

AN ABSTRACT OF THE THESIS OF

Forrest Briggs for the degree of Doctor of Philosophy in Computer Science presented on

November 25, 2013.

Title: Multi-Instance Multi-Label Learning: Algorithms and Applications to Bird Bioacoustics

Abstract approved:

Xiaoli Z. Fern

We consider the problem of supervised classification of bird species from audio recordings

in a real-world acoustic monitoring scenario (i.e. audio data is collected in the field with an

omnidirectional microphone, without human supervision). Obtaining better data about bird

activity can assist conservation e↵orts, and improve our understanding of their interactions with

the environment and other organisms. However, traditional observation methods are labor-

intensive. Most prior work on machine learning for bird song is not applicable to real-world

acoustic monitoring, because it assumes recordings contain only a single species of bird, while

recordings typically contain multiple simultaneously vocalizing birds. We propose to use the

multi-instance multi-label (MIML) framework in machine learning for the species classification

problem, where the dataset is viewed as a collection of bags of instances paired with sets of labels.

Furthermore, we formalize MIML instance annotation, where the goal is to predict instance

labels while learning only from bag label sets. We develop the first MIML representation for

audio, and several new algorithms for MIML instance annotation based on support vector

machines or classifier chains. The proposed methods classify either the set of species present in

a recording, or individual calls, while learning only from recordings paired with a set of species.

This form of training data requires less human e↵ort to obtain than individually labeled calls.

These methods are successfully applied to audio collected in the field which included multiple

simultaneously vocalizing species. The proposed algorithms for MIML classification are general,

and are also applied to object recognition in images.

c�Copyright by Forrest Briggs
November 25, 2013
All Rights Reserved

Multi-Instance Multi-Label Learning: Algorithms and Applications to

Bird Bioacoustics

by

Forrest Briggs

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented November 25, 2013

Commencement June 2014

Doctor of Philosophy thesis of Forrest Briggs presented on November 25, 2013.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my thesis to any reader upon
request.

Forrest Briggs, Author

ACKNOWLEDGEMENTS

This work is partially funded by the Ecosystems Informatics IGERT program via NSF grant

DGE 0333257, NSF-CDI grant 0941748 to M.G.B., NSF grant 1055113 to X.F., and the College

of Engineering, Oregon State University. We would also like to thank Matthew Betts, Sarah

Frey, Adam Hadley, and Jay Sexsmith for their help in collecting HJA data, Iris Koski for

labeling the data, Katie Wolf for her work on noise reduction, Lawrence Neal for his work on

segmentation, and Dave Mellinger for his help editing.

I would also like to thank my advisors Xiaoli Z. Fern, Raviv Raich, and Matthew Betts for

their guidance in this research, and my mom, Luanna Helfman for her support.

TABLE OF CONTENTS

Page

1 Introduction 1

2 Background & Literature Review 6

2.1 Spectrograms . 6

2.2 Common Design Patterns . 7

2.3 Segmentation . 7

2.3.1 Energy Threshold . 7

2.3.2 Spectral Peak Tracking . 8

2.3.3 Non-Segmentation and/or High-Energy Methods 9

2.3.4 Frequency-Band Methods . 9

2.3.5 2D Segmentation . 10

2.3.6 Other Segmentation Methods . 10

2.3.7 Manual Segmentation . 11

2.4 Acoustic Features for Bird Sound . 12

2.4.1 Frame-Level Features . 12

2.4.2 Syllable-Level Features . 13

2.4.3 Recording/Song-Level Features . 13

2.5 Classifiers . 14

2.6 Limitations of Prior Work . 15

3 Audio Classification of Bird Species: a Statistical Manifold Approach 17

3.1 Introduction . 17

3.2 Background and Related Work . 19

3.2.1 Data Representation . 19

3.2.2 Related Work . 22

3.3 Probability Model for Sound . 23

3.3.1 The Interval-IID model . 23

3.3.2 Bayes Risk Minimizing Classifier . 27

3.3.3 Training . 28

3.4 Nearest Neighbors on Statistical Manifolds . 29

3.5 Experiments . 30

3.5.1 Data . 31

3.5.2 Preprocessing . 31

3.5.3 Clustering for Codebooks . 32

TABLE OF CONTENTS (Continued)

Page

3.5.4 Classifiers . 32

3.5.5 Cross Validation and Multiple Trials . 33

3.5.6 Results . 34

3.6 Conclusion & Future Work . 35

4	 	 Acoustic Classification of Multiple Simultaneous Bird Species: a Multi-Instance Multi-

Label Approach 37

4.1 Introduction . 37

4.2 Background & Related Work . 38

4.2.1 Acoustic Bird Species Classification . 39

4.2.2 Multi-Instance Multi-Label Learning . 40

4.3 Methods . 41

4.3.1 Bag Generator . 42

4.3.2 MIML Classifiers . 49

4.4 Experiments . 51

4.4.1 Data Collection & Labeling . 51

4.4.2 Evaluation . 53

4.5 Results . 55

4.6 Conclusion & Future Work . 59

5 Instance Annotation for Multi-Instance Multi-Label Learning	 	 61

5.1 Introduction . 61

5.2 Problem Statement . 63

5.3 Background . 65

5.3.1 Connecting Instance Labels with Bag Labels 65

5.3.2 Bag-Level Loss Functions . 65

5.4 Proposed Methods . 66

5.4.1 Rank-Loss Objective . 67

5.4.2 Aggregation Models and Support Instances 67

5.4.3 Optimization Methods for Rank-loss Support Instance Machines 69

5.4.4 Non-linear Classification via Kernels . 78

5.5 Experiments . 78

5.5.1 Experimental Setup . 78

5.5.2 Results . 86

TABLE OF CONTENTS (Continued)

Page

5.6 Related Work . 93

5.7 Conclusion & Future Work . 94

6 Context-Aware MIML Instance Annotation 96

6.1 Introduction . 96

6.2 Problem Statement . 98

6.2.1 Related Problems . 99

6.3 Background . 100

6.3.1 Classifier Chains for Multi-Label Classification 100

6.3.2 From Instance to Bag Labels . 101

6.4 Proposed Methods . 102

6.4.1 Training . 103

6.4.2 Classification . 105

6.4.3 Similarities with EM . 109

6.4.4 Asymptotic Complexity . 109

6.5 Experiments . 110

6.5.1 Datasets . 110

6.5.2 Prior & Baseline Methods . 111

6.5.3 Transductive and Inductive . 113

6.5.4 Parameter Selection . 113

6.5.5 Results . 114

6.5.6 Ensemble of Chains vs. Binary Relevance (SIM-RF) 115

6.5.7 Single Chain vs. Ensemble of Chains . 116

6.5.8 Comparison to SISL . 116

6.5.9 Empirical Runtime . 117

6.6 Related Work . 117

6.7 Conclusion & Future Work . 118

7 Conclusion & Future Work 119

7.1 Conclusion . 119

7.2 Future Work . 120

7.2.1 E�cient Use of Human E↵ort . 120

7.2.2 Exploiting Context . 125

7.2.3 Representation of Bird Sound . 126

TABLE OF CONTENTS (Continued)
Page

Bibliography 127

Appendices 142

A Instance Annotation for Multi-Instance Multi-Label Learning – Proof of Bound
on Sub-Gradient . 143

B Instance Annotation for Multi-Instance Multi-Label Learning – Implementation
Details . 148

LIST OF FIGURES

Figure	 Page

3.1	 The spectrogram for a one-second portion of a recording of a Swainson’s Thrush.

Darker areas indicate higher energy at the corresponding frequency. 18

3.2	 An audio signal is made up of samples, which are divided into overlapping frames. 19

3.3	 2D histograms of frame mean frequency and bandwidth from two di↵erent inter-

vals of audio recordings of the Downy Woodpecker. 21

3.4	 The plate diagram for the Interval-IID model. 23

4.1	 An example showing noise reduction in a recording wind and stream noise. . . . 42

4.2	 An example of the manual segmentation that is used to train our supervised

segmentation algorithm. 44

4.3	 Extracting a syllable from the segmentation results. (a) The original spectro-

gram, (b) The binary mask generated by our segmentation algorithm. The high-

lighted segment will be further processed in this example. Note that several other

segments overlap in time. (c) A cropped mask of the highlighted segment. (d)

The masked and cropped spectrogram corresponding to the highlighted segment. 46

4.4	 ROC curves for each algorithm. 56

5.1	 An example spectrogram from the HJA Birdsong dataset. This spectrogram

corresponds to one bag. Each outlined region is an instance. 80

5.2	 An image from MSRC v2 and the corresponding pixel-level labeling. The classes

in this image are ‘sky’, ‘trees, ‘grass’, ‘body’, and ‘car’. The black regions are

‘void’; we discard void regions. 81

5.3	 An image from PASCAL VOC 2012, the corresponding segmentation into in-

stances, and the instance labels. 82

5.4	 The objective hRL vs. number of iterations of SIM-CCCP and SIM-Heuristic.

SIM-CCCP is the dotted line. Transductive mode, max model, � “ 10 ́ 7 90

5.5	 (a–e) Solid line – accuracy vs. �. Dotted line – RLp�q, i.e. cross-validated

bag-level rank loss. (f) Scatter plot of accuracy and RLp�q for the Letter-Frost

dataset. 91

LIST OF FIGURES (Continued)
Figure	 Page

6.1	 Inductive instance annotation without context – “What class is the region of

pixels inside the red box?” . 97

6.2	 Inductive instance annotation with context – “What class is the region of pixels

inside the red box?” This image is from the VOC12 data. 97

7.1	 Visualization of all segments from cluster 231 in k-means++ with k “ 250. This

cluster corresponds to calls from a Varied Thrush. Look at the image with the

Ò pointing up. 122

7.2	 Manually identified calls from Varied Thrush. 123

7.3	 Segments from cluster 231 (identified as Varied Thrush), per hour of day. 124

LIST OF TABLES
Table	 Page

3.1	 Summary of Notation . 24

3.2	 The accuracy of each classifier in predicting bird species based on 413 thirty-

second intervals of sound. NN means nearest neighbor. The values listed for

classifiers using a codebook are average accuracy over 5 trials, ˘ average devia-

tion. Our proposed methods are listed in bold. 36

4.1	 The number of ten-second recordings containing each species in our labeled dataset. 51

4.2	 Accuracy measures for MIML classifiers and baselines (– indicates the result

cannot be calculated). 55

4.3	 Example predictions with Miml-kNN. 56

5.1	 Summary of Notation . 64

5.2	 MIML datasets . 79

5.3	 Instance annotation accuracy results . 87

5.4	 Empirical runtime (seconds), transductive, no kernel, � “ 10 ́ 7 92

6.1	 Frameworks for supervised classification . 99

6.2	 Summary of Notation . 103

6.3	 MIML datasets used in our experiments . 110

6.4	 Instance annotation accuracy results (: – results from [17], ; – results from [99]) 115

6.5	 Runtime for training and classification with MIML-ECC, per fold of cross-validation

or per repetition (seconds) . 117

Chapter 1: Introduction

This thesis addresses two main ideas: multi-instance and/or multi-label supervised classifica-

tion, and applications to bird bioacoustics.

Automatic recognition of bird species from audio is an important problem. Habitat loss,

declining biodiversity [6], and climate change [116] necessitate the development of better tools

to monitor birds, including their ranges, diversity, and phenology. Birds are a good indicator of

ecosystem health and diversity because they are relatively easy to detect, may provide informa-

tion about other organisms such as plants and insects, and respond quickly to environmental

change [125]. However, monitoring bird populations and activity is a labor intensive task. Tra-

ditional methods involve human experts working in the field. High labor requirements limit the

spatial and temporal resolution, and extent of bird data collection [123]. Acoustic population

surveys instead use microphones to record bird vocalizations, which can later be analyzed by

humans or signal processing and machine learning tools to estimate species presence/absence,

abundance, gender, age, and other individual characteristics. Acoustic surveys can provide

greater resolution and extent than human observers, and are more practical in remote sites

(where limitations for human observers are particularly acute [10]). For example, it is imprac-

tical for a human to record observations on the side of a cli↵ continuously for two weeks, but a

microphone can collect audio in the same scenario.

Over the last 5 years, our collaborators have collected more than 10 terabytes of audio

recordings of birds using unattended omnidirectional microphones in the the H. J. Andrews

Experimental (HJA) Forest in the Cascade Mountains of Oregon (this corresponds to thousands

of hours of audio collected at 13 sites). Although there has been over a decade of research on

machine learning for bird song [88], most work has focussed on ideal problem setups such a single

bird with a person aiming a directional microphone at it to obtain a cleaner sound. In contrast,

the audio data collected in HJA is less ideal because unattended omnidirectional microphones

pick up all sounds in the environment, particularly wind and stream noise, and there are often

several birds vocalizing at once. Prior machine learning and signal processing methods are

not su�cient for the HJA audio dataset because they do not handle multiple simultaneously

vocalizing birds and strong background noise environments. This thesis contributes the first

2

steps toward automated machine learning-based analysis of this dataset to infer species activity

at the resolution of either 10-second intervals, or individual utterances. We present solutions

for noise and multiple simultaneously vocalizing birds of di↵erent species.

The most common formulation of supervised classification pairs instances (feature vectors)

with single labels, hence it is called single-instance single-label learning (SISL). Well known

algorithms such as support vector machines (SVM) and logistic regression are SISL methods.

Reducing classification problems with audio and images to SISL often involves a transforma-

tion which discards useful structure in the data. Many supervised learning problems in audio

and vision domains have a certain structure where documents are naturally decomposed into

a collection of parts. For example, an image is naturally represented as a collection of regions.

Similarly, an audio recording can be decomposed into a collection of parts in several ways. This

structure motivates multiple instance learning (MIL) [49], which departs from basic supervised

classification in that the representation is no longer a simple vector. It is often natural to asso-

ciate a document with multiple labels, for example to indicate all objects present in an image,

or all bird species present in an audio recording. Multi-label classification (MLC) addresses this

kind of classification problem. Multi-instance multi-label (MIML) classification [172] combines

both ideas.

Chapter 2 reviews literature on machine learning for bird sound. In each subsequent chapter,

we present a new learning algorithm which focuses on di↵erent aspects of the multi-instance

and/or multi-label structure in the problem of recognizing bird species from audio. In some

cases, we are also able to apply the proposed learning methods to other domains, e.g., object

recognition in images.

In chapter 3, we consider the problem of acoustic classification of bird species from a short

audio recording of its vocalizations. It is assumed that there is only a single species of bird in

each recording. Recordings are represented as a collection of frame-level (i.e. short-duration)

acoustic features, and summarized by a codebook histogram. The approach proposed in this

chapter can be consider a multi-instance, single-label, multi-class method. We formulate a

probability model for sounds in a short recording, and show that the Bayesian maximum a

posteriori (MAP) classifier is approximated by a nearest-neighbor classifier using Kullback

Leibler divergence between frame-level feature histograms. In this early work, we conduct

experiments on audio recordings from the Cornell Macaulay library, which are single-species

recordings collected with a directional microphone.

In chapter 4, we propose the first application of MIML to audio. MIML formulations have

3

previously been used in text [132], image [97, 165], and video [157] domains. In order to handle

multiple simultaneously vocalizing birds in the HJA audio data, we formulate the problem of

species presence/absence prediction in the MIML framework. A short (e.g. 10 second) audio

recording is a bag, the instances are feature vectors describing distinct utterances, and the label

set is a list of the species that are audible in the recording (as determined by a human expert).

The MIML classifier outputs a set of predicted species, given a new audio recording as input.

In this chapter, we use o↵-the-shelf MIML classifiers; the main contribution is a procedure

for transforming an audio signal into a bag-of-instances representation. Our proposed method

filters background noise from streams and wind, and can separate distinct bird utterances

that overlap in time (but not frequency). This work is one of the first to address bird sound

classification with multiple vocalizations that overlap in time.

In chapter 5, we consider a di↵erent variation of MIML. In most prior work on MIML, the

goal is to predict the label set for a previously unseen bag. A related problem which has received

less attention is training a classifier that predicts instance labels on a MIML dataset, which

provides only bag-level label sets. This problem is called MIML instance annotation. In this

setup, no instance labels are available for learning; bag label sets indirectly provide ambiguous

information about instance labels. The advantage of MIML instance annotation compared to

SISL is that bag label sets are often cheaper to obtain than instance labels. For example, it

is more time consuming to annotate each individual pixel in an image with its class than to

provide a set of tags describing the contents of the image. Similarly, it is less time-consuming for

a human to label audio recordings of bird song with a set of audible species than to individually

label each utterance. Applying MIML instance annotation to bird song, the training data

consists of short audio recordings paired with a list of species, and the predictions made by the

classifier are species labels for each individual utterance. Hence the MIML instance annotation

approach enables a finer temporal resolution analysis of the bird song data with a relatively

low labeling cost. In a MIML instance annotation image problem, the goal is to predict the

label for regions in an image while training on a dataset consisting of images paired with lists of

objects. Images are routinely tagged in online databases, while datasets with pixel-level labels

are rare and generally only constructed to facilitate machine vision experiments.

We formalize the MIML instance annotation problem, and propose a new SVM-style algo-

rithm. A common pattern is to train one linear model for each class and predict the instance

label as the highest-scoring class. Most prior MIML algorithms are designed to predict label sets

for new bags. Some MIML classifiers designed for label-set prediction also build an instance-level

4

model as a side e↵ect of training on a MIML dataset, however such algorithms have not been

explicitly designed to optimize instance-level classification accuracy. For example, M3MIML

[168] is an SVM-style algorithm for MIML classification which builds an instance-level classifier

by minimizing a regularized bag-level loss function. While the loss function used in M3MIML

(Hamming loss) is good for label set prediction, it is not good for instance-level classification

because it fails to calibrate the models for each class in a way that causes the correct class

have the highest-ranked score. We propose a regularized bag-level rank-loss objective, which is

designed to improve instance classification accuracy by ranking the class scores in the correct

order. A bag-level loss function must be used because only bag label sets are available for

training, however the goal is to learn an instance-level classifier. Hence it is necessary to make

some assumptions about the relationship between bag label sets and instance labels which allow

the loss to be expressed in terms of the instance-level models.

A common assumption is that the bag label set is the union of instance labels. Optimiz-

ing regularized bag-level loss functions for MIL and/or MIML is non-convex under a standard

approximation of this assumption. A practical problem for applying SVM-style algorithms

to MIL and MIML is how to optimize the non-convex problem. We propose heuristic and

constrained convex-concave procedure–based methods for MIML rank-loss optimization. Both

methods alternate between summarizing each bag with a single instance that is most repre-

sentative of each class (called a “support instance”), and solving a convex problem by e�cient

primal sub-gradient descent. Hence we call the proposed methods rank-loss Support Instance

Machines (SIM). Experiments on the HJA birdsong data, as well as several machine vision and

artificial problems show that rank-loss SIM achieves higher accuracy than similar algorithms

using di↵erent loss functions.

The rank-loss SIM algorithms can be applied in either transductive or inductive modes. In

the transductive mode, the goal is to classify instances for bags with known label sets, whereas

in the inductive mode, the goal is to classify instances for new bags, which have unknown label

sets. Rank-loss SIM, and several other recent algorithms to which it is compared, all achieve

lower accuracy in the inductive mode. This outcome is to be expected because less information

is given to the classifier in the inductive mode. Rank-loss SIM classifies each instance in a

bag independently from the other instances, and thus it does not take advantage of contextual

information provided by other instances in the same bag. In chapter 6, we develop a new

algorithm for MIML instance annotation, which achieves better accuracy in the inductive mode

by jointly classifying all instances in a bag, in a way that exploits the contextual relationships

5

between correlated labels. For example, if an image contains cows, it is also likely to contain

grass. Similarly, the presence of bird species with similar ecological niches is often correlated.

The proposed method in chapter 6 extends an algorithm for MLC called ensembles of clas-

sifier chains (ECC) [122], to MIML instance-annotation, hence we call it MIML-ECC. Classifier

chains exploit label correlation by making a binary decision about each class sequentially, and

using all previous classes as features that provide context to inform the next prediction. A stan-

dard classifier chain for MLC is a chain of SISL classifiers; we extend classifier chains to MIML

instance annotation by building a chain of MIL classifiers. MIML-ECC computes probabilities

for each instance to belong to each class, and uses these probabilities to form a label set for

the whole bag, which in turn provides context for computing more instance-level probabilities.

This may seem circular, but it is not because each class is processed sequentially in a chain.

We propose a training algorithm that is closely related to EM, and a classification procedure

that approximates posterior inference by sampling.

The MIML-ECC algorithm improves on rank-loss SIM (and other SVM-style algorithms

that can be applied to instance annotation) in several additional ways. In particular, it is

not possible to use cross-validation to select kernel and regularization parameters in MIML

instance annotation, because the instance labels are not available to compute accuracy in the

held-out folds. Consequently, rank-loss SIM must rely on heuristics to select these parameters.

In contrast, MIML-ECC does not have any parameters that need to be tuned (it only has

parameters that control a trade-o↵ between runtime and approximation accuracy, which can

simply be set as high as time allows). Furthermore, while the training time for rank-loss SIM is

linear in the number of bags and instances, it is quadratic in the number of classes. MIML-ECC

is scalable in all dimensions of the problem.

The new algorithms proposed in this thesis provide a practical solution to many problems

in automatic acoustic monitoring of birds. The MIML representation is a natural fit for audio

recordings of bird sounds, and enables classification of multiple simultaneously vocalizing birds.

MIML instance annotation enables fine-grained analysis of utterances, while making e�cient

use of human labeling e↵ort by learning from species label sets. This formulation is a general

machine learning framework, useful not only for bird sound, but also in other domains such as

images.

6

Chapter 2: Background & Literature Review

In this chapter, we discuss prior work on machine learning for acoustic classification of bird

species. In order to provide a more comprehensive literature review, this chapter also discusses

some work that was published after the work presented in later chapters of this thesis. Each

chapter includes a self-contained related works section. Refer to these sections for more in-

formation about prior work in multi-instance and/or multi-label learning. Other surveys on

machine learning for classification and detection of birds are available, e.g., [71, 124]. Here we

provide basic background, and argue that prior work on machine learning for bird song does

not address several major challenges, and hence the advances in this thesis are necessary and

significant.

2.1 Spectrograms

Sound is a wave of pressure. Audio data is stored on a computer as a quantized signal, which

is a sequence of numbers that represent the pressure as a function of time. The signal has a

particular sampling frequency, which is the number of samples per second. Some methods for

sound analysis can be applied to the signal directly, but it is often easier to identify patterns

through a spectrogram representation. Spectrograms are one of the most fundamental tools for

analysis of bird sound [25]. A spectrogram is a plot with time on the horizontal axis, frequency

on the vertical axis, and brightness representing intensity, energy, or loudness. Spectrograms

can also be through of as a digital image. More formally, spectrograms are computed by dividing

a signal into overlapping frames, each of which consists of a block of consecutive samples of the

signal. Then a Fourier transform is applied to each frame, which produces a vector of complex

Fourier coe�cients. Each column of pixels in a spectrogram corresponds to the magnitudes of

the coe�cients for one frame.

7

2.2 Common Design Patterns

There are several design patterns that are common to many systems for bird species classifica-

tion and detection. We will cite specific examples of these patterns in the following sections.

One of the most prevalent is to divide the problem into three stages: segmentation, featuriza-

tion, and classification. In this pattern, first the signal or spectrogram is devided into distinct

syllables, calls, or segments, then each is associated with a feature vector. Finally, a supervised

classification algorithm is applied to the features. Other variations of this pattern includes

associating a whole recording with a feature vector (rather than individual parts), and classify-

ing this feature. In some cases, predictions are made about frames or syllables, while in other

cases, predictions are made about a song consisting of multiple frames or syllables (sometimes

directly, and other times, by aggregating lower level predictions).

2.3 Segmentation

Many bird sounds have structure at multiple levels of organization, referred to as notes, calls,

syllables, and songs. Often, the distinction between these di↵erent levels of structure is am-

biguous [136], and not all levels are relevant to a given recording or species. From a practical

perspective, most systems for audio classification divide a recording into units referred to as

syllables or segments. These units are simply whatever is isolated by the segmentation algo-

rithm. Detection is related to segmentation, but instead the goal is to identify specific events

(rather than to divide a recording into distinct units).

2.3.1 Energy Threshold

The most commonly used methods for segmentation are based on energy (which is related to

loudness), and simply look for intervals of time or 2D regions in a spectrogram where energy is

high. Such methods often begin with the computation of a smoothed energy envelope, which

is energy as a function of time, convolved with some kernel to smooth out small deviations.

Another common pattern is to estimate the energy level of background noise based on intervals

outside of segments, and iteratively refine the segmentation.

For example, Härmä and Somervuo [74] start with a smoothed energy envelope, and com-

putes the global maximum energy MdB. A threshold TdB “ MdB ´ 20 dB is set, and syllables

are identified as intervals where the energy is above this threshold. Next, a noise energy level

8

NdB is estimated from intervals which are not in a syllable. Then the threshold is updated to

a new value which depends on the noise level based on the rule TdB “ pMdB ´NdBq{2, and the

process is iterated to refine the segmentation.

Similarly, in [31, 59, 60, 136], first the noise level NdB is estimated as the global minimum

of the smoothed energy envelope. Then a threshold TdB “ NdB{2 is set (note that division by

2 indicates a louder sound, because the decibel measure is negative). Syllables are identified

as intervals above the threshold, and the noise level is recomputed from intervals below the

threshold. The threshold is recomputed by the same rule above, and the process is iterated.

Some other works use energy-based segmentation, but provide less details on the method.

Fagerlund and Härmä [58] used an energy threshold method with adaptive noise level estimation,

similar to the above methods. Selin et al. [126] used an energy threshold that changes over time

based on a moving average. In [30], the main goal is to extract spectral peaks, but energy-

based segmentation is used as a preprocessing step. In this work, the background noise level is

estimated based on a short period of time at the beginning of recordings known to not contain

vocalizations. Similarly, Cheng et al. [32] assumes the first part of each recording is noise, and

uses an energy threshold equal to a constant multiple of that energy level. Wielgat et al. [152]

used an energy threshold combined with manual correction. Tyagi et al. [143] used segmentation

based on a combination of energy and zero-crossing rate (ZCR). Vaca-Castano et al. [146] used

energy threshold with a minimum and maximum syllable duration to merge short segments

that are close in time.

2.3.2 Spectral Peak Tracking

Spectral peak tracking is a method for segmentation which is often used for tonal sounds (i.e.

sounds with low bandwidth, which look like narrow lines in a spectrogram) [73], although it is

sometimes used for other kinds of sound [92].

Härmä [73], Somervuo and Härmä [134, 135], and Lee et al. [92] use the following spec-

tral peak tracking algorithm: First, the point in the spectrogram which is the time-frequency

maxima is identified as pt0, f0q “ arg maxpt,f q Spt, fq, where Spt, fq is the spectrogram. Next,

a start time ts and end time te for the syllable containing the maxima is found by expanding

from the maxima and stopping when the peak amplitude (the largest value of Spt, fq over all f

at a particular t) is a constant D dB less than at t0. All elements of the spectrogram between

ts and te are then set to 0 to remove the syllable from the spectrogram, and the process is

9

repeated to find the next loudest syllable.

Chou et al. [36] proposed an algorithm very similar to [73] (maybe identical, although there

is no citation in either direction). Their algorithm is an extension of work by Rabiner and

Sambur [118] on segmentation for human speech, which starts at an energy maxima, then

searches forward and backward for a start/end time based on energy and ZCR. Presumably,

the same algorithm is used in [35].

Heller and Pinezich [75] seeks to extract multiple spectral peak tracks (as one might en-

counter in a harmonic vocalization). This method finds all local maxima in each frame, then

connects each maxima with its nearest frame-adjacent neighbor.

2.3.3 Non-Segmentation and/or High-Energy Methods

Some methods do not aim for a precise segmentation of syllable time-boundaries, but instead

use high-energy frames in another way. For example, Juang and Chen [84] find the max-energy

frame, then use a fixed number of frames before and after as input to a neural net.

Briggs et al. [15] represented short audio recordings as a histogram of frame codewords

(chapter 3). The set of frames used to construct the histogram is not required to be an exact

segmentation into syllables. Instead, the 10% highest energy frames are used. Similarly, Stowell

and Plumbley [138] aims to compare recordings of di↵erent lengths with di↵erent numbers of

vocalizations without segmentation by constructing a histogram of frame-level features (using

all frames).

2.3.4 Frequency-Band Methods

One common approach targeting specific species with known frequency ranges is to limit de-

tection to sound in that range (referred to as a band). For example, Farnsworth and Russell

[62] and Farnsworth et al. [63] detect where amplitude exceeds a threshold within a specified

frequency band. Damoulas et al. [43] used the same detection method as [62]. In some systems

that use frequency-band specific detection, subsequent classification is not applied because it is

assumed that any detection within that band corresponds to the species of interest.

Bardeli et al. [8] seeks to detect calls from two specific species, in high-noise field recordings

containing other animals, human speech, tra�c and wind. They proposed novelty functions

which measure the interest of a particular time over a manually specified range of frequencies.

10

Repeated calls are detected based on autocorrelation of the novelty functions, e.g., using Fourier

analysis to determine if a repetition at a known characteristic period is present.

The main di�culty with frequency-band detection methods is that prior knowledge of the

frequency range for the species of interest is required.

2.3.5 2D Segmentation

Most segmentation algorithms attempt to find the start and end time of a syllable, which can

be viewed as a 1D approach. Alternatively, it is possible to identify a 2D region or bounding

box in the spectrogram corresponding to a syllable. The advantage of 2D segmentation is that

it may be able to separate sounds which overlap in time. Most of the methods presented in this

thesis use 2D segmentation.

Brandes [13] seeks to classify sounds by species (for birds, frogs, and crickets). In this

work, the focus is on frequency modulated, narrow-bandwidth calls. The frequency range is

partitioned into separate bands automatically based on optima in an average spectrum. Then

2D per-pixel segmentation is performed separately within each band using an energy threshold

set by a noise-estimate from that band. This method can obtain segments that overlap in time.

ARBIMON [2] also used 2D energy-based segmentation (without dividing the spectrum into

bands).

Duan et al. [53] proposed several algorithms for detecting common general patterns in

spectrograms that describe a wide range of bird sounds. In particular, the categories of pattern

are lines, blocks, warbles, stacked harmonics, and oscillations. This approach also generates 2D

annotation.

2.3.6 Other Segmentation Methods

There are many other methods (primarily for 1D) segmentation which do not fit cleanly into

one of the above categories.

McIlraith and Card [111] used a “leaky-integrator” for segmentation, which acts directly on

the signal samples rather than the energy envelope. At each sample, if the absolute magnitude

exceeds a threshold, the integrator is incremented by a constant, otherwise it is decremented

by a di↵erent constant.

11

Du and Troyer [52] proposed a method for segmentation at the note-level rather than syllable

level (for Zebra Finch song). It starts with a RMS amplitude envelope (similar to energy

envelope). At each point on the time axis, a least-squares linear fit on the envelope is performed

on both sides, using adjacent points. The angle between these two lines is treated as a second

envelope which is compared to an energy-modulated threshold to identify note boundaries.

Lakshminarayanan et al. [90] proposed a segmentation method for identifying syllable

boundaries. Instead of an energy envelope, each frame is treated as a probability density

function, and the KL divergence between that distribution and a uniform distribution is used

as an interest function. Segment boundaries are predicted at frames corresponding to local min-

ima in KL divergence. Then for each interval between boundaries, a decision is made whether

it is bird sound or background noise based on an iterative energy threshold algorithm similar

to [60].

Jancovic and Köküer [83] proposed a heuristic “sine-distance” interest function, and predict

frames where this distance exceeds a threshold as tonal bird sound.

Vaca-Castaño and Rodriguez [145] proposed a finite state machine that scans over frames,

and updates its state based on the energy envelope, and an adaptive threshold. The purpose of

the state machine is to handle syllables that may contain small gaps (i.e. some frames in the

middle of a syllable may be below a simple threshold).

Ranjard and Ross [120] segment syllables by thresholding an autocorrelation function. Then

syllable time boundaries are refined as the minima of a windowed frequency roll-o↵ function.

Segments below a fixed duration are dropped.

2.3.7 Manual Segmentation

In some experiments, syllables are segmented manually, or automatic segmentation is used first,

then manually corrected. This approach is more commonly used when segmentation is not the

primary focus of the study, and the authors wish to focus on a di↵erent part of the system.

Kogan and Margoliash [88] and Trifa et al. [142] use manually segmented templates for

training an HMM. Lee et al. [91] proposed a new set of features for classification of species

from syllables, and used manually segmented syllables. Acevedo et al. [1] use manually seg-

mented syllables for supervised species classification experiments. Syllables are designated by

a 2D bounding box in a spectrogram. Wimmer et al. [153] developed a web-based system for

collaborative analysis of bioacoustic data. One part of this system is a labeling tool that allows

12

users to draw a rectangle around a vocalization in a spectrogram. This system can also be used

in conjunction with automatic or semi-automatic segmentation. Other works in which sound is

manually segmented into syllables, calls, or “phrases” include [70, 100, 101, 127, 140].

2.4 Acoustic Features for Bird Sound

Classifiers for bird sound can target frames, syllables, or whole recordings/songs. Features to

describe sound exist for all of these levels of structure. In some cases, features are computed at

one level, then aggregated to form a feature at higher level (i.e. the level where classification is

desired).

2.4.1 Frame-Level Features

Frame-level features describe individual frames of a signal, and are often derived from the

Fourier coe�cients of the frame. The simplest frame-level feature is simply the vector of Fourier

coe�cient magnitudes. Works using this feature include [15, 89].

Mel-frequency cepstral coe�cients (MFCCs) [45] are a frame-level feature originally devel-

oped for speech analysis. MFCCs are computed by transforming the spectrum of a frame into

the Mel-frequency scale [150], which matches human perception of pitch more closely than lin-

ear frequency. This transformation is accomplished by applying a collection of non-uniformly

spaced triangle filters. Each triangle filter response gives one Mel-frequency coe�cient (MFC).

MFCCs are the result of applying the discrete cosine transform (DCT) to the log of the Mel-

frequency coe�cients (the term ‘cepstral’ means spectrum of a spectrum). The DCT reduces

the dimensionality of the Mel-scale spectrum, and removes correlation from its elements. There

are many variations on the implementation details of computing MFCCs, e.g., the number of

triangle filters used; some evaluation of di↵erent variants has been performed in [68].

MFCCs are the most widely used feature in machine learning for bird sound [9, 23, 30, 35,

36, 60, 88, 92, 136]. However, we argue that the Mel-frequency transform is not well moti-

vated for bird sound. The Mel-frequency transform is appropriate for human speech, because

it compresses the high-frequency portion of a spectrum more than the low frequency portion.

Human speech is generally concentrated at low frequencies. However, many bird species make

high-frequency sounds, which are degenerated by the Mel-frequency transformation. Experi-

mental results presented in chapter 3 support this perspective. MFCCs have also been criticized

13

as being non-robust to noise [144], although many enchanted versions have been proposed to

address this issue.

Other widely-used frame-level features include linear prediction coe�cients (LPCs), and

linear prediction cepstral coe�cients (LPCCs), which were also developed for speech. LPC or

LPCC are used in [30, 84, 88, 92, 111].

Many frame-level features are high-dimensional, hence some authors apply dimension-reduction

methods such as principal component analysis (PCA) [89, 111].

2.4.2 Syllable-Level Features

One approach to constructing syllable-level features is to compute frame-level features for each

frame within the syllable, then take the average feature vector [60, 92, 136]. Spectral peak

tracking is used not only as a segmentation method, but also by representing the peak trajec-

tory with a feature vector [73, 74, 136]. Other features include analysis-by-synthesis/overlap-

add (ABS/OLA) [30], wavelets [9, 126], and ‘descriptive parameters’ such as bandwidth, zero-

crossing rate and spectral flux [60, 136]. For marine mammals, Mellinger and Bradbury [112]

proposed a set of noise-robust features that are computed from a 2D bounding box around a

vocalization. These features are based on statistics of the time and frequency profiles within

the box.

