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Abstract: 

 

The portability and reduced price of unmanned aerial systems (UAS) in recent years has led to a broad 

range of new UAS-enabled scientific inquiries, including for forestry. Small, consumer-grade UAS are 

advantageous for forest measurements due to their portability, ease and safety of deployment, and 

notably, they are currently the only remote sensing technology capable of measuring both individual 

seedlings and individual mature trees from above. Light detection and ranging (lidar) sensors have been 

increasingly used in forestry research over the past few decades as well, and now models exist which can 

be integrated with UAS for tree mensuration. Computer vision software known as structure from motion 

(SfM) can be used to produce analogous data to those produced by lidar, known as point clouds, from 

still images taken from UAS. The goal of this dissertation is to examine how to use point cloud data to 

augment tree level estimates for forest inventory. To cover a broad range of dimensional values defining 

a forest, two different stages in the life cycle of the stand were investigated, the seedling stage, and the 

mature stage which precedes harvest. For analyzing seedlings, the first manuscript (second chapter) in 

this dissertation used UAS and multispectral sensors to produce point clouds of southwestern white pine 



seedlings in common garden boxes. Here, a methodology is presented for estimating seedling sizes from 

SfM reconstructions and using them to improve the predictive power of seedling size models along with 

ground measurements from the previous year. Also, I make recommendations for how common garden 

designs can be designed so as to lengthen the duration of useful UAS surveys. Finally, I present a 

seedling size variable that performs well both as a predictor and as a response, the product of seedling 

height and diameter at root collar, or longitudinal area. To address the mature stage of the trees, the 

second manuscript (third chapter) compared the performance of three platforms that vary greatly in cost, 

ease of operation, and data processing requirements. One of the platforms was identical to the UAS used 

in the first manuscript, one was a lidar carried by a larger UAS (UALS), and one was a ground based 

mobile lidar scanner (MLS). The UAS produced SfM height estimates that were comparable to those by 

the UALS, though they tended to be underestimates due to smoothing of the SfM reconstruction. Both 

the UALS and MLS platforms produced sufficient stem returns to locate a majority of the tree stems in 

the scene, while none could be located from the UAS. Using data from the MLS and the UALS, I 

showed that using the stem near the base of the crown or the treetop to estimate lean will produce 

different lean estimates and contend that the MLS is the best platform for estimating the lean of the 

stems. In the third and final manuscript (fourth chapter), I compared two methods for estimating stem 

lean from the MLS data. The more conservative lean estimate, which involves using the horizontal 

distance between the top and bottom of the merchantable portion of the stem, was included as a predictor 

to improve the fit of existing nonlinear stem taper and volume equations. The results suggest that trees 

that lean as little as 2° should be modeled differently than those which are vertical. Also, substituting 

other diameters higher on the stems for DBH impacts the fit of the models for leaning trees differently 

than for vertical ones, such that leaning trees seem to have a narrower range of optimal diameter heights. 

As a whole, my dissertation supports the usage of UAS and MLS to improve the quality and efficiency 

of remotely measuring single seedlings or mature trees forest inventory, while also identifying major 

limitations of the technology and recommending strategies to contend with them. 
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1. Introduction  

 

Small unmanned aircraft systems (UAS) have now become quite prevalent in the commercial 

sector. As the technology has grown more sophisticated, the UASs have also become more portable and 

less expensive. The portability and reduced price have led to a broad range of new UAS-enabled 

scientific inquiries, including for forestry. As forestry evolved from stand level management to 

individual trees – multiple services approaches, so the measurements changed. In the case of single-tree 

measurements, UAS can achieve greater spatial resolution than manned aircraft flights, so more precise 

measurements of mature trees can be attained. Because UAS can fly more frequently and at lower 

altitude than manned aircraft, they are less sensitive to temporal and weather constraints. Most UAS are 

equipped with GNSS and autopilot computers that allow for pre-programmed flight missions. 

Furthermore, UAS imagery can be sufficiently resolute (sub-centimeter) for detection and measurement 

of small individual seedlings, making the UAS the only remote sensing platform economically feasible 

of conducting single tree measurements of trees of all sizes. Finally, the lack of a pilot onboard the 

aircraft lowers the risk of serious bodily harm to the operator collecting data with UAS compared to 

manned aircraft. 

It has been a little over a decade since small, low cost (under $5000) UAS platforms were 

identified as having wide ranging potential in forestry, including fire monitoring, site inspection, and 

research (Grenzdörffer et al., 2008). More recently, commercial UAS have become available with 

lightweight sensors capable of capturing visible , near-infrared, and thermal wavelengths (Wing et al., 

2014). In addition to UAS and sensor technology, the development of structure from motion (SfM) 

digital photogrammetry software has led to the birth of high resolution remote sensing of vegetation 

(Dandois and Ellis, 2010). The products of SfM photogrammetry include digital elevation models 

(DEM), orthophotos, and photogrammetric point clouds. The extraction of dense point cloud data from 
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digital images acquired with UAS dates back to 2011, though the data were not sufficiently resolute to 

extract single tree measurements at the time (Tao et al., 2011). Since then, all of the major components 

of UAS have improved dramatically, including the aircraft, sensors, onboard computers, and 

postprocessing software. Currently, UASs are capable of producing impressively resolute products that 

are of great value to natural science research, including sub-centimeter DEM outputs (Verma and 

Bourke, 2019), and a wide range of single-tree applications with varying degrees of success (Iglhaut et 

al., 2019). 

Decades before UAS were used in forestry, a soviet scientist and his colleagues pioneered the 

use of lasers to measure individual trees. They did so by first felling a tree, then compared tape 

measurements with laser profile estimates (Solodukhin et al., 1976). Subsequently, the same apparatus 

was mounted on an airplane and trees were profiled from above (Solodukhin et al., 1977). In the 1980’s 

other studies used similar approaches to acquire laser profiles of trees in North American forests (Aldred 

and Bonner, 1985; Nelson et al., 1984), including some which estimated forest measurements from the 

profile data (Maclean and Krabill, 1986; Maclean and Martin, 1984). It wasn’t until the 1990’s that 

modern lidar systems were created, which include a GNSS receiver and an inertial measurement unit 

(IMU) in conjunction with a laser rangefinder. The term inertial navigation system (INS) is used to 

describe the combination of IMU and an integrated computer. When INS and GNSS are used together, 

they enhance one another and can provide accurate estimates of the position (i.e., easting, northing, and 

altitude) and orientation (i.e., roll, pitch, and yaw) of the sensor using Kalman filtering (Leondes, 1970). 

Manned aircraft equipped with downward facing lidar scanners are commonly known also as airborne 

laser scanners (ALS). The first studies to utilize this technology in forestry mainly approached tree size 

estimates at the stand level,  including mean tree height (Means et al., 2000; Naesset, 1997a; Nilsson, 

1996), total basal area (Means et al., 2000), and total volume (Means et al., 2000; Naesset, 1997b). 

Single tree measurements, as opposed to stand or plot level estimates,  from lidar point clouds were first 
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described by Hyyppä (Hyyppa, 1999; Hyyppa et al., 2001), and others (Brandtberg, 1999; Ziegler et al., 

2000) around the turn of the millennium.  

The introduction of UAS equipped with lidar, henceforth referred to as unmanned airborne laser 

scanners (UALS), by Jaakkola et al. (2010) marks the convergence of UAS and lidar technologies from a 

forestry research standpoint. Soon after, Wallace et al., (2012a) demonstrated a system intended for 

obtaining single tree estimates for forest inventory; namely, tree location, height, and crown width. In the 

same year, Wallace et al. (2012b)  showed that UALS can also be effective for detecting changes in 

forests over time. More recently, studies have compared point clouds from UALS with photogrammetric 

point clouds from UAS imagery, and there has been a general consensus that while UALS is capable of 

providing more accurate estimates, UAS used in conjunction with SfM are a useful, less expensive 

alternative (Guerra-Hernández et al., 2018; Moe et al., 2020; Wallace et al., 2016). 

The life of a commercially grown coniferous tree begins with the seedling stage, where prior to 

planting the seedlings are kept in controlled environments, and are most susceptible to frost (O’Neill et 

al., 2000) and disease (Bloomberg, 1971). At this stage, while this dissertation was in progress, 

publications emerged showing that UAS are capable of detecting seedlings in a regeneration setting, 

(Feduck et al., 2018), and accurately counting them in plantations (Green and Burkhart, 2020; Quiros et 

al., 2018). However, prior to this work, no other studies have produced single seedling measurements 

from UAS.  For research, seedlings are often grown in common gardens, which are plantings of 

individual trees in a common environment that allow economically feasible factorial comparisons of the 

phenotypic traits (e.g. growth rates, phenology, and drought tolerance) across or within source 

populations. Common garden experiments are useful tools for identifying populations which are 

genetically adept at coping with the major threats that a species faces. Comparisons may contain a suite 

of variables, not excluding hypotheses relating to how altered or changing environments affects the 

performance of populations (White et al., 2007). Scientific interest in common gardens experiments has 

increased among researchers focused on adaptation to climate change (Goodrich et al., 2018; Oleksyn et 
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al., 1998; Shaw and Etterson, 2012). When common garden designs are used in forest investigations, 

dimensional variables, such as height, stem diameter, and crown diameter, are typically measured by 

hand, which is physically demanding and time consuming. Due to rapid growth of seedlings, their 

measurement should be conducted more frequently than with mature trees, which is not feasible in some 

cases due to the expense of obtaining the data. However, UAS can be deployed as often as necessary to 

capture the development of the seedlings accurately. 

The goal of my dissertation is to examine how to use point cloud data to augment tree level 

estimates for forest inventory. Therefore, I have investigated two different stages in the life of a stand, 

before planting and before the regeneration harvests. In the second chapter, I focused on the initial stage 

of a stand by surveying a common garden experiment, whereas in the third and fourth chapters, a thinned 

stand represented a forest ecosystem ready to be replaced through harvesting. To investigate the initial 

stage of a stand, a small UAS was used to describe 150 seedlings grown together in a common garden, 

then I developed a procedure for estimating seedling sizes using a combination of digital 

photogrammetry and image processing, which is described in Chapter 2. For the maturity stage 

component of my research, a similar UAS was used to reconstruct a mature Douglas Fir stand located in 

the OSU- McDonald Dunn research forest. The UAS information was complemented with data acquired 

with two lidar platforms. One platform consisted of a larger UAS (UALS) equipped with a light lidar 

sensor, Velodyne Puck LITE, and one was a pickup truck equipped with heavier lidar sensor, Velodyne 

VLP 64E (MLS). In Chapter 3, I compared the overlapping digital 3D reconstructions produced from the 

three platforms in terms of locating the positions of treetops and tree stems. Furthermore, using the 

estimated positions I assessed the magnitude and direction of lean. I found that, due to its vantage point 

and sensor orientation, the MLS was better suited to assess the mature stems in detail compared to the 

other two platforms. In Chapter 4, I compared two methods for estimating stem lean from the MLS data. 

The more conservative lean estimate, which involves using the horizontal distance between the top and 

bottom of the merchantable portion of the stem, was included as a predictor to improve the fit of existing 
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nonlinear stem taper and volume equations. As a whole, my dissertation supports the usage of UAS and 

MLS to improve the quality and efficiency of remotely measuring single seedlings or mature trees forest 

inventory, while also identifying major limitations of the technology and recommending strategies to 

contend with them. 
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Abstract:  

 
In forestry, common garden experiments traditionally require manual measurements and visual 

inspections. Unmanned aircraft systems (UAS) are a newer method of monitoring plants that are 

potentially more efficient than traditional techniques. This study had two objectives: to assess the size 

and mortality of Pinus strobiformis seedlings using UAS, and to predict the second-year seedling size 

using manual measurements from the first year and from UAS size estimates. Raised boxes containing 

150 seedlings were surveyed twice, one year apart, using multispectral UAS. Seedling heights and 

diameters at root collar (DRC) were measured manually both years. We found that size estimates made 

using a vegetation mask were suitable predictors for size, while spectral indices were not. Furthermore, 

we provided evidence that inclusion of UAS size estimates as predictors improves the fit of the models. 

Our study suggests that common variables used in forest monitoring are not necessarily best suited for 

seedlings. Therefore, we created a new variable, called the longitudinal area (height x DRC), which 

proved to be a significant predictor for both height and DRC. Finally, we demonstrate that seedling 

mortality can be effectively measured from remotely sensed data, which is useful for common gardens as 

well as regeneration studies. 

 

Keywords:  UAS, Common Garden, Multispectral, Pinus, SfM 
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2.1. Introduction 

Southwestern white pine (Pinus strobiformis, SWWP) is a five-needle pine indigenous to the 

southwestern U.S. and Mexico. Climate change is predicted to cause SWWP populations to contract and 

shift northwards (Sáenz-Romero et al., 2010; Seager et al., 2007; Shirk et al., 2018; Williams et al., 

2013). The predicted alteration of its geographic extent suggests that SWWP could be used as an 

indicator species to monitor climate change impacts. Additionally, SWWP is threatened by the non-

native tree disease called white pine blister rust, caused by the fungal pathogen, Cronartium ribicola 

(Fairweather and Geils, 2011), which could also reduce its range. Forest management such as natural 

regeneration stimulation or augmentation by artificial regeneration may be necessary to ensure the future 

of SWWP given the combined peril of climate change and disease (Goodrich and Waring, 2017; 

Schoettle et al., 2018). 

Common gardens are plantings of individual trees in a common environment that allow 

economically feasible factorial comparisons of the phenotypic traits (e.g. growth rates, phenology, and 

drought tolerance) from single or multiple source populations (Goodrich et al. 2018; Patterson et al. 

2019). Common garden experiments are useful tools for identifying populations which are genetically 

adept at coping with the major threats that a species faces. Comparisons may contain a suite of variables, 

not excluding hypotheses relating to how altered or changing environments affects the performance of 

populations (White et al., 2007). Scientific interest in common garden experiments has increased among 

researchers focused on adaptation to climate change (Goodrich et al., 2018; Oleksyn et al., 1998; Shaw 

and Etterson, 2012). When common garden designs are used in forest investigations, dimensional 

variables, such as height, stem diameter, and crown diameter, are typically measured by hand, which is 

physically demanding and time consuming (Oleksyn et al., 1998; Valladares and Sánchez-Gómez, 

2006). Directly monitoring physiological processes of individual plants (e.g., leaf water potential or 

stomatal conductance) requires sophisticated equipment in addition to the extensive time required for 
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measurements. Therefore, it is impractical to measure many individual trees at once (Van de Peer et al., 

2018).  

Existing models to predict conifer seedling growth are often based on physical variables, namely 

seedling height, diameter, and slenderness (seedling height divided by diameter at a preset height, 

usually at root collar). For mature trees, stem height growth is directly related to aboveground tree 

production, and stem diameter growth relates well to overall annual tree growth (Ryan and Yoder, 1997). 

Diameter measured at root collar (DRC) was shown to be positively correlated with root growth 

potential in Pinus palustris seedlings grown in different types of containers (South et al., 2005). Seedling 

slenderness calculated using height divided by DRC was shown to be correlated with light intensity and 

maternal tree characteristics for Pinus thunbergii (Mao et al., 2014). 

Low-cost unmanned aircraft systems (UAS) are now available and can carry a variety of sensors 

capable of capturing visible (red, green, and blue), near-infrared, and thermal wavelengths (Wing et al., 

2014). The use of UAS to estimate various tree attributes has many advantages compared to the use of 

manned aircraft, including high resolution and accuracy, reduced costs, temporal flexibility, and pilot 

safety (Banu et al., 2016). In fact, the lower resolution that is commonly supplied by manned aircraft are 

prohibitive for remotely detecting seedlings, whereas UAS have been shown effective for detecting 

conifer seedlings (Feduck et al., 2018). For instance, point clouds created using structure from motion 

(SfM) to digitally estimate 3D structures from 2D imagery can be used to accurately measure trees for a 

variety of forestry analyses, including research (Tang and Shao, 2015), inventory (Puliti et al., 2015), 

and post-harvest inspection (Puliti et al., 2018). A good summary of current forestry applications of UAS 

in Europe, including forest mensuration, species classification, fire monitoring, and disease mapping was 

written by Torresan et al., (2017). Orthophotos from UAS imagery have been proven effective for 

detecting the locations of small conifer seedlings using only spectral information (Feduck et al., 2018). 

Also, seedling mortality has been accurately detected using UAS in a reforestation plantation setting 

(i.e., spaced farther apart than in common gardens) (Gil-Docampo et al., 2020). With sufficient coverage 

and resolution, these photogrammetric remote sensing techniques are presumably also suitable for 
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estimating size and mortality of individual seedlings in common gardens. If proven effective in common 

gardens, UAS-based seedling survey techniques could also be applied to silvicultural operations such as 

natural regeneration surveys (Goodbody et al., 2018). 

Data collection with UAS can be more rapid and less expensive than traditional common garden 

measurement methods. Because common garden measurement needs are often related to tree size, UAS 

could be used to provide valuable supplementary data to these studies. Therefore, this study had two 

objectives: first, to assess the size and mortality of Pinus strobiformis seedlings using UAS, and second, 

to predict the second-year seedling size using manual measurements from the first year and UAS size 

estimates from both years. 

2.2.  Methods 

2.2.1. Background and Data Collection 

A common garden experiment was planted in October 2015 at The Arboretum at Flagstaff, 

Arizona, USA, located about 15 km southwest of the City of Flagstaff. One-year-old SWWP seedlings 

were planted in a nine by nine grid arrangement in wooden raised bed boxes, measuring 0.61 m tall × 

1.22 m × 1.22 m wide. The planting media was 50% basic Cornell soil mix, consisting of 1-part 

sphagnum peat moss, 1-part horticultural perlite and 1-part coarse vermiculite, and 50% cinders, for 

aeration.  

Seedling DRC and seedling height to base of terminal bud (height) were measured by hand, 

along with other seedling traits. For this study, two bed boxes were used, and two sets of ground-based 

measurements taken approximately one year apart: May 18, 2017 and June 2, 2018. The DRC was 

measured with 0.01 mm precision and the seedling height with 1 mm precision.  Visual observations of 

seedling mortality revealed that 15 of the 150 seedlings (10%) planted in 2017 had died by 2018. 

Additionally, six seedlings, all located on the north edges of the boxes, were undistinguishable from 

adjacent weeds in the imagery. Both, the dead and the undistinguishable seedlings were omitted from 

growth prediction models, which left a total of 129 seedlings for modeling.  
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To acquire the remotely sensed data, we used a UAS consisting from a DJI Phantom 4 retrofitted 

to carry a Micasense Rededge© multispectral sensor (Table 1). The common garden boxes were imaged 

by manually piloting the UAS twice (June 30, 2017, and June 25, 2018) in a grid pattern 15 meters 

above the ground with sensors programmed to capture images once per second.  Nearby obstructions, 

such as trees and tall fence, made automated grid missions infeasible for this scene. The small size of the 

area that included both boxes (~10m2) meant that we could obtain the necessary imagery at low altitude 

with minimal variation between flight missions across years. Weather conditions were favorable for data 

collection: clear skies (clouds less than 10%), light variable winds (speed less than 5 m/s), and 

satisfactory temperatures (28.2 and 28.6°C for 2017 and 2018, respectively). Flights were approximately 

5 minutes long per platform and were conducted within 30 minutes of solar noon (i.e., around 12:30 pm 

both years). 

Table 2-1: Characteristics of the UAS used to image common garden boxes near Flagstaff, Arizona, USA in 2017 

and 2018. 

Quadcopter Airframe DJI Phantom 4 

Sensor Model Micasense Rededge 

Wavelength center/bandwidth (nm) 475/20  560/20  668/10  717/10  840/40 

Focal Length (mm) 5.5 

Imager Size (mm) 4.8 x 3.6 

Sensor Resolution (pixels) 1280 x 960 

Pixel Size (µm) 3.75 

Altitude AGL (m) 15 

GSD @ nadir (cm/pixel) 1.02 

 

2.2.2. Image Preprocessing 

To ensure compatibility among repeated flights, the UAS imagery was radiometrically corrected, 

converting from raw 16-bit digital number values to reflectance (%). This was performed using pre- and 

post-flight images of the Micasense calibrated reflectance panel based on an empirical line method (Tu 

et al., 2018; Whiteside and Bartolo, 2016). Radiometrically corrected multispectral images were used to 

create digital 3D reconstructions via Agisoft Photoscan© (Agisoft, 2017). Agisoft Photoscan© uses 

structure from motion (Westoby et al., 2012) and the geolocation data registered during image 
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acquisition to create photogrammetric point clouds, orthophotos, and digital elevation models. The 

workflow we used followed the recommendations of Rossi et al. (2012) and Turner et al. (2014), tailored 

to our research, namely photo alignment was executed using at most 100,000 and 40,000 key and tie 

points, respectively, and the box corners were used as Ground Control Points (GCPs). The resulting 

mosaic was scaled using the known dimensions of the boxes (x, y, z). Final geo-referencing root-mean-

square errors (RMSE) of the 2017 and 2018 dataset GCPs were 1.1 cm and 1.8 cm, respectively for 

horizontal plane, whereas for the vertical plane the scaling RMSEs were 5.1 cm and 4.7 cm for 2017 and 

2018, respectively. The 5-band orthophoto and photogrammetric DEM were exported from Photoscan as 

geotiff files (Ritter and Ruth 1997) at the highest possible resolutions, which were 0.88 x 0.88 cm and 

0.92 x 0.92 cm for 2017 and 2018, respectively. Using the reflectance values from the red (663-673 nm) 

(𝑅𝑅𝑒𝑑) and near infrared (820-860 nm) (𝑅𝑁𝑒𝑎𝑟 𝐼𝑅) bands from the orthophoto, the normalized difference 

vegetation index (NDVI) (Rouse Jr et al., 1974) was calculated as follows:  

NDVI = 
𝑅𝑁𝑒𝑎𝑟 𝐼𝑅−𝑅𝑅𝑒𝑑

𝑅𝑁𝑒𝑎𝑟 𝐼𝑅+𝑅𝑅𝑒𝑑
     (1) 

Using the reflectance from the red edge band (𝑅𝑅𝑒𝑑 𝐸𝑑𝑔𝑒) the red edge chlorophyll index (RECI) (Gitelson, 

2005) was calculated as follows: 

𝑅𝐸𝐶𝐼 =  
𝑅𝑁𝑒𝑎𝑟 𝐼𝑅

𝑅𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
− 1      (2) 

All data were referenced to NAD83 (2011) 2010.00, with coordinates in the UTM zone 12N 

projection (EPSG:26912). Due to positional errors in the GPS locations stored in the image metadata, the 

reconstructions of the boxes from 2017 and 2018 were not initially aligned with one another. However, 

we coregistered the orthophoto from 2018 to the one from 2017 using the corners of the boxes (8 in 

total) as reference points and an affine transformation, which led to a final registration error of 0.8 cm. 

Image coregistration was performed using QGIS (QGIS Development Team, 2015). 

2.2.3. Point Cloud Processing 

The photogrammetric point clouds were exported from Photoscan and stored in ASPRS LAS 

format (Board, 2008). To coregister the point cloud data, we segmented the points within the boxes, then 
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aligned the boxes individually across years. To do this, we first aligned the box centers visually, then 

used points on the underside of the cloud near the box corners to perform an affine transformation. The 

final RMSE for the point cloud coregistrations were 1.8 cm and 2.3 cm for box 1 and box 2, respectively. 

