizontal radius and the superelevation.  

From statistical theory, a relationship between   and  𝑉  can be determined, as 

shown in Equation 4-7, by defining the OLS regression of   on  𝑉 . The regression can 

then be defined as:  

 

   |𝑉          𝑉
      ̂. 

Where, 

      =  OLS regression coefficients from local estimation; and 

    =  constant offset factor on the empirical  ̂, determined by a global  

optimization; 

All other variables as previously defined. 

 

From this relationship and Equation 4-7 it is possible to establish that 

     
  

   ̀̂
 , and    (−�́̂�).  

Therefore, [�̀̂�
�́̂�
]   [

 
  

    
 

−  
] 

It is important to envision the estimated quantities jointly as a vector instead of 

as independent approximations to the radius and the superelevation. By definition, they 

are biased quantities, but their biases are negatively correlated. In other words, the more 

�̀̂� overestimates R, the more �́̂� underestimates e. Using OLS procedures, this is a 

necessary condition so as to minimize the squared errors. To confidently determine 
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good estimators of R and e, a large number of test runs would be necessary, but that is 

not the case for this research.  

This resulting vector can then be applied to the second step in the methodology: 

determining the optimal advisory speed based on the Advisory Speed Crash Factor 

(ASCF) formula recently proposed by Avelar and Dixon (Avelar & Dixon, 2012). This 

function emerged from an effort evaluating the safety effect of advisory speed signs. 

The authors used a generalized linear regression model to characterize the relationship 

between crash data to geometry, road operations and signage characteristics of a sample 

of horizontal curves in Oregon. The ASCF is a factor emerging from this analysis that 

accounts for the safety effect of advisory speeds, after controlling for other important 

elements, such as radius, lane width, curve length, and traffic intensity, among others.  

Denoting the components of [�̀̂�
�́̂�
] as estimated above, Equation 4-8 shows the 

optimal advisory speed as a function of a set of BBI readings: 

 

 

Equation 4-8: Optimal Advisory Speed based on Dynamic-equivalent Estimates 

𝐴𝑑𝑣𝑆𝑝𝑒𝑒𝑑       

 

− (
   𝑆𝑝𝐿𝑖    

  �̀̂�
)  √     𝑆𝑝𝐿𝑖     

 

   �̀̂� 
 
    (�́̂�    −   )

 �̀̂�

−
   

 �̀̂�

 

  



 

92 

 

 

Where: 

       =  ASD coefficient from the ASCF function (
 

   
); 

       =  SFD coefficient from the ASCF function (no units); 

       =  ASD x SFD coefficient from the ASCF function (
 

   
); 

SpLim  = Speed Limit (mph); and 

𝐴𝑑𝑣𝑆𝑝𝑒𝑒𝑑        =  Advisory Speed (mph);  

All other variables as previously defined. 

 

Upon development of Equation 4-8 for computing the optimal advisory speed, 

this relationship can then be used to apply the OSU posting method, as it was described 

in greater detail at a previous work (Avelar & Dixon, 2012). 

4.5.1. Summary of Proposed Methodology 

This section reviewed in detail the development of the proposed Hybrid-OSU. 

Though the initial analysis may appear onerous, upon automation of the statistical 

estimation (using a spreadsheet or any portable device, such as a programmable 

calculator), the practitioner only needs to obtain and input a minimum of four readings 

for the BBI and associated speeds. 

Figure 4-3 shows a graphic summary of the proposed methodology. The next 

section focuses in testing the performance of the methodology on the available data. 
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Figure 4-3: Schematic for the Hybrid-OSU Posting Method 
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4.6. Calibration and Validation of Proposed Methodology 

As previously indicated, the Oregon sample is comprised of substantial BBI data 

collected at numerous sites. The offset value for    -the empirical  ̂ coefficient- was not 

defined as 1.0 intentionally, so as to use it as a global calibration parameter. 

Additionally, the researchers treated the maximum allowable SFD for the Hybrid OSU 

method as another global calibration parameter, allowing it to vary independently from 

the fully computational OSU method maximum SFD. The authors performed a 

calibration of the methodology for state-maintained rural roads Oregon.  

Table 4-1 shows the parameters resulting from the calibration process. These 

values were such that the trend of the OSU method was approximated by the Hybrid 

OSU method with none of the 90 state maintained sites exceeding the desired maximum 

SFD of 0.23 by more than 0.015. 

 

Table 4-1: Maximum SFD and Global Calibration Parameter Estimates for the H-OSU 

Method 

Parameter Value 

Maximum Recommended SFD 0.23 

Maximum SFD used in Hybrid OSU method 0.15 

Empirical  ̂ offset value -1.0 

 

Figure 4-4 shows the expected safety performance, as of the Absolute ASCF 

criterion, for the calibration data set. As briefly discussed above, the ASCF criterion is a 

multiplier on the expected number of crashes. The Absolute ASCF is such multiplier 

referenced to the hypothetical scenario of removing the advisory speed plaque. 

Therefore, smaller Absolute ASCFs mean expectedly better safety performances. The 

differences among the trend are obvious: the faster decaying (better performing) trend 
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corresponds to the OSU method. This relationship is not surprising since this is the 

method based on geometry information directly measured from the field. 

 

 

Figure 4-4: Expected Safety Performance by Posting Method (Calibration) 

 

The second best performing is the Hybrid OSU method, as its trend roughly lies 

between the other two. As previously indicated, this hybrid method is based off of 

actual ball bank indicator readings. Finally, the actual posted advisory speeds also show 

a decaying trend line, and thus still can be expected to enhance safety. This is the set of 

advisory speeds that would be expected to have the poorest performance. 
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It is also noticeable that the most consistently performing method (i.e. the one 

with the least variation) is the OSU method, followed by the H-OSU method. 

Using the same parameters from Table 4-1, the researchers repeated the 

computation of the OSU and Hybrid OSU method’s advisory speeds, as well as the 

Absolute ASCF (AASCF), the corresponding measure of safety effectiveness. Figure 

4-5 depicts a similar relationship for the county-maintained sites.  

 

 

Figure 4-5: Expected Safety Performance by Posting Method (Validation) 
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Since the conclusions that one can derive from both figures are the same, the 

authors deemed the calibrated Hybrid OSU method as consistently validated on the 

second data set. 

Finally, Figure 4-6 shows the SFD based on posting method for the validation 

data set. One relevant observation is that, similar to previous evaluations, the OSU 

method is the one that delivers advisory speeds associated with a more consistent SFD. 

The second most consistent in terms of SFD is, again, the Hybrid OSU method.  

 

 

Figure 4-6: Actual Side Friction Demand by Posting Method (Validation) 
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This figure has another noticeable characteristic: the trends are quite different: 

the OSU method SFD climbs steadily from an average of about 0.1 for sites without 

posted signs, up to an average of about 0.2 for sites posted 20 mph below the speed 

limit. The SFD value appears similar for advisory speed differentials (ASDs) of 25 and 

30 mph, and then drops to 0.15 for curves posted at an ASD of 35 mph. The data set 

only included one site with an ASD=40 mph (represented by a SFD of 0.215) and one 

site with an ASD=45 mph (a SFD value of 0.05). In contrast, the Hybrid OSU method 

slowly increases starting from 0.05 at ASD=5 mph, leveling off at 0.11, and remaining 

roughly flat until ASD=35 mph. This method includes two sites posted at ASD=40 mph 

with SFDs of 0.215 and 0.24 respectively. Finally, the trend of the posted advisory 

speeds begins to decline in value and increase in variability. The authors verified that in 

order for the Hybrid OSU method to follow the trend of the OSU method, it would 

allow some of the sites with high SFDs to exceed the desired maximum SFD of 0.23. 

Finally, it is worth noting that the Hybrid OSU performance, as depicted in the 

validation assessment (Figure 4-5 and Figure 4-6), is based on the estimates that result 

from all the BBI readings available at each curve. The number of these BBI readings 

varied from 3 up 16 per site. The authors verified via several replications that such a 

performance is achievable when randomly selecting only 4 readings from every site. 

Therefore, the use of the Hybrid OSU method is recommended in conjunction with at 

least 4 runs and at least 3 different speeds. The use of this level of BBI assessment will 

minimize the bias associated with estimating [�̀̂�
�́̂�
] from a limited range. 

4.7. Conclusions 

This paper reviews the development of a thorough analysis of the dynamics 

involved in determining the optimal advisory speed based on the BBI, an instrument 

widely used for advisor speed assessment but also know to result in a large variability in 

readings for the same or similar facilities. An analytical evaluation of the body roll 

angle emerges from the analysis in this paper including an observation that this angle 
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can be expected to peak, on average, around a value of 2 degrees. However, the same 

evaluation indicated that when evaluating the expected variability around the body roll 

angle average, a systematic deviation of the BBI readings larger or equal to 9 degrees 

begins to emerge. Under some conditions, the body roll angle may be expected to reach 

values up to 4 or 5 degrees, a portion that is, in fact, significant when compared to 

expectedly maximum BBI readings of 15-16 degrees. The assessment concluded with 

the construction of an empirical model that can explicitly account for this effect. 

Ultimately, the authors used the body roll angle as an additional degree of freedom in 

the calibration process of the Hybrid OSU method, the mitigation methodology that was 

the ultimate goal of this paper. 

The authors then expanded the mathematical relationships that emerged from the 

dynamics analysis in an effort to link the BBI readings to the concept of the optimal 

advisory speed, a measure that represents the best expected safety performance as 

proposed by these authors in a previous publication (Avelar & Dixon, 2012). The 

authors labeled this emerging methodology as the Hybrid OSU method, a method that 

basically includes two steps: (1) using as many BBI readings as available from a site to 

obtain dynamics-equivalent regression estimates of the horizontal radius and 

superelevation, and (2) using the dynamics-equivalent estimates to compute the optimal 

advisory speed, as proposed in (Avelar & Dixon, 2012). 

To demonstrate performance of the newly developed methodology, the authors 

applied the procedure to two random Oregon-specific data sets. The authors calibrated 

the methodology using one of the samples, and subsequently validated the procedure 

with the other sample. In general, it is expected that the new methodology performs 

better than the traditional BBI method in terms of consistent SFDs and expected safety 

improvements. The authors argue that the reason for the improvement is that, as 

opposed to the traditional BBI method, the proposed methodology is statistically 

efficient: the more BBI readings available, the more accurate the estimated parameters, 

thus the more consistent the resulting advisory speed. 
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Noteworthy is the fact that the Hybrid OSU method requires additional 

computational efforts, but such efforts have the potential to be easily automated, so 

practitioners will likely have a computational tool readily in the field when using this 

new BBI based method (e.g. a laptop computer, a programmable calculator, a smart 

phone, etc.)  

Although the Hybrid OSU method performed better than the traditional BBI 

method, this analysis also demonstrated that whenever the horizontal radius and 

superelevation are available or easily obtainable, the recommended method would be 

the OSU method as proposed in a previous work. This method is the one that yields the 

more consistent sets of SFDs and the one theoretically associated with the larger 

reduction in expected number of crashes. 

The authors conclude that the Hybrid OSU method is a feasible alternative to the 

traditional BBI method for practitioners who would prefer using the BBI or for 

locations where it is not possible or reliable to obtain information about the radius and 

superelevation of a curve.  
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5. Additional Content not Included in Manuscripts 

This chapter consists mostly of material that the author initially developed to be 

included in the three manuscripts heretofore presented, but that was excluded from the 

final versions due to the space constraints of the conferences and journals.  