2.4.3 Recording/Song-Level Features

There are many ways to represent a recording by viewing it as a collection of parts, and

summarizing the parts with a feature vector. One pattern for constructing such a feature

vector is to use a histogram of frame-level features [15, 138]. Similarly, histograms of syllable

types or syllable features may be used [19, 20, 134]. Simple statistics such as the number of

segments or mean of segment features may also be used [20]. Other representations of the

collection of syllables in a recording have been proposed, e.g., the vector of Hausdor↵ distances

between the syllable features, and a dictionary of syllable clusters [20]. A spectrogram can also

be represented as a collection of rectangular patches which are reconstructed as a sparse linear

combination of dictionary atoms [20, 93].

A di↵erent kind of recording-level representation does not involve a collection of parts, but

instead uses (statistical) signal descriptors, sometimes within a collection of frequency bands.

14

For example, the mean, variance, skewness, kurtosis, min, max and median statistics may be

computed within Bark bands [20] (the rp extract package [98] computes these features).

Two of the top-ten ranking teams in the MLSP 2013 Bird Classification Challenge [20]

used template matching as a way of producing feature vectors at the recording level. First,

a collection of templates were extracted automatically based on segmentation of training data

into syllables. Then each template was compared with a target recording while sliding across

in time. The value of the normalized cross-correlation at the time where it was maximized was

used as a feature (one for each template).

While it is more common to average frame-level features for the purposes of representing

syllables, this approach is also used to represent whole recordings in [143], and as a baseline

method in [15].

2.5 Classifiers

Supervised classifiers that have been applied to bird sound in prior work fit into the SISL

framework (i.e. they associate a single feature vector with a single label). SISL classifiers have

been applied at the frame, syllable, and song/whole-recording level. SISL classifiers that have

been used include k-nearest neighbors and other distance-based classifiers [9, 15, 73, 92, 100,

136], Näıve Bayes [100], multilayer perceptrons [9, 23, 35, 36, 100, 111, 126], deep-belief nets

[20], recurrent neural nets [84], time-delay neural nets [127], support vector machines (SVM)

[15, 43, 59, 60, 100], decision trees [60, 100], and Gaussian mixture models (GMM) [89, 136].

Hidden Markov-models (HMM), while not technically part of the SISL framework, still

produce an output which is a sequence of single labels. HMMs are used in [9, 13, 30, 88, 136, 142].

This thesis focusses on multi-instance single-label and multi-instance multi-label classifi-

cation. In recent work, we have also applied the multi-label classification framework (single-

instance) to bird sound [19, 20].

Template matching can be applied as a form of classification/detection. One first obtains a

collection of templates (often rectangular regions from a spectrogram), then slides them across

a target spectrogram, while computing some measure of similarity such as cross-correlation.

Points in time where the similarity is high are considered detections. Template matching

is sometimes used in conjunction with dynamic time warping (DTW), which non-uniformly

stretches either the template or the target spectrogram in time to produce a better match. The

software package XBAT has been used extensively for template detection [28, 139].

15

One of the earliest works using template matching and DTW for bird song is [3]. Anderson

et al. [3] manually extracted a set of templates, including some which represent intervals with

no bird sound. The one-stage DTW algorithm is used to generate a representation of the target

spectrogram as sequence of templates. This can be viewed as simultaneous segmentation and

classification. Similarly, Chu and Blumstein [37] used DTW on frame-level features to obtain a

distance measure for hierarchical clustering. The clustering is used to obtain a set of training

templates (with manually annotated time boundaries). Hidden-Markov models (HMMs) are

then used to infer a sequence of state transitions, where the states may correspond to either

bird sound or noise.

Damoulas et al. [43] used DTW without template matching to obtain a similarity measure

between calls (bypassing call-featurization), which was used in a kernel for SVM classification

of warbler flight calls. This approach was applied after a band-specific segmentation algorithm

extracted calls.

2.6 Limitations of Prior Work

Prior work on machine learning for bird song has limited applicability to general-purpose au-

tomatic acoustic monitoring in the real world for several reasons. Perhaps the most significant

limitation is that prior work typically focusses on audio recordings containing only a single

species of bird, while audio collected with omnidirectional microphones usually contains multi-

ple simultaneously vocalizing birds. Many recordings used in prior work are obtained from birds

in captivity, or with a directional microphone aimed by a person at a bird. Such recordings

have a relatively high signal-to-noise ratio. In contrast, recordings obtained in a monitoring

scenario often have background noises including wind, streams, rains, and motor vehicles. Some

frequency-band methods (e.g, [62, 63]) are applicable to unattended monitoring, but must be

crafted exclusively for a particular species (without the aid of machine learning).

Another issue not addressed by prior work is the e�cient use of human e↵ort for labeling

training data. Through the MIML instance annotation framework, our proposed methods

enable classification of syllables while training only on recordings paired with the set of species

that are present (which requires less e↵ort to obtain than annotating individual calls).

Quite recently (2013), the ARBIMON system [2] has been successfully applied to automated

monitoring of birds, amphibians, mammals, and insects in field conditions. ARBIMON uses a

2D energy-based segmentation system to extract syllables. We demonstrated in earlier work

16

that a supervised 2D segmentation algorithm achieves better accuracy than a 2D energy-based

algorithm [114]. A purely energy-based system cannot address non-stationary background noise

such as rain, leading to false-positive detections [2]. This means their methods may have lim-

ited use in determining relationships between bird activity and covariates such as precipitation.

We address segmentation in rain by extending the supervised classification method in [20].

In the ARBIMON system, segments are described by a 5-dimensional feature vector (mini-

mum/maximum frequency, duration, bandwidth, and maximum intensity), of which the first 4

are a subset of the 38 features we proposed earlier in [18] (chapter 4). With this limited set

of features, ARBIMON cannot be expected to scale well to a large number of species (their

experiments involve 9 species), or handle subtle di↵erences in calls. Furthermore, ARBIMON

uses SISL classifiers (specifically, HMMs) and hence does not make e�cient use of human e↵ort

in the same way as our proposed methods.

17

Chapter 3: Audio Classification of Bird Species: a Statistical Manifold

Approach1

3.1 Introduction

Our goal is to develop algorithms that can predict which species of bird is present in an audio

recording, by learning from a collection of labeled examples. Such algorithms will serve as part of

a system to automatically collect bird species presence/absence data, which will provide valuable

ecological information for species distribution modeling and conservation planning. Existing

bird species distribution data are collected by manual surveys, which are labor intensive, and

require observers trained in bird recognition [11]. Automated bird population surveys could

provide vast amounts of useful data for species distribution modeling, while requiring less e↵ort

and expense than human surveys. Other applications of classifying bird sounds include reducing

plane crashes caused by collisions with birds [30], and audio classification in general.

Sounds that birds make have a grammatical structure; two important levels of organization

in this structure are songs and syllables. Syllables are single distinct utterances by a bird and

serve as the basic building blocks of bird song [25]. A song consists of a series of syllables

arranged in a particular pattern. In this study, our goal is to classify bird species from an

interval of sound (containing one or more syllables), which roughly corresponds to the song

level of organization.

Audio classification systems typically begin by extracting acoustic features from audio sig-

nals. Such features often pertain to individual frames (i.e., very short segments of signal). For

example, one commonly used feature is the spectrum of a signal frame, which describes the

intensity of (a short segment of) the signal as a function of frequency. To apply many standard

algorithms for classification, it is necessary to represent a sound, which contains multiple frames,

using a fixed-length vector. To construct such a fixed-length feature vector to describe a sound

as a whole, a common approach is to first identify interesting frames by segmentation, compute

features for those frames, then take the average of the features over all frames [60, 92, 136]. For

1“Audio classification of bird species: A statistical manifold approach.” Forrest Briggs, Raviv Raich, Xiaoli
Z. Fern. Ninth IEEE International Conference on Data Mining, 2009. ICDM’09.

18

0.0 0.5 1.0

2

4

6

8

10

F
re

q
u
e
n
c
y
 (

k
H

z
)

Time (Seconds)

Figure 3.1: The spectrogram for a one-second portion of a recording of a Swainson’s Thrush.
Darker areas indicate higher energy at the corresponding frequency.

example, in the context of bird species recognition, a recent work by Fagerlund [60] (current

state-of-the-art) averages frame-level features and applies support vector machines (SVMs).

Rather than averaging frame-level features, we represent their distributions using histograms

(bag-of-codewords) defined by a ‘codebook’ of clustered frame-level features. Codebook based

representations have been successfully applied in computer vision [41, 85, 154], and have also

recently achieved success in music genre classification [128].

Our main contribution in this chapter is to establish a theoretical framework that con-

nects nearest-neighbors classifiers using histograms of features, Bayesian risk minimization,

and geodesics on statistical manifolds. In particular,

•	 We propose a probability model for audio, then follow a Bayesian approach to derive the

risk-minimizing classifier for this model. The Bayes classifier is closely approximated by

a nearest-neighbor classifier using Kullback-Leibler (KL) divergence to compare feature

histograms (Sec. 3.3);

•	 We explain that not only do Kullback-Leibler and the related Hellinger distance follow

from a Bayesian probability model, but in the limit of a nearest-neighbor classifier, they

can be thought of as approximations to geodesics using the Fisher information metric on

statistical manifolds of histograms (Sec. 3.4);

•	 We experimentally compare the accuracy of nearest-neighbors using L1, L2, KL and

Hellinger distances, and SVMs, with averages and histograms of frame-level features, on

a data set consisting of 413 thirty-second intervals of sound from six species of bird.

Results indicate that classifiers using histograms of frame-level features outperform those

19

s(1) s(2) s(129) s(256) s(384)...

Frame 1
Frame 2

Figure 3.2: An audio signal is made up of samples, which are divided into overlapping frames.

using averages, and that with a manifold geodesic distance between histograms, nearest

neighbor can outperform SVM. Several classifiers achieve over 90% accuracy (Sec. 3.5).

3.2 Background and Related Work

We review data representation for audio classification, and related work on species identification

from bird sounds.

3.2.1 Data Representation

Our goal is to classify a recording of bird sound as one of several species. A critical initial step

toward this goal is to extract meaningful features to describe an interval of sound. This section

presents our approach to constructing feature vectors to describe such intervals.

3.2.1.1 Basics: Signals and Spectrograms

Audio signals consists of a time-series of samples, which we denote as sptq. It is often easier

to recognize patterns in an audio signal when samples are converted to a frequency domain

spectrogram using the Fast Fourier Transform (FFT) [25], (see Fig. 3.1 for an example spectro-

gram).

To compute a spectrogram, samples in a sound are divided into overlapping frames (Fig.

3.2), each of which contains a fixed number of consecutive samples. The FFT is applied to each

frame to obtain the complex Fourier coe�cients. The magnitudes of these coe�cients are called

the frame’s magnitude spectrum and represent the intensity of the sound during that frame at

di↵erent frequencies. A spectrogram is a plot of the spectrum for each frame in a signal.

20

3.2.1.2 Frame-Level Features

Many features for audio classification describe individual frames of a signal. In this section, we

describe three features that we used in our experiments.

Spectrum Density. The magnitude spectrum of a frame can be normalized to form a prob-

ability distribution. If the magnitude spectrum is p|c1|, . . . , |cl|q, where l is the number of
|c

i

|
∞elements in a spectrum, then the spectrum density is fpiq “ |c

i

| . We can directly use

pfp1q, fp2q, . . . , fplqq as the feature vector describing a frame.

Mean Frequency and Bandwidth. Consider the spectrogram shown in Fig. 3.1; each ver-

tical slice represents the spectrum of one frame of sound. Bird sounds are usually concentrated

at a few frequencies; we can see this phenomenon as horizontal strips in the spectrogram.

This suggests that it is possible to condense the information contained in the spectrum den-

sity into just two values: the mean frequency and the bandwidth of the spectrum. The mean

frequency of a frame indicates the vertical position of the strip, while bandwidth describes
≥

the width of the strip. Specifically, the mean frequency is fc “ xfpxqdx, and bandwidth is
b

≥
BW “ px ´ fcq2fpxqdx.

Mel-Frequency Cepstral Coe�cients. Mel-frequency cepstral coe�cients [45] (MFCCs)

are one of the most widely used features for audio classification. The idea is to first compute

Mel-frequency coe�cients (MFCs), which are like the magnitude spectrum, but in units of mels

rather than Hz (mels correspond more closely with human perception of pitch [150]). MFCs are

computed by applying a collection of triangular filters to the magnitude spectrum; the MFCs

are the response of each filter. The filters are evenly spaced in the mel scale. MFCCs are the

result of applying the discrete cosine transform (DCT) to the log of the MFCs.

3.2.1.3 Aggregating Frame-Level Features

An interval contains a large number of frames, which can be aggregated to produce a single

fixed-length feature vector. A common approach that has been used in syllable classification

is to average frame-level features [60, 92, 136]. However, by averaging, significant information

about the distribution of features is lost, which can be problematic when the distribution of

features in an interval is multimodal. For example, Fig. 3.3(b) shows the distribution of the

21

B
a
n
d
w

id
th

 (
k
H

z
)

B
a
n
d
w

id
th

 (
k
H

z
) 5.0

4.0

3.0

2.0

1.0

0.0
0

(a) Downy Woodpecker, Pecking

5 10

Mean Frequency (kHz)

(b) Downy Woodpecker, Song

0 5 10

Mean Frequency (kHz)

Figure 3.3: 2D histograms of frame mean frequency and bandwidth from two di↵erent intervals
of audio recordings of the Downy Woodpecker.

features (mean-frequency and bandwidth) of the frames from a 30-second recording of a downy

woodpecker (approximated by a 5000-bin histogram). In this case, the distribution is clearly

multimodal and its mean will actually be in an area of relatively low probability, making it

a poor representation for the overall distribution. We observed that such multimodality is

common for bird sound. This observation suggests that aggregation schemes that can capture

multimodality in feature distributions may be more successful than averages (our experimental

results support this idea; Sec. 3.5.6). Inspired by the use of codebooks for image classification

[41, 85, 154], and recent work in music genre classification [128], we consider aggregating frame-

level features by representing their distributions with histograms.

Low-Dimensional Feature Histograms. Given an interval (i.e., a set of frames), each of

which is described by a d-dimensional feature vector, a natural way to represent the interval

is to use the probability distribution of features in this interval. This distribution can be

approximated by a d-dimensional histogram, where dimension i is discretized into ki bins,
±dleading to a total of ki bins. Note that since the total number of bins grows exponentially i“1

with d, this method can only be applied for small values of d. The vector of frequencies for

each histogram bin can be used as a feature vector for classification.

5.0

4.0

3.0

2.0

1.0

0.0

22

Codebook Feature Histograms. The simple binning approach does not work for higher

dimensional frame-level features such as spectra or MFCCs — we would need an infeasible

number of bins to cover these high-dimensional spaces. Instead, we take a ‘codebook’ approach

[128] to constructing histograms for high-dimensional features, which amounts to using non-

uniform bins. A codebook is a collection of k codewords, each of which is a feature vector

that is considered as representative in the feature space. There is one bin associated with each

codeword. Given an interval (i.e., a set of frames each described by a feature vector) and a

codebook, to compute a feature for the interval, assign each frame to its closest codeword, then

count the number of frames assigned to each codeword. The vector of counts, normalized by

dividing by their sum, gives the final feature vector, which is a histogram.

3.2.2 Related Work

Bird species can be classified using features extracted from audio recordings. A common ap-

proach to bird species classification is to identify distinct syllables, then construct feature vectors

for those syllables and apply a standard classifier such as nearest neighbor or support vector

machines to predict the species for each syllable [59, 60, 73, 89, 92, 135, 136]. Song-level species

prediction has also been investigated using Hidden Markov Models [88, 136], Gaussian Mix-

ture Models [136], based on comparisons of syllable-pair histograms [134], or nearest-neighbor

classifiers using a feature constructed by aggregating syllable features [92].

To classify syllables or songs, most prior work relies on segmentation of the input audio

into syllables [136]. As such, the classifier accuracy can be strongly dependent upon accurate

segmentation [59]. A standard approach to segmentation is to compute the energy of each

frame, then adaptively compute a threshold that separates syllables from background noise

[60, 126, 126, 136]. It is di�cult to obtain reliable segmentation using this method in recordings

with low signal-to-noise ratio. In this chapter, we use a simple approach to detect a set of

interesting frames within the signal that correspond to bird sound, and do not require that

they precisely match syllable time-boundaries (Sec. 3.5).

Audio classification in general has been widely studied, with applications to human speech

and music being the most common. Our work is closely related to recent work by Seyerlehner

et al. [128] on music genre identification. They follow a codebook approach to constructing

audio feature histograms (Sec. 3.2.1.3), and use a nearest-neighbor classifier with L1 distance

to classify these features. However, it is not obvious why a nearest-neighbor classifier is ideal

23

K
m

Θ
n

Xm

Figure 3.4: The plate diagram for the Interval-IID model.

for classifying histograms of features, or which distance measures are the best for comparing

histograms. In this chapter, we show that the Bayes optimal classifier for a probability model

for audio is closely related to nearest-neighbor classifiers using histograms of features with

appropriate distance measures.

3.3 Probability Model for Sound

In the following section, we present a theoretical justification for the frame-level feature his-

togram representation through a probability model, namely the Interval-IID model, and show

that the corresponding Bayes risk-minimizing classifier can be approximated by a nearest-

neighbor classifier with KL divergence.

3.3.1 The Interval-IID model

The Interval-IID model follows the graphical representation in Fig. 3.4. The model suggests

that to generate an interval, we first determine its class label m based on the class prior ppmq.
Given m, we then generate an interval-specific parameterization ✓ based on pp✓|mq, which

parameterizes the the frame feature distribution px|✓px|✓q of that interval. Given ✓, we then

generate n independent and identically distritbuted (i.i.d.) frame feature vectors xi based on

px|✓px|✓q (thus the name Interval-IID, i.e., frames are i.i.d. within an interval).

Given an observed interval represented by its collection of frame features X “ rx1, x2, . . . , xns,
using Bayes rule, we write its class-conditional probability as

ª
pX|mpX|mq “ pX|✓pX|✓qpp✓|mqdµp✓q, (3.1)

where ✓ is a parametrization determining the interval-conditional feature distribution px|✓px|✓q
and m denotes the class label. Here we marginalized over the interval-conditional features

probability model pX|✓pX|✓q according to the class conditional histogram parametrization dis-

24

Table 3.1: Summary of Notation

Variable Description
m class label (bird species)
n number of interesting frames in an interval
✓ frame feature histogram parametrization
xi ith test frame feature vector
tx ith training frame feature vector ik

for the k training interval
X frame feature vector collection for an

interval X “ rx1, . . . , xns
Xt frame feature vector collection for the k

kth training interval
ty class label associated with the k

kth training interval
K number of training intervals
Km number of training intervals from class m
P pmq class prior probability
pp✓|mq class-conditional histogram probability
px|✓px|✓q interval-conditional frame-

feature probability
pX|✓pX|✓q interval-conditional features probability
pX|mpX|mq class-conditional features probability

tribution pp✓|mq. As the Interval-IID model name suggests, conditioned on ✓, the frame-level

features are assumed i.i.d., and hence pX|✓pX|✓q can be written as a product of the marginal

distributions of each frame-level feature:

n
π

pX|✓pX|✓q “ px|✓pxi|✓q, (3.2)
i“1

where xi denotes the feature vector of the ith frame. Substituting (3.2) into (3.1), the class

conditional model for the Interval-IID model is given by

ª n
π

pX|mpX|mq “ px|✓pxi|✓qpp✓|mqdµp✓q. (3.3)
i“1

25

log pThe integral w.r.t. ✓ here applies to the product of marginal probabilities. By writing p as e

and replacing the integral with the expectation notation, (3.3) becomes

“ ∞	
n ‰
i“1pX|mpX|mq “ E✓ e log p

x|✓ pxi

|✓q|m .	 (3.4)

To express pX|mpX|mq in (3.4) in terms of the Kullback-Leibler (KL) divergence, start by

introducing the following terms:

n1 ÿ

✓˚ “ arg max log px|✓pxi|✓q,	 (3.5)
✓	 n

i“1
n

H̃p✓˚q “ ´ 1 ÿ
log px|✓pxi|✓˚q,	 (3.6)

n
i“1

n

Dp✓˚ , ✓q “
1 ÿ

log	
px|✓pxi|✓˚q

(3.7)
n px|✓pxi|✓q

i“1

Note that ✓˚ is the maximum-likelihood estimator of ✓. Using (3.5-3.7) and the observation
∞nthat log px|✓pxi|✓q “ ´npH̃ p✓˚q ` Dp✓˚ , ✓qq, we rewrite (3.4) as i“1

“ ‰
pX|mpX|mq “ e ́ nH̃ p✓˚qE✓|m e ́ nDp✓˚ ,✓q .	 (3.8)

By the definition of ✓˚ in (3.5), we have that Dp✓˚ , ✓q • 0 for all ✓ and is zero for ✓ “ ✓˚ .

We proceed with the specific case in which the features are discretized into L non-intersecting

bins defined by the sets Al. Hence, we represent the class-conditional distribution of frame-

level features using histograms. Each frame-level feature xi can fall into one of the histogram
Tbins tA1, . . . , ALu with probability t✓1, . . . , ✓Lu, respectively. The vector ✓ “ r✓1, . . . , ✓Ls is a

∞
probability mass function (or a histogram), i.e., ✓l “ 1 and ✓l • 0. The interval-conditional

probability model for a frame-level feature is given by

L
π

IpxPA
l

qpx|✓px|✓q “ ✓ ,	 (3.9) l
l“1

where Ip¨q is the indicator function which takes the value one if its argument is true and zero

otherwise. We would like to point out that when px|✓p¨|✓q is given by (3.9) and pp✓|mq is

the Dirichlet distribution, then (3.3) becomes the Dirichlet-Multinomial model, which is also

26

referred to as Polya distribution [113] or the Dirichlet compound multinomial (DCM) model

[56]. This model is often used as a topic model in text document classification. One criticism

concerning the choice of Dirichlet prior is the limited capability of representing multimodal

priors [163]. Our experience with bird sounds suggests that the probability model pp✓|mq is

indeed multimodal; as Fig. 3.3 shows, frame-level feature histograms for the same species di↵er

between intervals.

For px|✓px|✓q given by (3.9), we have

✓˚ “ p̂l, (3.10) l

H̃ p✓˚q “ Hp✓˚q (3.11)

Dp✓˚ , ✓q “ Dklp✓˚}✓q, (3.12)

∞n“ 1where p̂l Ipxi P Alq is the lth empirical histogram bin probability estimate based on n i“1
∞Lthe observed feature collection X “ rx1, x2, . . . , xns, Hppq “ ´ l“1 pl log pl is the entropy as-

sociated with a multinomial parameterized by p (the vector of bin probabilities of a histogram),

and
L

ÿ ✓˚
lDklp✓˚}✓q “ ✓l

˚ log
✓ll“1

is the Kullback-Leibler (KL) divergence between a multinomial parameterized by ✓˚ and another

parameterized by ✓. Substituting (3.10)-(3.12) into (3.8), we have

“ ‰
pX|mpX|mq “ e ́ nHpp̂qE✓ e ́ nD

kl

pp̂}✓q|m . (3.13)

This form for pX|mpX|mq acts as the likelihood component in the Bayes risk minimizing classifier

in the following section. Moreover, it highlights the role of the KL divergence in optimal

Bayesian classification for the problem at hand.

27

3.3.2 Bayes Risk Minimizing Classifier

We start with a brief review of the Bayes risk minimization approach to classification [67]. The

probability of error for a given classification rule m̂ pXq is

M
ÿ

Prperrorq “ P pm̂ pXq ‰ m|mqP pmq. (3.14)
m“1

The classification rule that minimizes the error in (3.14) is

m̂ “ arg max pm|X pm|Xq. (3.15)
m

This rule is also referred to as maximum a-posteriori (MAP), as it assigns a decision based

on the highest class probability given the set of observations. Using Bayes rule pm|X pm|Xq “

pX|mpX|mqP pmq{pX pXq and the fact that pX pXq is constant w.r.t. to the class variable m,

yields an equivalent form to the MAP classifier:

m̂ “ arg max log P pmq ` log pX|mpX|mq. (3.16)
m

After replacing the likelihood PX|mpX|mq with (3.13), the MAP classification rule (3.16)

for the Interval-IID model in (3.3) is

m̂ “ arg max log P pmq
m

“ ` ›

˘ ‰
` log E✓ exp ´nDklpp̂›✓q |m . (3.17)

Note that since Hpp̂q in (3.13) is independent of m, it is not incorporated into (3.17). It is

equivalent to replace the maximization with minimization and divide by n

1 ´

“ ‰

¯
m̂ “ arg min ´ log E✓ e ́ nD

kl

pp̂}✓q|m P pmq . (3.18)
m n

With no exact knowledge about P pmq and the PDF pp✓|mq used to compute the expectation

E✓r¨|ms, we propose estimating these quantities from the training data.

28

3.3.3 Training

To describe the training process, we start by explaining the format of the training data. Each
t t tinterval k in the training data contains n training features Xt “ rx1k, x2k, . . . , xnks and is k

tassociated with a class label yk. We assume that K training intervals are available, i.e.,
t t t tpX1, y1q, pX2

t, y2q, . . . , pXt
K q.K , y We denote training variables using the superscript t notation.

To train the classification rule in (3.18), we replace P pmq and Er¨|ms through their sample

estimates

´ K
¯

ÿ´1 p̂kqqm̂ “ arg min log Ipy t “ mqe ́ nD
kl

pp̂}✓ , (3.19) k m n
k“1

twhere k is the interval number, K is the total number of training intervals, yk is the class label

for the kth training interval, and ✓̂pkq is a histogram estimated from the kth training interval

given by

n
ÿp̂kq 1 t✓ “ Ipx P Alq, (3.20) l ik n
i“1

twhere x is the ith feature vector from the kth interval. With a slight abuse of notations, we ik

rewrite (3.19) as

´

K
ÿ

m ¯ 1 ´nD
kl

pp̂}✓̂pk,mqqm̂ “ arg min ´ log e , (3.21)
m n

k“1

where the ✓̂pk,mq’s are the sorted version of the ✓̂pkqs from class m such that Dklpp̂}✓̂p1,mqq §
Dklpp̂}✓̂p2,mqq § . . . Dklpp̂}✓̂pK

m

,mqq, and Km is the number of training intervals for the mth

class. Using the ordered training class histograms, we reorganize (3.21) as

m̂ “ arg min Dklpp̂}✓̂p1,mqq (3.22)
m

´

ÿ

n
m ¯ 1 ´npD

kl

pp̂}✓̂pi,mqq´D
kl

pp̂}✓̂p1,mqqq´ log 1 ` e .
n

i“2

We refer to (3.22) as the Interval-IID MAP classifier. While equivalent to (3.21), (3.22) provides

insight into the relation between Bayes risk-minimization, nearest-neighbor classifiers, and man-

29

ifold geodesics. Identifying the training intervals with their feature histograms, and the test

interval with its feature histogram, the first term on the RHS of (3.22) is a KL divergence

based nearest neighbor rule in histogram space. Note that if the KL distance to points other

than the first nearest neighbor Dklpp̂}✓̂pi,mqq is su�ciently larger than the distance to the first

nearest neighbor Dklpp̂}✓̂p1,mqq then the second term on the RHS of (3.22) becomes negligible,

and (3.22) is simply a nearest neighbor classifier using KL divergence.

3.4 Nearest Neighbors on Statistical Manifolds

The connection between optimal Bayes classification and the histogram KL nearest neighbor

rule leads us to extend the approach to nearest neighbor classification on histograms. Note that

a collection of probability models (i.e, histograms) can be regarded as a manifold. Denote a

model by ppX|✓q or in short by pp¨|✓q. The collection of models given by

!)

M “ pp¨|✓q | ✓ P ⇥ P Rd , (3.23)

is a d-dimensional statistical manifold if there exist a one-to-one smooth mapping between ✓ to

pp¨|✓q. In the geometric approach to statistical models [87], one can measure the geodesic dis-

tance between two histograms by using the Fisher information metric (FIM) as the Riemannian

metric

ª l b
DF ppp¨|✓q, pp¨|✓1qq “ min ✓9ptqT Ip✓ptqq✓9ptqdt, (3.24)

✓p¨q, 0
✓p0q“✓,
✓plq“✓1

where Ip✓q is the Fisher information matrix given by

” ıd log ppx|✓q d log ppx|✓qIij p✓q “ E . (3.25)
d✓i d✓j

The FIM is considered a natural metric for statistical manifolds as it reflect the capability to

discriminate between probability models from their samples.

To generalize the nearest neighbor approach discussed in the previous section in the context

of statistical manifolds, we consider a geodesic nearest neighbor rule using DF ppp¨|✓q, pp¨|✓1qq
defined in (3.24). As the precise form of the manifold is unavailable, an exact computation of

30

the geodesic distance DF pp, p1q is impossible. Since the nearest neighbor approach prompts us

to calculate short geodesic distances, local approximations of DF pp, p1q can be used instead.
a

For two close probability models p Ñ p1 it is known [87] that 2Dklpp}p1q Ñ DF pp, p1q. The

KL divergence provides a computable approximation to the FIM manifold geodesic distance.

Note that other approximations for the FIM are available (e.g., certain Ali-Silvey diver-

gences, and specifically, Hellinger divergence). In this chapter, we use the Hellinger divergence

given by

ÿ

DH pp, qq2 “ p?
pi ´

?
qiq2 , (3.26)

which is a metric as opposed to the KL divergence. The approximation of the FIM using

Hellinger distance for close models is 2DHpp, p1q Ñ DF pp, p1q [87].

For the purpose of comparison, we experimentally evaluate nearest neighbor classifiers using

L1 and L2 distances as well as KL and Hellinger. L2 is the standard Euclidean distance, which

is widely used, but not theoretically justified for the comparison of probability distributions.

L1 is fairly common for comparing probability distributions. It is a member of the Ali-Silvey

family, but due to non-di↵erentiability, it is not an approximation to the FIM. However, it is
1 2related to Hellinger by the inequality, DHpp, qq § DL1pp, qq § DHpp, qq [44]. This relation 2

between L1 and Hellinger hints at why classifiers using these distances achieve similar results

(Sec. 3.5.6).

3.5 Experiments

In this section, we describe the experimental setup used to measure the accuracy of the proposed

methods for bird species classification, and to compare with SVMs [60]. We consider various

frame-level features (mean frequency and bandwidth, MFCCs, and spectral density), interval-

level features (averages vs. histograms), and metrics for nearest-neighbor classification (L1,

L2, KL, and Hellinger). We also empirically verify that a nearest-neighbor classifier using

Kullback-Leibler closely approximates the Interval-IID MAP classifier (3.22) as suggested in

Sec. 3.3.

31

3.5.1 Data

We have 1.13 GB of recordings from the Cornell Macaulay library, of 6 species: Black Throated

Blue Warbler, Hermit Warbler, Downy Woodpecker, Swainson’s Thrush, Western Tanager, and

Winter Wren. All of these recordings are at least 30 seconds long, and most are less than 10

minutes. We divide each recording into intervals of 30 seconds, resulting in 413 intervals. Our

goal is to classify these intervals according to species.

The recordings were collected over several decades, mainly in the western United States.

Most are made using a directional microphone in the field. The amount of noise in the recordings

varies widely. In addition to static and wind, some recordings contain cars sounds, human

speech, and other non-bird sounds. We manually removed most portions of sound with human

voices. Although each recording is labeled with just one species, some recordings contain

multiple birds, sometimes of di↵erent species; usually the loudest bird present corresponds to

the label for the recording. The sampling frequency for all recordings is 44.1 kHz. The audio

data is stored as mono-channel WAV files.

3.5.2 Preprocessing

Section 3.2.1 covers the process of converting a sequence of samples from an audio interval

into interval-level features. We proceed by further elaborating on the specific details of our

experimental setup.

When dividing a signal into frames, we use 256 samples per frame, and successive frames

overlap by 50%. To reduce noise and decrease processing time in later stages, we discard the

lowest 8 and highest 64 elements of each frame’s spectrum, leaving 56 elements from the original

128 (equivalent to removing all sound below 1.378 kHz and above 10.852 kHz).

Instead of syllables, we detect a subset of interesting frames (which are more likely to contain

bird sound) in an interval. To find these interesting frames, we compute the total magnitude
∞

of each frame, |ci|, and retain only the 10% of frames with highest total magnitude in all

subsequent calculations. Note that the total magnitude is similar to, but not the same as the

energy of a frame.2

Our implementation of MFCCs (Sec. 3.2.1.2), is based on the description provided by

2Parseval’s theorem states that the energy of a frame can be computed from its spectrum via the formula
ÿ

E “ |c
i

|2 , were c
i is the ith FFT coe�cient.

32

Ganchev et al. [68] of the MFCCs computed in the Cambridge Hidden Markov Models Toolkit

(for MATLAB), known as HTK [162]. We use 24 filters,3 resulting in 24 MFCs, then take only

the first 12 elements of the output of the DCT as the frame-level feature.

For constructing 2D histograms, we divide the range of values for mean frequency and

bandwidth into square bins 100 Hz wide, with 100 bins on the mean frequency axis, and 50

bins for the bandwidth axis (for a total of 50 ˆ 100 “ 5000 bins, covering a range of 0 Hz to

10,000 Hz for fc and 0 Hz to 5000 Hz for BW). There is one element in the feature vector for

each histogram bin, so this representation results in a 5000-dimensional feature vector.4

3.5.3 Clustering for Codebooks

For constructing codebooks, we apply the k-means++ clustering algorithm [5] to the frame-

level features from a training data set. Note that there are several hundred-thousand frames to

cluster in our data set. To speed-up codebook construction, we follow a two-staged clustering

proceedure suggested by Seyerlehner et al. [128]. In particular, we first cluster features within

each 30-second interval, then cluster the resulting cluster centers to obtain the final codewords.

In the first stage of clustering, the feature vectors are either the spectrum density, or MFCCs

for the interesting frames. In the second stage, the examples are the cluster centers from the

first stage. We use k “ 10 clusters for the first stage and k “ 100 for the second. Thus, the final

interval-level features constructed using this method are 100-dimensional. In our preliminary

experiments, this approach to clustering yielded an order-of-magnitude speedup over clustering

all frame-level features at once, because the first stage of clustering does not need to be repeated

in each fold of cross-validation.

3.5.4 Classifiers

There are many combinations of frame-level features and methods of aggregating them. The

combinations we consider in this study are: averages of fc and BW , spectrum density, and

3In our implementation, the filters span a range of frequencies from f
low “ 1000Hz to f

high “ 22050Hz.
Following an exact implementation of the filters described by Ganchev et al. [68], we got aliased triangle filters
because some were narrower than a single spectrum bin, which caused artifacts in the MFCs. To fix this problem,
we numerically integrate the triangle filter function over the range of each bin. Many other implementations of
MFCCs work with lower sampling frequencies [68], so we suspect this problem is related to working with sound
sampled at 44.1 kHz, as well as our choice of values for f

low and f
high

.
4We apply Laplace smoothing to the histogram estimation by starting with a count of 1 for each bin.

33

MFCCs, 2D histograms of fc and BW , and codebook histograms of spectrum density and

MFCCs.

Using the above features extracted from the data described in Sec. 3.5.1, we compare several

classification algorithms: nearest neighbor with L1, L2, KL and Hellinger distances, and the

Interval-IID MAP classifier proposed in Sec. 3.3.2 (3.22), as well as support vector machines.

Of these classifiers, Interval-IID Map, KL and Hellinger are our proposed methods, and the

others are included for comparison.