However, some of the error is due to changes in the seedlings, so it is not necessarily a good indication 

of the true spatial alignment of the point clouds. Visually, the seedling locations within the boxes 

appeared to be well aligned following this procedure, which we accomplished using Cloudcompare 

(Girardeau-Montaut, 2015). Despite the data collection and preprocessing being identical, the raw point 

clouds from the 2017 imagery were nearly 4 times as dense as those from 2018. Though there was a 

large difference in point density, there was not a discernable difference in the detail of the seedling 

crown shapes across the years (Figure 2-1), which is unsurprising considering that even the lowest 

resolution cloud had in excess of 22 points/cm2 (Table 2). 

 

 

Figure 2-1: Rendering of point clouds of seedlings growing in two common garden boxes created using structure 

from motion photogrammetry. The clouds are colored according to height value (z) from purple (low) to gold 

(high). Clouds on the top row are from 2017 imagery, and clouds on the bottom row are from 2018 imagery. 
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Table 2-2: Point cloud statistics within common garden boxes created using structure from motion 

photogrammetry. 

Year Box Points Points/cm2 Ground Points /cm2 

2017 1 166,804 93.87 74.02 

2017 2 172,664 98.85 46.42 

2018 1 54,426 28.83 18.96 

2018 2 39,069 22.84 13.62 

 

To detect the ground within the boxes, we used a progressive morphological filter with a 

window size of 8 cm x 8 cm and a threshold of 0.5 cm (Zhang et al., 2003). The values we chose to 

parameterize the ground filter were derived by trial-and-error but resulted in ground points being 

relatively uniformly distributed across the boxes for all point clouds (Figure 2-2). 

Ground points were used to create a digital terrain model (DTM) (Figure 2-3), which 

subsequently provided point cloud normalization (i.e., subtracting the ground elevation from all points). 

From the normalized clouds we created a canopy height model (CHM) (Figure 2-4). The DTMs and 

CHMs were created with 1cm2 spatial resolution, which was selected for being the closest integer to the 

DEM resolution (0.88 cm and 0.92 cm for 2017 and 2018, respectively). Point cloud processing tasks 

were carried out using the R packages “raster” and “lidR” (Hijmans and Van Etten, 2014; Roussel, 

2017). Because the seedlings were larger in the second year, ground visibility was decreased. A lack of 

ground returns results in holes in the DTM, therefore, we used a depression filling algorithm (Planchon 

and Darboux, 2002) to remove the holes left by the seedlings. 

 

A. 

B. 

B. 
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Figure 2-2 Point clouds of common garden boxes viewed from above showing classification of ground (orange) 

and non-ground (green). The clouds from 2018 (bottom) were several times less dense in terms of points/cm2 than 

the clouds from 2017, which caused them to look less bright in the rendering. 

 

Figure 2-3 Digital terrain models (DTM) for the two common garden boxes in the study created from UAV flights 

in 2017 (top) and 2018 (bottom). The scale bars show elevation above mean sea level (m). 
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Figure 2-4: Canopy height models (CHM) for the two common garden boxes in the study created from UAV flights 

in 2017 (top) and 2018 (bottom). The scale bars show height above ground (cm) 

2.2.4. Seedling Size Estimation 

To measure the seedlings, first we delineated the vegetation from the ground, which was 

achieved by creating vegetation masks for the 2017 and 2018 orthophotos. To create the masks, 

maximum likelihood supervised classifications with no added threshold (Jia and Richards, 1994) were 

performed separately for each year, using the NDVI and RECI layers as inputs. The training data for the 

classifiers consisted of ten polygons, each 12 pixels or larger, for three cover classes: seedlings, ground, 

and artificial material. Following the classification, we extracted the pixels that were classified as 

seedling, then vectorized them such that the contiguous seedling pixels formed polygons. At this stage, 

the plants had been effectively segmented from the background, but several crowns overlapped. In the 

cases where the crowns overlapped, we separated them visually. The masking process was accomplished 

using QGIS (QGIS Development Team, 2015), the QGIS semi-automatic classification plugin (SCP) 



17 

(Congedo, 2016), and the system for automated geoscientific analyses (SAGA) software (Conrad et al., 

2015). 

 

Figure 2-5: Vegetation mask vectors superimposed over NDVI from multispectral imagery of common garden 

boxes in 2017 (top) and 2018 (bottom). Circular plant crown vectors are shown in green. 

Once the mask was created, we used it along with the orthophoto, NDVI layer, and ground 

measurements to represent the generalized seedling crown areas. Visual delineations are often used as 

controls for segmentation of trees from remotely sensed images (Koch et al., 2014; Ozdemir, 2008; 

Wang et al., 2004). Because common garden experiments can have large samples, detailed manual 

delineation of seedlings is impractical, so we identified the crown visually with circles. The crown 

circles were created by fitting a circle to three points which were placed around the margins of the plant, 

constrained that the circles do not overlap (Figure 2-5). After the crown circles were created, their 

identities were verified according to their positions within the boxes (i.e., row and column), which 

allowed for manual measurements and remotely sensed estimates to be merged. 
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The maximum height of each seedling was estimated from the remotely sensed data in three 

ways. First, we calculated the heights of the seedlings using the DEM and the vegetation mask. This was 

accomplished by finding the difference between the maximum and minimum z values for pixels that fell 

into each circular seedling crown vector. The maxima were selected using only pixels which were 

classified as vegetation according to the mask, and the minima were selected using only non-vegetation 

pixels. This height estimate is termed 𝐻𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘. Second, we calculated the heights by finding the 

local maxima with respect to z where the plant crowns intersected the CHM layer, referred to as 

𝐻𝑒𝑖𝑔ℎ𝑡𝐶𝐻𝑀. The vegetation mask was not used in this calculation, to account for small discrepancies in 

the alignment of the data and for geometric simplification that occurs during the SfM point cloud 

generation process. Third, we calculated the local ground elevation for each seedling by finding the 

minimum (z) within the crown from the DTM raster, then subtracted it from the local crown maxima 

from the DEM. These estimates are referred to as 𝐻𝑒𝑖𝑔ℎ𝑡𝐷𝑇𝑀 , and they also did not involve any 

vegetation masking. 

We computed the crown area in two ways. First, we estimated it by computing the area of the 

circular vectors that we fit around the seedlings for both years, which are referred to as 𝐴𝑟𝑒𝑎𝐶𝑖𝑟𝑐𝑙𝑒. 

Second, we multiplied the number of pixels classified as vegetation according to the mask layer within 

each circle by the ground footprint area of one pixel in the image. These are referred to as 𝐴𝑟𝑒𝑎𝑀𝑎𝑠𝑘. 

Estimated seedling crown area and height were used to produce two different seedling volumes. First, we 

fit cylinders around the seedlings using the height estimated from the DTM and the crown vectors as 

follows: 

𝑉𝑜𝑙𝑢𝑚𝑒𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 =  𝐻𝑒𝑖𝑔ℎ𝑡𝐷𝑇𝑀 ∗ 𝐴𝑟𝑒𝑎𝐶𝑖𝑟𝑐𝑙𝑒   (3) 

Second, we calculated the volume of the space that would be occupied by extending the mask 

layer vertically from the ground to the height of the seedling estimated from the DEM and vegetation 

mask as follows: 

𝑉𝑜𝑙𝑢𝑚𝑒𝑀𝑎𝑠𝑘 =  𝐻𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘 ∗ 𝐴𝑟𝑒𝑎𝑀𝑎𝑠𝑘   (4) 
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Two slenderness estimates were also produced from the remotely sensed data similarly to the 

way volume was estimated. First, we computed the diameter of the crown as 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 =  2 ∗  √
𝐴𝑟𝑒𝑎

𝜋
 , 

then computed two values for slenderness: 

𝑆𝑙𝑒𝑛𝑑𝑒𝑟𝑛𝑒𝑠𝑠𝐶𝑖𝑟𝑐𝑙𝑒 =  
𝐻𝑒𝑖𝑔ℎ𝑡𝐷𝑇𝑀

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝐶𝑖𝑟𝑐𝑙𝑒
    (5) 

and as follows: 

𝑆𝑙𝑒𝑛𝑑𝑒𝑟𝑛𝑒𝑠𝑠𝑀𝑎𝑠𝑘 =  
𝐻𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑀𝑎𝑠𝑘
     (6) 

2.2.5. Variable Selection 

This study was focused on variables commonly used to describe the size of a seedling, namely the height 

and DRC (Collet et al., 2001; South et al., 2005). However, other variables can describe the size and 

shape of a seedling. We therefore also considered the slenderness (i.e., height /DRC) (cm/mm) as well as 

a proxy for longitudinal area (height x DRC) (cm × mm). We conducted an initial assessment of the 

relationships between the variables based on scatterplots and correlation coefficients, which suggested 

that the most suited response variables for size were height, DRC, and longitudinal area (LA). 

Nevertheless, considering the ubiquity of slenderness (height-to-diameter ratio) in forest analyses, we 

also included it. 

After we established the most appropriate variables to describe the size of the seedlings, we investigated 

the ability of the mean spectral responses (i.e., mean NDVI, mean RSVI, etc.) to predict their 

dimensions. In addition to the NDVI and RSVI, we also tested four other remote sensing indices: 

triangular greenness index (Hunt Jr et al., 2013), green red vegetation index (Barnes et al., 2000), green 

NDVI (Gitelson et al., 1996), and green chlorophyll index (Gitelson, 2005). Nevertheless, correlation 

coefficients suggested that none of the spectral variables were suitable for modeling the size of the 

seedlings. Therefore, we considered 24 predictor variables, including four seedling dimensions measured 

on the ground in 2017 or derived from those measurements: height, DRC, slenderness, and longitudinal 
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area. From the remotely sensed data, we included 10 variables for each year: three height estimates (i.e., 

𝐻𝑒𝑖𝑔ℎ𝑡𝐶𝐻𝑀, 𝐻𝑒𝑖𝑔ℎ𝑡𝐷𝑇𝑀, and 𝐻𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘), two area estimates, two volume estimates, two slenderness 

estimates, and the distance to nearest surviving neighbor, 

To narrow the number of predictors we used a nonparametric approach which is based on classification 

and regression trees (Breiman et al., 1984; Gutiérrez et al., 2009), namely the Boruta algorithm (Kursa 

and Rudnicki, 2010). The classification and regression trees can supply superior results over parametric 

selection procedures, but they can be difficult to interpret and have limited generalization power (Niuniu 

and Yuxun, 2010). Nevertheless, when used to supply the possible inputs for a subsequent model 

building, the complex non-parametric approaches are appropriate and provide a ranking of explanatory 

variables (Genuer et al., 2010).  

The Random Forests (RF) algorithm is a nonparametric classification technique that combines 

classification and regression trees with bagging algorithms. When RF is implemented, a large number of 

regression trees are created whose votes are used to compute the classification likelihood (Breiman, 

2001). The Boruta procedure is a wrapper (i.e., a function used to call a set of functions and display the 

results in a user friendly format) that was built around the R package ‘randomForest’ (Liaw and Wiener, 

2002). Boruta makes permutations of all the variables in the data, known as shadow attributes, shuffles 

them into the data, then runs the RF algorithm on the resulting dataset. The Z-scores of the original 

variables are iteratively compared with the Z-scores of the shadow attributes, and the predictors are 

ranked based on their measured importance. The variables that are significantly more important than 

shadow variables are deemed ‘important’, while those that are significantly less important are deemed 

‘unimportant’, and any variables left without a decision after all trees are labeled ‘tentative’. To run the 

procedure and create variable importance plots for each response variable, we used the R package 

“Boruta” with the default confidence level (p≤0.01) and found that 10,000 runs reduced the number of 

‘tentative’ predictor variables to one or fewer per response (Kursa et al., 2018). To examine the 

relationships between pairwise combinations of response variables and those predictors which were 
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deemed ‘important’ according to the Boruta procedure, we constructed correlation matrices (Wei and 

Simko, 2015).  

2.2.6. Linear Regression Models 

To model the relationship between the four response variables and the set of predictors chosen via 

Boruta we used linear regression, considering that two measurements are used (2017 and 2018). To 

assess the importance of the remotely sensed variables in predicting the size and mortality of the 

seedlings, we also modeled each response variable using only the ground-based measurements as 

predictors. To identify only the significant variables, we started by including all the candidate variables 

in the linear regression model, then removed the least significant variables (the threshold removal p-

value was 0.1). 

To ensure the validity of the models we tested the linear regression assumptions of normality, 

homoscedasticity, and independence. The Shapiro-Wilks test was used to test normality of the residuals, 

the Breusch-Pagan test assessed the homogeneity of the variance, whereas the Durbin-Watson test 

evaluated the lack of autocorrelation. In addition to the regression assumptions, we checked the 

fulfillment of the computational requirements, namely absence of outliers, with studentized deleted 

residuals and hat matrix leverage, presence of influential observations, using Cook’s distance, and 

absence of collinearity, using variance inflation factor (Neter et al., 1996). To compare the models, we 

calculated the coefficient of determination (R2) (Miles, 2014), root mean squared error (RMSE) 

(Levinson, 1946), Akaike information criterion (AIC) (Akaike, 1987), and residual standard error (RSE). 

2.2.7. Mortality Prediction 

The size of the crown circles delineating seedlings was selected according to the crown dimensions from 

the vegetation mask. Therefore, some dead seedlings had no pixels classified as vegetation, as the mask 

fell within the circular vector for 2018. The absence of seedlings in 2018 enabled us to estimate 

mortality from the remotely sensed data. Seedlings that did appear in 2017 and were undetectable in 
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2018 were considered ‘dead’, while seedlings which had non-zero crown area according to the 

vegetation mask in both years were considered ‘living’. 

2.3. Results 

2.3.1. Variable Selection 

For the dependent variable height, Boruta deemed 17 variables as important, with longitudinal area and 

height from the previous year being the most relevant predictors (Figure2-6a). For DRC, there were 11 

variables deemed important and one tentative, with DRC and longitudinal area from the previous year 

leading in importance (Figure2-6b). For slenderness, 12 variables were deemed important and one 

deemed tentative; with slenderness and height from the previous year having the largest impact (Figure 

2-6c). For longitudinal area, there were 16 variables found important, and longitudinal area and height 

from the previous year were ranked as the most influential (Figure 2-6d). Summary statistics for all 

predictor and response variables included in the models are listed in Table 2-3. 

 

Table 2-3: Descriptive statistics for ground-based measurements (bold) and remotely sensed estimates 

Variable Mean St. Dev. Min Max 

Height 2017 9.69 1.753 5.40 14.20 

Height 2018 14.34 3.224 7.60 26.30 

Diameter at Root Collar 2017 4.182 0.499 2.870 5.63 

Diameter at Root Collar 2018 5.70 0.811 3.58 8.01 

Slenderness 2017 2.34 0.458 1.329 4.089 

Slenderness 2018 2.523 0.467 1.561 4.083 

Longitudinal Area 2017 40.79 10.099 19.53 76.00 

Longitudinal Area 2018 83.25 27.699 34.17 210.66 

Height (CHM) 2017 6.092 4.293 0.70 21.5 

Height (DTM) 2017 7.79 4.415 1.27 23.95 

Height (Mask) 2017 10.246 4.425 3.613 38.159 

Area (Circle) 2017 80.60 26.85 17.64 148.75 
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Area (Mask) 2017 55.897 23.89 3.685 138.796 

Volume (Circle) 2017 656.14 481.21 22.39 2344.49 

Volume (Mask) 2017 611.46 457.25 36.44 3020.26 

Slenderness (Cylinder) 2017 1.177 0.4119 0.445 3.3868 

Slenderness (Mask) 2017 1.2775 0.5773 0.5012 4.5648 

Height (CHM) 2018 5.719 3.01 1.30 18.8 

Height (DTM) 2018 8.38 3.15 3.17 21.75 

Height (Mask) 2018 5.847 2.42 1.416 16.04 

Area (Circle) 2018 82.19 30.685 32.28 180.45 

Area (Mask) 2018 73.68 31.95 18.22 212.21 

Volume (Circle) 2018 723.0 476.88 161.4 2787.1 

Volume (Mask) 2018 464.71 358.44 44.22 2849.5 

Slenderness (Cylinder) 2018 0.61 0.252 0.1825 1.8688 

Slenderness (Mask) 2018 0.6214 0.237 0.2246 1.5907 

 

Figure 6: Variable importance plots for the four dependent variables selected as representative for seedling size: 

total height (a.), diameter at root collar (DRC) (b.), slenderness (c.), and longitudinal area (d.). The y-axes of the 

figures represent importance measured by the Boruta algorithm. The boxes contain the values within the max and 

min importance values for 10k iterations with whiskers equal to 1.5 times the interquartile range. Green boxes 

indicate variables deemed important according to Boruta (p(z)) < 0.01), while red boxes were deemed unimportant, 

and yellow boxes were deemed tentative.  

 

Figure 2-6a: Variable importance plot for the dependent variable total height. 
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Figure 2-6b: Variable importance plot for the four dependent variable diameter at root collar (DRC). 

 

Figure 2-6c: Variable importance plot for the four dependent variable seedling slenderness. 
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Figure 2-6d: Variable importance plot for the four dependent variable longitudinal area. 

 

We found that the Pearson’s product moment correlation coefficients (r) between the three 

height estimates from the remotely sensed data were larger in 2017 than in 2018 (Figure 2-7), ranging 

from 0.6 to 0.98 and from 0.21 to 0.91, respectively. For both 2017 and 2018, the point cloud based 

height estimates 𝐻𝑒𝑖𝑔ℎ𝑡𝐶𝐻𝑀and 𝐻𝑒𝑖𝑔ℎ𝑡𝐷𝑇𝑀were showed larger correlation with one another (0.91 < r < 

0.98) than with 𝐻𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘 (0.21 <  r <  0.58). However, compared to the ground-based measurements, 

height, DRC, slenderness and LA, the raster-based height estimates 𝐻𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘had the strongest 

correlations. The 𝐻𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘was the only height estimate that had a significant (p<0.001) correlation 

with the response variables height and DRC. None of the height estimated variables were significantly 

correlated with slenderness, while all of them were significantly correlated with LA. For the response 

variable LA, the 𝐻𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘had the strongest correlation (0.46 < r < 0.52). followed by 𝐻𝑒𝑖𝑔ℎ𝑡𝐷𝑇𝑀 

(0.3 < r < 0.42), then 𝐻𝑒𝑖𝑔ℎ𝑡𝐶𝐻𝑀(0.29 < r < 0.39). 
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Figure 2-7: Correlation matrices showing Pearson correlation coefficients (r) among height predictions from UAS 

(italics) and ground-based measurements (Bold) in 2017 (a.) and 2018 (b.). Cell are shaded according to the 

strength of significant relationships based on Pearson’s product moment correlation coefficient (p<0.001) and 

colored according to correlations being positive (blue) or negative (red). 

 

Projected crown area, volume, and slenderness show a large correlation (0.77 < r < 0.93) with 

the slenderness estimates, namely  𝑆𝑙𝑒𝑛𝑑𝑒𝑟𝑛𝑒𝑠𝑠𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 and 𝑆𝑙𝑒𝑛𝑑𝑒𝑟𝑛𝑒𝑠𝑠𝑀𝑎𝑠𝑘. The crown area and 

volume estimates had similar correlation coefficients, between r = 0.47 and r = 0.68. Unlike the height 

estimates the crown area and volume estimates mostly seems to be correlated with the response variables 

from 2018 rather than the ones from 2017. The correlations between the 𝐴𝑟𝑒𝑎𝑀𝑎𝑠𝑘 and 𝑉𝑜𝑙𝑢𝑚𝑒𝑀𝑎𝑠𝑘and 

the response variables (0.3 <  r < 0.51, excluding slenderness) are smaller than between the 𝐴𝑟𝑒𝑎𝐶𝑖𝑟𝑐𝑙𝑒 

and 𝑉𝑜𝑙𝑢𝑚𝑒𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 and the responses (0.37 < r < 0.7, excluding slenderness). The largest correlations 

between predictor variables and one of the responses were between the 2018 𝐴𝑟𝑒𝑎𝑀𝑎𝑠𝑘 and 

𝑉𝑜𝑙𝑢𝑚𝑒𝑀𝑎𝑠𝑘 and the LA (Figure 2-8), which were r = 0.68 and 0.7, respectively.  
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Figure 2-8a: Correlation matrices showing Pearson correlation coefficients (R) among area, volume, and 

slenderness estimates from UAS (italics) and ground-based measurements (Bold) in 2017. Cell are shaded 

according to the strength of significant relationships based on Pearson’s product moment correlation coefficient 

(p<0.001) and colored according to correlations being positive (blue) or negative (red). 

 

Figure 2-8b: Correlation matrices showing Pearson correlation coefficients (R) among area, volume, and 

slenderness estimates from UAS (italics) and ground-based measurements (Bold) in 2018. Cell are shaded 

according to the strength of significant relationships based on Pearson’s product moment correlation coefficient 

(p<0.001) and colored according to correlations being positive (blue) or negative (red). 
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2.3.2. Linear Regression Models 

The linear regression models for all four response variables included more than one predictor 

(Table 2.4). However, the models exhibited a large amount of variability, as the R2 was at most 0.84 (i.e., 

for longitudinal area). The precision of the models improved when remotely sensed variables were 

included, the root mean squared error (RMSE) decreasing by as much as 12% (i.e., 1.75 cm to 1.54 cm 

(12%) for height, 0.50 to 0.47 mm (6%) for DRC, 0.36 to 0.33 (8%) cm×mm-1 for slenderness, and 12.63 

to 11.11 cm×mm (12%) for LA).  The models met all regression assumptions, as the residuals were 

normally distributed according to the Anderson-Darling test (p > 0.05), homoscedastic according to the 

Breusch-Pagan test (p > 0.05), and exhibited no autocorrelation according to the Durban-Watson test (p 

> 0.01). According to R2, the longitudinal area was identified as the most suitable variable to represent 

the size of seedlings (i.e., 0.84), followed by height (i.e., 0.77), RCD (i.e., 0.65), and slenderness (i.e., 

0.47).   
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Table 2-4: Linear regression models predicting 2018 seedling size (n=129). The odd numbered columns display the 

final models for the seedling size variables, and the even numbered columns contain only the ground-based 

predictors. Predictor variables measured on the ground or derived from ground-based measurements are in bold. 

Values in parentheses represent standard error of the coefficients above them (* p≤0.05 **p≤0.01 ***p≤0.001). 