Additionally, this chapter includes some discussions and materials derived from 

the more relevant comments of reviewers to the manuscripts and the corresponding 

clarifications that this author crafted in response. Particular emphasis was given to 

observations and responses that are important but that did not make it to the final 

version of the manuscripts due to space constraints.  

Finally, this chapter includes additional materials that this author developed in 

areas of this work that were not extensively addressed in the manuscripts. 

5.1. Overview of the Data Used in this Work 

This section presents a brief summary of the data used in this dissertation, 

particularly focusing on the modelling data set and the most relevant variables that were 

included in the various analyses of this work. 

5.1.1. Probability Sample of Oregon Curve Sites 

As previously described, chapter 2 is based on a probability sample of curve 

sites that is representative of the state of Oregon. This probability sample was available 

from a previous work by Dixon and Rohani (2008). These researchers intended to study 

32 corridors selected from each ODOT region that comprise the state of Oregon. In 

total, they selected 160 corridors, half of which were collected from state-maintained 

highways and the other half from county-maintained highways. Figure 5-1 shows a 

schematic of the sampling procedures followed by Dixon and Rohani. 
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Source: Avelar, 2010 

Figure 5-1: Probability Structure of Sampling Procedure by Dixon and Rohani 

 

The 210 curve sites used in chapter 2 are located along the 80 corridors 

randomly selected through the procedure in the left branch of the sampling scheme, 

showed circumscribed by an ellipse in Figure 5-1. The rest of sites collected by Dixon 

and Rohani were used for the validation effort presented in chapter 4 (i.e. 90 curve sites 

coming from the 80 corridors at locally-maintained highways, shown in the right branch 

of Figure 5-1).  

As can be inferred from this figure, the sampling procedure was such that each 

county had equal weights (in the case of the locally-maintained sites) regardless of its 

size and constitution. Similarly, in the case of state-maintained roads, the sampling 

procedure equally weighted each ODOT region. However, the weights of the second 

sampling stage within regions 1, 2, and 3 clearly differed from the weights used for 
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regions 4 and 5. Obtaining analytical forms of the overall probability structure and the 

sampling errors of this tree-like, multi-stage sampling scheme is not a simple task. As 

an example, previous work by this author presents the analytical forms and estimates of 

such sampling errors for a sub set of sites from the state-maintained sample (Avelar, 

2010). Figure 5-2 shows the geographic distribution of such a sub-sample, which is still 

statistically representative of state-maintain roads in ODOT regions 1, 2 and 3.  

 

 

Figure 5-2: Geographic Distribution for a Double-sample of State Maintained Sites 

 

Table 5-1 shows the functional classification of the samples obtained by the 

schematic shown in Figure 5-1. When comparing the state-maintained and county-
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maintained samples, a shift toward facilities that prioritize mobility is evident in the 

state maintained sites.  

 

Table 5-1: Functional Classification of Selected Sites 

State-Maintained Highways 

Local and Minor  

Collector 

Major 

Collector 

Minor 

Arterial 

Principal 

Arterial 

Total 

0 11 38 31 80 

County-Maintained Highways 

Local and Minor 

Collector 

Major 

Collector 

Minor 

Arterial 

Principal 

Arterial 

Total 

12 64 10 0 86 

 

Noteworthy to mention is that the methods heretofore proposed were adequate 

to be used at county maintained highways as well, given that the effort in chapter 4 

validated such site transferability for the tools presented in this dissertation. 

5.1.2. Site Characteristics at State-maintained Roads 

This section presents a brief summary of site characteristics at the modelling 

sample (i.e. state-maintained sites). 

In order to convincingly study the effect of advisory speeds, a sample covering a 

wide range of geometric conditions, including different parameter configurations is 

required.  Figure 5-3 shows the range of advisory speed presence as it relates to the 

horizontal radius. A difference between the two sets of sites becomes apparent (i.e. sites 

with posted advisory speeds tend to have smaller radii than sites without these signs).  
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Regardless, a differentiation between the advisory speed presence and radius 

effects is still feasible, given that most of the radius bins include sites with posted 

advisory speeds and sites without them.  

 

 

Figure 5-3: Site Frequency by Radius and Advisory Speed Presence 

 

However, as the radius becomes smaller, the ability to discern between these 

effects quickly diminishes. In the extreme case, such a contrast is not possible for the 

bin with radii smaller or equal to 175 ft, since that bin only contains sites displaying 

advisory speed signs. 

Similar to Figure 5-3, Figure 5-4 shows that a meaningful contrast between sites 

displaying advisory speed signs and sites without these signs is feasible when 

accounting for curve length. 
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Figure 5-4: Site Frequency by Curve Length and Advisory Speed Presence 

 

 

Finally, Figure 5-5 shows that the sample includes a relatively wide range of 

AADTs, ranging from 106 vpd up to 13,700 vpd, a desirable characteristic for the work 

in this dissertation. This figure shows that a meaningful contrast between the presence 

and the absence of advisory speeds can be performed for a wide range of traffic 

intensities. 
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Figure 5-5: Site Frequency by AADT and Advisory Speed Presence 

 

Because the core of this dissertation lies on characterizing the relationship 

between crash history and the data described in this section, the following section 

presents crash data characteristics at the state-maintained sample sites.  

5.1.3. Crash Data Characteristics at State-maintained Sites 

This author supplemented the data available from Dixon and Rohani’s work 

with the corresponding 5-year crash history at every site for the period of 2000-2004. 

Since this dissertation is based on a probability sample, the range of such additional 

data is necessarily representative of the safety profile of curve sites for the state of 

Oregon. The crash frequency in the modelling sample of 210 directional curves totaled 

207 crashes, ranging from the most common value of zero (125 sites did not exhibit any 
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record of crashes) up to 11 crashes at one particular site. The actual distribution of 

crashes is shown in Table 5-3 later in this chapter.  

Figure 5-6 shows a sample site with relatively intense traffic volume. As a 

result, crash frequency is relatively high, but the safety of this curve is also influenced 

by the presence of an intersection. The severity level of crashes is moderate.  

 

 

Figure 5-6: Data Characteristics at a Sample Site (Clackamas Hwy MP 10) 
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In contrast, Figure 5-7 shows a site with lower traffic intensity and low crash 

frequency but one that is clearly prone to speeding crash occurrence. Since this site 

includes a compromising combination of vertical and horizontal alignments, it is not 

surprising to observe that the severity of crashes at this location is significantly 

increased.  

 

 

Figure 5-7: Data Characteristics at a Sample Site (Coos Bay-Roseburg Hwy MP 48) 
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Figure 5-8 displays a curve at a highway with high traffic intensity but with a 

more forgiving geometry. Although the crash frequency is high, in this case the severity 

of crashes is moderate. 

 

 

Figure 5-8: Data Characteristics at a Sample Site (Oregon Coast Hwy MP 58) 

 

However, it is clear that there is some anomaly regarding the reported location 

of crashes at this curve. It is very unlikely that most reported crashes actually occurred 

at a single point location that incidentally had an integer milepost, as displayed in the 
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figure. Such circumstances, among others discussed in the next section, required a 

degree of filtering in the data before any modelling work, as presented in chapter 2.  

5.2. Crash Data Filtering Prior to the Modelling Effort 

Before performing the statistical analysis, it was necessary for the author to filter 

the crash data so as to exclude crashes unlikely to be associated with curve geometry 

and signage, the main focus of this research. In order to draw meaningful comparisons, 

this author compiled all the crashes that occurred along 2-mile corridors from which the 

study curves were selected, in addition to the crashes associated with the curve 

locations. These crashes served as a baseline to compare the study site crashes to 

characteristics of crashes in the site surroundings. Figure 5-9 shows the 1104 crashes at 

the 2-mile corridors depicted by severity levels. 

 

 

Figure 5-9: Total Crashes in Set of 2-mile Corridors by Severity 
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In general, this author expected that the crashes at the curve locations would 

exhibit characteristics that are clearly different from those of the 2-mile corridor 

baseline. 

Figure 5-10 shows the proportions of crash severities by their relative locations 

within the 2-mile corridors (In Study Curve vs. Out of Study Curve) relative to the 

corresponding global proportions (the proportions that may be obtained from the totals 

presented in Figure 5-9). The chances of crashes resulting in fatality at the study curves 

roughly double the overall chances of fatality crashes in the 2-mile segment. Similarly, 

the chances of crashes resulting in injuries are about 15% larger than the corresponding 

global chances at the 2-mile corridors. 

 

 

Figure 5-10: Proportion of Crashes by Different Severities Relative to Total Crashes in 

2-mile Corridors 
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Along this line of comparison, this author expected that the chances of run-off-

road crashes (ROR) would likely be large when compared to the overall chances of 

ROR crashes in the segments. However, ROR crashes are ubiquitous, and no clear rule 

to filter the data based on this characteristic is available. This author then turned again 

to examining the differences between the 2-mile segments and the study curves.  

Figure 5-11 shows the ratio of the proportions of ROR and non-ROR crashes to 

the corresponding proportions of ROR and non-ROR crashes from the 2-mile corridors 

(these ratios are obtained in the same way that are the proportions in Figure 5-10). 

 

 

Figure 5-11: Proportions of ROR and non-ROR Crashes Relative to Total Corridor 

Crash Proportions 

 

It is apparent from this figure that the chances of observing ROR crashes at the 

study curves are slightly larger than one would expect if the chances were uniform in 

the 2-mile corridors. Conversely, the chances of observing non-ROR crashes at the 
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study curves are around 0.9 of the chances that one would expect in the 2-mile 

corridors. These differences, however, are minimal and may not be statistically 

significant. 

It is well known that crashes reported as angle, rear-end and turn collisions are 

most likely associated with intersections or driveways. Figure 5-12 shows the expected 

ROR and non-ROR proportions for these kinds of crashes only. The chances of non-

ROR crashes are the same at study curves, as well as outside of them (i.e. this type of 

crashes occurs uniformly within the corridors). However, this figure differs very clearly 

from Figure 5-11 when looking at the ROR crashes: the chances of observing ROR 

intersection-like crashes in the study curves are remarkably smaller than the chances at 

the whole corridor (about 60% of the corridor chances). This difference clearly suggests 

different mechanisms influencing crash occurrence, and provided this author with a 

sound reason to exclude the intersection-like crashes from the analysis. 

 

 

Figure 5-12: Proportions of ROR and non-ROR Intersection-like Crashes Relative to 

Total Segment Crash Proportions 
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Figure 5-13 shows the relative proportions after removing the intersection-like 

categories of crashes. Although the curve relative proportion of ROR crashes remains 

almost unchanged (about 110% of the corridor proportion), the proportion of non-ROR 

crashes is further reduced from around 90% to 80% of the corridor proportion.  

 

  

Figure 5-13: Expected Proportions of ROR and non-ROR Crashes Relative to Corridor 

Crashes, after Removing Intersection-like Crashes 

 

Finally, this author performed a second filtering of the crash data. Some of the 

crash records exhibited mile posts recorded as whole-numbers. At some 2-mile 

corridors, several crashes appeared concentrated at the exact-mile locations, a very 

unlikely trend from a statistical point of view. Since some of the exact mile posts were 

located within the boundaries of a few study curves, this author faced the problem of 

discerning “round-up” mileposts from those that were truly located at exact mile posts. 

Although high density clusters of crashes at exact mileposts were easily identified as 
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round-ups, and thus removed from the data set, such a distinction was not clear at 

locations with few crashes but with one or two crashes at exact mileposts. To overcome 

this difficulty, this author compared the on-site characteristics of the remaining crash 

records with exact mileposts (identified as “possibly curve located” at this point) to the 

records already identified as curve located.  