3.5.4.1 Support Vector Machines

Support vector machines [38] (SVMs) are a family of algorithms for supervised classification that

find a linear decision boundary by maximizing the margin between two classes. In cases where

linear classification is insu�cient, the kernel trick is applied to non-linearly project features

into a higher dimensional space where linear separability is possible. The implementation

of SVMs that we used is WLSVM [54], which integrates LIBSVM [26] into the Weka [155]

machine learning system. Following Fagerlund [60], and the recommendations of Hsu, Chang

and Lin [79], we use a radial basis function kernel, and optimize the SVM parameter C and

the kernel parameter �, by grid search. We evaluate the SVM at all combinations of C and �

in t10 ́ 1 , 100 , 101 , 102u, and report the best accuracy achieved with any set of parameters. To

handle multiple classes (in our case, species), LIBSVM use the one-against-one voting scheme

[78].

3.5.5 Cross Validation and Multiple Trials

To measure the accuracy of the proposed classifiers, we use them to predict the species in each

of 413 thirty-second intervals of sound. Each classifier is trained using all of the intervals that do

not come from the same recording as the interval being classified (the data set consists of longer

recordings that are split into intervals). We use this setup so the classifier must identify species

without already having example recordings of the individual bird being classified. Fagerlund

[60] used a similar ‘individual independent’ setup for cross-validation.

Classifiers that use a codebook to construct feature histograms depend on a randomized

clustering algorithm. To account for the randomness, we ran five trials with di↵erent random

seeds, and report average accuracy, ˘ average deviation.

34

3.5.6 Results

Table 3.2 lists the accuracy of each classifier on the species recognition problem. We make the

following key observations.

•	 Regardless of which frame-level features we use, histograms of features achieved better ac-

curacy than averages. One possible explanation of this result is that feature distributions

may be multimodal (Fig. 3.3(b)), so the mean alone may not be enough to discriminate

between distributions from di↵erent species.

•	 Using the 2D histogram of fc and BW, the Interval-IID MAP classifier (3.22) produced

identical results to a nearest-neighbor classifier with KL divergence. This result confirms

our theoretical argument that a nearest neighbor classifier using KL divergence is a close

approximation to the Interval-IID MAP classifier. Accordingly, we recommend using the

more e�cient nearest neighbor with KL as opposed to (3.22), when audio data is believed

to be generated as in the Interval-IID model.

•	 Comparing di↵erent distance functions when using histograms, we observe that L1, Hellinger

and KL were generally more accurate than using L2, with the performance of Hellinger

being the most robust across di↵erent settings. Interestingly, while L1 is not an approx-

imation to the FIM, its performance is highly competitive to KL and Hellinger. For

histograms of spectrum density, L1 slightly outperformed Hellinger (although not statis-

tically significantly). This is possibly due to the close relationship between L1, Hellinger

and KL, as explained in Sec. 4. Note that MFCCs are essentially a compressed version of

the spectrum (from 56 elements to 12), so it is not surprising that classifiers using them

are slightly less accurate than those using spectrum density.

•	 Despite their relative simplicity, classifiers using 2D histograms of mean frequency and

bandwidth provide remarkably accurate predictions. Being able to visualize a 2D his-

togram as an image provides insight into the structure of bird sound (for example, we can

see that interval feature histograms may be multimodal).

•	 Finally, we note that the proposed methods achieved accuracy similar to or better than

SVMs. In particular, using codebook histograms of MFCCs, SVMs are slightly more

accurate than a nearest neighbor classifier with Hellinger, although the di↵erence is not

statistically significant. On codebook histograms of spectrum density, nearest-neighbor

35

classifiers using statistical divergence measures (i.e. L1, Kullback-Leibler and Hellinger)

outperform SVM. We want to emphasize that unlike SVMs, which require significant

parameter tuning, the proposed methods also o↵er additional advantages in terms of

their simplicity and scalability, making them more usable in practice.

3.6 Conclusion & Future Work

In this chapter, we addressed the problem of bird species classification from audio recordings.

Following a Bayesian approach to classification, we introduced the interval-IID model to describe

the distribution of feature vectors within an interval consisting of frames, and derived the

corresponding MAP classifier. The MAP classifier suggests aggregating features into histograms

and using KL nearest neighbor to classify. This connection to nearest neighbor classification

on statistical manifolds led us to extended the classifier by proposing di↵erent metrics (e.g.,

Hellinger). To use the MAP classifier with high-dimensional frame-level features, we employ

codebook histograms.

Our study suggests that 1) using histograms of frame-level features in an audio classifier

can produce better results than using averaged frame-level features 2) nearest-neighbor clas-

sifiers using Kullback-Leibler and Hellinger distance to compare feature histograms results are

competive with state-of-the-art method such as SVM and 3) metrics appropriate for histograms

such as Hellinger, KL, and L1 perform better than the Euclidean L2 metric.

The classifiers in this study make predictions from intervals based on the collection of frames

within the interval. A common alternative is to instead focus on individual syllables. We are

working on an experimental survey of methods for classifying bird species from syllables, as

well as probability models that are specialized for this purpose.

The experiments and algorithms presented here are a preliminary step toward analyzing a

large (terabyte scale) data set of bird sounds that our collaborators collected in field conditions,

using an array of omnidirectional microphones. We intend to apply algorithms for bird species

classification to these recordings to extract information about patterns of bird activity at an

unprecedented spatial and temporal resolution.

36

Table 3.2: The accuracy of each classifier in predicting bird species based on 413 thirty-second
intervals of sound. NN means nearest neighbor. The values listed for classifiers using a codebook
are average accuracy over 5 trials, ˘ average deviation. Our proposed methods are listed in
bold.

Frame Feature Representation Classifier % correct
fc, BW Average NN-L1 42.85
fc, BW Average NN-L2 42.85
MFCCs Average NN-L1 81.11
MFCCs Average NN-L2 81.11
MFCCs Average SVM 84.50
Spectrum Density Average NN-L1 79.42
Spectrum Density Average NN-L2 81.35
Spectrum Density Average SVM 84.75
fc, BW 2D Histogram Interval-IID MAP 87.40
fc, BW 2D Histogram NN-Kullback-Leibler 87.40
fc, BW 2D Histogram NN-Hellinger 88.13
fc, BW 2D Histogram NN-L1 86.44
fc, BW 2D Histogram NN-L2 83.05
MFCCs Codebook NN-L1 84.41 ˘ .89
MFCCs Codebook NN-L2 83.49 ˘ .62
MFCCs Codebook NN-Kullback-Leibler 85.42 ˘ .62
MFCCs Codebook NN-Hellinger 86.59 ˘ .50
MFCCs Codebook SVM 87.17 ˘ .58
Spectrum Density Codebook NN-L1 92.54 ˘ .44
Spectrum Density Codebook NN-L2 88.28 ˘ .99
Spectrum Density Codebook NN-Kullback-Leibler 90.70 ˘ .40
Spectrum Density Codebook NN-Hellinger 92.10 ˘ .27
Spectrum Density Codebook SVM 88.14 ˘ .58

37

Chapter 4: Acoustic Classification of Multiple Simultaneous Bird

Species: a Multi-Instance Multi-Label Approach1

4.1 Introduction

Current and projected declines in biodiversity as a function of habitat loss [6] and climate

change [116] necessitate the development of e�cient and accurate estimates of species’ diversity,

habitats, and phenology. Birds have been used widely as indicators of biodiversity because they

provide critical ecosystem services, respond rapidly to change, are relatively easy to detect, and

may reflect changes at lower trophic levels (e.g., insects, plants) [125]. Birds have thus been

proposed as “canaries in the coal mine” with respect to anthropogenic environmental changes

at both local and global scales.

Unfortunately, collection of data on trends in birds populations has been plagued by prob-

lems of poor sample representation in remote regions, observer bias [10], imperfect detectability

[106], and particularly the prohibitive costs of sampling over large spatial and temporal scales

at su�ciently fine resolutions [123]. These problems could be ameliorated to some degree with

the use of automated acoustic surveys. However, the complexity of bird song, the noise present

in most habitats, and the simultaneous song that occurs in many bird communities [104, 105]

make automated species identification a challenging task.

Many authors have proposed methods for acoustic bird species classification, but more

work is needed to address the problem of identifying all species present in noisy recordings

containing multiple simultaneously vocalizing birds [124]. It is common to classify species

under the assumption that there is a single bird species present in a recording [60, 88, 111].

This assumption is reasonable for audio collected with hand-held directional microphones aimed

at a target individual [33, 142, 149], or for audio collected from birds in captivity [3], but not for

audio collected by unattended omnidirectional microphones [37]. A related problem is detection

of one or a few specific species [8, 37] (possibly amidst other sources of noise, including other

birds), or detection of birds that make a particular type of call (e.g., tonal sounds [83]).
1“Acoustic Classification of Multiple Simultaneous Bird Species: a Multi-Instance Multi-Label Approach.”

Forrest Briggs, Balaji Lakshminarayanan, Lawrence Neal, Xiaoli Z. Fern, Raviv Raich, Sarah J.K. Hadley, Adam
S. Hadley, Matthew G. Betts. The Journal of the Acoustical Society of America, 2012 volume 131(6), p4640-50.

38

Unlike prior work in automatic bird sound detection and classification, we consider the

following problem: given an audio recording (e.g., ten-seconds), predict the set of all species

present in that recording.

We formulate this problem in the multi-instance multi-label (MIML) framework for su-

pervised classification [171]. The main idea of MIML is that the objects to be classified are

represented as a collection of parts (referred to as a “bag-of-instances”), and associated with

multiple class labels. In this application, the objects to be classified are recordings, the parts

are segments of the spectrogram corresponding to syllables of bird sound described by a feature

vector of acoustic properties, and the labels are the species present. All supervised classification

algorithms require some labeled training data to build a predictive model. A major advantage of

the MIML formulation is that the only training data required is a list of the species present in a

recording, rather than a detailed annotation of each segment, or training recordings containing

only a single species (which is required in most prior work) [30, 92, 126, 136]. For record-

ings containing multiple simultaneously vocalizing species of bird, it is less labor intensive to

construct the former type of labels.

In order to apply MIML classification algorithms, it is necessary to transform the data from

its original representation into a suitable bag-of-instances representation. An algorithm to do

this is called a “bag generator”. In prior work, MIML bag generators for images and text have

been proposed, but MIML has not previously been applied to audio. We propose a MIML bag

generator for audio, which makes it possible to apply existing MIML classifiers to the species

set prediction problem.

We experimentally evaluate MIML acoustic species classification on 548 ten-second record-

ings containing 13 species. These experiments demonstrate that our methods accurately predict

the set of species present in noisy, multi-bird recordings collected in the field by unattended

omnidirectional microphones.

4.2 Background & Related Work

In this section, we discuss segmentation, features and classifiers used in prior work on acoustic

species classification. Then we review the multi-instance multi-label framework for supervised

classification.

39

4.2.1 Acoustic Bird Species Classification

Brandes provides a survey of methods for acoustic bird species classification [124]. There are

three main stages in most bird species classification systems: segmentation, feature construc-

tion, and supervised classification.

A syllable is a single short utterance by a bird, which may be a call, or part of a song.

Methods for acoustic classification of bird species can broadly be grouped into those that

classify individual syllables, and those that classify recordings containing multiple syllables.

In both cases, segmenting audio into distinct syllables is a crucial step. The accuracy of any

classifier that relies on segmentation is sensitive to the quality of the segmentation [59].

Most algorithms for segmentation operate in the time domain, and are based on energy. It

is common to compute the energy of the signal in each frame, then consider intervals with high

energy to be syllables [60, 84, 126, 136].

Energy-based, time-domain segmentation is not well suited for audio with high-noise or mul-

tiple simultaneous birds. Energy-based segmentation accuracy degrades in high-noise record-

ings (e.g., from wind, stream noise, or motor vehicles), and also cannot di↵erentiate other loud

non-bird sounds. Vocalizations from multiple birds may overlap in time, making time-domain

segmentation ine↵ective. Further work is needed to extract measurements from syllables that

overlap in time but not frequency, and in high-noise environments [124].

There has been some prior work on 2D time-frequency segmentation, which is better suited

to audio with multiple simultaneous birds. Mellinger and Bradbury [112] used 2D segmentation

in the form of bounding boxes for vocalizations of marine mammals, but this algorithm requires

a human to provide a rough box first. Brandes divides the frequency range of a recording into

several automatically determined bands, then applies a 2D energy threshold within each band

[13]. We showed in earlier work that a random forest [14] classifier applied to each pixel of

a spectrogram achieves higher segmentation accuracy than a 2D energy threshold on field-

collected recordings [114].

After running a segmentation algorithm to identify syllables, systems for bird species recog-

nition extract acoustic features to characterize the syllables in a way that can be used with

machine learning algorithms for classification. Linear Predictive Coding (LPC) [30, 84, 111]

and Mel-frequency cepstral coe�cients (MFCCs) [45, 150], are common in analysis of speech and

music and are amongst the most widely used features to describe bird sound [23, 60, 89, 92].

Features such as LPCs and MFCCs describe individual frames of sound; to characterize a

40

syllable as a whole, a common approach is to average the frame-level features [60, 92, 136].

Other features that have been used to characterize syllables include spectral peak tracking

[73, 74, 136], analysis-by-synthesis/overlap-add [30], wavelets [126], and ‘descriptive parame-

ters’ such as bandwidth, zero-crossing rate and spectral flux [60, 136].

The algorithms that have been applied to acoustic bird species classification either at the

syllable or interval level (or both) all follow the standard single-instance, single-label framework

(SISL) in machine learning, i.e. they associate a single feature vector with a single class label.

SISL algorithms that have been applied to bird species classification include nearest-neighbor

and distance based classifiers [30, 73, 92, 136], neural nets [23, 84, 111, 126], self-organizing maps

[126], decision trees [149], support vector machines [60], hidden Markov models [13, 88, 136, 142],

and Gaussian mixture models [136]. We elaborate on the di↵erences between SISL and MIML

in the following section.

4.2.2 Multi-Instance Multi-Label Learning

In traditional supervised classification, we are given a collection of training examples, each of

which consists of a feature vector and a class label. The goal is to learn from the training

examples how to assign a class label to a previously unseen feature vector. However, in some

applications, it is natural for the objects of interest to be represented as a collection of parts

(referred to as a bag-of-instances), where each part is described by a fixed-length feature vector.

Multi-instance learning [49] incorporates such structure into the classification model. For ex-

ample, in multi-instance image classification, an image is a bag, and the instances are features

describing pixels, patches or regions [172]; in multi-instance text classification, a document

is a bag, and the instances correspond to paragraphs or sub-windows of text [160, 171]. In

this study, a short audio recording is a bag, and the instances correspond to 2D segments in

the time-frequency domain described by a vector of their acoustic properties (these segments

roughly correspond to syllables).

The original formulation of multi-instance learning [49] concerns problems where bags have

single binary labels. Zhou [170] and Foulds and Frank [64] provide surveys on multi-instance

learning, mainly focussing on the binary label case. Recently, Zhou and Zhang [171] proposed

multi-instance multi-label (MIML) learning, where there a multiple classes and bags have a set

of multiple labels.

Numerous algorithms for MIML have been proposed, and achieve superior accuracy in

41

image and text domains to prior approaches that do not model the multi-instance or multi-

label aspects of a problem explicitly [97, 132, 165, 172]. Practical applications include labeling

anatomical structures in images of Drosophila embryogenesis [97], and predicting tags for web

pages on a social bookmarking site [132].

MIML has not previously been applied to audio, but Mandel and Ellis [108] recently applied

multi-instance learning to classify music clips. Our proposed representation is at a di↵erent

temporal scale, and is designed for bird sound rather than music.

A major advantage of MIML is that it is often easier or less costly to obtain labels at the bag-

level. To the best of our knowledge, Brandes [13] is the only prior author to address acoustic

species classification with multiple simultaneous species. In his work, the goal is to classify

individual bird, frog, or cricket calls; this requires training data in the form of individually

labeled calls. In contrast, because we use a MIML formulation, we predict a set of species

present rather than the species for each vocalization. However, we only require a list of the

species in each recording (bag) for training data.

The MIML framework is formalized as follows: Suppose we have a feature space X (usu-

ally X “ Rd), and set of labels Y “ t1, . . . , cu. In SISL learning, the training dataset is

px1, y1q, . . . , pxn, ynq, where xi P X and yi P Y. A SISL classifier is a function f : X Ñ Y, i.e. it

maps feature vectors to single class labels. In MIML, the dataset is pX1, Y1q, . . . , pXm, Ymq,
where Xi “ txi,1, . . . ,xi,n

i

u is a bag of ni instances (i.e. feature vectors), and Yi Ñ Y is a set of

labels. A bag can be considered a subset of the feature space, i.e. Xi Ä X . A MIML classifier

is a function f : 2X Ñ 2Y , i.e. it maps sets of feature vectors (bags) to sets of labels.

4.3 Methods

We formulate the species identification problem in the MIML framework as follows: audio

recordings are bags, segments in the spectrogram are instances, and the set of species in a

recording are a bag’s label set. We propose a bag generator to convert an audio recording

into a bag-of-instances representation, then use a MIML classifier to predict the set of species

present in the recording. The bag generator transforms an audio signal into a spectrogram,

applies noise reduction, segments the spectrogram into 2D regions, then associates each region

with a feature vector. After applying the bag generator, any MIML classifier can be used.

42

0 10
0

8

Time (seconds)

F
re

q
u

e
n

c
y
 (

k
H

z
)

(a) Before noise reduction

0 10
0

8

Time (seconds)

F
re

q
u

e
n

c
y
 (

k
H

z
)

(b) After noise reduction

Figure 4.1: An example showing noise reduction in a recording wind and stream noise.

4.3.1 Bag Generator

This section describes the noise reduction, segmentation, and features in our proposed bag

generator.

4.3.1.1 Preprocessing & Noise Reduction

Starting from a ten-second recording sampled at 16 kHz, we transform it into a spectrogram

by dividing the input signal into frames of 512 samples with 50% overlap, then computing the

256-element magnitude spectrum of each frame using the Fast Fourier Transform (FFT) with a

Hamming window. We will denote the elements of the spectrogram as Spt, fq, where t indexes

a frame and f corresponds to frequency (note f indexes an element of the discrete spectrum,

i.e. f P t1, 2, . . . , fmaxu where fmax “ 256; it is not in units of Hz).

To reduce noise and improve the contrast of bird sound, we first normalize Spt, fq to the

range r0, 1s, then compute S1pt, fq “
a

Spt, fq for all elements of the spectrogram. Then we

43

apply two iterations of a whitening filter. The main idea is to estimate the frequency profile

of noise from low energy frames, and then attenuate each row of the spectrogram according to

this profile. The filter is:

1. Compute a quantity similar to the energy of each frame t, as Eptq “ 1
f
max

∞f
max

f“1 S1pt, fq2.
Sort the frames by E. Let the noise frames N “ tt : frame t is one of the lowest 20%

energy framesu.

2. For each frequency f P t1, . . . , fmaxu, compute P pfq “
a

✏ ` ∞

tPN Spt, fq2, where ✏ “
10´10 (we add ✏ to avoid dividing by 0).

3. For all pt, fq compute the noised reduced spectrogram as S2pt, fq “ S1pt, fq{P pfq.

We will refer to the spectrogram resulting from two iterations of this process as Ŝpt, fq.
Figure 4.1 shows a spectrogram before and after noise reduction.

There are some di↵erences in how we compute Ŝpt, fq for segmentation and feature con-

struction; for segmentation, we apply the whitening filter once, define P pfq as 1
|N |

∞

tPN Spt, fq,
and do not apply the square root in S1.

4.3.1.2 Segmentation

We use 2D time-frequency segmentation to separate syllables which may overlap in time. Rather

than a 2D energy threshold [13], we use a supervised SISL classifier to label each pixel in a

spectrogram as bird sound or noise [114]. To do so, we associate each pixel in a spectrogram

with a feature vector that describes a rectangular patch surrounding it. So for a particular

pt, fq in the spectrogram, we compute its feature vector xpt, fq as:

• The spectrum-bin index f .

• The value of the elements of the spectrogram in a rectangle surrounding pt, fq, i.e. Ŝpi, jq, i P
rt ´ tw, t ` tws, j P rf ´ fw, f ` fws, where in our setup tw “ 6 and fw “ 12 (these values

are manually tuned for the sampling frequency and window size used in our study).

• The variance of Ŝ in the same rectangle as above.

In order to train the classifier used for segmentation, we manually annotate a collection of

spectrograms as examples of correct segmentation (Fig. 4.2). The mask Mpt, fq for spectrogram

44

0 15
0

8

Time (seconds)

F
re

q
u

e
n

c
y
 (

k
H

z
)

(a) A spectrogram in the segmentation training set.

0 15
0

8

Time (seconds)

F
re

q
u

e
n

c
y
 (

k
H

z
)

(b) The corresponding manually generated time-frequency
mask.

Figure 4.2: An example of the manual segmentation that is used to train our supervised seg-
mentation algorithm.

45

Ŝpt, fq is defined as Mpt, fq “ 0 (white) if element pt, fq is background noise and Mpt, fq “ 1

(black) if it is bird sound. Recall that a SISL classifier (such as a random forest) takes as training

data a list of pairs px1, y1q, . . . , pxn, ynq. We form these pairs by selecting 500,000 points pti, fiq
at random within the manually annotated spectrograms. These points are sampled so there

are 90% negative examples and 10% positive examples. For each point we compute the feature

vector as described above, xi “ xpti, fiq. The label for each training example is yi “ Mpti, fiq
(i.e. we have a two-class problem with labels 0 and 1). Then we train a random forest classifier

[14] with 40 trees on this data (a random forest is an ensemble of decision trees).

Given an input x, a random forest generates a probability P py|xq for the instance to belong

to each class y, which is the fraction of trees in the forest that vote for label y given input x.

We use the random forest to compute the probability for each pixel pt, fq in the spectrogram

to be bird sound, i.e. P py “ 1|xpt, fqq. Then we smooth these probabilities by convolving with

a Gaussian kernel to obtain gpt, fq “ P py “ 1|xpt, fqq ˙ K, where K is Gaussian kernel with

� “ 3 over a 17 ˆ 17 box. Finally, we obtain a predicted segmentation mask Mpt, fq for a

spectrogram by applying a threshold of ✓ “ 0.2 to gpt, fq (chosen by visual inspection of results

with varying ✓). Figure 4.3b shows an example of the predicted segmentation for one recording.

The random forest classifier discussed in this section is only used for segmentation; it is not

directly involved in predicting the set of species in a recording (a MIML classifier does that

instead). The collection of manually annotated spectrograms used to train the segmentation

algorithm is disjoint from recordings for which we predict sets of species, i.e., training and

testing data are separate.

4.3.1.3 Features

To compute features for each segment, we first crop the mask and spectrogram to contain just

that segment. Figure 4.3 shows how one segment is cropped. Figure 4.3a shows the original

spectrogram, and Fig. 4.3b shows the binary mask produced by our segmentation algorithm.

For the sake of illustration, we highlight one segment. Figures 4.3c and 4.3d show a cropped

image of the mask and spectrogram based on the highlighted segment.

The mask and spectrogram are cropped to the minimum number of frames to contain

the whole segment in time, but not cropped at all in frequency. Note in Fig. 4.3b, several

other segments overlap in time with the highlighted segment. These overlapping segments are

removed from the cropped mask (Fig. 4.3c). The portions of the cropped spectrogram that are

46

Figure 4.3: Extracting a syllable from the segmentation results. (a) The original spectrogram,
(b) The binary mask generated by our segmentation algorithm. The highlighted segment will
be further processed in this example. Note that several other segments overlap in time. (c)
A cropped mask of the highlighted segment. (d) The masked and cropped spectrogram corre-
sponding to the highlighted segment.

47

outside the mask are set to 0 (Fig. 4.3d). The purpose of these two changes is to eliminate any

contribution in the segment features from other segments that overlap in time, or noise which

is outside of the segment mask.

We use the following notation in describing the segment features: Let Mcpt, fq be the

cropped, binary mask for a segment and let Ŝcpt, fq be the cropped, noise-reduced spectrogram.

Note that t ranges from 1 to the duration of the segment in frames, T .

Three types of features describe a segment: mask descriptors, profile statistics, and his-

togram of gradients (HOG) [42]. We depart from more commonly used audio features such as

MFCCs because we are using 2D segmentation. The shape of the segment alone provides a lot

of useful information, which the mask-based features capture. The profile statistics are similar

to features that have previously been used for bioacoustics in noisy environments based on 2D

segmentation [112].

Mask Descriptors The first set of features that we compute for a segment are based on only

the mask (i.e. not the contents of the spectrogram), and describe the shape of the segment.

These features are:

• min-frequency = mintf : Mcpt, fq “ 1u

• max-frequency = maxtf : Mcpt, fq “ 1u

• bandwidth = max-frequency ´ min-frequency

• duration = T

• area =
∞

t,f Mcpt, fq

• perimeter = 1
2ˆ(# of pixels in Mc such that at least one pixel in the surrounding 3 ˆ 3

box is 1 and at least one pixel is 0)

• non-compactness = perimeter2{area

• rectangularity = area / (bandwidth ˆ duration)

48

Profile Statistics The next set of features that describe segments are based on statistical

properties of the time and frequency profiles of the segment. To compute the time or frequency

profile, we sum the columns or rows of the spectrogram. The time profile is ptptq “ ∞

f Ŝcpt, fq
and the frequency profile is pf pfq “ ∞

t Ŝcpt, fq. We normalize the profiles to sum to 1, so they

can be interpreted as probability mass functions. The normalized profile densities are p̂t and

p̂f . Two features measure the uniformity of these densities according the Gini index [69]:

• freq-gini = 1 ´ ∞

f p̂f pfq2

• time-gini = 1 ´ ∞

t p̂tptq2

We obtain several more features by computing the kth central moments of the time and

frequency profiles. However, because each segment may have a di↵erent duration, we compute

these features in a re-scaled coordinate system where time goes from 0 to 1 over the duration

of the segment, and frequency goes from 0 to 1.

• freq-mean = µf “ ∞f
max

f“1 p̂f pfq f
f
max

• freq-variance =
∞f

max

f“1 p̂f pfqpµf ´ f
f
max

q2

• freq-skewness =
∞f

max

f“1 p̂f pfqpµf ´ f
f
max

q3

• freq-kurtosis =
∞f

max

f“1 p̂f pfqpµf ´ f
f
max

q4

• time-mean = µt “ ∞T
t“1 p̂tptq t

T

• time-variance =
∞T

t“1 p̂tptqpµt ´ t
T q2

• time-skewness =
∞T

t“1 p̂tptqpµt ´ t
T q3

• time-kurtosis =
∞T

t“1 p̂tptqpµt ´ t
T q4

In the same relative coordinate system, we compute the maxima of the time and frequency

profiles:

• freq-max = pargmax p̂f pfqq{fmax

• time-max = pargmax p̂tptqq{T

49

We also include the mean and standard deviation of the spectrogram within the masked

region.

• mask-mean = µtf “ 1
area

∞

tf Ŝcpt, fq

• mask-stddev =
b

1
area

∞

tf pµtf ´ Ŝcpt, fqq2

Histogram of Gradients To further characterize the shape and texture of each segment,

we include a HOG feature similar to the work of Dalal and Triggs [42]. As input, we take the

cropped spectrogram and mask for a segment Ŝcpt, fq and Mcpt, fq. First, the spectrogram

is blurred by convolving with a 7 ˆ 7 Gaussian kernel G with �2 “ 4 to obtain Sbpt, fq “
Ŝcpt, fq˙G. The gradients at a point pt, fq are computed by convolving a Sobel kernel with with

Sb, i.e.
d
dxSbpt, fq “ Sbpt, fq ˙ Dx and d

dySbpt, fq “ Sbpt, fq ˙ Dy, where Dx “

¨

˚

˝

´1 0 1

´2 0 2

´1 0 1

˛

‹

‚

and Dy “ DT
x . Then, for each pixel of the spectrogram that is in the mask (i.e. Mcpt, fq “ 1),

we compute OSbpt, fq “ r d
dxSbpt, fq, d

dySbpt, fqs. Only pixels such that ||OSbpt, fq||2 • 0.01

contribute to the histogram. The histogram consists of 16 bins evenly spaced over the range

of angles r0, 2⇡s. The feature vector for a segment consists of the normalized count, for each

bin, of the number of gradients belonging to that bin. Hence we obtain a 16 dimensional HOG

feature for each segment.

Feature Rescaling All of the features described above are concatenated to form a single

feature vector describing each segment. These features di↵er widely in the range of values they

can have. This property of the features can bias distance-based classifiers such as Miml-kNN

to place more weight on features with larger magnitudes. To prevent this bias, we rescale each

feature independently to the range [0,1].

4.3.2 MIML Classifiers

Using our bag generator, we experimentally evaluate three MIML algorithms: MimlSvm [171],

MimlRbf [167], and Miml-kNN [166]. These algorithms reduce the MIML problem to a

single-instance multi-label problem by associating each bag with a bag-level feature, which

aggregates information from the instances in the bag. Hence the MIML dataset tpXi, Yiqumi“1 is

50

transformed into a single-instance multi-label dataset tpzi, Yiqumi“1 where zi P Rd is the bag-level

feature for bag i. Each algorithm constructs a di↵erent bag-level feature, but all use some form

of bag-level distance measure. The maximal and average Hausdor↵ distances between two bags

X “ ta1, . . . ,anu and X 1 “ tb1, . . . ,bnu are defined as

Dmax
H pX,X 1q “ maxtmax

aPX
min
bPX 1

||a ´ b||,max
bPX 1

min
aPX

||b ´ a||u

Davg
H pX,X 1q “

´

ÿ

aPX
min
bPX 1

||a ´ b||

`
ÿ

bPX 1
min
aPX

||b ´ a||
¯

{p|X| ` |X 1|q

MimlSvm applies k-medoids clustering to the training dataset of bags using Dmax
H . This

clustering produces k medoid bags M1, . . . ,Mk. For each bag pXi, Yiq, a bag-level feature is

computed as zi “ pDmax
H pXi,M1q, . . . , Dmax

H pXi,Mkqq. The resulting multi-label classification

problem is solved using the MlSvm algorithm, which consists of building one support vector

machine (SVM) for each class.

MimlRbf runs k-medoids clustering once for each class using Davg
H on the set of bags

including that class as a label (the parameter k is di↵erent for each class). Concatenating

the medoids obtained in each clustering, there are q medoid bags, B1, . . . , Bq. Then each

bag Xi is associated with a feature zi “ p1,KpXi, B1q,KpXi, Bqqq, where KpX,X 1q “
expp´Davg

H pX,X 1q2{2�2q. The resulting multi-label classification problem is solved using one

linear model per class, trained by minimizing sum squared error.

Miml-kNN also assigns bag-level features, but does so using an approach inspired by

nearest-neighbors rather than clustering. For each training bag Xi, Miml-kNN finds its k near-

est neighbors, and k1 citers (other bags that consider Xi to be one of their k1 nearest neighbors),
using Davg

H . Then each bag Xi is associated with a bag-level feature vector zi “ pt1, . . . , tcq,
where tj is the number of bags in the neighbors and citers of Xi that include class j in their

label set. The resulting multi-label problem is solved using the same approach as MimlRbf.

51

Table 4.1: The number of ten-second recordings containing each species in our labeled dataset.

Code Name #
PSFL Pacific-slope Flycatcher (Empidonax di�cilis) 165
HAFL Hammond’s Flycatcher (Empidonax hammondii) 103
OSFL Olive-sided Flycatcher (Contopus cooperi) 90
HETH Hermit Thrush (Catharus guttatus) 15
VATH Varied Thrush (Ixoreus naevius) 89
SWTH Swainson’s Thrush (Catharus ustulatus) 79
GCKI Golden-crowned Kinglet (Regulus satrapa) 197
PAWR Pacific Wren (Troglodytes pacificus) 109
RBNU Red-breasted Nuthatch (Sitta canadensis) 82
DEJU Dark-eyed Junco (Junco hyemalis) 20
CBCH Chestnut-backed Chickadee (Poecile rufescens) 117
HEWA Hermit Warbler (Setophaga occidentalis) 63
WETA Western Tanager (Piranga ludoviciana) 46

4.4 Experiments

We apply the proposed methods to field-collected audio from the H. J. Andrews (HJA) Exper-

imental Forest. These experiments demonstrate that our methods accurately predict the set of

species present in an unattended acoustic monitoring scenario.

4.4.1 Data Collection & Labeling

To collect audio in HJA, we use 13 Wildlife Acoustics Song Meter SM1 recording devices.

These devices have two omnidirectional microphones enclosed in wind shields protruding from

a weather resistant enclosure that houses batteries, a computer, and 32 Gb flash-memory for

data storage.

The audio is recorded at 16 kHz. The result of applying the FFT is a spectrogram with

frequencies from 0–8 kHz. This range is su�cient to capture most bird sounds in HJA. For

example, the Hermit Warbler is one of the highest pitched species in HJA, and is generally below

8 kHz [117]. It is possible that some bird sounds are omitted due to this sampling frequency,

but the proposed methods still work well for the species that we identified.

In order to train and evaluate algorithms to predict which species of birds are present in a

52

recording, it is necessary to have some labeled examples. We have months of audio in total, so

it would not be feasible to manually label all of it. Accordingly, we focus on a representative

sample of 548 ten-second recordings from six sites, all within the range of 5:00 am to 5:20 am

(birds are highly active at this time of day), on 5/31/2009. Many of the recordings include

multiple bird species vocalizing simultaneously. We manually identified the set of species that

are present in each ten-second recording.

There are 13 bird species in the recordings examined (Table 4.1). Each recording contains

between 1 and 5 species. There are 2.144 species per recording on average.

For the purpose of MIML experiments, we assume that recordings that do not contain any

bird sounds can be detected during segmentation, hence we only include recordings that contain

at least 1 species vocalizing. We evaluated segmentation on recordings that do not contain bird

sound in prior work [114].

Note that a small fraction of the recordings contain only a single species (but still multiple

syllables). Two out of the 13 species have recordings of this kind. It is not necessary for MIML

to have multiple labels associated with every bag in the training set. Bags with a single label

provide less ambiguous information, and should therefore be expected to improve accuracy.

There are 10,232 instances (audio segments) in our dataset. It is considerably more laborious

to label the instances than the 548 bags. For the purpose of comparison to SISL methods, we

have manually labeled 4998 of these instances. Of the remaining 5,234 unlabeled instances, a

substantial fraction are segmentation errors or noise, or faint sounds that are very di�cult for

a human to identify. These instance labels are only used for evaluation of SISL; they are not

used by the MIML algorithms.

In addition to the 548 ten-second recordings that we labeled with species sets, we also

manually segmented 625 disjoint fifteen-second recordings that are used as examples to train

the segmentation algorithm. These recordings are selected from 13 sites, over a period from

5/2/2009 to 7/4/2009, with some examples from each hour of the day. Within these 625

examples, 334 contain some bird sound, and 291 contain only noise.

It is not crucial that the training recordings be ten or fifteen seconds. We can provide some

intuition for the choice of duration. Increasing the duration of the recordings used for training

the segmentation algorithm reduces the number of syllables in the training data that are cut

o↵ by the boundary of the recording. However, as the duration of recordings used for MIML is

increased, it becomes more likely for a bag to include all of the species at the recording site. In

the extreme, a bag is labeled with every species, in which case no learning is possible because

53

the labels are completely ambiguous.

All of the data collection sites are within 1 km of a stream. Hence, all recordings contain

some stream noise, as well as wind or insects in some cases.

4.4.2 Evaluation

Cross-Validation We use five-fold cross-validation to evaluate each MIML algorithm on the

collection of 548 species-labeled recordings. The recordings/bags are randomly partitioned into

five disjoint sets (each set contains some examples from every species). For each fold, four of

the sets are used as training data for the MIML algorithms, and the remaining set is used for

testing. Test performance is aggregated over the five folds.

Because we use data from six sites over a 20-minute interval of time, it is likely that the

MIML classifier is trained and tested on vocalizations from the same individual birds. We

expect that prediction accuracy would decrease in an experiment where the classifier is applied

to individuals that do not appear in the training set.