   Response Variable: 

Predictor Variable: Height2018 Diameter2018 Slenderness2018 Longitudinal Area2018 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Height 2017 0.458** 0.447***    0.110*** -2.232* -15.845** 

  (0.163) (0.031)    (0.029) (0.-226) (4.832) 

Diameter at Root Collar 2017   0.940*** 0.833***    -34.345** 

    (0.098) (0.129)    (11.889) 

Slenderness 2017     0.495*** 0.254*   

      (0.067) (0.096)   

Longitudinal Area 2017 0.144*** 0.197***  0.026***   2.223*** 6.016*** 

  (0.031) (0.032)  (0.006)   (0.226) (1.146) 

Volume (Mask) 2018 
 

0.004***      0.0264***  

  (0.001)      (0.005)  

Volume (Mask) 2017     0.003***    

      (0.000)    

Area (Circle) 2017   0.006**    0.143**  

   (0.002)    (0.045)  

Area (Mask) 2017 0.025**        

  (0.008)        

Area (Mask) 2018 -0.030**  0.005**    -0.118*  

  (0.009)  (0.002)    (0.063)  

Slenderness (Cylinder) 2018     0.459***    

      (0.121)    

Intercept 3.121*** 1.966 0.892* 1.029** 0.897* 0.860*** -0.947 135.048** 

  (0.849) (0.915) (0.369) (0.357) (0.170) (0.188) (6.249) (49.428) 

R2 0.77 0.70 0.65 0.61 0.47 0.38 0.84 0.79 

RMSE 1.54 1.75 0.47 0.50 0.33 0.36 11.11 12.63 

AIC 492.23 518.71 184.58 197.37 96.13 113.61 1001.40 1030.45 

Residual Std. Error 1.58 1.77 0.48 0.51 0.34 0.37 11.38 11.38 
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2.3.3. Mortality Prediction 

The predicted mortality values based on the remotely sensed data were aligned with the 

observed mortality, as among the 135 living seedlings and 15 dead seedlings, out if the 150 seedlings 

only two were misclassified (Table 2-5).  

Table 2-5: Confusion matrix showing predicted versus observed mortality for SWWP seedlings based on remotely 

sensed vegetation filtering and visual inspections on the ground. Over 90% of dead seedlings and over 98% of the 

total sample were correctly classified based on mortality that occurred between the observations in 2017 and 2018. 

n=150 Predicted: Living Predicted: Dead  

Actual: Living 134 1 135 

Actual: Dead 1 14 15 

 135 15  

 

2.4. Discussion  

2.4.1. UAS Data Collection and Extraction 

The initial spacing of the seedlings constrains the length of time that remote sensing techniques may be 

used to effectively estimate seedling size. Once the seedlings are not spatially distinguishable from one 

another from above, estimating seedling size using UAS becomes nonviable. In this study, the spacing 

between the seedlings was such that they had begun to encroach on one another in the second growing 

season after planting (2018), thus, reliable estimates of seedlings’ sizes for a third year is very unlikely. 

As common garden studies of seedlings are often conducted for time periods that extend well beyond 

two years, we recommend that the spacing between seedlings be increased to extend the duration of 

useful UAS survey data. For example, in plantations where seedlings are spaced more than 0.5 meters 

apart and individuals are protected by planting containers (Gil-Docampo et al., 2020), we would expect 

that it would be possible to survey the seedling sizes using our methods for at least three years. To 

determine an adequate spacing, researchers should take into consideration the geometry of the plant as it 

matures (i.e., size and shape) to anticipate the space that the individuals will occupy. Alternatives to 

increased spacing include the installment of physical barriers between the plants, as well as thinning 



31 

treatments to create space between them, though the latter option has implications for the overall study 

design and sample sizes. 

The sizes of the seedlings also affected our ability to detect them accurately. In particular, the seedlings 

were too small for reliable height estimates from the data in the first year, which is not only obvious by 

visually inspecting the point clouds (Figure 2-1), but is also reflected in the correlations between the 

remotely sensed height estimates and the ground height measurements across 2017 and 2018 (Figure 2-

7). Unfortunately, larger seedlings also have larger crowns, which makes them more susceptible to wind. 

The 2018-point cloud had much lower point density than 2017, which resulted in lesser ground point 

density. This could be due to a combination of two factors, the first being the larger seedling crowns and 

complex geometry, and the second being that there was a gentle wind during the data collection which 

caused the seedlings to sway.  

We found that the main limiting factor with regards to size estimates of seedlings from photogrammetric 

point cloud is the smoothing of the crown, which occurs during the SfM reconstruction process (i.e., 

texture is lost). Although the spacing of the points in the clouds was small, the seedlings rendered less 

details in 3D compared to the high resolution 2D orthophotos. The most obvious difference in the 

absence of important details is that no leaves are visible in the point cloud data (Figure 2-1), whereas 

some leaves are clearly detectable in the 2017 (Figure 2-5). 

Also, we found that the presence of weeds and foreign objects in the boxes encumbered our methods. 

The weeds that were growing along the north edges of both boxes in 2017 (Figure 2-5) interfered with 

the vegetation masking process, which resulted in the omission of five seedlings, highlighting the 

importance of weed management in such studies. There was also twine in the boxes that was arranged in 

a grid pattern between the seedlings. For the vegetation masking procedure, we accounted for the twine 

by creating a separate training category (Figure 2-5). However, although the twine was near the ground 

level, it appeared above ground in the 3D reconstruction (Figures 2-1 and 2-2 and 2-4). Nevertheless, the 

twine was easily visible in the imagery and was helpful for confirming the seedling locations within the 

boxes so we could combine the remotely sensed estimates with the ground data. Overall, however, we 
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believe that it may be possible to automate seedling detection, and that the drawbacks of distortions in 

the 3D data outweigh the benefits of having the twine present in the boxes. As a result, we do not 

recommend including any foreign materials inside common garden boxes that will be surveyed with 

UAS.  

In the field, it takes about 10 seconds to measure the height or diameter of a seedling on the ground and 

another 10 seconds to record the data. Though there were only 150 seedlings in this study, it would take 

about 75 minutes to measure them by hand, whereas the UAS flights took under 5 minutes to conduct. 

Nevertheless, the total time spent initializing and finalizing data collected with UAV was more than two 

hours, but in roughly the same amount of time it would have been feasible to survey dozens of additional 

boxes, had they been located alongside one another. However, the time it takes to measure additional 

boxes by hand increases linearly according to the number of seedlings, while the time to survey them 

with UAS increases according to the number of boxes. As a result, the methods we present here have the 

potential to reduce the number of hours and monetary costs of common garden experiments containing 

conifer seedlings. The most time-consuming part of our procedure was the manual identification of 

seedling crowns, which was necessary for comparison in this study, but much more easily accomplished 

via the masking procedure. Assuming that the creation of circular vectors is unnecessary, we estimate the 

extraction of seedling size estimates for our sample took about 2 hours each year and that the time 

requirements would increase by 15 minutes per additional box of seedlings (~75 individuals). As a 

result, we estimate it would take approximately the same amount of time (~4 hours) to record 750 

seedling sizes manually (10 boxes) or to estimate their sizes using our methods. For 1800 seedlings (24 

boxes), we estimate it would take 25% less time (i.e., 7.5 hours versus 10 hours) to estimate the 

seedlings sizes from the UAS compared to manually measure them. 

Using the point clouds to identify the top of the seedlings with efficient segmentation algorithms would 

not only automate the process of drawing plant centers, but can also be used to estimate heights and 

crown diameters (Kaartinen et al., 2012b; Panagiotidis et al., 2017). Future studies may focus on the 

automatic detection of seedlings in tightly spaced arrangements such as common gardens as others have 
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with open grown seedlings (Feduck et al., 2018; Fromm et al., 2019). In the case of common garden 

studies, though, it is necessary to link the seedlings in the imagery to other data besides the remotely 

sensed estimates, which requires a validation step that would be difficult to automate. The time spent to 

describe the seedlings with point clouds and orthophotos is valuable, as they capture an image of the 

seedling at a point in time, which can be used for subsequent studies, whereas manual measurements are 

confined to their origination study. Therefore, the future utility of the remotely sensed products is an 

aspect that should be considered when UAS are used in seedling monitoring.  

The extraction of zonal statistics (i.e., the maxima and minima within the plant crowns) was the most 

computationally demanding part of our procedure and represents a potential processing bottleneck if the 

procedure is to be scaled up. A possible solution consists in transcription of the procedure from R into 

Python, which can interface with both QGIS and Agisoft SfM software, further automating the process. 

Given the opportunities that exist to improve the presented workflow, we believe that UAS structural 

measurements have a logistical advantage when compared to ground-based measurements of tree 

seedlings in common gardens. 

2.4.2. Modeling 

The nonparametric Boruta procedure does not produce estimates of fit, but it does rank the predictors in 

terms of importance relative to the shadow variables, rather than omitting those deemed as unimportant. 

As a result, it gives the user an idea of which variables were least important or marginal. We found it to 

be a useful tool for prioritizing the variables before modeling them. We found that the most suitable 

variable for predicting seedling size is LA, followed by height, DRC, and slenderness. If the models are 

ordered according to the R2, there are no overlapping values between the four response variables we 

tested (Table 4), which suggests that the choice of response variable influences the predictability of 

seedling size. Including the remotely sensed variables increased the predictive power of the models 

compared to using only the measurements from the previous year for all four response variables we 

tested, as R2 values increased at least 0.04 (i.e., 0.07 for height, 0.04 for RCD, 0.09 for slenderness, and 

0.05 for LA). Also, the model precision improved at least 6% in terms of RMSE (i.e., 12% for height, 
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6% for DRC, 8% for slenderness, and 12% for LA) when remote sensed derived variables are included. 

Finally, the method used to compute the seedling height seems to play an important role, as the size 

estimates using the vegetation mask, namely 𝐻𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘, 𝐴𝑟𝑒𝑎𝑀𝑎𝑠𝑘, and 𝑉𝑜𝑙𝑢𝑚𝑒𝑀𝑎𝑠𝑘, exhibited larger 

correlations with the ground based estimates than with the estimates from the DTM. The influence of 

methodology can partly be attributed to the conical shape of the seedling crown, especially in the second 

year, and the decrease in crown spacing with time. This distortion results in the location of the ground 

points between the plants in the cloud being located above the true position of the ground in the box, 

which causes anomalies in the DTM where the plants are located. As a result, the elevations around the 

plants in the DTM are raised, which causes the seedling height to be underestimated. When the distorted 

DTM elevations are used to produce a normalized cloud such as our CHM, the underestimates are 

worsened due to the lowering of the tops of the plants during the normalization process. Thus, by 

forgoing the ground detection process and using a detailed vegetation mask to differentiate the locations 

of plants from their surroundings, we were able to extract more reliable size estimates directly from the 

DEM. 

Despite the UAS size estimates having low predictive power on their own, we presented evidence that 

remote sensed estimates of size can improve size prediction when combined with ground measurements. 

Incorporation of UAS surveys in small scale common garden experiments result in extending the number 

of seasons that a project can afford to collect data or used to develop a two-phase sampling procedure 

(i.e., double sampling) to reduce the number of ground measurements.   

The only seedling that was misclassified as living (i.e., was actually dead) had only 3 pixels classified as 

vegetation, which may have been a small weed rather than the seeding itself. Therefore, we provided 

evidence that UAS can be used successfully to identify seedling mortality, or, more specifically, to 

record the absence of seedlings in the vegetation mask from the second year compared to the first. In 

some common gardens, plant success is measured on a living or dead basis, which we show can be 

accomplished by monitoring the seedlings using UAS.  
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The effort placed in development of spectral variables to be use as predictors was not rewarded, as we 

could not justify including any spectral variables (i.e., vegetation indices) when modeling seedling size. 

Therefore, we infer that in absence of multiple repeated measurements dimensionless variables, such as 

spectral variables, are less effective predictors of seedling size than the remotely sensed dimensional 

measurements. However, the near-infrared and red-edge bands of the sensor we used, which differentiate 

it from most consumer-grade cameras, were needed to create the indices needed to create the vegetation 

mask, which was important for improving the quality of size estimates made from the UAS imagery.  

2.5. Conclusions 

We found that there are several challenges that emerge when using UAS to produce photogrammetric 

point clouds to estimate seedling size in common gardens. First, the scaling error in the vertical plane 

was several times greater than in the horizontal plane (1.1 - 1.8 cm versus 4.7 - 5.1 cm), which results in 

systematic errors across the point cloud in terms of measuring heights. In addition, the lack of ground 

points makes the generation of DTM inaccurate such that the interpolated ground elevation is positioned 

above the actual ground elevation. The classification of non-ground points as ground underestimates the 

seedlings height irrespective of the method of computing the height. Therefore, we found evidence that 

the height of seedlings estimated from DTM is unreliable. Finally, the lack of spacing between seedlings 

results in crown overlap, which makes delineation of individual seedlings from the multispectral 

orthophotos difficult with time. As seedlings grow, the increased crown size reduces the ability to 

capture the ground with passive sensors, which decreases the accuracy of ground estimation and, 

consequently, directly alters the estimation of the seedling height. Based on this study, we can 

recommend that seedlings be spaced at least 15 cm apart at planting to extend time that UAS can be used 

to survey the seedlings from two years in this study to at least four years.  

  We also found that seedling size estimates from UAS can be improve the size models based on 

previously measured dimensions. The inclusion of remotely sensed estimates not only that increases the 

precision but also presents a series of operational benefits. For example, using UAS reduces the number 
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of manual measurements needed in the study, which will reduce the time and diminish the costs needed 

to acquire the data. An advantage of acquiring data with UAS is consistency, as human error (e.g. the 

expertise or fatigue of the human taking the measurements) does not play a significant role in the quality 

of measurements. Importantly, automation of the seedling identification process would ensure the 

transferability of the method across regions (i.e., space) and likely to plantations (i.e., scale). One of the 

major advantages of using UAS in the context of common gardens is that they have the potential to be 

much faster than traditional, manual measurements. While our methods were not perfect, we estimate 

that if the number of seedlings were about one order of magnitude higher, (i.e., n=1800) the total 

combined time of UAS field surveys, post-processing, and data extraction would be 25% less than the 

time required to record seedling sizes on the ground. 

 The size metrics we used as response variables in this study (i.e., height and DRC) are not the 

only metrics commonly used to describe seedling sizes. Notably, aboveground biomass has been 

identified as a strong predictor of conifer seedling growth (Norgren, 1996), and has been estimated using 

images captured from a stationary platform above conifer seedlings (Ter-Mikaelian and Parker, 2000). 

Measuring seedling biomass often requires destructive sampling (i.e., drying and weighing of seedlings), 

therefore, it would be useful to test the ability to estimate biomass from UAS imagery. We recommend 

that this should be tested using similar methods to those presented here, specifically, using a vegetation 

mask and DEM to estimate seedling volume.  

Our method presented a workflow for accurate detection of seedling mortality using UAS. Furthermore, 

we contend that this methodology can be applied not only on common gardens but also in regeneration 

surveys, which would be another natural extension of this research. 
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3. Assessing Lean and Positional Error of Individual Mature 

Douglas-Firs (P. menziesii) with Active and Passive Sensors 
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Abstract: 

 
  There is a growing demand for point cloud data that can produce reliable single tree 

measurements. The most common platforms for obtaining such data are: UAS with passive sensors 

(UAS), UAS with aerial lidar scanners (ALS), and mobile lidar scanners (MLS). Our objectives were to 

compare these platforms’ capabilities to locate treetops and stems, and to estimate tree lean. The 

platforms were used to produce overlapping point clouds of a mature Douglas-Fir stand, then 273 trees 

were manually identified from the combined data. Control trees were used to test tree detection accuracy 

of four algorithms and the number of stems detectable using each platform. Tree lean was calculated in 

two ways: using the stem location near the canopy and using the treetop. The treetops were detected 

more accurately from ALS and UAS clouds than from MLS, but the MLS outperformed ALS and UAS 

in stem detection. The platform influenced treetop detection accuracy, whereas the algorithms did not. 

The height estimates from the ALS and MLS were correlated (R2=0.96), but the MLS height estimates 

were unreliable, especially as distance from the scanner increased. The lean estimates using the stem 

locations or treetop locations produced analogous distributions but were weakly correlated overall. 
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3.1. Introduction 

Digital three-dimensional reconstructions of forests with point clouds have been used to measure 

individual trees for more than twenty years, (Hyyppa, 1999; Hyyppa et al., 2001), (Brandtberg, 1999; 

Ziegler et al., 2000). Point clouds describing trees can be created in two fundamentally different ways: 

by using active sensor technology, i.e., light detection and ranging (lidar), or by using digital 

reconstructions of passive sensor imagery through algorithms, namely structure from motion (SfM) 

(Tomasi and Kanade, 1992; M.J. Westoby et al., 2012). Because lidar is inherently a direct ranging 

technology, it has the capability of producing point clouds with high local spatial accuracy (Sofonia et 

al., 2019). However, lidar data collections are limited by cost and complexity of implementation. These 

limitations are more evident when comparing lidar products to the products of SfM reconstructions of 

passive sensor imagery, namely digital elevation models (DEMs), and canopy height models (CHMs).  

Compared to manned aircraft, sensors installed on unmanned vehicles can achieve greater spatial 

resolution due to their ability to acquire data at lower altitudes. As the technology has become more 

sophisticated, unmanned vehicles have also become more portable and less expensive. The term 

unmanned aircraft system (UAS) describes the combination of a unmanned aerial vehicle and a ground 

control system which allow for systematic coverage of large areas and georeferencing of data (Lisein et 

al., 2013). In general, flight missions with UAS can be conducted more regularly than with manned 

aircraft due to fewer logistical, financial, and weather constraints. This has led to a broad range of new 

UAS-enabled scientific inquiry, including for forestry (Gambella et al., 2016).  

The use of UAS based SfM photogrammetry, subsequently referred to as UAS, to create point cloud data 

of forested scenes dates back to 2011, though the resolution was too poor to extract single tree 

measurements at the time (Tao et al., 2011).  Around the same time, the first lidar-enabled UAS were 

tested in a forestry context (Jaakkola et al., 2010). Ensuing studies demonstrated the value of UAS based 

lidar sensors, subsequently referred as ALS, compared to manned aircraft for single tree inferences due 

to increased point density (Lin et al., 2010) and developed UAS hardware and software deliberately to 
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facilitate forest inventory (L. Wallace et al., 2012). Currently, ALS configurations can produce point 

clouds that can be used to measure forest structure both independently and alongside UAS data (Wallace 

et al., 2016). Studies that have compared tree height estimates using both UAS and ALS, revealed that 

SfM values are smaller than lidar values (Swinfield et al., 2019; Wallace et al., 2016). This 

underestimation is likely related in part to smoothing of the canopy surface due to the SfM 

reconstruction process (Lisein et al., 2013). 

Mobile terrestrial lidar scanners (MLS, mobile lidar) share many fundamental components with UAS-

lidar, such as GNSS receivers, inertial measurement units (IMUs), and a lidar sensor that creates point 

cloud data. The process used to georeference lidar pulses is also fundamentally similar.  The main 

difference is simple and important: the lidar system for MLS is located on a vehicle that moves along the 

ground rather than through the air. Typically, UAS-based point clouds are constructed from a top-down 

vantage point, where the MLS point clouds present a profile view of the tree stems. There is one notable 

exception in the work by Chisholm et al. (2013) ,who developed UAS for below-canopy use. In forest 

research, MLS have been developed using sensors that are handheld (Bauwens et al., 2016), as well as 

those mounted on an all-terrain vehicles (Tang et al., 2015), and passenger vehicles (Holopainen et al., 

2013). Holopainen et al. (2013) combined MLS and aerial data and observed that both platforms are 

subject to obscuration of portions of the tree. In ground-based scans, understory vegetation and lower 

branches shield treetops, and in aerial scans, the crowns shield tree stems. 

 Tree level measurements from point clouds require identification of individual trees within the point 

cloud. Algorithms that delineate trees inside the point clouds are collectively known as individual tree 

detection and extraction (ITDE) algorithms (Kaartinen et al., 2012a) . Many ITDE algorithms involve 

creating a CHM raster from the cloud, then using a moving-window operation to locate the local maxima 

(Dalponte and Coomes, 2016; Meyer and Beucher, 1990a; Silva et al., 2016). The spatial resolution of 

the CHM and the size of the moving window, or local maxima filter, are required inputs for 

segmentation based on rasters (i.e., gridded data). Coniferous tree crowns typically demonstrate 

excurrent branch growth and have one characteristic top, making them more suitable in general for this 



41 

sort of procedure than deciduous tree crowns, whose tops can be difficult to locate (Miller, 2015; 

Zaforemska et al., 2019). Other IDTE algorithms work by segmenting trees directly from the point cloud 

data and do not require CHM rasters as inputs (Hamraz et al., 2017; Li et al., 2012). 

Tree leaning, which is defined as the departure of a tree stem from a vertically upright position, is a 

major source of error when estimating the heights of individual trees from airborne lidar data (Gatziolis 

et al., 2010a).  Trees that lean have also been reported to be more likely to be a source of error for ITDE 

algorithms (Zaforemska et al., 2019). Leaning trees are prone to positional errors, as the main stem 

would likely not be located directly under the top of the tree. Accurate tree position from ALS data is 

needed if accurate location of the stem is required when below canopy data is not available (Strimbu et 

al., 2019). Therefore, objectives of this study are twofold: first, to compare the ability of the UAS, ALS, 

and MLS platforms to position tree stem from the treetops estimated from point clouds, and second, to 

estimate the tree lean from the ALS acquired data. To carry out these tasks we tested several different 

ITDE algorithms and point cloud densities to assess the impact of the algorithm on positioning error. 

3.2. Methods 

3.2.1. Field Site 

The study was conducted on a small (~4 ha) stand within Oregon State University’s McDonald-Dunn 

Research Forest, located roughly 6 miles north of Corvallis, Oregon, USA. The stand has been managed 

as a Douglas fir (Pseudotsuga menziesii) shelterwood that was planted in 1953 and thinned in 1986. We 

selected this location for its suitability to attain the objectives of the study. First, it is located on a road 

that follows a ridge, which allows for good GNSS satellite visibility, relative to other locations within 

the forest. Furthermore, the thinning produced a relatively open understory, which combined with a 

minute surface relief along the road, ensured that the MLS scans would penetrate well into the stand and 

register points along the entire tree stems. Finally, there was a clearing along the road that met the 

requirements for a UAS takeoff and landing zone. The data from all platforms were acquired in February 
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and March of 2018 within a 25-day period in the winter, so tree growth was assumed to be negligible 

during this time. 

3.2.2. Platforms 

The hardware comprising the three remote sensing platforms used in the study are listed in Table 1. At 

around $6000, the UAS costs the least by a large margin. However, there were some necessary 

modifications to prepare the platform for our study. The factory gimbal was removed from the airframe 

and retrofitted with a 3D-printed mounting bracket for the multispectral sensor. The 3DR solo comes 

stock with both a GNSS receiver (UBLOX Neo m7n, Thalwil, SWI) and autopilot (Pixhawk 2) to 

calculate its orientation and position in flight. 

Table 3-1: Characteristics of the three UAS platforms used to create overlapping point cloud reconstructions of a 

small Douglas-Fir shelterwood stand in the MacDonald Forest near Corvallis, Oregon. 

 

The ALS platform costs roughly five times as much as the UAS platform in terms of hardware 

alone, but this does not account for in excess of 100 hours of assembly, fabrication, programming, 

testing, and other engineering tasks that were required to ready the platform for use. Unlike the 3DR 

solo, the DJI S1000 requires assembly. The ALS is substantially larger (1 m vs. 0.3 m diameter) and 

heavier (10 kg vs 1.6 kg) than the UAS, making it more cumbersome to transport. Also, where the UAS 

platform required only one additional part to mount the sensor to the airframe, the ALS required many 

custom printed parts to mount the sensor, GNSS receivers, and the GNSS-aided inertial measurement 

unit (IMU) (OxTS XNAV200, Oxfordshire, UK).  

