JOHN VINCENT RYAN_ for the degree of MASTER OF SCIENCE
in INDUSTRIAL ENGINEERING presented on September 19, 1977
Title: A Discrete Multi-Facility Location Analysis of a Public Sector
Office Siting Problem
Abstract Approved: Redacted for Privacy
Dr. Michael S. Inoue

A discrete multi-facility plant location algorithm developed by Basheer Khumawala is modified and applied to the location analysis of offices of the State of Oregon Health Facilities Licensing and Certification Section (HFLC). Choice of the algorithm is based upon a literature survey of available computational procedures which compares their relative efficiencies and appropriateness to the problem at hand.

The problem studied includes 211 health care facilities in seventyseven cities throughout the state of Oregon. These facilities are regulated through inspections by the HFLC staff which is presently located in a single Portland office. The hypothesis is tested that a feasible HFLC multi-office plan can be formulated winich reduces the agency's costs of operation. Khumawala's algorithm is used to compute the total costs of the present single-office, sixteen-inspector operation and to optimize the cost of a multi-office plan. Costs under centralized and decentralized office plans are evaluated; the results indicate that a fifteen per cent reduction in the annual cost of agency operations could be realized under a multi-office plan.

A sensitivity analysis is performed using a multi-factor design to study the effect of changes in parameters of cost, demand, and efficiency of personnel on the total cost and facility location results. The multiple office model is shown to remain optimal under a range of future conditons foreseen for the next four years.

A Discrete Multi-Facility Location Analysis of a Public Sector Office Siting Problem

 byJohn Vincent Ryan

A THESIS

in partial fulfillment of
the requirements for the degree of

Master of Science

Completed September 19, 1977

Redacted for Privacy

Professor ot indystrial and jeneyal Engineering in charge of major

 Redacted for Privacy

 Redacted for Privacy}

Head of Departmfnt of Indusitrial al/General Engineerng

Redacted for Privacy

Dean of Graduate School

Date thesis is presented September 19, 1977
Typed by Lynda Wolfenbarger for
John Vincent Ryan

ACKNOWLEDGMENTS

The author wishes to express his gratitude to Dr. Edward D. McDowell for his guidance in the initial formulation of the project. A big thanks is owed to Dr. Michael S. Inoue for his many suggestions both in analyzing the problem data and in writing the thesis. Special appreciation is extended to Ms. Lynda L. Wolfenbarger whose effort in typing and trouble-shooting the thesis under a hurried schedule allowed completion deadlines to be met.

TABLE OF CONTENTS

Chapter Page
I INTRODUCTION 1
The Problem 1
Model Formulation 1
Search for a Solution Procedure 7
II DISCRETE MULTI-FACILITY PLANT LOCATION LITERATURE SURVEY 9
Heuristics 9
IP Principles 13
Separation 15
Relaxation 15
Fathoming 16
IP Algorithms 19
Cutting-Plane Algorithms 19
Bender's Decomposition 21
Group Theoretic Approach 22
Enumerative Algoriths 22
Overview of IP Model Formulation 23
Limitation of Discrete Multi-Facility Algorithms for the HFLC Analysis 27
III VEHICLE ROUTING PROBLEM LITERATURE SURVEY 31
Travelling Salesman Problem 31
Multiple Travelling Salesman Problem 33
Vehicle Dispatch Problem 33
Multi-Depot Vehicle Routing Problem 34
IP Formulation 34
Heuristic Solution Techniques 34
IV SELECTION OF A SOLUTION PROCEDURE 38
Multi-Depot VRP Heuristic Versus Discrete Multi-Facility Algorithms 38
Algorithm Selection 39
V DESCRIPTION OF THE ALGORITHM 41
The Objective Function 41
Branch and Bound Procedure 42
Computational Efficiency 44
LP Simplifications 45
Branching Decision Rules 49
VI HFLC PROBLEM ANALYSIS 51
Demand Data 51
The Demand Model 63
Model of Present Operations 64
Decentralized Plan Model 65
Sunmary of costs 68
Fixed Costs 68
Variable Costs 69
Office Personnel Requirements 73
VII THE COMPUTER ANALYSIS 75
Model Result Analysis 75
Sensitivity Analysis 85
VIII CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY 101
Conclusions 101
Recommendations for Further Study 103
BIBLIOGRAPHY 105
APPENDICES
Appendix 1 111
Appendix 2 113
Appendix 3 116
Appendix 4 119
Appendix 5 121
Appendix 6 129
Appendix 7 135
Appendix 8 138
Appendix 9 141
Appendix 10 142
Appendix 11 147
Figure Page
1 Distribution of Nursing Facilities in Oregon 3
2 Required Annual Visits to Each Nursing Facility 4
3 Relationship of Multi-Office Location Costs 8
4 General Form of Enumerative Algorithms (from [41], p. 13) 18
5 Illustration of Gomory Cutting Planes 20
6a Travel Pattern Under Discrete Multi-Facility Location with Six Visits Required to Each Demand Site 29
6b Travel Pattern with Tours, For a Set of Randomly Generated Tours with Six Visits Required for Demand Sites 29
7a Link Demand Sites F_{1}, F_{2}, F_{3} to Depot 36
70 Link Demand Sites F_{1} and F_{2} 36
$7 c$ Link Demand Sites F_{1} and F_{2} and Demand Sites F_{2} and F_{3} 36
8 Branch and Bound Procedure After Finding One Terminal Solution 43
9 Simplification Flow Chart (from [30] p. B-724) 47
10 Branch and Bound Procedure Flow Chart (from [30] p. B-725) 48
11a Number of Complaints by County, 1977 52
11b Number of Complaints by County, 1976 53
11c Number of Complaints by County, 1975 54
11d Number of Complaints by County, 1974 55
12 Frequency Versus Complaints Per Home 56
13 Frequency Versus Complaints Per Home, 1974-1977 58
14 Overnight Lodging Per Diems 70
15 Example of Assignment of Complaints in a County 78
16 Multi-Office Locations with Integer-Valued Staff Assignments 83
17 Minimum Multi-Office Cost Savings with Integer Assignments 84
18 Estimate of Reduction in Travel Distance with Tour Formation 86
19.1a Total Cost Versus Efficiency at Three Levels of Complaint Demand 89
19.1b Range of Total Cost for Efficiency Equal to 75% and 60% at Three Levels of Complaint Demand. Means are shown connected between complaint levels. 89
19.2a Total Cost Versus Low and High Wage Levels at Three Levels of Complaint Demand 90
19.2b Range of Total Cost for Low and High Wage Levels at Three Levels of Complaint Demand. Means shown connected between complaint levels. 90
19.3a Total Cost Versus Complaint Level 91
19.3b Range of Total Cost at Three Levels of Complaint Demand. Means are shown connected between complaint levels. 91
19.4a Total Cost Versus Low and High Numbers of Visits at Three Levels of Complaint Demand 97
19.4b Range of Total Cost for a Low and High Number of Visits at Three Levels of Complaint Demand. Means are shown connected between complaint levels. 97

LIST OF TABLES

Table Page
I Solution Techniques Investigated 11
II Computational Results for Standard Problems (CPU Time in Seconds) 25
76
III Comparison of Solution Techniques
80
IV Solution Results
92
V Sensitivity Analysis
98
VI Best and Worst Case Solutions
99
VII Solution Results with Various Facility Opening Costs

The Problem

Two hundred and eleven (211) nursing care facilities are located in Oregon, with about 60\% in the Willamette Valley and 40% at population centers across the state. These are classified as Skilled Nursing Facilities (SNF), Internediate Care Facilities (ICF), and facilities for the mentally retarded (SNF/MR and ICF/MR). The nursing facilities are regulated through inspection by the State Health Division, Health Facilities Licensing and Certification Section. The inspection group's name describes its functions. About 80% of the Section's workload entails Federal Medicare and Medicaid certification inspections, entailing about 2000 reports per year. Annual inspections for state licensing, plus investigations of complaints from nursing care clients and their families constitute the remaining 20% of the Section's workload.

At present, all nursing homes, including hospital nursing units, are served by one staff of inspectors centrally located in Portland. Following a State Executive Department Administrative Analysis [14] of the Health Facilities Section, a question arose: can the total cost of inspections be reduced by locating inspectors at decentralized offices across the state? This thesis tackles that question.

Model Formulation

The Oregon State Health Facilities Licensing and Certification Section (HFLC) is charged with responsibility for inspecting nursing homes across the state to insure that homes comply with state licensing
and Federal certification requirements. Nursing facilities, including facilities for the mentally retarded and hospital nursing care units, are presently located at 77 Oregon locations as shown in Figure 1. The distribution of homes changes little from year to year. Usually, three to five homes are added or dropped from the total each year. Each home requires several visits by an inspector each year, as outlined in Figure 2. Homes must be inspected for annual state licensing and qualification for Federal Medicare and Medicaid payments. The Medicare certification information satisfies the requirements of Medicaid, so it is reasonable that the Federal inspections in each home should be made at the same time. Provision is made in current Federal regulations to adjust the two certification periods so that the two inspections are coterminous, that is, the inspections fall due on the same date. Further, the state and Federal inspections are complementary, utilizing the same survey data, but requiring different write-ups. Hence, one survey visit is utilized for both, and again, the Federal certification period may be adjusted so that the State and Federal inspections are coterminous. In essentially all cases, the inspector finds deficiences that must be corrected. Previously, the inspector had to make a second visit to cite and, if necessary, fine a home for a deficiency. A third visit was made to check the deficiency correction. The 1977 Oregon State Legislature changed the law so that a home may be cited and fined on the first visit; the second visit is the follow-up visit. The state requires the follow-up visit within 30 days of the original survey; the Federal Government requires a follow-up within 60 days of the inspection.

Figure 1. Distribution of nursing facilities in Oregon

Demand Per Facility	Number of Visits	Duration Each Visit (Days)	Description
1 1 1	1 1 1	3 1 1	Original survey for State licensing and Federal Medicare and Medicaid Certification; a sample of clients is interviewed, homes are inspected, and facilities may be cited and fined for deficiencies. State Licensing follow-up to check corrections to deficiencies under State regulations; must be within 30 days of original survey. Federal certification follow-up to check Medicare and Medicaid deficiency corrections; must be within 60 days of original survey.
1	1	1	MIPRT follow-up - review findings of Medical Independent Professional Review Team and cite deficiencies which have not been corrected.
$\begin{aligned} & 0-4 \\ & 0-1 \end{aligned}$	2	1 3 1 1 1	Each complaint requires one investigation visit and one followup visit. Facilities usually receive between zero and four complaints per year; "bad" homes may be higher. Changes of Ownership require repetition of the first four visits: Licensing and certification survey State licensing follow-up Federal certification follow-up MIPRT follow-up CHOW have varied between 19 and 30 total for the state in recent years.

Figure 2. Required Annual Visits to Each Nursing Facility

The inspector schedules the first licensing and certification visit at his discretion; the visit is unannounced, in order to maintain an element of surprise. Generally, the second and third visits then fall near the end of the 30 and 60 periods during which homes correct reported deficiencies. All visits must be completed before the end of the one-year licensing for continued state licensing and 45 days before the end of the period for renewed Federal Medicare and Medicaid certification. Approximately twenty of the 211 Oregon nursing care facilities are state-licensed but choose to remain uncertified for Medicare and Medicaid payments. In this analysis, it is assumed that all homes are both licensed and certified.

At present, a follow-up visit is also required to review deficiencies found by a Medical Independent Professional Review Team - MIPRT from the State Division of Adult and Family Services (formerly Public Welfare Division). A MIPR team visits each home once per year to interview each client in the home and review that person's medical care. Deficiencies which MIPRT notes can only be acted upon by the Health Facilities Licensing and Certification Section, so HFLC conducts the follow-up. This interaction between state agencies causes delay, according to the State Executive Department report [14]. HFLC may assume the total MIPRT function in the future; here it is assumed, as recommended by the Executive Department [24], that HFLC conducts only the follow-up.

Beyond these required annual inspection visits, inspectors' time is required to service demands which occur more randomly. Complaints occur that require investigation, usually followed by a citation for a
deficiency and a follow-up visit to check on the correction. Changes of ownership (CHOW) require that a home be relicensed and recertified under the operation of the facility's new management.

Infrequently, a home is decertified because of deficiencies. This process requires several visits by the inspector, often accompanied by the inspector's supervisor. The inspector must file reports and lengthy correspondence, and perhaps meet with the HFLC legal counsel, as facilities often initiate lawsuits to maintain their certification. Decertification is very rare, and is excluded in our study.

Inspectors are occasionally called upon for consultation visits by homes requiring information. These short visits are usually scheduled along with other visits in the area, and are here viewed to be included in the demand data for licensing and certification.

The inspector's time is taken up with travelling, on-site visits, meetings, and also with report writing. Fourteen hours are budgeted to write a Medicare/Medicaid report to the Federal Government following each certification visit; state licensing requires no report beyond the survey form completed during the visit. Follow-up and complaint visits generate additional paperwork.

Costs of inspection activities fit well into fixed, variable, and step cost categories. The inspector's office location generates a fixed cost. The inspector's salary is a fixed cost on an annual basis, or variable on a per-hour basis. Transportation cost is variable, based on mileage and cost of an inspector's time. Step costs consist of the per diem paid for meals and lodging when an inspector or the supervisor is away from home base. If reasonable cost figures can be
developed, then a mathematical model can be used to express total cost of operating from some number of optimally located HFLC offices. The optimal plan can be compared with the present single-office plan to identify any potential cost savings to the State government and, ultimately, to Oregon taxpayers.

Several factors must be considered in the location analysis. Demand must be satisfied to insure that nursing home clients receive proper care. Travel expenses and the costs of operating an additional HFLC office must be determined. The required number of inspectors must be estimated. The cost implications of these factors are shown in Figure 3. As the number of offices increases, the travel cost decreases and the fixed office cost increases. Total cost is the sum of the fixed and variable cost functions, each of which includes step cost elements. It can be seen that in order to minimize cost, we must analyze the trade off between fixed office costs and variable transportation costs.

Search for a Solution Algorithm

The decentralized inspection office location problem fits well into the category of problems known as discrete multi-facility plant (warehouse) location. Some characteristics of the problem, however, are more appropriately classified by the so-called multi-terminal problem found in vehicle routing problem (VRP) literature. Both groups of literature are related to the problem at hand. The discrete multifacility plant location model is discussed first.

Number of offices opened

Figure 3. Relationship of Multi-Office Location Costs
II. DISCRETE MULTI-fACILITY PLANT LOCATION LITERATURE SURVEY

Problems which can be modelled in discrete multi-facility plant location algorithms are characterized by a known set of customer demands which must be satisfied by a least-cost geographic arrangement of service facilities. Common problems include the location of warehouses in a distribution system and the location of plants in a multi-plant production system. Discreteness of the problem resides in the requirement that service facilities must be located at points taken from a list of candidate sites. Given the customer demands and candidate server sites, we wish to find both the number and location of service facilities, and the size or capacity of each that minimizes the total cost.

Small multi-facility problems can be solved by inspection. With increasing size, the computational burden of the problem - a combinational one - increases swiftly. Two principal techniques are available to solve moderate to large-sized problems: heuristics and integer programming (IP).

Heuristics

Heuristic solutions employ rules or guidelines to find a good, but not necessarily optimal, solution. Kuehn and Hamburger [33] developed a heuristic solution to the location problem about fifteen years ago. Their program starts with no warehouses and locates warehouses one by one until any additional warehouse increases total cost. It then enters a "bunp and shift" routine that computes the savings that would result from dropping or relocating individual warehouses. The authors
ran a 50 customer, 24 warehouse problem in two minutes, 30 seconds on a rather slow IBM 650 computer. ${ }^{1}$ Lovro [38] notes that their run times appear to increase with the number of warehouses times the number of custoners.

Feldman, Lehrer and Ray [15] in 1966 extended the Kuehn and Hamburger algorithm to handle a concave cost function, F_{i}, the fixed annual cost of operating a warehouse. Feldman, et. al., modelled F_{i} as being proportional to the size of the warehouse, while Kuehn and Hamburger employed a constant fixed cost of warehouse operation. The Feldman heuristic starts with a full list of warehouses, and drops warehouses from the list to produce cost savings. The authors found that their solutions were as good as Kuehn and Hamburger's, with run times on an IBM 7094 averaging less than one minute for the 50 customer, 24 warehouse problem. ${ }^{2}$

Ross and Soland [48] have recently developed a heuristic based on the generalized assignment problem. They found in dealing with the uncapacitated plant location problem that their procedure was less efficient than other existing procedures because it failed to capitalize on the problem's special structure. The authors suggest that further specialization of their heuristic is necessary in order to efficiently solve the probleri.

Heuristics avoid two problems inherent in integer programming solutions: large computer memory requirements and long computer processing
\bar{T} Kuehn and Hamburger do not identify the computer language used.
${ }^{2}$ Computer run times should not be taken as a strict measure of program efficiency; different machines vary widely in computing speed.
table I. SOLUTION TECHNIques INVESTIGATED
Discrete Multi-Facility Plant Location Technique

Heuristics Kuehn and Hamburger (p. 9) Feldman, Lehrer and Ray (p. 10) Ross and Soland (p. 10)	Exact Solutions			
	Cutting Planes	Bender's Decomposition	Group Theoretic	Enumeration
	Gomory (p.19) Bowman and Nemhauser (p. 21)	Spielburg (p. 24) Ellwein and Gray (p. 24)	Shapiro (p.22) Wolsey (p.22)	Balas (p. 23) Land and Doig (p. 23) Dakin (p. 23) Tom1 in (p. 23) Geoffrion (p. 23) Effroymson and Ray (pp. 23,26) Khumawala (pp. 23, 39, 41)
			Gorry and Shap Rardin and Ung	$\begin{aligned} & .241 \\ & 24) \end{aligned}$
				$\begin{aligned} & \text { Spielburg } \\ & \text { (pp. 24, 40) } \\ & \text { Ellwein and Gray } \\ & \text { (p. 24) } \\ & \text { Akinc (p.39) } \end{aligned}$

Vehicle Routing Problem

Heuristics	Exact Solutions
Wren and Holliday (p.34)	Svestka and Huckfeldt (p.33)
Gillett and Johnson (p. 35)	Golden, Magnanti and Nguyen (p.34)
Russel (p. 35)	Chistofides and Eilon (p.33)
Tillman (p. 35)	
Golden, Magnanti and Nguyen	
(p. 35)	
Lin (p. 33)	
Lin and Kernigham (p. 33)	
Clarke and Wright (p. 35)	
Dantzig and Ramser (p. 34)	
Little, Murty, Sweeney, and	
Karel (p. 33)	

times. Traditionally, heuristics were the only practical tool for solving large problems. The first generation of computers ran ten to twenty times slower than the present generation machines, and limited memory was often a restriction on problem size. Larger, faster computers and the development of efficient integer programming formulations of the multi-facility location problem have made IP an attractive solution technique for many problems of a useful size. As McGinnis notes in a recent survey:
"With advances in computer technology and the state of the art in integer programming, many previously intractable problems are now being solved." (McGinnis, [41], p. 11)

IP Principles

While heuristic solutions are approximate, IP yields exact solutions that optimize total cost. An IP can be described as a linear program (LP) in which all coefficients $X_{i j}$ in the objective function are constrained to take on integer values. A mixed integer program (MIP) requires that some subset of the $X_{i j}$ be integers. The facilities location problem is appropriately modelled by an MIP in which the integer subset of variables is constrained to values 0 and 1 to denote, respectively, a warehouse closed or opened at a prospective site. We shall denote the integer variables Y_{j} as a Y vector, corresponding to j possible office sites Y_{j}. The problem is stated most simply as Problem "Po."
Problem P_{0} : minimize $\sum_{i=1}^{m} \sum_{j=1}^{n} \quad c_{i j} X_{i j}+\sum_{j=1}^{n} f_{j} Y_{j}$

$$
\begin{array}{ll}
& \sum_{j=1}^{n} X_{i j}=D_{i} \\
\text { s.t. } & i=1,2,3, \ldots, m \\
\sum_{i=1}^{m} X_{i j} \leq Q_{j} Y_{j} & j=1,2,3, \ldots, n \\
X_{i j} \geq 0 \tag{5}\\
Y_{j}=0,1
\end{array}
$$

where: $\quad m=$ number of customers
$n=$ number of possible plants (candidate office sites)
$X_{i j}=$ fraction of demand of customer i which is satisfied by a plant located at site j
$Y_{j}=\left\{\begin{array}{l}1 \text { if a plant is located at site } j \\ 0 \text { otherwise }\end{array}\right.$
$C_{i j}=$ cost of supplying the entire demand of customer i from a plant located a site j
$f_{j}=$ fixed cost resulting from locating a plant at site j
$Q_{j}=$ capacity of candidate site j
$D_{j}=$ customer i demand
The first set of constraints (Equation 2) requires that each demand be satisfied while the second set of constraints (Equation 3) puts capacity constaints on the candidate facility sites. The capacity constraints, Q_{i}, can be dropped if there are no capacity restrictions or made arbitrarily large and then tightened to anlyze the effect of imposing such restrictions. The first term of the objective function summarizes all variable costs (VC); the second term collects all fixed costs (FC) associated with opening a plant site. The model can be viewed as a trade off between $F C$ and $V C$.

Existing IP techniques fall into four categories: enumeration, Bender's Decomposition, cutting planes, and group theory. All techniques for solving the IP formulation use three basic strategies: separation, relaxation, and fathoming. These procedures provide a framework for study of the various solution algorithms.