Accuracy Measures Several measures common in multi-label and MIML experiments char-

acterize the accuracy of each algorithm, namely hamming loss, rank loss, one-error, coverage

[172], and micro-AUC [50]. A MIML classifier outputs a set of classes, but many implemen-

tations first output a score for each class, which is compared to a threshold to obtain the set.

Several of the accuracy measures use these scores. We denote the score for class j given by a

MIML classifier f on input bag X as fjpXq. The set of predicted labels which is obtained from

the scores is denoted fpXq. Also let Ir¨s denote the indicator function. Recall that the number

of classes (species) is c, and the number of bags is n. The accuracy measures are defined as

follows:

Hamming Loss does not rely on the scores for each class, but instead directly evaluates the

predicted set. It is the number of false positives and false negatives, averaged over the number

of classes and bags,

1

nc

n
ÿ

i“1

c
ÿ

j“1

Irj P fpXiq, j R Yis ` Irj R fpXiq, j P Yis

Rank loss captures the number of label pairs that are incorrectly ordered by the scores of

the MIML classifier (i.e. classes that are in the true label set should receive higher scores than

54

classes that are not). Let Ȳ denote the complement of Y . Rank loss is defined as

1

n

n
ÿ

i“1

1

|Yi||Ȳi|
ÿ

jPY
i

,kPȲ
i

IrfjpXiq § fkpXiqs

One-error is the fraction of bags for which the top scoring label is not in the true label set,

1

n

n
ÿ

i“1

Ir
`

argmax
jPY

fjpXiq
˘

R Yis

The scores for all classes can be ranked, so that rank 1 is the most likely to be present

(highest score), rank 2 is the next most likely, and rank c is the least likely. We denote the rank

of class j given input bag X as rankpX, jq. Coverage measures the how far down the ranking

one must go to get all of the true labels,

1

n

n
ÿ

i“1

max
jPY

i

trankpXi, jq ´ 1u

MimlSvm, MimlRbf, and Miml-kNN output signed scores for each class, with a positive

score indicating a class is present, and a negative score indicating it is absent. To compute

hamming loss, we use a threshold of 0. However, varying this threshold can be used to control

the tradeo↵ between predicting species which are not present (i.e. false positives), or failing to

detect species which are present (i.e. false negatives). The Receiver Operating Characteristic

(ROC) curve captures this tradeo↵. Let the predicted label set for a bag Xi using a threshold

t be fpXi, tq. Define true/false positives/negatives as

TP “
ÿ

i“1...n,jPY
i

Irj P fpXi, tqs, FP “
ÿ

i“1...n,jPȲ
i

Irj P fpXi, tqs

TN “
ÿ

i“1...n,jPȲ
i

Irj R fpXi, tqs, FN “
ÿ

i“1...n,jPY
i

Irj R fpXi, tqs

The true positive rate is TPR “ TP {pTP ` FNq and the false positive rate is FPR “
FP {pFP ` TNq. Each point on the ROC curve (Fig. 4.4) corresponds to a pair pTPR,FPRq
for one threshold. The area under this ROC curve is called micro-AUC (in contrast with

macro-AUC, which is the average AUC of the separate ROC curves for each class) [94].

55

Table 4.2: Accuracy measures for MIML classifiers and baselines (– indicates the result cannot
be calculated).

Algorithm Hamming Loss Ó Rank Loss Ó One-Error Ó Coverage Ó micro-AUC Ò
MimlSvm 0.054 0.033 0.067 1.844 0.966
Miml-kNN 0.039 0.019 0.036 1.589 0.962
MimlRbf 0.049 0.022 0.034 1.632 0.978
Non-Informative 0.165 0.5 0.8351 8.068 0.5
Frequency Order – 0.318 0.698 5.901 –
SISL Random Forest 0.125 0.050 0.084 2.201 0.949
SISL Random Forest Filtered 0.049 0.023 0.022 1.708 0.974

Parameter Tuning Each MIML algorithm has several parameters that can be tuned to

improve accuracy. We evaluate each algorithm over all combinations of parameter values in

a range, and report results corresponding to the parameter setting of each algorithm that

minimizes hamming loss. The parameters and ranges are:

• For MimlSvm, the parameters are pC, �, rq. The parameter C controls SVM regulariza-

tion. The SVM uses a Gaussian kernel kpx,yq “ expp´�||x ´ y||2q. The parameter k

for k-medoids clustering is set to nr, where n is the number of bags. We evaluate all

combinations of pC, �, rq P t10´2, 10´1, 100, 101u2 ˆ t0.2, 0.4, 0.6, 0.8u.

• For MimlRbf, the parameters are pr, µq. k-medoids clustering repeats once for each

class; in the clustering for class i, k is set to ⌫ir, where ⌫i is the number of bags includ-

ing label i. MimlRbf constructs bag-level features by applying a function KpX,X 1q “
expp´Davg

H pX,X 1q2{2�2q. The parameter � in this expression is set to µ times the

average Hausdro↵ distance between clusters [167]. We evaluate all combinations of

pr, µq P t10´2, 10´1, 100, 101u2.

• For Miml-kNN, we vary the number of neighbors k and the number of citers k1 over

pk, k1q P t5, 10, 20, 30u2.

4.5 Results

Table 4.2 lists the accuracy measures for each MIML algorithm. To better interpret these

results, we discuss the ranges of values the accuracy measures can take, and compare to values

56

Table 4.3: Example predictions with Miml-kNN.

Ground Truth Predicted Labels
PAWR,PSFL GCKI,PAWR,PSFL
VATH,SWTH VATH,HEWA,SWTH
OSFL,CBCH GCKI,OSFL,CBCH
CBCH GCKI,CBCH
HAFL HAFL
VATH,HEWA VATH,HEWA
GCKI,PSFL,RBNU,DEJU GCKI,PSFL
GCKI,PAWR,PSFL GCKI
GCKI,OSFL GCKI,OSFL
GCKI,PAWR,PSFL GCKI,PAWR,PSFL
SWTH SWTH
VATH,HEWA,SWTH VATH,HEWA,SWTH
GCKI,OSFL,HETH GCKI
GCKI,OSFL GCKI,OSFL
GCKI,PAWR,PSFL GCKI,PAWR
SWTH
GCKI,PAWR,PSFL GCKI,PSFL
GCKI,PSFL,OSFL GCKI,PSFL
HAFL HAFL
CBCH,SWTH CBCH,SWTH

0.1 0.2 0.3

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

False Positive Rate (1 - Specificity)

Tr
ue

 P
os

iti
ve

 R
at

e
(S

en
sit

ivi
ty

)

 MIMLSVM
 MIML-kNN
 MIMLRBF

Figure 4.4: ROC curves for each algorithm.

57

for baseline classifiers.

Hamming loss, rank loss, and one-error have values in the range r0, 1s with 0 corresponding

to perfect prediction. Let the average number of labels per bag be m “ 1
n

∞n
i“1 |Yi|. Then the

best possible coverage is m ´ 1, and the worst possible coverage is c ´ 1 (for our dataset, this

gives the range r1.144, 12s). However, in order to achieve the worst possible values for these

measures, it is necessary to make predictions that are worse than random.

To obtain a baseline for hamming loss, consider a non-informative classifier that always

predicts the empty set. The hamming loss is m
c “ 0.1649, because each label in the true

label set is a false-negative. The other measures are based on class ranks, so consider a non-

informative classifier that outputs uniformly random scores for each class, or equivalently, ranks

classes in a random order. The probability that the top-scoring class will be one of the |Yi|
labels for bag i is |Y

i

|
c , so the expected one-error is 1 ´ 1

n

∞n
i“1

|Y
i

|
c “ 1 ´ m

c “ 0.8351. Because

P pfjpXiq § fkpXiqq “ 1
2 , the expected rank loss is 1

2 . The AUC for a random classifier is 1
2 as

well [12]. We approximate the expected coverage for a non-informative classifier by averaging

the coverage for 10,000 random orders.

We also compute the rank loss, one-error, and coverage for a classifier that ignores its input,

and outputs the ranking from most frequent class to least frequent, which is a stronger baseline

than random ranking (Table 4.2).

All of the MIML classifiers are closer to perfect prediction than to non-informative or fre-

quency order baselines. For example, the hamming loss for Miml-kNN is 4.23 times lower than

non-informative. With a rank loss of 0.019, Miml-kNN is 26.31 times less likely to incorrectly

rank a present/absent species pair than a random classifier. A one-error of 0.034 means that

if we only predict the highest scoring species in each recording, it will truly be present 96.6%

of the time. MIML-kNN achieves a hamming loss of 0.039, which is equivalent to a true pos-

itive/negative rate of 96.1% (the fraction of true positive/negatives is 1 - hamming loss). To

give a concrete view of the predictions, we show results for 20 randomly selected recordings

using Miml-kNN in Table 4.3.

Recent work [106] has highlighted the importance of accounting for imperfect detectability

of species in wildlife surveys. Due to the massive amount of survey time enabled by continuous

recordings, our proposed methods can help to reduce false negatives typical of manual bird

surveys. The ROC curves (Fig. 4.4) show that we can set a threshold which achieves a low

false positive rate, while still retaining a relatively high true positive rate, thus meeting critical

assumptions for occupancy analysis.

58

Comparison to SISL It is di�cult to make a direct comparison between MIML and SISL,

because MIML and SISL algorithms make di↵erent types of predictions, and are evaluated

according to di↵erent performance measures. We compare to a model based on a random forest

SISL classifier because the random forest achieves high accuracy in many domains, and has only

one parameter (the number of trees), to which it is not very sensitive. Using the 4998 labeled

instances in the dataset, we train a SISL random forest with 100 trees. We use the same folds

for 5-fold cross validation as the MIML algorithms. For each fold, the labeled instances in four

of the sets are used to train a random forest, then the instances in the remaining set are used

to compute MIML performance measures.

We need to compute bag-level outputs to evaluate the random forest using MIML perfor-

mance measures. To do so, we compute the probabilities for every instance in a bag to belong

to each class, then define the bag level score for each class as the maximum instance probability

for that class, i.e. the bag-level score for class j given input bag X is fjpXq “ max
xPX P pj|xq.

This formulation of the bag-level model is similar to MIML algorithms including M3MIML

[168], D-MimlSvm [172] and Tmiml [81]. We compute the hamming loss for the random forest

using a threshold of 0.5 on the bag-level scores. The other performance measures are computed

directly from the scores.

This SISL-trained model is worse in every performance measure than the MIML algorithms

(Table 4.2; SISL Random Forest). The bag-level scores are computed using all of the instances

in the bag, including the unlabeled instances which are more likely to correspond to noise that

is mislabeled as bird sound in the segmentation stage. Such instances bias the bag-level scores

to generate many false positives (with a threshold of 0.5 there are 740 false positives and 148

false negatives). We can improve the results for the random forest by filtering out all of the

unlabeled instances so they do not influence the bag-level scores (Table 4.2; SISL Random

Forest Filtered). The MIML algorithms in this study do not require this filtering to produce

accurate results because they do not depend on instance-level predictions (this is not true of all

MIML algorithms). However filtering would improve the performance of the MIML algorithms.

Even when we give the SISL model the advantages of having instance labels, and of filtering

out the unlabeled instances, the best MIML results are better than the filtered SISL results

in all measures except for one-error. This result suggests that it is non-trivial to incorporate

instance labels into a bag-level model.

59

4.6 Conclusion & Future Work

We formulate the problem of detecting the set of bird species present in an audio recording

using the MIML framework, and propose a method to transform an audio recording into a

representation suitable for using with MIML algorithms. Using data collected in the field with

omnidirectional microphones, we showed that the proposed methods achieve high accuracy.

This work is a step toward automatic unattended acoustic surveys of bird populations. In

future work, we seek to classify all bird sounds in a much larger collection of audio (over 4

terabytes), representing two years of recordings in the field. This will e↵ectively generate a

presence/absence population survey at the sites where we have deployed recording devices. In

contrast with manual surveys, automated acoustic surveys can provide high temporal resolution

over the long term. For example, it would not be reasonable for a person to count birds once

per minute, 24 hours a day, for three months, but we aim to obtain similar results with acoustic

surveys. Such data is likely to provide new insights into bird behavior, and their interaction

with the environment [133].

MIML classifiers can only predict labels that appear in their training data, and cannot

detect when something does not belong to one of the training classes. Hence it is not clear how

to handle unexpected sounds. Due to the high-noise environment, and birds vocalizing far from

the microphone, it is often di�cult for a human labeler to determine all of the species present in

a recording. Consequently, some of the segments/instances may come from species that are not

present in the training label set. Furthermore, some of the instances are segmentation errors

capturing noise rather than bird sound. Further work is needed on classes not present in the

training data, incomplete label sets, and noise instances.

One may wish to predict the species of each individual segment/instance, rather than just

the set of species in a recording. If individually labeled segments are available for training data,

this is the standard SISL supervised classification problem. However, we instead focus on the

situation where it is di�cult or expensive to obtain such labels. Learning to predict instance

labels from MIML training data is a di↵erent problem, known as instance annotation, which has

received little study so far. One might also wonder if the accuracy of MIML predictions could

be improved by including individually labeled instances in the training data (e.g., recordings

containing only a single species and syllable). This problem of mixed-granularity training has

also received little study. In prior work on MIML, this issue has been handled by using an

unmodified MIML algorithm with a bag containing a single instance [148].

60

Although we focus on birds, MIML may also be applicable to analysis of other bioacoustic

signals from animals including grasshoppers [33], crickets, frogs [13], and marine mammals [112],

and computational acoustic scene analysis in general. Aside from its ecological applications,

this work broadens the scope of MIML domains from text and images to include audio.

61

Chapter 5: Instance Annotation for Multi-Instance Multi-Label Learning1

5.1 Introduction

Many problems in supervised classification have a certain structure, where the objects of interest

(e.g., images or text documents) can naturally be decomposed into a collection of parts called

a bag-of-instances representation. For example, in image classification, an image is typically a

bag, and the pixels or segments in it are instances. This structure motivates multiple-instance

learning (MIL) [49]. The original formulation of MIL concerns problems where bags are asso-

ciated with a single binary label. Zhou and Zhang [171] introduced multi-instance multi-label

learning (MIML), where bags are instead associated with a set of labels. For example, an image

might be associated with a list of the objects it contains.

MIML arises in situations where the cost of labeling individual instances becomes prohibitive

and consequently multiple instances are grouped and associated with a set of labels. For

example, it is much faster to label an image with a few words than to individually label pixels.

In MIML, the training dataset consists of a collection of bags of instances, where each bag is

associated with multiple labels. The standard goal in MIML is to learn a classifier that predicts

the label set for a previously unseen bag. Numerous algorithms for MIML have been proposed

and applied to image, text [97, 132, 165, 171, 172], and video [157] domains. Recently, Wang

and Zhou [151] analyzed PAC-learnability in MIML.

Learning to predict instance labels from MIML training data is a useful problem that has

received little study [170]. For example, one might train a classifier on a collection of images

paired with lists of object names in each image, then make predictions about the label for each

region in an image. This problem is called the instance annotation problem for MIML. The key

issue in instance annotation is how to learn an instance-level classifier from a MIML dataset,

which presents only bag-level labels.

A common strategy in designing MIML algorithms for bag-level prediction is to learn an

instance-level model by minimizing a loss function defined at the bag level. For example, several

1“Instance Annotation for Multi-Instance Multi-Label Learning.” Forrest Briggs, Xiaoli Z. Fern, Raviv Raich,
Qi Lou. ACM Transactions on Knowledge Discovery from Data, TKDD, 2012.

62

previous bag-level MIML algorithms minimize bag-level Hamming loss, which captures the dis-

agreement between a ground-truth label set, and the predicted label set. Practically speaking,

these instance-level models could be directly used for instance-level prediction. However, the

loss functions (e.g., Hamming Loss) used by such bag-level MIML algorithms are designed to

optimize the prediction performance at the bag level and can be inappropriate for the purpose

of making instance-level predictions.

For instance annotation, typically the instance-level classifier outputs a score for each class,

and the instance label is predicted as the highest scoring class. Therefore the predicted label

depends on the ranking of class scores. Hamming loss is not appropriate in this context, despite

its success at bag-level predictions, because it lacks a mechanism to calibrate the scores between

di↵erent classes. This observation motivates us to introduce a rank-loss objective for instance

annotation, which directly optimizes the ranking of classes.

In order to learn an instance-level classifier using a bag-level loss function, it is necessary to

define an aggregation model that connects instance-level predictions with bag-level predictions.

In this chapter, we examine two di↵erent aggregation models, which are equivalent to defining a

“support instance” for each bag. Therefore, we name our methods Support Instance Machines

(SIM).

In this chapter, we make the following contributions:2

• We propose a regularized rank-loss objective for instance annotation that can be instan-

tiated with di↵erent aggregation models (Sec. 5.4.1).

• The rank-loss objective is non-convex. To address this challenge, we o↵er two optimization

methods that are e↵ective in practice. One is a heuristic that linearizes the aggregation

model, and the other casts the objective as a di↵erence of convex functions and mono-

tonically decreases the objective using the constrained concave convex procedure (CCCP)

[164].

• In either optimization method, the core of the algorithm is to alternate between updating

support instances, and solving a convex problem using the Pegasos framework for primal

sub-gradient descent. We prove that the convex optimization has linear runtime in the

number of bags, instances, and 1
✏ to find an ✏-suboptimal solution (Sec. 5.4.3.4).

2A preliminary version of this work appeared in [16]. We present new materials in Sec. 5.4.3, 5.4.4, and the
two appendices. Section 6.5 also contains additional experiments including a new dataset and a comparison to
the M3MIML algorithm.

63

• Experiments show that SIM with rank loss achieves higher accuracy than Hamming loss

or ambiguous loss (a comparable state of the art approach [39, 40]), a novel softmax

aggregation model generally achieves higher accuracy than the max model which has been

used in prior multi-instance or MIML algorithms, and CCCP improves accuracy over the

heuristic with the same aggregation model (Sec. 5.5.2.4).

• We suggest a method of extending our proposed classifiers from linear to non-linear using

a fast approximate kernel trick [119]. Experiments show that this method often improves

accuracy significantly, while still achieving linear runtime in the number of bags and

instances (Sec. 5.4.4).

• We introduce a real-world MIML dataset for instance annotation derived from over 90

minutes of bird song recordings collected in the field, containing multiple simultaneously

vocalizing birds of di↵erent species. Several SIM algorithms achieve over 80% accuracy

in predicting the species of bird responsible for each sound in the recordings (given the

list of species present in the recording) (Sec. 6.3).

5.2 Problem Statement

In this section we formalize the instance annotation problem and contrast it with several related

problems. Table 6.2 summarizes notation.

We are given a training set of n bags pX1, Y1q, . . . , pXn, Ynq. Each Xi is a bag of ni instances,

i.e., Xi “ txi1, ¨ ¨ ¨ ,xin
i

u, with xiq P X , where X “ Rd is a d-dimensional feature space. Each

bag Xi is associated with a label set Yi Ñ Y where Y “ t1, ¨ ¨ ¨ , cu and c is the total number

of classes. We will assume that each instance xiq has a hidden label yiq P Y and that the bag

label set is equal to the union of the instance labels, i.e. Yi “ Yq“1,...,n
i

yiq. The goal of instance

annotation in MIML is to learn an instance-level classifier fIA : X Ñ Y that maps an element

of the input space X to its corresponding class label.

We focus on classifiers for instance annotation that use one instance-level model fjpxq “
wj ¨ x for each class j, and predict a specific label via fpxq “ argmaxj fjpxq. The goal is to

learn the weights W “ rw1, . . . ,wcs (note x P Rd,wj P Rd, and W P Rcd).

The instance annotation problem is di↵erent from the traditional MIML learning problem

studied by Zhou and Zhang [171] and many others, where the goal is to learn a bag-level

classifier FMIML : 2X Ñ 2Y . Nonetheless, the design principles of many traditional MIML

64

Table 5.1: Summary of Notation

Notation Meaning
n number of bags
ni number of instances in bag i
m number of instances in all bags “ ∞

ni

c number of classes
xiq instance q in bag i, a feature vector in Rd

Xi bag i, a set of instances
Yi label set for bag i, a subset of t1, . . . , cu
Ȳi complement of Yi
Yij +1 if j P Yi and -1 otherwise
fjpxq instance-level model for class j
FjpXq bag-level model for class j
wj instance-level weights for class j
W concatenation of w1, . . . ,wc as a vector
Wptq weights at the start of iteration t of CCCP or the heuristic
Wpt,⌧q weights at iteration ⌧ of sub-gradient descent, iteration t of CCCP or the heuristic

x̂ijpWq support instance for bag i, class j as a function of W

x̂ptq
ij support instance for bag i, class j at iteration t of CCCP or the heuristic

x̂pt,⌧q
ij support instance for bag i, class j at iteration ⌧ of sub-gradient descent, iteration t of CCCP

�i
1

n|Y
i

||Ȳ
i

|
ÿ

ijk

n
ÿ

i“1

ÿ

jPY
i

ÿ

kRY
i

algorithms can be used to learn instance-level classification models, which is the approach we

take in this chapter.

Instance annotation is closely related to the classic supervised classification problem, where

the goal is to learn an instance classifier, but using training data that does not have a bag

structure and has each instance labeled individually. In contrast to MIML, this classic setting

is often referred to as single-instance single-label (SISL) learning.

Ambiguous label classification (ALC) [40, 80] is another related framework. In ALC, there

are no bags; instead instances are paired with a set of possible labels, only one of which is

correct. An ALC dataset is px1, Y1q, . . . , pxm, Ymq, where xi P X and Yi Ñ Y. In ALC the

goal is to learn a classifier that predicts instance labels, hence an ALC classifier is a function

65

fALC : X Ñ Y. A MIML instance annotation problem can be transformed into a ALC problem

by creating one ALC instance for each instance in a MIML bag, paired with all of the labels

from the bag. Hence ALC algorithms can be applied to MIML instance annotation problems.

However, this reduction may discard useful bag-level structure in the MIML data. The bag-level

structure in MIML implies that each label in a bag label set must be explained by at least one

of the instances in that bag, whereas this constraint is lost in the reduction to ALC.

5.3 Background

Here we discuss some design patterns that contribute to our proposed methods.

5.3.1 Connecting Instance Labels with Bag Labels

One common approach in MIML algorithms is to make bag-level predictions based on the

outputs of instance-level models. The connection from instance labels to bag labels is made via

the assumption that the bag label set is the union of instance labels. This assumption is used

in several MIML algorithms including M3MIML [168], and D-MimlSvm [172]. The following

formulation approximates this assumption. Let fjpxq : X Ñ R be a function which takes an

instance and returns a real-valued score for class j. The output at the bag-level for class j

is defined to be FjpXq “ max
xPX fjpxq. A bag-level classifier can be obtained by applying a

threshold (e.g., 0) to the bag-level scores, i.e. F pXq “ ty P Y : FypXq ° 0u. Note that if an

instance x˚ within bag X is predicted to belong to class j, i.e., fjpx˚q ° 0, the predicted label

set for bag X will necessarily contain j because FjpXq “ max
xPX fjpxq • fjpx˚q ° 0. Hence,

connecting instance and bag-level scores via the max function is related to defining the bag

label set as the union of the instance labels.

5.3.2 Bag-Level Loss Functions

In contrast with SISL or instance annotation, which are evaluated based on instance-level

accuracy, existing MIML algorithms are typically evaluated based on their label set predictions.

Two common performance measures are Hamming loss, and rank loss [172]. Hamming Loss is

66

the number of false positives and false negatives, averaged over all classes and bags,

1

nc

n
ÿ

i“1

c
ÿ

j“1

Irj P F pXiq, j R Yis ` Irj R F pXiq, j P Yis (5.1)

Rank loss captures the number of label pairs that are incorrectly ordered by the scores of the

MIML classifier. For a given bag, classes in its true label set should receive higher scores than

classes that are not. Let Ȳ denote the complement of Y . Rank loss is defined as

1

n

n
ÿ

i“1

1

|Yi||Ȳi|
ÿ

jPY
i

,kPȲ
i

IrFjpXiq § FkpXiqs (5.2)

These objectives are di�cult to optimize directly because they are not continuous. Several

prior algorithms for MIML can be viewed as optimizing a surrogate for Hamming loss. For

example, D-MimlSvm [172] and M3MIML [168] optimize variations of the following loss function

(with di↵erent regularization terms)

1

nc

n
ÿ

i“1

c
ÿ

j“1

maxt0, 1 ´ YijFjpXiqu (5.3)

where Yij “ `1 if j P Yi and ´1 if j R Yi.

The hinged Hamming-loss objective (5.3) can be decomposed into a collection of independent

MIL problems, one for each class. As such, it does not calibrate the scores between classes,

which could make predicting an instance label based on the highest scoring class unreliable. To

overcome this limitation, we consider rank loss instead. Rank loss has been used as an objective

for single-instance multi-label SVMs [55]. However, we are not aware of any MIML algorithms

that learn an instance-level model by minimizing rank loss (i.e. rank loss has only been used as

a performance measure in MIML, not as an objective).

5.4 Proposed Methods

Our proposed methods are based on the observation that the predicted instance label depends

on the ranking of scores for each class. Hence, we propose a rank-loss objective that optimizes

this ranking. The rank-loss objective can be instantiated with di↵erent aggregation models

that connect instance labels with bag label sets. We consider aggregation models that can be

67

factored as a linear function of “support instances” which are feature vectors that summarize

a bag. We propose two optimization methods for the rank-loss objective, which is non-convex.

One is a heuristic, and the other is based on CCCP, however both exploit the support instance

structure in the optimization problem.

5.4.1 Rank-Loss Objective

Because we are learning from a MIML dataset, we can only measure loss at the bag level. A

bag-level loss function measures the agreement between a bag label set and the bag-level scores

FjpXiq. We propose a bag-level loss function, which is a regularized surrogate for rank loss

(5.2):

hRLpWq “ �

2
||W||2 `

n
ÿ

i“1

ÿ

jPY
i

ÿ

kRY
i

1

n|Yi||Ȳi|
maxt0, 1 ´

`

FjpXiq ´ FkpXiq
˘

u (5.4)

To shorten our notation, let �i “ 1

n|Yi||Ȳi|
and

ÿ

ijk

”
n

ÿ

i“1

ÿ

jPY
i

ÿ

kRY
i

. Then we can rewrite the

objective as

hRLpWq “ �

2
||W||2 `

ÿ

ijk

�imaxt0, 1 ´
`

FjpXiq ´ FkpXiq
˘

u (5.5)

This objective is designed to encourage a correct ranking of the bag-level scores for each class.

For a bag Xi with corresponding label set Yi, if j P Yi and k P Ȳi, then the loss is zero only

if FjpXiq ° FkpXiq ` 1 (requiring a di↵erence of at least 1 promotes a large-margin solution).

The objective is also designed to facilitate primal sub-gradient descent and CCCP optimization

methods, which we discuss in Sec. 5.4.3.

5.4.2 Aggregation Models and Support Instances

The objective (5.4) can be instantiated with various aggregation models Fjp¨q that compute

bag-level scores from instance-level scores. For example, the max model, which has been used

68

in prior work [168, 172], with a linear instance classifier is

FjpXiq “ max
x

iq

PX
i

fjpxiqq “ max
x

iq

PX
i

wj ¨ xiq (5.6)

It is equivalent to write FjpXiq “ wj ¨ x̂ijpWq, where

x̂ijpWq “ argmax
x

iq

PX
i

wj ¨ xiq (5.7)

We refer to x̂ijpWq as the “support instance” for bag Xi, class j, because the bag-level output

for Xi depends only on the support instance for each class (analogous to a support vector).

The max model represents each bag with the most characteristic instance of each class.

This approach can ignore other instances that are also useful for learning, and may not be

appropriate when the assumption that the bag label set is equal to the union of instance labels

does not hold. We propose an alternative softmax model, which can also be expressed in terms

of support instances, but has the advantage of basing the support instances on more than one

instance per class for each bag. The softmax model represents each bag as a weighted average

of the instances, with weights specific to each class:

FjpXiq “
ÿ

x

iq

PX
i

↵j
iqfjpxiqq “

ÿ

x

iq

PX
i

↵j
iqwj ¨ xiq (5.8)

The weights are defined according to a softmax rule,

↵j
iq “ ewj

¨x
iq

∞

x

1PX
i

ewj

¨x1 (5.9)

We can also write the softmax model as FjpXiq “ wj ¨ x̂ijpWq, with the support instances

defined as

x̂ijpWq “
ÿ

x

iq

PX
i

↵j
iqxiq (5.10)

For either model, the rank-loss objective in terms of support instances is

ĥRLpWq “ �

2
||W||2 `

ÿ

ijk

�imaxt0, 1 ` wk ¨ x̂ikpWq ´ wj ¨ x̂ijpWqu (5.11)

69

5.4.3 Optimization Methods for Rank-loss Support Instance Machines

SIM could be instantiated with any aggregation model that fits the pattern of (5.11). However,

depending on the aggregation model, di↵erent optimization techniques are required. Using the

max and softmax models, x̂ijpWq is a function of wj , and the objective is non-convex. We

propose two optimization strategies to handle this non-convex objective: (1) if Fjp¨q is a convex

function of W, we can apply CCCP, or (2) as a heuristic, treat x̂ij as constant, which makes

the objective convex.

5.4.3.1 Constrained Convex Concave Procedure (CCCP)

The bag-level surrogate loss functions that arise in multi-instance learning are often non-convex,

but can sometimes be manipulated into a di↵erence-of-convex (DC) form which allows the use

of CCCP [137, 164]. The advantage of CCCP is that it decreases the objective monotonically

and converges to a local optimum or a saddle point. CCCP can be applied to optimization

problems of the form

min
x

f0pxq ´ g0pxq (5.12)

s.t. fipxq ´ gipxq § 0, i “ 1, . . . , k (5.13)

where all fi and gi are convex. CCCP solves a sequence of convex upper bounds to the orig-

inal problem by constructing a linear upper bound of the concave part of the objective and

constraints at the current point. Let xptq be the current point, then the next point xpt`1q is

obtained by solving the following convex problem

min
x

f0pxq ´
”

g0pxptqq ` Og0pxptqq ¨ px ´ xptqq
ı

(5.14)

s.t. fipxq ´
”

gipxptqq ` Ogipxptqq ¨ px ´ xptqq
ı

§ 0, i “ 1, . . . , k (5.15)

If gi is non-di↵erentiable, a sub-gradient u P Bgipxptqq can be used in place of the gradient

Ogipxptqq. This is the case for our derivations using CCCP, as gi involves the max function.

70

5.4.3.2 CCCP for Rank-loss Support Instance Machines

When the aggregation model Fjp¨q is a convex function of W, CCCP can be applied to the

rank-loss objective. The max model is convex, but the softmax model is not. The objective

(5.11) is not a DC function, but we can still use CCCP with a simple transformation of the

problem. The unconstrained problem (5.11) is equivalent to a constrained problem

min
W,⇠

�

2
||W||2 `

ÿ

ijk

�i⇠ijk (5.16)

s.t. FjpXiq ´ FkpXiq • 1 ´ ⇠ijk, for i “ 1, . . . , n, j P Yi, k R Yi (5.17)

⇠ijk • 0 (5.18)

The constraint (5.17) is not convex, but when the aggregation model Fjp¨q is convex, the

constraint is DC. As an example of applying the CCCP framework to a convex aggergation

model, we will use the maxmodel. Substituting in the maxmodel and rearranging, the constraint

becomes

1 ´ ⇠ijk ` max
xPX

i

wk ¨ x
loooooooooooomoooooooooooon

f
ijk

´max
xPX

i

wj ¨ x
looooomooooon

g
ijk

§ 0 (5.19)

We define the support instances at iteration t of CCCP as

x̂ptq
ij “ x̂ijpWptqq (5.20)

where Wptq are the weights at iteration t.

Following CCCP and constructing the linear upper bound for the concave part ´gijk, we

get

1 ´ ⇠ijk ` max
xPX

i

wk ¨ x ´ wj ¨ x̂ptq
ij § 0 (5.21)

Hence CCCP solves the following sequence of convex problems

min
W,⇠

�

2
||W||2 `

ÿ

ijk

�i⇠ijk (5.22)

s.t. 1 ´ ⇠ijk ` max
xPX

i

wk ¨ x ´ wj ¨ x̂ptq
ij § 0, for i “ 1, . . . , n, j P Yi, k R Yi (5.23)

⇠ijk • 0 (5.24)

71

The above problem could be further simplified to a convex QP, but we instead solve the equiv-

alent unconstrained convex problem (because it is amenable to e�cient primal sub-gradient

descent)

hptq
RL,cccppWq “ �

2
||W||2 `

ÿ

ijk

�imaxt0, 1 ` max
xPX

i

wk ¨ x ´ wj ¨ x̂ptq
ij u (5.25)

We discuss methods for solving (5.25) in Sec. 5.4.3.4. In summary, the trick we use to e�-

ciently solve the original non-convex rank-loss SIM objective with the max model (or potentially

any convex model) is to convert it to an equivalent constrained problem, construct the CCCP

upper bound, then convert the bound back to an unconstrained problem.

5.4.3.3 Heuristic for Non-Convex Aggregation Models

If FjpXiq is not a convex function ofW, then the constraint (5.17) does not naturally decompose

into a DC function, and CCCP cannot be applied. This is the situation with the softmaxmodel.

In this case, we propose a heuristic of alternating between computing the support instances, and

solving a convex problem where the support instances are treated as constant. The heuristic is

similar to CCCP, except the convex objective solved in each step changes to

hptq
RL,hpWq “ �

2
||W||2 `

ÿ

ijk

�imaxt0, 1 ` wk ¨ x̂ptq
ik ´ wj ¨ x̂ptq

ij u (5.26)

In contrast with the CCCP algorithm, this heuristic is not proven to decrease the objec-

tive (5.4) monotonically. The di↵erence between the convex problems solved by CCCP and

the heuristic is whether the aggregation model applied to bags with negative labels FkpXiq is

linearized in terms of the support instance, or not. The heuristic can also be applied when the

aggregation model is convex.

5.4.3.4 Sub-gradient Descent

To solve the convex problem in each step of CCCP or the heuristic [i.e. (5.25) or (5.26)], we

use a sub-gradient descent method similar to Pegasos, an algorithm for training linear two-class

SVMs [130]. The Pegasos algorithm is based on a general framework for optimizing regularized

convex objectives [129]. This framework can be applied to convex optimization problems in the

72

form:

min
WPS

hpWq where hpWq “ �

2
||W||2 ` losspWq

ALGORITHM 1: Projected Sub-gradient with Pegasos Learning Rate

Input: Initial point Wp0q P S, number of iterations K
for ⌧ “ 1, . . . ,K do

Compute a sub-gradient V P BhpWp⌧´1qq
Wp⌧q – P rWp⌧´1q ´ 1

�⌧
Vs

end

For such problems, Algorithm 1 is e�cient. Let a convex set S be the feasible space;

P rWs “ argmin
W

1PS
||W´W1||2 is a projection back into the feasible space. Note that when S is a

ball of radius r, i.e. S “ tW : ||W||§ ru, the projection simplifies to P rWs “ mint1, r
||W|| uW

(for reasons that become evident in the runtime analysis, we will introduce such a constraint

into our optimization problems).

Consider iteration t of CCCP or the heuristic, where the convex objective is hptq
RL,cccppWq

(5.25) or hptq
RL,hpWq (5.26) respectively. We will show how to apply sub-gradient descent to

these objectives. We will start by summarizing relevant notation and stating a sub-gradient of

each objective.

First consider hRL,h as an example. Recall that the decision variable W is the concatenation

of components wq for each class q “ 1, . . . , c. We denote the component of the sub-gradient of

hptq
RL,h corresponding to wq as vpt,⌧q,q

RL,h , where the superscript t indicates the outer iteration of

the heuristic, ⌧ indicates the inner iteration of sub-gradient descent, and q indicates the class.

The full sub-gradient is Vpt,⌧q
RL,h “ rvpt,⌧q,1

RL,h , . . . ,vpt,⌧q,c
RL,h s. The components of the sub-gradient of

hptq
RL,cccp are defined similarly, e.g., vpt,⌧q,q

RL,cccp.