Because the site sample corresponds to a probability sample, this author expects 

that the geometry, signage and crash distributions observed from the sample are 

statistically representative of the regional average distributions (previous work by 

Avelar (2010) used this feature to characterize the road operations at curve sites in the 

western region of Oregon). Although the horizontal radius is a natural choice to 

compare the two sets of crashes, the number of possible curve located crashes was too 

small and the range of horizontal radii too wide to perform such a comparison. Instead, 

this researcher used the presence of advisory speeds and the two sets of crashes to 

create the contingency table shown in Table 5-2. 

 

Table 5-2: Number of Crashes by Location and Advisory Speed Sign Presence 

 With Advisory 

Speeds 

Without Advisory 

Speeds 

Grand 

Total 

Curve Located 71 47 118 

Possibly Curve Located 17 24 41 

Grand Total 88 71 159 

 

A Pearson’s chi-squared homogeneity test with Yates’ continuity correction 

yielded a test statistic of 3.5845 on 1 degree of freedom. This corresponds to a p-value 

of 0.058, which is mildly suggestive of heterogeneity among the variables in the table. 

This circumstance, in turn, suggests that including the sites with possibly imprecise 

mileposts may exacerbate the model bias when accounting for advisory-speed 

associated variables as predictors. It is clear that the distribution of crashes by presence 
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of advisory speed signs is different for crashes where milepost values were rounded to 

integer values. Because of this potential for furthering bias, this author did not include 

the 41 possible curves affected by this rounding in the subsequent analysis. This 

statistical test was performed on the statistical computing language R (The R 

Development Core Team, 2009). This author performed no further filtering of the data 

before proceeding to the statistical analysis. 

5.3. Robustness of Selected Model (Material Supplemental to Sections 

2.6 and 3.10 ) 

Subsection 5.3.1 is an extension of material already presented in section 3.10. 

Subsection 5.3.2 briefly presents an additional effort of this author to account for 

structural correlation in the response variable. This effort expands on what was already 

presented in section 2.6. Finally, subsection 5.3.3 presents a brief analysis and 

interpretation of the role of curve length in the model. This variable coefficient is 

anomalous at first sight, but this author found the apparent anomaly being unfounded 

after a closer look at its ramifications. This subsection expands on the concern of a 

reviewer of the second manuscript. 

5.3.1. Development of the Overall Goodness of Fit Test 

introduced in Section 3.10.2 

The test proposed in section 3.10.2 is based on the closed form of the probability 

function of number of sites, given a particular number of crashes. This is a formulation 

alternative to looking at the conditional distribution of crashes, given the covariates, 

which is a goodness of fit point of view based on the log-likelihood function from 

regression diagnostics. This alternative test was developed in order to avoid the 

requirement of assuming normality of the regression goodness-of-fit estimates, which 

relies on the law of large numbers. This formulation is justified precisely because the 

available validation sample can hardly be called ‘large enough’ (only 44 sites).  
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The marginal probability of the total number of crashes is required in order to 

determine the expected distribution of number of sites given a particular number of 

crashes in a sample of n sites. In order to arrive at the required distribution, this author 

first defined the available sample as a theoretical population of sites from which a 

census was obtained. Even under the assumption of a known population, the number of 

crashes would vary randomly if the sites were to be studied under the same conditions 

in subsequent occasions.  The distribution of the total number of crashes at this 

theoretical population would then be linked to the range of predictor variables. The total 

distribution would emerge through an aggregating function of all the conditional 

probabilities, as estimated through the regression model formulation.  

In the simple case of a bivariate joint distribution, the relationship to the 

marginal and conditional probabilities can be easily articulated as shown by Wackerly, 

Mendenhall and Scheaffer (2008). The fact that in this analysis such variables are also 

seen as a response/explanatory pair is merely incidental.  

Let the i-th observed realization of the vector of predictors  ⃗, from now defined 

as �⃗� , be mapped 1 to 1 to a scalar field Z. Even when the values of vector  ⃗ could be 

fixed at will, the realizations at hand depend on the characteristics of the sites in the 

sample (the population of this test), which were selected at random. Because of this 

feature, let Z be a random variable in the context of this test. This artifice allows a 

dimensionality reduction for the proposed test (a bivariate situation from this point on).  

Any functional form f(.) that maps  ⃗ over the domain of Z would be adequate at this 

point. The relationship that links the marginal, conditional and total probabilities of Y 

and Z is shown in Equation 5-1. 

 

Equation 5-1: Joint Probability Function as Related to the Marginal and Conditional 

Probabilities of Two Random Variables 

𝑃(𝑌     �⃗� )  𝑝   (𝑌     �⃗� )  𝑝 (    �⃗� )  𝑝(𝑌|    �⃗� ) 
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Where: 

 ⃗   = vector of predictors; 

�⃗�    = particular realization of the vector of predictors  ⃗; 

Y     = predicted variable; 

Z = scalar field, mapped from the observed 

realizations �⃗� of the vector of predictors  ⃗; 

       = link function between Z and �⃗�  

𝑝   (𝑌     �⃗� ) = joint probability of Y and Z; 

𝑝 (    �⃗� )  = marginal probability of Z; and 

𝑝(𝑌|    �⃗� ) = conditional probability of Y given Z. 

 

Let every realization of �⃗� be equally probable under the scheme of Equation 5-1. 

This is because the test is over the whole theoretical population, thus: 

𝑃 𝑆  𝑥 ⃗⃗⃗⃗         𝑖  𝑛 

Where S represents the total census of the population of available sites and n is 

the total number of sites in the theoretical population of sites. 

In this case, it may be assumed that the marginal sampling probability of a value 

of Z is simply 
 

 
 prior to obtaining the census data from the population. Additionally, let 

f(.), the link function between Z and the vector of predictors be the exponential function 

of the internal product  ⃗  ⃗, where  ⃗ is the vector of coefficients from Table 2-1. 

Incidentally, the relation   �̂�  is true in this case. The conditional probability of Y 

given Z is then simply a Poisson distribution with parameter equal to the predicted 

number of crashes, as of the GLM presented in chapter 2.  

Equation 5-2 shows the total joint probability function of Y and Z. This equation 

results from re-expressing Equation 5-1 as just discussed, using the relations: 

𝑝 (        ⃗ �⃗� )  
 

 
 , and  

 𝑝(𝑌|        ⃗ �⃗� ) 𝑃 𝑖𝑠𝑠 𝑛            ⃗ �⃗�  . 
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Equation 5-2: Joint Probability Function of y and  ⃗⃗  

𝑝 𝑌     (
 

𝑛
)  (𝑒        ⃗⃗⃗  ⃗   

      ⃗ �⃗�  

  
) 

Where: 

Y   = predicted variable; 

�⃗�  = a realization of the vector of predictors; 

 ⃗   = the vector of regression coefficients;  

Z  =       ⃗ �⃗� ; and 

n  = number of sites in the sample (test population). 

 

To perform a goodness-of-fit test, this author required 𝑝  𝑌    , the marginal 

probability of Y, be known. This marginal probability is obtained, by definition, when 

integrating over all the domain of Z, which to this point has been assumed as a scalar 

field only.  

Though in general defining 𝐷    holds for an infinite population of sites, in 

the particular case of this test, the population of Z is a fixed finite collection of values 

depending on the particular realizations of �⃗�, available from the sample at hand. Let the 

ordered Z variable be mapped 1:1 to an integer auxiliary variable W with domain 𝐷  

{  𝑖  𝑛|𝑖   }.  

If 𝑝   𝑊  is known, then, 𝑝  𝑌     ∫ 𝑝 𝑌 𝑊 𝑑𝑊
  

. Since W is a subset 

of subsequent integers, it follows that dW=1, so 

 ∫ 𝑝 𝑌 𝑊 𝑑𝑊
  

  𝑝   𝑊  
 
   . 

Since 𝑊 

   
↔   , it follows that, 

  𝑝   𝑊  
 
    =  𝑝      

 
     

After replacing       ( ⃗ 𝑥 ⃗⃗⃗⃗ ) in the above expression, and noting that 

𝐷 

   
↔ 𝐷 ⃗⃗, Equation 5-3 emerges as the marginal probability of Y in terms of the 

available realizations of the vector of covariates  ⃗. 
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Equation 5-3: Marginal Probability Function of Y 

𝑝  𝑌      𝑝(           ⃗ �⃗�  )

 

   

  ((
 

𝑛
)  (𝑒        ⃗⃗⃗  ⃗    

      ⃗ �⃗�  
 

  
))

 

   

 

 

Finally, this author performed a chi-squared goodness-of-fit test by comparing 

the observed frequencies of sites with different values of Y (number of crashes) to the 

expected frequencies as of Equation 5-3, assuming that the whole population of n is 

surveyed. Again, it is important to point out that repeatedly surveying the population 

would yield different results, but such results should align with the predicted values 

from Equation 5-3. 

The expected frequency of Y crashes is simply 𝑛  𝑝    , which can be 

translated into Equation 5-4 by use of Equation 5-3. 

 

Equation 5-4: Expected Frequency of Sites with “y” Crashes for a Set of Crash 

Realizations from the Available Sample 

  𝐹      (𝑒−(      ⃗⃗ �⃗�𝑖 )  
      ⃗⃗ �⃗�𝑖 

 

  
)

𝑛

𝑖  

 

Where: 

  𝐹     = Expected frequency of sites with y crashes. 

 

It is easy to show that Equation 5-4 is equivalent to Equation 3-7, as it was 

briefed in Chapter 3. 

Since Chapter 3 already showed the results of the proposed goodness-of-fit test 

applied to the OSU method validation sample (i.e. Table 3-1, with n=44), this section 
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concludes by demonstrating the application of the proposed test to the original sample 

of 210 sites. This result is shown in Table 5-3. 

As with the validation sample presented in section 3.10.2, there is no evidence 

that the observed distribution of sites by their observed crashes is statistically different 

from the expected distribution of sites by their predicted crash frequencies as of the 

proposed Poisson model. 

 

Table 5-3: Goodness-of-fit Test over the Whole Oregon Sample 

Crashes Observed  

Frequency 

Expected  

Frequency 
0 125 115.864 

1 48 49.149 

2 13 21.196 

3 6 10.248 

4 11 5.522 

5 3 3.172 

6 2 1.886 

>6 2 2.963 

Total 210 210 

 Chi-Squared Statistic 11.441 

 p-value 0.1205 

 

An additional, valid observation for Table 5-3 is that, as expected, it coincides 

with the computer output statistic (i.e. the residual deviance) in that both indicate a 

satisfactory goodness-of-fit to the data. In this case the residual deviance is based on a 

large sample (n=210) and thus this author concludes that the model is valid. 

Nevertheless, this result strengthens the case for the usefulness of the test developed in 

this subsection. 
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5.3.2. Assessing the Structural Correlation in the Response 

Variable (Complementary to Section 2.6)  

This section deals with a relevant issue this author recognized in the underlying 

structure of the data available for this research. A high correlation between the numbers 

of crashes from each pair of directions of travel emerges from the rough data because 

every curve site in the study comprises two directions of travel, and each pair contains 

relevant common factors (e.g. driving population, traffic volume, and horizontal radius) 

The use of univariate GLMs would be problematic if such correlation is substantial and 

beyond the explaining power of these statistical models. The assessment for this 

correlation was already summarized in section 2.6.1. This section presents supplemental 

tables and figures that were originally intended to be part of that section. 

Table 5-4 shows the correlation for the total sample of 105 pairs of crash counts, 

as well as the corresponding correlation between the pairs of expected number of 

crashes, as of the regression model.  