Separation

In most algorithms, the first step is to make a reasonable attempt to solve Problem P_{0}. If, in the result, all integer variables, Y_{j}, are not integer-valued, P_{0} is separated into several subproblems, called descendents, each of which constrains one Y_{j} to each of the integer values it may assume. In Problem P_{0}, two subproblems are formed, with a particular Y_{j} set equal to 0 and 1 . This initializes a list of subproblems or candidate problems (CP). One CP is selected from the list and its solution is attempted. If it can be solved, a new problem is selected from the candidate list and its solution is attempted; otherwise, its descendents are separated and added to the candidate list. This separation procedure continues until the candidate list is exnausted. If no $C P$ is feasible, then P_{0} is infeasible. The best solution at any point is the lowest cost solution that possesses an all-integer y vector. The final such minimum cost solution must be the optimum solution of P_{0}, provided that degeneracy in any separation of a $C P$ is limited by only one descendent of the separation being feasible.

Relaxation

Any IP problem can be relaxed by loosening or dropping any of its
constraints. The only restriction on the relaxed problem is that its set of feasible solutions falls within the feasible solution space of the original Problem P_{0}. Dropping the integer constraints on the Y vector is a relaxation of P_{0}. Call the relaxed problem P_{r}. According to the solution space restriction, if P_{r} has no feasible solutions, then neither has P_{0}. The minimum P_{0} objective function must be greater than or equal to the P_{r} minimum, and if the P_{r} result is feasible in P_{0}, then it must be an optimum solution to P_{0}. Regrettably, the objectives of finding a P_{r} that is easy to solve, and one whose solution satisfies P_{o}, conflict. As we make P_{r} easier to solve, in general, the gap between P_{r} and P_{o} grows larger.

Fathoming

The separation procedure yields a combinatorial number of candidate problems which must be evaluated or fathomed. It is desired to find whether or not the feasible solution space of each $C P$ may possibly contain an optimal solution of P_{0}. If not, the $C P$ can be eliminated from further study; if so, one goes on to try and find the CP optimum. If it can be determined that the CP cannot yield a feasible solution better than that found so far, then again the CP can be dropped from further consideration. The best solution found at any point that satisfies the original Problem P_{0} is called the incumbent.

Suppose a particular $C P$ has been relaxed to $C P_{r}$. If $C P_{r}$ has no feasible solution, then the same is true of $C P$. It is said that $C P$ has been fathomed; it can be eliminated from further investigation. If $C P_{r}$ has some feasible solution, $C P_{r}{ }^{*}$, and that solution is greater than
the current incumbent, then $C P$ is again fathomed, and can be eliminated. Otherwise, the relaxed problem optimum $C P{ }_{r}{ }^{*}$ must be further evaluated. If $C P_{r}{ }^{*}$ is feasible in P_{0}, it becomes the new incumbent. Alternately, if $C P_{r}{ }^{*}$ is not feasible in P_{0}, it must be separated and its descendents added to the CP list, or one must persist in trying to fathom CP by choosing a new relaxation, CP_{r}.

Geoffrion and Marsten [19] summarize this procedure for fathoming, or completely evaluating, a CP in terms of three fathoming criteria (FC). A CP is fathomed if any one of the criteria is satisfied. $F(P)$ denotes the solution set of problem P. Z^{*} is the current incumbent. The fathoming criteria are:
(FC1) An analysis of $C P_{r}$ reveals that $C P$ has no feasible solution; e.g., $F\left(C P_{r}\right)=0$;
(FC2) An analysis of $C P_{r}$ reveals that $C P$ has no feasible solution better than the incumbent; e.g., $\mathrm{CP}^{*}{ }^{*} \geqq Z^{*}$;
(FC3) An analysis of $C P_{r}$ reveals an optimal solution of $C P$; e.g., an optimal solution of $C P_{r}$ is found which happens to be feasible in CP.

Separation, relaxation, and fathoming form a circuitous procedure, as shown in Figure 4. Decision rules within the procedure have a marked effect on the speed with which the optimal result is found. It is desirable to quickly obtain a good solution to P_{0}. The first incumbent will then lead to elimination of, it is hoped, many CP's by FC2. The candidate selection rule, also, is important in efficiently eliminating $C P$ by FC 2 , and also in reaching the optimal result for P_{0} by FC3. Two candidate selection rules are used: Last-In-First-Out (LIFO) and

Figure 4. General form of enumerative algorithms. (from [41], p. 13)

Priority. Under the LIFO rule, the last problem to be added to the candidate list is selected. Under the Priority rule, an index is assigned to each $C P$ that determines the order of $C P$ selection. An example of a priority index is the lower bound (LB) on the optimal solution of a CP. This is the value $C P_{r}{ }^{*}$, not feasible in P_{0}, which is set aside in the fathoming procedure. The need to store the unfathomed (CP ${ }_{r}^{*}$) values in memory increases the information storage requirements of Priority over LIF0.

IP Algorithms

The three strategies of separation, relaxation, and fathoming are, in general, standard procedures in all IP algorithms. Current IP algorithms can be segregated into four categories that differ principally in the approach used to fathom the candidate problems.

Cutting-Plane Algorithms

Historically, cutting-planes was the first approach used in solving the IP formulation. First used by Gomory [22], the approach relaxes all integrality constraints and solves the associated LP to obtain an initial feasible solution, $C P_{r}{ }^{*}$. $F C 1$ and $F C 3$ are then applied until termination. The separation routine resulting from FC2 is never used. Rather, each time $C P_{r}$ passes $F C 1$ and $F C 3$ without being fathomed, the problem is tightened by adding a linear constraint, or "cutting plane" (see Figure 5). The linear program to be solved at the $n^{\text {th }}$ execution of $C P_{r}$, consists of the original LP with all integrality constraints dropped and $n-1$ inear constraints added.

Figure 5. Illustration of Gomory Cutting-Planes

Each new cut must correctly tighten the previous relaxation, yet still yield a valid relaxation of the CP. That is, a portion of the feasible solution space of a current LP must be eliminated without lopping off any feasible integer solutions of the original LP. Several researchers besides Gomory have developed methods to do this. One example is Bowman and Nemhauser [5].

Bender's Decomposition

In certain integer programs, and MIP problems including the warehouse location problem P_{0}, fixing the values of the integer-valued Y vector results in a special problem structure for the remaining continuous variables $X_{i j}$. For any feasible solution containing an all inte-ger-valued Y vector, the remaining optimization problem is an LP network optimization as Wagner [63] points out.

Bender's Decomposition assigns feasible values to the discrete variables $Y_{j}, j=1,2,3, \ldots, n$; in the warehouse location case, these are binary assignments of 0 or 1 . The remaining LP is then solved, and the entire discrete/continuous solution (the first incumbent) is recorded. The solution is modified by a system of linear restrictions on its integer-valued variables. If untested feasible integer Y vector values are found to still exist in the feasible solution space, one (or more) γ_{j} assumes one (or more) untested integer value(s) to form a new feasible Y vector solution. The remaining continous $X_{i j}$ variables are again included in the solution of the linear program, and the complete solution is compared with the incumbent and replaces it if the objective function value is lower. This process
continues until all the Y vector alternatives have been explored. A branch and bound process is often used to keep track of the search process.

Group Theoretic Approach

This technique solves integer programs by exploiting the so-called group theoretic properties of the problem. The group theoretic approach was initiated by Gomory and extended by Shapiro [51], [52]. The procedure has been applied almost exclusively to the pure integer programming formulation, that is, the MIP without any continuous variables $X_{i j}$. Wolsey [65] applied the Group Theory technique to MIP in 1971 to solve a small problem.

In general terms, the group theoretic approach forms the dual of the linear program relaxation of Problem P_{0}. This dual relaxation is then tightened by adding constraints on the integer variables. The feasible solution space is narrowed to include only feasible integer solutions from which the optimum is then selected.

Enumerative Algorithms

Enumerative algorithms encompass those procedures which use implicit enumeration or branch and bound (B \& B) to methodically search the set of all possible integer solutions. $B \& B$ algorithms use various strategies to "prune" from the B \& B "tree" all CP which cannot lead to an optimal result. In $B \& B$, when a problem is separated into descendent subproblems, each new CP becomes a branch off of the problem node. A tree is formed, as shown in Figure 8 (p. 43), since each Y
vector value is represented by a path from the original problem node the root on the left - to the final branch node at which the Y vector value, or $C P$, is fathomed. A branch is bounded when, at some node in the branch, the objective function value exceeds the present least upper bound obtained from some other branch. The branch is then pruned or eliminated from further investigation under FC2.

Enumerative algorithms fall into two general categories resulting from early work in two separate areas. The first, originally developed in this country by Balas [2], applies only to all-integer problems. Such algorithms fathom candidate problems using logical implications found within the problem constraints. The application of these procedures has been limited, according to Geoffrion and Marsten [19] by computing times that grow exponentially with the number of variables.

A second category, pioneered by Land and Doig [34], bases the fathoming test on the linear programming relaxation of P_{0}. This procedure has lead to several efficient computer programs for mixed as well as pure integer programs, including Dakin [10], Tomlin [61], Geoffrion [18], and the B \& B procedure of Efroymson and Ray [12] subsequently modified by Khumawala [30].

Overview of IP Model Formulations

Of the four categories of integer programming techniques delineated here, the bulk of development work has been in enumerative algorithms. This was pointed out by Geoffrion and Marsten in their 1972 survey [19], and again in 1977 by McGinnis [41]. Computer program efficiency is very important in solving problems of a useful size, as the model is combin-
atorial. The early cutting-plane algorithms showed highly irregular computational performance; McGinnis contends that this discouraged their development. Geoffrion and Marsten suggest a method for using the cutting-plane approach to fathom candidate problems in an enumerative algorithm. This has not been applied in the literature. Gorry and Shapiro [23] outlined a similar strategy of combining enumeration with a group theory approach.

Rardin and Unger [46] used a group theoretic approach to develop tight bounds on an optimal solution in the branch and bound procedure. After solving $C P_{r}$ to obtain $C P_{r}{ }^{*}$ as the lower bound on the optimal result, they attempted to improve the LB using group theory.

Bender's inequalities have found application as a fathoming procedure in enumerative algorithms by Spielburg [54] and Ellwein and Gray [13], though neither appears to be as efficient as the simplified procedure used by Khumawala [30] (see Table II).

As noted previously, the bulk of development of exact IP solution techniques to solve the discrete multi-facility location problem has centered around enumeration technqiues. The special structure of P_{0} lends itself well to implicit enumeration or $B \& B$ strategies. McGinnis states:
"... problem (P_{0}) has been a popular subject for study, primarily because it has a structure to which general purpose algorithms may readily be adapted." (McGinnis, [41], p. 12)
This special structure can be exploited by rearranging the objec-
tive function:
Problem $P_{1}: \operatorname{minimize}\left\{\sum_{j=1}^{n} f_{i} Y_{j}+\operatorname{minimum} \sum_{j=1}^{n} \sum_{i=1}^{m} C_{i j} X_{i j}\right\}$
table il. computational results for standard problems (cpu times in seconds).

Capacities Q_{k}	5000				15000				Uncapacitated			
Fixed Costs f_{k}	7.5	12.5	17.5	25	7.5	12.5	17.5	25	7.5	12.5	17.5	25
*(Open Init./Open Opt.)	(11/12)	(11/12)	(11/12)	(11/12)	(9/11)	(7/9)	(3/7)	(3/5)	(9/11)	(7/9)	$(3 / 5)$	(3/4)
Sa [50]	90.6	108.0	96.0	87.6	94.2	457.2	900+	-	-	-	-	-
Soland [53]	38.7	5.8	4.2	-	-	271.3	-	-	-	-	-	-
Akinc [1]	10.21	9.15	9.26	9.58	0.23	0.43	38.65	34.39	47.5	0.44	0.30	0.15
Ellwein \& Gray [13]	-	88.8	92.4	-	-	127.8	-	-	-	15.0	63.0	-
Buffin [6]	-	27.0	25.0	-	-	87.0	-	-	-	43.8	28.2	-
McGinnis [40]	2.1	2.5	2.8	3.5		-	-	-	-	-		-
incainnis [10]					16×50 pr	roblems						
(Open Init./Open Opt.)	(11/17)	-	-	-	(10/15)	(6/11)	-	-	(10/15)	(6/11)	(4/8)	(2/4)
Khumawala [30]				-	-	-	-	-	1.50	1.36	1.66	0.85
Knumawala [30]					0.75	7.75	$120+$	$120+$	0.68	1.65	1.34	0.46
Akinc [1]	0.23	120+	$120+$	120+	0.75	7.75	$120+$	120				
Eliwein \& Gray [13]	-	-	-	-	-	-	-	-	196.2	-	-	-
Buffin [6]	-	-	-	-	-	-	-	-	123.0	-	-	-
					25×50 p	roblems						

+ : time limit exceeded
* : refers to the number of sites fixed open initially by the \triangle - and Ω-simplifications discussed in Chapter V, Section 3

Table is from McGinnis [41], p. 16.
s.t. (5)
s.t. (2), (3), (4)

The inner minimization can be solved as a transportation problem if the capacity constraints (3) hold, or, if not, by assigning each demand to its least cost source and solving n one-row optimizations. This partitioning is then used to solve P_{0} by implicity enumeration, as in Balas [3]. Frequently, a B \& B procedure is used to keep track of subproblems which have been solved, until all Y vector values have been treated.

Efroymson and Ray [12] exploited the structure of the problem to obtain an efficient B \& B optimization procedure. The authors relaxed the integer constraints on the Y_{j} (Equation 5) to

$$
\begin{equation*}
0 \leq Y_{j} \leq 1 \tag{7}
\end{equation*}
$$

Their 1966 paper noted that, with this change, the constraints (Equation 3) would hold as equalities in the optimum solution. Therefore, the integer Y_{j} were eliminated from the objective function to form the relaxed problem:
Problem $P_{2}: \operatorname{minimize} \sum_{i=1}^{m} \sum_{j=1}^{n}\left[C_{i j}+\frac{f}{Q_{j}}\right] X_{i j}$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{j=1}^{n} \quad X_{i j} \leq Q_{j} \\
& \sum_{j=1}^{n} X_{i j}=D_{i} \quad i=1,2,3, \ldots, m \\
X_{i j} \geq 0 \\
0 \leq Y_{j} \leq 1 \tag{7}
\end{array}
$$

Both the implicit enumeration (Equation 6) and relaxed (Equation 8) problems have a transporation problem structure. Thus, procedures more efficient than a general IP may be used to enumerate and solve candidate problems.

Limitation of Discrete Multi-Facility Algorithms for the HFLC Analysis

The most suitable technique for modelling the HFLC facility location problem is the discrete multi-facility formulation. Various problem characteristics support this. First, the relevant costs of the HFLC problem fit well into categories of variable cost based on mileage and fixed cost attributable to opening an inspection office. Second, the objective function of minimized cost of HFLC operations matches the model objective function, with its trade off between variable cost of transportation and added fixed cost of facility location. Third, the number of inspectors located at each office location should be unconstrained, and the present office in Portland should have no particular advantage or weight over the other possible locations. The model encompasses these assumptions.

HFLC office site selection requires that certain cities be denoted as possible office locations; correspondingly, the model locates warehouses at given (discrete) locations. Finally, efficient optimizing procedures exist for solving the discrete location model.

These characteristics all support selection of a discrete multifacility location algorithm to model the HFLC problem. The fit is not perfect, however. All such multi-facility algorithms are modelled after a problem in which the distance function to be minimized is the
total of straight line distances from each warehouse to each customer. In the HFLC case, this distance would be the Euclidean path from an inspection office to each of the cities served by the office (see Figure 6a). This travel pattern assumes that an inspector makes a single visit to a home and then returns to the office. This is a valid assumption for optimal location of facilities, as the random nature of demands widely spaced in time will result in most trips following the office-to-facility-and-back round trip. Figure 6 b illustrates this for a small randomly generated problem in which inspectors visit more than one facility on a single trip. Interestingly, in the absence of data on the interaction between facilities, an exact multi-facility algorithm now yields an approximate best-guess result if it is possible to visit more than one demand location on a single trip.

The total cost, however, for centralized and decentralized plans reflect a bias in the following manner. With the inspection office located in Portland, inspectors frequently travel long distances to nursing facilities, and are lodged for one or more nights at the distant location. Inspectors fill out travel proposals for overnight lodging. In reviewing their agendas for a three month period in 1976, it was noted that inspectors usually stayed overnight if one way distance to the facility was greater than 60 miles. Forty-seven cities, or 62% of Oregon cities served are more than 60 miles from Portland. A lodging per diem is paid if the inspector is more than 50 miles from home. With travel over long distances required to many Oregon cities, inspectors will often schedule several days worth of work in the general area visited. In essence, they form tours. Often the tour is

Figure 6a. Travel pattern under discrete multi-facility location with six visits required to each demand site.

Figure 6b. Travel patterns with tours, for a set of randomly generated tours with six visits required to demand sites.
formed by travelling to a particular facility, and scheduling visits to other nursing homes in the area on the return trip if time permits. It would be expected that inspectors return horie on weekends, so tours would be a maximum of one week in length. This occasionally is not true, with inspectors remaining lodged at a distant city over a weekend. Tour building is not a general rule, either. An inspector will often travel more than 60 miles, conduct a short visit, and return. Even when visiting a facility at a long distance, inspectors will return after a visit because of meetings or a report deadline.
III. VEHICLE ROUTING PROBLEM LITERATURE SURVEY

A problem of n demand centers and m possible supply points can be modelled as a multiple terminal delivery problem. Formulation for this problem follows the physical model of a vehicle routing problem (VRP) in which several trucks are dispatched from m depots to supply single demands of n customers. The routing models with fixed depots are constrained by fleet, delivery point, and route structure restrictions.

Travelling Salesman Problem

The vehicle routing problem is one of several variants and extensions of the ubiquitous Travelling Salesman problem. The problem has received much attention, as chronicalled by Bellmore and Nemhauser [4]. The Travelling Salesman problem can be formulated as an integer program as follows, with integer variables $X_{i j}$ valued:
$X_{i j}=\left\{\begin{array}{l}1 \\ \text { if the salesman goes from city } i \text { to city } j \\ 0\end{array}\right.$
Then if $c_{i j}$ denotes the cost of travel or distance between city i and city j, the objective function is:

$$
\begin{equation*}
\operatorname{minimize} Z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} X_{i j} \tag{10}
\end{equation*}
$$

The following $2 n$ constraints insure that each city will be included in the tour once and only once:

$$
\begin{align*}
& \sum_{i=1}^{n} \quad X_{i j}=1 \quad j=1,2,3, \ldots, n \tag{11}\\
& \sum_{j=1}^{n} \quad x_{i j}=1 \quad j=1,2,3, \ldots, n \tag{12}
\end{align*}
$$

In the travelling salesman problem, the salesman must return to the depot from which the route originated. These constraints do not eliminate the possibility that a route will end somewhere other than the central depot. Such a tour through a subset of the n cities is termed a subtour. Constraints must be added to eliminate all subtours of length $(n-1)$ or less. The following $(n-1)^{2}-(n-1)$ constraints are added:

$$
\begin{array}{rl}
Y_{i}-Y_{j}+n X_{i j} \leq n-1 & i=2,3, \ldots, n \tag{13}\\
& j=2,3, \ldots, n \\
& i \neq j
\end{array}
$$

where $(n-1)$ additional variables $\left(Y_{j}, j=2,3, \ldots, n\right)$ are added.
These constraints exclude subtours by the following argument. Any solution containing a subtour must have at least two subtours, since each city must be visited once, by the constraints (11) and (12). Therefore, a subtour always exists which does not contain some city s. Suppose that such a subtour of length K exists, $K \leq(n-1)$, with K variables $X_{i j}$ equal to one. Adding up the K constraints from (13) for these K variables yields the inequality

$$
K n \leqq K(n-1)
$$

which is false for all $K>0$.
The constraints in (13) do not eliminate any feasible tours, as shown by Cooper and Steinburg [9]. Suppose a feasible tour exists in which city i is the m_{i} th visited, $i=1,2,3, \ldots, n$, and $Y_{i}=m_{i}$, $i=1,2,3, \ldots, n$. If $X_{i j}=1$ in this tour, city j is visited immediately after city i, so that $\gamma_{j}=m_{i}+1$ and constraint (13) is satisfied for $X_{i j}$ since

$$
Y_{i}-Y_{j}+n K_{i j}=m_{i}-\left(m_{i}+1\right)+n(1)=n-1 .
$$

If $X_{i j}=0$ in this tour, (13) is also satisfied for $X_{i j}$, since $\left(Y_{i}-Y_{j}\right)$ is at most equal to $(n-1)$. The largest Y_{i} is n; the smallest is one.

The IP Travelling Salesman formulation has n^{2} variables $X_{i j},(n-1)$ variables Y_{i}, and a total of $n^{2}-n+2$ constraints. Other approaches, both heuristic and exact, include Lin [35], Lin and Kernighan [36], Christofides and Eilon [7], and Little [37].

The Travelling Salesman problem is a vehicle routing problem with one depot, and one vehicle or server whose capacity meets or exceeds total demand. The model can be extended to several vehicles, several depots, different vehicle capacities, and restrictions on route length.

Multiple Travelling Salesman Problem

The Multiple Travelling Salesman Problem (MTSP) accounts for more than one vehicle (salesman). All salesmen report to one central depot. The objective is to visit each demand point exactly once by one of m salesmen, so that total demand is satisfied and total distance travelled by all m salesmen is minimized. There are no capacity or route length restrictions; that is, each salesman has sufficient capacity to satisfy total demand. Svestka and Huckfeldt [55] solved the problem exactly, using a B \& B procedure, with up to 60 demand locations.

Vehicle Dispatching Problem

The direct extension of the MTSP again deals with a set of m delivery routes terminating at one central depot. Each demand point has a known demand requirement that is satisfied by one visit of a salesman.

The problem adds capacity and maximum route time constraints to the tours. The problem was first considered by Dantzig and Ramser [11].

Multi-Depot Vehicle Routing Problem

The vehicle dispatch problem can be altered slightly to allow multiple depots. Again, a single visit satisfies all demand of each location; demand at any location does not exceed the capacity of any truck (salesman). Integer programming and heuristics are possible solution techniques.