Platform Vehicle Sensor Cost Position 

UAS 3DR Solo 

Quadcopter 

Micasense Rededge 

Multispectral 

$6,500 Airborne 

ALS DJI S1000 

Octocopter 
Velodyne Puck Lidar 

$30,000 Airborne 

MLS 
Toyota Tacoma 

Velodyne HDL-64E 

Lidar 

$400,000 Ground 
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The MLS, which was by far the most expensive platform, was originally purchased by the 

Oregon Department of Transportation (ODOT) for asset inventory, bridge/overhead structure clearance, 

and other uses, then granted to Oregon State University in exchange for research in 2015. We followed 

in-house standard operating procedures for operation of the MLS, and no modifications were necessary 

to prepare the platform for use. The MLS contains a GNSS-aided INS (Topcon IP-S2 HD, Tokyo, JAP) 

as well as a distance measurement indicator. Because tree form varies near roads (Bowering et al., 

2006a), and the MLS in this study was on a pickup truck, we expected this edge effect to be present in 

our data. 

3.2.3. Data Collection and Processing 

The data acquisition procedures for the platforms were very different. In the case of the UAS, 

the multispectral sensor is sensitive to lighting conditions, which are affected by weather and time of 

day. As a result, the platform had to be deployed near solar noon on a clear day. To account for changes 

in illumination during the flight, we used images of a calibration target from before and after the data 

collection for radiometric correction (i.e., conversion to reflectance). On 10 February 2018, the Tower 

Drone Control App (3DR, Berkeley, USA) was used to pilot the aircraft using a grid mission plan 

traveling 4 m/s at 80 meters above ground. The sensor was programmed to trigger once every 1.5 

seconds, such that adjacent images would have 50% overlap and 50% side-lap. Due to the visual 

obstruction created by the trees, a visual observer was needed in addition to the UAS pilot to follow the 

aircraft during the mission. The entire data collection for the UAS took less than 2 hours, with only 14 

minutes of flight time. 

The MLS data were collected on 5 March 2018. The onboard computer requires 5-minute 

initialization and shutdown periods, during which the vehicle must be stationary. Once this was 

completed, the lidar scanner data were collected as the truck moved down the road at a low, constant 

speed (5 m/s). Although the platform can perform well at higher velocities in urban settings, forest roads 

are much less smooth and natural scenes are relatively much more geometrically complex, so we elected 
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to scan slowly in this case. Including the initialization and shutdown, the entire data collection for MLS 

took around 15 minutes. 

The ALS data were the most challenging to obtain. We piloted the aircraft using a first-person 

viewing camera and a visual observer to make passes across the AOI on 9 February 2018. Overall, we 

found that conducting missions with this platform was more difficult than with either of the other 

platforms. Take-off and landing of the ALS require a skilled pilot, as the platform is larger and heavier 

than the UAS, making it more cumbersome in the air. The data collection for ALS took about 3 hours, 

during which we conducted 3 redundant flight missions, one of which was used for our analysis. 

There were 244 images taken from the UAS, which had to be radiometrically corrected using the 

values from images of a calibration target, then reconstructed in 3D using structure from motion (SfM) 

(M.J. Westoby et al., 2012). We used Agisoft Photoscan Professional v.1.4.0, which implements SfM to 

create photogrammetric point clouds and orthophotos. The workflow we used followed the 

recommendations of Rossi et al. (2012) and Turner et al. (2013), including using the highest justifiable 

settings for the reconstruction. For photo alignment, we used the image unaltered (i.e., the “highest” 

accuracy setting), with 120k key points and 30k tie points. For building the dense point cloud, we also 

used the original images (i.e., the “ultra-high” quality setting) and we filtered the depth outliers by 

assuming that no meaningful small details are present (i.e., the “aggressive” depth filtering). The dense 

point cloud was used to create a mesh layer using the original images (i.e., “ultra-high” depth maps 

quality setting), and from the mesh we created both a digital elevation model (DEM) and a multiband 

orthophoto. 

 For post-processing the UAS-L scan, the GNSS and INS data were integrated to produce a 

trajectory estimate for the platform using OxTS’s NAVsuite software. Then, the lidar scan data, platform 

dimensions, and trajectory were used to produce a georeferenced point cloud using in-house MATLAB 

scripts (MATLAB, 2010) 
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3.2.4. Coregistration and Outlier Removal 

To spatially align the point clouds with one another, a process known as coregistration, we used a 

two-step approach. First, we eliminated the outliers and visually aligned the UAS or MLS point clouds 

with the ALS point cloud. Second, we aligned the point clouds using the iterative closest point (ICP) 

algorithm (Besl and McKay, 1992). Initially, the clouds were too far apart to use an automatic 

coregistration procedure, so we first visually positioned both the UAS and MLS data to match the 

location of the ALS point cloud. The ALS cloud was chosen as the reference layer because it was the 

only platform that captured both the tree tops and the tree stems in detail, as the UAS imagery were 

taken from an overhead perspective, obscuring the stems, and the MLS laser scans were captured from 

the forest road, obscuring the tree tops (Figure 3-1). After coregistration, we established a rectangular 

area of interest (AOI) that extended 50 meters on both sides of the road for the length of the MLS scan 

(total area 2.7 ha) and buffered the entire plot by 10 meters on all sides. 

a.)  b.)   

Figure 3-1: Alignment of point clouds following coregistration, where the ALS data (red) were used as the 

reference points to align both the MLS (a.) (green) and UAS (b.) (blue) data. The mean (standard deviation) cloud-

to-cloud distances compared to the ALS data were 0.59 m (1.18m) and 0.64 m (1.04m) for UAS and MLS, 

respectively. 

We eliminated all the points considered outliers by the 50-nearest neighbor algorithm (Cover 

and Hart, 1967), implemented in the point data abstraction library (PDAL) (PDAL Contributors, 2018). 
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Following the removal of outlier points, we used the iterative closest point (ICP) algorithm (Besl and 

McKay, 1992) to coregister the UAS and MLS point clouds to the ALS cloud similarly to Henning and 

Radtke (2006). The ICP coregistration resulted in mean cloud-to-cloud distances (standard deviations) of 

0.59 m (1.18m) for UAS and 0.64 m (1.04m) for MLS, respectively. The coarse and fine coregistrations 

were performed using CloudCompare (Girardeau-Montaut, 2015). Point cloud summary statistics for all 

platforms following post processing are shown in Table 2. 

To assess the impact of point could density on the tree lean and position, we decimated the UAS 

and ALS clouds from full resolution to lower resolutions, specifically 100 points/m2 and 10 points/m2. 

The decimation consisted of randomly sampling points to achieve the desired overall resolution. We did 

not decimate the MLS cloud, because tree segmentation from the mobile ground scanner was unreliable, 

as discussed later in section 3.1. 

Table 3-2: Point cloud summary statistics for each platform following our post processing procedures. 

Platform 

Points 

(millions) 

Density 

(pts/m2) 

90%ile 

Elevation 

95%ile 

Elevation 

Max 

Elevation 

(m) 

ALS 24.62 465.73 39.95 41.55 49.74 

MLS 81.23 1584.67 24.93 28.93 47.15 

UAS 21.03 407.32 37.93 39.61 54.79 

 

3.2.5. Individual Tree Detection and Extraction 

To classify the ground points from the clouds, we initially tested two algorithms: the cloth 

simulation filter (Zhang et al., 2016) and the progressive morphological filter (Zhang et al., 2003). Both 

algorithms produced similar results, therefore we have chosen the cloth simulation filter for ground 

classification. We normalized the point clouds (i.e., removed the topography by subtracting the ground 
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elevation from the point elevation) using the digital terrain models (DTM)  produced by each platform 

(Error! Reference source not found.). 

Seed points (i.e., input for the raster based ITDE algorithms) were identified from the normalized point 

clouds using a local maxima filter with a fixed 5 meter window size and a minimum tree height of 15 

meters (Popescu and Wynne, 2004).  

To create the control, we used all available data to produce a point vector layer displaying the 

the locations (easting, northing) of each tree, for which we used the visual centers of tree crowns from 

above as a proxy.  In addition to the point clouds, we used the CHM layers (Figure 3-3) from all three 

platforms and the SfM orthomosaic raster which resulted from the reconstruction of UAS imagery. Some 

trees in the scene which were along the border of our study area were only partially present in one or 

more of the clouds, and therefore were omitted. We were able to identify 263 contol trees in total. We 

also created a road vector by drawing a line down the visual center of the roadway, then computed the 

minimum distance to the road from all seed and reference points using QGIS (QGIS Development Team 

2015). 

 

Figure 3-2: Digital terrain models from the UAS photogrammetric point cloud (UAS), the airborne lidar scanner 

(ALS), and the mobile lidar scanner (MLS). 
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Figure 3-3: Canopy height models from the UAS photogrammetric point cloud (UAS), the airborne lidar scanner 

(ALS), and the mobile lidar scanner (MLS). 

 

 We tested four ITDE algorithms for each platform, covering both types of tree extraction 

algorithms according to Kaartinen et al. (2012) , namely 2D and 3D. In the 2D category, we tested three 

algorithms, which require seed points and CHM as inputs. The first is a region growing algorithm that 

designates seed points as tree tops, then uses a decision tree method to grow individual crowns around 

the seed points ("D") (Dalponte and Coomes 2016). The second algorithm applies a variable radius 

crown buffer to delimit the tree crowns initially, then uses a centroidal Voronoi tessellation approach to 

isolate the tree polygons from one another ("S") (Silva et al. 2016). The third algorithm we tested was 

marker-controlled watershed, a specific implementation of the watershed algorithm (“W”) (Meyer and 

Beucher 1990), which is a morphological transformation that treats inverted tree crowns as regional 

basins which are subjected to a simulated flooding scenario in order to derive crown boundaries. The 

fourth algorithm, unlike the other three, falls into the 3D category, meaning it worked directly on the 

point cloud. Specifically, it uses top-down region growing method ("L") ( Li et al. 2012). The tree 

segmentation, including local maxima filtering and algorithm implementation, was carried out in R (R 

Core Team, 2017) using the ‘lidR’ package (Roussel and Auty, 2019). Once the tree segmentation 
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procedures were complete, the locations of the treetops (i.e., x, y, height above ground) were extracted 

for each segmented tree crown. 

3.2.6. Stem Locations 

To locate the base of the trees in the point clouds, we sliced the normalized clouds horizontally 

from 1 to 2 meters above ground. This was not possible for any trees using the UAS data due to the 

general absence of stem points in the 3D reconstruction. For the MLS data only, we created a second 

slice near the base of the crowns, from 18-19 meters above ground. We chose the location of the upper 

slice by finding the highest section where we could still detect the stems for the most trees by trial and 

error. The sliced clouds were rasterized from a nadir perspective at 5cm resolution, then manually 

located the centers of the stems by fitting circles over each, then placing point vectors in the center of the 

circles using QGIS (QGIS Development Team, 2015) (Figure 3-4). 

 

Figure 3-4: Horizontal slices of point clouds from 1 to 2 meters (pink) and 18-19 meters (purple) above ground 

(purple) were created by subsampling the raw point cloud data paralell to the ground  (left)  and used to visually 

locate the stem center points (yellow) from above (right) for MLS (green) and ALS (red) platforms. 
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3.2.7. Detection Accuracy and Positional Error 

To test the accuracy of the ITDE algorithms with respect to the control,  we created circular 

buffers (3 m radius) which were slightly smaller than half the minimum distance between any two 

control points (6.12 m) and computed the accuracy (control trees detetected), omission error (control 

trees missed), comission error (false positive tree detections), bias (μ), and root mean squared error 

(RMSE) for each combination of platform and algorithm (12 in total). 

 We performed an identical procedure to evaluate stem detection. In this case, we looked for stem 

center locations from the MLS and ALS clouds within 3 meters of our control points and computed the 

detection accuracy, omission and commission, μ, and RMSE.  

Finally, we used 3 meter buffers around the MLS stems to assess the positional error of the 

treetop locations. The buffer size was chosen to ensure the presence of only one treetop per stem 

(conincidentally it was the same as in the other comparisons). Because all of the stems that were located 

from the ALS data (n=210) fell within 1.5 meters of a stem located in the MLS data (μ = 0.61 m , RMSE 

= 0.68 m), and because more stems overall were detectable from the MLS (n=273), the MLS stems were 

used as reference. 

3.2.8. Height and Lean Assessment 

 We compared the height estimates of all of the trees where detection overlapped in all three 

point clouds (n = 153) by constructing scatterplots for the three pairwise combinations of platforms. To 

display the comparisons, we constructed scatterplots using the package ‘ggplot2’ in R (Wickham, 2016). 

We performed linear regressions over each, and incorporated the tree distance from the road in these 

plots for visualization purposes. 

Given the flexibility of the tree and the phototropic character of terrestrial vegetation, tree lean is 

most relevant from an operational perspective if it occurs on the lower portion of the stem as opposed to 

in the crown. Therefore, we have computed the lean as the horizontal distance (euclidian distance) 
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between the centers of the stem at 18 m and at 1 m as measured from the MLS (Dstem). However, tree 

lean has been also formally been described using the horizontal displacement between the stems and tree 

tops, so we performed a second lean calculation using the distance between the stem locations at 1 meter 

measured from the MLS and the location of the treetop measured from each of the aerial platforms (Dtop) 

(Figure 3-5).  

For both the stem centers at 18 m and for the treetop points we calculated the lean angle (θ, °) as follows: 

(1)    𝜃 =  (
180°

𝜋
) tan−1(

𝐷

ℎ
)  

where 𝐷  is the lean distance (Dstem or Dtop), and ℎ is equal to the height where the distance was measured 

minus one. Then we used the coordinates of the base of the stem (xbase, ybase) and of the upper positions 

(xtop, ytop) to calculate the azimuth (directionality) of the lean, measured in degrees clockwise from north, 

as follows, computed using the atan2() function: 

(2)     𝑎𝑧𝑖𝑚𝑢𝑡ℎ =  (
180°

𝜋
) tan−1 (

𝑦𝑡𝑜𝑝−𝑦𝑏𝑎𝑠𝑒

𝑥𝑡𝑜𝑝−𝑥𝑏𝑎𝑠𝑒
)  . 

To visually compare the results of the lean estimates, we created two maps: one to show the 

lean, θ, and azimuth, α, for each tree based on the Dstem and another to based on Dtop estimated from 

the ALS. We also created histograms to show the distributions of the θ based on Dstem and on Dtop. 

Using these histograms and the work of Thies et al. (2004), who purported that trees with less than 1.8 

cm lean per meter of stem are non-leaning, we considered that the stem is leaning if Dstem > 0.34 m, 

which corresponds to θ > 1.15°. We used this threshold to rate each tree as leaning or non-leaning, then 

created another pair of histograms to show the distributions of lean azimuth for trees that were leaning 

(i.e., had θ > 1.15°). All histograms were created using the R package “ggplot2” (Wickham, 2016). 

Tree height, as well as tree lean (θ, α) were calculated using the locations of the treetops from 

the decimated ALS and UAS data (100 and 10 pts/m2) in addition to the full resolution clouds. We 
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ranked the observations based on the mean values across platforms and resolutions from smallest to 

largest, then used this variable to order the data in scatterplots.  

 

Figure 3-5: Schematic showing how we used the location of each tree stem at 1m measured from the MLS platform 

(green) to estimate the tree lean angle (θ) using either the horizontal distance to the stem center at 18m (Dstem) or 

the horizontal distance to the treetop (Dtop) and the estimated tree height (Htree). The tree has been trimmed and 

shifted slightly to the right in the image for clarity, and the lean angle is exxagerated. 

 

3.3. Results 

3.3.1. Detection Accuracy and Positional Error 

Comparisons between the locations of the manually identified tree centers and the treetop points 

revealed that overall both aerial platforms, ALS and UAS, were more accurate in terms of detecting the 
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trees (91-97% for ALS and 87-94% for UAS) than the ground-based MLS (72-77%) ( Table 3 ). In 

addition to decreased accuracy, tree segmentation of the MLS cloud resulted in substantially greater 

commission error (7-14%) than the other two platforms (2-7% for ALS and 1-7% for UAS). The overall 

μ and RMSE were below one meter and comparable for all algorithms using the ALS ( μ = 0.65-0.70m, 

RMSE = 0.82-0.91m) or UAS ( μ= 0.60-0.66m, RMSE = 0.72-0.84m ), and almost double using the 

MLS ( μ = 1.41-1.45m, RMSE = 1.61-1.64m). Therefore, the aerial platforms were less biased and more 

precise than the MLS in terms of locating the treetops.  

Table 3-3: Tree detection accuracy using the visually detected tree centers (n=263) as the reference points and the 

local vertical maxima within crowns segmented using each combination of the three platforms and four 

segmentation algorithms that we tested. 

Platform Algorithm 

Trees 

Detected 

Omission 

Error 

Commission 

Error 

μ (m) 

RMSE 

(m) 

ALS D 93.54% 6.46% 6.84% 0.70 0.91 

ALS S 93.92% 6.08% 5.73% 0.68 0.88 

ALS W 96.58% 3.42% 5.22% 0.65 0.82 

ALS L 90.87% 9.13% 1.65% 0.68 0.87 

MLS D 72.24% 27.76% 12.04% 1.43 1.62 

MLS S 73.00% 27.00% 13.12% 1.43 1.61 

MLS W 72.24% 27.76% 13.24% 1.45 1.64 

MLS L 76.81% 23.19% 7.34% 1.41 1.62 

UAS D 88.59% 11.41% 6.05% 0.60 0.74 

UAS S 90.49% 9.51% 6.67% 0.63 0.78 

UAS W 93.54% 6.46% 2.38% 0.62 0.77 

UAS L 86.69% 13.31% 0.80% 0.66 0.84 

 



54 

Of the four ITDE algorithms we tested, the point cloud-based algorithm, L, produced the least 

accurate tree detection results for both aerial platforms, though this was true by a relatively small margin 

(91% versus 94-97% for MLS and 87% versus 89-94% for UAS). However, the case of the MLS point 

cloud, the L algorithm outperformed the raster-based algorithms (77% versus 72-73%) (Table 3). In 

terms of processing time, the L algorithm was by far the slowest for all the platforms, taking longer to 

complete than all the other algorithms we tested combined. 

In terms of stem location accuracy, we found that the ALS was 75.3% accurate and the MLS 

was 96.2% accurate (n=263). When we compared the stems detected from the ALS data (210 stems) to 

those detected from the MLS data, we found that all of the ALS stems (100%) fell within 1.5 meters of 

an MLS stem (0% commission and omission error, μ =0.62 m , RMSE =0.68m). The stem locations 

from the MLS were also slightly less biased than the ALS, with overall μ of 1.04 m (RMSE=1.26 m) as 

opposed to 1.16 m (RMSE =1.13 m) (Table 4). 

Table 3-4: Stem detection accuracy using the visually detected tree centers (n=263) as the reference points and the 

tree stem locations from the aerial platforms (ALS and MLS). No stems could be located from the UAS data. 

Platform 

Stems 

Detected 

Omission 

Error 

Commission 

Error 

μ (m) 

RMSE 

(m) 

ALS 75.29% 24.71% 0.50% 1.16 1.13 

MLS 96.20% 3.80% 0.39% 1.04 1.26 

 

Our assessment of positional error showed that for 273 stems located from the MLS data, the 

treetops were accurately located most often using the ALS cloud (85-89%) followed by the UAS cloud 

(81-85%), then the MLS cloud (69-75%). The μ and error between stem and treetop locations were least 

using the ALS data (1.01 m and 1.19 m, respectively), followed by the UAS (1.18-1.22 m and 1.36-1.40 

m, respectively), and the MLS had the most (1.62-1.65 m and 1.77-1.83 m, respectively). Similar to the  

treetop detection analysis, we found that the MLS data resulted in more commission error (8-16%) than 
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either the ALS (3-8%) or the UAS (1-5%). Because the results for this comparison did not show much 

variation across the three raster-based algorithms, we chose to only display the results of the W 

algorithm and the L algorithm, leaving out both D and S in this portion of our results (Table 5). 

Table 3-5: Tree positional accuracy results using the stem locations (n = 273) from the MLS data as control points 

and the treetop coordinates within the segmented crowns using raster-based (W) and point cloud-based (L) ITDE 

algorithms. We found that the treetop points fell within 3 meters of the stem locations most often using the ALS 

data (85-89%), followed by the UAS data (81-85%), then the MLS data (69-75%). The biases (μ) and errors for the 

three platforms follow a similar pattern. Both aerial platforms had less commission error (3-8% for ALS and 1-5% 

for UAS) than the MLS layer (8-16%). 

Platform Algorithm 

Accuracy 

[%] 

Omission Error 

[%] 

Commission Error 

[%] 

μ (m) 

RMSE 

(m) 

ALS W 89.38 10.62 8.27 1.01 1.18 

ALS L 85.34 14.65 3.32 1.01 1.18 

MLS W 68.50 31.50 15.77 1.61 1.77 

MLS L 75.46 24.54 8.04 1.65 1.83 

UAS W 85.35 14.65 4.51 1.22 1.40 

UAS L 81.43 18.57 0.89 1.17 1.36 

 

3.3.2. Height Estimation 

Because it produced the best positional accuracy results for both aerial platforms, we used only the 

results of the W algorithm for comparing height estimates. The tree height estimates from the W tree 

segmentation overlapped for all three platforms for 157 of 273 manually identified trees (60%), which 

was the most of any of the algorithms. The height estimates for the two aerial platforms, UAS versus 

ALS, were the most strongly correlated (R2=0.96) (Figure 3-6a) and had the least error (μ =1.31m, 

RMSE 1.66m). In general, height estimates from the UAS were comparatively lower than those from the 

ALS. Tree height estimates from the MLS platform did not agree well with either the UAS (R2=0.53, μ 

=2.96m, RMSE=4.13m) (Figure 3-6b) or ALS (R2=0.51, μ =4.27m, RMSE=5.05m) (Figure 3-6c), and 

they tended to be underestimates compared to both other platforms’ estimates. Distance from tree to road 
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did not significantly impact (α =0.05) the differences in height estimates for UAS versus ALS (p-value 

0.89) but did significantly impact the differences for MLS versus ALS (p-value 0.034) and for MLS 

versus UAS (p-value 0.047). 

 

Figure 3-6a: Scatterplot and linear regression statistics for pairwise comparisons of tree height estimates between 

the three platforms we tested. Only trees which were detected by all three platforms (n=157) were included in these 

models. Lines of best fit appear in red surrounded by shaded confidence interval (95%), while the line y=x appears 

in purple. Points are colored according to distance from the road, where blacker points are closer and orange points 

are farthest away.  

 

Figure 3.6b: Scatterplot and linear regression statistics for pairwise comparisons of tree height estimates between 

the three platforms we tested. Only trees which were detected by all three platforms (n=157) were included in these 

models. Lines of best fit appear in red surrounded by shaded confidence interval (95%), while the line y=x appears 

in purple. Points are colored according to distance from the road, where blacker points are closer and orange points 

are farthest away. 
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Figure 3.6c: Scatterplot and linear regression statistics for pairwise comparisons of tree height estimates between 

the three platforms we tested. Only trees which were detected by all three platforms (n=157) were included in these 

models. Lines of best fit appear in red surrounded by shaded confidence interval (95%), while the line y=x appears 

in purple. Points are colored according to distance from the road, where blacker points are closer and orange points 

are farthest away. 