 

Table 5-4: Comparison of Sample and Parameter Correlations 

Correlation from paired 

Data 

0.698 

Correlation from paired 

Parameters 

0.926 

 

Although there is a high correlation between the predicted pairs of number of 

crashes, this author considers that the sample correlation does not compare directly to 

the correlation of the predicted parameters. The reason is that the sample counts should 

be understood as realizations of the theoretical Poisson distributions from the statistical 

model instead. This author considers that the correlation in the sample should be 
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compared to the distribution of correlations that arise from repeated realizations of the 

theoretical Poisson distributions, instead of comparing it to the raw Poisson parameters. 

A synthetic sample of such distribution of correlations was obtained by the 

technique of static simulation. Every replication consists of the overall correlation 

obtained from independently generated realizations of the 105 pairs of Poisson variables 

as of the statistical model. The simulation was replicated two hundred times. Figure 

5-14 represents a histogram of this distribution obtained from the synthetic sample. 

 

 

Figure 5-14:  Synthetic Sample of Paired-Sites Correlations for Independent Crash 

Realizations 

 

Figure 5-14 clearly suggests that a normal curve could roughly approximate this 

distribution. The researchers computed the corresponding parameters in order to assess 

the statistical significance of the correlation from the crash data. Table 5-5 shows the 

distribution parameters from the simulations, the actual sample statistic and the 

corresponding p-values (0.1838 2-sided, and 0.0919 1-sided). Additionally, this table 

provides an empirical p-value (0.0900), computed from the raw synthetic sample as the 
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proportion of simulated correlations that resulted in values more extreme than 0.698, the 

sample statistic. 

 

Table 5-5: Distribution of Paired-Sites Correlations for Independent Crash Realizations 

Mean 0.581 

Standard Deviation 0.088 

Sample Statistic 0.698 

Z-Statistic 1.3292 

2-sided p-value 0.1838 

1-sided p-value 0.0919 

Empirical p-value 0.0900 

 

From the results presented in Table 5-5, this researcher concludes that the 

correlation observed between the pairs of directions of travel in the sample is not 

atypical, and that it is reasonable to expect such a degree of correlation from pairs of 

truly independent Poisson variables with similar parameters, as of the regression model. 

5.3.3. Dealing with Functionally Linked Covariates: The Case of 

Curve Length Effect in the Proposed Model 

The statistical model for curve crashes proposed in this dissertation is useful as a 

predictive tool from the empirical side alone (as it demonstrated predictive power over a 

new set of sites). This author was initially not interested in interpreting variables other 

than those pertaining advisory speeds. However, if the model resonates with an 

underlying causal relationship, it should be robust beyond its fit to the data; in that case, 

variables related to geometry and exposure effects should behave as expected from the 

engineering standpoint. However, the complexity added by the interaction terms makes 

it more challenging to isolate such effects. Although this author never intended the 
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model for studying these variables, as said, such characterization was, in one instance, 

pointed out by a reviewer of the second manuscript: the effect of Curve Length.  

The statistical model presented in this dissertation was fitted over a wide range 

of curve lengths and angles (Curve length ranging from 44ft to1400ft, and angles from 

1.5 to 200 degrees). The coefficient in Table 2-1 corresponding to curve length is 

negative and statistically significant, a circumstance that seems to challenge the 

expectedly proportional effect of more crashes at larger curves, as many previous works 

have suggested. However, this author verified that curve length behaves as expected, 

although it may not be immediately apparent.  

The effect of curve length is not linear (i.e., not available as a single coefficient 

in the model), as will be demonstrated below, and thus the sign of ln(CurveLength) does 

not convey the entirety of the impact of this variable. 

Similar to when a model includes both a quadratic and a linear term for a 

particular variable, the impact of Curve Length is captured by two coefficient estimates. 

ln(CurveLength) obviously is one of them. However, the length of a curve can be 

obtained by simply multiplying Radius, Angle and a constant.  The units of curve length 

are the same as radius, and if the angle is given in radians (which is the case in the 

model), the required constant is simply 1.0. Therefore, the interaction between Radius 

and Angle, included in Equation 2-1, can be seen as either such an interaction of two 

geometric parameters, or as another avenue in which Curve Length affects crashes. 

Equation 2-1 can then be rewritten with two components including Curve Length: a 

transcendental term and a linear term:       𝐶𝑢𝑟𝑣𝑒𝐿𝑒𝑛𝑔𝑡ℎ     𝐶𝑢𝑟𝑣𝑒𝐿𝑒𝑛𝑔𝑡ℎ 

In order to extract the marginal effect of curve length, one requires taking the 

first derivative of this rewritten Equation with respect to curve length, which results in a 

marginal effect that is dependent on the curve length variable itself:  

 

 𝐶𝑢𝑟𝑣𝑒𝐿𝑒𝑛𝑔𝑡ℎ
 𝑙𝑛𝑌  

   
𝐶𝑢𝑟𝑣𝑒𝐿𝑒𝑛𝑔𝑡ℎ
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Although the sign of     is indeed negative (-0.956 from Equation 2-1), its 

partial impact decays as CurveLength increases, whereas the second positive coefficient 

remains unchanged (+0.002, from Equation 2-1). In fact, this overall functional form 

converges to a positive value (+0.002) becoming a linear effect on the log of crashes as 

the horizontal radius tends to infinity. In light of the marginal effect just described, and 

despite the model accounts for CurveLength as a “cut” in crashes from the “partial-

baseline number of crashes”, such a “cut” decreases and converges to an increment in 

crashes as the curve flattens and converges into a tangent section. Such a trend indicates 

a positive relationship between crashes and curve length, which is opposite to the 

conclusion that can be extracted when examining the sign of the ln(CurveLength) 

coefficient alone.  

 

 

Figure 5-15: Marginal Effect of Curve Length for Different Deflection Angles 

 

Figure 5-15 shows the marginal effect of curve length. A direct relationship 

between curve length and crashes is obvious. For any given radius, the marginal effect 

of curve length translates into more crashes at longer angles, which also means longer 
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curves (since the comparison is at any given radius). This can be verified by drawing a 

vertical line over Figure 5-15 and comparing the relative effects of the angles therein 

depicted. 

According to the described effect, the eventual change of sign into a positive 

effect is only delayed by the size of the angle, but it is inevitable as the horizontal curve 

flattens.  

5.4. Statistical Significance and Size of Effect of the ASCF and its 

Constituents 

Although the marginal effect of the variables involved in the ASCF were 

presented and discussed in chapter 2, this author deems it appropriate to present in this 

section the statistical significance of these marginal effects and a discussion of the 

ramifications. 

As a closure, the last two sub-sections in this section explore the size of the 

effect and the statistical significance of the ASCF as a joint function of ASD and SFD. 

5.4.1. Significance of the Marginal Effect of ASD 

Table 5-6 shows the marginal effect of the variable ASD for different levels of 

SFD. The standard errors were computed using a correspondent version of Equation 

A-3 (see Appendix A, p.166) applied to the final model selected for this work. 

Additionally, the statistical significance is shown in the last column.  

  



 

134 

 

 

 

Table 5-6:  Marginal Effect of ASD for Different Values of SFD 

SFD Marginal Coeff. Std. Err. z-stat p-value 

0.07 -0.015 0.022 -0.689 0.491 

0.14 -0.054 0.026 -2.100 0.036 

0.21 -0.092 0.033 -2.841 0.004 

0.28 -0.131 0.041 -3.194 0.001 

0.35 -0.170 0.050 -3.374 0.001 

0.42 -0.208 0.060 -3.473 0.001 

0.49 -0.247 0.070 -3.532 <0.001 

 

In this table, not only does the marginal effect of the ASD become more 

beneficial at higher levels of SFD, but it is statistically significant only for values of 

SFD larger than 0.14. This fact resonates with the trend of the OSU method to propose 

advisory speeds that are associated with larger SFDs. 

5.4.2. Significance of the Marginal Effect of SFD 

Analogous to Table 5-6, Table 5-7 shows the details of the marginal effect of 

SFD at different levels of ASD. The same trends described above are present in the case 

of this marginal effect: This trend demonstrates a beneficial effect (for ASD values 

larger than or equal to 10 mph), which improves for larger values of ASD; and a limited 

range for the statistical significance of said marginal effect (ASD values larger than or 

equal to 15 mph). 
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Table 5-7:  Marginal Effect of SFD for Different Values of ASD 

ASD Marginal Coeff. Std. Err. z-stat p-value 

5 3.035 1.818 1.669 0.095 

10 0.271 1.604 0.169 0.866 

15 -2.493 1.724 -1.446 0.148 

20 -5.257 2.124 -2.475 0.013 

25 -8.021 2.680 -2.993 0.003 

30 -10.785 3.315 -3.253 0.001 

35 -13.549 3.992 -3.394 0.001 

 

This author considers it important to point out some salient characteristics 

regarding this marginal effect. First, there is a big difference between the ASD level of 

5 mph and the other ASD levels. This resonates with the fact that an ASD of 5 mph 

corresponds to sites where advisory speed sign posting is not required, as opposed to the 

rest of ASD levels. The severely detrimental marginal effect of SFD at the 5 mph is 

associated with a mild statistical significance. Because Figure 3-2 shows that this ASD 

level had an ample range of SFDs (as nearly half the sites in the analysis did not exhibit 

advisory speeds) this author speculates that the effect of SFD is simply not meaningful 

at this level. In contrast, the poor statistical significance at an ASD level of 10 mph is 

probably due to a modest effect in combination of a small subset of sites available at 

this level. This is also shown in Figure 3-2. The rest of ASD levels exhibited SFD 

marginal effects in spite of similarly small subsets of sites; this is possibly due to the 

increasing size effect of the SFD marginal contribution to explain the overall crashes, as 

shown in the second column of Table 5-7 (i.e. decreasing values of the marginal effect, 

thus diverging from 1.0, the level at which the effect is null). 



 

136 

 

 

5.4.3. Effect Size of the ASCF Function 

This section explores the effect size and the trend of the ASCF as it is jointly 

determined by the SFD and the ASD. 

As demonstrated in the previous section, Table 5-8 clearly shows a contrast 

between the behaviours of the ASCF when the ASD is 5 mph and when the ASD is any 

other value.  

For ASD=5 mph, the ASCF increases with increasing SFD. The opposite is true 

for other ASD values. Since advisory speeds are present only when the ASD is larger 

than 5 mph, this author interprets the different behaviour of sites with ASD=5mph as a 

reflection of the hazardous case of sites not displaying advisory speeds but with 

dangerously large associated SFDs. In that case, the number of expected crashes 

increases as the SFD increases. 

 

Table 5-8: Advisory Speed Crash Factor Values 

 ASD (mph) 

5 10 15 20 25 30 35 

S
F

D
 

0.07 1.623 1.535 1.452 1.374 1.299 1.229 1.163 

0.14 2.059 1.440 1.007 0.704 0.493 0.345 0.241 

0.21 2.612 1.351 0.699 0.361 0.187 0.097 0.050 

0.28 3.313 1.267 0.485 0.185 0.071 0.027 0.010 

0.35 4.203 1.189 0.336 0.095 0.027 0.008 0.002 

 

On the other hand, whenever advisory speeds are present (ASD>5 mph), the 

ASCF makes the case for lower advisory speeds (larger ASDs) associated with higher 

SFDs. 
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Finally, the shaded boxes in Table 5-8 indicate the cases when the ASD is on the 

verge of being null (i.e. very close to being a multiplicative factor of 1.0). However, a 

better visualization of the shape of this surface is offered in Figure 2-5 and Figure 3-2. 