IP Formulation

An IP for the multi-depot VRP was formulated by Golden, et.al. [21]. The formulation is of interest for very small problems only, with the number of variables equal to $\left(n^{2}\right)^{*}(N V)$, where $N V$ is the total number of possible salesmen, and n is the number of demand points. For comparison, the MPOS (IP) system on Oregon State University's CDC Cyber 73 will accept up to 100 variables; the HFLC problem encompasses about $\left(n^{2}\right) *(N V)=\left(77^{2}\right) *(20)=118,580$ variables. With the HFLC problem beyond the scope of the optimizing procedure, heuristic solutions were next explored.

Heuristic Solution Techniques

While the VRP has been widely studied, the multi-depot problem is represented in the literature by only a few papers.

Wren and Holliday [66] generate one solution arbitrarily, and then improve the solution by exchanging nodes one at a time between routes
until no further improvement can be made. The authors report results with problems of up to four depots and 320 demand points.

Gillett and Johnson [20] solve the multi-depot problem in two stages. First, locations are assigned to depots by partitioning the problem into subproblems. Then, several single depot VRP's are solved independently.

Russel [49] developed a multi-depot heuristic which showed good results using the Lin and Kernighan heuristic [36] for the single-tour travelling salesman problem. The heuristic is attractive, since it is the only multi-depot heuristic which incorporates sequencing and due date restrictions, and time constraints on tours. Unfortunately, it cannot solve moderate-sized or large problems due to high computer storage space requirements:

$$
\begin{aligned}
& {\left[2 *(N+M)^{2}+52 *(N+M)+9000\right]=\left[2 *(77+(20 * 50))^{2}+\right.} \\
& 52(77+(20 * 50))+9000]=2,843,862 \text { words. }
\end{aligned}
$$

The HFLC problem thus requires approximately 2.8 million words of core storage, far beyond current computer capacity.

Tillman [57] developed a heuristic based on the single-terminal heuristic of Clarke and Wright [8]. Tillman's heuristic forms an initial solution by assigning each demand point to the nearest depot, with one salesman serving each demand point. The solution is by joining points on a route to minimize the distance travelled. The route formed is assigned to the terminal associated with the improvement, and the number of salesmen necessary to meet demand on the route are assigned. See Figure 7.

Golden, et.al. [21] also proposed an algorithm based on Clarke

Figure 7a. Link demand sites F_{1}, F_{2}, F_{3} to Depot.

Figure 7b. Link demand sites F_{1} and F_{2}.

Figure 7c. Link demand sites F_{1} and F_{2} and demand sites F_{2} and F_{3}.
and Wright's single-terminal heuristic. The authors obtained solutions to five problems from Gillett and Johnson [20] in 4-10 times less CPU time, but having $2-8 \%$ higher solution values. The largest problem attempted by Golden, et. al. was the largest problem solved by any heuristic. A problem with two depots and 600 demand points was solved in less than 55 seconds on an IBM $370 / 168$.
IV. SELECTION OF A SOLUTION PROCEDURE

Multi-Depot VRP Heuristics Versus Discrete Multi-Facility Algorithms

The multi-depot VRP has been investigated with an eye toward modelling the HFLC problem. In order to model the problem, inspectors would make weekly tours for a total of about (50 working weeks/inspector) * (1 tour/week) * (20 inspectors total) $=1000$ tours. Multiple visits to each demand location would occur, and time constraints on follow-up visits would be satisfied by the tours formed. Total cost of transportation and facility location would be minimized. None of the VRP heuristics can do this. All reflect the structure of the truck routing problem, with a single demand at each location satisfied by the single visit of a server. None of the programs developed so far can model weekly tours, yet also satisfy total demand over a year. The one heuristic [49] which does model sequencing and time constraints cannot model a problem of this size. All the multi-depot VRP heuristics are involved, lengthy and inefficient as compared to the more efficient discrete multi-facility plant location algorithms. A highly specialized and inefficient algorithm would be of little future use to the State Executive Department.

Adaptation of one of the multi-depot VRP heuristics to solve a problem with the HFLC problem characteristics was judged to be prohibitive, if not impossible.

With multi-depot VRP heuristics ruled out as infeasible at their current state of development, the problem solving focus returned to the discrete plant location algorithms.

If additional data were known, tours would be simulated in a discrete multi-facility model. If the transition probabilities - the probabilities of travel from one location i to another demand or office location j - were known, tours could be simulated. Sequencing and time constraints on tours could be satisfied; tour building would continue until a counter in the program determined that demand at all locations had been satisfied. Several sets of simulated data could be entered into the discrete multi-facility algorithm, with each tour's mileage and demand treated as one demand location. Such data is not known, even approximately, in this problem. Without data to support a simulation, this analysis reserves that approach for the area of further study.

Algorithm Selection

With multi-depot VRP formulations proving to be infeasible, and simulation impossible, it was decided that an efficient multi-facility plant location algorithm, with its close representation of the problem, should be pursued for office location with an error term attached to resulting cost estimates.

The discussion of discrete multi-facility plant location algorithms noted that heuristics have been superseded by MIP solutions for problems of moderate or large size. Only really large problems of several hundred demand locations must rely on heuristics. Of the MIP techniques, enumerative algorithms have been most well-developed. Of these, the branch and bound algorithms of Akinc [1] and Khumawala [30] offer the greatest efficiency, according to McGinnis' March 1977 survey [41].

Table II, p. 25, shows computational run times for several MIP formulations. In addition, Lovro [38] in 1975 compared the B \& B algorithms of Spielburg [54] and Khumawala. Spielburg's algorithm offers the capability to make use of a previous solution or a good solution that is not optimal. This gives Spielburg's algorithm the capability of solving large problems. Khumawala's algorithm, on the other hand, appears to be more efficient, although a direct comparison on similar computers has not been published. Akinc's and Khumawala's algorithms offer similar efficiency. Due to its high efficiency, and the availability of the computer code, Khumawala's algorithm was selected to model the problem.

v. DESCRIPTION OF THE ALGORITHM

The Objective Function

Khumawala's algorithm uses an improved version of a branch and bound formulation originally formulated by Efroymson and Ray [3]. Those authors developed a simpler formulation based on P_{0}. Relaxing the capacity constraints Q_{j} and simplifying, Efroymson and Ray produce the following relaxed problem:

$$
\begin{align*}
P_{1}: X_{i j} & =1 \text { if }\left(c_{i j}+\frac{g_{i}}{n_{j}}\right)=\min _{k_{\varepsilon k_{1}} U K_{2}}\left[C_{k i}+\frac{g_{k}}{n_{k}}\right] \tag{14}\\
& =0 \text { otherwise } \\
Y_{j} & =0, \quad j \varepsilon k_{0} \tag{15}\\
& =\sum_{i=1}^{n_{j}} \quad X_{i j} / n_{j}, \quad j \varepsilon k_{2} \\
& =1, \\
g_{k} & =f_{k}, k \varepsilon k_{2} \tag{16}\\
& =0, k k_{1}
\end{align*}
$$

where $k_{0}=$ the set of closed offices, not available for use. Y_{j} 's are set equal to zero.
$k_{1}=$ the set of open offices, available for use. $Y_{j}^{\prime \prime}$ s are set equal to one.
$k_{2}=$ the set of offices which are not assigned open or closed. Y_{j} 's are fractional, the office is "free".
$c_{i j}=$ cost of transportation from city i to city j
$f_{j}=$ fixed cost of locating office j
$P_{j}=$ set of those customers which can be supplied by office j
$n_{j}=$ the number of elements in P_{j}
The problem now has the structure of a transportation problem with the set of supply constraints removed. Problem P_{1} is used to solve the linear program at nodes in the B \& B tree.

Branch and Bound Procedure

The procedure first drops all integrality constraints on the Y_{j} and solves the initial LP. Its solution, Z_{0}, becomes a lower bound (LB) for subsequent, more highly constrained subproblems. If all γ_{j} in the LP result are integer-valued, then the problem is solved. Otherwise, the Y_{j} must be integerized. Any feasible all-integer solution is a "terminal" solution. All other feasible solutions are "nonterminal." $A B \& B$ procedure is entered into in which each service facility j is assigned to be used $\left(Y_{j}=1\right)$ or assigned not to be used $\left(Y_{j}=0\right)$. Bookkeeping is accomplished by assigning the Y_{j} to sets K_{0}, K_{1}, or K_{2}.

Each assignment of a γ_{j} to values 0 and 1 produces a new pair of candidate problems to be fathomed. Figure 8 illustrates the procedure, with γ_{k} set equal to

0 to obtain X_{kO},
1 to obtain $Z_{k l}$.
At each stage, the algorithm branches from successive non-integer (nonterminal) γ_{k} nodes until all γ_{k} are integer valued, a terminal solution. The objective function becomes an upper bound (UB) for future solutions. Infeasible solutions are eliminated according to FCl.

All remaining nonterminal nodes must be investigated, so the algo-

Figure 8. Branch and bound procedure after finding one terminal solution
rithm returns to nodes (CP) that have objective function values less than the current UB, and begins branching. The branching rule followed is least lower bound (LLB), that is, the nonterminal node with the smallest objective function value LB is selected (see Figure 8c). (LIF0 is used in some algorithms. In Figure 8a, for example, LLB would select node X_{11} as the CP. LIF0 would select node Z_{51}. Geoffrion and Marsten [19] note, in general, better results with LLB). The fractional Y_{j} at that node is constrained to 0 and 1 , and LP's are solved at the two additional nodes. The solution value at each node (if feasible) becomes a new LB for all branches emanating from that node. Infeasible nodes are "pruned." If a nonterminal solution is greater than the current UB, then the branch is pruned. Figure 8a illustrates these rules after one terminal solution has been found.

Once a node (CP) has been shown to be infeasible, greater than the current UB, or terminal, the $C P$ is fathomed. The initial IP has been relaxed to an LP, separated into $C P$, and each $C P$ fathomed. The optimal solution is, clearly, the minimum terminal node value - the least UB.

COMPUTATIONAL EFFICIENCY

Khumawala improved the computational performance of the Efroymson and Ray procedure by adding three types of efficiencies:

1) At each step of the $B \& B$ algorithm, an $L P$ relaxed problem is to be solved. Khumawala used information already available at that stage to solve the LP very rapidly.
2) At each stage, the $B \& B$ algorithm selects a free office from set K_{2} and constrains it open and closed. Khumawala developed
and tested formal rules for selecting the free office, and found one very efficient rule. These rules are referred to as branching decision rules.
3) Several improvements were made to the computer program, so that storage space was used more efficiently.

Efficiencies (1) and (2) follow in more detail.

LP Simplifications

1. A minimum possible savings value is determined for opening a field office. If it is positive, then the office is fixed open, i.e., Y_{j} is assigned to K_{1}. Mathematically, the computation is:

$$
\begin{aligned}
& \nabla_{i j}=\operatorname{Min}_{K_{\varepsilon} N_{i} n\left(K_{1} U K_{2}\right)} ; k \neq j\left[\operatorname{MAX}\left(C_{k j}-C_{i j}, 0\right)\right] \\
& \Delta_{j}=\left(\Sigma_{i} \varepsilon P_{j} \nabla_{i j}\right)-f_{j}
\end{aligned}
$$

where $N_{i}=$ the set of warehouses j which can supply customer i. (If prohibitive routes exist, not all warehouses will be able to supply all customers.)
Khumawala notes that for $\Delta_{j}>0, Y_{j}=1$ for all branches emanating from the node under consideration. Delta $\left(\nabla_{i j}\right)$ is the minimum savings that results if office j is opened to service city i. If the sum of all deltas for office j is greater than f_{j}, the cost of opening office j, then it pays to open the office.
2. The second simplification is an updating procedure. It reduce n_{j}, the number of cities which office j can serve.

$$
\text { "If for } j \varepsilon k_{2}, i \varepsilon P_{j}
$$

$$
\operatorname{Min}_{k \in k_{1}} \cap_{i}\left(C_{k i}-C_{i j}\right)<0
$$

then n_{j} is reduced by one." (Khumawala, [30], p. B-721; some changes in notation)
If a fixed-open warehouse can supply demand center i cheaper (at lower variable cost) than any of the "free" offices at the node, then demand center i should not be considered as a possible customer of the free field offices.
3. The third simplification contrasts with the first. While the first simplification determines if the minimum possible cost savings warrants the opening of a field office, the third determines whether the cost reduction resulting from an office already open is still warranted. Hence, it determines whether the open office can be closed, and, also, whether a free office can be closed. Khumawala states:

$$
\begin{aligned}
& \text { "For } j \varepsilon k_{2}, i \varepsilon P_{j} \\
& W_{i j}=\operatorname{Min}_{k \varepsilon N_{i} n k_{1}}\left[\operatorname{MAX}\left(C_{k i}-C_{i j}, 0\right)\right] \\
& \Omega_{j}=\left(\varepsilon_{i \varepsilon P_{j}} W_{i j}\right)-f_{j}
\end{aligned}
$$

If $j<0$, the $Y_{j}=0$ for all branches emanating from the node."
(Khumawala [80], p. B-721; some changes in notation)
$W_{i j}$ is the minimum savings resulting from city i being served by office j. If the sum of all such savings for office j is less than the cost of opening office j, then the office is closed.

These simplifications are cycled through at each node, as shown in Figure 9. When no further simplifications can be made, the LP is solved. The entire solution procedure is shown in Figure 10.

Khumawala ([30], p. B-721) reduces the size of the LP at each node by opening only the offices that will minimize the objective function

Figure 9. Simplification flow chart (from [30] p. B-724)

Figure 10. Branch and bound procedure flow chart (from [30] p. B-725)
at the node, based on the already-computed deltas. If $\left(j_{j}\right)$ is the value of j that minimizes $C_{i j}$ over all j in $N_{i} \cap\left(K_{1} \cup K_{2}\right)$, then customer i should be supplied from j_{j} if:

$$
\begin{array}{ll}
\nabla_{i}\left(j_{i}\right) \geq f\left(j_{i}\right) / n\left(j_{i}\right) & \text { if }\left(j_{i}\right) \in K_{2} \\
\nabla_{i}\left(j_{i}\right)>0 & \text { if }\left(j_{i}\right) \in K_{1}
\end{array}
$$

where the $\nabla_{i j}$'s, the minimum savings resulting from opening office i, were computed in simplification 1 (steps $S-1$, Figure 9). Proof that the result is optimal is given in Khumawala's dissertation [31].

Branching Decision Rules

In order for branching to continue after the LP at a node has been solved, an office must be selected for the set of free offices, K_{2}, at the node selected under the LLB branching criteria. This office selection is performed by the branching decision rule. Khumawala [30] tested eight such rules and found, in most cases, selection of the office with the largest positive omega gave the best performance. Efficiency is again gained by using the Ω_{j} computed in simplification 3 (step S-7, Figure 9).

To summarize Khumawala's algorithm, an initial LP is simplified and solved. An office is then selected by the branching decision rule and constrained open and closed. In both cases, the resulting pair of problems are simplified and solved. The first terminal solution obtained becomes the UB. All nonterminal solutions are retained as $C P$. A new $C P$ is selected by the branching decision rule, and the new pair of LP's are simplified and solved. Each resulting solution, if
terminal, is compared with the current UB and, if less, becomes the new UB. If the solution is nonterminal, it is compared with the current LLB, and the minimum value denotes the next node selection. When no nonterminal nodes with solutions less than the current UB can be found, the procedure ends; the current UB is optimal.

VI. HFLC PROBLEM ANALYSIS

Demand Data

The number and locations of nursing facilities in Oregon is quite stable. Demand at each location is comprised of predictable inspection visits, plus a less certain number of complaint and change of ownership visits. Licensing and certification visits and follow-up visits, including MIPRT follow-ups, can be modelled well as deterministic, if it is assumed that the inspector staggers inspections throughout the year, so that all demand is satisfied. Sequencing requirements could be violated if an inspector is too overloaded at a particular time of year to service all demands.

Complaint and change of ownership visits, however, were seen to occur randomly during the year. Available records of complaints and CHOW consisted of four years of data listing the number of complaints by county per year, and the total number of CHOW for the state each year. ${ }^{3}$ It was seen that the average number of complaints per home varied by county, and by year within counties. Figures 11 a-d show complaint totals per county for each year; the number of homes in each county was assumed to be constant. It appeared that the number of complaints in each county hovered around some high or low level. The fluctuation from year to year had no apparent pattern. Frequency histograms for the number of complaints per home each year (Figure 12 a-d) and for the four year data (Figure 13) showed no obvious underlying distribution.

[^0]

Figure 1la. Number of complaints by county, 1977

Figure 11b. Number of complaints by county, 1976

Figure 11c. Number of complaints by county, 1975

Figure 17d. Number of complaints by county, 1974

Figure 12. Frequency versus complaints per home

Figure 12 (continued). Frequency versus complaints per home

Figure 13. Frequency versus complaints per home, 1974-1977

Further, the HFLC inspection group supervisor [64] suggested that complaints have tended to be higher in metropolitan areas such as Portland and Salem, and lower in remote cities, largely, perhaps, as a result of media exposure and proximity to the State government. While complaint data showed different levels per home by county, and each single county level fluctuated without trend over time, the state totals for four years suggested an increase over time. While the data for only four years is a poor basis for long-range forecasting, it does indicate an upward trend in recent years.

The simplest method for handling complaint data would be to determine the average or mean number of complaints per home and assign that number of complaints to all homes. The wide variability in both the level of complaints by county and the number of complaints per home by county leads one to suspect that this would be an erroneous assumption.

Comparing each year of data in Figure 11 suggests that the levels of complaints by county are fairly stable from year to year, with some counties high and others low in complaints per home. The total number of homes in the state remained nearly constant during the four year period, with a change of only one or two each year. Unfortunately, no record was kept for the number of homes in each county per year. If we assume that the number of homes per county has been constant at the present level over the past four years, then the level of complaints per home fluctuates in the same manner as total complaints in Figure 11. It would be of interest to determine whether complaint data can be modelled by the density function of a known distribution such as, say the standard normal.

Four questions, thus, arise in analyzing complaint data:

1) Is an average number accurate?
2) If not, does the level of complaints per home in a county remain about the same?
3) Does the data indicate that an underlying distribution is present? and,
4) Can we be confident that the statewide data showed an increase?

Several statistical tests were performed to answer these questions. The question of whether one mean is valid for all four years was treated by a comparison of means and variances for the four years. The means were compared in an F-test; it was concluded, for $\alpha=.05$, that the hypothesis of equal means for all four years could not be rejected. An F-test comparison of variance inferred that all years do not have equal variances. ${ }^{4}$ This would suggest that the use of a four-year mean to assign an average number of complaints to each home is poorly supported due to the presence of changes or shifts in the number of complaints in the counties from year to year.

The level of complaints per home in each county appears to be stable, within some range for each county, over the four years. This second area of inquiry was treated by a contingency table test for homogeneity of the data. This contingency table tests the hypothesis that the proportion of total complaints which falls in a county varies from year to year. ${ }^{5}$ The F-test results showed, for $\alpha=.01, .05$ and .10, that the data does not present evidence sufficient to conclude

4 F-Tests are listed in Appendix 5.
${ }^{5}$ Contingency Table tests are found in Appendix 6.
that the proportion of complaints in a county varies from year to year. Therefore, a pattern of levels of complaints per home by county - suggested by Figure 11 - cannot be refuted statistically. In modelling complaint demand, this pattern should be preserved.

The third question concerning an underlying density function was investigated by an Approximate Chi-Square Test for Poisson and Normal models. ${ }^{6}$ The results showed that the Normal distribution is not appropriate for the data. For the Poisson distribution, however, the null hypothesis,
H_{0} : the distribution is Poisson was accepted. We concluded that the Poisson is a reasonable model for the data.

The last question asks whether trends can be detected in complaint and CHOW levels. Admittedly, a total of four data points is too small a snapshot for long run forecasting. It does tell us, however, whether the complaint and CHOW means appear to be stationary or changing in recent years.

Interestingly, a least squares analysis of complaints showed that 93% of the change in yearly complaint totals is explained by the fit of the data to a straight line. ${ }^{7}$ The prediction intervals ($\alpha=.05$) for future years were quite small, considering the small sample size of four.

The least squares fit of CHOW data was very poor, with only 8% of the variation explained by the regression. This could have been expected; the CHOW figures appeared to fluctuate or cycle.

[^1]To summarize, the statistical tests pointed toward an increasing number of complaints based on the past four years' experience. The statewide distribution of complaints per home changed from year to year, but the number of complaints in each county varied in some high or low range, and the number of complaints/home were not the same, county by county.

In addition, the nature of complaint data should be considered. Complaint records for individual facilities or cities, if they existed, might indicate that particular homes were high or low in complaints, or followed a trend in time. Use of that information would have been a poor data base for long run location of inspectors. A home may change management or physical facilities, and may improve or deteriorate, changing the level of complaints. Media, also, seems to have an effect. A series of articles in the March 6-10, 1977 issues of the Portland-based newspaper "The Oregonian" prominantly displayed nursing home problems and HFLC activities in Oregon. Publicity such as this may contribute to an increasing level of complaints.

It could be possible that a would-be complaintant outside of the Portland area might not expect to receive action on a complaint from a faraway state agency, and could decline to complain. The same person might be induced to complain to an inspector at a nearby Adult and Family Service Office. Complaints might increase under a decentralized office plan.

For these reasons, it was decided that several levels of complaints per county should be analyzed in order to determine the sensitivity of office location with varying demand. Also, a method was sought to
utilize the county complaint data, since the consistent high or low levels of complaints per home in different counties precluded the use of a statewide average. Complaint demand by county appears to occur randomly, influenced by many factors, including visibility of HFLC operations, and the level of care that clients and their families perceive in each home.

The Demand Model

Monte Carlo simulation was chosen to assign complaints to homes in a county. The number of complaints per county was an inputted variable, so that the structure of the complaint/home data by county was maintained; it was varied in the sensitivity analysis.