 

3.3.3. Lean Assessment 

We were able to estimate the lean, θ, and azimuth, α, for 259 trees using the MLS stem locations at 18m, 

245 trees using the ALS treetop locations and W algorithm, and 246 using the UAS treetop locations. 

Lean maps for all platforms are shown in Figure 3-7. Visually, the lean estimates seem from the aerial 

platforms seem to bear more resemblance to one another than to those from the MLS. This is true of both 

the directionality (α), and angle (θ), however with θ we see that the UAS estimates are the tend to be the 

largest, followed by the ALS, and then the MLS (stem-based) estimates.  
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.  

Figure 3-7: Tree lean estimates created using the locations of the stems at the base (1-2 m) as reference points and 

the horizontal distance to the stem location near the top (18-19m) (n=259) (right) compared to the horizontal 

distance to the treetop location from the ALS data (n=245) (center) and UAS data (n=246) (left). The points are 

scaled according to the magnitude of the tree lean and colored according to the azimuth. A greyscale canopy height 

model (CHM) from the ALS dataset is used as the background. 

The distributions of the tree lean angle, θ, are shown in Figure 3-8. The mean estimates for θ 

were 1.36°, 1.55°, and 2.07° for MLS, ALS, and UAS, respectively. The Pearson’s correlation 

coefficients (r) (Benesty et al., 2009) for the lean estimates from the platforms were 0.54 for ALS versus 

UAS, 0.31 for ALS versus MLS, and 0.24 for UAS versus MLS. Once again, these results indicate that 

the lean estimates tend to be greater from the airborne platforms than from the ground-based MLS, and 

the difference is larger for the UAS compared to the ALS. Also, the estimates from the aerial platforms 

show more similarity to one another than to the MLS estimates, though the overall correlations are weak.   
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Figure 3-8: Distributions for tree lean angle (θ) estimated using stem location at 18m from the MLS (n=259) 

(right), treetop locations from ALS (n=245) (center), and treetop locations from UAS (n=246) (left). Red dotted 

lines indicate the mean θ for each platform (1.36°, 1.55°, and 2.07° for MLS, ALS, and UAS, respectively. 

 

As for the lean azimuth estimates, we created histograms showing only the trees that were 

assumed to be leaning based on estimated θ > 1.15° (Figure 3-9). For MLS 152 trees met this criterion, 

which was the least, followed by ALS with 156 trees, then UAS with 191. The mean azimuth estimates 

across the platforms were similar, having only 9° of variation between them (177°, 184°, and 175° 

clockwise of N for MLS, ALS, and UAS, respectively). Despite this similarity, the overall correlations 

between the lean azimuth estimates were also relatively weak, having r = 0.38 for ALS vs. UAS, r = 

0.40 for MLS vs. UAS, and r = 0.33 for MLS vs. ALS.  

 

Figure 3-9: Distributions for tree lean azimuth for trees with lean angle θ > 1° θ estimated using stem locations at 

18m from the MLS (n=259) (right), treetop locations from ALS (n=245) (center), and treetop locations from UAS 

(n=246) (left). Red dotted lines indicate the mean θ for each platform (177°, 184°, and 175° for MLS, ALS, and 

UAS, respectively. 
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3.3.4. Decimation Assessment 

After the clouds were decimated, 8 out of 245 (3.3%) of trees were omitted from the ALS data and 15 

out of 246 (4.8%) were omitted due to the treetop locations having fallen at least 8 meters from the stem, 

leaving 237 and 231 from the ALS and UAS, respectively. We show the height estimates for the 

remaining trees using the full resolution, 100 points/m2, and 10 points/m2 data (Figure 3-10). It appears 

that the decimation has a limited effect on the reliability of the height estimates, though most of the 

differences are for trees shorter than 40 meters. The tendency for the UAS to consistently underestimate 

the tree heights with respect to the ALS is also apparent.  

 

Figure 3-10: Tree height estimates from UAS and ALS platforms using undecimated point clouds (blue), 10 pts/m2 

(purple), and 100 pts/m2 (orange). Observations are sorted by mean height estimate from least to greatest. 

 

We conducted a similar comparison for tree lean, θ, showing the lean estimates for ALS and 

UAS by decimation level in Figure 3-11. There are seemingly more errors with trees that have more lean 

(greater θ), with those errors usually resulting in overestimates following the decimation. The levels of 
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decimation that we tested were not markedly different from one another (i.e., the error did not increase 

from 100 to 10 points/m2). 

 

Figure 3-11: Scatterplot showing lean magnitude (m) calculated as the horizontal displacement between the tree 

stem at 1m height measured from the from the MLS and the treetop locations for the same trees from the ALS 

(circles) and MLS (triangles) clouds at full resolution (blue), 10 pts/m2 (purple), and 100 pts/m2(orange). 

Observations are sorted by mean distance from least to greatest. 

 

Due to the initial estimates being less correlated than the height or θ estimates, we plotted the 

azimuth estimates across decimations separately for ALS and UAS (Figure 3-12). The shapes of the 

plots are similar, except for portions around 175° and 200° where some values appear to be missing from 

the UAS data. The same pattern is evident in the histograms in Figure 3-9. The azimuth estimates from 

both platforms appear to be sensitive to reductions in point cloud density. In particular, there are more 

points from the undecimated ALS data that fall away from the trendline than with the height or θ plots, 

which suggests that some sensitivity to detecting the azimuth may be lost due to decimation. The same 

pattern appears in the UAS data but is less obvious in this case. 



62 

 

Figure 3-12a:  Scatterplots showing lean azimuth in degrees clockwise of north for tree lean estimates by using 

UAS to detect treetops and measuring the horizontal distance from the stem center location at 1m height measured 

from the MLS. Observations are sorted by the mean azimuth angle from smallest to largest. 

 

 

Figure 3.12b Scatterplots showing lean azimuth in degrees for tree lean estimates by using ALS. 
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3.4. Discussion 

3.4.1. Stem and Tree Detection 

For detecting treetops, the ALS and UAS platforms performed more accurately and produced 

less biased estimates than the MLS.  The ALS performed slightly better than the UAS, but in general the 

two aerial datasets resembled one another more than the MLS data resembled either of them. This was 

true with regards to the DTM, CHM, and the treetop detection analysis. This is unsurprising considering 

the perspective of the sensors during data collection, but it is nonetheless an important consideration, 

particularly when forests are imaged from below the canopy. Based on this, we conclude that an aerial 

platform is needed to reliably locate the treetops. Also, there is some evidence to suggest that, based the 

large difference in cost and logistical demands, the photogrammetric platform (UAS) may be more 

suitable for widespread use than the ALS despite a small reduction in performance.  

For detecting tree stems, the MLS platform had the highest accuracy, having detected 96% of the stems 

compared to the control. The ALS clouds performed moderately well, having detected 75% of control 

stems, while no stems were detectable from the UAS cloud. Again, this is related to the perspective of 

the ground-based MLS with respect to the tree stems, and it highlights the importance of reducing 

obstructions between the sensor and the trees. Despite the overall performance of the MLS being very 

good for detecting tree stems in this experiment, we noticed several limitations of the platform that 

should be considered. First, the functional range of the sensor is limited by the quality of the lidar 

scanner, specifically the power of the laser emitter and the sensitivity of the detector. The particular 

platform we used employed high-quality hardware and we found that stem detection was limited to about 

75 meters from the road. The stand we scanned was managed such that it has a clear understory and a 

single crown-layer, which made it suitable for this analysis. However, obstructions like understory 

vegetation or suppressed trees would negatively impact stem detection from the MLS.  
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While we tested both an active and a passive sensor in the air, we did not test any passive sensors on the 

ground. Based on previous studies,  it is possible to measure tree stem characteristics in this way 

(Forsman et al., 2016), as well as by using a UAV mounted camera tilted at an angle to image open 

stands (Fritz et al., 2013). 

 The segmentation algorithms we tested ranked differently in performance depending on the 

orientation of the sensor that was used. The raster-based methods worked best for the aerial datasets and 

achieved the best accuracy overall, while the point-cloud based method worked best for the MLS data. 

Many of the tops of the trees in the MLS point cloud are visibly missing from the data, making the 

crowns appear more jagged and asymmetrical than reality. These resulting crown shapes also seem less 

characteristic of a typical conifer crown, which helps explain why the raster-based algorithms do a 

poorer job of segmenting them. Specifically, if the approximate locations of the treetops are unreliable, 

in this case because the crowns are incomplete, the raster-based methods will have low-quality inputs in 

the form of erroneous seed point locations. On the other hand, the L algorithm was intended for use in 

mixed and complex coniferous forest (Li et al., 2012), which explains why it performed better than the 

raster-based methods with regards to segmenting trees from the MLS data. Because implementing the L 

algorithm takes much longer to process the data than the raster-based algorithms, there is a trade-off 

between efficiency and performance in this case. 

3.4.2. Height Estimation 

The height estimates for the aerial platforms strongly agreed in terms of correlation, but the UAS 

estimates were consistently lower than the ALS estimates. This is likely due to the generalization of stem 

and foliage features around the margins of the tree canopy that result from the structure from motion 

reconstruction process. 

Andersen et al. (2006) point out that although the dominant source of error for tree height estimates is 

due to treetop location uncertainty, there can also be errors in the terrain location (i.e., the DTM). 

According to Leckie et al. (2003), up to 0.5 m of height estimate error can be attributed to  DTM error 
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when using airborne lidar data to estimate tree heights, and Reutebuch et al. (2003)showed that the 

overall DTM error was around 0.18 m when using higher resolution point cloud data for a thinned stand. 

. In our case, we saw that the error between the DEM layers for the two aerial platforms (ALS minus 

UAS) was relatively low (μ = 0.21 m, σ=0.54 m) compared to the error between the ALS minus MLS 

(μ= 1.30 m, σ = 1.67 m) or the UAS minus MLS (μ=1.13m, σ = 1.73 m). Due to the orientation of the 

sensor in the pickup truck bed, the number of ground returns from the MLS diminishes greatly moving 

away from the roadway. The low position of the sensor (2.5 m AGL) results in extremely acute 

incidence angles for ground returns. Moving from 25 to 50 m away from the sensor and assuming flat 

ground, the laser incidence angle diminishes from 5.7° to 2.9°. According to the differences between the 

DEMs and the aerial platforms (Figure 3-13), we can infer that this is the approximate range where the 

MLS ground return data become unreliable. Nonuniform terrain, understory vegetation, and other natural 

obstructions could shorten this range.  

 

Figure 3-13: Differences in elevation for the digital elevation model (DEM) layers created using point clouds from 

the three platforms we tested. 
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While this disagreement between the DEM values from the platforms partially explains the poor 

performance of the MLS platform for estimating tree heights, our findings agree with Andersen et al. 

(2006) and Holopainen et al. (2013) in that the more fundamental problem is obscuration of the treetops 

by the lower canopy. Specifically, we saw that although the DEM and CHM data for MLS were similar 

in that the data quality decreased moving away from the road, the magnitude of the largest differences 

between the MLS data and aerial platforms were several times larger for the CHM compared to the DEM 

(Figure 3-14).   

 

Figure 3-14: Differences in height for canopy height model (CHM) layers created using point clouds from the three 

platforms we tested. 

3.4.3. Lean Assessment 

The purpose of comparing the three platforms’ ability to detect the tree stem and treetop locations in this 

study was to determine which were suitable for identifying leaning trees.  Discrepancies in the locations 

of GNSS located tree stems and the locations of treetops according to ITDE algorithms have been 

attributed to tree lean (Jakubowski et al., 2013), and such trees could be better accounted for in such 

analyses if they were identified in advance. The MLS data provided very detailed reconstructions of 

stems, both at the base and at the top. We found that manually fitting circles to rasterized slices of the 
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stems was suitable for locating the stem centers from the MLS data, though the method is tedious and 

could possibly be automated (Herrero-Huerta et al., 2018). However, because the sensor is positioned in 

the bed of the truck and mounted at a 45° angle toward the rear, perspective of the sensor with respect to 

the tree shifts as the MLS approaches the tree. This results in the orientation of the crescent-shaped stem 

sections rotating around the stem as the tree is scanned from top to bottom while the MLS approaches 

(Figure 3-4 inset).  

Additionally, the quality of the data produced by the MLS platform is highly constrained by the distance 

from the road. This is less of an issue with stems compared to ground returns or treetop locations as 

discussed previously due to the orthogonal position of the stems with respect to the sensor and the lack 

of obstructions in between. However, if there are insufficient ground returns to provide an accurate 

DEM, stem heights above ground would be uncertain, highlighting the value of combining MLS and 

aerial reconstructions. Based on our results, we suggest that either active or passive sensors (i.e., 

platforms and techniques used for our ALS and UAS, respectively) can be used to provide valuable 

aerial data for this purpose. Considering these limitations, we find that the MLS provides an effective 

method for estimating tree stem lean. Future studies might use similar data to look at the departure of 

stems in greater detail. For example, creating more slices (i.e., at regular intervals) along the stem would 

allow for differentiation between leaning trees that have straight stems and stems that have sweep. 

Using the treetop locations from the ALS and UAS point clouds did not provide reliable estimates of tree 

lean angle or direction when compared to the stem lean estimates from the MLS. Of trees that were 

classified as leaning or not leaning based on a 1.15° threshold the MLS data, 61% were correctly 

classified using ALS treetops, and only 52% with the UAS. Based on our findings, we suggest that for 

tall conifers the Euclidian distance between the base of the stem and the top of the crown may not be a 

good predictor of stem lean angle or azimuth. The estimates we produced with the ALS, and more so, the 

UAS, tended to be larger in terms of θ than the stem estimates, which can be explained in part by 
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asymmetry in the upper portion of the crowns that can result in the treetop being moved away from the 

base of the stem regardless of tree lean.  

However, the treetop locations from both aerial platforms produced using the ITDE algorithms and the 

aerial platforms were effective in our positional error assessment. Both platforms had above 80% overall 

accuracy with RMSE < 1.4 meters. This suggests that for large trees, perhaps treetop locations from 

aerial surveys can be used to locate tree stems from MLS scans, and vice versa. 

3.4.4. Decimation Assessment 

All the raw point clouds we tested were high resolution, which is generally beneficial but results in large 

computational demands and prolonged processing time. We tested two decimation scenarios in order to 

simulate lower resolution datasets that, in theory, might result from the data collection itself (i.e., the 

hardware or the speed of the vehicle) or from post-processing in order to increase throughput.  

For height estimation, the decimations we tested did not have a strong effect on the estimates from the 

aerial platforms. Though 10 points per meter data would not be considered low resolution compared to 

manned aerial lidar scans, this represents at least a 40x reduction in average point density compared to 

our raw clouds, which translates to a major reduction in storage requirements and processing time. Based 

on this, there is some evidence both ALS- and UAS-type platforms can be used to produce much lower 

resolution clouds than the ones in this study in order to estimate tree height using unmanned aircraft (i.e., 

with active or passive sensors).  

The decimations did change the lean angle and azimuth estimates that resulted from the UAS and ALS 

data. For lean angle, we saw that most of the error occurred with trees that leaned the most. Also, we saw 

that lowering density resulted in a reduction in the lean angle estimate. The reduction in θ from 

decimation is unsurprising because the treetop locations tend to move down in terms of height with 

increasing decimation. In fact, they never move upward, which results in the Euclidian distances 
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generally getting smaller as well, which results in smaller θ. In terms of estimating azimuth, the 

decimations seemed to result in reduced sensitivity, especially in the ALS data.  

At least within the context of how we compared the lean estimates, it seems that the effects of the 

decimation procedures are, in practice, less important than the general lack of agreement between the 

aerial and ground-based estimates. The lean classification accuracy values that we reported above for 

ALS and MLS do not worsen following decimation, though they only marginally improve and were poor 

initially. For ALS, the original accuracy was 61%, at 100points/m2 it was 64%, and at 10 points/m2 it 

was 57% (Figure 3-15). For the MLS, the original accuracy was 52%, at 100points/m2 it was 52%, and 

at 10 points/m2 it was 53% (Figure 3-16). 

 

Figure 3-15: Confusion matrices comparing classification of trees into “leaning” and “not leaning” classes 

according to the lean angle based on the horizontal distance between the stem center at 1m measured from the MLS 

and the stem center at 18m (x-axis) versus the lean angle based on the horizontal distance between the stem center 

and the treetop measured from the ALS at full resolution (left), 100pts/m2 (center), and 10pts/m2 (right)  (y-axis). 

 

Figure 3-16: Confusion matrices comparing classification of trees into “leaning” and “not leaning” classes 

according to the lean angle based on the horizontal distance between the stem center at 1m measured from the MLS 

and the stem center at 18m (x-axis) versus the lean angle based on the horizontal distance between the stem center 

and the treetop measured from the UAS at full resolution (left), 100pts/m2 (center), and 10pts/m2 (right) (y-axis). 
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3.5. Conclusions 

Regarding the creation of point cloud data for making single tree measurements, we found that there are 

tradeoffs between the performance, cost, and ease of operations across the platforms we tested. The most 

expensive platform, MLS, produced the highest resolution data and was the easiest to use. However, the 

file sizes associated with dense point clouds results in more computational demands and expertise 

required for post-processing. Because we did not perform any decimation on the MLS data, it is unclear 

whether lower resolution data (i.e., from a less expensive ground-based platform) could be used in a 

similar way.  

In comparison, the UAS platform produced the lowest quality point clouds, but it was also the least 

expensive by a large margin. The process of using SfM to reconstruct images in 3D results in a loss of 

some of the fine scale texture of tree crowns, but based on our results, retains the general position and 

size of the individual trees when compared to the ALS scans. Furthermore, the ALS and UAS performed 

comparably well at detecting treetop locations compared to the MLS, though the ALS was slightly 

better. Thus, we provide some further evidence of the value of consumer-grade UAV platforms for 

single tree mensuration in mature forests. We did not test any passive sensor platform from the ground, 

though including such a platform (i.e., a motor vehicle with a multispectral camera mounted 

horizontally) would be interesting for comparisons in future studies. 

For detecting tree stems, the MLS platform did the best, having detected 96% of the stems compared to 

our visual control. The ALS performed moderately well, having detected 75% of stems. One of the 

limiting factors for stem detection using this particular ALS platforms was the lack of programmed flight 

missions, which are fundamentally important for systematically covering large areas and can be 

performed with similar hardware and more up-to-date software. In the case of the UAS, no stems were 

detectable from the point cloud, which is not surprising, given the vantage point of the platforms and the 

inability of the multispectral imagery to penetrate the forest canopy. 
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The ITDE algorithms we tested all performed relatively well if parameters were optimized, including the 

three raster-based approaches and one cloud-based approach. However, the cloud-based L algorithm did 

perform slightly worse than the raster-based algorithms when applied to the aerial datasets, and since it 

was also the most time-consuming procedure, we found that it was less suitable than the other methods 

within the context of our study. 

We also found that the treetop locations detected from the ALS and UAS were within the vicinity of the 

stems for more than 85% of cases. This suggests that the treetops could be used to infer the locations of 

stems that are located from the MLS platform, and again that the UAS is adequate for this analysis 

despite its lower cost and general convenience. Overall, the MLS is the least suitable platform for 

detecting treetops. The ground-based perspective of the platform, not the quality of the sensor, is the 

main driver for this. 

The height estimates from the ALS and UAS platforms were strongly correlated, though the UAS seems 

to systematically underestimate the values. However, the MLS was not effective for estimating tree 

heights. The error from these estimates propagates moving away from the sensor, which travels along the 

road. The unreliability of the MLS for height estimates can be attributed to a combination of treetop 

location error, which is the primary source and is evident in the CHM data, as well as DEM error. 

The MLS platform produced very robust reconstructions of tree stems, which we used to estimate tree 

lean by measuring the horizontal departure between the stem position at the base and near the top. For 

trees that were closer to the road (< 20 m), the cross-sections that resulted from slicing the MLS cloud 

parallel to the ground allowed us to easily fit circles to the stems visually. The same slicing procedure we 

used to estimate the overall lean of these trees could be performed at more locations (i.e., at regular 

intervals) along the stems, which would facilitate more inference about lean properties. This has been 

demonstrated with single trees using a stationary platform (Thies et al. 2004), and here we show it could 

likely be expanded using a mobile platform.  
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We also estimated lean using the horizontal distances between the base of the stem measured by the 

MLS and the treetop location detected from the aerial platforms. The lean estimates across the aerial 

platforms were similar to one another, but when we compared the estimates of tree lean (θ, α) using only 

the stems with the estimates using the treetops, we found that the treetop lean estimates tended to be 

greater in terms of θ and generally were in disagreement with the stem lean estimates.  

Decimating the aerial point clouds from over 400 points/m2 to 10 points/m2 did not greatly change the 

height estimates from the aerial platforms, which suggests both ALS- and UAS-type platforms can be 

used to produce much lower resolution and which can be used to estimate tree height using unmanned 

aircraft (i.e., with active or passive sensors). However, decimation did have an impact on the agreement 

between the lean estimates for ALS and UAS, though it seems that point cloud density may be less of a 

limiting factor for producing reliable lean estimates when compared to the lack of agreement between 

the aerial and ground-based estimates. 

 

 

 

 

 

 

 

  



73 

4. Quantifying Lean for Stem Models of Mature Douglas Firs 

  



74 

Abstract 

 
Tree lean is used to conduct hazard tree assessments and can influence wood quality, so it is 

commonly included in forest inventories. Douglas Fir (DF) (P. menziesii) is the predominant commercial 

species in the United States Pacific Northwest. Our study compared two strategies to estimate DF tree 

lean from MLS. The first was a more conservative estimate, total lean, which used the horizontal 

distance between center near DBH and the stem location near the base of the crown, and the second was 

a more precise estimate that used the mean of 7 intermediate angles spaced out along the boles. In the 

process of locating the stem centers, circular vectors were fit to the trees which allowed for extraction of 

diameter measurements from the MLS data along the stems. A total of 4 existing stem taper and 3 stem 

volume equations were tested using MLS data using the DBH and total heights as predictors (i.e., as 

presented in the literature), then the DBH estimates were replaced with the diameter at 5 meters above 

ground (D5) and tested again. Because there is evidence that the minimum lean angle that results in 

detectable changes in tree physiology is around 2° for some species, and because this has not been 

investigated for DF specifically, a simple procedure is proposed to add lean estimates and associated 

variable coefficients as predictors to existing models predicting stem geometry. The distance from the 

scanner to each tree was also measured and tested as a predictor in the models. Results show evidence 

that fitting models using only leaning trees tends to result in increased bias and error compared to 

modeling only vertical trees, hence, it seems that lean should be considered when modeling stems of 

mature DF. When DBH was replaced with diameters at 8 heights spaced along the bole, we found that 

leaning trees showed a dramatic improvement in the models when the input height was from 7 or 10 m 

above ground, while the vertical trees had consistently favorable results using heights between 5 and 

15m.   
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4.1. Introduction 

The deviation of mature conifer stems from a vertical position, known as tree lean, is of interest 

to the forestry community as it plays an important role in forest operations and wood processing. For 

forest operations and in urban forest settings, lean is an important component of hazard tree risk 

assessment (Mortimer and Kane, 2004). From a commercial standpoint, lean can influence wood quality 

because lean has been shown to increase the proportion of reaction wood (Wilson and Archer, 1977). As 

such, visual assessments of tree lean, estimated using the apparent displacement of the observed tree top 

and base, are typically included in forest inventories (Gatziolis et al., 2010b) as well as for research such 

as allometry (Kramer et al., 2018) . 