5.4.4. Statistical Significance of the ASCF Function  

To finalize section 5.4, this author provides a quick review of the statistical 

significance of the ASCF effect as jointly determined by the SFD and the ASD. 

The variance of a linear combination of two or more random variables (as the 

ASCF is) can be easily formulated from statistical theory (Wackerly, Mendenhall III, & 

Scheaffer, 2008). Specifically for three variables: 

𝑉 𝐴         𝐶     

𝐴  𝑉        𝑉     𝐶  𝑉     

  〈𝐴   𝐶 𝑣        𝐴 𝐶 𝐶 𝑣          𝐶 𝐶 𝑣       〉;  

which in the case of the ASCF translates into Equation 5-5. 

Equation 5-5: ASCF Variance Computation  

𝑉{𝐴𝑆𝐷      𝑆𝐹𝐷      𝐴𝑆𝐷 𝑆𝐹𝐷         }  

𝐴𝑆𝐷  𝑉       𝑆𝐹𝐷  𝑉       𝐴𝑆𝐷  𝑆𝐹𝐷  𝑉           

  〈𝐴𝑆𝐷 𝑆𝐹𝐷 𝐶 𝑣            𝐴𝑆𝐷  𝑆𝐹𝐷 𝐶 𝑣                

𝐴𝑆𝐷 𝑆𝐹𝐷  𝐶 𝑣               〉. 

 

It follows then that in order to compute the statistical significance of a particular 

realization of the ASCF, the covariance structure of the vector of estimates [

    
    

        

] 

is required. Such covariance structure is easily obtainable from the statistical modeling 

software (R Development Core Team, 2011). Table 5-9 shows the p-values 

corresponding to the values previously computed in Table 5-8 when tested under the 
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null hypothesis that ASCF=1.0, and based on the ASCF variance obtained from 

Equation 5-5.  

 

Table 5-9: P-values Associated with ASCF Values Shown in Table 5-8 

 ASD (mph) 

5 10 15 20 25 30 35 

S
F

D
 

0.07 0.035 0.193 0.397 0.568 0.698 0.795 0.869 

0.14 0.040 0.394 0.989 0.600 0.380 0.261 0.194 

0.21 0.044 0.577 0.589 0.216 0.094 0.049 0.030 

0.28 0.047 0.719 0.367 0.093 0.031 0.014 0.008 

0.35 0.050 0.825 0.252 0.049 0.014 0.006 0.003 

 

In the context of Table 5-9, a small p-value implies an ASCF value statistically 

different than 1.0. The shaded cells correspond to ASCF values that are not statistically 

different than 1.0 (at a 5% significance level), which is, in this author’s opinion, quite a 

large range. No advisory speed posted 10 mph below the speed limit, or associated with 

a SFD smaller than 0.14 is expected to have a clear and unequivocal ASCF effect, 

regardless of the expected size effect. In contrast, the ASCF should be distinct and easy 

to notice (i.e. with a statistically significant effect) at sites not displaying advisory 

speeds (i.e. ASD=5mph) and at sites for which the approximate relation ASD+ (10 x 

SFD) > 51 holds (i.e. roughly all other not-shaded cells in Table 5-9).  
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5.5. Validation test for the ASCF and Base sub-model partitions in 

the proposed Poisson Model 

During July 2011, this author collected a new random sample of sites from a 

database of state maintained rural highways. Because of limited funding and time 

constraints, the new sampling only included sites from Benton, Linn, Lincoln, Polk and 

Lane counties, the five located adjacent to each other and in western Oregon. All 61 

complete segments of highway in these counties were treated as clusters of different 

lengths, varying from 0.23 to 80.8 miles. The author performed a weighed random 

selection, considering both length and average distance from Corvallis, OR. A 

preliminary list of 21 clusters emerged from this effort. This author used road-view 

images available from Google.com to identify curves within the 21 segments. This 

author noted the advisory speed value or lack thereof and the geographic location of 

horizontal curves with a large enough length and small enough radius so that the 

horizontal alignment change would be obvious to drivers. After exhausting all 

segments, this author randomly ordered the list of segments and selected 44 sites. 

Grade, lane width, shoulder width, superelevation, curve length, relative location of 

warning and advisory speed signs, and site photographs were obtained at 3 points 

between the Point of Curvature (PC) and the Point of Tangency (PT) of each curve 

during field visits. The radius and AADTs were obtained from the ODOT reporting 

system and aerial photographs available online. Crash history was obtained by using 

reporting SQL code over available databases from years 2003 to 2007. 

Faced with a limited sample size, this author first assessed the overall goodness-

of-fit of the original statistical model to the newly collected data set by the procedure 

demonstrated in 5.3.1. However, in order to validate the ASCF effect, it would have 

been ideal to fit the whole model again on a new sample, so as to statistically compare 

the new coefficient estimates with the estimates in the original model. Regardless, this 

author expected insufficient statistical power to do so over a sample of only 44 sites 

because there are coefficients barely significant in the original model, even when that 
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model was fit over 210 sites. Unfortunately, this circumstance impedes the validation of 

particular ASCF coefficients via this ideal path. 

The alternative that this author deemed appropriate to address this setback is that 

of fitting a new Poisson GLM, so to assess the predicting power of both the ASCF sub-

model and the corresponding baseline of crashes sub-model, as predictors themselves in 

a new GLM formulation. The procedure shown in this section, the author expects, 

permitted him to at least validate the predictive power of the overall ASCF effect over a 

new but reduced sample of sites. 

The proposed ASCF validation is based on the premise that values from both the 

ASCF and baseline crashes sub-models (obtained using the coefficients of the model 

introduced in chapter 2) should exhibit predictive power over the crash history at the 

new sample. This validation, thus, only assesses the predictive power of the two sub-

models based on the statistical significance of their marginal contributions in a new 

regression model. 

Let 𝑌 𝑃 𝑖𝑠𝑠 𝑛           ( ⃗   ⃗) specify a model such as that of chapter 

2. Let  ⃗     and  ⃗     be a partition of the vector of predictors  ⃗. This partition is such 

that separates the covariates from both the sub-models of interest in this validation so 

that  ⃗  [
 ⃗    

 ⃗    

]. Then,        ⃗    
 
  ⃗      ⃗    

 
  ⃗     . 

In the context of the scheme shown above, it is obvious that, in general, 

 ⃗ 
 ̂
  ⃗   ⃗ 

 
  ⃗ 

̂
, since the components of  ⃗  are random variables but the 

components of  ⃗  are directly measurable or deterministically computed from the actual 

sites in the sample. 

If the sub-models 𝐴𝑆𝐶𝐹 ̂ and  𝑎𝑠�̂� are known for a new sample of sites, then let 

𝑌  𝑃 𝑖𝑠𝑠 𝑛             [   𝑠𝑒𝑡〈  ̂〉     𝐴𝑆𝐶𝐹 ̂      𝑎𝑠�̂�] be a new GLM 

formulation over the validation sample using the sub-models as predictors. In this case 
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   from the original model is carried out to the new model as an offset value and the 

estimation is performed without an intercept. 

This new modelling effort should provide evidence supporting the original 

model’s coefficients and their statistical significance as a surrogate to a more rigorous 

validation procedure in the face of a limited validation sample. Even when validating 

the original set of coefficients may prove challenging, this analysis should suffice in 

providing convincing evidence of the ASCF effect being statistically significant, given 

that the original model is valid beyond the modelling data set. That would be the case if, 

for example, the original model specification reasonably approximates the real 

underlying process to the crash generation, independently of the particular coefficient 

estimates originally obtained for the ASCF effect. 

When the sub-models stemming from the original model are used as predictors 

for another meta-model, and if they are approximately unbiased (as both the model and 

its validation meta-model are based on Oregon probability samples) then it is also 

expected that:                 because then:  

 (𝐴𝑆𝐶𝐹 ̂ )  𝐴𝑆𝐶𝐹       ( 𝑎𝑠𝑒 ̂ )   𝑎𝑠𝑒.  

Here, the terms ASCF and Base are parameters that were initially estimated 

when fitting the full model. These are the quantities to be verified using the new 

sample, under the hypothesis of an underlying set of prior parameters, common to both 

probability samples. 

If the validation sample is large enough, then the regression should provide 

evidence of the only two regression coefficients in this case (i.e.    and   ) not being 

statistically different than 1.0. If the initial modelling effect yielded meaningful 

estimates, one would expect that these new coefficients would be statistically different 

from zero. 
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5.5.1. Hypothesis Testing on Regression Output 

The test presented in chapter 3 and expanded in this section assumes that the 

validation model specification is correct, and that the standard errors are not inflated.  

This is not necessarily the case because normality is not necessarily achieved for 

Maximum Likelihood Estimation using a small data set (44 sites in this case). Because 

of this circumstance, p-values based off the standard normal distribution are expected to 

be inflated. However, this author verified that the correlation between the predictor 

variables ASCF and Base is -0.503, which in turn is expected to produce smaller 

standard errors compared to a regression of truly independent covariates.  

 

Table 5-10:  Poisson Regression Model for Validation over new Sample 

Term Estimate Standard 

Error 

z-value 2-sided 

p-value 

Significance
1 

ASCF 0.8182 0.3236 2.529 0.0115 * 

Base 1.2215 0.1318 9.271 < 2.0x10
-16

 *** 
1
Significance values are as follows: 

º  p<0.1; * p <  0.05; ** p <  0.01; and *** p < 0.001 

 

Residual Deviance: 54.812 on 42 degrees of freedom 

 

 

Proceeding as if these two circumstances balanced out, the simplest tests that 

can be performed are those directly using the information in Table 5-10.  

5.5.1.1. Expected value of the ASCF sub-model 

This procedure tests the significance of the ASCF as a predictor in the validation 

sample. Additionally, it is possible to specify a concrete alternative hypothesis, since a 

particular value is expected for the corresponding coefficient.  
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Specifically: 

            

            

By using,              and 𝑆𝑡𝑑  𝑟𝑟 𝑟                from Table 5-10, the 

results of this test are shown in Table 5-11. 

 

Table 5-11: Hypothesis Testing Results for the ASCF Sub-model 

Scope Ho: Phi= 0 Ha: Phi = 1 

ASCF  
Sub-Model 

Statistic Value 
1-sided 
p-value 

Statistic Value 
1-sided 
p-value  

Z statistic 2.529 0.0057 Z statistic -0.562 0.2830 

 

Based on the results in Table 5-11, this author rejects the hypothesis of a null 

ASCF sub-model. However, there is not enough statistical power to embrace the 

specific alternative hypothesis emerging from the expected values of the ASCF sub-

model as estimated from the first modelling effort. A type II error of 0.2830 means that 

the power of this test is 0.7170. This is the probability of rejecting the null hypothesis if 

the alternative hypothesis were true. Though is author considers this result offers mild 

evidence in favor of Ha, he speculates that a larger sample may strengthen the evidence 

in favor of the specific ASCF coefficients. 

5.5.1.2. Simultaneous testing of both sub-models 

Because the covariance structure is available from the validation regression 

model, it is possible to simultaneously test the significance of both sub-models by using 

the Hotelling’s T
2
 statistic, and under the assumption of bivariate normality. The 

corresponding variances of the coefficients are simply the squared standard errors from 
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Table 5-10. This author obtained the corresponding covariance of +0.0198 from the 

computer output. Results for the test are shown in Table 5-12. 