The fallacy of maintaining that one home in a county generated a fixed average number of complaints over time was eliminated. It was assumed that, within a county, each facility was equally likely to generate a complaint. Complaints were assigned to homes using a uniform distribution and a Monte Carlo simulator; several simulation runs analyzed the sensitivity of results with various numbers of complaints assigned to each county. Change in the number of complaints per county analyzed the problem sensitivity to changes in the number of complaints statewide.

Change of ownership of a nursing facility requires that the facility be relicensed. and recertified, with initial and follow-up visits; the four-year data varied between 19 and 30 CHOW per year. With no additional data to support a pattern of CHOW across the state, it was assumed that each home in the state had the same probability of changing
ownership. Monte Carlo simulation was again used, given a certain number of CHOW, to randomly assign CHOW to homes.

Each CHOW was assigned four visits, consisting of the licensing and certification visit, two follow-ups, and one MIPRT follow-up. Each complaint was modelled as requiring two visits - an initial investigation and one follow-up visit. The number of visits per complaint or CHOW was a usual or average figure obtained from HFLC, with no data available to support a range of values.

Each facility also requires the annual licensing and certification visit, two follow-ups, and MIPRT follow-up. The first licensing visit requires three full days of on-site inspection. The other visits require one day on-site. This time duration for visits is, again, a common or average figure that reflects the usual time required for each type of visit. Inspections require sampling of patient records, but, overall, the time required for inspection is independent of the size of the home; the standard routine is not highly variable. Follow-up visits are somewhat more variable, and depending on the number and gravity of deficiencies, a follow-up may take two hours to two days. The majority require one day. Complaint visits are also variable in duration, but, again, the one day visit is a reasonable assumption and the correct value in nearly all cases.

Model of Present Operations

At present, the staff of sixteen health facility inspectors and one supervisor are located at a central office in downtown Portland. A large nonproductive time and travel expense is incurred by inspecting
all facilities within the state from the Portland office. The most distant facility is 386 miles away. 27% of the Oregon cities with nursing facilities are more than 200 miles from Portland. 48% are more than 100 miles away. To reach the more distant locations, inspectors spend up to one full day travelling in each direction. The inspector may spend one to three nights lodged in the distant city.

A per diem is paid for meals by the State if the inspector is 25 or more miles from the office, and for lodging if he is 50 or more miles away.

State cars are used for transportation, charged to HFLC at \$0.11/ mile. Air travel has recently been approved, on occasion, for travel to Pendleton and Klamath Falls. The arrangement is not typical or presently feasible at other locations. Air travel was excluded from this analysis.

Decentralized Plan Model

Locating inspectors at decentralized offices has the benefit of reduced travel time and cost. Nineteen cities were chosen as candidates for inspection offices after consultation [24] with State Management Analyst Mike Greany. It was felt that the cities should be natural centers in the Oregon roadway system, and should offer services sufficient to attract potential inspectors and their families. Adult and Family Services has offices in the candidate cities (and in nearly every Oregon town of any size). A major assumption of the plan required that HFLC inspectors be located in existing State Adult and Family Service Offices. Secretarial service that is presently obtained at the Portland Office would be obtained at AFS offices. This includes services
such as photocopying, telephone answering, and typing. Telephone service cost would remain the same, since one extension would be removed in Portland and added elsewhere. The state tie (SPAN) line has the same charge regardless of where the telephone is located. It is assumed that office furniture would be available at AFS locations; otherwise, an additional purchase and/or moving cost would be incurred initially. Lease on office space would increase $\$ 495$ per office per year. ${ }^{8}$ This was based on an increased cost allocated to the location of the first inspector in each office as follows. Beyond the first desk in any office, the rate per additional desk drops. An inspector in Portland is charged for office space at a lower additional-office rate. If that inspector position is relocated to another city, the primary position is charged the higher rate. Additional personnel are charged at the same rate at the outlying office as in Portland. Hence, the added cost for the inspection office space, including maintenance, at an outstate location is the differential added cost of locating the first inspector.

It was anticipated that postage cost would increase with frequent report mailings to Portland and memorandum mailings from Portland supervision to inspectors. Thirty dollars per month was allocated for postage per office as a rough but adequate estimate.

Presently, inspectors meet with their supervisor every Monday morning to discuss Federal and State regulation changes, problems, procedures, and for training. These weekly meetings have been described both as vital and unnecessary. At any rate, travel to Portland for a weekly $\overline{8 \text { Fixed costs are formulated in Appendix } 4 .}$
four-hour meeting by all inspectors is infeasible under a decentralized plan. An alternate plan, endorsed by Management Analyst Mike Greany, was modelled. It was assumed that once a month the Portland-based supervisor would travel to each inspection office to brief the inspectors during a half-day meeting. This should allow ample time to discuss developments which could not be resolved by mail or telephone. In addition, the supervisor would take on the role of quality controller, able to sample both the inspector's work and the level of care in homes that were visited.

A qualitative difficulty under decentralization is the possibility that inspectors serving the same group of nursing facilities will become so empathetic with home operators that they will lose their objectivity, and bend rules to the advantage of the facilities. The periodic appearance of the supervisor on-site could help the inspector maintain a stance of objectivity. The supervisor could also act as a source of information and advice to facility administrators and staff.

Managenent Analyst Mike Greany also noted that the element of surprise would probably be increased under a decentralized plan. Currently, an inspector, having travelled a long distance from Portland, sometimes visits several facilities on a single trip. Home operators anticipate this, and forewarned by a nursing facility grapevine, can prepare for the visit. With mulitple offices, the inspector is close to a greater number of facilities. In many cases, the inspector's next move would not be so obvious.

Summary of Costs

Fixed Costs

Fixed costs included the incremental or added FC which would be incurred by opening an added inspection office outside Portland, plus the added cost of supervisor's travel to montily meetings.

The cost of opening each inspection office included the cost of office space (including maintenance) and postaqe. The cost per year of each added decentralized office included: ${ }^{9}$

Office lease
$\$ 495$
Postage
Subtotal

360
\$855/year

In addition, the supervisor's travel cost for monthly meetings was a cost incurred in decentralized location. Since the cost was based on the travel from Portland to each office location, the travel cost had a fixed value associated with each possible office. The cost was: ${ }^{10}$
transportation cost + supervisor wage cost per mile + per diems
for out-of-town travel $=\left\{\left[(\$ 0.11 / \mathrm{mile}+\$ 0.14 / \mathrm{mile}) * 2^{*}(\right.\right.$ mileage $\left.)\right]$
$+(\text { per diems based on mileage) }\}^{*}(12$ meetings $)$
The first term in the expression gives the state car and supervisor time costs of round trip mileage. The second bracketed term, the per diem, is a step cost estimate of the meals and lodging that are required by the supervisor, based on mileage. Per diems ranging from $\$ 2.75$ to $\$ 59.25$ were assigned; ${ }^{11}$ gives ranges of mileage were used, with a per diem as-

[^2]signed to each. These step costs were included in field office costs for the location analysis.

Variable Costs

Variable costs that changed with office locations, again based on the common denominator of mileage were:
cost of state car per mile, inspector's wage and travel cost per mile, and, per diem cost based on mileage.
For each nursing facility, these costs were incurred for every visit. Each facility received four visits per year - one three-day licensing and certification visit, two one-day follow-ups, and one MIPRT follow-up. In addition, the inputted number of complaints and changes of ownership, entailing two and four visits respectively, were assigned to demand locations by Monte Carlo assignment. The annual number of visits per facility was:

$$
\begin{equation*}
\text { Visits }=4+\text { (Assigned complaint and CHOW visits). } \tag{18}
\end{equation*}
$$

The per diem and mileage costs depended on distance and whether the visit lasted one day or three days. Figure 14 illustrates this. On a one day visit, if oneway mileage was greater than 60 miles, the inspector stayed overnight; otherwise, the inspector returned to home base. It was assumed that travel time was scheduled so that the inspector had ample time to conclude the visit in one day. If the one day visit required travel to a facility more than 60 miles from the office, the inspector received a per diem that included lodging. If the facility was less than 60 miles away, the per diem included meals, but not

ONE-WAY DISTANCE

	≤ 60 Miles	> 60 Miles
Oneday Visit D	No overnight lodging; travel to facility and return on the same day.	Lodging is incurred for one overnight stay; return on the morning of the second day.
$\begin{array}{ll} \text { A } & \\ \text { T } & \\ \text { I } & \\ 0 & \\ \text { N } & \text { Three- } \\ & \text { day } \\ & \text { Visit } \end{array}$	No overnight lodging; travel to facility and return on the same day for three days.	Lodging overnight on evenings of Days 1 and 2.

Figure 14. Overnight lodging per diems.
lodging. ${ }^{12}$
Three-day per diems were assumed to also show two patterns, based on the 60 mile cut-off point. For facilities less than 60 miles away, it was assumed that the inspector left the office early - before 8:00 a.m. if necessary, and returned each day. If one-way distance was greater than 60 miles, the inspector was lodged for four nights at the facility location, as shown in Figure 14. Meal per diems were paid during the three days of inspection, and for travel prior to and after the three days. ${ }^{13}$ These inspector per diem step costs were included in the variable costs, c_{ij}.

As Figure 14 illustrates, for a three-day licensing and certification visit to a facility 60 miles away or less, two added round trips were necessary in the midst of the inspection. Therefore, in this one case, the number of visits per home was the number of annual visits, VISITS, in expression (18), plus two:

$$
\begin{equation*}
(\text { VISITS }+2) \tag{19}
\end{equation*}
$$

For each nursing facility, the total variable cost of meeting its annual inspection requirements was formulated as follows.

If the facility was 60 miles or less from a HFLC office, the VC expression for supplying the demand of facility \boldsymbol{i} from office location j was:
$V C(i, j)=\left\{\left[(13\right.\right.$-day visit $) *($ round trip mileage $) *(3 \text { round trips })^{*}$ (inspector wage and travel cost per mile)] + (3-day per diem cost) \} $+\left\{(\right.$ Visits -1 1-day visits $) \star\left[(\text { round trip mileage })^{\star}(1\right.$ round trip)*
$\overline{12}$ Developed in detail in Appendix 2.
13 Developed in Appendix 2.
(inspector wage and travel cost per mile)) + (1-day per diem cost)]\}
where the first bracketed term expressed the cost of the three-day licensing and certification visit, and the second bracketed term yielded the cost of the remaining (visits-1) one-day trips. Note that the total number of visits were:
$[(13$-day visit $) *(3$ round trips $)]+\left[(\text { visits-1 } 1 \text {-day visits })^{*}\right.$
(1 round trip)] $=($ visits $+3-1)$ round trip visits
$=$ (VISITS +2) round trip visits
as in (19).
Similarly, if a facility i was more than 60 miles from a HFLC office site j, the corresponding variable cost expression was:
$V C(i, j)=\left\{\left[(13\right.\right.$-day visit $) *(\text { round trip mileage })^{*}(1$ round trip $) *$ (inspector wage and travel cost per mile)] + (3-day per diem cost) \}
$+\{($ visits- 1 1-day visits $) \star[($ round trip mileage $) *(1$ round trip)*
(inspector wage and travel cost per mile) + (1-day per diem cost)]\}
where the number of visits in this case was:
$[(13$-day visit $) *(1$ round trip $)]+[(v i s i t s-1 \quad 1$-day visit $) *(1$ round trip)] $=$ (Visits) round trips
as in (18).
The variable costs were computed for all demand locations and office site locations (i, j), and each was multipled by the number of nursing facilities at the demand locations.

Office Personnel Requirements

Once nursing facilities had been assigned to offices, the corresponding demand at each office was expressed as the number of inspectors required at each office. The optimal results of the algorithm were not necessarily integer inspector requirements. State budgeting procedures are geared to expressing demand in non-integer terms; each inspector, or full-time equivalent (FTE) position, is expressed fractionally as twelve man-months. For this reason, it was desired to find the optimal, even if non-integer, result - an absolute best solution.

To assign inspectors to offices required integer demand. To obtain integer office demands, the optimal result was perturbed until an integer or near-integer demand resulted.

The number of inspectors required at each office XINSP ${ }_{j}$, was computed as follows:

XINSP $_{j}=\left\{\left[\right.\right.$ Homes $\left._{j}\right) *(62$ hours/home $\left.)\right]+[($ Complaints and CHOW's $) *$
(8 hours $)]+($ Total miles travelled/average MPH)\} :
[(2080 work hours/year)*(Efficiency Factor)]-48 meeting hours where:

Homes $_{j}=$ number of nursing facilities i serviced by office j
Complaints and CHOW's = total number of complaints and ownership change visits at facilities served by office j

Total miles Travelled = total round trip mileage required to meet all demands of facilities served by office j

Average MPH = the average speed, througnout the state, of inspector travel, in miles per hour

Efficiency Factor $=$ a rating factor that determined the percentage of work hours that an inspector was available for normal inspection duties; the excluded time included vacations, personal and fatigue time, training, meetings and conferences, and exceptional demand time requirements such as decertification hearings, special reports to the Federal government; the factor yielded standard time.

62 hours/home were allotted to each home for inspections, with the following breakdown:
1 3-day certification and licensing visit24
2 follow-up visits, l-day duration each 16
1 MIPRT follow-up, l-day duration 8
Time required to complete Federal
certification report (state budget figure)

8 hours or one full day were required for each complaint or CHOW visit. 43 meeting hours equal to 12 four-hour meetings per year with the supervisor were required of each inspector.

2080 work hours/year was the amount of time available annually per inspector based on 52 weeks and 40 hours per week.

The numerator of the demand expression computed the number of manhours needed to meet the regular expected inspection requirements of all homes served by office j. The denominator was the number of hours available per inspector to serve the inspection demand.

An efficiency factor of 70% was chosen. This factor is used as a rule of thumb by the Budget and Management Division, Executive Department for estimating the rating factor in State agencies.

VII. THE COMPUTER ANALYSIS

The computer code for Khumawala's branch and bound algorithm was modified and extended to tackle the HFLC model. Provision was made to assign complaints and changes of ownership to nursing facilities using a Monte Carlo Simulator. A routine was developed to calculate step costs as well as fixed and variable costs, and changes were incorporated so that the algorithm could make use of actual distance data, rather than relying on less accurate Euclidian distances. ${ }^{14}$ A routine was added to compute the total cost of annual operations, including the total cost of employee salaries. The solution technique is compared with other major solution procedures in Table III.

Model Result Analysis

Analysis of the data required multiple computer runs. Results were obtained for the centralized and decentralized costs of operation under these model conditions

Model Conditions

present costs, demand and efficiency	model results
variation of parameters of cost,	
demand and efficiency	model sensitivity

14 Inter-city distances were compiled for the study by the State of Oregon Mileage Control Unit.

TABLE III. COMPARISON OF SOLUTION TECHNIQUES

Author	Distance Norm	Maximum n	$\underset{\mathrm{m}}{\text { Maximum }}$	Step Costs?	Form Tours?	Demand Satisfied by Multiple Visits?	Exact Solution Procedure?	Allow Maximum Load?	Allow Maximum Distance?	Allow Office Capacity Constraints?
Multi-Depot Vehicle Routing Procedures										
Gillett and Johnson [20]	Euclidean	5	250	No	Yes	No	No	Yes	Yes	No
Wren and Holliday [66]	Euclidean	4	320	No	Yes	No	No	Yes	Yes	No
Golden, et.al. [21]	Euclidean	2	600	No	Yes	No	No	Yes	No	No
Tillman and Cain [58]	Euclidean	5	50	No	Yes	No	Yes	No	No	No
Tillman [57]	Euclidean	5	50	No	Yes	No	No	No	No	No
Discrete Multi-Facility Plant Location Algorithms										
Khumawala [30]	Euclidean	25	50	No	No	No	Yes	No	Yes	No
Sa [50]	Euclidean	25	50	No						
Soland [53]	Euclidean	25	50	No	No	No	Yes	No	No	Yes
Ellwein and Gray [13]	Euclidean	25	50	No	No	No	No	No	No	Yes
Ryan's Application of Khumawala's Branch and Bound Algorithm										
Ryan (1977)	Actual or Euclidean	30	100	Yes	No	Yes	Yes	No	Yes	No

For both centralized and decentralized cases, twenty computer runs were performed in which, by changing the sequence of random numbers in the Monte Carlo Simulator, complaints and CHOW's were assigned to different locations.

In assigning complaints, our technique preserved the approximate Poisson distribution of complaints per county in the data. It also modelled the assumption that complaints occur randomly. The following example illustrates the Monte Carlo technique (see Figure 15).

In 1977, three complaints occurred in Yamhill County. Six nursing facilities were located in three cities in Yamhill County: two homes in McMinnville, three in Newburg, and one in Sheridan. Our example divides the interval zero to one into a number of increments equal to the number of homes in the county. Each home has an equal share of the interval; here it equals one-sixth. We then generate three random numbers between zero and one, corresponding to the three complaints. Each random number is assigned to the interval which encloses its value. If the first random number generated is 0.250 , then a complaint would be assigned to home 1 . The second and third random numbers would assign the second and third complaints as shown in Figure 15. For our example, home 1 receives two complaints, home 5 has one complaint, and the other homes would have no complaints. In the location analysis, demand in Newberg and McMinnville would have increased by one and two complaints, respectively. Changes of ownership were assigned in a similar manner across the state.

A sequence of randiom numbers, then, generated the assignment of complaints and CHOW. The computer's random number generator required an
initial value, or seed, to generate a sequence of numbers which, because the sequence would have started over after several thousand numbers, were pseudo-random numbers. A particular seed always generates the same sequence of pseudo-random numbers. Hence, to analyze a change in assignment of complaints and CHOW, twenty program runs were performed with twenty seed values.

YAMHILL COUNTY		
City	Number of Nursing Facilities	Number of Complaints
Mciminnville Newberg Sheridan Total	2	N/A

* indicates assignment of one complaint

Figure 15. Example of Assignment of Complaints in a County.

The results, listed in Table IV, were deterministic because each solution was uniquely determined by the model parameters, including the Monte Carlo sequence of random numbers. No guarantee of normality in the distribution could be made. Rather than express the results in terms of a mean and confidence interval, which assumes normally distributed random error terms were present, we used values from the twenty runs which evaluated a worst case savings figure. The highest cost figure for decentralized location, and the lowest cost figure for centralized location were used in the determination of an expected minimum savings figure. The optimal decentralized cost figure resulted from non-integer assignments of inspectors to offices. This figure is noted for the State budgeting requirement which is based on man-months. The results showed that six offices should always be opened: Astoria, Bend, Eugene, Medford, Portland, and Salem. The seventh office opened, either Pendleton or LaGrand, was sensitive to the pattern of complaint and CHOW demand in northeastern Oregon. The choice of either city as the seventh office opened could rest on qualitative considerations. Pendleton was here selected because it appeared in the majority of cases - eighteen out of twenty present cost runs. Likewise a selection had to be made between Coos Bay and Reedsport in the southern coast area. Reedsport appeared only once in twenty runs; Coos Bay was therefore selected. Additional support for the selection of these eight sites was given by the sensitivity analysis, since the eight appeared in nearly all computer runs and were included in the best and worst cases. The minimum cost savings with non-integer assignment of inspectors was $\$ 57,461$.

In order to apply the decentralized result, integer numbers of in-

TABLE IV. SOLUTION RESULTS
Decentralized Location

RND Seed	Run	Facility Location Cost	Total Cost	Number of Inspectors
2323	1	36885	260853	14.691
9999	2	37030	260755	14.677
5656	3	37397	261442	14.707
8134	4	36417	260322	14.678
7345	5	38419	262394	14.729
6321	6	36374	260260	14.674
3789	7	36989	261009	14.702
1313	8	37170	261160	14.696
7058	10	37533	261569	14.705
8176	11	37763	261866	14.719
1111	12	37177	263214	14.742
9876	14	37936	260240	14.626
3333	15	36508	262069	14.725
9898	16	37572	260406	14.677
5555	17	36896	261620	14.707
2345	18	37602	260853	14.689
6754	19	37426	261697	14.717
1921	20	37844	261481	14.709
8633	38387	260635	14.646	
4444		262598	14.741	

	Centalized Portland Office			
2323	1	85245	322973	16.739
9999	2	84782	322449	16.727
5656	3	86505	324448	16.784
8134	4	85735	323607	16.769
7345	5	89166	327521	16.869
6321	6	83396	32099	16.672
3789	7	84373	32959	16.711
1313	8	82746	3200592	16.654
7058	9	87399	325471	16.811
8176	10	85227	322927	16.734
1111	11	88170	326422	16.848
9876	12	89933	328493	16.911
3333	13	86505	324433	16.781
9898	14	84441	321983	16.701
5555	15	85601	322785	16.739
2345	16	86901	324903	16.796
6754	17	84599	322192	16.712
1921	18	85192	322929	16.742
8633	19	89535	328024	16.897
4444	20	85768	323582	16.758

1 Highest result with Pendleton included in the solution

Decentralized Location, Integer Staff Assignments

RND Seed	Run	Facility Location Cost	Total Cost	Number of Inspectors
2323	1	41250	268024	14.936
9999	2	41817	268682	14.954
5656	3	42849	269871	14.987
8134	4	40682	267376	14.919
7345	5	44024	271221	15.023
6321	6	40857	267541	14.917
3289	7	42651	269635	14.979
1313	8	41710	268544	14.948
7058	9	43766	270894	15.009
8176	11	42752	269758	14.984
1111	12	44501	271760	15.036
9876	13	42693	269690	14.982
3333	15	43082	270125	14.991
9898	16	4270	268493	14.946
5555	17	42192	269084	14.960
2345	18	42797	269781	14.979
6754	19	42184	269451	14.975
1921	20	43918	269095	14.964
8633	43482	27109	15.022	
4444			270578	15.002

[^3]spectors had to be assigned to the offices. The optimal non-integer result was perturbed slightly to find a near-optimal plan that resulted in integer assignments. It was noticed that demand in the area clustered around a possible office site might be sufficient to merit the opening of the office, but was never large enough to require one full inspector full time equivalent (FTE) even in the highest demand, worst case solution. This was true of Astoria and Bend. Since there were no other office sites that could possibly serve these areas plus adjoining demands to produce integer inspector requirements at lower cost, these two cities were dropped from the list of candidate sites (See Figure 16). The opening of an office to serve Northeastern Oregon demand resulted in all three cases. Location at Pendleton, however, produced lowest cost. In twenty present case complete runs, 192 sensitivity analysis runs, and this integer capacity analysis, Pendleton was nearly always selected. The other offices opened in the non-integer solution exhibited integer assignments. Hence, with integer assignment of inspectors, five offices were opened: Eugene, Medford, Pendleton, Portland, and Salem. The cost savings of this plan, again based on the highest cost assignment of complaints and CHOW from twenty computer runs, was $\$ 54,020$; the number of inspectors at each site was 2, 1, 1, 8, and 3 respectively, as outlined in Figure 17.