Advancements in forest mensuration, particularly the advent of light detection and ranging 

(lidar) scanning, have pointed the importance of tree lean as a source of error for single tree 

measurements. Tree heights from the 3D reconstructions produced by lidar, known as point clouds, tend 

to either underestimate or overestimate trees leaning, depending on the location, uphill or downhill, 

respectively (Gatziolis et al., 2010b). Tree segmentation algorithms, which separate trees from one 

another within point clouds, are integral to producing single-tree estimates from lidar. Being automatic, 

some algorithms have shown to be negatively impacted by lean (Strîmbu and Strîmbu, 2015). Also, as 

noted in the previous chapter, trees that lean are more prone to positional errors when located from 

above due to the stem being placed away from the tree top (Garms et al., in review). 

Estimating the locations (i.e., coordinates) of conifer stems from high quality aerial lidar scanner 

(ALS) data is possible, but has been shown to produce several meters of error (Edson and Wing, 2011). 

However, mapping entire tree stems from aerial lidar scanner (ALS) data is extremely challenging 

because the scans provide too few stem returns to reliably infer stem geometry (Gatziolis et al., 2010b). 

Ground-based stationary lidar scanners, known as terrestrial laser scanners (TLS), capture point cloud 

data from a more favorable perspective than ALS, which results in stem reconstructions that are suitable 

for measuring diameters, but require multiple scans and subsequent coregistration of data for sampling 
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large numbers of trees (Henning and Radtke, 2006). In fact, Thies et al. (2004) used TLS data to model 

the shape (i.e., the taper, sweep, lean magnitude, and lean direction) of tree stems over 15 years ago, 

though the study included only two trees.  

By combining lidar with ground-based vehicles and positioning systems consisting of inertial 

measurement units (IMU) with global navigation satellite systems (GNSS), nonstationary analogues to 

TLS have been developed, namely mobile lidar scanners (MLS). In the past decade, MLS have been 

utilized in a number forestry research efforts, including stem mapping (Holopainen et al., 2013; 

Pierzchała et al., 2018; Tang et al., 2015), tree crown segmentation (Tao et al., 2011; Zhang et al., 2015), 

and forest inventory (Čerňava et al., 2017; Fan et al., 2018). Many of the previous implementations of 

MLS used hand-held or backpack mounted platforms, which require a technician to walk through the 

stand and are constrained by coverage efficiency (i.e., time required to scan a given area). Other studies 

have demonstrated the use of motorized passenger vehicle (i.e., “street legal”) MLS in urban forestry 

applications, which is a logical initial implementation given the prevalence of open-grown trees and lack 

of understory vegetation in urban settings. In Chapter 2, I showed that street legal MLS can be used in 

conjunction with ALS make single tree estimates of mature Douglas Fir. The study by Garms et. al. 

(2020) and others (Čerňava et al., 2017; Strahler et al., 2008) have shown that MLS has limitations, 

which should be taken into consideration for below canopy mapping, including obstructions (i.e., 

branches or understory vegetation), and terrain ruggedness. Another limitation of MLS, common across 

all lidar platforms, is the distance between the scanner and the object of interest. Given the promises 

shown by previous studies that utilized MLS to analyze stems and the prevalence of access roads in 

operational forests, it seems that MLS data would be suitable for quantifying tree lean in the context of 

forest management. If so, it is possible that lean estimation using MLS would be more accurate and more 

objective than visual surveys, which are the status quo, while also being more efficient than TLS, which 

is the most accurate method that has been presented. 
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There is limited consensus regarding the magnitude of lean angle (i.e., the departure from 

vertical) required for a tree to be considered leaning. For loblolly pine (Pinus taeda L.) and longleaf pine 

(Pinus palustris), Pillow and Luxford (1937) considered trees having between 0.5° and 2.5° of lean as 

slightly leaning, trees with between 2.5° and 5.5° as moderately leaning, and trees with < 5.5° as 

pronounced leaning. The notion that trees with 0.5-2.5 degrees are in fact leaning is supported by the 

evidence that trees in this category had differences in rate of diameter growth and formation of reaction 

wood compared to straight trees (i.e., trees with lean < 0.5°). For Oregon white oak (Quercus garryana), 

Lei et al. (1996) used 2° as the minimum cutoff for slightly leaning trees. When using TLS to reconstruct 

a single European beech (Fagus sylvatica L.), Thies et al., (2004) considered that a 1.03° lean angle is 

non-leaning. Rather than reporting the lean as degrees (or radians) from vertical,  Thies et al. (2004) 

described the lean as the average linear rate of departure from verticality (i.e., 1.8 cm/m-1). Thies et al 

(2004) approach is intuitive because it reflects the way that lean is traditionally estimated: by assessing 

the horizontal distance between the base of the tree and its top. For comparison, 1° of lean is equivalent 

to 1.75 cm/m-1 of horizontal departure, so the 2° lean threshold used by Lei et al. (1996) translates to 70 

cm of departure between the top and bottom of a 20 m stem. Based on this example, it is plausible that 

2° (3.5 cm/m-1) is adequate for a tree to present as slight lean upon visual inspection, and also potentially 

insufficient for precise manual measurements. The value of 2° is supported by the literature as the 

approximate point where lean begins to effect tree physiology such as growth and wood properties. The 

2° threshold is also aligned with common practices, as being slightly greater than the minimum amount 

of lean that could be reliably detected visually.  

 Douglas fir (Pseudotsuga menziesii) (henceforth DF) is the predominant commercial softwood 

tree species in western North America (Bose et al., 2018). To appraise the value of living trees, many 

stem taper equations (i.e., equations to predict the diameter of the bole at different heights) have been 

produced (Wensel and Olson, 1995a). Another option for estimating the value of standing timber is to 

model the volume of the whole stems directly, thus, several cubic tree volume equations also exist for 
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DF (Wensel and Olson, 1995b). In general, both the stem taper and volume equations are typically 

nonlinear models, often with variable exponents, that rely on the total tree height and diameter as 

predictors. For diameter, the most common measurement is diameter at breast height (DBH), but there is 

evidence that models using some height higher on the bole instead of DBH, such as the midpoint 

between the tree top and breast height, perform better (Cao and Wang, 2015). It has also been shown that 

using a second diameter measurement in addition to DBH can improve the fit of the models (Cao, 2009). 

Point cloud data produced by MLS cover entire tree stems, which allows estimation of diameter higher 

on living tree boles without separate instruments or additional labor costs to be made in-situ, common to 

traditional forest measurements.  

Because MLS is suited to digitally reconstruct tree stems due to the perspective, orientation, and 

trajectory of the platform, it can be used to detect subtle morphological characteristics of trees, such as 

slightly leaning stems. Most previous studies and field measurements describe lean  as an aggregate 

value, (i.e., total lean), assuming that leaning stems are straight. However, trees can exhibit curvature 

along the stem, known as sweep and crook (Cunningham, 2012). In practice, stem curvature is recorded 

as a binary variable, such as present/absent, but the ground based laser scans can provide a numerical 

value to the bend (Thies et al., 2004). Nevertheless, a tree with sweep or crook is formally leaning, as the 

stem is not vertical, as its center deviates horizontally from the base. Irrespective of the reason for lack 

of stem verticality, lean, sweep or crook introduces stress in the wood, with significant impacts on wood 

quality. Therefore, the objective of this study is to assess the impact of the steam verticality, henceforth 

labeled as lean, on estimation of two of the most important forest inventory attributes, namely diameter 

and volume, using lidar point clouds. We have decided to label the lack of verticality as lean, as DF 

rarely exhibits sweep or crook.  
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4.2. Methods 

4.2.1. Study Site 

The study was conducted within Oregon State University’s McDonald Research Forest, roughly 

5 km north of Corvallis, Oregon, USA. The study area comprised a small (~4 ha) managed DF 

shelterwood stand that was planted in 1953 and thinned in 1986 (Error! Reference source not found.). T

he location was selected because, in multiple respects, it was suitable for MLS scans. First, the stand was 

crossed by a forest road through the middle, which was necessary for access. Also, the road being 

located along a ridge feature helped accurate location of the point cloud, as the GNSS was always 

visible. The terrain was generally flat, with a small amount surface relief. Finally, the thinning treatment 

resulted in a relatively open understory, with limited obstructing vegetation and debris, which allowed 

the laser pulses to penetrate the stands and register return points along the entirety of tree stems.  

 

Figure 4-1 Location of the area of interest (AOI) within Oregon State University’s McDonald-Dunn Research 

Forest  
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4.2.2. Data Collection 

The MLS scans for this study were conducted on 5 March 2018. The MLS platform consisted of 

a Toyota Tacoma pickup truck, Velodyne HDL-64E lidar unit, a Topcon IP-S2 HD GNSS-aided inertial 

navigation system, and a distance measurement indicator. The lidar unit can record more 2 million points 

per second, has 64 channels, a vertical field of view of 26.9° and a range of 120 m. The entire system 

was purchased by the Oregon Department of Transportation (ODoT) and granted to Oregon State 

University in 2015 The platform was intended for asset inventory, bridge clearance assessment, and 

other uses by ODoT, so the sensor was mounted at a 45° angle tilted toward the rear of the vehicle 

(Figure 4-2). 

 

Figure 4-2: Orientation and scan angle of MLS from this study. The sensor has a vertical field of view of 27° and is 

tilted at 45° backwards. The beam angle ranges from 31.5° to 58.5° from vertical as it scans above and in front of 

the truck. 
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Tree heights were measured on 9 February 2018 using an unmanned aerial system (UAS) 

equipped with a lidar sensor, or an unmanned aerial lidar scanner (UALS). For validation of the height 

estimates, we also measured the heights using digital reconstructions built from multispectral images 

taken from a UAS. This process is known as 3D structure from motion photogrammetry (SfM) (M.J. 

Westoby et al., 2012). The hardware, data collection and data extraction processes for both the UALS 

and SfM height estimates were also described in the previous chapter (Garms et al., in review).  

The tree heights were estimated using a DJI S1000 unmanned aerial system equipped with a 

Velodyne Puck LITE sensor and the OxTS XNAV200 GNSS-aided inertial measurement unit. The 

Velodyne Puck operates in 16 channels, has a 100 m range and generates 300,000 points/second. The 

unit flew on 9 February 2018, in the same dormant season with the acquisition of the MLS data. To 

estimate the height, each tree was visually identified, to reduce the omission and commission error. To 

decrease even further the tree identification errors, the process was carried out by two different persons, 

and was supplemented by the maker-controlled watershed tree segmentation algorithm (Meyer and 

Beucher, 1990b). The final trees were decided after the analysis of the differences, namely trees that 

were missed or added, among the three sources.  

 On 31 March and 3 April 2020, I measured the DBH of 90 trees using a diameter tape. Trees 

were sampled across a range of sizes and distances from the road and were spatially distributed across 

the study area.  The trees were expected to have grown the elapsed time, but by small increment in 

proportion to the large, mature stems (mean DBH=73.01).  The purpose of including these data was to 

consider the general accuracy of the diameter values garnered from the MLS point cloud data. 

4.2.3. Preprocessing 

 Ground points, detected from the MLS point cloud with the cloth simulation filter (Zhang et al., 

2016) implemented using the R package “lidR”(Roussel, 2017), were used to create a digital terrain 

model (DTM).  The MLS point cloud was normalized by subtracting the DTM value from the elevation 

of each point. The normalized point clouds were sampled into 1m tall slices, parallel to the ground, 
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starting at 1m, 3m, 5m, 7m, 10m, 12m, 15m, and 18m. Each of the eight slices was compressed into a 2-

dimensional raster image (orthographic view) with 1cm resolution. The raster slices were georeferenced 

to NAD83(2011) with coordinates in the UTM zone 10N projection (EPSG:26910). 

 Circles representing the cross section of the stem were visually fit to match the inner edge of the 

crescent-shaped stem impressions of each raster slice by selecting 3 points per slice. For each circle, the 

diameter and centroid coordinates (easting, northing) were calculated. To compute the distance from the 

tree to the sensor, I have used the slice at 1 m elevation. All spatial processing of the slices was executed 

in QGIS version 3.6 (QGIS Development Team, 2015). 

Using the Cartesian coordinates of the stem centroids at 1m (i.e., x1, y1) and 18m (i.e., x18, y18), I 

calculated the total lean as the angle between the horizontal misalignment of the two centroids (Eq. 1)  

𝜃𝑛𝑒𝑡 =  tan−1(
√(𝑥18 − 𝑥1)2 +  (𝑦18 − 𝑦1)2

𝐻18 − 𝐻1
) 

where H1 = 1m and H18 = 18m. For modeling purposes, angles were measured in radians, whereas for 

reporting purposes they were converted to degrees. 

 To provide a lean estimate while considering its variation along the stem, I calculated the 

sectional lean (𝛩𝑖) (i =1, 2, …7) for each pair of adjacent slices starting with the 1 m (𝛩1) and ending 

with 18 m (𝛩7). I calculated the lean in this case as average lean of each section, remembering that there 

are 7 slices: 

Θ̅ = ∑ Θ𝑖 /7 
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Figure 4-3 Graphic representation of the relationship between the two ways that tree lean was measured in this 

study. Circular vectors were fit to rasterized slices of point clouds at locations along the stems. The total lean of the 

tree, ( 𝜃𝑛𝑒𝑡) was calculated using the horizontal displacement of the stem centroid from 1 to 18 meters, while the 

average lean (Θ̅) was calculated as the mean of 7 sectional lean estimates (𝜃1 𝑡𝑜 𝜃7) between consecutive centroids. 

The values in the figure are real values from one of the sampled trees, but the lean angle of the tree is exaggerated 

for display. 

 

To compare the DBH field measurements with digital the DBH estimates and the two lean estimates I 

have used simple linear regression (Eq.3): 

𝐷𝐵𝐻2020 = 𝑏0 + 𝑏1 × 𝐷𝐵𝐻𝑀𝐿𝑆2018

Θ̅ = 𝑏0 + 𝑏1 ×  Θ𝑛𝑒𝑡
       3 

where DBH2020 and DBHMLS2018 are the DBH measured in 2020 or estimated from the slice starting at 1 m 

 b0 and b1 are parameters of the simple linear regression 

All regression visualizations were constructed using the package ‘ggplot2’ in R (Wickham, 2016). 

 To estimate the actual volume of the trees, I have summed the volume of each section and the 

volume of the top of the tree. For the sections between 1m and 18m, the volume (V) was computed 

assuming that the stem is a frustum of a cone: 
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𝑉 =  
𝜋ℎ

3
(𝑅1

2 + 𝑅1 ∗ 𝑅2 + 𝑅2
2)        4 

where R1 and R2 are the radius of the bottom and top slices defining the stem section  

Stem sections below 1 m, (i.e., stumps) were accounted for by calculating the volume of a 1 m 

tall cylinder with a diameter equal to the estimated diameter at 1m.  For the top part of the tree, namely 

above 18 m, the volume was calculated assuming two different geometries (i.e., cone and paraboloid), 

and using as the base diameter the diameter at 18 m and as height the difference between the total height 

and 18 m.  

Trees were classified as leaning or non-leaning using a threshold of 2° according to the 

estimated total lean (𝜃𝑛𝑒𝑡), which is a conservative estimate compared to average lean (Figure 4-4). 

4.2.4. Stem Modeling 

 

  The estimated diameters along the stems, their associated heights, and the total tree heights 

measured from the UALS were used to calibrate existing stem taper and volume equations that have 

previously been applied to DF (Error! Reference source not found.). The chosen equations were l

imited to use at most four parameters, considering that for each tree only eight diameters were measured. 

For predicting stem taper, the response variable for all the equations is dh, the stem diameter at height h 

(0<h<H). The equations also share the same predictor variables, for taper the DBH, the total height of 

the tree (H), and the height of dh (h), whereas for volume the DBH and total height. However, the models 

differ in terms of form, which defines their performance. For predicting total tree volume (V), I have 

tested three models: one developed by Poudel et al. (Poudel et al., 2018), henceforth PT, one derived 

from the tariff tree volume equations of  Brackett (Brackett, 1977) for DF in the western Oregon and 

Washington (BR1), and one that is a simplified non-linear version of Brackett’s equation (BR2). For the 

BR1 models, the Brackett (1977) equation was used as written, (i.e., with fixed values for coefficients), 

except the intercept term was converted to a variable parameter with the original value as the starting 
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point. To create the BR2 equation, all of the coefficients were converted to variable parameters, then I 

removed them according to nonsignificant t-values (Pr(<|t|) ≤ 0.01) until only significant parameters 

remained. 

Table 4-1: Stem diameter taper and total tree volume equations used in this study. The residuals are represented by 

e. 

Citation Abbreviation Equation Shorthand  

(Amidon, 

1984) 
AMI 𝑑ℎ = 𝑎1𝐷 (

𝐻−ℎ

𝐻−1.37
) +  𝑎2

(𝐻2−ℎ2)(𝐻−1.37)

𝐻2 + 𝑒 𝑓𝐴𝑀𝐼(𝐷, 𝐻, ℎ) 

(Biging, 1984) BIG 
𝑑ℎ = 𝐷[𝑎1 + 𝑎2 ln (1 − 𝜆 (

ℎ

𝐻
)

𝑚

)] + 𝑒 

where 𝜆 = 1 − 𝑒𝑥𝑝 (
−𝑎1

𝑎2
) and 𝑚 =  

1

3
 

 

𝑓𝐵𝐼𝐺(𝐷, 𝐻, ℎ) 

(Kozak et al., 

1969) 
KOZ 𝑑ℎ = √𝐷(𝑎1

(ℎ − 𝐻)

𝐻
+ 𝑎2

(ℎ2 − 𝐻2)

𝐻2
) + 𝑒 √𝑓𝐾𝑂𝑍(𝐷, 𝐻, ℎ) 

(Max and 

Burkhart, 

1976) 

(simplified) MAB 
𝑑ℎ = 𝐷 ∗  (𝑎1(𝑅 − 1) +  𝑎2(𝑅2 − 1) + 𝑎3(𝑎4 − 𝑅)2)  + 𝑒 

where 𝑅 =  
ℎ

𝐻
 

𝑓𝑀𝐴𝐵(𝐷, 𝐻, ℎ) 

 

 

Brackett 

(1977) 
BR1 𝑉 = 10{𝑎1+0.05 log(𝐻) log(𝐷)+0.16(log(𝐷))2+1.63(log(𝐻))+0.16(log(𝐻))2+𝑒} 10^𝑓𝐵𝑅1(𝐷,𝐻) 

(Brackett, 

1977) 

 (simplified) 

BR2 𝑉 = 10{𝑎1+𝑎2 log(𝐻) log(𝐷)+𝑎3(log(𝐻))+𝑒} 10^𝑓𝐵𝑅2(𝐷,𝐻) 

(Poudel et al., 

2018) 
POU 𝑉 = exp( 𝑎1 + 𝑎2 ln(𝐷) +  𝑎3ln (𝐻) + 𝑒) exp (𝑓𝑃𝑂𝑈(𝐷, 𝐻)) 

 

To test impact of the lean model fit, I separated the trees into two classes: vertical (i.e., Θ𝑛𝑒𝑡 <

2° ) and leaning (i.e., Θ𝑛𝑒𝑡 ≥ 2° ). Because point clouds offer the opportunity to use different stem 

diameters instead of DBH, I have investigated how changing the location of the fixed height diameter 

variable (Dx, where x is the base height of the slice) would affect the models. Lean angle in radians was 

initially included as a predictor in the models without any transformations, but the results were not 

encouraging, so, many nonlinear transformations of lean were tested via trial-and-error to improve the 
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existing equations. As a result, the transformation Θ𝑛𝑒𝑡
−0.5 lead to significant improvements of the models 

(Error! Reference source not found.).  

Considering that the trees were not described with point clouds surrounding them, but with 

circular sector larger than 180°, a situation avoided in the terrestrial laser scans, I considered that the 

position of the scanner in respect with the tree could play a role in estimation. A possible variable that 

describes the relationship between the tree and sensor is the minimum distance between the tree and 

sensor. A similar, trial-and-error based modeling procedure was conducted using the minimum distance 

between the scanner and the stem centroid of the slice starting at 1 m (T) as a predictor. The 

transformation T~ln2(T) led to significant improvements of the models (Error! Reference source not f

ound.). 

 Models were adjusted by including both Θ𝑛𝑒𝑡
−0.5 and ln2(T) separately and together. However, the 

addition of the ln2(T) alone resulted in little or no improvement. As a result, I only present the results of 

the original models, those adjusted by expressing the lean (Θ𝑛𝑒𝑡
−0.5), and those adjusted by expressing both 

the lean and the distance  between the tree and sensor (ln2(T)).  

For the equations predicting volume V, I have tested both representations of the upper part of the 

tree, namely conoid (Vc) and paraboloid (Vp). Similar to the stem taper models, I tested the volume 

models on leaning and non-leaning trees separately. To assess the impact of changing the DBH with 

another diameter along the stem on computing the volume, I have used the model of Poudel et al (Poudel 

et al., 2018), as being developed using trees close to the study area. In this case, the DBH was replaced 

with the diameter from each of the eight slices, Dx.  

Table 4-2: Modified versions of existing nonlinear stem taper and volume equations modified to include lean and 

distance from scanner as predictors.  