 

Table 5-12: Hypothesis Testing Results for Both Sub-models 

Scope Ho: Phi 1  =  Phi 2  =0 Ha: Phi 1  =  Phi 2  =1 

Both Sub- 
models 

Statistic Value p-value                     Statistic Value p-value                

Hotelling's T2 89.94 2.03x10-11 Hotelling's T2 5.11 0.084 

 

Based on the results of simultaneous testing both sub-models, this author rejects 

the hypothesis that both of them have null effects simultaneously. The alternative 

hypothesis of the coefficients being simultaneously equal to 1 may be embraced with 

moderate statistical evidence, yet satisfactory to this author. A p-value of 0.084 

associated with a type-II error implies that the statistical power of this test is 0.916, 

which represent a moderate probability of rejecting the null hypothesis (as it was the 

case) if the alternative hypothesis is in fact true. 

This author speculates that among the reasons why this validation effort yields 

statistically significant results over a rather small sample is the fact that the estimation 

was performed over only two variables. Such variables also happen to be very dense in 

information regarding crash occurrence, as they are computed from a model with 

significant coefficients. These coefficients, in turn, are based on a probability sample of 

Oregon roads.  
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6. General Conclusions and Recommendations 

This chapter consists of two subsections: A set of conclusions and 

recommendations with their corresponding rationale from this author, and a summary 

on how the research questions stated in Chapter 1 were addressed by this work. 

6.1. Conclusions, Recommendations and their Rationale 

This work proposes and develops two new engineering tools to determine 

advisory speeds for horizontal curves. The proposed tools are expected to improve upon 

current practices, as the analysis of the data available from the state of Oregon 

suggested. The first tool is a fully computational posting method named the Oregon 

State University (OSU) method; the second tool is a BBI based posting methodology 

coined the Hybrid-OSU method. This research shows that both of these methods result 

in more consistent advisory speeds, thus sensibly improving upon the results from the 

ubiquitous traditional BBI methodology. Because of their improved results and easy 

applicability, this author deems the proposed tools sensible contributions to the 

transportation community, particularly to practitioners and local jurisdictions.  

The engineering tools developed in this work are based on the concept of the 

optimal advisory speed as derived from the Advisory Speed Crash Factor (ASCF) 

formulation. The optimal speed is the speed anticipated to minimize the number of 

crashes. Developing these tools was possible because the functional form of the ASCF 

is convex at the feasible domain of advisory speeds and speed limits, as well as it 

exhibits a local extreme value in this domain. Both these characteristics are the 

conditions of local optimality of advisory speeds. This research showed that these 

conditions are satisfied for virtually every 2-lane, 2-way rural road scenario. 

This author recommends, first and foremost, the Oregon adoption of the OSU 

posting method, as it has been shown to produce more consistent advisory speeds, and it 

also translates to the larger expected reduction in number of crashes at curve locations. 

However, this author recognizes that some jurisdictions may be reluctant to adopt a 
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computational approach to determine advisory speeds at this time, especially because of 

the availability of equipment such as the Ball-Bank Indicator (BBI) and crews already 

proficient in their use. In those cases this author recommends that the BBI be used as 

outlined for the Hybrid OSU method, instead of the traditional methodology. This 

research demonstrated that there is a sensible consistency improvement when using the 

BBI with the Hybrid OSU method, though the results are not as consistent as those 

expected from the OSU method, its computational counterpart. 

The Hybrid OSU method is also recommended as a transitional alternative prior 

to fully adopting the computational OSU method. This author expects that 

computational methods would be more appealing as road inventories become more 

reliable and easily accessible. In any case, based on the information at hand, this author 

recommends the implementation of the proposed methods at 2-lane, 2-way rural roads 

in Oregon only because of the geographic scope of the data used to develop and test 

these procedures.  

Though these procedures may be already adequate for other jurisdictions, as 

suggested by the close performance of their resulting speeds to those stemming from the 

nationally accepted MUTCD guidelines, this author recommends a calibration to local 

conditions before implementing these methods outside of Oregon. 

This author coded the two proposed posting methods into a self-explaining 

spreadsheet as a supplement to this dissertation. By making it publicly available, this 

author expects this spreadsheet to help in the process of adoption of the proposed 

procedures by any jurisdiction that so desires. However, the spreadsheet is provided as 

is, with no promise of future updates.   

 

§ 
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The basis of the engineering tools hereby proposed is a statistical analysis that 

focused on characterizing the relationship between crashes and curve site 

characteristics, including advisory speed signs, among other factors. The statistical 

model from the analysis included a sub-model for the effect of the advisory speed, 

which this author named the Advisory Speed Crash Factor, or ASCF. This sub-model 

convincingly links advisory speeds to a safety enhancement, thus justifying the practice 

of posting these signs.  

Not only was the ASCF sub-model statistically significant, there also is a 

plausible Human Factors interpretation of its constituent elements: the Advisory Speed 

Differential (ASD) and the Side Friction Demand (SFD). According to this 

interpretation, advisory speeds enhance safety to the extent that they convey 

information about the severity of the horizontal curve immediately downstream and to 

the extent that this information is accurate and meaningful to the driving population. 

Even so, the safety enhancement could be relatively diluted for advisory speeds that are 

either too high or too low. In addition, the author concurs with the stance of previous 

researchers that inconsistency is an issue that very likely claims a toll on the safety 

associated with these signs. The methodologies proposed in this work are expected to be 

more consistent and also associated with a balanced Side Friction Demand. 

In hindsight, from the standpoint of the statistical modelling effort, this author 

considers the inherent inconsistency exhibited by currently posted advisory speeds as an 

advantage rather than a liability for the research effort. The range used to estimate the 

ASCF response surface is considerably expanded as a direct result of this inconsistency. 

For instance, Figure 3-2 shows that the scatter of currently posted advisory speeds is the 

most appropriate to estimate the two ‘hills’ that take off around both the ASD and SFD 

axes. If, for example, the posted speeds available from the sample would have been 

those of the MUTCD method, the statistical estimation of the ‘hill’ that climbs over the 

ASD axis then would have been inadequate. This is because no points from the 
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MUTCD set of speeds fall in this area of the surface, as some of the currently posted 

speeds do. 

 

§ 

 

The use of a model that incorporates multiple interaction terms, as well as the 

use of expectedly correlated covariates, may impose on this work the burden of an 

increased degree of criticism. This criticism was evidenced by a handful of reviewers of 

the first and second manuscripts who expressed concerns about interactions and 

multicollinearity. Even so, this author deems the use of such a model decisive to arrive 

at a meaningful ASCF function. The use of correlated covariates was necessary in order 

to simultaneously include variables that the literature has documented to exert an effect 

on curve safety. Not including any of these variables would have resulted in what is 

known as Omitted Variable Bias. That is the case of Radius and Curve length. 

Additionally, the use of interactions among some covariates ultimately provided the 

ASCF function with the flexibility to account for both speed differential and side 

friction demand as the joint determinants of advisory speed safety rather than an 

average effect captured by a single rate coefficient.  

However, the use of interacting terms also increases the complexity of 

interpreting effects of variables in the traditional sense (i.e. their marginal effect on the 

number of crashes). For instance, the apparent contradicting sign of the curve length 

coefficient was pointed out by one of the reviewers of the second manuscript. Yet, 

Section 5.3.3 shows that regardless of the sign of this coefficient, the ultimate behaviour 

of this variable is as expected: more crashes at longer curves. That section also 

demonstrates that the discordant negative sign even changes into positive as the curve 

flattens into a tangent section. 

In general, the model assumptions are satisfactorily met. In this respect, the 

author was initially concerned about treating both directions of travel from every site as 
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independent points when fitting a univariate Generalized Linear Model, because of the 

paired-structure to the data that this practice overlooks. However, this author tested the 

degree of correlation in such data structure and found that it can be satisfactorily 

explained by the communalities in covariates exhibited by each pair, as it was shown in 

the first manuscript and expanded in section 5.2. Additionally, Appendix B shows an 

exploratory modelling effort this author performed by fitting a statistical model with a 

bivariate Poisson response, which is a more complex parameterization, but that 

explicitly accounts for the correlation between directions of travel in question. Although 

this modelling effort showed that there is an information quality improvement when 

using Bivariate Poisson models, thus making the residual correlation meaningful, the 

actual estimates of the paired-sites covariance provided statistically insignificant results. 

Even for the best fitting parameterization of the BV Poisson model exhibiting 

significant drop in the AIC statistic, a Bootstraps Estimation showed all coefficients in 

the covariance term were statistically insignificant. Because of the ‘Ockhams 

Rasiermesser’ principle, this author embraces the univariate Poisson specification as a 

better, more parsimonious alternative to carry this work upon. However, the use of BV 

Poisson models remains a viable and attractive option to further study of the subject of 

curve safety. 

This author concludes that the model specification that yields the ASCF function 

is a robust basis to develop the proposed engineering methodologies. Repeated 

adequacy testing of different aspects of the model showed convincing results to this 

author. The model covariates behave as expected, even in the cases where abnormality 

was apparent. Finally, a validation analysis rejected the hypothesis of a null ASCF 

effect, which points out the thesis of a safety effect of advisory speed signs, as outlined 

in this work. However, a mild statistical power in the validation analysis provides but 

suggestive evidence in favor of the alternative hypothesis of the underlying effect being 

distinctly characterized by the best available ASCF coefficients estimates. 
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§ 

 

As just mentioned, the validation analysis verified the significance of both the 

model for total crashes and the ASCF sub-model for the effect of advisory speeds. 

However, the statistical power of this validation was convincing for the full model but 

only just satisfactory for the ASCF sub-model. Although the current analysis rejects the 

hypothesis of a null ASCF effect, if the estimated ASCF coefficients are indeed the true 

parameters, a statistical power of 71.7% for this test means that if the validation analysis 

were to be repeated multiple times on a Sampling Space of samples of 44-sites, the null 

hypothesis would be rejected only 28.3% of the time. Under the assumption of a true 

ASCF effect, this author concludes that a sample of 44 sites is still associated with some 

degree of uncertainty in order to validate the ASCF sub-model coefficients. An obvious 

way to reduce this uncertainty would be to increase the sample size for the validation; 

unfortunately, such a measure is beyond the scope and timeframe of this work.  

This author recommends a new validation of the sub-model over a larger sample 

of sites. This author believes that the insights from Table 5-9 discussed in section 5.4.4 

may provide the basis for a more efficient validation of the ASCF than the effort 

presented in Chapter 3. A validation analysis using a new sample of sites with abundant 

number of sites with statistically significant ASCF effect may prove a more powerful 

test without the need of significantly increasing the sample size. However, with the 

intent of assuring an increased statistical power, this author recommends the use of this 

targeted sample strategy still in combination with an increased sample size. 

Though this author recommends a new validation of the sub-model over a larger 

sample of sites, he also embraces the hypothesis of a true ASCF effect regardless. This 

endorsement is justified as follows:  

First, this dissertation demonstrates, through comparisons of posting procedures, 

that those procedures with more consistent advisory speeds are also those with the best 

safety performance as of the ASCF. The literature cites numerous efforts that maintain 
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that inconsistent and conservative advisory speeds may explain the wide lack of 

adherence from drivers to these signs, to a large extent. This author strongly agrees with 

that premise. In that regard, both ASCF-based posting methods, proposed in this work, 

result in advisory speeds that are more consistent and associated with larger SFDs.  

Second, this author considers that although the ASCF emerges from a modelling 

effort that started with many candidate parameterizations for the safety of advisory 

speeds, the selected functional form emerged from the simultaneous inclusion of two 

terms and their interaction in the larger model, all of which terms were incorporated in 

contest with other candidate parameterizations at the latest stage of the model selection. 