It has been noted that the visiting of more than one facility on a round trip by inspectors - the formation of tours - could reduce the travel time and distance in the preceeding results. This gain from the formation of tours was difficult to estimate, since the sequencing of demands that leads to tour formation was not known. Alternately
\square - offices opened with integer-valued staffs
(©) - additional offices opened in the non-integer-staff optimum

Figure 16. Multi-office locations with integer-valued staff assignments

I. Solution values for:	Total Cost	Number of Inspectors
1. Centralized Portland office location least cost from 20 computer runs 2. Multi-facility location with integer assignments of staff - highest cost result from 20 computer runs	$\begin{aligned} & \$ 320,059 \\ & \$ 271,760 \end{aligned}$	$\begin{aligned} & 16.654 \\ & 15.036 \end{aligned}$
II. Modification of computer result to reflect integer assignments.		
	Value	
Cost Term	Portland	Multi-office
Fixed cost - office opening costs and supervisor's travel cost*	0	5,201
Variable cost - state car cost and inspectors per diem	53,803	24,570
```Inspectors' wages, Portland - (17.0 inspectors * $14,994)```	254,898	
Inspectors' wages, Multi-office -   (15.0 inspectors * \$14,994)   Supervisor's wages	16,544	$\begin{array}{r} 224,910 \\ 16,544 \end{array}$
Total	\$325,245	\$271,225

III. Minimum cost savings
$=325,245$

- 271,225 $\$ 54,020$
IV. Detail of multi-office inspector assignments:

Location	Computer Value	Integer Value
Eugene	2.073	2
Medford	1.160	1
Pendleton	1.109	1
Portland	7.669	8
Salem	3.025	3
TOTAL		15

* Values from computer results

Figure 17. Minimum multi-office cost savings with integer assignments.
stated, the transition matrix probabilities of moving from location to location cannot presently be determined.

In order to analyze the effect of reduced travel time and cost due to formation of tours, a simple assumption was made. If we assume the total distance travelled should be reduced by some percentage, and the per diem costs should remain approximately the same, then total cost varies as shown in Figure 18. Figure 18c shows that, under these assumptions, the integer staff decentralized location plan should become more attractive for reduction of ten and twenty per cent in total mileage travelled in both centralized and decentralized plans. At $40 \%$ reduction in distance for both plans, these savings in favor of decentralization drop about $\$ 4,000$, from $\$ 54,020$ to $\$ 50,002$. The long distances from Portland to many nursing facilities versus the shorter distances under the multi-facility plan should yield a greater reduction of distance for the single-office case if tours are formed. If we model this more stringent assumption that the centralized Portland location of inspectors should have gained an estimated $40 \%$ efficiency while the decentralized plan gained only say, $10 \%$, then the savings for decentralized offices should have been $\$ 45,254$ (Figure 18d). Without further information on the formation of tours by inspectors, this $14.34 \%$ savings figure is a rough but reasonable lower bound on the savings that would have been realized with tour formation under the multiple office plan.

## Sensitivity Analysis

It was desired to know how the multi-facility location reacted to changes in cost, demand, and efficiency. In order to do this in an

Reduction in total mileage of integer central-office result		Integer of inspec required		Reduction in total cost from integer central office solution of $\$ 325,245$
(3)	$10 \%$ $20 \%$ $30 \%$ $40 \%$	17 16 16 16	$\$ 322,816$ 320,387 317,958 315,529	$\begin{array}{r} \hline 2,429 \\ 4,853 \\ 7,287 \\ 9,716 \end{array}$
a. Reduction in travel for Portland central office plan (integer staff).				
Reduction in total mileage of integer multi-office result		Integer number of inspectors required	(2) Total Cost	Reduction in total cost from integer multi-office office solution of \$271,225
(4) $\begin{aligned} & 10 \% \\ & 20 \% \\ & 30 \% \\ & 40 \%\end{aligned}$		15 15 15 15	$\begin{array}{r} \$ 270,275 \\ 259,326 \\ 268,376 \\ 265,527 \end{array}$	$\begin{array}{r} 950 \\ 1,899 \\ 2,849 \\ 5,698 \\ \hline \end{array}$
b. Reduction in travel for the multi-office plan (integer staff).				
Reduction in   mileage Savings   $0 \%$ $\$ 54,020$   $70 \%$ 52,541   $20 \%$ 51,061   $30 \%$ 49,582   $40 \%$ 50,002   c. Savings figures for reduction in mileage (1)-(2)) applied to both Portland and multi-office cases.				
$10 \%$ reduction in distance for multi-office plan, 40\% reduction in distance for central-office plan; $\text { (3)-(4) }=\$ 45,254=14.34 \%$   d. Savings figure.				

Figure 18. Estimate of reduction in travel distance with tour formation.
exact, organized manner, a multi-factor experiment was designed. The best and worst values for the parameters in the model were estimated and the number of complaints was set at three levels. These three levels were worst, present, and best case values. The worst case value assumed that the present trend in a rising number of complaints will continue and used the approximate number of complaints four years from now $544^{15}$. The recent marked rise in complaints should level off at some point; it was estimated that this value lies in the area of the leveloff point. The present case used the number (377) and distribution of complaints that occurred in Oregon in 1977. The best case modelled a return to the level (and distribution) of complaints in 1976-243 complaints. ${ }^{16}$

The other parameters were varied between high and low values.
These were:

	best	worst	for comparison:
modelled value			
Changes of Ownership	20	40	30
Speed, MPH	$75 \%$	$60 \%$	$70 \%$
Number of Visits	60	45	55
Salary: Inspector	3	6	4
Supervisor	$\$ 14,994$	$\$ 17,993$	$\$ 14,994$
Office Opening Cost	16,544	19,353	16,544

The best case salary levels reflected current costs; the worst case values were present cost plus $10 \%$. Other values were estimates of reasonable

[^4]endpoint values for the parameters.
Multi-factor design of the experiment required $3^{*} 2^{6}=192$ mode 1 results. This large multi-factor design allowed us to explicity analyze the many cases or scenarios modelled by variation of the parameters. Neter and Wasserman [44, p. 551] point out the efficiency of the procedure when used with an F-test analysis of variance. In our case, the analysis of variance would not be strictly correct. As in the Model Result analysis of the previous section, these deterministic results lack the unknown random error terms which the $F$-test analysis of variance analyzes. Degrees of freedon, here, equalled zero. We made use of the multi-factor format to present the mean, high, and low solution results for each parameter value when all other parameters were varied a total of thirty-two cases for each value of each parameter. The mean averaged the effects of all other parameters to estimate the change in results due to the parameter in question. The high and low values established the expected range for all possible cases at the given parameter value. These values are displayed in Figures 19.1-19.3, and mean figures plus the range of solution values at the high and low parameter values are listed in Table $V$.

Total cost appeared to be most sensitive to the efficiency rating factor for inspector's time and to salary levels for inspectors and the supervisor, exhibiting about twenty per cent change between high and low parameter values. The number of complaints had a noticeable but less marked effect on total cost. The number of CHOW , the travel speed, the number of visits per facility, and office opening cost had small observed effects on total cost (see Figure 19.1-19.3).


EFFICIENCY
Figure 19.1a. Total cost versus efficiency at three levels of complaint demand.


Figure 19.1b. Range of total cost for efficiency equal to $75 \%$ and $60 \%$ at three levels of complaint demand. Means are shown connected between complaint levels.


Figure 19.2a. Total cost versus low and high wage levels at three levels of complaint demand.

Complaints	Efficiency	200	Total Cost $(\$ 1000 ' s)$    250 300 350	400	450
Low	Low				
	High				
Med	Low				
	High				
High	Low				
	High				

Figure 19.2b. Range of total cost for low and high wage levels at three levels of complaint demand. Means shown connected between complaint levels.


Figure 19.3a. Total cost versus complaint level.

	Total Cost					$(\$ 1000 ' s)$
Complaints	200	250	300	350	400	450
Low						
Medium						
High						

Figure 19.3b. Range of total cost at three levels of complaint demand. Means are shown connected between complaint levels.

TABLE V. SENSITIVITY ANALYSIS
Number of Complaints $=243$

Parameter	Solution	Lowest   Solution Result	Average at Low Parameter Value	Highest Solution Result	Lowest   Solution Result	Average at High Parameter Value	Highest Solution Result	Change in Average Value $\triangle$ \%	
CHOW	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 27826 \\ 217752 \\ 12.200 \end{array}$	$\begin{array}{r} 37526 \\ 278320 \\ 14.539 \end{array}$	$\begin{array}{r} 49013 \\ 338317 \\ 16.124 \end{array}$	$\begin{array}{r} 28466 \\ 224639 \\ 12.639 \end{array}$	$\begin{array}{r} 38229 \\ 278320 \\ 14.539 \end{array}$	$\begin{array}{r} 49665 \\ 346182 \\ 16.547 \end{array}$	$\begin{aligned} & 703 \\ & 5061 \\ & .476 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.87 \\ & 1.85 \\ & 3.38 \\ & \hline \end{aligned}$
EFF	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 27826 \\ 217752 \\ 12.200 \end{array}$	$\begin{array}{r} 37877 \\ 250216 \\ 12.656 \end{array}$	$\begin{array}{r} 49665 \\ 284744 \\ 13.133 \end{array}$	$\begin{array}{r} 27826 \\ 265312 \\ 15.372 \end{array}$	$\begin{array}{r} 37877 \\ 301363 \\ 15.946 \end{array}$	$\begin{array}{r} 49665 \\ 346182 \\ 16.547 \end{array}$	$\begin{gathered} 0 \\ 51147 \\ 3.290 \\ \hline \end{gathered}$	$\begin{aligned} & 20.44 \\ & 26.00 \\ & \hline \end{aligned}$
MPH	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 27826 \\ 217752 \\ 12.200 \end{array}$	$\begin{array}{r} 35792 \\ 275229 \\ 14.173 \\ \hline \end{array}$	$\begin{array}{r} 44397 \\ 340159 \\ 16.213 \end{array}$	$\begin{array}{r} 31007 \\ 220516 \\ 12.384 \end{array}$	$\begin{array}{r} 39963 \\ 276350 \\ 14.430 \end{array}$	$\begin{array}{r} 49665 \\ 341382 \\ 16.547 \end{array}$	$\begin{aligned} & \hline 4171 \\ & 1121 \\ & .257 \\ & \hline \end{aligned}$	$\begin{array}{r} 11.65 \\ .41 \\ 1.81 \\ \hline \end{array}$
VISITS	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 27826 \\ 217752 \\ 12.200 \end{array}$	$\begin{array}{r} 32978 \\ 272086 \\ 14.151 \end{array}$	$\begin{array}{r} 38590 \\ 333472 \\ 16.163 \end{array}$	$\begin{array}{r} 36355 \\ 225693 \\ 12.381 \end{array}$	$\begin{array}{r} 41090 \\ 282617 \\ 14.327 \end{array}$	$\begin{array}{r} 49665 \\ 346182 \\ 16.547 \end{array}$	$\begin{aligned} & 8112 \\ & 10531 \\ & .176 \end{aligned}$	$\begin{array}{r} 24.60 \\ 3.87 \\ 1.24 \\ \hline \end{array}$
WAGES	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 27826 \\ 217752 \\ 12.200 \end{array}$	$\begin{array}{r} 36550 \\ 254253 \\ 14.274 \end{array}$	$\begin{array}{r} 46153 \\ 293242 \\ 16.547 \end{array}$	$\begin{array}{r} 29735 \\ 257648 \\ 12.200 \end{array}$	$\begin{array}{r} 39205 \\ 300451 \\ 14.328 \\ \hline \end{array}$	$\begin{array}{r} 49665 \\ 346182 \\ 16.547 \end{array}$	$\begin{aligned} & 2655 \\ & 46198 \\ & .054 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.26 \\ 18.17 \\ .38 \\ \hline \end{array}$
$\begin{aligned} & \text { OFFICE } \\ & \text { COST } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 27826 \\ 217752 \\ 12.200 \end{array}$	$\begin{array}{r} 35621 \\ 274677 \\ 14.274 \end{array}$	$\begin{array}{r} 44865 \\ 335359 \\ 16.547 \end{array}$	$\begin{array}{r} 31930 \\ 222296 \\ 12.234 \end{array}$	$\begin{array}{r} 40134 \\ 280027 \\ 14.328 \end{array}$	$\begin{array}{r} 49665 \\ 346182 \\ 16.547 \end{array}$	$\begin{aligned} & 4513 \\ & 5350 \\ & .054 \end{aligned}$	$\begin{array}{r} 12.67 \\ 1.95 \\ .38 \end{array}$

*1 = Facility Location Cost Result $\quad 2=$ Total Cost $3=$ Number of Inspectors

Number of Complaints $=337$

Parameter	Solution	Lowest   Solution Result	Average at Low Parameter Value	Highest Solution Result	Lowest Solution Result	Average at High Parameter Value	Highest Solution Result	Change Average	in Value
CHOW	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 30374 \\ 235532 \\ 13.272 \end{array}$	$\begin{array}{r} 40292 \\ 294677 \\ 15.259 \end{array}$	$\begin{array}{r} 51974 \\ 362090 \\ 17.352 \end{array}$	$\begin{array}{r} 30797 \\ 244160 \\ 13.701 \end{array}$	$\begin{array}{r} 40742 \\ 302842 \\ 15.743 \\ \hline \end{array}$	$\begin{array}{r} 52399 \\ 367531 \\ 17.914 \end{array}$	$\begin{gathered} 450 \\ 8165 \\ .484 \end{gathered}$	$\begin{aligned} & 1.12 \\ & 2.77 \\ & 3.17 \end{aligned}$
EfF	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 30374 \\ 235532 \\ 13.272 \end{array}$	$\begin{array}{r} 40517 \\ 269347 \\ 13.718 \end{array}$	$\begin{array}{r} 52399 \\ 305819 \\ 14.218 \end{array}$	$\begin{array}{r} 30374 \\ 287273 \\ 16.723 \end{array}$	$\begin{array}{r} 40517 \\ 328172 \\ 17.284 \end{array}$	$\begin{array}{r} 52399 \\ 372331 \\ 17.914 \end{array}$	$\begin{gathered} 0 \\ 58825 \\ 3.566 \\ \hline \end{gathered}$	$\begin{aligned} & 21.84 \\ & 26.00 \end{aligned}$
MPH	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 30374 \\ 235532 \\ 13.272 \end{array}$	$\begin{array}{r} 38285 \\ 296422 \\ 15.360 \end{array}$	$\begin{array}{r} 46837 \\ 365798 \\ 17.551 \end{array}$	$\begin{array}{r} 33837 \\ 238648 \\ 13.482 \end{array}$	$\begin{array}{r} 42749 \\ 301096 \\ 15.642 \end{array}$	$\begin{array}{r} 52399 \\ 372331 \\ 17.914 \\ \hline \end{array}$	4464 4674 .282	$\begin{array}{r} 11.66 \\ 1.58 \\ 1.84 \end{array}$
VISITS	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 30374 \\ 235532 \\ 13.272 \end{array}$	$\begin{array}{r} 35652 \\ 293865 \\ 15.371 \end{array}$	$\begin{array}{r} 41362 \\ 359658 \\ 17.530 \end{array}$	$\begin{array}{r} 38863 \\ 243426 \\ 13.452 \end{array}$	$\begin{array}{r} 45382 \\ 303653 \\ 15.631 \end{array}$	$\begin{array}{r} 52399 \\ 372331 \\ 17.914 \end{array}$	$\begin{aligned} & 9730 \\ & 9788 \\ & .260 \\ & \hline \end{aligned}$	$\begin{array}{r} 27.29 \\ 3.33 \\ 1.69 \end{array}$
WAGES	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 30374 \\ 235532 \\ 13.272 \end{array}$	$\begin{array}{r} 39097 \\ 273824 \\ 15.449 \end{array}$	$\begin{array}{r} 48691 \\ 315298 \\ 17.914 \\ \hline \end{array}$	$\begin{array}{r} 32452 \\ 278644 \\ 13.272 \end{array}$	$\begin{array}{r} 41937 \\ 323644 \\ 15.503 \\ \hline \end{array}$	$\begin{array}{r} 52399 \\ 372331 \\ 17.914 \end{array}$	$\begin{array}{r} 2840 \\ 49870 \\ .004 \end{array}$	$\begin{array}{r} 7.26 \\ 18.21 \\ .03 \end{array}$
$\begin{gathered} \text { OFFICE } \\ \text { COST } \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 30374 \\ 235532 \\ 13.212 \end{array}$	$\begin{array}{r} 38256 \\ 296232 \\ 15.484 \end{array}$	$\begin{array}{r} 47599 \\ 367531 \\ 17.914 \end{array}$	$\begin{array}{r} 34516 \\ 240122 \\ 13.308 \end{array}$	$\begin{array}{r} 42778 \\ 301286 \\ 15.518 \end{array}$	$\begin{array}{r} 52399 \\ 372331 \\ 17.914 \end{array}$	$\begin{aligned} & 4522 \\ & 5054 \\ & .034 \end{aligned}$	$\begin{array}{r} 11.82 \\ 1.71 \\ .22 \end{array}$

*1 = Facility Location Cost Result
2 = Total Cost 3 = Number of Inspectors

Number of Complaints $=544$

Parameter	Solution	Lowest   Solution Result	Average at Low Parameter Value	Highest Solution Result	Lowest Solution Result	Average at High Parameter value	Highest Solution Result	Change in Average Value	
CHOW	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 31621 \\ 268728 \\ 15.461 \end{array}$	$\begin{array}{r} 41599 \\ 335830 \\ 17.730 \end{array}$	$\begin{array}{r} 53334 \\ 411369 \\ 20.070 \end{array}$	$\begin{array}{r} 32945 \\ 275872 \\ 15.884 \end{array}$	$\begin{array}{r} 42847 \\ 344949 \\ 18.243 \end{array}$	$\begin{array}{r} 54721 \\ 422917 \\ 20.677 \end{array}$	1248 9119 .513	$\begin{aligned} & 3.00 \\ & 2.72 \\ & 2.89 \\ & \hline \end{aligned}$
EFF	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 31621 \\ 268728 \\ 15.461 \end{array}$	$\begin{array}{r} 42223 \\ 306263 \\ 15.917 \end{array}$	$\begin{array}{r} 54721 \\ 346146 \\ 16.410 \end{array}$	$\begin{array}{r} 31621 \\ 329001 \\ 19.481 \end{array}$	$\begin{array}{r} 42223 \\ 374516 \\ 20.056 \end{array}$	$\begin{array}{r} 54721 \\ 422917 \\ 20.677 \\ \hline \end{array}$	$\begin{gathered} 0 \\ 68253 \\ 4.139 \end{gathered}$	$\begin{aligned} & 22.29 \\ & 26.00 \end{aligned}$