Response Equation Including Lean Including Lean and Distance 

Diameter AMI 𝑑ℎ = 𝑓𝐴𝑀𝐼(𝐷, 𝐻, ℎ) +
𝑏1

√(Θ𝑛𝑒𝑡)
+ 𝑒 𝑑ℎ = 𝑓𝐴𝑀𝐼(𝐷, 𝐻, ℎ) +

𝑏1

√(Θ𝑛𝑒𝑡)
+

𝑏2

ln(𝑇)

2
+ 𝑒 
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Response Equation Including Lean Including Lean and Distance 

 BIG 𝑑ℎ = 𝑓𝐵𝐼𝐺(𝐷, 𝐻, ℎ) +
𝑏1

√(Θ𝑛𝑒𝑡)
+ 𝑒 

 

𝑑ℎ = 𝑓𝐵𝐼𝐺(𝐷, 𝐻, ℎ) +
𝑏1

√(Θ𝑛𝑒𝑡)
+

𝑏2

ln(𝑇)

2
+ 𝑒   

 

 KOZ 𝑑ℎ = √𝑓𝐾𝑂𝑍(𝐷, 𝐻, ℎ) +
𝑏1

√(Θ𝑛𝑒𝑡)
+ 𝑒  𝑑ℎ = √𝑓𝐾𝑂𝑍(𝐷, 𝐻, ℎ) +

𝑏1

√(Θ𝑛𝑒𝑡)
+

𝑏2

ln(𝑇)

2

+ 𝑒  

 MAB 𝑑ℎ = 𝑓𝑀𝐴𝑋(𝐷, 𝐻, ℎ) +
𝑏1

√(Θ𝑛𝑒𝑡)
+ 𝑒 

 

𝑑ℎ = 𝑓𝑀𝐴𝑋(𝐷, 𝐻, ℎ) +
𝑏1

√(Θ𝑛𝑒𝑡)
+

𝑏2

ln(𝑇)

2

+ 𝑒 

 

Volume BR1 
𝑉 = 10

{𝑓𝐵𝑅1(𝐷,𝐻)+ +
𝑏1

√(Θ𝑛𝑒𝑡)
+𝑒}

 𝑉 = 10
{𝑓𝐵𝑅1(𝐷,𝐻)+

𝑏1

√(Θ𝑛𝑒𝑡)
+

𝑏2
ln(𝑇)

2

+𝑒}

 

 BR2 
𝑉 = 10

{𝑓𝐵𝑅2(𝐷,𝐻)+ +
𝑏1

√(Θ𝑛𝑒𝑡)
+𝑒}

 𝑉 = 10
{𝑓𝐵𝑅2(𝐷,𝐻)+

𝑏1

√(Θ𝑛𝑒𝑡)
+

𝑏2
ln(𝑇)

2

+𝑒}

 

 POU 𝑉 = exp( 𝑓𝑃𝑂𝑈(𝐷, 𝐻) +  
𝑏1

√(Θ𝑛𝑒𝑡)
 + 𝑒) 𝑉 = exp( 𝑓𝑃𝑂𝑈(𝐷, 𝐻) +  

𝑏1

√(Θ𝑛𝑒𝑡)
+

𝑏2

ln(𝑇)

2

 + 𝑒) 

 

To ensure correctness of the models, I have tested the normality of the residuals with the 

Shapiro-Wilk test, the heteroscedasticity with the Breush-Pagan test, and the autocorrelation of the 

residuals with the Durbin –Watson test. In the case when an assumption is violated, I have evaluated its 

impact by investigating the distribution of the residuals. If the residuals do not follow a normal 

distribution, but one that is unimodal with limited skewness, I considered that the departure is produced 

by the sample. Therefore, the results were valid. The violation of the heteroscedasticity assumptions 

indicates that the confidence intervals of the results are wider than they should be. However, because I 

did not develop a model, just used existing one, I considered the lack of variance homogeneity also an 

artifact due to the sample. If autocorrelation is present, I have developed a second order autoregressive 

equation that has the residuals distributed as white noise: 

𝑒ℎ = 𝑐0 + 𝑐1 × 𝑒ℎ−1 + 𝑐2 × 𝑒ℎ−2 + 𝜀ℎ      5 

where eh is the error of the model, 

c0, c1, c2 are coefficients to be estimated, and 
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𝜀ℎ is white noise. 

 The nonlinear regression analysis was performed using the Gauss-Newton algorithm with a 

maximum of 100 iterations, and a minimum step size of 2-10. The regression modeling was executed with 

the ‘stats’ package in R. To compare the models I have computed the bias, RMSE, coefficient of 

determination (R2), Akaike Information Criterion (AIC) (Akaike, 1987), and Bayesian Information 

Criterion (BIC) (Schwarz, 1978). The main criterion for differentiating the models were bias, followed 

by AIC, BIC, RMSE, and R2 

 

Figure 4-4: Example of two adjacent trees classified as leaning (right) or non-leaning (left) based on a 2° threshold. 

The rendered trees in the center of the image are shown from a profile perspective with the horizontal point cloud 

slices in color (1m (purple), 3m (pink), 5m (red), 7m (orange), 10m (yellow), 12m (green), 15m (cyan), and 18m 

(blue). Corresponding colored circular vectors from the same non-leaning (left) and leaning (right) trees from a 

nadir view shown on the outside of the image 
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4.3. Results 

4.3.1. Diameter and Lean Estimates 

 Though the MLS laser has a range of 120m, several factors cause the limit for stem modeling to 

be considerably less, including the angle of the scanner, trees obstructing one another, and understory 

vegetation. Empirically, 40 m was determined to be the approximate limit in this case, though I included 

one tree that was slightly farther away (T =41.68m).  The stem centers of 273 trees located from the 

same MLS data in Chapter 2 were inspected, and of those, 191 could be fit circles at 1m, and 163 were 

fit in the raster slices at all 8 heights. Four trees were removed because they were understory maple 

(Acer sp.) trees, so 159 trees remained in the sample. Of those, 40 trees (25%) were leaning according to 

𝜃𝑛𝑒𝑡 > 2°, while the remaining 119 (75%) were considered vertical. If Θ̅  had been used for classification 

rather than 𝜃𝑛𝑒𝑡, 57 trees (35.8%) would be considered leaning. Considering that the allowable error for 

heights measured with on the ground instruments is 10% (Robertson, 2000), nearly an order of 

magnitude greater, there is evidence that the heights measured from the UALS, hereafter H, are reliable 

and appropriate for use in modeling. Summary statistics for total height (H), D1, T, Vp, Vc, Θ𝑛𝑒𝑡, and Θ̅ 

are given in Table 3 for the entire sample, as well as for leaning and non-leaning trees  

The 90 DBH measured in 2020 were correlated with the diameters at one meter (D1) estimated 

from the 2018 MLS scan (R2=0.93) and the RMSE between the measurements was 4.0 cm (Figure 4-5). 

The average ground measured DBH was 73.01 cm (standard deviation= 14.23). For the same 90 trees, 

the average DBH estimate from the MLS was 63.77cm (standard deviation = 14.66). Therefore, the 

mean ground DBH was about 14% (9.24cm) larger than the mean MLS estimated diameter from 2 years 

prior, and RMSE was 6.27% (4 cm) of the average diameter from 2018 
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Table 4-3: Summary statistics for total height (H), diameter at 1 meter (D1), distance to tree (T), volume with 

paraboloid top (Vp), volume with conoid top (Vc), total lean (Θ𝑛𝑒𝑡), and average lean (Θ̅) for the entire sample 

(n=159), as well as for trees that were considered as leaning (n=40) or non-leaning (n=119) according to the total 

lean angle, 𝜃𝑛𝑒𝑡 , and a 2° cutoff. 

Sample n Variable Min Max Mean Std. Dev. 

All Trees 159 H 36.21 49.74 43.13 2.95 
 159 D1 0.29 1.04 0.59 0.14 
 159 T 4.28 41.68 18.83 8.77 
 159 Vp 0.81 11.05 3.57 1.84 
 159 Vc 0.73 9.61 3.12 1.58 
 159 Θ𝑛𝑒𝑡  0.07 3.66 1.51 0.81 
 159 Θ̅ 0.50 3.85 1.82 0.77 

Vertical 119 H 36.42 49.74 43.20 2.93 
 119 D1 0.29 1.04 0.60 0.14 
 119 T 4.28 41.68 18.75 8.90 
 119 Vp 0.81 11.05 3.64 1.93 
 119 Vc 0.73 9.61 3.18 1.65 
 119 Θ𝑛𝑒𝑡  0.07 1.98 1.13 0.48 
 119 Θ̅ 0.50 2.44 1.46 0.45 

Leaning 40 H 36.21 48.66 42.94 2.99 
 40 D1 0.33 0.91 0.59 0.13 
 40 T 5.55 34.80 19.10 8.35 
 40 Vp 1.07 7.41 3.35 1.53 
 40 Vc 0.95 6.38 2.95 1.32 
 40 Θ𝑛𝑒𝑡  2.03 3.66 2.64 0.47 
 40 Θ̅ 2.20 3.85 2.89 0.49 

Ground Truth 90 DBH 0.39 1.02 0.73 0.14 
 90 T 4.28 33.05 15.24 6.89 

 

Fitting the circles to the stem locations takes around 55 minutes per height, so one circle is 

executed on average in 21 seconds and the entire process lasted about 8 hours. The circle fitting activity 

was the most time-consuming step in the data extraction. The taper extracted from the circles (Error! R

eference source not found.), revealed no instances when the diameter increases with height, which 

would have triggered an individual assessment of that measurement. 
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Figure 4-5: Comparison of D1 estimates from MLS point cloud data collected in March 2018 versus manual DBH 

measurements from April 2020. 

 

 

 

Figure 4-6: Stem diameter estimates from MLS point cloud data sliced at 8 locations between 1 and 18 meters 

above ground. Point colors correspond with heights of point cloud slices, while polylines represent individual trees 

and the line type represents whether trees were calculated as leaning or non-leaning. 
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The two methods we used to estimate tree lean, average lean (Θ̅) and total lean (𝜃𝑛𝑒𝑡), were 

correlated (R2 = 0.93), and had an RMSE of 0.22°. The values for 𝜃𝑛𝑒𝑡 were consistently smaller than Θ̅, 

1.53° and 1.82°, respectively), as well as the distribution of the points in the scatterplot (Figure 4-7). The 

slope of the linear regression line was 0.93. 

 

Figure 4-7: Scatterplot showing total tree lean ( Θ𝑛𝑒𝑡) versus average tree lean (Θ̅) for 159 mature Douglas firs. 

 

4.3.2. Taper Modeling 

The taper models used in the study were not tailored to the data. Therefore, it is expected that 

some of the modeling requirements are not met, particularly independence. All taper models, applied in 

the original form, had prediction bias < 0.3 cm (Error! Reference source not found.), which is 0.07% r

elative to the mean DBH of 45.7 cm (std. deviation = 13.7 cm). When the original equations were fit 

using all trees, the BIG and MAB models had the least error (RMSE = 3.9 cm), followed by KOZ 

(RMSE = 4.1 cm), then AMI (RMSE = 4.2 cm). When only the vertical trees were modeled, the error 

and bias were similar, not only among the four equations, but also with the case when all the trees were 

considered. (RMSE and bias of ec0.042m and 0.002m for AMI, 0.039m and 0.002m for BIG, 0.041m 

and 0.002m for KOZ, and 0.039m and <0.0001 for MAB, respectively). For leaning trees, three out of 

the four models presented a larger bias than for the case when all the trees where considered (i.e., bias of 
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0.003m vs. 0.002m for AMI, BIG, and KOZ). All the models exhibit lack of independence, as Durbin –

Watson reveled (p-value <0.01 for height lags up to three). The autocorrelation  model with two lag 

terms (Eq. 5) supplied a model that has uncorrelated errors (condition for independence of the residuals), 

which also  eliminate the bias. Irrespective of the taper model, both lag terms were significant (p-

value<0.01). 

When the models were adjusted by including Θ𝑛𝑒𝑡 to model the leaning trees, all four equations 

exhibited an increase in R2 (i.e., 0.907 vs. 0.899 for AMI, 0.948 vs. 0.944 for BIG, 0.911 vs. 0.906 for 

KOZ, and 0.914 vs.  0.912 for MAB) and three manifested a reduction in bias (i.e.,  <0.001 vs. 0.003 for 

AMI, BIG, and KOZ) and RMSE (i.e., 0.039 vs 0.042 for AMI, 0.037 vs. 0.039 for BIG, and 0.038 vs. 

0.041 for KOZ).  

For all trees or vertical trees, adjusting the equations by adding Θ𝑛𝑒𝑡  and distance to tree (T) 

made little to no difference on the model fit, with the RMSE values remaining unchanged in the adjusted 

models compared to the originals. However, for leaning trees, the addition of lean reduced the error for 

AMI (-7.1%), BIG (-5.1%), and KOZ (-7.3%), though for MAB the error was unchanged. The inclusion 

of distance to the sensor resulted in slightly lower RMSE values for modeling the non-leaning trees with 

the AMI equation (-2.4%), and for modeling the leaning trees with BIG (-2.7%). However, the AMI and 

KOZ model exhibited convergence difficulties when the distance to the sensor was present.  

Substitution of D5 for DBH generally improved the fit of all four diameter equations across 

models fit using all trees and vertical trees. However, when D5 was used to model leaning trees, the 

inclusion of lean in the models reduced the error of only two of the four of the equations: AMI (-2.8%) 

and KOZ (-2.9%), as the RMSE for BIG and MAB did not change.  When T was included as a predictor 

for the models using D5, the coefficient was significant and increased the fit of all four models, which 

was surprising because the same adjustment caused nonconvergence in the models when DBH was used. 
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Table 4-4 Results from non-linear models predicting stem taper. Probability values (P(>|t|) with † had a nonsignificant (α = 0.01) 

parameter from the original model (i.e., a1, a2, …) though the model was significant overall. Cells with “—” failed to converge. 

Equation Sample n Adjustment 
P(>|t|) Bias (m) RMSE (m) AIC BIC R2 

DBH D5 DBH D5 DBH D5 DBH D5 DBH D5 DBH D5 

AMI Vertical (< 2°) 119 - <0.001 <0.001 0.002 0.001 0.042 0.032 -2930 -3372 -2916 -3358 0.911 0.947 

    119 Θ𝑛𝑒𝑡  0.324 0.031 0.002 <0.001 0.042 0.032 -2929 -3375 -2910 -3356 0.911 0.947 

    119 Θ𝑛𝑒𝑡 + 𝑇   0.015 0.001 0.002 <0.001 0.041 0.032 -2929 -3375 -2905 -3352 0.911 0.947 

  Leaning (> 2°) 40 - <0.001 <0.001 0.003 0.001 0.042 0.036 -976 -1059 -965 -1048 0.899 0.923 

    40 Θ𝑛𝑒𝑡  <0.001 <0.001 <0.001 <0.001 0.039 0.035 -1010 -1076 -995 -1061 0.907 0.926 

    40 Θ𝑛𝑒𝑡 + 𝑇   -- 0.005 -- <0.001 -- 0.035 -- -1076 -- -1058 -- 0.927 

  All  159 - <0.001 <0.001 0.002 0.001 0.042 0.033 -3909 -4425 -3894 -4410 0.908 0.941 

    159 Θ𝑛𝑒𝑡  0.023 0.001 0.002 0.001 0.042 0.033 -3913 -4434 -3893 -4414 0.908 0.941 

    159 Θ𝑛𝑒𝑡 + 𝑇   0.364 <0.001 0.002 <0.001 0.042 0.033 -3911 -4440 -3886 -4415 0.908 0.942 

BIG Vertical (< 2°) 119 - <0.001 <0.001 0.002 <0.001 0.039 0.030 -3019 -3485 -3005 -3470 0.940 0.962 

    119 Θ𝑛𝑒𝑡  0.356 0.171 0.002 <0.001 0.039 0.030 -3018 -3484 -2999 -3466 0.940 0.962 

    119 Θ𝑛𝑒𝑡 + 𝑇   <0.001 0.045 0.001 <0.001 0.039 0.030 -3036 -3484 -3012 -3463 0.941 0.962 

  Leaning (> 2°) 40 - <0.001 <0.001 0.003 0.001 0.039 0.033 -1016 -1104 -1005 -1093 0.944 0.946 

    40 Θ𝑛𝑒𝑡  <0.001 <0.001 <0.001 0.001 0.037 0.033 -1045 -1104 -1031 -1093 0.948 0.946 

    40 Θ𝑛𝑒𝑡 + 𝑇   <0.001 0.323 <0.001 <0.001 0.036 0.032 -1055 -1114 -1037 -1096 0.950 0.950 

  All Trees 159 - <0.001 <0.001 0.002 <0.001 0.039 0.031 -4036 -4579 -4021 -4564 0.941 0.958 

    159 Θ𝑛𝑒𝑡  0.024 0.011 0.002 <0.001 0.039 0.031 -4039 -4584 -4019 -4564 0.940 0.958 

    159 Θ𝑛𝑒𝑡 + 𝑇   <0.001 0.001 0.001 <0.001 0.039 0.031 -4053 -4592 -4028 -4567 0.941 0.958 

KOZ Vertical (< 2°) 119 - <0.001 <0.001 0.002 0.001 0.041 0.032 -2952 -3379 -2938 -3364 0.914 0.947 

    119 Θ𝑛𝑒𝑡  0.225 0.089 0.002 <0.001 0.041 0.032 -2951 -3379 -2932 -361 0.914 0.947 
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    119 Θ𝑛𝑒𝑡 + 𝑇   <0.001 <0.001 0.002 <0.001 0.041 0.032 -2954 -3382 -2930 -3358 0.914 0.948 

  Leaning (> 2°) 40 - <0.001 <0.001 0.003 0.001 0.041 0.035 -991 -1075 -980 -1064 0.906 0.927 

    40 Θ𝑛𝑒𝑡  <0.001 <0.001 <0.0001 <0.001 0.038 0.034 -1022 -1088 -1007 -1073 0.911 0.929 

    40 Θ𝑛𝑒𝑡 + 𝑇   -- <0.001 -- <0.001 -- 0.034 -- -1088 -- -1069 -- 0.930 

  All Trees 159 - <0.001 <0.001 0.002 <0.001 0.041 0.033 -3945 -4447 -3930 -4432 0.912 0.942 

    159 Θ𝑛𝑒𝑡  0.012 0.005 0.002 <0.001 0.041 0.033 -3949 -4453 -3929 -4433 0.911 0.944 

    159 Θ𝑛𝑒𝑡 + 𝑇   0.010 <0.001 0.002 <0.001 0.041 0.032 -3949 -4461 -3924 -4436 0.911 0.943 

MAB Vertical (< 2°) 119 - <0.001† <0.001† <0.0001 <0.001 0.039 0.030 -3017 -3469 -2993 -3446 0.919 0.953 

    119 Θ𝑛𝑒𝑡  0.024 0.424 <0.0001 <0.001 0.039 0.030 -3020 -3468 -2992 -3440 0.919 0.953 

    119 Θ𝑛𝑒𝑡 + 𝑇   0.039 0.002 <0.0001 <0.001 0.039 0.030 -3019 -3469 -2986 -3435 0.919 0.953 

  Leaning (> 2°) 40 - 0.020 0.922 <0.0001 <0.001 0.038 0.033 -1025 -1100 -1007 -1082 0.912 0.933 

    40 Θ𝑛𝑒𝑡  0.024 0.003 <0.0001 <0.001 0.038 0.033 -1028 -1107 -1006 -1085 0.914 0.935 

    40 Θ𝑛𝑒𝑡 + 𝑇   -- <0.001 -- <0.001 -- 0.033 -- -1108 -- -1083 -- 0.936 

  All Trees 159 - <0.001† <0.001† <0.0001 <0.001 0.039 0.031 -4044 -4565 -4019 -4539 0.917 0.948 

    159 Θ𝑛𝑒𝑡  0.207 0.107 <0.0001 <0.001 0.039 0.031 -4044 -4565 -4014 -4535 0.917 0.948 

    159 Θ𝑛𝑒𝑡 + 𝑇   0.990 <0.001 <0.0001 <0.001 0.039 0.031 -4042 -4570 -4006 -4535 0.917 0.948 

 

 

 

 

 

 

 

 



96 

4.3.3. Volume Modeling 

 

Irrespective the type of trees considered in modeling (i.e., vertical, leaning, or all), the BR1 

volume model showed over an order of magnitude more bias (0.174-0.289 m3) than the other two models 

(≤ 0.015 m3 for BR2 and POU) and had the highest error (RMSE=0.71m3 vs. 0.492 m3 and 0.494 m3 for 

BRA2 and POU, respectively) (Error! Reference source not found.). Considering that the mean stem f

or all trees was 3.57m3, the maximum relative bias was 0.4% for BR2 and POU, and 8.1% for BR1 when 

predicting Vp (Error! Reference source not found.).  When the original models were fit using all 

trees, the BR2 and POU equations had the least error (RMSE=0.61m3, followed by BR1 with 

RMSE=0.83m3) and the strongest correlations (R2 = 0.888 for BR2 and POU, and 0.874 for BR1). The 

model using BR2 was slightly less biased than the model using POU for all trees (bias = 0.003 for BR2 

and 0.007 for POU). As did the taper models, the volume models exhibited autocorrelation (Durbin-

Watson test had p-values <0.01). Mirroring the results from taper, the autoregressive volume equations 

contains two significant terms.  

 Compared fitting the models using all the trees, all the equations produced models with less 

error (RMSE 0.775 vs. 0.828 for BR1, 0.558 vs 0.616 for BR2, and 0.566 vs 0.616 for POU), but with 

greater bias for BR2 (0.005 vs 0.004) and POU (0.008 vs. 0.007), and weaker correlations for all three 

equations (R2 of 0.840 vs. 0.874 for BR1, 0.866 vs. 0.888 for BR2, and 0.862 vs. 0.888 for POU) when 

fit to only the leaning trees. When Θ𝑛𝑒𝑡   was included as a predictor for Vp for modeling leaning trees, 

the bias was reduced for all three equations (bias 0.230 vs. 0.241 for BR1, 0.004 vs 0.005 for BR2, and 

0.007 vs. 0.008 for POU). The errors were also reduced (RMSE 0.751 vs 0.775 for BR1, 0.548 vs. 0.558 

for BR2, and 0.554 vs. 0.566 for POU), as were the AIC (731 vs. 749 for BR1, 533 vs. 543 for BR2, and 

0.540 vs. 552 for POU) and BIC (743 vs. 757 for BR1, 552 vs. 558 for BR2, and 559 vs. 567 for POU), 

while the correlations were stronger (R2 0.848 vs. 0.840 for BR1, 0.871 vs. 0.866 for BR2, and 0.868 vs. 

0.862 for POU). 
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When models were fit using only the vertical trees, including Θ𝑛𝑒𝑡 as a predictor also resulted in 

lower bias for all three equations (0.284 vs. 0.289 for BR1, 0.004 vs. 0.007 for BR2, and 0.007 vs 0.009 

for POU), as well as lower AIC(2359 vs. 2384 for BR1, 1758 vs. 1789 for BR2, and 1787 vs. 1813 for 

POU), lower BIC (2373 vs 2394 for BR1, 1783 vs. 1809 for BR2, and 1811 vs. 1832 for POU), and 

stronger correlations(0.884 vs. 0.881 for BR1, 0.901 vs 0.898 for BR2, and 0.898 vs 0.895 for POU). In 

the case of the vertical trees the margins of the improvement (i.e., gains in model fit) that resulted by 

including Θ𝑛𝑒𝑡 as a predictor were smaller than for the leaning trees, but still present and consistent 

across the models. 

When DBH was replaced with diameter at 5 meters (D5) in the models predicting Vp, the models 

improved for all 3 equations, but they improved by a larger proportion according to RMSE and bias for 

models fit using the vertical trees compared to the leaning trees. Distance to tree (T) was not a significant 

predictor when using DBH for any of the models, though for models using D5 including T resulted in 

improvements for only the leaning trees for two of the models (BR1 and POU), and for modeling all 

trees with two of the models (BR2 and POU). 

The model results for equations predicting total stem volume with a conic top (Vc) are shown in 

Table 6. Here, the patterns observed when modeling Vp are still present, though the models for Vc tended 

to be slightly less biased, have less error, and have stronger correlation coefficients than the models 

predicting Vp.  
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Table 4-5: Results from nonlinear models predicting total stem volume where the portion of the stem above 18 meters was approximated as a paraboloid. 