Nevertheless, the resulting bi-linear polynomial incidentally involves all of the key 

components that are used in the practice to determine advisory speeds. Not only are all 

the relevant variables involved, but their behavior, interrelationship and performance 

resonates with the guiding principles of almost 80 years of engineering practice. In this 

regard, the Human Factors implications of the ASCF and their relation to the dynamics 

of negotiating a horizontal curve, as articulated throughout this dissertation, are 

convincing and satisfactory to the author. 

Third and finally, it is interesting that the expected performance of the speeds 

based on the proposed optimal advisory speed concept closely approximates the 

performance of the updated MUTCD guidelines. This was so even when optimal speeds 

were derived from the ASCF estimate obtained from a set of sites characterized by the 

conservative historic Oregon policy. This point is demonstrated in the second 

manuscript. This author argues that the fact that the optimal advisory speed correlates 

more with the advisory speed from the current MUTCD guidelines could be explained 

by the actuality of an underlying optimal advisory speed, a value that has been 

approached on the one hand empirically by the subsequent updates of MUTCD posting 

thresholds, and on the other, by the safety analysis presented in this work. 

 

§ 
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Despite his recommendation of further verifying the actuality of the ASCF 

function, this author argues that the specific engineering applications proposed in this 

work represent a sensible contribution to the state of the practice, even in the 

hypothetical case that further research does not find evidence in favor of the actuality of 

the ASCF effect. Both the OSU and Hybrid OSU methods result in more consistent 

advisory speeds (i.e. less variability in their SFDs), which is per se a significant safety 

benefit when compared to the state of the practice. This fact was verified beyond the 

modelling data set (i.e. state maintained sites) as both proposed methods were applied to 

a large independent data set of county maintained sites. This evaluation verified not 

only the expected improvement in consistency of the fully computational OSU method 

but also confirmed the expected, though more modest, consistency improvement 

associated with the Hybrid OSU method. 

 

§ 

 

As mentioned before, this author looks forward to further work on this topic. 

Research coming from the areas of safety performance, Human Factors, and road 

operations should produce evidence in favor of the actuality of the safety effect of 

advisory speeds. This author recognizes that the statistical analysis in this dissertation is 

but an early attempt to characterize the relationship of advisory speed signs and crash 

occurrence. This characterization, along with the engineering tools also developed in 

this dissertation, are the most current developments on the safety implications of 

advisory speeds, to the extent of this author’s knowledge. Independent verification 

efforts of the functional form, of independently developed alternative formulations, as 

well as the transferability of the function and the adequacy of the proposed engineering 

tools to other states and jurisdictions, are still to be explored. 
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6.2. Research Questions Addressed 

This section finalizes the conclusions and recommendations by outlining how 

the research questions were successfully addressed: 

Research Question 1: 

1. After accounting for other relevant factors with known safety effects, is 

there a safety benefit associated with the use of advisory speed warning signs?  

 

This work convincingly suggests that there is a safety benefit associated with 

posted advisory speed signs. Chapter 2 in this dissertation develops a statistical model 

based on an Oregon probability sample. From this model, many associations between 

safety and advisory speed signs become apparent: (1) the presence of these signs plays a 

significant role in shifting the safety effect of relevant geometric parameters –radius and 

deflection angle- via statistically significant interactions in the model; (2) not only does 

the presence of advisory speed signs influence the safety effects of other variables, but 

also the speed that they display has a safety association, in conjunction with the 

regulatory speed. This work accounted for this association on the variable introduced as 

the Advisory Speed Differential (ASD). The marginal effect of this variable at sites with 

explicitly posted advisory speeds clearly differs from that of the sites not displaying the 

signs (as Figure 2-2 shows); (3) the side friction demand (i.e. the SFD variable) 

associated with an advisory speed exhibits a statistically significant marginal effect on 

safety (shown in Figure 2-3); and (4) the statistical interaction between the ASD and the 

SFD, in conjunction with their constituent coefficients, jointly describe how both the 

advisory speed sign (or the lack thereof) and its associated SFD affect the horizontal 

curve safety. When these safety associations were observed for a large set of sites (i.e. 

Figure 2-6) it became obvious that the practice of posting advisory speed signs is 

associated with a safety benefit. 
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Research Question 2: 

Is [the safety benefit] dependent of the advisory speed value displayed in these 

signs?  

This work convincingly suggests that it is. As discussed in answering the 

previous research question, the safety benefit depends on the difference between the 

regulatory speed limit and the advisory speed, as well as on the side friction demand 

associated, which is itself a function of the actual advisory speed. 

 

 

Research Question 3: 

1. Is this benefit also dependent on the criteria that were used to determine 

the advisory speed? 

 

This work convincingly suggests that the safety benefit of these signs depends 

on the posting criteria. Different posting criteria determine advisory speeds based on 

limiting the side friction factors associated with a range of values that would prevent 

vehicles from departing their travel lane. Since this research found that the safety 

benefit of these signs significantly associates with the corresponding side friction 

demand, it is expected that different criteria would have different safety performance in 

general. Particularly, this work showed that the performance may become marginal if 

posting criteria leans toward either excessively permissive or excessively prohibitive 

side friction values. 
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Research Question 4: 

How robust is the evidence in favor of such a safety benefit? 

 

This work puts forward convincing evidence that the newfound safety benefit 

exists, but the evidence in favor of the particular quantification of such a safety benefit 

is not as strong. This dissertation presents various pieces of evidence in favor of the 

existence of said safety benefit. Because this body of evidence proceeds from different 

directions and proved self-consistent, this work constitutes a robust case for the safety 

benefit of advisory speeds.  

The main pieces of evidence in this dissertation are the two different validation 

analyses shown in chapter 3 and chapter 4. The validation effort in chapter 3  showed 

statistical significance of the ASCF function on a new and independent set of curve 

sites, which represents convincing evidence against the hypothesis of a ‘null’ ASCF 

effect (formally shown in the first half of Table 5-11). Furthermore, the validation effort 

for the Hybrid OSU method shown in chapter 4 verified the predicted safety trends of 

different posting methods in yet another set of independent sites (i.e. 90 curve sites at 

county-maintained roads). This constitutes additional evidence that the proposed ASCF 

formulation is not specific to the original data set in the modelling effort, but rather, it 

transcends the sample at hand. All this evidence jointly put forward the thesis that the 

ASCF estimates an underlying effect, inherent to a larger set of curve sites in Oregon’s 

two-lane, two-way rural highways. 

However, the validation effort in chapter 3 also shows that the best estimates 

available for the ASCF parameters may still differ from said underlying effect (i.e. mild 

statistical power for the alternative hypothesis shown in the second half of Table 5-11). 

This author confidently concludes that the evidence for a safety benefit is robust, 

but more evidence is necessary in order to increase the confidence in the actual 

magnitude of such safety benefit. 
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Research Question 5: 

2. Is it possible and feasible to determine an advisory speed value such that it 

will yield maximum safety benefit? 

 

Given the evidence provided in this work, such estimation is possible and 

feasible. Chapters 3 and 4 in this dissertation propose specific methodologies that are 

based precisely on the principle of maximizing the safety benefit that may be expected 

from the posted advisory speeds. 
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Appendix A. .  

Appendix A. Computing the Marginal Effect of an Interacting 

Variable in a Regression Model 
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This Appendix demonstrates the details of how to obtain the marginal effect of a 

variable with a constituent term and also involved in an interaction term in a regression 

model. In this section, this author uses an early version of the final model presented in 

this work. In that early version, the variable for the horizontal radius was involved only 

in one interaction with another variable. That is not the case for the final model, where 

the horizontal radius interacts with several other variables. The purpose of this exercise 

is to exemplify the interpretation of a marginal effect from the model as discussed in 

chapter 2, where this procedure is implied in order to obtain the marginal effects of the 

ASD and SFD components of the ASCF.  Equation A-1 shows the horizontal radius 

terms in the early model. The complete parameterization in the early model is shown in 

Table A-1.  

 

Equation A-1: Early Model Terms that Included Horizontal Radius 

{       𝑅𝑎𝑑𝑖𝑢𝑠 −        𝐴𝑑𝑣𝑆𝑝𝑑𝑃𝑟𝑒𝑠𝑒𝑛𝑡  𝑅𝑎𝑑𝑖𝑢𝑠 } 

 

The total effect of the horizontal radius is contained in the two terms shown in Equation 

A-1. In order to find the marginal effect of the horizontal radius, one needs to know if 

there is an advisory speed present in the curve. If it is not so, then the marginal effect of 

horizontal radius is simply the main constituent coefficient (+0.0004, because the 

interaction coefficient is multiplied by AdvSpdPresent, zero in this case). The statistical 

significance in this case is given simply by a measure of the coefficient estimate (p-

value of 0.1603, as of Table A-1). 

The model suggests then that the effect of the horizontal radius at locations 

without advisory speeds is an increase of crashes (a positive coefficient 

AdvSpdPresent=0), and that such increase is proportional to the magnitude of the 

horizontal radius. This is counter intuitive with what one would expect. However, such 

an increase of crashes is statistically insignificant. So, for practical purposes, there is no 

sufficient statistical evidence in the model of such an adverse effect. 
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Table A-1: Early Version of Poisson Regression Model for Crash Data 

Term Estimate Standard 

Error 

z-value p-value Signi-

ficance 

(Intercept) -3.678 0.692 -5.314 1.07x10
-7

 *** 

AADT 5.097x10
-4

 6.399x10
-5

 7.966 1.64x10
-15

 *** 

AADT:HigherAADT -4.578x10
-4

 9.134x10
-5

 -5.011 5.41x10
-15

 *** 

HigherAADT 2.007 0.678 2.960 0.003 ** 

Radius 4.430x10
-4

 3.172x10
-4

 1.396 0.163  

Radius:AdvSpdPresent -4.459x10
-3

 1.052x10
-3

 -4.237 2.26x10
-5

 *** 

AdvSpdPresent 4.644 0.745 6.237 4.47x10
-10

 *** 

CurveLength:AdvSpdPresent -2.557x10
-3

 6.965x10
-4

 -3.671 2.42x10
-4 

*** 

CurveLength 8.485x10
-4

 3.170x10
-4

 2.677 7.431x10
-3 

** 

SFD 7.711 2.381 3.239 1.198x10
-3 

** 

ASD:SFD -0.863 0.201 -4.152 3.300x10
-5

 *** 

ASD 4.926x10
-2

 2.594x10
-2

 1.899 5.760x10
-2 

 

LowAdv -1.301 0.504 -2.584 9.759x10
-3 

*** 

 

In the case advisory speed signs are present, however, the marginal effect of 

horizontal radius would result from a composite coefficient (+0.0004 - 0.0045, the last 

factor resulting from substituting AdvSpdPresent=1 for this case). So, in the case of 

locations with posted advisory speeds, the effect of horizontal radius is a decrease in the 

number of crashes (a negative coefficient when AdvSpdPresent=1) and such decrease is 

proportional to the horizontal radius. The general trend of this effect is in the way 

expected (more crashes at sharper curves), but such an effect would appear relevant if 

its statistical significance becomes convincingly high from the model, converse to the 
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irrelevant effect of radius when there is no advisory speed present. The computation of 

a p-value of this marginal effect is slightly more complicated, however. For the Poisson 

regression generalized linear model, the canonical link function is the natural logarithm. 

Defining z=ln(y), where y is the number of crashes, the regression model may be 

expressed as of Equation A-2. 

 

Equation A-2: General Multiplicative Interactive Regression Model 

𝑧                                           , 

 

Where: 

z = natural logarithm of y; 

y = Number of Crashes; 

   = i-th explanatory variable; and 

   = j-th regression coefficient. 