MPH	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 31621 \\ 268728 \\ 15.461 \end{array}$	$\begin{array}{r} 39838 \\ 338030 \\ 17.844 \end{array}$	$\begin{array}{r} 48795 \\ 416369 \\ 20.313 \end{array}$	$\begin{array}{r} 35373 \\ 271870 \\ 15.670 \end{array}$	$\begin{array}{r} 43983 \\ 342748 \\ 18.129 \end{array}$	$\begin{array}{r} 54721 \\ 422917 \\ 20.677 \\ \hline \end{array}$	4145 4718 .285	$\begin{gathered} 10.405 \\ 1.40 \\ 1.60 \\ \hline \end{gathered}$
VISITS	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 31621 \\ 268728 \\ 15.461 \end{array}$	$\begin{array}{r} 37875 \\ 336371 \\ 17.887 \\ \hline \end{array}$	$\begin{array}{r} 44688 \\ 413921 \\ 20.548 \\ \hline \end{array}$	$\begin{array}{r} 39273 \\ 275475 \\ 15.614 \\ \hline \end{array}$	$\begin{array}{r} 46571 \\ 344408 \\ 18.086 \\ \hline \end{array}$	$\begin{array}{r} 54721 \\ 422917 \\ 20.677 \\ \hline \end{array}$	$\begin{gathered} 8696 \\ 8037 \\ . \quad 199 \\ \hline \end{gathered}$	$\begin{array}{r} 22.96 \\ 2.39 \\ 1.11 \\ \hline \end{array}$
WAGES	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 31621 \\ 268728 \\ 15.461 \end{array}$	$\begin{array}{r} 40705 \\ 311724 \\ 17.985 \end{array}$	$\begin{array}{r} 50770 \\ 357597 \\ 20.677 \end{array}$	$\begin{array}{r} 33872 \\ 318404 \\ 15.461 \end{array}$	$\begin{array}{r} 43741 \\ 369055 \\ 17.989 \\ \hline \end{array}$	$\begin{array}{r} 54721 \\ 422917 \\ 20.677 \end{array}$	$\begin{gathered} 3036 \\ 57331 \\ .004 \\ \hline \end{gathered}$	$\begin{array}{r} 7.46 \\ 18.39 \\ .02 \\ \hline \end{array}$
$\begin{aligned} & \text { OFFICE } \\ & \text { COST } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 31621 \\ 268728 \\ 15.461 \end{array}$	$\begin{array}{r} 39638 \\ 337091 \\ 17.944 \end{array}$	$\begin{array}{r} 48729 \\ 415713 \\ 20.594 \end{array}$	$\begin{array}{r} 36269 \\ 274552 \\ 15.531 \end{array}$	$\begin{array}{r} 44808 \\ 343688 \\ 18.029 \end{array}$	$\begin{array}{r} 54721 \\ 422917 \\ 20.677 \end{array}$	$\begin{gathered} 5170 \\ 6597 \\ .085 \end{gathered}$	$\begin{array}{r} 13.04 \\ 1.96 \\ .47 \\ \hline \end{array}$

*1 = Facility Location Result
$2=$ Total Cos: $3=$ Number of Inspectors

Between-Complaint-Level Solutions

		Complaint Level		
	Solution	243	337	544
Lowest Solution Result	1 2 3	$\begin{array}{r} 32978 \\ 250216 \\ 12.656 \end{array}$	$\begin{array}{r} 35652 \\ 269347 \end{array}$	2 37875   7 306262
Highest Solution Result	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 41090 \\ 301363 \\ 15.946 \end{array}$	$\begin{array}{r} 45382 \\ 328172 \\ 17.284 \end{array}$	2 46571   2 374516   4 20.056
Average Solution Result	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 37737 \\ 276571 \\ 14.291 \end{array}$	$\begin{array}{r} 40517 \\ 298759 \\ 15.501 \end{array}$	7 42119   9 340389   1 17.987
Change (\%)	1 2 3	$2780(7.37)$$22180(8.02)$$1.210(8.47)$		$\begin{array}{rr} 1602 & (3.95) \\ 41630 & (13.93) \\ 2.486 & (16.04) \end{array}$

[^5]The facility location analysis incremental costs were a part of total costs. It is of interest to separate these costs to observe their contribution to total cost. The location analysis cost was affected most by the change in the number of visits, travel speed, and office operating cost (see Figure 19.4). The change in number of complaints appeared to be less important, while the level of CHOW had little effect.

The number of inspectors required to meet demand was apparently influenced predominately by the efficiency rating factor, and was also affected somewhat by the number of complaints. Other factors did not appear to significantly affect the number of inspectors required.

Best and worst case values are listed in Table VI. Worst case costs and inspector requirements resulted from running the model with the most adverse values assigned to all parameters; best case results came from the assignment of the most favorable parameter values. The expected total savings incurred by a multi-office plan was $\$ 44,869$ in the best case. Under the increased demand and higher costs of the worst case, the savings magnitude was much greater, equal to $\$ 141,412$.

In addition to these analyses, a study was performed to determine the effect of increased office opening cost on the five-office integerassignment solution. All other cost, efficiency and demand parameters were fixed at present case levels, and office opening costs, for office locations other than Portland, were incremented by $\$ 500$ steps. The results, listed in Table VII showed that the five offices - Eugene, Medford, Pendleton, Portland and Salem - should be opened at fixed added-office cost levels up to $\$ 6,000$. For the range of added-office costs from $\$ 6,000$ to $\$ 9,500$, Medford, Pendleton, Portland, and Salem


Figure 19.4a. Total cost versus low and high numbers of visits at three levels of complaint demand.


Figure 19.4b. Range of total cost for a low and high number of visits at three levels of complaint demand. Means are shown connected between complaint levels.

TABLE VI. BEST AND WORST CASE SOLUTIONS

Best Case			Worst Case		
Facility Lo	Cost	\$27,826	Facility Loca	Cost	\$54,721
Total Cost		217,752	Total Cost		422,917
Number of I	tors	12.200	Number of Ins		20.677
Facilities Opened and (Number of Inspectors)			Facilities Opened and (Number of Inspectors)		
Astoria $(.346)$   Bend $(.373)$   Coos Bay $(.493)$   Eugene $(.902)$   Medford $(.879)$   Pendleton $(.861)$   Portland $(5.871)$   Salem $(2.474)$			Astoria (.755)		
			Baker	(.777)	
			Bend	(.620)	
			Coos Bay	(.761)	
			Eugene	(1.389)	
			Klamath Falls Medford	(.428)	
			Pendleton	(.502)	
			Portland	(10.678)	

TABLE VII. SOLUTION RESULTS !!ITH VARIOUS
FACILITY OPENING COSTS

should be opened; at a $\$ 10,000$ opening cost, Medford, Portland, and Salem should be opened. For fixed added-office costs from $\$ 10,500$ to $\$ 21,000$, Eugene and Portland should be HFLC office sites; for office opening costs of $\$ 21,500$ or more, Portland only should be the site of an HFLC office. It should be noted that this result demonstrated that, at a $\$ 21,500$ cost of opening each office outside of Portland, the additional offices should not be opened. The result did not indicate that Portland is the best office site in the state under a single-office plan.

## VIII. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

## Conclusions

The first objective of this analysis was to find a method for solving a multi-office location problem. After a literature survey that investigated and compared the available solution techniques for discrete multi-facility location and multi-depot vehicle routing problems, a discrete multi-facility location algorithm by Khumawala was selected. This branch and bound procedure was chosen because it modelled the important characteristics of this multi-facility problem, yielded minimum cost solutions, and the computer code was available. The procedure represents the current state-of-the-art in exact multifacility location algorithms, and was found to run efficiently. On Oregon State University's CDC Cyber 73, the Fortran IV program required 127,500 octal words of memory space; average run times ranged from . 75 seconds for a one office, seventy-seven demand location problem to 3.85 seconds for a nineteen office, seventy-seven demand site problem.

The second objective was to obtain a result to support or reject the hypothesis of reduced HFLC inspection cost under a multiple office plan. Demand and cost data were collected and analyzed graphically and statistically (Chapter VI). In order to model the agency's activities, the computer program was modified to allow random elements in demand, include step costs, permit the use of actual or straight line distances, compute the number of staff required at each office, and evaluate the total cost of annual operations. The program determined the optimal office locations and staff requirements based on the trade-off between
added fixed costs of locating offices and variable costs of transportation to demand sites that minimized cost.

In our study, the model indicated a fifteen percent improvement in cost with decentralization, based on integer-valued office staffs. Multiple computer runs established the minimum expected cost reduction.

The final objective of the study was to determine the practicality of the optimal multiple office plan. The plan has the following merits:

1) The sensitivity analysis showed that multiple offices opened under present conditions should remain open under a variety of foreseeable future circumstances, including the most adverse conditions of demand and cost projected over a four-year period.
2) Assumptions of increased future cost and demand improve the cost savings attributable to decentralization; decreased cost and demand reduce the savings by a smaller amount (Sensitivity Analysis, Chapter VII).
3) Staffing requirements are integer-valued.
4) The analysis places a bound on the reduction in the modelled costs due to the gain in efficiency from the formation of tours.
5) Multiple visits to each facility have been considered.

The decentralized plan has other attributes. The supervisor's role as a health care expert, inspection observer, and quality controller is enhanced. The element of surprise in inspection visits is increased. The cost results and qualitative items must be weighed against the loss of centralized control under decentralization. This
task lies with the appropriate State decision maker. The study results have been presented to the Budget and Management Division of the State Executive Department, and the computer program has been supplied to the Division for use in future multi-office location problems.

## Recommendations for Further Study

The present model can be improved in the following ways:

1) Compile data for the transition matrix probabilities of travel between locations. Then simulate weekly tours - that is, a path of visits to one or more facilities that returns to the office at week's end - using an approach such as the Markov Chain in Inoue [28] until all demands are satisfied. Modify the computer program to assign each tour as one round trip, with distance and demand equal to the total tour values. The distance function for a possible office site is then the sum of the tour length plus the minimum distance from the facility to the tour path. The branch and bound algorithm can then be applied. In the result, blocks of fifty tours can be assigned to one inspector to compute office staff sizes. Tours can thus be modelled external to the present multi-facility algorithm.
2) Forecast the long-term changes in demand and costs, and rerun the model.
3) Compile better data for the frequency versus length of visits needed to service various types of demand. More intensively standardized inspection procedures may be needed.

A need for development of a new algorithm to optimize facility location when office staff, salesmen, or vehicles can visit more than one demand location on a round trip is made obvious by this study. While much research has been directed toward both discrete multifacility plant location and vehicle routing problems (VRP), we found it difficult to marry the two bodies of techniques.

Present multi-depot VRP's rely on inefficient and inexact heuristics that do not minimize the fixed cost/variable cost trade-offs. The heuristics allow only single visits to each demand site. The factorial number of possible tours in a network makes the problem very difficult to solve. Multi-facility algorithms, on the other hand, optimize cost, can be programmed to allow multiple visits, and balance fixed and variable costs. The existence of efficient discrete multi-facility optimizing procedures encourages their extension to implicitly model tours.

This study has utilized the discrete multi-facility location model to solve a practical multi-office problem. The need has been demonstrated for a new class of solution techniques for large problems that blends elements of discrete multi-facility location models and multidepot vehicle routing models. Hopefully, we have marked the proper direction for the future development of such a technique.

## BIBLIOGRAPHY

1. Akinc, U., "A Branch and Bound Procedure for Solving Warehouse Location Problems with Capacity Constraints," Unpublished Ph.D. dissertation, University of North Carolina, Chapel Hill, 1973.
2. Balas, E., "An Additive Algorithm for Solving Linear Programs with Zero-One Variables," Operations Research, 13, 517-46, July August 1965.
3. Balas, E., "Discrete Programming by the Filter Method," Operations Research, 15, 915-57, 1967.
4. Bellmore, M., and G. Nemhauser, "The Travelling Salesman Problem: A Survey," Operations Research, 16, 538-58, 1968.
5. Bowman, J., and G. Nemhauser, "Deep Cuts in Integer Programming," Technical Report No. 8, Department of Statistics, Oregon State University, Corvallis, Oregon, February 1968.
6. Buffin, R. L., "An Algorithm for the Plant Location Problem," Unplublished Master's thesis, Georgia Institute of Technology, Atlanta, Georgia, 1972.
7. Christofides, N., and S. Eilon, "Algorithms for Large Scale Travelling Salesman Problems," Operational Research Quarterly, 23, 511, 1972.
8. Clarke, G., and J. W. Wright, "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, 12, 568-81, 1964.
9. Cooper, L., and D. Steinberg, Methods and Applications of Linear Programming, First Edition, W. B. Saunders Co., Philadelphia, Pa., 379-85, 1974.
10. Dakin, R. J., "A Tree Search Algorithm for Mixed and Integer Programming Problems," Computer Journal, 8, 250-55, 1965.
11. Dantzig, G., and J. Ramser, "The Truck Dispatching Problem," Management Science, 81-91, October 1959.
12. Efroymson, M. A., and T. L. Ray, "A Branch and Bound Algorithm for Plant Location," Operations Research, 14, 361-68, 1966.
13. Ellwein, L. B., and P. L. Gray, "Solving Fixed Charge LocationAllocations Problems with Capacity and Configuration Constraints," A.I.I.E. Transactions, 3, 290-99, 1971.
14. Executive Department, State of Oregon, "Administrative Analysis of Medical Assistance Unit, Health Facilities Licensing and Certification Section, Public Welfare Division, Health Division, Department of Human Resources," October 1976.
15. Feldman, E., F. A. Lehrer, and T. L. Ray, "Warehouse Locations Under Continuous Economics of Scale," Management Science, 12, May 1966.
16. Francis, R. L., and J. A. White, Facility Layout and Location, An Analytical Approach, First Edition, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974.
17. Garfinkel, R. S., and G. L. Nemhauser, Integer Programming, First Edition, John Wiley and Sons, New York, New York, 1972.
18. Geoffrion, A. M., "An Improved Implicit Enumeration Approach for Integer Programming," Operations Research, 17, pp. 437-454, May - June 1969.
19. Geoffrion, A. M. and R. E. Marsten, "Linear Programming Algorithms: A Framework and State-of-the-Art Survey," Perspectives on Optimization - A Collection of Expository Articles, A. M. Geoffrion ed., Addison-Wesley Publishing Co., Inc., Reading, Massachusetts, pp. 37-63, 1972.
20. Gillett, B. E. and J. G. Johnson, "Multi-Terminal Vehicle-Dispatch Algorithm," Omega, 4, pp. 711-716, 1976.
21. Golden, B. L., T. L. Magnanti, and H. Q. Nguyen, "Implementing Vehicle Routing Algorithms," Technical Report Mo. 115, Operations Research Center, MIT, Cambridge, Massachusetts, September 1975.
22. Gomory, R. E., "An Algorithm for Integer Solutions to Linear Programs," Recent Advances in Mathematical Programming, R. L. Graves and P. Wolfe, eds., McGraw-Hill, New York, New York, pp. 269-302, 1963.
23. Gorry, G. A. and J. F. Shapiro, "An Adaptive Group Theoretic Algorithm for Integer Programing Problems," Management Science, 17, pp. 285-305, January 1971.
24. Greany, M., Management Analyst, Executive Department, State of Oregon, communication during meeting, April 8, 1977.
25. Greenburg, H., Integer Programming, First Edition, Academic Press, liew York, New York, 1971.
26. Guenther, W. C., Concepts of Statistical Inference, Second Edition, McGraw-Hill, New York, llew York, 1973.
27. Hillier, F. S. and G. J. Lieberman, Introduction to Operations Research, First Edition, Holden-Day, Inc. San Francisco, California. 1973.
28. Inoue, M. S., "Markov Simulation by Iterative Process: A Pedagogic Tool in Man-Machine Symbiosis," Report of Proceedings, Fourth Annual Simulation Symposium, Volume Cne. D. K. Caldwell and D. Dawson, eds. Gordon and Breach Science Publishers. New York, New York. pp. 295-341. 1971.
29. Khumawala, B. M., "An Efficient Branch and Bound Algorithm for Warehouse Location," Ph.D. dissertation, Krannert Graduate School of Industrial Administration, Purdue University. Lafayette, Indiana. 1970.
30. Khumawala, B. M., "An Efficient Branch and Bound Algorithm for the Warehouse Location Problem," Management Science. 18. pp. B718-B731. August, 1972.
31. Khumawala, B. M., and U. Akinc, "An Efficient Branch and Bound Algorithm for the Capacitated Warehouse Location Problem," Paper No. 475. Krannert Graduate School of Industrial Administration. Purdue University. Lafayette, Indiana. 1974: forthcoming in Management Science.