For the heuristic, it is su�cient to compute the support instances x̂ptq
ij once at the beginning

of each outer iteration t; then at every inner iteration ⌧ of sub-gradient descent the sub-gradients

73

depend only on x̂ptq
ij . The sub-gradient for the heuristic is

vpt,⌧q,q
RL,h “ �wpt,⌧q

q `
ÿ

ijk

�iIr1 ` wpt,⌧q
k ¨ x̂ptq

ik ´ wpt,⌧q
j ¨ x̂ptq

ij ° 0s

$

’

’

’

&

’

’

’

%

x̂ptq
iq if q “ k

´x̂ptq
iq if q “ j

0 otherwise

(5.27)

For CCCP, the sub-gradients depend on both x̂ptq
ij , and a di↵erent set of support instances

that change with each inner iteration ⌧ of sub-gradient descent. We introduce the notation

x̂pt,⌧q
ik “ x̂ikpWpt,⌧qq (5.28)

This notation indicates the support instance computed from the weights at iteration ⌧ of sub-

gradient descent within iteration t of CCCP, in contrast with x̂ptq
ik , which indicates the support

instance computed from the weights at the start of iteration t of CCCP. The sub-gradient for

CCCP at inner iteration ⌧ is

vpt,⌧q,q
RL,cccp “ �wpt,⌧q

q `
ÿ

ijk

�iIr1 ` wpt,⌧q
k ¨ x̂pt,⌧q

ik ´ wpt,⌧q
j ¨ x̂ptq

ij ° 0s

$

’

’

’

&

’

’

’

%

x̂pt,⌧q
iq if q “ k

´x̂ptq
iq if q “ j

0 otherwise

(5.29)

We have not discussed how to compute the sub-gradients e�ciently, or explained why a

ball-constraint is introduced. These subjects fit naturally into a discussion of the runtime of

sub-gradient descent.

Runtime of Sub-gradient Descent Let W˚ be the solution, i.e. W˚ “ argmin
WPS

hpWq.
Shalev-Shwartz and Singer [129] showed the following convergence rate for Algorithm 1,

min
⌧

hpWp⌧qq § hpW˚q ` Op logK
K

L

�
q

where L is a constant bounding the magnitude of the sub-gradient, i.e. @⌧, ||V||2 § L. For

practical purposes, the number of iterations of sub-gradient descent K is small enough to treat

logK as constant. Hence, to obtain a solution that is within ✏ of optimal, it su�ces to run

K « Op L
�✏q iterations of the above algorithm [129].

74

To prove a rate of convergence for sub-gradient descent, we must establish L, the bound on

the sub-gradient square magnitude. We begin with the following Lemma:

Lemma 1. Consider any objective of the form hpWq “ �
2 ||W||2`losspWq, such that losspWq •

0 and lossp0q “ 1. Let the solution be W˚ “ argmin
W

hpWq. Then ||W˚||2 § 2
� .

Proof. The solution must be at least as good as W “ 0, therefore hpW˚q § 1. Furthermore,

losspW˚q § 1 (assuming the contrary implies hpW˚q ° 1, which is a contradiction). Because

the loss is non-negative, 0 § losspW˚q § 1. We will use this property to finish the proof:

hpW˚q “ �

2
||W˚||2 ` losspW˚q § 1

�

2
||W˚||2 § 1 ´ losspW˚q § 1

||W˚||2 § 2

�

Now we will briefly derive a bound L “ c
´?

2� ` R
¯2

. The hptq
RL,cccppWq and hptq

RL,hpWq
objectives satisfy the criteria of Lemma 1, so we can replace unconstrained minimization with

minimization restricted to the set S “ tW : ||W||2 § 2
�u without changing the solution. It

is also necessary to bound the magnitude of an instance feature vector, ||x||§ R. Note that

W P S implies ||�wq||§ �
b

2
� “

?
2�. By the triangle inequality, ||vpt,⌧q,q

RL,cccp||§
?
2� ` R.

Summing over classes, ||Vpt,⌧q
RL,cccp||2 “ ∞c

q“1 ||vpt,⌧q,q
RL,cccp||2 § c

´?
2� ` R

¯2
.

With a more elaborate derivation, we obtain a tighter bound of L1 “
´?

2� ` 2R
¯2

(see

Appendix 1), which gives a shorter runtime. The bound L1 is applicable for both the heuristic

and CCCP.

To compute Vpt,⌧q
RL,h or Vpt,⌧q

RL,cccp, one could compute each component according to equation

(5.27) or (5.29), but this will take Opnc3q time. Algorithms 2 and 3 compute the sub-gradients

in Opnc2q time (assuming the support instances have already been calculated). Note that

updating the support instances takes Opmq time where m is the number of instances in all

bags. For the heuristic method, computing the support instances is done once at the beginning

of each outer iteration, hence it is not part of the runtime for a single iteration of sub-gradient

descent. In contrast, the CCCP method must recompute the support instances in each iteration

of sub-gradient descent, so the runtime of one iteration of sub-gradient descent is Opm ` nc2q.

75

ALGORITHM 2: Sub-gradient Vpt,⌧q
RL,h

Input: x̂ptq
ij

, Wpt,⌧q, tpX
i

, Y
i

qun
i“1

for q “ 1, . . . , c : do

v
q

– �wpt,⌧q
q

end
for i “ 1, . . . , n; j P Y

i

, k P Ȳ
i

do

if 1 ` wpt,⌧q
k

¨ x̂ptq
ik

´ wpt,⌧q
j

¨ x̂ptq
ij

° 0 then

v
j

– v
j

´ �
i

x̂ptq
ij

v
k

– v
k

` �
i

x̂ptq
ik

end
end

return Vpt,⌧q
RL,h

“ rv1, . . . ,vc

s

ALGORITHM 3: Sub-gradient Vpt,⌧q
RL,cccp

Input: x̂ptq
ij

, x̂pt,⌧q
ij

, Wpt,⌧q, tpX
i

, Y
i

qun
i“1

for q “ 1, . . . , c : do

v
q

– �wpt,⌧q
q

end
for i “ 1, . . . , n; j P Y

i

, k P Ȳ
i

do

if 1`wpt,⌧q
k

¨ x̂pt,⌧q
ik

´wpt,⌧q
j

¨ x̂ptq
ij

° 0 then

v
j

– v
j

´ �
i

x̂ptq
ij

v
k

– v
k

` �
i

x̂pt,⌧q
ik

end
end

return Vpt,⌧q
RL,cccp

“ rv1, . . . ,vc

s

Running T “ OpL1
�✏q iterations of sub-gradient descent gives a runtime of Opm` nc2R2

✏
?
�

q time to

find an ✏-suboptimal solution for the heuristic method, or Op pm`nc2qR2

✏
?
�

q for the CCCP method.

5.4.3.5 Summary of Di↵erences Between CCCP and the Heuristic

Algorithms 4 and 5 list the heuristic and CCCP optimization methods for the rank-loss SIM

objective. We refer to these algorithms as SIM-Heuristic and SIM-CCCP. A major di↵erence

between SIM-CCCP and SIM-Heuristic is that in SIM-CCCP, the support instances must be

re-computed in each iteration of sub-gradient descent, and the sub-gradient depends on these

di↵erent support instances. The heuristic also runs a constant number of iterations of sub-

gradient descent, whereas the CCCP version runs enough to ensure monotonic decrease of the

objective (see Appendix 2 for further discussion of monotonicity). The heuristic can be applied

to either the max or softmax model, and the CCCP algorithm can only be applied to the max

model because softmax is non-convex.

Because the general rank-loss objective is non-convex, the starting weights may a↵ect the

optimum that is found by SIM-CCCP or SIM-Heuristic. We discuss the starting weight con-

struction in Appendix 2.

76

ALGORITHM 4: SIM-Heuristic with rank-loss and max or softmax model
Input: T , K, �, MIML dataset tpX

i

, Y
i

qun
i“1

1 for t “ 1, . . . , T do
2 if t “ 1 then
3 Wptq “ 0

4 @pi, jq : x̂ptq
ij

“ 1
ni

∞

xiqPXi
x
iq

5 else

6 @pi, jq : compute x̂ptq
ij

using the max or softmax model

7 end

8 Wpt,1q “ Wptq

9 for ⌧ “ 1, . . . ,K do

10 Compute V “ Vpt,⌧q
RL,h

with Algorithm 2

11 W “ Wpt,⌧q ´ 1

�⌧
V

12 Wpt,⌧`1q “ mint1,
c

2

�
{||W||uW

13 end

14 ⌧˚ “ argmin
⌧

hptq
RL,h

pWpt,⌧qq
15 Wt`1 “ Wpt,⌧˚q

16 end

17 return WpT`1q

77

ALGORITHM 5: SIM-CCCP with rank loss and max model
Input: T , K, K

max

, �, MIML dataset tpX
i

, Y
i

qun
i“1

1 for t “ 1, . . . , T do
2 if t “ 1 then
3 Wptq “ 0

4 @pi, jq : x̂ptq
ij

“ 1
ni

∞

xiqPXi
x
iq

5 else

6 @pi, jq : x̂ptq
ij

“ argmax
xiqPXi

w
j

¨ x
iq

7 end

8 Wpt,1q “ Wptq

9 improved “ False
10 ⌧

total

“ 0
11 while p improvedq ^ ⌧

total

† K
max

do
12 for ⌧ “ 1, . . . ,K do
13 ⌧

total

“ ⌧
total

` 1

14 @pi, jq : x̂pt,⌧q
ij

“ argmax
xiqPXi

w
j

¨ x
iq

15 Compute V “ Vpt,⌧q
RL,cccp

with Algorithm 3

16 W “ Wpt,⌧q ´ 1

�⌧
total

V

17 Wpt,⌧`1q “ mint1,
c

2

�
{||W||uW

18 end

19 ⌧˚ “ argmin
⌧

hptq
RL,cccp

pWpt,⌧qq
20 Wt`1 “ Wpt,⌧˚q

21 if hptq
RL,cccp

pWpt`1qq † hptq
RL,cccp

pWptqq then
22 improved “ True
23 end
24 end
25 end

26 return WpT`1q

ALGORITHM 6: Random Fourier Kernel Features (Rahimi and Recht 2007)

Input: Positive definite shift-invariant kernel kpx,yq “ kpx ´ yq, feature dimension d, parameter D
1 Compute the Fourier transform p of k: pp!q “ 1

2⇡

≥

e´j!¨�kp�qd�
2 Draw D i.i.d. samples !1, . . . ,!D

P Rd from pp!q
3 Let zpxq “

b

1
D

rcosp!1 ¨ xq, sinp!1 ¨ xq, . . . , cosp!
D

¨ xq, sinp!
D

¨ xqs

78

5.4.4 Non-linear Classification via Kernels

So far we have only considered linear classifiers. There are several ways to extend our proposed

methods to non-linear classification via kernels. One way is to use the standard dual kernel

trick. Shalev-Shwartz et al. [131] suggest a di↵erent trick for Pegasos that could be applied

to our proposed methods as well. The key idea in kernelizing Pegasos is to observe that all

changes to the weights in the primal algorithm are either adding a linear multiple of instance

features or multiplying by a scalar. We could redefine fjpxq “ ∞m
i“1 ↵ijKpxi,xq and proceed

with the primal algorithm, but make equivalent changes to ↵ rather than W. Both of these

methods have a disadvantage of increasing the asymptotic complexity to solve the optimization

problem.

We instead use the random Fourier feature method of Rahimi and Recht [119] (Algorithm

6), which approximates a kernel while preserving linear runtime. The main idea in this method

is to transform the feature vectors first, then apply exactly the same linear training algorithm.

The feature vector x is transformed to a feature zpxq such that with high probability zpxq ¨
zpyq « kpx,yq, where kpx,yq “ kpx ´ yq is a shift invariant kernel. This method can be

applied with the radial basis function (RBF) kernel kpx,yq “ expt´�||x ´ y||2u. To use this

algorithm with the RBF kernel k, we need to compute its Fourier transform pp!q and draw

D i.i.d. samples !1, . . . ,!D P Rd from pp!q, where D is a parameter that can be adjusted to

control approximation accuracy. It can be shown that for the RBF kernel with parameter �,

this is equivalent to sampling each of the d components of !i from a normal distribution with

0 mean and variance 2�.

5.5 Experiments

Our experiments compare di↵erent loss functions, aggregation models, and optimization meth-

ods. We also investigate the e↵ectiveness of random Fourier kernel features for non-linear

classification.

5.5.1 Experimental Setup

This section discusses the datasets, baseline methods, parameter optimization, and transductive

or inductive modes used in our experiments.

79

Table 5.2: MIML datasets

Dataset Classes Dimension Bags Instances
HJA Birdsong 13 38 548 10,232
MSRC v2 23 48 591 1,758
Letter-Carroll 26 16 166 717
Letter-Frost 26 16 144 565
Pascal VOC 2012 20 48 1,053 4,143

5.5.1.1 Datasets

Table 5.5.1.1 summarizes the properties of each dataset used in our experiments. All of these

datasets are available online.3

HJA Bird Song Our collaborators have collected audio recordings of bird song at the H. J.

Andrews (HJA) Long Term Ecological Research Site, using unattended omnidirectional micro-

phones. Our goal is to automatically identify the species of bird responsible for each utterance

in these recordings, thereby generating an automatic acoustic survey of bird populations. This

problem is a natural fit for the MIML instance annotation framework. We treat a 10-second

audio recording as a bag with labels corresponding to the set of species present in the recording.

The instances are segments in a spectrogram. A spectrogram is a graph of the spectrum of

a signal as a function of time (computed by applying the Fast Fourier Transform to succes-

sive overlapping frames of the audio signal). Figure 5.1 shows an example spectrogram for a

10-second audio recording containing several species of birds.

Starting with a 10-second audio recording, we first convert it to a spectrogram. A series

of preprocessing steps are then applied to the spectrogram to reduce noise, and to identify

bird song segments in the audio. Each segment is considered an instance and described by a

38-dimensional feature vector characterizing the shape of the segment, its time and frequency

profile statistics, and a histogram of gradients.

This dataset contains 548 10-second recordings (bags), and a total of 10,232 segments (in-

stances), of which 4,998 are labeled, and the rest are unlabeled. The available instance labels

were provided by a human expert. The spectrograms were originally labeled by manually

3
http://web.engr.oregonstate.edu/

~

briggsf/kdd2012datasets

80

0 10
0

8

Time (seconds)

Fr
eq

ue
nc

y
(k

H
z)

Varied Thrush Hermit Warbler Swainson's ThrushUnlabeled

Figure 5.1: An example spectrogram from the HJA Birdsong dataset. This spectrogram corre-
sponds to one bag. Each outlined region is an instance.

drawing bounding boxes (not shown) around regions of the spectrogram corresponding to bird

sound, and giving a single species label to each box. The bag-level label sets were formed by

taking the union of these bounding box labels. The instances (segments) are produced by an

automatic segmentation/detection algorithm, which does not necessarily match the manually

drawn boxes. The labels for instances are obtained by matching each segment with the bound-

ing box that overlaps with it most. If a segment does not overlap with any bounding box, it is

designated as unlabeled. Further details on the collection of audio and feature extraction for

this dataset are available in [18].

This dataset presents some deviations from the standard MIML assumption that a bag’s

label set is the union of its instance labels. First, there are unlabeled instances that may not

be accounted for in the bag label set. Second, sometimes when multiple birds make sounds

that directly overlap in the spectrogram, the segmentation algorithm may fail to separate those

sounds, and create a segment that is given a single label although it actually represents two

species. In rare cases, this can lead to labels in a bag label set that do not correspond with any

instance (according to the instance-level labels).

One of the goals of our experiments is to evaluate how various instance annotation algorithms

handle the issue of unlabeled instances. Toward this goal, we consider two variants of this

dataset: “filtered” and “unfiltered”. For the filtered variant, all of the unlabeled instances are

81

Figure 5.2: An image from MSRC v2 and the corresponding pixel-level labeling. The classes in
this image are ‘sky’, ‘trees, ‘grass’, ‘body’, and ‘car’. The black regions are ‘void’; we discard
void regions.

removed, and in the unfiltered variant they are left in during the training process. In both

variants, the accuracy is measured only on the labeled instances.

Image Dataset: MSRC v2 A subset of the Microsoft Research Cambridge (MSRC) image

dataset4 [154] named “v2” contains 591 images and 23 classes. The MSRC v2 dataset is useful

for the instance annotation problem, because pixel-level labels are included (Fig. 5.2). Several

authors used MSRC v2 in MIML experiments [148, 159, 165].

We construct a MIML dataset from MSRC v2 as follows. We treat each image as a bag. The

bag label set is the list of all classes present in the ground-truth segmentation (i.e. the union

of the instance labels). The instances correspond to each contiguous region in the ground-

truth segmentation (to simplify the experiment, we use the ground-truth segmentation rather

than automatic segmentation). Each instance is described by a 16-dimensional histogram of

gradients [42], and a 32-dimensional histogram of colors.

PASCAL Visual Object Challenge 2012 The PASCAL Visual Object Challenge (VOC)

2012 Segmentation dataset [57] consists of images with per-pixel ground-truth labeling into 20

classes such as ‘car’, ‘boat’, ‘bird’, ‘person’, ‘cow’, and ‘chair’. Each image has a corresponding

segmentation into objects, and a class-label for each region (Fig. 5.3). We construct a MIML

4
http://research.microsoft.com/en-us/projects/objectclassrecognition/default.htm

82

Image Instances Instance Labels

Figure 5.3: An image from PASCAL VOC 2012, the corresponding segmentation into instances,
and the instance labels.

dataset by treating each image as a bag, and each object as an instance. In the ground-truth

segmentation, each object is denoted with a di↵erent color; in some cases multiple disconnected

regions are grouped as the same object. We construct the same histogram of gradients and

histogram of colors features as used in the MSRCV v2 dataset to describe the collection of

pixels in each object.

Many images in VOC only contain one type of object but multiple instances. Therefore

all of the instances in such images are labeled unambiguously. To make the problem more

challenging, we discard all images with a single label. After discarding single-label images, we

are left with 1,053 images.

Synthetic MIML Datasets Limited availability of MIML datasets with instance labels has

been a barrier to studying instance annotation (because instance labels are needed to evaluate

accuracy). Using the Letter Recognition dataset [65] from the UCI Machine Learning repository,

we construct two synthetic MIML datasets. The Letter Recognition dataset consists of 20,000

instances with 16-dimensional features, and 26 classes. Note that randomly forming the bags

will not be realistic because real-world MIML problems often have correlations between labels.

Instead, we generate datasets derived from the words in two poems, “Jabberwocky” [24], and

“The Road Not Taken” [66]. We call these datasets Letter-Carroll and Letter-Frost. For each

word in these poems, we create a bag, with instances corresponding to the letters in the word.

For each instance, we sample (without replacement), an example from the Letter Recognition

dataset with the corresponding letter. The bag-level labels are the union of the instance labels.

For example, the word “diverged” is transformed into a bag with 8 instances, and the label set

td, i, v, e, r, gu.

83

5.5.1.2 Transductive vs. Inductive

We consider instance annotation in two di↵erent modes: transductive and inductive. In the

transductive mode, the goal is to predict the instance labels for bags with known label sets. In

this mode, the instance-level classifiers can only predict labels that appear in the bag label set.

Formally, the instance classifier in the transductive mode is fpxiqq “ argmaxjPY
i

fjpxiqq. In the

inductive mode, the goal is to predict instance labels in previously unseen bags (with unknown

label sets). There is no restriction on which label an instance may be given in this case.

For both modes, we compute classifier accuracy as the fraction of instances correctly clas-

sified. For the inductive mode, we run 10-fold cross-validation and report average accuracy ˘
standard deviation in accuracy between folds. We did not use 10-fold cross validation for the

VOC dataset, but instead used a partition of the dataset into ‘train’ and ‘val’ subsets, which

was included with the dataset. For the transductive mode, we disregard this partition and

use all 1,053 images, and for the inductive mode we learn from the ‘train’ subset and evaluate

accuracy on the ‘val’ subset. That is why the VOC column in Table 5.5.2(c) and (d) does list

a standard deviation.

5.5.1.3 Baseline Methods

To directly compare our proposed rank loss objective with Hamming loss, we modify the SIM-

Heuristic algorithm to use Hamming loss instead of rank loss. We also consider another baseline

M3MIML, which is designed to make predictions at the bag level but learns an instance-level

model using Hamming loss. We also compare rank loss to the ambiguous loss function used

by Cour et al. [40]. Finally, as a reference we evaluate a SISL SVM classifier, which has the

unfair advantage of learning directly from instance labels. Below we summarize these baseline

methods.

Hamming-Loss SIM To compare Hamming loss to rank loss, we use the following Hamming-

loss objective, with Fjp¨q instantiated with either the max or softmax aggregation models

hHampWq “ �

2
||W||2 ` 1

nc

n
ÿ

i“1

c
ÿ

j“1

maxt0, 1 ´ YijFjpXiqu (5.30)

84

or in terms of support instances,

ĥHampWq “ �

2
||W||2 ` 1

nc

n
ÿ

i“1

c
ÿ

j“1

maxt0, 1 ´ Yijwj ¨ x̂iju (5.31)

To optimize this objective, we use a variation of the SIM-Heuristic algorithm with the sub-

gradient5

vpt,⌧q,q
Ham “ �wpt,⌧q

q ´ 1

nc

n
ÿ

i“1

IrYiqwpt,⌧q
q ¨ x̂ptq

iq † 1sYiqx̂ptq
iq (5.32)

M3MIML Algorithm M3MIML is a MIML algorithm designed to make predictions at the

bag level, however, it learns an instance-level model, which can be used for instance annotation.

Similar to our approach, M3MIML learns one linear model per class and uses the max bag-level

model for Fj . The optimization problem for M3MIML is formulated as minimizing ||W||2 where
W “ rw1, . . . ,wcs, subject to the constraints of correct output at the bag-level,

YijFjpXiq • 1 for i “ 1, . . . , n, j “ 1, . . . , c (5.33)

Note that the equivalent unconstrained objective is regularized Hamming-loss. If Yij “ ´1, the

constraint is convex, and is converted to a set of linear constraints

´max
xPX

i

wj ¨ x • 1 (5.34)

@x P Xi : ´wj ¨ x • 1 (5.35)

If Yij “ `1, the constraint is non-convex, and M3MIML’s formulation replaces it with a linear

upper bound,

max
xPX

i

wj ¨ x • 1

ni

ÿ

xPX
i

wj ¨ x • 1 (5.36)

After several more steps (e.g., adding slack variables and switching to the dual), M3MIML is

formulated as a QP with linear constraints. Unlike the CCCP approach, only a single QP is

5Note that (5.30) satisfies the conditions for Lemma 1 and a bound on the magnitude of the sub-gradient of

L “ c

2

´?
2� ` R

c

¯2
su�ces. The proof of this bound is similar to the short derivation in Sec. 5.4.3.4.

85

solved rather than a sequence.

Ambiguous Label Classification (ALC) Cour et al. [39] proposed an SVM formulation

for the ALC problem. We refer to their algorithm as CLPL because it is implemented in the

Convex Learning from Partial Labels Toolbox [40]. We compare our proposed method to CLPL

because they both learn one linear model per class fjpxq “ wj ¨ x and predict the instance

label as argmaxj fjpxq, and both use an L2 regularized loss function. The primary di↵erence

in Cour’s ALC method is that the loss function is designed for use with ALC data (instead of

the bag-level loss functions we use for MIML data). The ALC loss function is a convex upper

bound to the 0/1 loss with respect to the true (unknown) instance labels,

Lpf,x, Y q “ maxt0, 1 ´ 1

|Y |
ÿ

jPY
fjpxqu2 `

ÿ

jRY
maxt0, 1 ` fjpxqu2

Minimizing this loss function can be accomplished by a reduction to a SISL SVM problem

with squared hinge-loss, and solved using an o↵-the-shelf linear SVM. In our experiments, we

use the L2 regularized square-loss dual solver in LIBLINEAR [61] to implement CLPL.

Single Instance Single Label SVM We also run a standard SISL SVM for the inductive

mode, whose performance can be interpreted as an empirical upper bound for inductive instance

annotation because it is trained using unambiguously labeled instances. For this experiment,

we use LIBSVM [26] with a linear kernel. Note that LIBSVM uses one linear model for each

pair of classes rather than one for each class.

5.5.1.4 Parameter Optimization

The SIM algorithms have a regularization parameter �. Similarly, CLPL and M3MIML have a

regularization parameter C. We repeat all experiments for each value of � P t10´6, . . . , 10´9u,
C P t101, . . . , 104u for CLPL, and C P t10´2, . . . , 106u for M3MIML, then report the maximum

accuracy achieved by each method over all parameters (we refer to this process as post-hoc

parameter selection). We expect these ranges of parameters to be su�cient based on preliminary

experiments in which we used larger ranges [16].

Where the random Fourier kernel features are used, the parameter D “ 50 (as in [119]),

and we jointly optimize the regularization parameter and the RBF kernel parameter over a grid

86

with the aforementioned values of � or C, and � P t103, 104, 105u. This range of values for �

was selected by manual tuning.

For the SISL SVM, the regularization parameter C is optimized by nested 10-fold cross-

validation (within each fold of 10-fold cross validation, we run 10-fold cross validation in the

training set to select the parameter). We search over the range C P t101, . . . , 107u. With values

of C larger than 107, LIBSVM becomes prohibitively slow.

The parameters T , K, and Kmax control the tradeo↵ between convergence and runtime.

These parameters are manually selected by empirically observing the typical convergence be-

haviors of di↵erent algorithms. In particular, for the SIM heuristic algorithms, we use T “ 10

outer iterations, with K “ 100 iterations of sub-gradient descent. For the CCCP algorithm,

we use T “ 10, K “ 100, and Kmax “ 1000. Figure 5.4 shows that most improvement in

the rank loss objective occurs within T “ 10 outer iterations. We presented empirical results

in [16] showing that K “ 100 is a reasonable number of iterations of sub-gradient descent.

Kmax “ 1000 is chosen rather conservatively based on empirical observation to ensure mono-

tonicity in CCCP. Note that it is possible further increasing T , K and Kmax values may lead

to slightly better performance due to better convergence, however, we consider these values

su�cient for problems with a similar number of classes.

5.5.2 Results

Accuracy results are listed in Table 5.5.2. In particular, Tables 5.5.2 (a) and (b) present the

accuracy results for the transductive mode (with no kernel, and the RBF kernel respectively).

Tables 5.5.2 (c) and (d) present the results for the inductive mode.

Following the recommendations of Demšar [48] for statistical comparison of multiple classi-

fiers on multiple datasets, we summarize comparisons between two methods using win-tie-loss

counts (and do not discard some wins or losses based on a pairwise significance test). Counts

are aggregated over all datasets including Birdsong* but not including the unfiltered variant.

5.5.2.1 Comparison of Loss Functions

We first compare rank loss vs. Hamming loss versions of SIM-Heuristic. This is a direct com-

parison between the two loss functions because all other aspects are kept the same, i.e. the

aggregation model and optimization method. Considering five datasets (all but the unfiltered

87

Table 5.3: Instance annotation accuracy results

(a) Transductive accuracy, no kernel. * – filtered variant

Algorithm Loss Model Carroll Frost Birdsong* Birdsong MSRC v2 VOC
SIM-Heuristic Rank max .719 .780 .815 .801 .699 .633
SIM-CCCP Rank max .744 .805 .816 .803 .720 .634
SIM-Heuristic Rank softmax .721 .814 .815 .810 .718 .630
SIM-Heuristic Hamming max .415 .495 .707 .599 .581 .541
SIM-Heuristic Hamming softmax .500 .548 .781 .603 .603 .557
CLPL Ambiguous – .672 .688 .742 .678 .678 .598
M3MIML Hamming max .454 .532 .651 – .547 .533

(b) Transductive accuracy, random Fourier kernel features

SIM-Heuristic Rank max .817 .792 .822 – .756 .642
SIM-CCCP Rank max .807 .780 .829 – .798 .623
SIM-Heuristic Rank softmax .794 .819 .833 – .766 .634

(c) Inductive accuracy ˘ standard deviation over 10-fold cross validation, no kernel

SIM-Heuristic Rank max .531 ˘ .054 .562 ˘ .057 .602 ˘ .033 .522 ˘ .032 .442 ˘ .044 .354
SIM-CCCP Rank max .551 ˘ .038 .555 ˘ .065 .607 ˘ .038 .530 ˘ .021 .473 ˘ .029 .350
SIM-Heuristic Rank softmax .540 ˘ .049 .573 ˘ .052 .618 ˘ .041 .556 ˘ .062 .460 ˘ .042 .357
SIM-Heuristic Hamming max .114 ˘ .030 .141 ˘ .045 .239 ˘ .051 .133 ˘ .062 .152 ˘ .049 .143
SIM-Heuristic Hamming softmax .150 ˘ .049 .166 ˘ .062 .342 ˘ .044 .197 ˘ .052 .223 ˘ .034 .215
CLPL Ambiguous – .464 ˘ .058 .506 ˘ .063 .620 ˘ .038 .535 ˘ .033 .431 ˘ .036 .345
M3MIML Hamming max .288 ˘ .041 .313 ˘ .041 .433 ˘ .073 – .317 ˘ .055 .396
SISL SVM Hinge – .772 ˘ .049 .753 ˘ .038 .772 ˘ .032 – .638 ˘ .045 .440

(d) Inductive accuracy ˘ standard deviation over 10-fold cross validation, random Fourier kernel features

SIM-Heuristic Rank max .565 ˘ .060 .590 ˘ .051 .645 ˘ .039 – .499 ˘ .044 .339
SIM-CCCP Rank max .618 ˘ .042 .576 ˘ .065 .630 ˘ .040 – .519 ˘ .044 .343
SIM-Heuristic Rank softmax .596 ˘ .041 .587 ˘ .066 .642 ˘ .039 – .506 ˘ .038 .337

88

Birdsong dataset to avoid the compounding factor of noise instances), two di↵erent aggregation

models (max and softmax) and two di↵erent settings (transductive and inductive), there are

a total of 20 direct comparisons between the two loss functions. The win-tie-loss count for

rank-loss vs. Hamming loss is 20-0-0, a decisive win for rank loss.

We next compare rank-loss SIM-Heuristic and SIM-CCCP with M3MIML. Since M3MIML

uses the max aggregation model, we compare it with SIM-heuristic with max, resulting in 10

total comparisons, and a win-tie-loss count of 9-0-1 in favor of SIM-Heuristic. For SIM-CCCP

vs. M3MIML, the win-tie-loss count is also 9-0-1. Finally, comparing SIM-Heuristic with rank

loss and max or softmax to CLPL (ambiguous loss), the win-tie-loss count is 18-0-2. Overall,

these results suggest that rank loss consistently outperforms Hamming or ambiguous loss.

5.5.2.2 Comparison of Aggregation Models

Next we compare the max and softmax aggregation models. Focusing on rank loss, we count

wins, ties, and losses using the SIM-Heuristic algorithm across five datasets, in transductive

and inductive modes, with or without a kernel, resulting in a total of 20 comparisons. The

overall win-tie-loss count for softmax vs. max is 13-1-6 in favor of softmax. Interestingly, if we

focus on only linear models (i.e., no kernel features), the win-tie-loss count is 8-1-1, suggesting a

dominant win for softmax. In contrast, when using kernel features, the count is 5-0-5, indicating

a tie between the two aggregation models. We suggest that softmax achieves higher accuracy

than max when using linear models because softmax is less sensitive to outliers and noise. We

speculate that the di↵erence between max and softmax is less when a kernel is used because

outliers and noise have a local e↵ect on the decision boundaries of the classifier, rather than

skewing the boundaries globally as with a linear classifier.

5.5.2.3 The E↵ect of Unlabeled Instances

Recall that the Birdsong dataset has a filtered and unfiltered variant (Birdsong* is the filtered

variant). The unfiltered variant contains instances that were left unlabeled and are not nec-

essarily accounted for in the bag-level label sets. Note surprisingly, all algorithms su↵er some

degradation in accuracy in the presence of these unlabeled instances. There are a few interesting

points to note. First, the performance degradation for rank loss is often substantially smaller

relative to the other loss functions used in the comparison, including both Hamming loss and

89

CLPL. This suggests that rank-loss is more noise robust than other loss functions. We also

note that the accuracy of the max model decreases by more than the accuracy of the softmax

model; max is known to be sensitive to outliers and noise. In contrast the softmax model is

more robust in the presence of noise instances.

5.5.2.4 Comparison of CCCP and Heuristic Optimization

Because SIM-CCCP is not applicable to the softmax model, we focus on the max model in

a comparison of SIM-Heuristic and SIM-CCCP. One point of interest is the convergence of

these two algorithms on the non-convex rank-loss objective. Figure 5.4 shows the objective hRL

vs. the number of outer iterations for SIM-Heuristic and SIM-CCCP (recall one outer iteration

consists of updating support instances, and solving a convex problem). Observe that CCCP

monotonically decreases the objective, while the heuristic occasionally increases the objective

[e.g., Fig. 5.4 (e)]. CCCP generally achieves lower (better) objective values than the heuristic.

Comparing the accuracy of the two methods over all results in the transductive and inductive

modes, with or without a kernel, the count for SIM-CCCP vs. SIM-Heuristic is 13-0-7, slightly

in favor of CCCP. These results suggest that the lower-objective solutions obtained by CCCP

often translate to improved accuracy.

5.5.2.5 Random Fourier Kernel Features

We now examine accuracy improvements achieved by using random Fourier kernel features [119].

Results using this method are listed in Tables 5.5.2 (b) and (d). From these results we see that

the random Fourier kernel features often improve accuracy, sometimes by as much as 10%

(e.g., transductive SIM-Heuristic with max on the Letter-Carroll dataset). More specifically, we

compare the results obtained using kernel features (Tables 5.5.2 (b) and (d)) against the results

of corresponding linear methods (the first three rows of Tables 5.5.2 (a) and (c) respectively),

resulting in a total of 30 comparisons. The aggregated win-tie-loss counts for kernel vs. no

kernel features is 25-0-5 in favor of kernel features.

90

1 2 5 10
0.1

0.2

0.5

1

Iterations

D
C

O
bj

ec
tiv

e

(a) Letter-Carroll

1 2 5 10
0.1

0.2

0.5

1

Iterations

D
C

O
bj

ec
tiv

e

(b) Letter-Frost

1 2 5 10
0.1

0.2

0.5

1

Iterations

D
C

O
bj

ec
tiv

e

(c) HJA Birdsong*

1 2 5 10

0.5

1

Iterations

D
C

O
bj

ec
tiv

e

(d) MSRC v2

1 2 5 10

0.5

1

Iterations

D
C

O
bj

ec
tiv

e

(e) VOC 2012

Figure 5.4: The objective hRL vs. number of iterations of SIM-CCCP and SIM-Heuristic. SIM-
CCCP is the dotted line. Transductive mode, max model, � “ 10´7.

5.5.2.6 Parameter Selection by Cross-Validation

In all of the results discussed so far, we use post-hoc parameter selection. In other words, we run

the whole experiment multiple times with di↵erent parameters, and report the result with the

best instance-level accuracy. This parameter selection is done the same way for all algorithms

(including CLPL and M3MIML), so no algorithm gains an unfair advantage. However, this

method cannot be used in practice unless some instance labels are known. One might label a

relatively small number of instances specifically for this purpose.

In a scenario where no instance labels are known, cross-validation cannot be used to select

the regularization parameter � that gives the best instance-level accuracy. We propose instead

to use cross-validated rank loss as a selection criteria for � as follows:

• Apply -fold cross-validation. For each fold l “ 1, . . . ,, partition the dataset into two

sets Trainplq and Testplq.

• In each fold l, train an SIM on Trainplq, then compute un-regularized rank loss on Testplq.