 

The marginal effect of x1 may be obtained easily by taking the first partial 

derivative with respect to x1:  
  

   
         . This is a linear combination of two 

random variables,    and   , the first with coefficient 1 and the other with coefficient 

X2. The variance for this linear combination is then given by Equation A-3: 

 

Equation A-3: Variance for the Marginal Effect of a Single Variable in a Multiplicative 

Interactive Model 

𝑉 (
 𝑧

 𝑥 
)  𝑉         

  𝑉            𝐶 𝑣        
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Where: 

V(.)  = denotes the variance of the variable in the parenthesis; and 

Cov(. , . ) = denotes the covariance of the two quantities in parenthesis. 

 

The computation of such a variance requires that the covariance structure among 

the regression coefficients be known. The required covariance matrix may be easily 

obtained from most available statistical analysis packages. Table A-2 shows the 

intermediate results for the calculation based on Equation A-3.  

This table shows an inversely proportional effect, as expected, of the horizontal 

curve radius on the crash frequency (determined by the negative value). But more 

importantly, such effect is statistically significant (p-value of 0.00011). 

 

Table A-2: Radius Effect at Sites with Posted Advisory Speeds 

Radius effect when AdvSpPresent=1 (β
 
 β

 
    ) -0.00402 

Variance of Radius Coefficient (V(     1.006x10
-07

 

Variance of Radius:AdvSpPresent Interaction (     ) 1.108x10
-6

 

Covariance of Radius and Radius:AdvSpPresent Interaction 

(            
 

-1.350x10
-8

 

Standard Error for Radius Marginal Effect 0.0011 

z-value -3.695 

p-value 0.00011 

 

A complete interpretation of the marginal effect of the horizontal radius may 

now be crafted.  Using the radius partial effects at both possible levels of the variable 

AdvSpdPresent, the model predicts, with statistical significance, fewer crashes at curves 

with larger radii, but only at curves displaying advisory speed plaques (p-value of 
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0.00011). The model shows an opposite effect at curves without advisory speed 

plaques, at least in its mathematical form; but the model provides only narrow statistical 

evidence of such a counterintuitive effect (p-value of 0.1603). 

It is important to notice that the just computed marginal effect of horizontal 

radius is not yet an independent effect. The total number of crashes is affected when 

AdvSpdPresent changes from 0 to 1. This change occurs because there is a single 

constituent coefficient for the variable AdvSpdPresent, as of Table A-1. Furthermore, in 

addition to shifting the baseline number of crashes, the presence of advisory speed 

plaques interacts with the curve length variable as well in this model. Such interaction 

should be interpreted as a conditioning of the effect of the curve length to both levels of 

the variable AdvSpdPresent.  

Additionally, it is important to notice that the complete mathematical form of 

the sub-model that captures the joint effect of radius, curve length and the presence of 

advisory speed plaques, as of this early model, is that of a trilinear polynomial in the 

statistical model. Although mathematically feasible, this author did not establish the 

detailed intricacies of this tri-linear interpolant polynomial because it diverges from the 

main focus of this work. 
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Appendix B. . 

Appendix B. Explicit Treatment of Structural Correlation in the 

Data by use of a Bivariate Poisson Model 
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In this appendix, this author explored a bivariate Poisson parameterization as a 

way to assess to which extent deeming the structural correlation in the data may have 

affected the statistical modelling effort this dissertation bases upon.  

B.1. The Bivariate Poisson Specification 

Karlis and Ntzoufras (2005) developed a maximum likelihood estimation 

procedure for bivariate Poisson models. The authors developed a computational 

package for the statistical analysis software R, which implements an Expected-

Maximization (EM) iterative algorithm to perform the estimation. 

In this model specification, the response variable is a vector: [
𝑌 
𝑌 
], where the 

sub-indexes correspond to the direction of curvature. This author stipulated so in order 

to provide some sense of order to the vector, and to explore the effect of the direction of 

travel. The direction of travel, however, did not prove a significant piece of information. 

Instead of single parameter estimation such that 𝑌 𝑃 𝑖𝑠𝑠 𝑛   , the bivariate 

Poisson model can be specified as a vector response whose distribution depends on 

three parameters: [
𝑌 
𝑌 
]  𝑉 𝑃 𝑖𝑠𝑠 𝑛            

 

This specification is such that: 

𝑌  𝑃 𝑖𝑠𝑠 𝑛            𝑌  𝑃 𝑖𝑠𝑠 𝑛        

Where: 

    𝐶 𝑣 𝑌  𝑌  . 

 

The parameter    is then a direct measure of the codependence between the 

crash counts from two directions of travel in a single site. 
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Marginally, the parameterization of each of the three parameters is similar to 

that of a GLM Poisson model: 

        ⃗ 
 
   
⃗⃗⃗⃗⃗  

        ⃗  
 
   
⃗⃗⃗⃗⃗  

        ⃗   
 
   
⃗⃗⃗⃗⃗  

 

B.2. Performance of Alternative Bivariate Specifications 

By use of the R library developed by Karlis and Ntzoufras (2005), this author 

fitted various alternative BV Poisson models, after reordering the data into 105 curve 

sites with all the covariates conforming a single vector per site. It is important to point 

out that the data was originally broken down into 210 directions of travel in order to 

parameterize univariate Poisson and NB2 regression models as described in chapter 2. 

Since this exploration of alternative specifications is a supplement to the main body of 

this dissertation, this author only explored five basic specifications of bivariate response 

models:  

1. A Double Poisson model with the same structure for    and    and shared 

coefficients. This specification assumes a null covariance between the 

components of the response vector, namely     . This specification 

yielded, as expected, the same coefficients and same AIC as obtained from 

the simpler GLM version discussed in Appendix A (i.e. AIC of 440.59). The 

13 coefficients are exactly the same shown in Table A-1. 

2. A Double Poisson model with independent coefficient sets for    and   , 

still specifying     . The AIC increased very significantly (450.79), which 
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indicates that nearly doubling the parameters (from 13 to 21) steeply 

decreases the quality of information in the model. 

3. A simple bivariate Poisson model with the same structure and shared 

coefficients for    and   . In this case,    was subject to estimating a flat 

value only. Although there is a significant improvement in the AIC (drops 

from the reference point 440.59 to 438.41), which means that    is a 

significant addition in terms of quality of information, an actual covariance 

between directions of travel of           seems to this author a 

scientifically insignificant value.  Even when there is an improvement in 

information quality, the actual value of the covariance corresponds to an 

average correlation of 0.2824 (as computed from all the realizations of the 

three BV Poisson parameters available in the sample). The corresponding 

standard deviation is, however, 0.2431, which makes it statistically 

insignificant. 

4. A more complex bivariate Poisson model with same structure and shared 

coefficients for    and   , but parameterizing    as: 

                     𝑅𝑎𝑑𝑖𝑢𝑠         𝐶𝑢𝑟𝑣𝑒𝐿𝑒𝑛𝑔𝑡ℎ  

This parameterization was selected because these variables are common to 

both directions of travel. The AIC dropped to (435.06), but in an attempt to 

reduce duplicity of information in the model specification, this author 

attempted various permutations of removing these two variables from    and 

  , resulting the best model the one without Radius but still including 

CurveLength in    and   . In this specification, both said variables were 

kept in   . The corresponding AIC was (434.00). 

5. A complex bivariate Poisson model resulting from some empirical model 

selection. This author considered such a parameterization of interest, so to 

assess the extent to which parameterizing    could be associated with a gain 
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in information quality of the model. Both    and   , were kept as in the 

previous bivariate model. The best parameterization for    was then: 

                     𝑅𝑎𝑑𝑖𝑢𝑠         𝐶𝑢𝑟𝑣𝑒𝐿𝑒𝑛𝑔𝑡ℎ 

        𝐴𝑑𝑣𝑆𝑝𝑃𝑟𝑒𝑠𝑒𝑛𝑡         𝐴𝑑𝑣𝑆𝑝𝑃𝑟𝑒𝑠𝑒𝑛𝑡  𝑅𝑎𝑑𝑖𝑢𝑠

        𝐴𝑑𝑣𝑆𝑝𝑃𝑟𝑒𝑠𝑒𝑛𝑡  𝐶𝑢𝑟𝑣𝑒𝐿𝑒𝑛𝑔𝑡ℎ   

This parameterization yielded an AIC value of 420.92, a very good return at 

the cost of estimating 20 parameters instead of 13 of the nested univariate 

model.  

Finally, a bootstrap estimation was performed over the best BV Poisson model, 

in order to shed some light on the aspect of statistical significance. Unfortunately, 

obtaining p-values for the estimates is not as simple as in the case of GLM 

specifications.  

The bootstrap procedure consists on re-sampling from the available data set and 

estimating all the regression coefficients every time. Statistics can be computed from 

the results. In such a way, this author performed 200 re-sampling replications from the 

105 pairs of curve directions in the data set. P-values were obtained from the standard 

normal distribution, as the sample size confidently allows the required assumption of 

normality. The significance of the coefficients parameterizing     and    were 

comparable to the significance of the corresponding coefficients from the univariate 

model. However, all coefficients parameterizing    resulted statistically insignificant 

(where the smallest p-value was 0.8689 for the CurveLenght variable). This resonates 

with the observation in chapter 2 that after accounting for communalities, the 

unexplained residual correlation can be considered insignificant.  

Table B-1 shows a comparison of the ASCF coefficients for different model 

specifications. The ASCF estimation appears relatively resilient to the more complex 

bivariate Poisson specification.  
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Table B-1: ASCF Coefficients and AICs for Different Model Specifications 

 ASD SFD SFD:ASD AIC 

Early Poisson Model 0.0493 7.7115 -0.8625 440.59 

Simple BV Poisson Model 0.0476 9.5066 -0.9923 438.41 

Best BV Poisson Model 0.0406 9.3679 -1.0981 420.92 

Final Poisson Model 

(Including more 

covariates) 

0.0240 5.7993 -0.5532 424.85 

 

The only set of coefficients that appears significantly different is that from the 

final Poisson model. Such coefficients suggests that the inclusion of additional 

covariates made the ASCF effect less pronounced (i.e. smaller ASD and SFD 

constituent coefficients) and it made its marginal effect more independent (i.e. smaller 

SFD:ASD interaction coefficient). 

From this exploratory analysis, this author concludes that not much can be 

gained in terms of better ASCF estimates or statistically significant effects of other 

variables when using the BV Poisson specification, especially if one compares the 

similar AICs of the best BV Poisson model and the Final Poisson Model, though such a 

comparison is not necessarily appropriate. The mean structure in the final Poisson 

Model was not tested by using the BV Poisson specification, which this is a critical 

difference, given that the latest structure includes the deflection angle and the lane 

width as new covariates. This latest mean structure also changes the mathematical form 

of the curve length, now associated with two coefficients. Because of these reasons, this 

author recommends that future work related to this topic explores alternative 

parameterizations for the mean. 

Regardless, the use of the BV Poisson specification unnecessarily complicates, 

in this author’s opinion, the process of obtaining the statistical significance of the 
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coefficients by techniques such as jackknife, CV, and bootstrap estimation. These 

techniques are significantly more costly in terms of computational power, coding 

efforts, preparation of the data, and processing times. However, the significant drop in 

AIC (from 440.59 to 420.92) associated with the best available BV Poisson 

specification makes it a very promising alternative for future works modelling 

horizontal curve safety. This author speculates that the BV Poisson specification may 

provide an even larger entropy reduction if the most recent specification for the 

univariate Poisson model (i.e. the one presented in chapter 2) were to be used instead of 

the early version shown in this section. 

 



 

 

 

 