Equation Sample n Adjustment 
P(>|t|) Bias RMSE AIC BIC R2 

DBH D5 DBH D5 DBH D5 DBH D5 DBH D5 DBH D5 

BR1 
Vertical 

(< 2°) 
119 - <0.001 <0.001 0.289 0.200 0.845 0.564 2384 1614 2394 1624 0.881 0.952 

  119 Θ𝑛𝑒𝑡 <0.001 0.731 0.284 0.200 0.833 0.564 2359 1616 2373 1630 0.884 0.952 
  119 Θ𝑛𝑒𝑡 + 𝑇 -- -- -- -- -- -- -- -- -- -- -- -- 

 Leaning 

(> 2°) 
40 - <0.001 <0.001 0.241 0.205 0.775 0.693 749 677 757 685 0.840 0.868 

  40 Θ𝑛𝑒𝑡 <0.001 <0.001 0.230 0.185 0.751 0.638 731 626 743 638 0.848 0.887 
  40 Θ𝑛𝑒𝑡 + 𝑇 -- <0.001 -- 0.174 -- 0.607 -- 596 -- 611 -- 0.897 
 All Trees 159 - <0.001 <0.001 0.278 0.201 0.828 0.599 3133 2309 3144 2319 0.874 0.937 
  159 Θ𝑛𝑒𝑡 <0.001 0.440 0.273 0.201 0.820 0.599 3111 2310 3126 2326 0.875 0.937 
  159 Θ𝑛𝑒𝑡 + 𝑇 -- -- -- -- -- -- -- -- -- -- -- -- 

BR2 
Vertical 

(< 2°) 
119 - <0.001 <0.001 0.004 0.010 0.617 0.399 1789 962 1809 982 0.898 0.957 

  119 Θ𝑛𝑒𝑡 <0.001 0.672 0.007 0.010 0.606 0.399 1758 964 1783 988 0.901 0.957 
  119 Θ𝑛𝑒𝑡 + 𝑇 -- -- -- -- -- -- -- -- -- -- -- -- 

 Leaning 

(> 2°) 
40 - <0.001 <0.001 -0.005 -0.015 0.558 0.524 543 502 558 517 0.866 0.883 

  40 Θ𝑛𝑒𝑡 <0.001 <0.001 -0.004 -0.012 0.548 0.501 533 476 552 495 0.871 0.893 
  40 Θ𝑛𝑒𝑡 + 𝑇 -- -- -- -- -- -- -- -- -- -- -- -- 
 All Trees 159 - <0.001 <0.001 0.003 0.003 0.616 0.462 2385 1653 2406 1673 0.888 0.937 
  159 Θ𝑛𝑒𝑡 <0.001 <0.001 0.004 0.003 0.617 0.459 1789 1640 1809 1666 0.898 0.938 

  159 Θ𝑛𝑒𝑡 + 𝑇 -- <0.001 -- 0.003 -- 0.458 -- 1637 -- 1668 -- 0.938 

POU 
Vertical 

(< 2°) 
119 - <0.001 <0.001 -0.009 0.005 0.624 0.384 1813 890 1832 909 0.895 0.960 

  119 Θ𝑛𝑒𝑡 <0.001 0.629 -0.007 0.005 0.615 0.384 1787 892 1811 916 0.898 0.960 
  119 Θ𝑛𝑒𝑡 + 𝑇 -- -- -- -- -- -- -- -- -- -- -- -- 

 Leaning 

(> 2°) 
40 - <0.001† <0.001 -0.008 -0.015 0.566 

0.513 
552 489 567 504 0.862 0.888 

  40 Θ𝑛𝑒𝑡 <0.001† <0.001 -0.007 -0.011 0.554 0.483 540 452 559 471 0.868 0.900 
  40 Θ𝑛𝑒𝑡 + 𝑇 -- <0.001 -- -0.009 -- 0.468 -- 434 -- 457 -- 0.906 
 All Trees 159 - <0.001 <0.001 -0.007 -0.001 0.616 0.440 2387 1528 2407 1548 0.888 0.943 
  159 Θ𝑛𝑒𝑡 0.005 0.002 -0.006 -0.001 0.614 0.438 2380 1520 2405 1545 0.888 0.943 
  159 Θ𝑛𝑒𝑡 + 𝑇 -- <0.001 -- -0.001 -- 0.438 -- 1519 -- 1550 -- 0.943 
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Table 4-6: Results from nonlinear models predicting total stem volume, where the portion of the stem above 18 meters was approximated as a cone. Probability values (P(>|t|) with 

† had a nonsignificant (α = 0.01) parameter from the original model (i.e., a1, a2, …) 

Equation Sample n Adjustment 
P(>|t|) Bias RMSE AIC BIC R2 

DBH D5 DBH D5 DBH D5 DBH D5 DBH D5 DBH D5 

BR1 
Vertical 

(< 2°) 
119 - 

<0.001 <0.001 0.265 0.190 0.726 0.497 2097 1374 2106 1384 0.890 0.955 

  119 Θ𝑛𝑒𝑡 <0.001 0.529 0.262 0.190 0.717 0.497 2073 1376 2088 1390 0.893 0.955 
  119 Θ𝑛𝑒𝑡 + 𝑇 -- -- -- -- -- -- -- -- -- -- -- -- 

 Leaning 

(> 2°) 
40 - 

<0.001 <0.001 0.215 0.182 0.656 0.579 642 563 650 570 0.857 0.886 

  40 Θ𝑛𝑒𝑡 <0.001 <0.001 0.206 0.166 0.637 0.535 626 514 637 525 0.864 0.902 
  40 Θ𝑛𝑒𝑡 + 𝑇 -- <0.001 -- 0.156 -- 0.507 -- 481 -- 496 -- 0.912 
 All Trees 159 - <0.001 <0.001 0.254 0.189 0.710 0.519 2741 1945 2751 1955 0.884 0.943 
  159 Θ𝑛𝑒𝑡 <0.001 0.511 0.250 0.189 0.703 0.519 2718 1947 2734 1962 0.886 0.943 
  159 Θ𝑛𝑒𝑡 + 𝑇 -- -- -- -- -- -- -- -- -- -- -- -- 

BR2 
Vertical 

(< 2°) 
119 - 

<0.001 <0.001 0.002 0.008 0.494 0.310 1365 480 1385 499 0.910 0.965 

  119 Θ𝑛𝑒𝑡 <0.001 0.328 0.005 0.008 0.485 0.310 1334 481 1358 505 0.913 0.965 
  119 Θ𝑛𝑒𝑡 + 𝑇 -- -- -- -- -- -- -- -- -- -- -- -- 

 Leaning 

(> 2°) 
40 - 

<0.001 0.002 -0.004 -0.013 0.444 0.415 397 354 412 369 0.887 0.902 

  40 Θ𝑛𝑒𝑡 <0.001 <0.001 -0.003 -0.011 0.436 0.398 387 328 406 347 0.891 0.910 
  40 Θ𝑛𝑒𝑡 + 𝑇 -- -- -- -- -- -- -- -- -- -- -- -- 
 All Trees 159 - <0.001 <0.001 0.002 0.002 0.492 0.362 1813 1034 1834 1055 0.902 0.947 
  159 Θ𝑛𝑒𝑡 0.007 <0.001 0.003 0.002 0.490 0.360 1807 1018 1833 1044 0.903 0.948 

  159 Θ𝑛𝑒𝑡 + 𝑇 -- -- -- -- -- -- -- -- -- -- -- -- 

POU 
Vertical 

(< 2°) 
119 - 

<0.001 <0.001† -0.007 0.004 0.501 0.299 1394 408 1413 428 0.907 0.967 

  119 Θ𝑛𝑒𝑡 <0.001 0.3124† -0.005 0.004 0.493 0.298 1367 409 1391 433 0.910 0.967 
  119 Θ𝑛𝑒𝑡 + 𝑇 -- -- -- -- -- -- -- -- -- -- -- -- 

 Leaning 

(> 2°) 
40 - 

<0.001 <0.001 -0.006 -0.013 0.451 0.407 406 340 421 356 0.884 0.906 

  40 Θ𝑛𝑒𝑡 <0.001 <0.001 -0.005 -0.010 0.441 0.383 394 305 413 323 0.888 0.916 
  40 Θ𝑛𝑒𝑡 + 𝑇 -- <0.001 -- -0.008 -- 0.368 -- 281 -- 304 -- 0.922 
 All Trees 159 - <0.001 <0.001 -0.006 -0.001 0.494 0.345 1823 913 1844 933 0.902 0.952 
  159 Θ𝑛𝑒𝑡 0.003 <0.001 -0.005 -0.001 0.492 0.344 1815 902 1841 927 0.902 0.952 
  159 Θ𝑛𝑒𝑡 + 𝑇 -- <0.001 -- -0.001 -- 0.343 -- 899 -- 930 -- 0.953 
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4.3.4. Replacement of DBH 

 Model outcomes for replacing the DBH from the lean-adjusted BR2 and POU equations with 

diameters from the 8 raster slices are given in Table 4-7.  

Table 4-7 Nonlinear modeling results for two equations predicting total stem volume after substituting diameters at 

different heights (HD) as inputs. Probability values (P(>|t|) with † had a nonsignificant (α = 0.01) parameter from the 

original model (i.e., a1 or a2 or a3), while those with †† had nonsignificant probability value for the covariate of Θ𝑛𝑒𝑡  

(i.e., b1), and 

Equation Sample 
HD 

(m) 
Bias RMSE AIC BIC R2 

BR2 
Vertical 

(< 2°) 
1 0.005 0.485 1334 1358 0.913 

  3 0.003 0.400 965 989 0.941 
  5†† 0.008 0.310 481 505 0.965 
  7†† 0.011 0.292 368 392 0.969 
  10 0.007 0.304 442 466 0.966 
  12 0.006 0.293 372 396 0.968 
  15†† 0.012 0.317 526 550 0.963 
  18†† 0.016 0.359 759 783 0.953 

 Leaning 

(> 2°) 
1 -0.003 0.436 387 406 0.891 

  3 -0.007 0.388 312 331 0.914 
  5 -0.011 0.398 328 347 0.910 
  7†† 0.007 0.257 49 68 0.962 
  10 0.004 0.281 105 124 0.955 
  12 -0.001 0.312 173 191 0.944 
  15 -0.003 0.377 293 312 0.919 
  18† -0.045 0.388 312 331 0.915 

POU 
Vertical 

(< 2°) 
1 -0.005 0.493 1367 1391 0.910 

  3† -0.001 0.400 965 990 0.941 
  5††† 0.004 0.298 409 433 0.967 
  7 0.009 0.279 283 308 0.971 
  10 0.003 0.297 398 422 0.968 
  12 0.001 0.288 344 369 0.969 
  15†† 0.006 0.309 475 500 0.965 
  18††† 0.010 0.351 720 745 0.955 

 Leaning 

(> 2°) 
1† -0.005 0.441 394 413 0.888 

  3† -0.007 0.384 305 324 0.916 
  5 -0.010 0.383 305 323 0.916 
  7†† 0.006 0.236 -7 12 0.968 
  10†† 0.002 0.269 77 96 0.959 
  12† -0.003 0.312 173 192 0.944 
  15† -0.004 0.377 294 313 0.918 
  18 -0.003 0.382 302 321 0.916 
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The two models performed similarly to one another, but leaning trees were impacted differently 

than vertical trees. For both the leaning and vertical trees, the lowest R2, highest RMSE and greatest bias 

were produced when using the D1, which was used as a proxy for DBH in this study. For vertical trees, 

the models improved when using D3 compared to D1, then improved further when using D5. The results 

of using D5, D7, D10, D12, and D15 were similarly favorable, then the fit worsened when using D18 

compared to D15.  However, for the leaning trees, using D3 also resulted in improvement compared to 

using D1, but D5 and D3 produced similar results. There was a sharp increase in model performance 

between using D5 and using D7, which produced the best results for leaning trees, followed by D10, then 

D12. Using D15 caused worsened fit compared to D12, but similar to D18, D3 and D5 (Figure 4-8). 

a.) b.)  

Figure 4-8: Correlation coefficients (R2) (a.) and RMSE (b.) for stem volume models of leaning and vertical trees 

after substituting diameters at different heights for DBH in the BR2 and POU equations.  

 

 

 

4.4. Discussion 

The quality of the data produced by MLS scans of forests is driven by many factors, including 

stand characteristics, weather conditions, and terrain ruggedness. However, because the term MLS has 

been used to describe a range of different sensor and vehicle combinations, there are some inconsistencies 

in the literature regarding the performance of MLS, which is unsurprising considering the that hardware 
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reliability is a well-known dependability metric (Eusgeld et al., 2008). In this study, the power and high 

data collection rate of the sensor resulted in detailed reconstructions of stems, particularly for the portion 

below the main crown, extending approximately 40 meters horizontally from the sensor. The orientation 

of the sensor is also a limiting factor, especially for generating returns high on trees. Having the sensor 

pitched at a 45° toward the rear resulted in the tops of stems being scanned when they were in front of the 

vehicle, then returns were generated moving down the stems as the vehicle approaches, resulting in the 

scans ‘rotating’ around tree stems from top to bottom as seen in figures 4-3 and 4-4. Also, if the average 

angle of the laser pulses is 45° pitched upwards toward the front of the vehicle and the scanner is located 

2m above ground, then the laser pulse will travel 25 m to generate returns on tree stems at 20m above 

ground. As the angle of the pulse moves toward vertical or horizontal, this distance becomes less or 

greater, respectively. So, though the platform used in this study produced favorable results in many 

respects, there is some room for improvement. For example, rotating the sensor 90° in either direction so 

that the beam was pointed upward perpendicular to the road might result in more points on the upper parts 

of the trees farther away from the road. Also, having a sensor with a wider vertical field of view would be 

more suitable for scanning stems in situ using MLS. In the future, researchers should be mindful of the 

wide range of platforms that can be considered MLS, thus recognizing the importance of careful 

description of the hardware configurations used when implementing MLS for single tree measurements. 

The ground truth diameter measurements were taken two years after the MLS scans, and the trees 

in this study were healthy, so it was not surprising that all the DBH measured in 2020 were larger than the 

D1 estimates from the MLS in 2018. Though I could not separate the error of the estimates from the 

growth of the trees in terms of comparing the diameters, it was encouraging that there was strong 

correlation across the two sets of diameters. This is encouraging for future studies that may want to 

combine manual measurements with MLS scan data because it shows that the point clouds can be used to 

revisit a site after years have elapsed and easily locate sample trees. Future studies like this one should 

measure initial ground truth DBH at the same time as the initial MLS scan, and could also add a second 
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MLS scan to correspond with the DBH measurement after some period has elapsed. Hence, researchers 

may expand slightly on this study and assess the errors of radial growth estimates from MLS scan data 

and also track changes in tree lean over time. Tree form is known to vary near roads, including increased 

basal area in lodgepole pine (P. contorta) as noted by (Bowering et al., 2006b), so MLS which are 

intended to traverse the road while acquiring data would be valuable tools to investigate this in detail. 

Furthermore, managers of both commercial and public lands commonly use pickup trucks to access the 

forest, so hypothetically the same vehicles could simultaneously and systematically acquire MLS scan 

data without disrupting other operations.    

The method measuring tree stems by visually fitting circles had strengths and limitations as well. 

The obvious limitation of the method is timeliness, as it was by far the most time-consuming part of this 

procedure. Scaling up the method would linearly increase the time cost, which is not ideal. There two 

ways this part of the procedure could potentially automated. The first involves automatically segmenting 

the stems and measuring their dimensions directly from the point cloud (Liang et al., 2013), and the 

second involves using an algorithm such as Hough transform (Atherton and Kerbyson, 1999) to automate 

the location of stems as presented here, from raster slices. Preliminary analysis suggests that the latter 

may be accomplished via the open-source computer vision software suite “OpenCV” (Bradski and 

Kaehler, 2008). 

The most important result from this work is showing that leaning trees should be modeled 

differently than vertical ones. Here a threshold of 2° was chosen based on the previous literature, 

including  the previous study using the same data (Garms et al., in review), which clearly points a 

significant benefit for accounting for the lean when modeling the stems. However, the lean was also 

significant as a predictor when modeling vertical trees using their height and DBH, though nonsignificant 

using heights and D5. Perhaps trees leaning less than 2° also have different stem geometry than vertical 

ones, or, it is possible that this could be an artifact present in the data. However, for mature DF leaning 2° 
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or more, this work highlights the importance of considering the magnitude of tree lean when modeling the 

merchantable portions of the stems.  

The method of approximating stem lean is also important, as it will determine the proportions of 

leaning and vertical trees. Though no specific threshold was given, (Spies and Franklin, 1991) 12% boles 

are typically leaning in mature Douglas Fir stands. Using Θ𝑛𝑒𝑡to measure lean, we found that 25% of 

trees were leaning, while if Θ̅ had been used, the proportion of leaning trees would have been 

considerably higher (36%). Here, I demonstrated that a conservative metric of lean, which involves 

simply measuring the horizontal departure between the top and bottom of the stem, can be used to 

improve the fit of stem models. Because this method of estimating lean is also the same method that is 

commonly used in practice, the findings of this study can be implemented currently. However, there are 

benefits to more precise descriptions of stem lean, such as the incremental section angles estimated 

between the base and top of the stem and the average of those measurements, Θ̅. The values for Θ̅ were 

consistently larger than the corresponding Θ𝑛𝑒𝑡values for one simple reason: the horizontal path of the 

leaning stem is curved. Though it was not addressed here, similar data could be used to investigate the 

curvature of leaning stems more specifically, such as whether the curves are continuous or abrupt, which 

could be used in differentiation between trees that lean, sweep, and crook.  

Nevertheless, DF trees have been documented to have some subtle physiological differences 

when leaning quite slightly, namely, that they tended to be elliptical with the longer axis parallel to the 

lean by Williamson (1975), who also noted that this was likely unimportant. Here, I show that slight lean 

changes the way that stems should be modeled, which brings new relevance to Williamson’s contention 

about stem roundness. It could be that the way that stem geometries change according to lean is 

predictable in the sense that it can also be modeled, which would allow for leaning trees and vertical ones 

to be considered together with the same volume approximation equation  

 



105 

4.5. Conclusions 

The evidence presented here shows that MLS are powerful tools for modeling tree stems, but they are not 

created equally. In fact, the variability and relative novelty of the technology make MLS in forestry 

research a broad category of systems, which led to the recommendation of carefully considering the 

sensor, orientation, and trajectory when deploying MLS for scanning trees, and especially when using 

them to produce peer-reviewed research. In this study the Velodyne HDL-64E was positioned in the back 

of a pickup truck pitched at a 45° angle toward the rear of the vehicle. This resulted in an upward scan 

angle when scanning ahead of the truck, such that there were ample returns along the tree stems up to the 

base of the crown that they could be visually approximated with circles. The practical range of the MLS 

for this procedure was determined to be about 40m of the sensor, which is considerably less than the 

specified range of the sensor (120m), though it is possible that adjusting the orientation of the sensor tilt 

to be perpendicular to the road or using a sensor with a wider vertical field of view could improve the 

range of the system. Still, MLS based on passenger pickup trucks have the potential to efficiently capture 

tree stems in great detail, and because similar trucks are virtually ubiquitous in the forestry industry, the 

potential for modifying existing vehicles to have similar capabilities is very high. 

The stem locations from the MLS were used to create and compare two methods for approximation of 

lean. The first method, which mirrors how lean is conventionally measured in the field, used the top and 

bottom locations of the stem to produce a conservative lean estimate, Θ𝑛𝑒𝑡, while the second, Θ̅ , used the 

average of 7 sectional angle estimates along the stem. The conservative estimate for lean proved to be 

significant for predicting the stem taper and volume when added to existing stem taper and volume 

equations to model leaning ( >2°) trees, and to a lesser degree, trees that we considered vertical. The 

evidence presented suggests that the 2° is in this case an appropriate threshold for considering trees to be 

leaning, but there is also some evidence suggesting the threshold could be even less. Visual 

approximation of lean below 2° reliably is not feasible, however MLS scans allow for more precise 

estimates.  
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When lean is estimated using multiple locations on the stem as opposed to just the top and bottom, the 

nonlinearity (i.e., curve) of the lean path can also be considered. The results of this study demonstrate that 

more precise approximation of lean reveals that trees often lean in a curved path, which should be 

investigated further. As the patterns connecting tree lean and stem geometry are better understood, a more 

comprehensive approach to modeling leaning trees and vertical ones together may be developed. 

However, at present, the presence and magnitude of tree lean should be taken into consideration when 

nonlinear equations are used to model mature DF stems.    
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5. Conclusion 

The individual studies that comprise this dissertation support the overarching goal, which was to examine 

how point cloud data can be used to augment tree level estimates for forest inventory. Two different 

stages in the life of a stand were examined, namely, prior to planting when the trees are in the seedling 

stage, and once the trees have reached maturity and are ready for harvest. In both scenarios, evidence is 

presented to broaden the range of known applications of cutting-edge tools for forest research: UAS and 

MLS.  

By following the recommendations in Chapter 2, researchers can incorporate UAS seedling size and 

mortality assessment into future common garden studies. Because common gardens are currently used to 

address a wide range of suitability questions, the implications of this portion of my dissertation are 

potentially wide reaching as well. The US Forest Service’s Genetic Resource center, which is located 

about 120 km southwest of Corvallis, has been using common gardens to select disease resistant 

individuals in breeding programs for over 50 years (Sniezko, 2006), and is a perfect example of an 

institution that could potentially benefit from this work. 

In Chapter 3, the capabilities of three platforms that can produce point clouds of forests were discussed in 

depth. The least expensive platform, the UAS with multispectral sensor, can be currently be purchased for 

about $2000, which is roughly half of the price of the platform I used when it was purchased in 2015. 

Even though the UALS outperformed the UAS in some ways, specifically in the detection of tree stems 

and the fine scale textures of tree crowns, the UAS data was reliable in terms of locating tree crown 

positions and estimating their heights. Due to the trends in reduced price, increased ease of use, and more 

powerful postprocessing software, it is likely that UAS will become increasingly prevalent for aerial 

surveys of forests. Supplementing UAS data products such as point clouds and canopy height models 

(CHMs) with lidar measurements has several advantages. Having two remotely sensed estimates for a 

parameter such as height that are generally in agreement reduces the need for ground truth validation, 

which could result in lower costs. Also, UAS can provide spectral information which can be used to 
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detect diseases such as swiss needle cast (Burnett, 2017). Furthermore, small lightweight multispectral 

sensors like the one I used in Chapters 2 and 3 can be carried by the same aircraft as the lidar sensor and 

both can simultaneously record data, meaning two of the three platforms in Chapter 3 can be combined 

into one. The other platform, MLS, is a powerful tool for forestry in its own right, and it has different 

strengths and limitations than UAS or UALS, which led to the continuation of my work presented in 

Chapter 4. 

The work presented in Chapter 4 gives new insights about the potential MLS to survey trees from below 

the canopy. By focusing on the merchantable portions of the stems from the MLS point clouds, I was able 

to produce two different lean estimates for mature Douglas Firs  One of the methods used only the 

locations of the stems at the base and near the crown, similarly to how lean is normally assessed in the 

field, and generally produced more conservative estimates than the other method, which used the average 

of seven section angles estimated along the boles of the trees. I found that including a conservative 

estimate of lean as predictors in existing stem taper and volume equations  

Overall, this dissertation supports the usage of UAS, UALS and MLS for measuring individual trees in 

two different scenarios. For small seedlings, UAS can be used to supplement ground-based 

measurements, expand the capabilities of surveys, and detect mortality. For large trees, UAS can be used 

in conjunction with active sensor technology to produce detailed 3D digital reconstructions of entire 

stands. The data from these platforms can be gathered expeditiously compared to manual measurements, 

and the results have the potential to be more accurate as well. Using MLS to survey mature stems from 

the forest road allowed me to quantify stem lean in a novel way, then apply those lean estimates to 

existing stem taper and lean equations to improve them. It is my sincere hope that these contributions, 

both for the application of seedling measurements and for those regarding mature trees, may be of some 

use to my colleagues in the forestry research community. 
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