91

-8 -6 -4 -2 0
0

0.2

0.4

0.6

0.8

1

log10(λ)

(a) Letter-Carroll

-8 -6 -4 -2 0
0

0.2

0.4

0.6

0.8

1

log10(λ)

(b) Letter-Frost

-8 -6 -4 -2 0
0

0.2

0.4

0.6

0.8

1

log10(λ)

(c) HJA Birdsong*

-8 -6 -4 -2 0
0

0.2

0.4

0.6

0.8

1

log10(λ)

(d) MSRC v2

-8 -6 -4 -2 0
0

0.2

0.4

0.6

0.8

1

log10(λ)

(e) VOC 2012

0 1 2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cross-Validated Rank Loss

In
st

an
ce

 A
cc

ur
ac

y

(f) Letter-Frost

Figure 5.5: (a–e) Solid line – accuracy vs. �. Dotted line – RLp�q, i.e. cross-validated bag-level
rank loss. (f) Scatter plot of accuracy and RLp�q for the Letter-Frost dataset.

Compute the average rank loss over all folds as a function of �,

RLp�q “ 1




ÿ

l“1

ÿ

iPTestplq

ÿ

jPY
i

,kRY
i

�imaxt0, 1 ´
`

FjpXiq ´ FkpXiq
˘

u (5.37)

• Select the � that gives the lowest loss averaged over all folds,

�̂ “ argmin
�

RLp�q (5.38)

Note that we did not use this method in other experiments because it increases runtime by

an order of magnitude compared to post-hoc selection (applying this method in the transduc-

tive mode involves cross-validation; in the inductive mode it would be nested cross-validation,

e.g., 10-fold CV within each fold of 10-fold CV). Cour et al. [40] proposed a similar parameter

selection scheme for ALC wherein the regularization parameter is selected by cross-validated

92

Table 5.4: Empirical runtime (seconds), transductive, no kernel, � “ 10´7.

Algorithm Loss Model Carroll Frost Birdsong* MSRC v2 VOC
SIM-Heuristic Rank max 12.6 9.8 21.0 64.1 139.1
SIM-Heuristic Rank softmax 13.6 10.2 23.3 68.9 147.1
SIM-CCCP Rank max 53.7 59.8 132.8 269.9 443.3

ambiguous loss.

To test our proposed parameter selection method within a reasonable amount of time, we

focus on the transductive mode. Using the SIM-Heuristic algorithm with softmax, we vary

� P t10´9, . . . , 100u and at each value of �, compute the instance-level accuracy and cross-

validated rank loss. Figure 5.5 (a–e) shows the instance-level accuracy and cross-validated

rank-loss as a function of � for each dataset. From these results, we see that the value of

� selected by minimizing cross-validated rank loss is generally close to the value of � that

maximizes instance-level accuracy. Figure 5.5 (f) shows an example scatter plot of accuracy

and cross-validated rank loss from the Letter-Frost dataset. Each point corresponds to one

value of �. The line is a linear least-squares fit. This plot shows that lower cross-validated rank

loss generally corresponds with higher instance accuracy. Scatter plots are similar for the other

datasets. We find experimentally that the proposed method is reasonably e↵ective for selecting

the regularization parameter in the absence of any instance-labels.

5.5.2.7 Empirical Runtime

Table 5.5.2.7 gives empirical runtimes in seconds6 for our proposed methods. These results are

obtained in the transductive mode, with a fixed regularization parameter � “ 10´7, and no

kernel. In all cases, the runtime is on the order of minutes or seconds. The runtime using the

softmax model is slightly more than using the max model. The runtime for CCCP is longer

than the heuristic because it recomputes support instances in every iteration of sub-gradient

descent, and runs more iterations of sub-gradient descent to ensure monotonicity.

6These runtimes are measured on a 2010 MacPro with 2.4 GHz Intel Xeon processor and 16 GB of 1066 MHz
DDR3 memory. The algorithms are implemented in C++ and compiled with GCC 4.0.

93

5.5.2.8 Overall Summary

Comparing our proposed methods SIM-CCCP with max and SIM-Heuristic with softmax, nei-

ther is best all the time. Generally, we observe that SIM-CCCP with max achieves higher

accuracy when bag label sets are exactly equal to the union of instance labels. When this

assumption does not hold, SIM-Heuristic with softmax tends to achieve higher accuracy. SIM-

Heuristic with softmax provides the best balance of run-time and accuracy.

SISL SVM in the inductive mode [Table 5.5.2 (c)] achieves a much higher accuracy than any

of the MIML algorithms. This result is expected as the SISL SVM has access to labeled instances

when training, while the MIML algorithms do not. However, this accuracy gap suggests that

there is still a lot of room for improvement in the instance annotation algorithms.

5.6 Related Work

MIML algorithms are developed under multiple frameworks, some of which naturally lend

themselves to instance annotation. One such framework is graphical models, which have been

previously used to perform bag and instance-level classification. Such models often treat in-

stance labels as latent variables. Inference over such models allows the classification of instances.

While a variety of algorithms exists, we highlight some representative examples of recent work.

Dirichlet-Bernoulli Alignment [160] and the Exponential Multinomial Mixture model [161] are

topic models for MIML datasets and use variational inference to perform instance labeling. Zha

et al. [165] proposed the MLMIL algorithm, a conditional random field model for MIML image

annotation that uses Gibbs sampling to infer instance labels. Du et al. [51] proposed another

application of graphical models to simultaneous image annotation and segmentation.

While graphical models o↵er intuitive probabilistic interpretation, the computational com-

plexity of inference in such models is one of the standing challenges. In this work, we focus

on another class of MIML approaches based on regularized loss minimization. Hamming-Loss

SIM can be viewed as alternative approach for optimizing a similar objective to the M3MIML

algorithm [168] (which learns an instance-level model, but was not designed for instance an-

notation). Also note that CLPL follows the same framework of regularized loss minimization

(but using a loss function designed for ALC).

There are a small number of other works that address MIML instance annotation. Vijaya-

narasimhan and Grauman [148] developed a MIML SVM that learns a bag-level model with

94

a set kernel (it does not learn a model of the instance feature space). Their algorithm makes

predictions at either the bag or instance level by treating an instance as a bag of one instance.

Vezhnevets et al. [147] proposed an algorithm for instance annotation in MIML data where

images are represented as a bag of pixels. Their algorithm alternates between sampling in-

stance labels from an estimated distribution, and training an ensemble of decision trees on the

sampled labels. Similarly, Nguyen [115] proposed a MIML SVM algorithm which alternates

between assigning instance labels and maximizing margin given the assigned labels (although

they did not conduct experiments on instance annotation).

Similar to our approach, the MI-SVM algorithm [4] for multi-instance learning (MIL) uses

CCCP to handle non-convexity (note the interpretation of MI-SVM as an instance of CCCP is

due to Cheung and Kwok [34]). D-MimlSvm [172] also uses CCCP to optimize Hamming loss.

In recent work, Li et al. [96] consider the problem of identifying the “key instances” that

trigger labels. This problem is similar to instance annotation, but di↵ers in that the goal is not

to label all instances, but instead to select a set of instances explaining each label.

5.7 Conclusion & Future Work

In this work, we proposed rank-loss support instance machines for instance annotation. The goal

of instance annotation is to learn an instance level-classifier using a MIML dataset for training

data, which does not directly associate instances with labels. We explained why and empirically

showed that rank-loss is superior to other loss functions e.g., Hamming or ambiguous loss for

the instance annotation problem. The SIM algorithm is based on the observation that for the

commonly used max model connecting bag-level labels and instance-level labels, the bag-level

output can be represented as a linear function of a “support instance” which summarizes the

instances in a bag. The SIM model can also be used with the softmax model, which is less

sensitive to noise. The SIM model poses a non-convex optimization problem; we o↵er a heuristic

solution which is applicable to either max or softmax and a CCCP method which can be applied

to the max model and guarantees monotonic decrease in the non-convex objective. In either

optimization method, the basic process is to alternate between updating support instances,

and solving a convex problem to minimize rank loss. We give a primal sub-gradient descent

algorithm for solving these convex problems with linear runtime in the number of bags and

instances. We also demonstrate that an approximate kernel method often improves accuracy,

while retaining linear runtime.

95

In future work we will examine deviations from the basic assumptions of MIML instance

annotation. For example, the assumption that a bag label set is the union of instance labels is

often violated. This may be the case when the labeler does not provide a complete labeling of the

data, and only labels a subset of relevant classes. Another interesting problem is recognizing

when an instance does not belong to any of the known classes. This is a common issue in

machine vision datasets, where there is often background scenery or novel objects that are

not labeled. Finally, one should remember that when MIML instance annotation is applied,

the classic SISL approach is also an option, and typically gives higher accuracy at the cost of

increased e↵ort to label instances. Learning from a “mixed granularity” dataset consisting of

mostly bag-level label sets and a few unambiguously labeled instances is one potential way to

achieve the higher accuracy of SISL with the reduced labeling e↵ort of MIML. However, this

idea has received little study so far [148].

96

Chapter 6: Context-Aware MIML Instance Annotation1

6.1 Introduction

Instance annotation for multi-instance multi-label (MIML) data is a recent and little-studied

problem for supervised classification. A MIML dataset consists of bags of instances paired with

sets of labels. For example, in an image domain, a bag is an image, the instances in the bag

are feature vectors describing regions, and the label set for a bag indicates which objects or

categories the image contains. There are many algorithms that train a classifier on a MIML

dataset to predict the label set for a new bag (e.g., the original formulation of MIML by [172]).

In contrast, MIML instance annotation aims to train a classifier on a MIML dataset to predict

the instance labels. For example, we train a classifier on images paired with sets of objects

they contain, then predict the class label for each region of a new image.

MIML instance annotation di↵ers from the traditional MIML problem of label set prediction

(e.g., M3MIML [168]), and multi-label classification (MLC, e.g., binary relevance). In particular,

it is commonly assumed that each instance only belongs to one class, thus the predictions to be

made are single labels for instances, not label sets. An appropriate objective for MIML instance

annotation is to maximize instance-level accuracy (the fraction of correctly classified instances).

However, it is not possible to train a model that directly optimizes accuracy on the training

data, because instance labels are not available for training. Sometimes it is possible to modify a

MIML or MLC algorithm that is designed for label set prediction, to predict instance labels. The

problem with this approach is that the model is optimized for label set accuracy, not instance

accuracy. Domain-specific instance annotation problems (e.g., for images) have been widely

explored, however, to our knowledge only two prior studies have specifically considered the

general domain-independent MIML instance annotation problem [16, 17]. Briggs et al. [16, 17]

proposed rank-loss Support Instance Machines (SIM), a collection of SVM-style algorithms that

learn a linear instance classifier by minimizing a rank loss objective on bag-level labels.

Prior work [16, 17] has observed that the rank-loss SIM algorithms, as well as several other

baseline methods, achieve lower accuracy for inductive classification of instances (predicting

1“Context-Aware MIML Instance Annotation.” Forrest Briggs, Xiaoli Z. Fern, Raviv Raich. Thirteenth IEEE
International Conference on Data Mining, 2013. ICDM’13.

97

Figure 6.1: Inductive instance annotation without context – “What class is the region of pixels
inside the red box?”

instance labels for previously unseen bags) in comparison to transductive classifications (pre-

dicting instance labels for bags with known label sets). We hypothesize that one way to improve

the performance of inductive classification is to exploit the contextual information provided by

other instances in the same bag.

Figure 6.1 illustrates the importance of using context in inductive instance annotation. The

region of pixels inside the red box is an instance. A MIML instance annotation classifier might

be asked to predict the class label of this instance. Without the context provided by the rest of

the image, it is hard to classify, even for a human. Figure 6.2 shows the rest of the image. With

this context available, it is much easier to recognize the instance. The situation illustrated by

Fig. 6.1 is how inductive MIML instance annotation is posed in prior work [16, 17]. It is not

as important to use the context provided by other instances in the same bag for transductive

classification, because the bag label set is already known, and provides a similar kind of context.

Consider the same example in Fig. 6.1. If we know that the image contains labels “cow” and

“grass,” we do not need to see the rest of the image to conclude that the label for this instance

should be “cow.”

Figure 6.2: Inductive instance annotation with context – “What class is the region of pixels
inside the red box?” This image is from the VOC12 data.

98

This chapter proposes a new algorithm for MIML instance annotation designed to improve

inductive instance classification accuracy by exploiting the context provided by other instances

in the same bag. In particular, we capture the context by modeling label correlations in the

bag label set. The proposed algorithm is a multi-instance multi-label ensemble of classifier

chains, called MIML-ECC (Sec. 6.4). MIML-ECC has no “tuning” parameters (which are

necessarily selected by a heuristic in prior work) (Sec. 6.5.4), and is asymptotically e�cient

in all dimensions of a problem (number of bags, instances, classes, and feature dimension)

(Sec. 6.4.4). The training algorithm is closely related to EM (Sec. 6.4.3), and the classification

algorithm selects the maximum a posteriori (MAP) instance label as estimated by the ensemble

(Sec. 6.4.2). Experiments show that MIML-ECC achieves higher accuracy than several recent

methods and baselines, including Hamming, rank, and ambiguous-loss SVMs, and comparable

accuracy to a recent graphical model (Sec. 6.5.5). Further experiments show that the chain

structure outperforms binary relevance (Sec. 6.5.6), and an ensemble of chains outperforms a

single chain (Sec. 6.5.7).

6.2 Problem Statement

Our goal is to learn an instance-level classifier by training on a MIML dataset consisting of

n bags paired with their corresponding label sets tpB1, Y1q, . . . , pBn, Ynqu, where Bi is a bag,

Yi Ñ Y “ t1, . . . , cu is its label set, and c is the total number of classes. Each bag Bi contains

ni instances, i.e., Bi “ txi1, . . . ,xin
i

u,x P X “ Rd.

We assume that each instance x in Bi has a single label y P Y. The instance labels are not

available in the training data; and we only have ambiguous information about them provided

through the bag label sets.

We consider instance annotation in both transductive and inductive modes, which di↵er in

what information is available at the classification stage. The transductive classifier is defined

as:

y “ fpx, B, Y q : X ˆ 2X ˆ 2Y Ñ Y (6.1)

The notation fpx, B, Y q indicates that we are given all of the instances in a bag B, its label set

Y , and the goal is to predict the label y for a specific instance x in B.

The inductive mode classifies an instance without the bag label set given. Prior work [16] on

99

Table 6.1: Frameworks for supervised classification

Framework Training Dataset Classifier
SISL px1, y1q, . . ., pxn, ynq y “ fpxq : X Ñ Y
MIL pB1, yiq, . . ., pBn, ynq y “ F pBq : 2X Ñ t0, 1u
MLC px1, Y1q, . . ., pxn, Ynq Y “ fpxq : X Ñ 2Y

MIML pB1, Y1q, . . ., pBn, Ynq Y “ F pBq : 2X Ñ 2Y

ALC/SLL px1, Y1q, . . ., pxn, Ynq y “ fpxq : X Ñ Y

MIML instance annotation formulates the inductive classifier as fpxq : X Ñ Y, which ignores

any contextual information from the bag containing x. We instead formulate the inductive

classifier as

y “ fpx, Bq : X ˆ 2X Ñ Y (6.2)

The di↵erence is that when classifying an instance x, we know that it is part of a bag B, and

can use the contextual information of B to improve the prediction.

6.2.1 Related Problems

There are many other formulations of supervised classification that are related to MIML instance

annotation. The main di↵erence between these frameworks is the structure of training data

(instance or bag, single- or multi-label), and the input to and type of prediction made by the

classifier (instance-level or bag-level, single or multi-label). Refer to Table 6.1 for a statement

of the training data and inductive classifier in each framework.

The most common supervised classification formulation is single-instance single-label (SISL).

Most standard methods such as support vector machines, decision trees, and logistic regression

are for SISL. Multiple-instance learning (MIL) is a framework where the training data consists

of bags of instances paired with a single binary label, and the classifier maps bags to binary

labels. Multi-label classification (MLC) [122] pairs single instances with sets of labels, and the

goal is to predict a label set given a new instance.

Ambiguous label classification (ALC) [40] and superset label learning (SLL) [99] have the

same structure of training data as MLC, but assume only one label in the set is correct and

100

the rest are “distractors.” The goal is to learn a classifier to predict a single label for a new

instance. MIML instance annotation can be reduced to ALC/SLL by pairing each instance

with its bag label set. However, this reduction can be undesirable as it discards the context of

the bag.

6.3 Background

A key observation motivating our approach is that the context provided by a bag’s label set is

useful for classifying instances. In the previous example, knowing that there is “grass” in the

image can help for predicting the label “cow” for the given instance, because the labels “cow”

and “grass” are correlated. A natural way to exploit such context is to follow a classifier-chain

approach, which has been previously developed for MLC to exploit label correlation. Below we

begin with a review of classifier chains for MLC. We then discuss some design patterns in MIL

and MIML algorithms that learn an instance-level model from bag-level labels, which provide

inspiration for our algorithm.

6.3.1 Classifier Chains for Multi-Label Classification

Originally introduced for MLC, classifier chains [122] exploit label correlation by building a

chain of binary classifiers. Given an instance x, we denote its label set Y as a binary vector:

Y “ rY 1, . . . , Y cs, where Y j “ 1 if the label set for instance x contains class j. We use

Y 1:j´1 “ rY 1, . . . , Y j´1s to refer to the first j ´ 1 elements of Y . The key idea of classifier

chains is to use a chain factorization of the conditional joint distribution of Y :

P pY |xq “ P pY 1|xq
c

π

j“2

P pY j |x, Y 1:j´1q (6.3)

During training, one binary model P pY j |x, Y 1:j´1q is learned for each class j, which depends

on x, and all of the preceding classes 1, . . . , j ´ 1. Let ‘ denote vector concatenation. The

basic training algorithm is (Algorithm 7):

101

ALGORITHM 7: MLC Probabilistic Classifier Chain – Train

for j “ 1, . . . , c do

D
j

“ t. . . , px
i

‘ Y 1:j´1
i

, Y j

i

q, . . .un
i“1

train classifier P pY j |x, Y 1:j´1q on D
j

end

For each class j, a binary supervised classification problem Dj is created (this is a standard

SISL problem, not an MLC problem). This 2-class problem has n instances like the original

MLC problem. Each instance consists of the original feature vector xi concatenated with part

of the corresponding label vector rY 1
i , . . . , Y

j´1
i s, and paired with the binary label Y j

i . The

binary model for class j, namely P pY j |x, Y 1:j´1q, can be learned using any binary probabilistic

classifier, e.g., logistic regression or Random Forest (RF) [14].

To classify a new instance x with a probabilistic classifier chain, one can evaluate P pY |xq for
all 2c possible label vectors Y , and pick one that minimizes a set-level loss function. However,

this approach may be intractable unless c is small. An alternative is to greedily construct a

single value of Y . A basic greedy algorithm [47] is:

ALGORITHM 8: MLC Probabilistic Classifier Chain – Classify

Y “ rs
for j “ 1, . . . , c do

Y “ Y ‘ IrP pY j |x ‘ Y q ° 0.5s
end

return Y

In ensembles of classifier chains (ECC) [122], there are multiple chains, each of which is

learned as above, but factorizing the classes in a di↵erent random order. When classifying with

ECC, each chain votes. ECC reduces the sensitivity to the specific order of the chain and is

generally observed to improve accuracy over a single chain.

6.3.2 From Instance to Bag Labels

A central problem in MIL and MIML is that labels are only provided at the bag level. Learning

an instance classifier from bag label sets requires an assumption about the relationship between

the observed label sets and the hidden instance labels. A common assumption in MIL is that

if any instance is positive, the bag label is positive, otherwise it is negative. The corresponding

102

assumption in MIML is that the bag label set is equal to the union of instance labels. Prior

algorithms approximate these assumptions using di↵erent formulations, e.g., the max model.

In the MIL setting, the max model is: F pBq “ max
xPB fpxq, i.e. the bag-level output F is

the max over the instance-level outputs f on all instances in the bag.

For probabilistic MIL classifiers, the max model has also been called the “most-likely-cause

estimator” [110],

P py “ 1|B,✓ q “ max
xPB

ppy “ 1|x, ✓q (6.4)

The equivalent formulation for MIML [16, 168] applies the same principle for each class j “
1, . . . , c:

FjpBq “ max
xPB

fjpxq (6.5)

Given a model for connecting bag labels with instance labels, the output of a bag-level

classifier can sometimes be expressed as a function of a single instance in the bag or representing

the bag. For example, assuming the max model for MIL we have:

F pBiq “ max
xPB

i

fpxq “ fpx̂iq (6.6)

x̂i “ argmax
xPB

i

fpxq (6.7)

where x̂i is referred to as the support instance (or “witness instance” [4]) for bag Bi. We can

define support instances similarly for MIML, except that one support instance is defined for

each class and each bag.

Many existing algorithms for MIL (e.g., MI-SVM [4] and EM-DD [169]) and MIML (e.g.,

SIM [17]) alternate between computing support instances based on a current classifier, and

training a SISL classifier on the support instances. Our proposed algorithm follows the same

pattern.

6.4 Proposed Methods

Our goal is to learn a classifier that predicts the label of a given instance, using its feature

vector x and the context provided by the bag B containing x. We propose the MIML-ECC

103

Table 6.2: Summary of Notation

Notation Meaning
‘ vector concatenation operator
Bi i’th bag of instances in the training data
Yi label set for bag Bi, Yi Ñ t1, . . . , cu
n number of bags in the training set
ni number of instances in bag Bi

⇡pjq the j’th class in some permutation ⇡
⇡lpjq the j’th class in the permutation for chain l

Y ⇡
l

pjq
i the j’th bit (0 or 1) of the label set Yi in order ⇡l

Y ⇡
l

p1q:⇡
l

pj´1q
i the first j ´ 1 bits of the label set Yi in order ⇡l

x P Bi an instance in bag Bi, a vector in Rd

fjl instance-level score function for class ⇡lpjq
Fjl bag-level score function for class ⇡lpjq
x̂ijl support-instance for bag i, chain l, class ⇡lpjq
yk indicator variable for instance x in class k

algorithm, which is motivated by the observation that the prediction of whether an instance

belongs to a particular class can be influenced by the presence/absence of some other classes

in the bag. To capture the label correlation, we assume an ordered chain structure such that

whether an instance belongs to a particular class depends on whether the bag contains classes

earlier in the chain. Table 6.2 summarizes notation for the proposed method.

6.4.1 Training

A classifier chain for MLC is a chain of SISL classifiers. At a high level, our method can be

viewed as building an ensemble of L chains of MIL classifiers. Each chain l “ 1, . . . , L in the

ensemble views the classes 1, . . . , c in a di↵erent order ⇡l, such that ⇡lpjq is the j’th class in

the order for chain l. We will use Fjl to denote the MIL classifier for the j-th class in chain l,

which predicts the presence/absence of class ⇡lpjq in the label set of a bag given the bag and

Y ⇡
l

p1q:⇡
l

pj´1q, the presence/absence information of the first j´1 classes in chain l. The training

algorithm viewed in terms of MIL classifiers is (Algorithm 9):

104

ALGORITHM 9: MIML-ECC – Train (Bag-Level View)

Input: MIML dataset tpB1, Y1q, . . . , pB
n

, Y
n

qu
Output: MIL classifiers F

jl

for l “ 1, . . . , L do
⇡
l

“ random–permutation(r1, . . . , cs)
for j “ 1, . . . , c do

D
jl

“ t. . . , pB
i

‘ Y ⇡lp1q:⇡lpj´1q
i

, Y ⇡lpjq
i

q, . . .un
i“1

train MIL Classifier F
jl

on D
jl

end

end

Each MIL dataset Djl constructed in the algorithm pairs the bag Bi (and the context

Y ⇡
l

p1q:⇡
l

pj´1q
i) with one bit of the label vector Y ⇡

l

pjq
i . In a standard MIL formulation, there are

only bags of instances, so it is a modification of MIL to allow the context Y ⇡
l

p1q:⇡
l

pj´1q
i , which

is a vector in Rj´1, to be associated with the bag rather than an instance. However, in practice

we simply append this vector to the end of all of the instance features.

Because our goal is ultimately to predict instance labels, we instantiate this template with

a MIL classifier that internally builds an instance-level model. The instance-level models are

SISL probabilistic classifiers fjl for j “ 1, . . . , c and l “ 1, . . . , L. We assume fjl maps the input

x ‘ Y ⇡
l

p1q:⇡
l

pj´1q to an output in r0, 1s (as is the case for a RF). Recall that Y “ t1, . . . , cu; we
encode the label y P Y of instance x with c binary indicator variables y1, . . . , yc where yj “ Iry “
js, and interpret fjl : Rd`j´1 Ñ r0, 1s as the posterior probability P py⇡l

pjq|x, Y ⇡
l

p1q:⇡
l

pj´1qq. MIL

classifiers Fjl can be obtained from the instance-level classifiers using the max model, taking

into account the context Y ⇡
l

p1q:⇡
l

pj´1q:

FjlpBi ‘ Y ⇡
l

p1q:⇡
l

pj´1qq “ max
xPB

i

fjlpx ‘ Y ⇡
l

p1q:⇡pj´1qq (6.8)

Similar to the MIL algorithm EM-DD, and rank-loss SIM for MIML, we define the bag-level

model in terms of a support instance. In MIML-ECC, there is a di↵erent support instance for

each bag, class, and chain. The bag-level model in terms of support instances is

FjlpBi ‘ Y ⇡
l

p1q:⇡
l

pj´1qq “ fjlpx̂ijl ‘ Y ⇡
l

p1q:⇡
l

pj´1q
i q

x̂ijl “ argmax
xPB

i

fjlpx ‘ Y ⇡
l

p1q:⇡
l

pj´1q
i q

105

The support instance x̂ijl is the instance in bag Bi that is most representative of class ⇡lpjq,
according to the classifiers in chain l.

The MIML-ECC training algorithm alternates K times between updating support instances

according to the max model, then training SISL classifiers on binary datasets that pair support

instances with bits of the label set. In the first iteration, there are no instance classifiers fjl to

compute support instances from, so we start by setting the support instances to the average of

the instances in each bag, as in [16, 17]. The instance-level view of the training algorithm is:

ALGORITHM 10: MIML-ECC – Train (Instance-Level View)

Input: MIML dataset tpB1, Y1q, . . . , pB
n

, Y
n

qu
Output: SISL classifiers f

jl

for l “ 1, . . . , L do
⇡
l

“ random–permutation(r1, . . . , cs)
for k “ 1, . . . ,K do

if k “ 1 then

for i “ 1, . . . , n, j “ 1, . . . , c do
x̂
ijl

“ 1
ni

∞

xPBi
x

end

else

for i “ 1, . . . , n, j “ 1, . . . , c do

x̂
ijl

“ argmax
xPBi

f
jl

px ‘ Y ⇡lp1q:⇡lpj´1q
i

q
end

end

for j “ 1, . . . , c do

D
jl

“ t. . . , px̂
ijl

‘ Y ⇡lp1q:⇡lpj´1q
i

, Y ⇡lpjq
i

q, . . .un
i“1

train SISL classifier f
jl

on D
jl

end

end

end

6.4.2 Classification

In the training phase, instance-level binary classifiers fjlpx ‘ Y ⇡
l

p1q:⇡
l

pj´1qq are obtained for

every class j and chain l. The output of fjl can be considered an estimate of the posterior

P py⇡l

pjq|x, Y ⇡
l

p1q:⇡
l

pj´1qq, so we consider a probabilistic framework for instance classification

based on the maximum a posteriori (MAP) approach. This is how MIML-ECC approximately

106

optimizes instance accuracy, the desired performance measure for MIML instance annotation.

6.4.2.1 Transductive Mode

In the transductive mode, we condition on the bag and its label set, and predict instance labels

according to

fpx, B, Y q “ argmax
jPY

P pyj |x, B, Y q “ argmax
jPY

P pyj |x, Y q

This prediction rule assumes that bag label set Y provides all of the contextual information

that is relevant to predicting the label for x, i.e. the label is conditionally independent of the

other instances in the bag B given Y .

During training we introduced random orders ⇡ for the purpose of constructing an ensemble.

Now we take a Bayesian approach and assume that ⇡ is random variable from a uniform prior

P p⇡q, so each chain in the ensemble corresponds to one i.i.d. sample ⇡l „ P p⇡q for l “ 1, . . . , L.

We estimate the probability for instance x to have label y “ k as P pyk|x, Y q “ E⇡rP pyk|x, Y,⇡qs
using L samples, one for each chain in the ensemble.

P pyk|x, Y q « 1

L

L
ÿ

l“1

ÿ

tj:⇡
l

pjq“ku
P py⇡l

pjq|x, Y ⇡
l

p1q:⇡
l

pj´1q,⇡lq

The algorithm for classification in the transductive mode is:

ALGORITHM 11: MIML-ECC – Classify (Transductive)

Input: instance x, label set Y

Output: label y

for j “ 1, . . . , c do
yj “ 0

end

for l “ 1, . . . , L do

for j “ 1, . . . , c do

y⇡lpjq “ y⇡lpjq ` f
jl

px ‘ Y ⇡lp1q:⇡lpj´1qq
end

end

y “ argmax
jPY yj

107

6.4.2.2 Inductive Mode

In the inductive setting, the bag label set is not given, so the posterior required for classification

conditions only on the instances from bag B (and not the bag label set). Therefore, we predict

the instance label as the class with the highest posterior probability

y “ fpx, Bq “ argmax
j“1,...,c

P pyj |x, Bq (6.9)

The probability P pyj |x, Bq is not directly modeled by the instance-level classifiers fjl; instead

we estimate this probability by marginalizing P pyj |x, Y, Bq over the latent variable Y . This

process requires a probabilistic model for Y given B, which we develop below.

Assumption 1: Given an order ⇡, an instance x and the bag-level labels Y ⇡p1q:⇡pj´1q, y⇡pjq

is conditionally independent of any other instances in the same bag B,

P py⇡pjq|x, B, Y ⇡p1q:⇡pj´1q,⇡q “ P py⇡pjq|x, Y ⇡p1q:⇡pj´1q,⇡q

For training, we defined the relation between instance labels and bag label sets according

to the max model. The max model is also part of our assumptions for inference, although we

will rewrite it in probability notation.

Assumption 2: Bag label sets and instance labels are linked via the max model,

P pY ⇡pjq|B, Y ⇡p1q:⇡pj´1q,⇡q “ max
xPB

P py⇡pjq|x, Y ⇡p1q:⇡pj´1q,⇡q

Similar to a classifier chain for MLC, the conditional distribution of the bag label set is

factored as a chain in the order ⇡ as

P pY |B,⇡ q “ P pY ⇡p1q|B,⇡ q
c

π

j“2

P pY ⇡pjq|B, Y ⇡p1q:⇡pj´1q,⇡q

Recall that Assumption 2 defines the conditional probability for Y ⇡pjq in terms of the

instance-level probabilities for y⇡pjq, while Assumption 1 defines the instance-level probabil-

ities for y⇡pjq in terms of Y ⇡p1q:⇡pj´1q.
We estimate P pyj |x, Bq by sampling as follows. For a given ⇡, we apply Assumption 1 to

108

obtain P py⇡pjq|x, B,⇡q

“ EY ⇡p1q:⇡pj´1q|B,⇡

“

P py⇡pjq|x, Y ⇡p1q:⇡pj´1q, B,⇡q
‰

“ EY ⇡p1q:⇡pj´1q|B,⇡

“

P py⇡pjq|x, Y ⇡p1q:⇡pj´1q,⇡q
‰

(6.10)

Because ⇡ is a permutation, computing P py⇡pjq|x, B,⇡q for j “ 1, . . . , c implies computing

P pyj |x, B,⇡q for all j.

Finally, we average the posterior estimates over multiple samples from a uniform prior on

⇡:

P pyj |x, Bq “ E⇡

“

P pyj |x, B,⇡q
‰

(6.11)

As in the transductive mode, each chain in the ensemble gives one sample of ⇡l „ P p⇡q to

estimate the expectation. The inductive classification algorithm is:

ALGORITHM 12: MIML-ECC – Classify (Inductive)

Input: bag B “ tx1, . . . ,xniu
1 for i “ 1, . . . , n

i

, j “ 1, . . . , c do
2 yj

i

“ 0
3 end
4 for l “ 1, . . . , L do
5 Y “ rs
6 for j “ 1, . . . , c do
7 for i “ 1, . . . , n

i

do

8 y⇡lpjq
i

“ y⇡lpjq
i

` f
jl

px
i

‘ Y q
9 end

10 p
j

“ max
i“1,...,ni fjlpxi

‘ Y q
11 Y “ Y ‘ Bernoullipp

j

q
12 end
13 end
14 for i “ 1, . . . , n

i

: do
15 y

i

“ argmax
j“1,...,c y

j

i

16 end
Output: instance labels y1, . . . , yni

Line 8 updates the estimate of y⇡l

pjq
i based on one sample of the expectation (6.10). Line

10 applies the max model (Assumption 2). In lines 5 through 10, the pseudocode variable Y

stores Y ⇡
l

p1q:⇡
l

pj´1q. Line 11 samples Y ⇡
l

pjq from a Bernoullippjq distribution, and appends it

109

to the current label vector.

6.4.3 Similarities with EM

The proposed training algorithm is a heuristic, and is not proven to converge over multiple

support instances updates. However, it is closely related to prior work using support instances

with expectation maximization (EM). We discuss this similarity with prior algorithms to provide

evidence that MIML-ECC can be expected to improve in accuracy as the number of support

instance updates K increases.

EM-DD [169] is a widely used algorithm for MIL (single-labeled bags of instances), in

the spirit of EM (a formal proof is not given). The “E-step” consists of computing support

instances, and the “M-step” maximizes likelihood in a model involving the support instances.

EM-DD also uses the max model to define the support instances. The main di↵erence in how

support instances are treated in MIML-ECC is that each bag has a di↵erent support instance

for each class and chain. Recall that MIML-ECC trains SISL classifiers fjl in each iteration.

If the base SISL classifier maximizes log-likelihood (e.g., logistic regression), there is a direct

correspondence with the M-step of EM-DD. In our implementation of MIML-ECC, fjl is a

RF using the Gini split criteria, which greedily minimizes squared-loss L2py, pq “ py ´ pq2 on

the training data [22]. If the entropy split criteria were used instead, the RF would greedily

maximize likelihood. Gini and entropy are very similar for binary problems.

6.4.4 Asymptotic Complexity

MIML-ECC implemented with RF as the base SISL classifier is asymptotically e�cient in all

important dimensions of problem size. The size of a MIML dataset is determined by the number

of bags n, the total number of instances in all bags m, the number of classes c, and the instance

feature dimension d. MIML-ECC has several parameters which a↵ect its runtime: the number

of chains L, the number of trees in each RF T , and the number of support-instance updates K.

Note that the runtime to train a RF on a SISL dataset of n instances with feature dimension

d is OpT plog dqpn log nqq, and to classify it is Oplognq. It follows from the loop-structure of the

pseudocode that the training time for MIML-ECC is

O
´

LKT
`

mplognqplog dq ` cn logn logpd ` cq
˘

¯

(6.12)

110

Table 6.3: MIML datasets used in our experiments

Dataset Classes Dimension Bags Instances
MSRCv2 23 48 591 1,758
VOC 2012 20 48 1,053 4,142
Birdsong 13 38 548 4,998
Carroll 26 16 166 717
Frost 26 16 144 565

An e�cient implementation of MIML-ECC classifies all instances in a bag at once, rather

than treating each instance classification problem separately, in order to share redundant work.

Using this optimization, the classification time is OpLTc lognq per instance. In Section 6.5.9

we provide empirical run time of our algorithm.

6.5 Experiments

Our experiments compare MIML-ECC to prior and baseline methods on two vision datasets,

an audio dataset, and two artificial datasets. Our experimental setup is identical to the setup

used in [17] and [99], hence results are directly comparable (e.g., the same features and folds

for cross validation are used). Therefore we report new results for MIML-ECC and baseline

methods, and compare to previously reported results from the aforementioned prior work.

6.5.1 Datasets

The datasets used in our experiments are summarized in Table 6.3. Datasets have been pre-

processed through feature rescaling (which does not a↵ect RF), to improve results for SVM

style-classifiers, by the same process in [16, 17, 40].