32. Klastorin, T. D., "An Effective Subgradient Algorithm for the Generalized Assignment Problem," University of Washington. Seattle, Washington. January, 1977; forthcoming in ORSA.
33. Kuehn, A. A., and M. J. Hamburger, "A Heuristic Program for Locating Warehouses," Management Science, 9. pp. 643-666. 1963.
34. Land, A. H. and A. G. Doig, "An Automatic Method of Solving Discrete Programming Problems," Econometrica. 23. pp. 497-520. 1960.
35. Lin, A., "Computer Solutions of the Travelling Salesman Problem," Bell System Technical Journal, 44, 2245, 1965.
36. Lin, A., and B. Kernighan, "Ar Effective Heuristic Algorithm for the Travelling Salesman Problem," Operations Research, 21. pp. 498. 1973.
37. Little, J. D. C., K. Murty, D. Sweeney, and C. Karel, "An Algorithm for the Travelling Salesman Problem," Operations Research, 21, pp. 972-989. 1963.
38. Lovro, D. S., "A Branch and Bound Algorith Applied to Field Office Location," Unpublished Master's thesis, Oregon State University. Corvallis, Oregon. 1975.
39. Marlow, W. H., ed., Modern Trends in Logistics Research, Proceedings of a Conference held at The George Washington University. The MIT Press. Cambridge, Massachusetts. 1976.
40. McGinnis, L. F., "Approximate and Exact Solution Procedures for a Class of Facilities Location Problems," Ph.D. dissertation, North Carolina State University. Raleigh, North Carolina. 1975.
41. McGinnis, L. F., "A Survey of Recent Results for a Class of Facilities Location Problems," AIIE Transactions, 9. pp. 11-18. 1977.
42. McMillan, C., and R. F. Gonzales, Systems Analysis: A Computer Approach to Decision Models, Third Edition, Richard D. Irwin, Inc., Homewood, Illinois. 1973.
43. Mendenhall, W., Introduction to Probability and Statistics, Fourth Edition. Drexbury Press, North Scltuate, Massachusetts. 1975.
44. Neter, J., and W. Wasserman, Applied Linear Statistical Models, First Edition. Richard D. Irwin, Inc., Homewood, Illinois. 1974.
45. Ramalingham, P., "Optimizers for Single and Multi-Stage Job-Shop Scheduling Problems," Unpublished Master's thesis, Oregon State University. Corvallis, Oregon. 1969.
46. Rardin, R. L., and V. E. Unger, "Solving Fixed Charge Network Problems with Group Theory-Based Penalties," Naval Research Logistics Quarterly. 23. pp. 67-84. 1976.
47. Riggs, J. L., and M. S. Inoue, Introduction to Operation Research and Management Science: A General Systems Approach, First Edition, McGraw-Hill, Inc. New York, New York. 1975.
48. Ross, G. T., and R. M. Soland, "Modelling Facility Location Problems as Generalized Assignment Problems," Research Report CCS 254, Center for Cybernetic Studies. The University of Texas. Austin, Texas. February, 1976.
49. Russell, R. A., "An Effective Heuristic for the M Tour Travelling Salesman Problem with Some Side Conditions," Operations Research. 25. pp. 517-524. May-June 1977.
50. Sa, G., "Branch and Bound Approximate Solutions to the Capacitated Plant-Location Problem," Operations Research, 17. pp. 10051016. 1969.
51. Shapiro, J. F., "Dynamic Programming Algorithms for the Integer Programming Problem - I: The Integer Programming Problem Viewed as a Knapsack Type Problem," Operations Research, 16. pp. 103-121. January-February 1968.
52. Shapiro, J. F., "Group Theoretic Algorithris for the Integer Programming Problem - II: Extension to a General Algorithm," Operations Research, 16. pp. 928-947. September-October 1968.
53. Soland, R. M., "Optimal Plant Location with Concave Costs," Operations Research, 22. pp. 273-382. 1974.
54. Spielburg, K., "Plant Location with Generalized Search Origin," Management Science, 17. pp. 165-177. 1969.
55. Svestka, J., and V. E. Huckfeldt, "Computational Experience with an M-Salesman Travelling Salesman Algorithm," Management Science, 19. pp. 790-799. 1973.
56. Taha, H. A., Integer Programning - Theory, Application, and Computations, First Edition, Academic Press. New York, New York. 1975.
57. Tillman, F. A., "The Multiple Terminal Delivery Problem with Probabilistic Demands," Transportation Science, 3. pp. 192-204. August, 1969.
58. Tillman, F. A. and T. M. Cain, "An Upperbound Algorithm for the Single and Multiple Terminal Delivery Problem," Management Science, 18. pp. 664-682. July, 1972.
59. Tillman, F. A., and H. Cochran, "A Heuristic Approach for Solving the Delivery Problem," 19. pp. 354-358. July, 1968.
60. Tillman, F. A., and R. W. Hering, "A Study of a Look-Ahead Procedure for Solving the Multiterminal Delivery Problem," Transportation Research, 5. pp. 225-229. February, 1971.
61. Toml in, J. A., "An Improved Branch and Bound Method for Integer Programming," Operations Research, 19. pp. 1070-1075. July-August, 1971.
62. Tyagi, M., "A Practical Method for the Truck Dispatching Problem," Journal of Operations Research Society of Japan, 10. pp. 76-92. 1968.
63. Wagner, H. M., Principles of Operations Research, Second Edition. Prentic-Hall. Englewood Cliffs, New Jersey. pp. 500-502. 1975.
64. Ward, F., Surveyor Supervisor, Health Facilities Licensing and Certification Section, Health Division, State of Oregon, communication during meeting, June 2, 1977.
65. Wolsey, L. A., "Group Theoretic Results in Mixed Integer Programming," Operations Research, 19. pp. 1691-1697. 1971.
66. Wren, A., and A. Holliday, "Computer Scheduling of Vehicles from One or More Depots to a Number of Delivery Points," Operational Research Quarterly, 23. pp. 333-334. September, 1972.

## APPENDICES

Nursing Home Complaints   By County					Complaints per Home By County ${ }^{*}$				
County	$\begin{aligned} & 5 / 76- \\ & 4 / 77 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 / 75 \\ & 4 / 76 \end{aligned}$	$\begin{aligned} & 5 / 74- \\ & 4 / 75 \end{aligned}$	$\begin{aligned} & 5 / 73 \\ & 4 / 74 \end{aligned}$	$\begin{aligned} & 5 / 76- \\ & 4 / 77 \end{aligned}$	$\begin{aligned} & 5 / 75- \\ & 4 / 76 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 / 74- \\ & 4 / 75 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 / 73- \\ & 4 / 74 \end{aligned}$	Number of homes ,4/76
1. Baker		1	0	0	0.50	0.50	0.00	0.00	2
2. Benton	2	9	0	2	1.00	4.50	0.00	1.00	2
3. Clackamas	50	39	35	22	2.50	1.95	1.75	1.10	20
4. Clatsop	3	3	6	1	1.00	1.00	2.00	0.33	3
5. Columbia	2	0	0	1	1.00	0.00	0.00	0.50	3
6. Coos	2	5	3	2	0.33	0.83	0.50	0.33	6
7. Crook	0	1	1	1	0.00	1.00	1.00	1.00	
8. Curry	1	0	0	0	1.00	0.00	0.00	0.00	,
9. Deschutes	2	1	2	2	0.50	0.25	0.50	0.50	4
10. Douglas	5	3	2	2	1.25	0.75	0.50	0.50	4
11. Gilliam	0	0	0	0	0.00	0.00	0.00	0.00	1
12. Grant	0	0	0	0	0.00	0.00	0.00	0.00	
13. Harney	0	0	0	0	0.00	0.00	0.00	0.00	1
14. Hood River	2	0	0	1	1.00	0.00	0.00	0.50	2
15. Jackson	4	8	4	3	0.44	0.89	0.44	0.33	9
16. Jefferson	0	0	0	0	0.00	0.00	0.00	0.00	
17. Josephine	2	1	0	0	0.50	0.25	0.00	0.00	4
18. Klamath	4	3	6	4	2.00	1.50	3.00	2.00	2
19. Lake	0	0	0	0	0.00	0.00	0.00	0.00	1
20. Lane	8	6	9	9	0.53	0.40	0.60	0.60	15
21. Lincoln	0	2	0	2	0.00	2.00	0.00	2.00	1
22. Linn	4	6	3	3	0.80	1.20	0.60	0.60	5
23. Mal heur	1	0	0	2	0.50	0.00	0.00	1.00	2
24. Marion	42	30	16	13	2.10	1.50	0.80	0.65	20
25. Morrow	0	0	0	0	0.00	0.00	0.00	0.00	1
26. Polk	2	3	9	3	0.50	0.75	2.25	0.75	4
27. Tillamook	5	4	3	1	2.50	2.00	1.50	0.50	2
28. Umatilla	1	1	1	1	0.20	0.20	0.20	0.20	5
29. Union	2	1	0	0	1.00	0.50	0.00	0.00	2
30. Wal lowa	0	0	0	0	0.00	0.00	0.00	0.00	1
31. Wasco	11	0	0	2	3.67	0.00	0.00	0.66	3
32. Washington	30	13	17	17	2.31	1.00	1.31	1.31	13
33. Yamhill	3	1	3	3	0.50	0.17	0.50	0.50	
34. Multnomah	44	40	40	39	1.83	1.67	1.67	1.63	24
35. Portland	104	62	54	34	3.85	2.30	2.00	1.26	27
TOTAL	337	243	214	170					

Changes of Ownership

Changes of Ownership				
$5-76$ to $4-77$	$5-75$ to 4-76	$5-74$ to $4-75$	$7-73$ to $4-74$	
30	24	19	28	

*Based on the number of homes per county in Apri1, 1976.

Nursing Facility Locations

City	Number of Facilities	City	Number of Facilities
Albany	3	Madras	1
Ashland	2	McMinnville	2
Astoria	2	Medford	6
Baker	2	Milton-Freewater	
Bandon		Milwaukie	2
Beaverton-		Mollala	1
Marylhurst	3	Mount Angel	2
Bend	3	Myrtle Point	1
Brookings	1	Newberg	3
Burns	1	Newport	1
Canby	2	Nyssa	
Central Point		Ontario	1
Colton	1	Oregon City	4
Condon	1	Pendleton	4
Coos Bay-		Portland	46
North Bend	3	Prairie City	
Coquille	1	Prineville	2
Cornelius	1	Redmond	1
Corvallis	4	Reedsport	
Cottage Grove	2	Rockaway	1
Dallas	2	Roseburg	3
Enterprise	1	Salem	15
Eugene-		Sandy	2
Springfield Florence	11	Scappoose	1
Florence Forest Grove	2	Seaside	2
Forest Grove Gaston	4	Sheridan	1
Gaston	1	Silverton	2
Glads tone	3	Saint Helens	1
Grants Pass-		Sublimity	1
Merlin	4	Sweet Home	1
Gresham	6	The Dalles	3
Heppner	1	Tigard	3
Hermiston	1	Tillamook	1
Hillsboro	3	Toledo	1
Hood River	2	Troutdale	2
Independence	1	Vale	1
Junction City	1	West Linn	1
Klamath Falls	3	Woodburn	2
La Grande	2		
Lake Oswego	1		
Lakeview	1		
Lebanon	1		
Lincoln City	1		

## APPENDIX 2

## STEP COSTS: PER DIEM COST FORMULATIONS

State Employee

Breakfast	Diems
Lunch	$\$ 2.75$
Dinner	2.75
Lodging	6.50
Total	$\$ 25.00$


Key
$B$
$L$
$D$
Lodg

Meal per diems are paid if an inspector is more than 25 miles from the office. Lodging is paid if an inspector is more than 50 miles from the office. It is assumed that per diem cost behaves as a step cost based on mileage. Travel speed is estimated at $50-60 \mathrm{mph}$.

Supervisor Per Diem Costs

Distance to Outlying   Office (Miles)	Per Diem   Cost	Per Diems Paid (Round Trip)		
	Day 1	Day 2	Day 3	
$0-24$	$\$ 0.00$	-		
$25-59$	2.75	L		
$60-99$	9.25	L,D		
$100-199$	25.00	L,D	Lodg, B	
$200-299$	34.25	L,D	Lodg, B,L,D	
$300+$	59.25	L,D	Lodg, B,L,D	Lodg, B,L,D

We assume that the supervisor travels to half-day meetings at outlying HFLC offices. Per diems are based on distance and time. For example, if mileage to an office is 60-99 miles, the time required for travel in each direction is one to one and one half hours. The inspector, though eligible for a lodging per diem, can travel the round trip distance and conduct the meeting in one day. Suppose distance is 300 miles or greater. The inspector must spend at least six hours travelling in each direction. We tabulate the maximum number of per diems that could be expected to occur, assuming that the inspector travels the
first day, travels and/or meets with inspectors during the second day, and returns on the third day.

Inspector Per Diem Costs for One-Day Visits

Distance to Nursing	Per Diem	Per Diems Paid		
	(Round Trip)			
Facility (Miles)	Cost	Day 1	Day 2	Day 3
$0-24$	$\$ 0.00$	-		
$25-59$	2.75	L		
$60-99$	25.00	L,D	Lodg, B	
$100-174$	47.25	D	Lodg, B,L,D	B
$175-299$	52.75	L,D	Lodg, B,L,D	Lodg, B,L
$300+$	62.00	B,L,D	Lodg, B,L,D	Lodg, B,L,D

Inspectors visits are modelled as requiring one full day on-site. We assume, for distances up to 60 miles, that the inspector returns to the office on the day of the visit. For a distance between 60 and 99 miles, we modelled a case frequently found in the inspector's travel agendas. The inspector travels to the facility on the afternoon of day one and begins the inspection. On day two the inspector finishes the visit and returns. For distances greater than 99 miles, we visualize the inspector travelling on the first day, inspecting on the second, and returning on the third. Added per diems for days 1 and 3 reflect added time "on the road" which includes more meal per diems as distance increases.

Inspector Per Diems for Three-Day Visits

Distance to					
Nursing Facility   (Miles)	Per   Diem   Cost	Per Diems Paid		(Three Round Trips)	
	Day 1	Day 2	Day 3		
$0-24$	$\$ 0.00$	-	-	-	
$25-59$	$\$ 8.25$	L	L	L	


Distance to Nursing Facility (Miles)	Per Diem Cost	Per Diems Paid (One Round Trip)				
		Day 1	Day 2	Day 3	Day 4	Day 5
60-99	97.25	D	Lodg, B, L, D	Lodg, B, L, D	Lodg, B, L, D	B
100-174	100.00	L, D	Lodg, B, L, D	Lodg, B, L, D	Lodg, B, L, D	B
175-299	102.75	L, D	Lodg, B,L, D	Lodg, B, L, D	Lodg, B,L, D	B, L
$300+$	112.00	B,L, D	Lodg, B,L, D	Lodg, B, L, D	Lodg, B, L, D	B, L, D

The licensing and certification visit requires three days on-site. We assume that the inspector returns to the office each day if one-way distance is less than 60 miles. If distance is 60 miles or more, the inspector is lodged at the nursing facility location. Per diems on days 1 and 5 reflect added travel time.

## APPENDIX 3

## VARIABLE COST FORMULATION

Three types of costs are incurred by the HFLC Section in travelling from office $j$ to nursing facility $k$ :

1. (cost of state car) ${ }_{\mathrm{kj}}$
2. (per diem cost) $k j$
3. (inspector time cost) $k j$

The variable cost of satisfying all demand of facility $k$ from office $j$ is:

$$
\begin{aligned}
V C_{k j}= & (\text { number of visits/year }) \star\left\{\left[(\text { distance } k j \cdot \$ 2)^{\star}\right.\right. \\
& (\text { state car cost/mile }+ \text { inspector time cost/mile })]+ \\
& \text { per diem cost/visit }\}
\end{aligned}
$$

1. State car cost is $\$ .11 / \mathrm{mile}$.
2. Per diems vary with steps in distance $k_{j}$; the approximation is
outlined in Appendix 2 .
3. An inspector's time is used nonproductively for travel. We base the worth of an inspector on his salary. The budgeting figure used by the State for inspectors is $\$ 14,994$.

Cost per mile of inspector's time $=$ WAGEMI $=\frac{(\text { salary } / \text { year })}{(\text { hours } / \text { year }) \star(\text { miles } / \text { hour })}$
At an average of 55 mph , this cost is $\frac{\$ 14,994}{(2080)^{\star}(55)}=\$ .1311 / \mathrm{mile}$.
We have assumed that homes are visited four times per year, plus twice for each complaint and four times for each change of ownership. For a facility with one complaint and no changes of ownership, the variable cost would be:

$$
\begin{aligned}
V C_{k j}= & {\left[4+1^{*}(2)+0^{\star}(4)\right] \text { visits * }\left\{\left[\left(\text { distance }{ }_{\mathrm{kj}_{j}} 2\right)\right.\right.} \\
* & (\$ .11+\$ .13)]+ \text { (one three-day per diem }+ \text { five one-day } \\
& \text { per diems })\} .
\end{aligned}
$$

Our assumptions require that if the distance is less than sixty miles, the inspector makes three trips to license and certify; if the distance is more than sixty miles, the inspector makes one round trip and stays overnight at the facility location. The VC expressions for distances greater than sixty miles and distances less than or equal to sixty miles differ in the number of licensing visits modelled.

If (one-way mileage ${ }_{k_{j}} \leq 60$ ):
$V C_{k j}=$
$\left\{\left[(\right.\right.$ one 3 -day visit $) *\left(2^{*}\right.$ distance $\left.{ }_{k j}\right) *(3$ round trips $) *($ car cost.mile + wagemi)] + (3-day per diem) \}
$+$
$\left\{(\right.$ visits-1 1 -day visits $) \star\left[\left(\left(\right.\right.\right.$ Distance $\left.{ }_{k j}{ }^{* 2}\right) *(1$ round trip)*(car cost/mile + wagemi)) + (1-day per diem)]\}

The first bracketed term is the cost of the three-day licensing and certification visit; the second term is the cost of the remaining oneday visits.

Likewise, if (one-way mileage ${ }_{\mathrm{kj}}>60$ ):
$V C_{k j}=$
$\left\{\left[\left(\right.\right.\right.$ one 3 -day visit) ${ }^{*}\left(2^{*}\right.$ distance $\left._{k j}\right)+(1$ round $\operatorname{trip}) *($ car cost/mile + wagemi)] + (3-day per diem) \}
$+$
$\left\{(\right.$ visits-1 1 -day visits $) *\left[\left(\text { distance }_{k j}{ }^{* 2}\right)^{*}(1\right.$ round trip)*(car cost/mile + wagemi $))+(1-$ day per diem) $]$ \}.

To determine the total variable cost of serving the demand of some city $i$, we sum up the variable costs of serving all facilities $k$ in that city.

$$
V C_{i j}=\sum_{k=1}^{\text {homes }} \quad V C_{k j}
$$

$$
\text { where homes }=\text { the number of facilities in city } i .
$$

## APPENDIX 4

## FIXED COSTS

Fixed costs are associated with the cost of operating an additional office $j$. These are office space and maintenance cost, office support costs, and supervisor's travel cost.

1. OFFICE SPACE

State budgeting model: one-man office requires $200 \mathrm{ft}{ }^{2}$ at $\$ .55 / \mathrm{ft} .{ }^{2} /$ month.,
additional office staff requires $125 \mathrm{ft} .^{2}$ at $\$ .55 / \mathrm{ft} .^{2} /$ month .

This cost includes maintenance. The resulting incremental cost to establish an outlying office is the higher rate (1) paid for the first inspector, less the lower rate paid in Portland for the inspector (2); this applies only to the first inspector. Additional staff at each outlying office are charged under (2) as they were charged in Portland.

Office Space Cost $=(12 \mathrm{mo} . /$ year $) *\left(200-125 \mathrm{ft} .^{2}\right) *\left(\$ .55 / \mathrm{ft} .^{2} / \mathrm{mo}.\right)$

$$
=\$ 495 / \text { year }, \quad j=1,2,3, \ldots, n
$$

2. OFFICE SUPPORT COSTS

Telephone and SPAN-line cost is the same at centralized and decentralized offices, as is secretarial service. Extra postage is required at outlying offices. If reports average about five ounces, a montly postage allowance of $\$ 30.00$ would allow about 45 first-class report mailings.