6.5.1.1 Vision Datasets

We consider two vision datasets, Microsoft Research Cambridge v2 (MSRCv2) [154], and PAS-

CAL Visual Object Recogntion Challenge (2012 “Segmentation”) [57]. Both datasets contain

images of objects with pixel-level labeling of regions. MSRCv2 provides a single class label

111

for each pixel. VOC provides a segmentation of each image into objects and a label for each

object. Here bags are images labeled with a list of objects, instances are objects / regions of

pixels, described by a 48-D feature vector. Single-label images are removed to make the learning

problem more challenging.

6.5.1.2 Bioacoustics Dataset

This dataset was introduced by [18], applying a MIML formulation for label set prediction

to a real-world application of classifying bird song collected in field conditions. Each bag is

a 10 second audio recording labeled with the set of species it contains. Each instance is an

utterance of bird sound obtained by an automatic segmentation algorithm. This dataset has

also been used in work on MIML instance annotation and superset label learning [16, 17, 99].

For instance annotation, [16] introduced two variants of this dataset, “filtered” and “unfiltered.”

Our experiments use the filtered variant, as does [99].

6.5.1.3 Artificial Datasets

We use the same artificial MIML datasets as [16, 17], which are generated to simulate correla-

tions between labels by using letter correlation in English words. The datasets are generated

based on the words in two poems, “Jabberwocky” by Lewis Carroll [24], and “The Road Not

Taken” by Robert Frost [66], hence they are referred to as Carroll and Frost. Each bag is a

word, its letters are instances, and the bag label set is the union of instance labels. The instance

features are sampled randomly from the UCI Letter Recognition dataset [65].

6.5.2 Prior & Baseline Methods

We compare MIML-ECC with a number of prior methods that can be applied to MIML instance

annotation.

6.5.2.1 M3MIML

Originally intended for label-set prediction, M3MIML is a MIML support-vector machine algo-

rithm, which builds one linear instance-level model per class by minimizing a heuristic relaxation

112

of bag-level hinge loss, and connecting instance labels with bag label sets by the max model. Al-

though not intended for this purpose, the learned instance-level models can be used for instance

annotation.

6.5.2.2 Rank-loss SIM

Rank-loss SIM was introduced by [16], and refers to a class of instance annotation algorithms

which learn one linear instance-level model per class by minimizing a bag-level rank-loss ob-

jective. Di↵erent variants of rank-loss SIM consider di↵erent models for connecting bag-level

output with instance-level outputs, and apply di↵erent procedures for optimizing the rank-loss

objective. We consider SIM-Heuristic using a softmax model and SIM-CCCP with the max

model, with random Fourier kernel features [119] to achieve nonlinear classification by approx-

imating an RBF kernel. These models are chosen for comparison because they achieved the

best accuracy in [17].

6.5.2.3 CLPL

Like the other SVM-style algorithms, Convex Learning from Partial Labels (CLPL) [40] learns

one linear instance-level model per class, but uses an ALC formulation instead of MIML. CLPL

minimizes a loss function which can be seen as an upper bound to the 0/1 loss on the true-

unknown label, which is part of the candidate label set.

6.5.2.4 LSB-CMM

Logistic Stick-Breaking Conditional Multinomial Model (LSB-CMM) [99] is a recent hybrid

generative / discriminative graphical model for SLL that have been used (by reduction) to

solve the instance annotation problem. In particular, the same Birdsong and MSRCv2 datasets

were used in [99] to evaluate its instance annotation accuracy. We compare to the results

reported in [99] on these two datasets.

113

6.5.2.5 SISL Random Forest and SVM

We also consider SISL algorithms, which have an unfair advantage of learning directly from

instance labels. Results with these SISL algorithms are presented for the inductive mode as

an empirical upper bound on the accuracy that can be achieved on these datasets. For this

comparison, we use a SISL RF (with 1000 trees), and refer to prior results from [17] with a

SISL multi-class linear SVM.

6.5.3 Transductive and Inductive

In the transductive mode, there is no cross-validation (the whole dataset is used for training and

testing). However, because MIML-ECC is a randomized algorithm, we run 10 repetitions and

report the average accuracy ˘ the standard deviation over repetitions. Most of the other algo-

rithms we compare to are not randomized, so in the transductive mode there is no uncertainty

associated with the accuracy result.

In the inductive mode, we use 10-fold cross validation, except for the VOC dataset, for

which there is a pre-specified partition into “train” and “val” sets. Results with 10-fold cross-

validation are reported as average accuracy over all folds ˘ standard deviation in accuracy. A

di↵erent random instantiation of MIML-ECC is used in each fold, so we do not run multiple

repetitions on top of cross-validation. However, because there is only one fold for the VOC

dataset, we report results ˘ standard deviation over 10 repetitions for MIML-ECC (and the

randomized baseline method SISL Random Forest) on VOC.

M3MIML, CLPL, and rank-loss SIM-Heuristic/CCCP all build one instance-level model per

class fjpxq. In the inductive mode, these models are used to predict an instance label by the rule

fpxq “ argmaxj“1,...,c fjpxq. In the transductive mode, the rule is fpx, Y q “ argmaxjPY fjpxq
(hence when the bag label set Y is known, it is used to constrain the instance-label predictions).

This constraint provides some context for instance-label prediction, so there is not as much

benefit to be had from looking at other instances in the transductive mode.

6.5.4 Parameter Selection

All of the rank-loss SIM algorithms, CLPL, M3MIML, and SISL SVM have a regularization

parameter (either � or C). When random kernel features are used to approximate the RBF

kernel, there is also a kernel parameter �, and a parameter D which controls the approximation

114

accuracy. In prior work, these parameters are optimized post-hoc by a grid search as described

in [17]. This means the experiment is run once for each parameter setting in a grid, and the

best test accuracy over all parameters is reported. Post-hoc selection is not feasible without

using instance labels to compute which parameter setting has the best accuracy, but it has

been accepted in prior work on MIML instance annotation because it is an unsolved problem.

Results using post-hoc selection can be interpreted as the highest accuracy that can be achieved

using an oracle to select meta-parameters.

An important practical advantage of MIML-ECC compared to the above prior methods is

that it does not have regularization parameters that must be tuned. Note that MIML-ECC has

parameters L,K, and T . The accuracy of the algorithm tends to increase as these parameters

increases up to a limit. So the parameter choices primarily depend on the time budget for

training and testing. Our experiments set L “ 20,K “ 20, T “ 100, which provides a good

tradeo↵ between runtime and accuracy.

LSB-CMM [99] has some parameters which can a↵ect accuracy, but in their experiments

these parameters are set to standard values for all datasets.

6.5.5 Results

MIML instance annotation algorithms are evaluated based on accuracy, which is the fraction

of correctly classified instances. These experiments compare multiple classifiers on multiple

datasets, so following the recommendations of [48], we summarize results using wins, ties, and

losses, and average ranks. Table 6.4 lists the accuracy and average rank results in transductive

and inductive modes. Average ranks are computed by sorting the accuracy of MIML-ECC,

and the prior methods M3MIML, CLPL, SIM-Heuristic, and SIM-CCCP on each dataset, then

averaging the position in the sorted list over all datasets. We do not include LSB-CMM in the

ranking because there are only 2 datasets with comparable results.

In the inductive mode, MIML-ECC ties with SIM-CCCP max with RBF kernel on the

Carroll dataset, and wins in all other comparisons. Results are not as decisive in the transductive

mode, but MIML-ECC still achieves the best average rank over all datasets. This is consistent

with our expectation because the known label sets provide a surrogate for context to the other

algorithms.

It should be noted that due to the use of post-hoc selection in experiments for CLPL,

M3MIML and SIM, they are actually given an unfair advantage compared to MIML-ECC,

115

Table 6.4: Instance annotation accuracy results (: – results from [17], ; – results from [99])

(a) Transductive accuracy ˘ standard deviation over 10 repetitions for MIML-ECC and SIM-RF

Algorithm Carroll Frost Birdsong MSRCv2 VOC Avg Rank
Proposed Methods
MIML-ECC (L “ 20,K “ 20, T “ 100) .803 ˘ .006 .831 ˘ .004 .779 ˘ .003 .805 ˘ .007 .624 ˘ .004 1.8
Prior Methods
: CLPL .672 .688 .742 .678 .598 4.0
: M3MIML .454 .532 .651 .547 .533 5.0
: SIM-CCCP max + kernel .807 .780 .829 .798 .623 2.2
: SIM-Heuristic softmax + kernel .794 .819 .833 .766 .634 2.0
Baseline Methods
SIM-RF (K “ 20, T “ 100) .763 ˘ .014 .787 ˘ .015 .791 ˘ .010 .799 ˘ .007 .618 ˘ .003

(b) Inductive accuracy ˘ standard deviation over 10-fold cross validation or 10 repetitions for VOC

Algorithm Carroll Frost Birdsong MSRCv2 VOC
Proposed Methods
MIML-ECC (L “ 20,K “ 20, T “ 100) .618 ˘ .059 .646 ˘ .048 .666 ˘ .052 .611 ˘ .038 .43 ˘ .004 1
Prior Methods
: CLPL .464 ˘ .058 .506 ˘ .063 .620 ˘ .038 .431 ˘ .036 .345 3.6
: M3MIML .288 ˘ .041 .313 ˘ .041 .433 ˘ .073 .317 ˘ .055 .396 4.2
: SIM-CCCP max + kernel .618 ˘ .042 .576 ˘ .065 .630 ˘ .040 .519 ˘ .044 .343 2.6
: SIM-Heuristic softmax + kernel .596 ˘ .041 .587 ˘ .066 .642 ˘ .039 .506 ˘ .038 .337 2.8
; LSB-CMM – – .715 .459 –
Baseline Methods
SIM-RF (K “ 20, T “ 100) .522 ˘ .079 .589 ˘ .040 .645 ˘ .055 .575 ˘ .045 .444 ˘ .002
MIML-ECC (L “ 1,K “ 20, T “ 2000) .530 ˘ .047 .598 ˘ .040 .644 ˘ .044 .580 ˘ .047 .425 ˘ .003
SISL Methods (uses instance labels)
: SISL SVM (multi-class,linear) .772 ˘ .049 .753 ˘ .038 .772 ˘ .032 .638 ˘ .045 .440
SISL Random Forest (T “ 1000) .809 ˘ .049 .807 ˘ .076 .805 ˘ .033 .729 ˘ .050 .511 ˘ .002

which does not use the test data ground truth in training or parameter selection.

The comparison with LSB-CMM on two datasets is less conclusive. MIML-ECC outperforms

LSB-CMM by a margin of 15.2% on the MSRCv2 dataset, but LSB-CMM is slightly better (by

a margin of 4%) on the Birdsong dataset.

6.5.6 Ensemble of Chains vs. Binary Relevance (SIM-RF)

MIML-ECC is motivated by the idea that bag-level label correlations captured through the chain

structure are useful for predicting instance labels. However, it is possible that the improved

performance we observe compared to prior linear/kernel algorithms is not due to exploiting

116

label correlations, but instead to using a RF as the base-classifier. To address this hypothesis,

we consider an additional comparison against a baseline that we call SIM-RF, which is the same

as MIML-ECC in all details except it does not use a chain or model correlations. SIM-RF is

equivalent to running MIML-ECC with one chain (L “ 1) but omitting all of the concatenation

of label set bits, i.e. ‘Y ⇡1:⇡pj´1q. SIM-RF is also equivalent to binary relevance with each class

modeled by a MIL classifier which alternates between computing support instances and training

an RF on them.

MIML-ECC achieves better accuracy than SIM-RF most of the time. The win-loss count

is 4-1 in favor of MIML-ECC for both transductive and inductive modes. The comparison to

SIM-RF suggests that the chain structure is actually critical, and the improved performance of

MIML-ECC compared to prior methods cannot be attributed only to switching from a linear

or kernel SVM classifier to RF.

6.5.7 Single Chain vs. Ensemble of Chains

We want to know how much benefit the ensemble provides compared to a single chain. The

results we reported so far are obtained with L “ 20,K “ 20, T “ 100, i.e., 20 chains and

100 trees and 20 iterations of support instance updates. To understand the impact of using

mulitple chains with a fair comparison, we run MIML-ECC with one chain order (L “ 1), and

K “ 20, T “ 2000, so the total number of decision trees that vote on an instance label is the

same. Table 6.4 (b) lists results for 1-chain MIML-ECC in the inductive mode (see Baseline

Methods). In this comparison, MIML-ECC with multiple chains achieves higher accuracy on

all datasets than MIML-ECC with a single chain. These results suggest that given a fixed

time budget, it is better to have multiple chains, each with less trees, than a single chain with

more trees. Recall that when predicting instance scores for class j, each chain can only use

the presence/absence of other classes which come before j in the chain. Using multiple chains

with random orders increases the chance that relevant classes are available for use as context

(at least in some of the chains).

6.5.8 Comparison to SISL

SISL methods achieve better accuracy in inductive experiments than MIML instance annota-

tion, ALC and SLL (Table 6.4 (b)), which is expected because they are trained on unambigu-

117

Table 6.5: Runtime for training and classification with MIML-ECC, per fold of cross-validation
or per repetition (seconds)

Mode Carroll Frost Birdsong MSRCv2 VOC
Transductive 104.9 84.4 251.8 304.5 798.0
Inductive 69.4 57.8 135.5 202.8 2895.8

ously labeled instances. This improved accuracy must be weighed against the greater human

e↵ort required to obtain instance labels compared to bag label sets.

6.5.9 Empirical Runtime

Table 6.5 lists empirical runtimes for training plus classification with MIML-ECC (with L “
20,K “ 20, T “ 100), on each dataset, averaged over the number of repetitions or folds of

cross-validation. The runtime is on the order of seconds or minutes for all datasets. In our

experiments, training is parallelized using threads, and classification is done sequentially.2

6.6 Related Work

Graphical models for MIML sometimes include instance labels as hidden variables. Inference

over these hidden variables can be used for instance annotation. In addition to LSB-CMM, some

recent examples of graphical models for MIML include Dirichlet-Bernoulli Alignment [160] and

Exponential Multinomial Mixture model [161]. [165] proposed MLMIL, a conditional random

field for MIML which uses Gibbs sampling to infer instance labels.

[148] developed a MIML SVM algorithm which uses a bag-level kernel. Their algorithm

predicts instance labels by applying the bag-level classifier to a bag of one instance. [147]

proposed a MIML instance annotation algorithm which alternates between sampling random

instance labels and training a Semantic Texton Forest (a specialization of RF to images). [115]

proposed a MIML algorithm which alternates between assigning instance labels and training a

maximum margin classifier. [96] considers the problem of selecting a set of instances explaining

each label, which is di↵erent from instance annotation, where the goal is to label all instances.

2Code is C++ compiled with GCC 4.0 (most speed optimizations enabled). Experiments ran on a Mac Pro
with 2x 2.4 GHz Quad-Core Intel Xeon processor and 16 GB 1066 MHz DDR3 memory, with OS X 10.8.1.

118

Prior work on multi-instance (single-label) learning has considered the case where instance

labels are not independent, and encoded instance-label relationships through a graph [95, 173].

These approaches can be viewed as a di↵erent way to model instance-label correlations.

Several formulations besides the max model have been used for MIL and MIML to relate

instance and bag labels. Di↵erent formulations encode di↵erent assumptions about instance

labels. One version of the Diverse Density algorithm for MIL [109] used a Noisy-OR model

P py “ 1|B,✓ q “ 1 ´ ±

xPB
´

1 ´ P py “ 1|x, ✓q
¯

. [110] points out that the max model makes

fewer independence assumptions than the Noisy-OR model, although both generate similar

probabilities in many cases. In later work the EM-DD [169] algorithm replaced Noisy-OR

with max. [121] proposed Multiple-Instance Logistic Regression, which uses a smooth softmax

approximation to max. [16, 17] used a multi-class softmax model. [156] propose a model where

the bag-label probability is the average of the instance-label probabilities.

6.7 Conclusion & Future Work

We proposed MIML-ECC, an algorithm for context-aware MIML instance annotation. Exper-

iments on image, audio, and artificial datasets show that MIML-ECC achieves better accuracy

than other recent algorithms.

MIML-ECC exploits context through correlations, which can be summarized by statements

like “if A is present, B is also likely to be present.” However, MIML-ECC cannot exploit a

di↵erent kind of context, which can be summarized as “if one A is present, there are likely to be

more A’s.” For example, consider Fig 6.2. It might be easy to recognize some of the larger cows

in the image, but harder to recognize the small ones. However, after recognizing one cow, it we

might expect to find more cows. MIML-ECC will not exploit this kind of context because it can

only use information about the presence or absence of other classes to inform its prediction.

119

Chapter 7: Conclusion & Future Work

This chapter concludes with a summary of the capabilities enabled by the work in this thesis,

and discusses new directions for future work.

7.1 Conclusion

This thesis presented several new algorithms for multi-instance and/or multi-label supervised

classification. The proposed methods make significant progress toward the goal of using machine

learning for automatic unattended monitoring of bird populations. Several of the proposed

algorithms are general, and can also be applied to other domains such as object recognition in

images.

One of the basic challenges in classifying audio is that many features characterize frames

(very short intervals), but it is often more convenient to use a feature vector that summarizes a

recording as a whole. This situation necessitates a method for aggregating frame-level features.

Many prior works simply average frame-level features, which is a poor representation of multi-

model feature distributions. In chapter 3, we developed a probability model in which audio

recordings are viewed as a collection of frame-level features, which are i.i.d. samples from a dis-

tribution specific to each recording (described by a histogram). We showed that in this model,

the MAP classifier is well approximated by a nearest-neighbor classifier using KL-divergence

between the histograms. This approach provides a principled way to perform supervised clas-

sification while treating a recording as a collection of frame-level features (multi-instance), and

is applicable to recordings containing a single species of bird (single-label).

In a real-world acoustic monitoring scenario, recordings containing multiple simultaneously

vocalizing bird species are common. In chapter 4, we developed one of the first systems that can

handle this situation. In contrast with prior work, where the goal was either to associate a single

species with a single frame, syllable, or whole recording, we pose the problem as predicting the

set of species that are present in a recording. We identified MIML as a suitable framework for

this problem, and developed a MIML representation of bird sound, which can separate calls

that overlap in time.

120

Most prior work on MIML focusses on predicting the label set for a new bag. In chapters 5

and 6, we formalize MIML instance annotation, and propose two new algorithms for it, namely

rank-loss SIM and MIML-ECC. In MIML instance annotation, the goal is to predict the labels

of instances, while training only on bags paired with label sets. This formulation enables a

prediction of the species label responsible for each individual call in a recording. It is possible

to predict species labels for individual calls using SISL, but doing so requires labeled calls as

training data, which are very labor intensive and error-prone to obtain. In contrast, the MIML

instance annotation approach facilitates this kind of prediction, while making e�cient use of

human labeling e↵ort, by training only on recordings paired with the set of species they contain.

7.2 Future Work

Acoustic monitoring of birds presents many challenges that can serve as inspiration for research

in machine learning. Further investigation of this area will likely lead not only to improved

methods for monitoring, but also new general-purpose machine learning algorithms. In this

section, we discuss several directions that we believe to be promising for future research, with

emphasis on what can be done for the HJA dataset and other similar data.

7.2.1 E�cient Use of Human E↵ort

Supervised classification of bird sound requires labeled examples for training data. Such exam-

ples are expensive to obtain because the labelers must have considerable expertise (often years

of experience). Furthermore, in an automatic monitoring scenario, it is easy to collect a vast

amount of data (e.g., we collected 2559 hours of audio with Songmeters in HJA in 2009 alone),

so it is only feasible to label a small fraction of the available data. Therefore it is important

to consider the “human-in-the-loop” nature of the problem, and maximize the value of human

e↵ort at every step. There are several frameworks in machine learning that can be applied to

achieve these objectives. In many cases, the SISL version of these problems have been studied

extensively, but the MIML counterpart is relatively open.

At the earliest stage, there is no available training data. In this situation, it is desirable

to apply fully unsupervised methods, and high-volume visualization, in order to extract as

much useful information as possible while expending little or no human e↵ort. For example,

we divided all of the data collected in HJA in 2009 into ten-second intervals, then applied the

121

segmentation and feature extraction methods discussed in chapter 41 to 10% chosen randomly

without replacement, resulting 92,095 intervals. This process extracted 218,321 segments, each

characterized by a 38-dimensional feature vector. We then applied k-means clustering to the

segments with k “ 250, and generated a visualization of the segments in each cluster. The

visualizations of each cluster can be viewed very quickly compared with labeling a standard

supervised learning dataset. With only a few minutes of human e↵ort, we identified one of

the clusters as consisting mostly of calls from a Varied Thrush (Fig. 7.1). For comparison,

Fig. 7.2 shows manually identified calls of a Varied Thrush. Having identified a set of segments

as (mostly) belonging to a particular species, we can then count these segments as a function of

when they occurred. Fig. 7.3 shows peaks in Varied Thrush activity around dawn and dusk. The

significance of this result is that we are able to obtain ecologically meaningful information from

a large volume of raw data, with a very low expenditure of human e↵ort. Further investigation

is needed to derive additional useful information from this unsupervised/visualization-based

approach.

Although unsupervised methods can be useful, it is still necessary to apply supervised

classification to get a complete characterization of acoustic events in the data. Two frameworks

in machine learning are relevant to the situation where there is no available training data. One

is initial set selection, where the goal is to pick a batch of data to be labeled in such a way that

a classifier trained on the data achieves the best accuracy possible. The initial set selection

problem has received little study. The most widely used method of initial set selection in active

learning literature is to select k examples randomly from each class [7, 72, 76, 77, 82, 103,

141, 158]. A similar method is to select k examples randomly, and ensure there is at least one

from each class [21, 27]. However, in a real world problem where all labels are unknown, it is

not possible to select exactly k from each class, or even one from each class, without requiring

more e↵ort than simply inspecting k examples. Another method of initial set selection that has

been previously employed is to divide the dataset into k clusters (using k-means or a similar

algorithm), then select one representative example from each cluster that is closest to the cluster

center [46, 86]. Initial set selection has been studied primarily under the SISL formulation, and

has not been considered for MIML.

Similar to initial set selection is the problem of class discovery (or in the acoustic moni-

toring context, species discovery). The idea is to select a fixed number of examples (e.g., 100

ten-second recordings) from a larger dataset, to find as many classes/species as possible. This

1A slight modification to the segmentation algorithm was introduced to better handle segmentation in rain.

122

Figure 7.1: Visualization of all segments from cluster 231 in k-means++ with k “ 250. This
cluster corresponds to calls from a Varied Thrush. Look at the image with the Ò pointing up.

123

Figure 7.2: Manually identified calls from Varied Thrush.

124

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0

50

100

150

200

250

Hour of Day

of

 S
eg

m
en

ts

Figure 7.3: Segments from cluster 231 (identified as Varied Thrush), per hour of day.

problem is particularly important, because in a large collection of audio, the number of classes

is not necessarily known in advance, but most supervised classification systems assume that

there are some training examples available for all classes that will be encountered in the data.

Furthermore, some classes/species may be much rarer than others, and the rarest are typically

the most interesting from a conservation perspective. The species discovery problem has been

studied extensively in ecology [107], and is closely related to the important problem of biodi-

versity estimation. Some work in machine learning addresses class discovery under the SISL

framework, e.g. [29], which uses clustering and farthest-point-first traversals, but the problem

has not been studied with MIML.

The need for labeled training examples continues after an initial set has been selected. A

good human-in-the-loop system will continue to prompt experts for additional training data to

improve accuracy on examples that the classifier is unable to label with high certainty. This

process is known as active learning, and has been studied extensively under the SISL framework.

However, there has been relatively little work on active learning for MIML, with the exception

of [148].

Despite e↵orts in initial selection, class discovery, and active learning, with a large enough

125

dataset, it is inevitable that some recordings will contain classes which are not present in the

training data. It is preferable to be able to identify these cases, rather than misclassifying them

as one of the known classes. This situation motivates the problem of discovering when a bag

contains instances of a class not present in the training data [102].

7.2.2 Exploiting Context

Current state-of-the-art methods for supervised classification often su↵er in accuracy when

applied to problems with a large number of classes. This is to be expected because the problem

becomes more di�cult as more classes are added. It is estimated that there are roughly 60

species of bird in HJA, although our experiments focussed on the 13 most common species at

dawn. In order to achieve reliable classification with a larger number of species, we suggest that

it will be useful to develop classifiers which exploit context. In chapter 6, we proposed MIML-

ECC, which exploits one kind of context, namely the correlations between label sets. Another

kind of context that MIML-ECC does not exploit is repetitions of instances from the same class

within a bag (e.g., several repeated calls from the same bird). Some work has been done on

MIML algorithms to exploit this latter kind of context [95, 173], based on the observation that

instances within a bag are not independent.

In this thesis, we argued that reducing MIML problems to MLC is undesirable because

doing so discards useful structure which can improve classification accuracy. However, some

contextual information does not naturally fit in instance feature vectors. For example, given an

audio recording, we may know the time and location where it was recorded. This information

characterizes the bag as a whole, rather than a particular instance. Recently, participants in the

MLSP 2013 bird classification challenge (where the goal was to predict the set of bird species

present in recordings from HJA) widely reported that using time and location in their feature

vectors significantly improved classification accuracy [20]. We suggest a generalization of MIML

which adds a bag-level context feature vector in addition to the instance features. Specifically,

the for this version of MIML the dataset is

pB1, Y1, z1q, . . . , pBn, Yn, znq (7.1)

In this definition, Bi and Yi are the standard bags of instances and label sets, and zi is a

corresponding bag-level feature vector of contextual information that does not naturally fit into

126

instance features. We pose a challenge for future work: learn from such a dataset without

resorting to a reduction to MLC, or to appending zi to each instance feature vector (the former

approach was used in [20], and the latter was used in chapter 6).

7.2.3 Representation of Bird Sound

Improvements in species classification accuracy can be obtained by developing better represen-

tations and features at both the instance and bag level. For example, we proposed a “histogram

of segments” feature vector [19], which reduces a MIML bird sound dataset to an MLC dataset.

Subsequently, many participants in the MLSP competition [20] extended this feature vector

with additional bag-level features, and obtained improved classification accuracy over a base-

line method using the histogram of segments features alone. Some useful bag/recording-level

features are intended to help a classifier di↵erentiate between bird sound and noise in cases

where segmentation is inaccurate, or to capture the context provided by the time and location

of a recording.

Fagerlund [59] noted that bird classification systems which begin with segmentation are

highly sensitive to segmentation errors, because such errors propagate to all subsequent stages

of processing. In preliminary experiments on a larger portion of the HJA dataset, we have

seen that one particularly troublesome case for the segmentation algorithm proposed in chapter

4 is rain. Hence, we suggest that further work should focus on improving segmentation for

recordings where rain is present. In [20], we introduced a modification to the segmentation

algorithm which is designed to better handle rain, which is somewhat e↵ective, but still requires

refinement.

Although our proposed segmentation method can handle bird calls that overlap in time but

not frequency, calls that overlap in both time and frequency are grouped together into a single

segment. It would be very useful (and probably di�cult) to separate such calls. It may be

advantageous to use stereo rather than mono audio for this problem.

The majority of work on audio classification of bird species focusses on feature and repre-

sentation engineering, while using relatively well-established algorithms for supervised classi-

fication. Hence, one could argue that most of the intelligence in the systems comes from the

human designer of the features. One of the highest-accuracy methods in the MLSP competi-

tion [20] used convolutional deep belief nets. This result is striking because more intelligence

comes from the learning algorithm itself (i.e. a human did not have to extensively engineer

127

features). Hence, further investigation of representation learning and deep learning methods

for bird sound is strongly motivated.

128

Bibliography

[1] M.A. Acevedo, C.J. Corrada-Bravo, H. Corrada-Bravo, L.J. Villanueva-Rivera, and T.M.
Aide. Automated classification of bird and amphibian calls using machine learning: A
comparison of methods. Ecological Informatics, 4(4):206–214, 2009.

[2] T Mitchell Aide, Carlos Corrada-Bravo, Marconi Campos-Cerqueira, Carlos Milan, Gio-
vany Vega, and Rafael Alvarez. Real-time bioacoustics monitoring and automated species
identification. PeerJ, 1:e103, 2013.

[3] S. E. Anderson, A. S. Dave, and D. Margoliash. Template-based automatic recognition
of birdsong syllables from continuous recordings. J. Acoust. Soc. Am., 100(2):1209–1219,
1996. ISSN 0001-4966.

[4] S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-
instance learning. Advances in Neural Information Processing Systems, 15:561–568, 2002.

[5] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding.
In SODA ’07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035, Philadelphia, PA, USA, 2007. Society for Industrial and
Applied Mathematics. ISBN 9780898716245.

[6] A. Balmford, R.E. Green, and M. Jenkins. Measuring the changing state of nature. Trends
in Ecology & Evolution, 18(7):326–330, 2003. ISSN 0169-5347.

[7] Y. Baram, R. El-Yaniv, and K. Luz. Online Choice of Active Learning Algorithms. The
Journal of Machine Learning Research, 5:255–291, 2004.

[8] R. Bardeli, D. Wol↵, F. Kurth, M. Koch, K.H. Tauchert, and K.H. Frommolt. Detecting
bird sounds in a complex acoustic environment and application to bioacoustic monitoring.
Pattern Recognition Letters, 2009. ISSN 0167-8655.

[9] S. Bastas, M. Wadood Majid, G. Mirzaei, J. Ross, M.M. Jamali, P.V. Gorsevski,
J. Frizado, and V.P. Bingman. A novel feature extraction algorithm for classification
of bird flight calls. In Circuits and Systems (ISCAS), 2012 IEEE International Sympo-
sium on, pages 1676–1679. IEEE, 2012.

[10] M. G. Betts, D. Mitchell, A. W. Diamond, and J. Bêty. Uneven rates of landscape change
as a source of bias in roadside wildlife surveys. J. Wildlife Management, 71(7):2266–2273,
2007. ISSN 1937-2817.

129

[11] Matthew G. Betts, A.W. Diamond, G.J. Forbes, M.-A. Villard, and J.S. Gunn. The
importance of spatial autocorrelation, extent and resolution in predicting forest bird oc-
currence. Ecological Modelling, 191(2):197 – 224, 2006. ISSN 0304-3800.

[12] A.P. Bradley. The use of the area under the roc curve in the evaluation of machine
learning algorithms. Pattern Recognition, 30(7):1145–1159, 1997.

[13] T.S. Brandes. Feature vector selection and use with hidden Markov models to identify
frequency-modulated bioacoustic signals amidst noise. IEEE Transactions on Audio,
Speech, and Language Processing, 16(6):1173–1180, 2008. ISSN 1558-7916.

[14] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[15] F. Briggs, R. Raich, and X.Z. Fern. Audio classification of bird species: a statistical
manifold approach. In 9th IEEE Int. Conf. on Data Mining, pages 51–60, 2009.

[16] F. Briggs, X.Z. Fern, and R. Raich. Rank-loss support instance machines for miml in-
stance annotation. In Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 534–542. ACM, 2012.

[17] F. Briggs, X.Z. Fern, R. Raich, and Q. Lou. Instance annotation for multi-instance multi-
label learning. To appear in Transactions on Knowledge Discovery from Data (TKDD),
2012, 2012.

[18] F. Briggs, B. Lakshminarayanan, L. Neal, X.Z. Fern, R. Raich, S.J.K. Hadley, A.S. Hadley,
and M.G. Betts. Acoustic classification of multiple simultaneous bird species: A multi-
instance multi-label approach. The Journal of the Acoustical Society of America, 131:
4640, 2012.

[19] F. Briggs, X. Z. Fern, and J. Irvine. Multi-Label Classifier Chains for Bird Sound. ICML
2013 Workshop on Machine Learning for Bioacoustics, 2013.

[20] F. Briggs et al. The 9th Annual MLSP Competition: New Methods for Acoustic Classifi-
cation of Multiple Simultaneous Bird Species in a Noisy Environment. In IEEE Workshop
on Machine Learning for Signal Processing, MLSP 2013, 2013.

[21] K. Brinker. Incorporating Diversity in Active Learning with Support Vector Machines.
In Machine Learning-International Workshop then Conference, volume 20, pages 59–66,
2003.

[22] Andreas Buja, Werner Stuetzle, and Yi Shen. Loss functions for binary class probability
estimation and classification: Structure and applications. Technical report, 2005.

130

[23] J. Cai, D. Ee, B. Pham, P. Roe, and J. Zhang. Sensor network for the monitoring
of ecosystem: bird species recognition. In 3rd Int. Conf. Intelligent Sensors, Sensor
Networks and Information, 2007, pages 293–298, 2008.

[24] Lewis Carroll. Through the looking-glass: and what Alice found there. 1896.

[25] C.K. Catchpole, P.J.B. Slater, and N. Mann. Bird song: biological themes and variations.
Cambridge Univ Press, 2003.

[26] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines,
2001.

[27] E. Chang and S. Tong. SVMActive-Support Vector Machine Active Learning for Image
Retrieval. In Proceedings of the 9th ACM International Conference on Multimedia, pages
107–118, 2001.

[28] Russell A Charif and Michael Pitzrick. Automated detection of cerulean warbler songs
using xbat data template detector software. Preliminary Report. Bioacoustics Research
Program Cornell Laboratory of Ornithology Technical Report, pages 08–02, 2008.

[29] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric Eide,
and John Regehr. Taming compiler fuzzers. In PLDI, pages 197–208, 2013.

[30] Z. Chen and R. C. Maher. Semi-automatic classification of bird vocalizations using spec-
tral peak tracks. J. Acoust. Soc. Am., 120(5 Pt 1):2974–2984, November 2006. ISSN
0001-4966.

[31] J. Cheng, Y. Sun, and L. Ji. A call-independent and automatic acoustic system for
the individual recognition of animals: A novel model using four passerines. Pattern
Recognition, 43(11):3846–3852, 2010.

[32] J. Cheng, B. Xie, C. Lin, and L. Ji. A comparative study in birds: call-type-independent
species and individual recognition using four machine-learning methods and two acoustic
features. Bioacoustics, 21(2):157–171, 2012.

[33] ED Chesmore and E. Ohya. Automated identification of field-recorded songs of four
British grasshoppers using bioacoustic signal recognition. Bulletin of Entomological Re-
search, 94(04):319–330, 2004. ISSN 0007-4853.

[34] P.M. Cheung and J.T. Kwok. A regularization framework for multiple-instance learning.
In Proceedings of the 23rd international conference on Machine learning, pages 193–200.
ACM, 2006.

131

[35] C.H. Chou and P.H. Liu. Bird species recognition by wavelet transformation of a sec-
tion of birdsong. In Ubiquitous, Autonomic and Trusted Computing, 2009. UIC-ATC’09.
Symposia and Workshops on, pages 189–193. IEEE, 2009.

[36] C.H. Chou, P.H. Liu, and B. Cai. On the studies of syllable segmentation and improving
mfccs for automatic birdsong recognition. In Asia-Pacific Services Computing Conference,
2008. APSCC’08. IEEE, pages 745–750. IEEE, 2008.

[37] W. Chu and D.T. Blumstein. Noise robust bird song detection using syllable pattern-based
hidden Markov models. Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing,
2011.

[38] Corinna Cortes and Vladimir Vapnik. Support vector networks. In Machine Learning,
pages 273–297, 1995.

[39] T. Cour, B. Sapp, C. Jordan, and B. Taskar. Learning from ambiguously labeled images.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on,
pages 919–926. IEEE, 2009.

[40] T. Cour, B. Sapp, and B. Taskar. Learning from partial labels. Journal of Machine
Learning Research, 12:1225–1261, 2011.

[41] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization with
bags of keypoints. In Workshop on Statistical Learning in Computer Vision, ECCV,
volume 1, page 22, 2004.

[42] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In IEEE
Conf. Computer Vision and Pattern Recognition, volume 1, pages 886–893, 2005. ISBN
0769523722.

[43] Theodoros Damoulas, Samuel Henry, Andrew Farnsworth, Michael Lanzone, and Carla
Gomes. Bayesian classification of flight calls with a novel dynamic time warping kernel.
In Machine Learning and Applications (ICMLA), 2010 Ninth International Conference
on, pages 424–429. IEEE, 2010.

[44] Anirban DasGupta. Asymptotic theory of statistics and probability. International Sta-
tistical Review, 77(1):160–161, 04 2009.

[45] Steven B. Davis and Paul Mermelstein. Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. Readings in Speech
Recognition, pages 65–74, 1990.

[46] D. DeBarr and H. Wechsler. Spam Detection using Clustering, Random Forests, and
Active Learning. In Conference on Email and Anti-Spam, 2009.

132

[47] Krzysztof Dembczynski, Weiwei Cheng, and Eyke Hüllermeier. Bayes optimal multilabel
classification via probabilistic classifier chains. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 279–286, 2010.

[48] J. Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of
Machine Learning Research, 7:1–30, 2006.

[49] T.G. Dietterich, R.H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance prob-
lem with axis-parallel rectangles. Artificial Intelligence, 89(1-2):31–71, 1997.

[50] A. Dimou, G. Tsoumakas, V. Mezaris, I. Kompatsiaris, and I. Vlahavas. An empirical
study of multi-label learning methods for video annotation. In 7th Int. Workshop on
Content-Based Multimedia Indexing, pages 19–24, 2009.

[51] L. Du, L. Ren, D. Dunson, and L. Carin. A bayesian model for simultaneous image clus-
tering, annotation and object segmentation. Advances in Neural Information Processing
Systems, 22:486–494, 2009.

[52] Ping Du and Todd W. Troyer. A segmentation algorithm for zebra finch song at the note
level. In Neurocomputing, volume 69, pages 1375–1379, 2006.

[53] S. Duan, M. Towsey, J. Zhang, A. Truskinger, J. Wimmer, and P. Roe. Acoustic com-
ponent detection for automatic species recognition in environmental monitoring. In In-
telligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2011 Seventh
International Conference on, pages 514–519. IEEE, 2011.

[54] Yasser EL-Manzalawy and Vasant Honavar. WLSVM: Integrating LibSVM into Weka
environment, 2005.

[55] A. Elissee↵ and J. Weston. A kernel method for multi-labelled classification. Advances
in Neural Information Processing Systems, 14:681–687, 2001.

[56] C. Elkan. Clustering documents with an exponential-family approximation of the Dirichlet
compound multinomial distribution. In Proceedings of the 23rd international conference
on Machine learning, pages 289–296, 2006.

[57] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal
visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):
303–338, June 2010.

[58] S. Fagerlund and A. Härmä. Parametrization of inharmonic bird sounds for automatic
recognition. In 13th European Signal Processing Conference (EUSIPCO 2005), pages 4–8,
2005.

133

[59] Seppo Fagerlund. Automatic recognition of bird species by their sounds. PhD thesis,
Helsinki University of Technology, 2004.

[60] Seppo Fagerlund. Bird species recognition using support vector machines. EURASIP
Journal on Advances in Signal Processing, 2007, 2007.

[61] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIB-
LINEAR: A library for large linear classification. Journal of Machine Learning Research,
9:1871–1874, 2008.

[62] Andrew Farnsworth and Robert W. Russell. Monitoring flight calls of migrating birds
from an oil platform in the northern gulf of mexico. Journal of Field Ornithology, 78(3):
pp. 279–289, 2007. ISSN 02738570. URL http://www.jstor.org/stable/40345964.

[63] Andrew Farnsworth, Sidney A Gauthreaux Jr, and Donald van Blaricom. A comparison of
nocturnal call counts of migrating birds and reflectivity measurements on doppler radar.
Journal of Avian Biology, 35(4):365–369, 2004.

[64] J. Foulds and E. Frank. A review of multi-instance learning assumptions. The Knowledge
Engineering Review, 25(01):1–25, 2010.

[65] Peter W Frey and David J Slate. Letter recognition using holland-style adaptive classifiers.
Machine Learning, 6:161, 1991.

[66] R. Frost. Mountain Interval. 1916.

[67] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, 1990.

[68] Todor Ganchev, Nikos Fakotakis, and George Kokkinakis. Comparative evaluation of var-
ious mfcc implementations on the speaker verification task. In in Proc. of the SPECOM-
2005, pages 191–194, 2005.

[69] Corrado Gini. Variability and mutability, contribution to the study of statistical distri-
butions and relations. J. Am. Statistical Assoc., 66:534–544, 1971.

[70] N. Giret, P. Roy, A. Albert, F. Pachet, M. Kreutzer, and D. Bovet. Finding good acoustic
features for parrot vocalizations: The feature generation approach. The Journal of the
Acoustical Society of America, 129:1089, 2011.

[71] L. Girod and M.A. Roch. An overview of the use of remote embedded sensors for audio
acquisition and processing. In Multimedia, 2006. ISM’06. Eighth IEEE International
Symposium on, pages 567–574. IEEE, 2006.

[72] Y. Guo and D. Schuurmans. Discriminative Batch Mode Active Learning. Proceedings of
Advances in Neural Information Processing Systems, 6, 2007.

134

[73] A. Härmä. Automatic identification of bird species based on sinusoidal modeling of sylla-
bles. In Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03). 2003
IEEE International Conference on, volume 5, pages V–545–8 vol.5, 2003.

[74] A. Härmä and P. Somervuo. Classification of the harmonic structure in bird vocalization.
In Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP ’04). IEEE
International Conference on, volume 5, pages V–701–4 vol.5, 2004.

[75] J.R. Heller and J.D. Pinezich. Automatic recognition of harmonic bird sounds using a
frequency track extraction algorithm. The Journal of the Acoustical Society of America,
124:1830, 2008.

[76] S.C.H. Hoi, R. Jin, J. Zhu, and M.R. Lyu. Batch Mode Active Learning and its Applica-
tion to Medical Image Classification. In Proceedings of the 23rd International Conference
on Machine Learning, pages 417–424. ACM New York, NY, USA, 2006.

[77] S.C.H. Hoi, R. Jin, and M.R. Lyu. Batch Mode Active Learning with Applications to
Text Categorization and Image Retrieval. IEEE Transactions on Knowledge and Data
Engineering, 21(9):1233, 2009.

[78] C.W. Hsu and C.J. Lin. A comparison of methods for multiclass support vector machines.
IEEE Transactions on Neural Networks, 13(2):415–425, 2002.

[79] C.W. Hsu, C.C. Chang, C.J. Lin, et al. A practical guide to support vector classification,
2003.

[80] E. Hüllermeier and J. Beringer. Learning from ambiguously labeled examples. Intelligent
Data Analysis, 10(5):419–439, 2006.

[81] S. Images. Transductive Multi-Instance Multi-Label learning algorithm with application
to automatic image annotation. Expert Systems with Applications, 2009.

[82] P. Jain and A. Kapoor. Active Learning for Large Multi-class Problems. In IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, 2009.

[83] P. Jancovic and M. Köküer. Automatic detection and recognition of tonal bird sounds in
noisy environments. J. Adv. Signal Processing, 2011, 2011. ISSN 1687-6172.

[84] C.F. Juang and T.M. Chen. Birdsong recognition using prediction-based recurrent neural
fuzzy networks. Neurocomputing, 71(1):121–130, 2007.

[85] F. Jurie and B. Triggs. Creating e�cient codebooks for visual recognition. In Tenth IEEE
International Conference on Computer Vision, 2005. ICCV 2005, volume 1, 2005.

135

[86] J. Kang, K.R. Ryu, and H.C. Kwon. Using Cluster-Based Sampling to Select Initial Train-
ing Set for Active Learning in Text Classification. Lecture Notes in Computer Science,
pages 384–388, 2004.

[87] R.E. Kass and P.W. Vos. Geometrical foundations of asymptotic inference. Wiley-
Interscience, 1997.

[88] Joseph A. Kogan and Daniel Margoliash. Automated recognition of bird song elements
from continuous recordings using dynamic time warping and hidden markov models: A
comparative study. The Journal of the Acoustical Society of America, 103(4):2185–2196,
1998. doi: http://dx.doi.org/10.1121/1.421364.

[89] C. Kwan, G. Mei, X. Zhao, Z. Ren, R. Xu, V. Stanford, C. Rochet, J. Aube, and K.C. Ho.
Bird classification algorithms: Theory and experimental results. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, volume 5, pages 289–292, 2004.

[90] B. Lakshminarayanan, R. Raich, and X. Fern. A Syllable-Level Probabilistic Framework
for Bird Species Identification. In 2009 International Conference on Machine Learning
and Applications, pages 53–59. IEEE, 2009.

[91] C.H. Lee, C.C. Han, and C.C. Chuang. Automatic classification of bird species from
their sounds using two-dimensional cepstral coe�cients. Audio, Speech, and Language
Processing, IEEE Transactions on, 16(8):1541–1550, 2008.

[92] Chang-Hsing Lee, Yeuan-Kuen Lee, and Ren-Zhuang Huang. Automatic recognition of
bird songs using cepstral coe�cients. Journal of Information Technology and Applications,
1(1):17 – 23, 2006.

[93] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Ng. E�cient sparse coding algo-
rithms. In Advances in neural information processing systems, pages 801–808, 2006.

[94] D.D. Lewis. Evaluating text categorization. In Proc. Speech and Natural Language Work-
shop, pages 312–318, 1991.

[95] Bing Li, Weihua Xiong, and Weiming Hu. Web horror image recognition based on context-
aware multi-instance learning. In International Conference on Data Mining, pages 1158–
1163, 2011.

[96] Y.F. Li, J.H. Hu, Y. Jiang, and Z.H. Zhou. Towards discovering what patterns trigger
what labels. In Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

[97] Y.X. Li, S. Ji, S. Kumar, J. Ye, Z.H. Zhou, et al. Drosophila gene expression pattern
annotation through multi-instance multi-label learning. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, pages 1445–1450, 2009.

136

[98] Thomas Lidy and Andreas Rauber. Evaluation of feature extractors and psycho-acoustic
transformations for music genre classification. In Proceedings of the Sixth International
Conference on Music Information Retrieval (ISMIR 2005), pages 34–41, 2005.

[99] Liping Liu and Thomas Dietterich. A conditional multinomial mixture model for superset
label learning. In Advances in Neural Information Processing Systems 25, pages 557–565,
2012.

[100] M.T. Lopes, L.L. Gioppo, T.T. Higushi, C.A.A. Kaestner, CN Silla, and A.L. Koerich.
Automatic bird species identification for large number of species. In Multimedia (ISM),
2011 IEEE International Symposium on, pages 117–122. IEEE, 2011.

[101] M.T. Lopes, A. Lameiras Koerich, C. Nascimento Silla, and CA Alves Kaestner. Feature
set comparison for automatic bird species identification. In Systems, Man, and Cybernet-
ics (SMC), 2011 IEEE International Conference on, pages 965–970. IEEE, 2011.

[102] Qi Lou, Forrest Briggs, Xiaoli Fern, and Raviv Raich. Novelty Detection Under Multi-
Label Multi-Instance Framework. In IEEE Workshop on Machine Learning for Signal
Processing, MLSP 2013, 2013.

[103] T. Luo, K. Kramer, D.B. Goldgof, L.O. Hall, S. Samson, A. Remsen, and T. Hopkins.
Active Learning to Recognize Multiple Types of Plankton. Journal of Machine Learning
Research, 6(1):589, 2006.

[104] D.A. Luther. Signaller: receiver coordination and the timing of communication in Ama-
zonian birds. Biology Letters, 4(6):651, 2008. ISSN 1744-9561.

[105] D.A. Luther and R. Wiley. Production and perception of communicatory signals in a
noisy environment. Biology Letters, 5(2):183, 2009. ISSN 1744-9561.

[106] D.I. MacKenzie, J.D. Nichols, G.B. Lachman, S. Droege, J. Andrew Royle, and C.A.
Langtimm. Estimating site occupancy rates when detection probabilities are less than
one. Ecology, 83(8):2248–2255, 2002. ISSN 0012-9658.

[107] Anne E Magurran. Measuring biological diversity. 2004.

[108] M. Mandel and D.P.W. Ellis. Multiple-instance learning for music information retrieval.
In Proc. Int. Symposium on Music Information Retrieval, 2008.

[109] O. Maron and T. Lozano-Pérez. A framework for multiple-instance learning. Advances
in Neural Information Processing Systems, pages 570–576, 1998.

[110] Oded Maron. Learning from ambiguity. PhD thesis, Massachusetts Institute of Technol-
ogy, 1998.

137

[111] AL McIlraith and HC Card. Birdsong recognition using backpropagation and multivariate
statistics. IEEE Transactions on Signal Processing, 45(11):2740–2748, 1997.

[112] D.K. Mellinger and J. W. Bradbury. Acoustic measurement of marine mammal sounds in
noisy environments. In Proc. Int. Conf. Underwater Acoust. Measurements: Technologies
and Results, pages 273–280, 2007.

[113] T. Minka. Estimating a Dirichlet distribution. Unpublished paper available at
http://research. microsoft. com/ minka, 2003.

[114] L. Neal, F. Briggs, R. Raich, and X.Z. Fern. Time-frequency segmentation of bird song
in noisy acoustic environments. In Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on, pages 2012–2015. IEEE, 2011.

[115] N. Nguyen. A new svm approach to multi-instance multi-label learning. In Tenth IEEE
International Conference on Data Mining. ICDM’10, pages 384–392, 2010.

[116] C. Parmesan and G. Yohe. A globally coherent fingerprint of climate change impacts
across natural systems. Nature, 421(6918):37–42, 2003. ISSN 0028-0836.

[117] Scott F. Pearson. Hermit warbler (setophaga occidentalis), the birds of north america
online. 1997. doi: 10.2173/bna.303. Retrieved from Birds of North America Online:
http://bna.birds.cornell.edu/bna/species/303 (last viewed 1/26/12).

[118] L.R. Rabiner and M.R. Sambur. An algorithm for determining the endpoints of isolated
utterances. The Bell System Technical Journal, 54(2):297–315, 1975.

[119] A. Rahimi and B. Recht. Random features for large-scale kernel machines. jAdvances in
Neural Information Processing Systems, 20:1177–1184, 2007.

[120] L. Ranjard and H.A. Ross. Unsupervised bird song syllable classification using evolving
neural networks. The Journal of the Acoustical Society of America, 123:4358, 2008.

[121] Soumya Ray and Mark Craven. Supervised versus multiple instance learning: An empiri-
cal comparison. In Proceedings of the 22nd international conference on Machine learning,
pages 697–704. ACM, 2005.

[122] Jesse Read, Bernhard Pfahringer, Geo↵ Holmes, and Eibe Frank. Classifier chains for
multi-label classification. Machine learning, 85(3):333–359, 2011.

[123] C.S. Robbins, S. Droege, and J.R. Sauer. Monitoring bird populations with breeding bird
survey and atlas data. In Annales Zoologici Fennici, volume 26, pages 297–304, 1989.

[124] T. Scott Brandes. Automated sound recording and analysis techniques for bird surveys
and conservation. Bird Conservation Int., 18(S1):163–173, 2008. ISSN 0959-2709.

138

[125] Ç.H. Şekercioğlu, G.C. Daily, and P.R. Ehrlich. Ecosystem consequences of bird declines.
Proc. Nat. Acad. Sciences of the United States of Am., 101(52):18042, 2004.

[126] A. Selin, J. Turunen, and J.T. Tanttu. Wavelets in recognition of bird sounds. EURASIP
Journal on Advances in Signal Processing, 2007:1–9, 2007.

[127] S.A. Selouani, M. Kardouchi, E. Hervet, and D. Roy. Automatic birdsong recognition
based on autoregressive time-delay neural networks. In Computational Intelligence Meth-
ods and Applications, 2005 ICSC Congress on, pages 6–pp. IEEE, 2005.

[128] Claus Seyerlehner, Gerhard Widmer, and Peter Knees. Frame Level Audio Similarity -
A Codebook Approach. In Proceedings of the 11th International Conference on Digital
Audio E↵ects (DAFx-08), Espoo, Finland, September 1–4 2008.

[129] S. Shalev-Shwartz and Y. Singer. Logarithmic regret algorithms for strongly convex
repeated games. The Hebrew University, Technical Report, 2007.

[130] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient
solver for svm. In Proceedings of the 24th international conference on Machine learning,
pages 807–814. ACM, 2007.

[131] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: primal estimated sub-
gradient solver for svm. Mathematical programming, 127(1):3–30, 2011.

[132] C. Shen, J. Jiao, B. Wang, and Y. Yang. Multi-Instance Multi-Label Learning For Auto-
matic Tag Recommendation. In Proceedings of the 2009 IEEE International Conference
on Systems, Man, and Cybernetics (SMC 2009), 2009.

[133] H. Slabbekoorn and T.B. Smith. Bird song, ecology and speciation. Philosophical Trans-
actions of the Royal Society of London. Series B: Biological Sciences, 357(1420):493, 2002.
ISSN 0962-8436.

[134] P. Somervuo and A. Härmä. Bird song recognition based on syllable pair histograms. In
Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing, volume 5, pages 825–828,
2004.

[135] Panu Somervuo and Aki Härmä. Analyzing bird song syllables on the self-organizing
map. In Proceedings of the Workshop on Self-Organizing Maps (WSOM’03), Kitakyushu,
Japan, September 2003.

[136] Panu Somervuo, Aki Härmä, and Seppo Fagerlund. Parametric representations of bird
sounds for automatic species recognition. In IEEE Transactions on Audio, Speed, and
Language Processing, volume 14, 2006.

139

[137] B. Sriperumbudur and G. Lanckriet. On the convergence of the concave-convex procedure.
Advances in neural information processing systems, 22:1759–1767, 2009.

[138] D. Stowell and M.D. Plumbley. Framewise heterodyne chirp analysis of birdsong. 2012.

[139] K.A. Swiston and D.J. Mennill. Comparison of manual and automated methods for
identifying target sounds in audio recordings of pileated, pale-billed, and putative ivory-
billed woodpeckers. Journal of Field Ornithology, 80(1):42–50, 2009.

[140] L.N. Tan, K. Kaewtip, M.L. Cody, C.E. Taylor, and A. Alwan. Evaluation of a sparse
representation-based classifier for bird phrase classification under limited data conditions.
In 13th Annual Conference of the International Speech Communication Association, 2012.

[141] S. Tong and D. Koller. Support Vector Machine Active Learning with Applications to
Text Classification. The Journal of Machine Learning Research, 2:45–66, 2001.

[142] V.M. Trifa, A.N.G. Kirschel, C.E. Taylor, and E.E. Vallejo. Automated species recognition
of antbirds in a Mexican rainforest using hidden Markov models. J. Acoust. Soc. Am.,
123:2424, 2008.

[143] H. Tyagi, R.M. Hegde, H.A. Murthy, and A. Prabhakar. Automatic identification of bird
calls using spectral ensemble average voice prints. In Proceedings of the 13th European
Signal Processing Conference, 2006.

[144] Vivek Tyagi and Christian Wellekens. On desensitizing the mel-cepstrum to spurious
spectral components for robust speech recognition. In Proc. ICASSP, volume 5, pages
529–532, 2005.

[145] G. Vaca-Castaño and D. Rodriguez. Using syllabic mel cepstrum features and k-nearest
neighbors to identify anurans and birds species. In Signal Processing Systems (SIPS),
2010 IEEE Workshop on, pages 466–471. IEEE, 2010.

[146] G. Vaca-Castano, D. Rodriguez, J. Castillo, K. Lu, A. Rios, and F. Bird. A framework for
bioacoustical species classification in a versatile service-oriented wireless mesh network.
In Proc. 2010 European Signal Processing Conference (EUSIPCO-2010), 2010.

[147] A. Vezhnevets, J.M. Buhmann, and ETH Zurich. Towards Weakly Supervised Semantic
Segmentation by Means of Multiple Instance and Multitask Learning. In Conference on
Computer Vision and Pattern Recognition, 2010.

[148] S. Vijayanarasimhan and K. Grauman. What’s it going to cost you?: Predicting e↵ort
vs. informativeness for multi-label image annotations. IEEE Conf. Computer Vision and
Pattern Recognition, pages 2262–2269, 2009.

140

[149] E. Vilches, I.A. Escobar, E.E. Vallejo, and C.E. Taylor. Data mining applied to acoustic
bird species recognition. Pattern Recognition, 3:400–403, 2006. ISSN 1051-4651.

[150] J. Volkmann, S. S. Stevens, and E. B. Newman. A scale for the measurement of the
psychological magnitude pitch. The Journal of the Acoustical Society of America, 8(3):
208–208, 1937. doi: 10.1121/1.1901999. URL http://link.aip.org/link/?JAS/8/208/

2.

[151] W. Wang and Z.H. Zhou. Learnability of multi-instance multi-label learning. Chinese
Science Bulletin, pages 1–4, 2012.

[152] R. Wielgat, T.P. Zielinski, T. Potempa, A. Lisowska-Lis, and D. Król. Hfcc based recog-
nition of bird species. In Signal Processing Algorithms, Architectures, Arrangements and
Applications, 2007, pages 129–134. IEEE, 2007.

[153] J. Wimmer, M. Towsey, B. Planitz, I. Williamson, and P. Roe. Analysing environmen-
tal acoustic data through collaboration and automation. Future Generation Computer
Systems, 2012.

[154] J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual
dictionary. In Tenth IEEE International Conference on Computer Vision, 2005. ICCV
2005, volume 2, 2005.

[155] I.H. Witten and E. Frank. Data mining: practical machine learning tools and techniques
with Java implementations. ACM SIGMOD Record, 31(1):76–77, 2002.

[156] X. Xu and E. Frank. Logistic regression and boosting for labeled bags of instances.
Advances in Knowledge Discovery and Data Mining, pages 272–281, 2004.

[157] X.S. Xu, X. Xue, and Z.H. Zhou. Ensemble multi-instance multi-label learning approach
for video annotation task. In Proceedings of the 19th ACM international conference on
Multimedia, pages 1153–1156. ACM, 2011.

[158] Z. Xu, K. Yu, V. Tresp, X. Xu, and J. Wang. Representative Sampling for Text Classifica-
tion Using Support Vector Machines. Lecture Notes in Computer Science, pages 393–407,
2003.

[159] O. Yakhnenko. Learning from Text and Images: Generative and Discriminative Models
for Partially Labeled Data. PhD thesis, Iowa State University, 2009.

[160] S.H. Yang, H. Zha, and B.G. Hu. Dirichlet-bernoulli alignment: A generative model
for multi-class multi-label multi-instance corpora. In Proceedings of Neural Information
Processing Systems, pages 2143–2150, 2009.

141

[161] S.H. Yang, J. Bian, and H. Zha. Hybrid Generative/Discriminative Learning for Auto-
matic Image Annotation. In Conference on Uncertainty in Artificial Intelligence, 2010.

[162] Sj Young. The hidden markov model toolkit. Entropic Cambridge Research Laboratory,
Ltd, 2:2–44, 1995.

[163] K. Yu, S. Yu, and V. Tresp. Dirichlet enhanced latent semantic analysis. In Conference
in Artificial Intelligence and Statistics, 2005.

[164] A.L. Yuille and A. Rangarajan. The concave-convex procedure (cccp). Advances in Neural
Information Processing Systems, 2:1033–1040, 2002.

[165] Z.J. Zha, X.S. Hua, T. Mei, J. Wang, G.J. Qi, and Z. Wang. Joint multi-label multi-
instance learning for image classification. In IEEE Conference on Computer Vision and
Pattern Recognition, 2008. CVPR 2008, pages 1–8, 2008.

[166] M.L. Zhang. A k-nearest neighbor based multi-instance multi-label learning algorithm.
22nd IEEE Int. Conf. Tools with Artificial Intelligence, pages 207–212, 2010.

[167] M.L. Zhang and Z.J. Wang. MIMLRBF: RBF neural networks for multi-instance multi-
label learning. Neurocomputing, 72(16-18):3951–3956, 2009.

[168] M.L. Zhang and Z.H. Zhou. M3MIML: A maximum margin method for multi-instance
multi-label learning. In Eighth IEEE International Conference on Data Mining. ICDM’08,
pages 688–697, 2008.

[169] Q. Zhang and S.A. Goldman. EM-DD: An improved multiple-instance learning technique.
Advances in Neural Information Processing Systems, 2:1073–1080, 2002.

[170] Z.H. Zhou. Multi-instance learning: A survey. AI Lab, Department of Computer Science
and Technology, Nanjing University, Tech. Rep, 2004.

[171] Z.H. Zhou and M.L. Zhang. Multi-instance multi-label learning with application to scene
classification. Advances in Neural Information Processing Systems, 19:1609, 2007.

[172] Z.H. Zhou, M.L. Zhang, S.J. Huang, and Y.F. Li. Multi-instance multi-label learning.
Artificial Intelligence, 176(1):2291–2320, 2012.

[173] Zhi-Hua Zhou, Yu-Yin Sun, and Yu-Feng Li. Multi-instance learning by treating instances
as non-iid samples. In International Conference on Machine Learning, pages 1249–1256,
2009.

142

APPENDICES

143

Appendix A: Instance Annotation for Multi-Instance Multi-Label

Learning – Proof of Bound on Sub-Gradient

We follow the approach of Shalev-Shwartz and Singer [129] to establish the convergence for

sub-gradient descent. Because the number of iterations to reach an ✏-suboptimal solution is

Op L
�✏q, where L is a bound on the sub-gradient ||V||2 § L, we proceed with a derivation of L.

The bound proved in this appendix applies to the sub-gradients (5.27) and (5.29). Suppressing

all sub- and superscripts except for the class index q, recall that the complete subgradient is

V “ rv1, . . . ,vq, . . . ,vcs.
We will start with a bound on the qth component of V; using the triangle inequality:

||vq||§ �||wq|| `
ÿ

ijk

�iIr¨s
´

||x̂||Irq “ ks ` ||x̂||Irq “ js
¯

(A.1)

Note that Ir¨s§ 1 and for any support instance ||x̂||§ R. Using these properties

||vq||§ �||wq|| ` R
ÿ

ijk

�i
´

Irq “ ks ` Irq “ js
¯

(A.2)

||vq||§ �||wq|| ` R
´

ÿ

ijk

�iIrq “ ks `
ÿ

ijk

�iIrq “ js
¯

(A.3)

The first sum on the RHS of (A.3) can be computed as

ÿ

ijk

�iIrq “ ks “
n

ÿ

i“1

�i
ÿ

jPY
i

ÿ

kRY
i

Irq “ ks (A.4)

“
n

ÿ

i“1

�i

c
ÿ

j“1

c
ÿ

k“1

Irq “ ksIrj P YisIrk R Yis (A.5)

“
n

ÿ

i“1

�iIrq R Yis
c

ÿ

j“1

Irj P Yis
loooooomoooooon

|Y
i

|

“
n

ÿ

i“1

�iIrq R Yis|Yi| (A.6)

144

Similarly, the second sum on the RHS of (A.3) can be simplified as

ÿ

ijk

�iIrq “ js “
n

ÿ

i“1

�iIrq P Yis|Ȳi| (A.7)

Substituting these terms back into (A.3),

||vq||§ �||wq|| ` R
´

n
ÿ

i“1

�iIrq R Yis|Yi| `
n

ÿ

i“1

�iIrq P Yis|Ȳi|
¯

(A.8)

To condense notation we will rewrite this statement as ||vq||§ aq ` bq where

aq “ �||wq|| (A.9)

bq “ R
n

ÿ

i“1

�i
´

Irq R Yis|Yi| ` Irq P Yis|Ȳi|
¯

(A.10)

Lemma A1.1

||V||2 §
˜

g

f

f

e

c
ÿ

q“1

a2q `
g

f

f

e

c
ÿ

q“1

b2q

¸2

Proof.

||vq||2 § paq ` bqq2 “ a2q ` b2q ` 2aqbq (A.11)

||V||2 “
c

ÿ

q“1

||vq||2 §
c

ÿ

q“1

a2q `
c

ÿ

q“1

b2q `
c

ÿ

q“1

2aqbq (A.12)

§
c

ÿ

q“1

a2q `
c

ÿ

q“1

b2q ` 2

g

f

f

e

´

c
ÿ

q“1

a2q

¯´

c
ÿ

q“1

b2q

¯

by Cauchy-Schwarz (A.13)

§
˜

g

f

f

e

c
ÿ

q“1

a2q `
g

f

f

e

c
ÿ

q“1

b2q

¸2

(A.14)

145

Lemma A1.2

c
ÿ

q“1

a2q § 2�

Proof.
∞c

q“1 a
2
q “ ∞c

q“1 �
2||wq||2 “ �2 ∞c

q“1 ||wq||2 “ �2||W||2 § 2� because W P S

Lemma A1.3

c
ÿ

q“1

b2q § 4R2

Proof.

c
ÿ

q“1

b2q “ R2
c

ÿ

q“1

´

n
ÿ

i“1

�ipIrq R Yis|Yi| ` Irq P Yis|Ȳi|q
¯2

(A.15)

“ R2
c

ÿ

q“1

n
ÿ

i“1

n
ÿ

i1“1

�i�i1
´

Irq R Yis|Yi| ` Irq P Yis|Ȳi|
¯´

Irq R Yi1s|Yi1 | ` Irq P Yi1s|Ȳi1 |
¯

(A.16)

Note the above result is obtained from the identity
´

n
ÿ

i“1

xi
¯2

“
n

ÿ

i“1

n
ÿ

i1“1

xixi1 . Expanding the

146

right side of the expression, we will obtain four terms, e.g.,

R2
c

ÿ

q“1

n
ÿ

i“1

n
ÿ

i1“1

�i�i1Irq R YisIrq R Yi1s|Yi||Yi1 | (A.17)

“ R2
n

ÿ

i“1

n
ÿ

i1“1

�i�i1 |Yi||Yi1 |
c

ÿ

q“1

Irq R YisIrq R Yi1s (A.18)

§ R2
n

ÿ

i“1

n
ÿ

i1“1

�i�i1 |Yi||Yi1 |
g

f

f

e

´

c
ÿ

q“1

Irq R Yis2
¯´

c
ÿ

q“1

Irq R Yi1s2
¯

by Cauchy-Schwarz (A.19)

“ R2
n

ÿ

i“1

n
ÿ

i1“1

�i�i1 |Yi||Yi1 |
b

|Ȳi||Ȳi1 | (A.20)

“ R2
n

ÿ

i“1

n
ÿ

i1“1

|Yi||Yi1 |
a

|Ȳi||Ȳi1 |
n2|Yi||Ȳi||Yi1 ||Ȳi1 | “ R2

n2

n
ÿ

i“1

n
ÿ

i1“1

1
a

|Ȳi||Ȳi1 |
“ R2

n2

´

n
ÿ

i“1

1
a

|Ȳi|
¯´

n
ÿ

i“1

1
a

|Ȳi|
¯

(A.21)

The other three terms can be derived similarly. It follows that

c
ÿ

q“1

b2q § R2

n2

˜

´

n
ÿ

i“1

1
a

|Ȳi|
¯2

`
´

n
ÿ

i“1

1
a

|Yi|
¯2

` 2
´

n
ÿ

i“1

1
a

|Ȳi|
¯´

n
ÿ

i“1

1
a

|Yi|
¯

¸

(A.22)

“ R2

n2

˜

n
ÿ

i“1

´ 1
a

|Yi|
` 1

a

|Ȳi|
¯

¸2

§ R2p1 ` 1?
c ´ 1

q2 (A.23)

To obtain the last inequality, observe that a label set Yi may not be empty or contain all c

classes, therefore 1 § |Yi| § c´1 and 1 § |Ȳi| § c´1. Finally, note that 1` 1?
c´1

§ 2, therefore
∞c

q“1 b
2
q § 4R2.

Combining Lemmas A1.1, A1.2 and A1.3, we get

||V||2 §
˜

g

f

f

e

c
ÿ

q“1

a2q `
g

f

f

e

c
ÿ

q“1

b2q

¸2

(A.24)

§
´?

2� ` 2R
¯2

(A.25)

therefore L1 “
´?

2� ` 2R
¯2

is suitable bound for the Pegasos analysis. This result applies to

147

either SIM-CCCP or SIM-Heuristic with rank loss.

148

Appendix B: Instance Annotation for Multi-Instance Multi-Label

Learning – Implementation Details

In this appendix, we further discuss the design and implementation of of SIM.

Average Support Instance Initialization The rank loss objective is non-convex and hence

the optimum found may depend on the starting point. In preliminary experiments, we tried

starting with random weights, then computing the first support instances with max or softmax

based on the random weights. However, a problem with this approach is that the support

instance x̂ij computed from random weights is unlikely to be a good representation of class

j for bag i. This approach is prone to getting stuck in bad local optima. Also note that

meaningful support instances cannot be computed from W “ 0. Our proposed SIM algorithms

instead use an average model x̂ij “ 1
n
i

∞

xPX
i

x, which does not depend on the weights. After

solving the convex problem once with these average support instances, the weights are good

enough to compute support instances with max or softmax in subsequent iterations.

Warm Start Going from one outer iteration of CCCP or the heuristic to the next, we start

at the weights with the lowest objective evaluation on the convex problem from the previous

iteration. We do this because projected sub-gradient descent is not guaranteed to monotonically

decrease the convex objective (an upper bound on the objective is guaranteed to decrease

monotonically). Hence the best solution may occur in some iteration of sub-gradient descent

other than the last.

Using an Approximate Solver within CCCP To show that CCCP monotonically de-

creases the objective, it is assumed that the convex problem in each iteration is solved exactly

[137]. However, we are using an approximate solver in each iteration. We can still ensure

monotonic decrease in the original DC problem by running a su�cient number of iterations

of sub-gradient descent. Recall that the convex problem solved in each iteration of CCCP

uses a linear upper bound of the concave part of the objective at the current point, which

touches the original DC objective at the current point. Hence at iteration t of CCCP, we have

149

hRLpWptqq “ hptq
RL,cccppWptqq. At iteration ⌧ of sub-gradient descent within iteration t of CCCP,

the objective value for the convex problem is hptq
RL,cccppWpt,⌧qq. If this objective is less than the

DC objective at the start of the iteration of CCCP, i.e. hptq
RL,cccppWpt,⌧qq § hptq

RL,cccppWptqq, then ⌧

is a su�cient number of iterations to ensure DC objective is monotonically decreasing, because

hRLpWpt`1qq § hptq
RL,cccppWpt,⌧qq § hptq

RL,cccppWptqq “ hRLpWptqq (B.1)

In our implementation of CCCP, we start by running K iterations of sub-gradient descent.

If K iterations is enough to decrease the hRL objective, we move on to the next iteration of

CCCP. If not, we repeatedly run K more iterations until either the hRL objective decreases,

or the total number of iterations reaches Kmax. In the latter case, we terminate CCCP and

return the best solution found so far. We do not use this scheme of increasing the number of

iterations of sub-gradient descent for the heuristic optimization method (it always uses exactly

K iterations).

Feature Rescaling We apply the following preprocessing to the instance features. First, we

transform each feature to the range r0, 1s. Next, we apply the same feature rescaling process

used in the Convex Learning from Partial Labels Toolbox (for ambiguous label classification

[40]), which centers the data and scales each feature by 1?
∞

m

i“1 ||x
i

||2 . When the Random Fourier

Kernel features are used, we first apply the above process, then apply the transform z, then

repeat the process from the CLPL a second time. We have observed that the proposed methods

are sensitive to feature scaling, and found the above processing steps e↵ective.

Numerical Issues with softmax Due to large exponents, numerical overflow may occur

when computing the softmax weights as

↵j
iq “ ewj

¨x
iq

∞

x

1PX
i

ewj

¨x1

This problem is more likely to occur when the regularization parameter � is small, because the

weights are constrained to a ball with large radius. An equivalent formula for calculating the

softmax weights which avoids numerical issues is

↵j
iq “ ewj

¨x
iq

´b

∞

x

1PX
i

ewj

¨x1´b
where b “ max

xPX
i

wj ¨ x (B.2)