```
Support Cost = ($30/mo.)*(12 mo.) = $360/year, j=1,2,3,\ldots,n
```


## 3. SUPERVISOR'S TRAVEL COST

The supervisor must travel to outlying offices once a month for meetings with inspectors. This cost is:

SUPR $_{j}=($ transportation cost $j)+\left(\right.$ wage cost per mile $\left.e_{j}\right)+$ (per diems ${ }_{j}$ ).
Salary is used as the measure of the worth of the supervisor's time and a speed of 55 mph is assumed.

WAGE $S P=\frac{\$ 16,544 / \text { year }}{(2080 \text { hours } / \text { year })^{\star}(55 \mathrm{miles} / \text { hour })}=\$ .1446 / \mathrm{mile}$

State car cost $=\$ .11 / \mathrm{mile}$

$$
\begin{aligned}
\text { SUPR }_{j}= & \left\{\left[\left(\$ .11 / \mathrm{mile}+\$ .1446 / \mathrm{mile}^{\star}\right)^{\star}\left(\text { Distance }_{j}^{*} \cdot 2\right)\right]+(\text { per diem }\right. \\
& \text { based on distance })\}^{\star} 12 \text { meetings. }
\end{aligned}
$$

4. FIXED COST ${ }_{j}$

$$
\begin{aligned}
F C_{j} & =\text { Office Space Cost }+ \text { Office Support Cost }+ \text { SUPR }_{j} \\
& =\$ 495+\$ 360+\text { SUPR }_{j}
\end{aligned}
$$

## APPENDIX 5

## COMPARISON OF MEANS*

Complaints/Home

mean	1977	1976	1975	1974	$\bar{X}=.724$
	. 952	. 775	. 603	. 564	
$\mathrm{T}_{\mathbf{i}}=\Sigma \mathrm{x}$	33.310	27.110	21.120	19.750	
$\sum x^{2}$	68.212	52.531	35.474	22.178	
$\mathrm{n}_{\mathbf{i}}=35$	$p=4$				
$\mathrm{n}=140$					

Total SS $=(68.212+52.531+35.474+22.178)-140(.724)^{2}=105.010$
SST $=\frac{33.310^{2}+27.110^{2}+21.120^{2}+19.750^{2}}{35}-140(.724)^{2}=3.205$
SSE = Total SS - SST $=101.806$
MSE $=\frac{\text { SSE }}{n_{1}+n_{2}+n_{3}+n_{4}-p}=\frac{\text { SSE }}{136}$
$=\quad .749$

MST $=\frac{\text { SST }}{p-1}=\frac{\text { SST }}{3}$
$=1.068$

HYPOTHESIS

$$
\begin{array}{ll}
H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4} & \nu_{1}=p-1=3 \\
H_{1}: \mu_{1} \neq \mu_{2} \neq \mu_{3} \neq \mu_{4} & \nu_{2}=n-p=136
\end{array}
$$

TEST

$$
\begin{aligned}
\text { Reject } H_{0} \text { if } F=\frac{M S T}{M S E}>F_{\alpha, \nu_{1}, \nu_{2}} & F_{.10,3,136}=2.08 \\
& F_{.05,3,136}=2.60 \\
& F_{.01,3,136}=3.78
\end{aligned}
$$

* Taken from Mendenhall [43] p. 330.

$$
F=\frac{M S T}{M S E}=1.427
$$

## CONCLUSION

$$
\text { Cannot reject }\left(H_{0} \text { : equal means) at } \alpha=.10, .05 \text {, or } .10\right.
$$



HYPOTHESIS

$$
\begin{array}{ll}
H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4} & \nu_{1}=p-1=3 \\
H_{1}: \mu_{1} \neq \mu_{2} \neq \mu_{3} \neq \mu_{4} & 2=n-p=136
\end{array}
$$

TEST

$$
\begin{array}{ll}
\text { Reject } H_{0} \text { if } F=\frac{M S T}{M S E}>F_{2, \nu_{1}, v_{2}} \quad \begin{aligned}
F .10,3,136 & =2.08 \\
& F .05,3,136
\end{aligned}=2.60 \\
& F .01,3,136
\end{array}
$$

$$
F=\frac{M S T}{M S E}=0.650
$$

## CONCLUSION

$$
\text { Cannot reject }\left(H_{0}: \text { equal means }\right) \text { at } \alpha=.10, .05 \text {, or } .01
$$

COMPARING VARIANCES*

Complaints/Home

	$\begin{gathered} \text { (1) } \\ 1977 \end{gathered}$	$\begin{gathered} \text { (2) } \\ 1976 \end{gathered}$	$\begin{gathered} \text { (3) } \\ 1975 \end{gathered}$	$\begin{gathered} 4 \\ \hline 1974 \end{gathered}$
mean	. 952	. 775	. 603	. 564
s	1.036	. 963	. 818	. 570
$s^{2}$	1.074	. 927	. 669	. 325


Year	F Value		
$(1,2)$	$F=1.074 / .927=1.159$		
$(1,3)$	$F=1.074 / .669=1.605$		
$(1,4)$	$F=1.074 / .325=3.305$		
$(2,3)$	$F=.927 / .669=1.386$		
$(2,4)$	$F=.927 / .325=2.852$		
$(3,4)$	$F=.669 / .325=2.058$	$\quad$	
:---			

HYPOTHESIS $\quad H_{0}: \sigma_{i}{ }^{2}=\sigma_{j}{ }^{2}, \quad i=1,2,3,4 \quad j=2,3,4, \quad i<j$

$$
H_{1}: \sigma_{i}^{2} \neq \sigma_{j}^{2}, \quad i=1,2,3,4 \quad j=2,3,4 \quad i<j
$$

TEST STATISTIC $F=\frac{S_{i}{ }^{2}}{S_{j}{ }^{2}}, \quad S_{i}{ }^{2}>S_{j}{ }^{2}$

REJECTION REGION
$F>F_{\alpha / 2}, 34,34$
F. $05,30,30=1.84$

## CONCLUSION

Cannot say with $90 \%$ confidence that these years have unequal variance:

$$
\begin{aligned}
& (1977 . \\
& (1976, \\
& (1974) \\
& (1975) \\
& \hline
\end{aligned}
$$

Can reject ( $H_{0}$ : equal variances) for these years:
(1977, 1976)
(1977, 1975)
(1976, 1975)

COMPARING VARIANCES

## COMPLAINTS

	1977	1976	1975	1974
m	6.943 6.029 4.857   $\mathrm{~s}^{2}$ 21.010 13.987 12.394   441.420 195.636 153.611 87.068			

Year F Value
$(1,2) \quad F=21.010^{2} / 13.987^{2}=441.420 / 195.636=2.256$
$(1,3) \quad F=21.010^{2} / 12.394^{2}=441.420 / 153.611=2.874 \quad n_{1}=n_{2}=n_{3}=n_{4}=35$
$(1,4) \quad F=21.010^{2} / 9.331^{2}=441.420 / 87.068=5.070$
$(2,3) \quad F=13.9872 / 12.394^{2}=195.636 / 153.611=1.274$
$(2,4) \quad F=13.987^{2} / 9.331^{2}=195.636 / 87.068=2.247$
$(3,4) \quad F=12.394^{2} / 9.331^{2}=153.611 / 87.068=1.764$

HYPOTHESIS

$$
H_{0}: \sigma_{i}^{2}=\sigma_{j}^{2}, \quad i=1,2,3,4 \quad j=2,3,4 \quad i<j
$$

$$
H_{1}: \sigma_{i}^{2} \neq \sigma_{j}^{2}, \quad i=1,2,3,4 \quad j=2,3,4 \quad i<j
$$

TEST STATISTICS $\quad F=\frac{S_{i}{ }^{2}}{S_{j}{ }^{2}}, \quad S_{i}{ }^{2}>S_{j}{ }^{2}$

REJECTION REGION $F>F_{\alpha / 2}, 34,34$

$$
F .05,30,30=1.84
$$

Can say with $90 \%$ confidence that these years have unequal variances:
(1977, 1976)
(1977, 1975)
(1977, 1974)
(1976, 1974)
Cannot reject ( $H_{0}$ : equal variances) for these years: (1976, 1975)
(1975, 1974)

APPENDIX 6
CONTINGENCY TABLE - COMPLAINTS*


* From Mendenhal1 [43], p. 288.


$$
\text { d.f. }=(r-1)(c-1)=(4-1)(35-1)=102
$$

Use $\alpha=.05$, reject null hypothesis, $H_{0}$ : cell probability $\left.\left(\hat{E}\left(n_{i j}\right)\right)=n_{i j}\right)$, all (i,j) ; that is, the two classifications are independent if the computed statistic $x^{2}>x^{2} 102, .95$
$=x^{2}{ }_{100, .95}=124.342$ $x^{2}{ }_{100, .90}=118.498$

Data does not present sufficient evidence to indicate that the proportion of complaints in a county varies from year to year. Pattern, by counties, of a level of complaints, cannot be refuted statistically.

$$
\begin{aligned}
& x^{2}=\sum_{i=1}^{4} \sum_{j=1}^{35} \frac{\left[n_{i j}-\hat{E}\left(n_{i j}\right)\right]^{2}}{} \begin{array}{l}
\hat{E}\left(n_{i j}\right)
\end{array} \begin{array}{l}
32.84309078 \\
30.80024717 \\
\\
\end{array} \\
& =113.8198975
\end{aligned}
$$

## CONTINGENCY TABLE - COMPLAINTS/HOME


$\hat{E}\left(n_{i j}\right)=\frac{r_{i} c_{j}}{n}:$

Year ${ }_{\text {i }}$	COUNTY $_{j}$																		
	B	B	C	C	C		C	C	C	D	D	G	G	H	H	J	J	J	K
1977	. 329	2.138	2.401	1.424	4.493		. 654	. 987	. 329	. 576	. 98	0	0	0	. 493	. 691		. 247	2.795
1976	. 268	1.740	1.954	1.159	9.40		. 533	. 803	. 268	. 468	. 803	0	0	0	. 401	. 562	0	. 201	2.275
1975	. 209	$1.355^{\circ}$	1.522	. 903	3.313		. 415	. 626	. 209	. 365	. 626	0	0	0	. 313	. 438	0	. 156	1.772
1974	. 95	1.267	1.423	. 844	4 . 292		. 388	. 585	. 195	. 341	. 585	0	0	0	. 292	. 409	0	. 146	1.657
Total	1	6.5	7.3	4.33	1.5		1.99	3	1	1.75	3	0	0		1.5	2.10	0	. 75	8.5
Year ${ }_{i}$	county $_{j}$																		
	L L	L	L	M	M	M	P	T	U	U	W	W	W	W	Y	M	P		Total
1977	0.700	1.315	1.052	. 4931	1.6610	01	1.398	2.138	. 263	. 493		. 424		. 95	. 549	2.236	3.09		33.310
1976	0.57	1.071	. 856.	. 4011	1.3520	01	1.138	1.74	. 214	. 401		. 159		. 587	. 447	1.82	2.51		27.110
1975	0.444	. 834	. 667.	. 3131.	1.0530	0	. 886	1.355	. 167	. 313	0	. 903		. 236	. 348	1.418	1.96		21.120
1974	0.415	. 78	. 624.	. 292	. 9850	0	. 829	1.267	. 156	. 292		. 844		. 156	. 326	1.326	1.83		19.750
Total	02.13	4	3.21	1.55	5.050	0	4.25	6.5	. 8	1.5		4.33		. 93	1.67	6.80	9.41		
$c_{j}$														.93	1.67	6.80	9.41		101.290

$$
x^{2}=\sum_{i=1}^{4} \sum_{j=1}^{35} \frac{\left[n_{i j}-\hat{E}\left(N_{i j}\right)\right]^{2}}{\hat{E}\left(n_{i j}\right)}=\begin{array}{r}
11.61892442 \\
9.64448972
\end{array}
$$

$$
\begin{array}{r}
9.81258588 \\
+6.75257751 \\
\hline 37.82857753
\end{array}
$$

Cannot reject $H_{0}$ : Two classifications are independent for

$$
\begin{aligned}
& x^{2}{ }_{100, .95}=124.342 \\
& x^{2}{ }_{100, .90}=118.498 .
\end{aligned}
$$

## APPENDIX 7

## APPROXIMATE CHI-SQUARE TEST FOR POISSON AND NORMAL MEANS*

NORMAL DISTRIBUTION:

HYPOTHESIS $\quad H_{0}:$ the distribution is normal
$H_{j}$ : the distribution is not normal
K = Four categories

$$
\gamma_{k-3}^{\prime}=\sum_{i=1}^{k} \frac{\left(x_{i}-n \hat{p}_{i}\right)^{2}}{n \hat{p}_{i}} \quad \text { d.f. }=k-3=1, \alpha=.05
$$

## REJECTION REGION



$$
S=\left[\frac{178.395-\frac{(101.290)^{2}}{140}}{140-1}\right]^{1 / 2}=.870
$$

From standard normal table, the four intervals on $Z$ meeting the .25 probability requirement are

$$
(-\infty,-.675),(-.675,0)(), .675),(.675,+\infty)
$$

* From Guenther [26], p. 316.

$$
Z=\frac{x-\mu}{\sigma} ; x=\sigma Z+\mu \approx S Z+\bar{X}
$$

Intervals on $X$ are:

$$
(-\infty, .134),(.134, .721),(.721,1.308),(1.308,+\infty)
$$

number of observations
$\begin{array}{lllll}\text { in interval } & 49 & 39 & 24 & 28\end{array}$

TEST STATISTIC

$$
Y_{i}=\frac{(49-35)^{2}}{35}+\frac{(39-35)^{2}}{35}+\frac{(24-35)^{2}}{35}+\frac{(28-35)^{2}}{35}=10.91
$$

CONCLUSION
Reject $H_{0}$ : distribution is normal at $\alpha=.05$
(can reject at $\left.\alpha=.005, x_{1}^{2} ; .995=7.88\right)$

POISSON DISTRIBUTION:

HYPOTHESIS

$$
\begin{aligned}
& H_{0}: p_{1}=p(0 ; \mu), p_{2}=p(1 ; \mu), \ldots, p_{k-1}=p(k-2 ; \mu), p_{k}=1-\sum_{i=1}^{k-1} p_{i} \\
& H_{1}: p^{\prime} \text { s are not given by poisson }
\end{aligned}
$$

## REJECTION REGION

$$
\begin{aligned}
& \text { Reject } H_{0} \text { if } Y_{n-2}^{\prime}>X_{138 ; .95}^{2}=124.3 \quad \alpha=.05 \\
& n=140 \text { observations, d.f. }=n-2=140-2=138
\end{aligned}
$$

Category	Number of observations
$0-1$	49
$1-2$	59
$2-3$	22
$3-4$	7
$4-5$	2
$5-+\infty$	1

For $\hat{p}_{\boldsymbol{j}}$ from cumulative Poisson distribution:

Category	$X_{\mathbf{i}}$	$\hat{p}_{\mathbf{i}}$	$\frac{\left(x_{\mathbf{i}}-n \hat{p}_{\mathbf{i}}\right)}{\hat{n p}_{\mathbf{i}}}$	
1	49	$.49658-0$	$=.49658$	69.521
2	59	$.84419-.49658=.34761$	48.665	6.057
3	22	$.96586-.84419=.12167$	17.034	1.448
4	7	$.99425-.96586=.02839$	3.975	2.302
5	2	$.99921-.99425=.00496$	.694	2.458
6	1	$1.0000-.99921=.00079$	.111	7.120
Total	140	1.0000	140.00	21.580

## TEST STATISTIC

$$
Y_{138}^{\prime}=21.580
$$

## CONCLUSION

Do not reject $H_{0}$ and conclude that Poisson is a reasonable model.

APPENDIX 8

LEAST SQUARES REGRESSION*

$$
\hat{\gamma}=(-104460.50)+53.0 X_{p}
$$

Complaints

Year	$\boldsymbol{i}$	$Y_{i}$	$X_{i}$	$X_{i}{ }^{2}$	$X_{i} Y_{i}$	$Y_{i}{ }^{2}$
1974	1	170	1974		335580	
1975	2	214	1975		422650	
1976	3	243	1976		480168	
1977	4	337	1977		666249	
	4					
	$\sum_{i=1}$	964	7902	15610406	1904667	247314

$$
\begin{aligned}
& \bar{X}=1975.50 \\
& \bar{Y}=241.00
\end{aligned}
$$

$$
n=4
$$

$$
\hat{Y}=(-2147.80)+1.10 X_{p}
$$

Year	$\mathbf{i}$	$Y_{i}$	$X_{i}$	$X_{i}{ }^{2}$	$X_{i} Y_{i}$	$Y_{i}{ }^{2}$
1974	1	28	1974		55272	
1975	2	19	1975		37525	
1976	3	24	1976		47424	
1977	4	30	1977		59310	
4	101	7902	15610406	199531	2621	

$$
\bar{X}=1975.50 \quad n=4
$$

* From Mendenhall [43], p. 254.

Prediction Interval

$$
\hat{Y} \pm t_{\alpha / 2} S \sqrt{1+\frac{1}{n}+\frac{\left(X_{p}-\bar{X}\right)^{2}}{S S X} ;} \begin{aligned}
t_{.025,2} & =4.303 \\
t_{.05,2} & =2.92 \\
\text { d.f. } & =n-2
\end{aligned}
$$

Coefficient
$\underset{\text { Determination }}{\text { of }} r^{2}=1-\frac{S S E}{S S_{Y}}$

$$
S S_{X}=\sum_{i=1}^{n} X_{i}{ }^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}
$$

$$
S S_{X Y}=\sum_{i=1}^{n} X_{i} Y_{i}-\frac{\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{i=1}^{n} Y_{i}\right)}{n}
$$

$n=4$

$$
S S_{Y}=\sum_{i=1}^{n} Y_{i}{ }^{2}-\frac{\left(\sum_{i=1}^{n} Y_{i}\right)^{2}}{n}
$$

$$
\begin{aligned}
& S S E=S S_{Y}-\hat{\beta}_{1} S S_{X Y} \\
& S^{2}=\frac{S S E}{n-2}
\end{aligned}
$$

	COMPLAINTS	CHOW
$S_{X}$	5.000	5.00
SS $_{Y}$	14990.00	70.750
SS $_{X Y}$	265.00	5.50
$S S E$	945.00	64.70
$S^{2}$	472.50	32.350
$S$	21.73	5.687

$$
\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{p}
$$

	COMPLAINTS	CHOW
$r^{2}$	$93.70 \%$	$8.55 \%$
Pred. Int.	$95 \%$	$95 \%$
1978	$373.50+147.89$	$28.00+38.70$
1979	$426.50+179.92$	$29.10+47.08$
1980	$479.50+215.33$	$30.20+56.34$
1981	$532.50+252.72$	$31.30+66.13$
1982	$585.50+291.31$	$32.40+76.22$
1983	$638.50+330.69$	$33.50+86.53$
1984	$691.50+370.61$	$34.60+96.97$

## APPENDIX 9

## THREE COMPLAINT LEVELS MODELLED

$\begin{gathered} \text { May ' } 76-\text { Apr ' } 77 \\ \text { Present- } \Sigma=337 \end{gathered}$		$\begin{aligned} & \text { May '75-Apr ' } 76 \\ & \text { Low- } \Sigma=243 \end{aligned}$	$\begin{gathered} \left(\text { May }{ }^{\prime} 74-\text { Apr }{ }^{\prime} 75\right)^{\star}(2.5) \\ \text { High } \Sigma=544 \end{gathered}$
Baker	1	1	1
Benton	2	9	
Clackamas	50	39	87
Clatsop	3	3	15
Columbia	2	0	0
Coos	2	5	7
Crook	0	1	3
Curry	1	0	0
Deschutes	2	1	5
Douglas	5	3	5
Gilliam	0	0	0
Grant	0	0	3
Harney	0	0	1
Hood River	2	0	0
Jackson	4	8	10
Jefferson	0	0	0
Josephine	2	1	0
Klamath	4	3	15
Lake	0	0	0
Lane	8	6	23
Lincoln	0	2	1
Linn	4	6	8
Malheur	1	0	0
Marion	42	30	40
Morrow	0	0	0
Polk	2	3	22
Tillamook	5	4	8
Umatilla	1	1	2
Union	2	1	1
Wallowa	0	0	0
Wasco	11	0	1
Washington	30	13	43
Yamhill	3	1	7
Multnomah	44	40	100
Portland	104	62	135

## APPENDIX 10

## Low Complaints

$$
\Sigma=243
$$

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	Facility Location Solution			Total Cost of Operation				Number of Inspectors			
1	31007	33	31757	1	268795	33	277489	1	15.604	33	16.163
2	35134	34	35957	2	273684	34	281689	2	15.661	34	16.163
3	33553	35	34390	3	318901	35	329272	3	15.604	35	16.163
4	37696	36	38590	,	323961	36	333472	4	15.661	36	16.163
5	40638	37	41353	5	278585	37	288448	5	15.909	37	16.547
6	45569	38	46153	6	286653	38	293248	6	16.124	38	16.547
7	44065	39	44865	7	329604	39	341382	7	15.909	39	16.547
8	49013	40	49665	8	338317	40	346182	8	16.124	40	16.547
9	27826	41	28466	9	265312	41	273909	9	15.372	41	15.925
10	31930	42	32666	10	269989	42	278109	10	15.414	42	15.925
11	29735	43	30441	11	314721	43	324976	11	15.372	43	15.925
12	33852	44	34641	12	319526	44	329176	12	15.414	44	15.925
13	36355	45	36963	13	273960	45	283428	13	15.600	45	16.213
14	41264	46	41763	14	281222	46	288228	14	15.762	46	16.213
15	38925	47	39597	15	324054	47	335359	15	15.600	47	16.213
16	43847	48	44397	16	331800	48	340159	16	15.762	48	16.213
17	31007	49	31757	17	220516	49	227480	17	12.384	49	12.828
18	35134	50	35957	18	225230	50	231680	18	12.429	50	12.828
19	33553	51	34390	19	260965	51	269260	19	12.384	51	12.828
20	37696	52	38580	20	265814	52	273460	20	12.429	52	12.828
21	40638	53	41353	21	229363	53	237250	21	12.626	53	13.133
22	45569	54	46153	22	236766	54	242050	22	12.797	54	13.133
23	44065	55	44855	23	270537	55	279944	23	12.626	55	13.133
24	49013	56	49665	24	278452	56	284744	24	12.797	56	13.133
25	27826	57	28466	25	217752	57	224639	25	12.200	57	12.639
26	31930	58	32666	26	222296	58	228839	26	12.234	58	12.639
27	29735	59	30441	27	257648	59	265851	27.	12.200	59	12.639
28	33852	60	34641	28	262294	60	270051	28	12.234	60	12.639
29	36355	61	36963	29	225693	61	233266	29	12.381	61	12.867
30	41264	62	41763.	30	232456	62	238066	30	12.509	62	12.867
31	38925	63	39597	31	266133	63	275164	31	12.381	63	12.867
32	43847	64	44397	32	273280	64	279964	32	12.509	64	12.867

Medium Complaints

$$
\Sigma=377
$$

Run No.	Facility Location Analysis			Total Cost of Operation				Number of Inspectors			
	33837	33	34333	1	291244	33	299577	1	16.988	33	17.530
2	33008	34	38533	2	296197	34	303777	2	17.048	34	17.530
3	36608	35	37162	3	345500	35	355458	3	16.988	35	17.530
4	40801	36	41362	4	350632	36	359658	4	17.048	36	17.530
5	43422	37	43870	5	300971	37	309292	5	17.290	37	17.846
6	48315	38	48691		306742	38	315298	6	17.352	38	17.914
7	47070	39	47599	7	356132	39	367531	7	17.290	39	17.914
8	51974	40	52399	8	362090	40	372331	8	17.352	40	17.914
9	30374	41	30797		287273	41	295572		16.723	41	17.263
10	34516	42	34997	10	292001	42	299772	10	16.768	42	17.263
11	32452	43	32919	11	340734	43	350652	11	16.723	43	17.263
12	36611	44	37119	12	345597	44	354852	12	16.768	44	17.263
13	38863	45	39194	13	295868	45	304104	13	16.949	45	17.500
14	43742	46	44055	14	301406	46	309853	14	16.996	46	17.551
15	41599	47	42000	15	350008	47	359894	15	16.949	47	17.500
16	46486	48	46837	16	355686	43	365798	16	16.996	48	17.551
17	33837	49	34333	17	238684	49	245339	17	13.482	49	13.913
18	38008	50	38533	18	243452	50	249539	18	13.530	50	13.913
19	36608	51	37162	19	282427	51	290372	19	13.482	51	13.913
20	40801	52	41362	20	287337	52	294572	20	13.530	52	13.913
21	43422	53	43870	21	247477	53	254077	21	13.722	53	14.163
22	48315	54	48691	22	253055	54	259871	22	13.771	54	14.218
23	47070	55	47599	23	291938	55	301019	23	13.722	55	14.218
24	51974	56	52399	24	297665	56	305819	24	13.771	56	14.218
25	30374	57	30797	25	235532	57	242160	25	13.272	57	13.701
26	34516	58	34997	26	240122	58	246360	26	13.308	58	13.701
27	32452	59	32919	27	278644	59	286558	27	13.272	59	13.701
28	36611	60	37119	28	283341	60	290758	28	13.308	60	13.701
29	38863	61	39194	29	243426	61	249960	29	13.452	61	13.889
30	43742	62	44055	30	248820	62	255550	30	13.489	62	13.929
31	41599	63	42000	31	287078	63	294921	31	13.452	63	13.889
32	46486	64	46837	32	292582	64	300634	32	13.489	64	13.929

High Complaints
$\Sigma=544$

Run No.	Facility Location Analysis			Total Cost of Operations				Number of Inspectors			
	35373	33	36871	1	332961	33	341753	1	19.745	33	20.278
2	39981	34	41568	2	339501	34	349259	2	19.863	34	20.458
3	38375	35	40013	3	395484	35	405874		19.745	35	20.278
4	42951	36	44688	4	402379	36	413921	4	19.863	36	20.458
5	44090	37	44825	5	341265	37	350462	5	20.001	37	20.594
6	49511	38	50770	6	347871	38	357597	5	20.070	38	20.677
7	47934	39	48729	7	405969	39	415713	7	20.070	39	20.594
8	53334	40	54721	8	411369	40	422917	8	20.070	40	20.677
9	31621	41	32945	9	329001	41	337795	9	19.481	41	20.014
10	36269	42	37669	10	335099	42	344626	10	19.569	42	20.149
11	33873	43	35301	11	390732	43	401124	11	19.481	43	20.014
12	38497	44	40009	12	397096	44	408361	12	19.569	44	20.149
13	39273	45	39945	13	336343	45	345496	13	19.673	45	20.251
14	44734	46	45832	14	342693	46	352141	14	19.724	46	20.313
15	42163	47	42873	15	398652	47	409538	15	19.673	47	20.251
16	47601	48	48795	16	405155	48	416369	16	19.724	48	20.313
17	35373	49	36871	17	271870	49	279014	17	15.670	49	16.093
18	39981	50	41568	18	278046	50	285963	18	15.764	50	16.236
19	38375	51	40013	19	322175	51	330587	19	15.670	51	16.093
20	42951	52	44688	20	328632	52	337965	20	15.764	52	16.236
21	44090	53	44825	21	279381	53	286923	21	15.874	53	16.345
22	49511	54	50770	22	285775	54	293622	22	15.928	54	16.410
23	47934	55	48729	23	331453	55	339250	23	15.928	55	16.345
24	53334	56	54721	24	336853	56	346146	24	15.928	56	16.410
25	31621	57	32945	25	268728	57	275872	25	15.461	57	15.884
26	36269	58	37669	26	274552	58	282286	26	15.531	58	15.991
27	33873	59	35301	27	318404	59	326817	27	15.461	59	15.884
28	38497	60	40009	28	324438	60	333552	28	15.531	60	15.991
29	39273	61	39945	29	275475	61	282839	29	15.614	61	15.072
30	44734	62	45832	30	281665	62	289291	30	15.654	62	16.122
31	42163	63	42873.	31	325609	63	334349	31	15.614	63	16.072
32	47601	64	48795	32	331922	64	340949	32	15.654	64	16.122

Factor levels for runs 1-64 at each level of complaints:

Run	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
CHOW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EFF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2
MPH	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	1
VISITS	1	1	1	1	2	2	2	2	1	1	1	1	2	2	2	2	1
WAGES	1	1	2	2	1	1	2	2	1	1	2	2	1	1	2	2	1
OPCOST	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1

$\begin{array}{llllllllllllllll}\text { Run } & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32\end{array}$

CHOW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EFF	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
MPH	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2
VISITS	1	1	1	2	2	2	2	1	1	1	1	2	2	2	2
WAGES	1	2	2	1	1	2	2	1	1	2	2	1	1	2	2
OPCOST	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2

$\begin{array}{lllllllllllllllll}\text { Run } & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48\end{array}$
 $\begin{array}{llllllllllllllllll}\text { EFF } & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ $\begin{array}{lllllllllllllllll}\mathrm{MPH} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2\end{array}$ $\begin{array}{lllllllllllllllll} \\ V I S I T S & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2\end{array}$ WAGES 1 $1 \begin{array}{lllllllllllllll} & 1 & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 2\end{array}$ OPCOST $1 \begin{array}{lllllllllllllll}1 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2\end{array}$
$\begin{array}{lllllllllllllllll}\text { Run } & 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 & 61 & 62 & 63 & 64\end{array}$ CHOW $242 \begin{array}{lllllllllllllll} & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2\end{array}$ EFF $2 \begin{array}{llllllllllllllll}2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2\end{array}$ $\begin{array}{lllllllllllllllll}M P H & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2\end{array}$ $\begin{array}{lllllllllllllllll}\text { VISITS } & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2\end{array}$ WAGES 1 $1 \begin{array}{llllllllllllllll} & 2 & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 2\end{array}$ OPCOST $1 \begin{array}{llllllllllllllll} & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2\end{array}$

	1 = Low Value	2 = High Value
CHOW = Changes of ownership	20	40
EFF = Efficiency rating factor	. 75	. 60
MPH = Travel Speed	60	45
VISITS $=$ Number of visits excluding complaint and CHOW visits	3	6
$\begin{aligned} \text { WAGES }= & \text { Salary levels for inspectors (I) } \\ & \text { and the supervisor }(S) \end{aligned}$	$\begin{aligned} & \$ 14,994 \\ & \$ 16,594 \end{aligned}$	$\begin{aligned} & \$ 16,493 \\ & \$ 18,198 \end{aligned}$
OPCOST = Fixed cost	\$ 600	\$1,200


BEST CASE - Run 25			WORST CASE - Run 40	
Facility Location Cost \$ 27,826			Facility Location Cost \$ 54,721	
Total Cost		\$217,752	Total Cost	\$422,917
No. of Inspectors		12.200	No. of Inspectors	20.677
Facilities Opened and (No. of Inspectors)			Facilities Opened and (No. of Inspectors)	
Astoria	(.346)		Astoria (.755)	
	(.373)		Baker	(.777)
Coos Bay	(.493)		Bend	(.620)
Eugene	(.902)		Coos Bay	(.761)
MedfordPendleton	(.879)		Eugene	(1.389)
	(.861)		Klamath Falls	(.428)
Portland Salem	(5.871)		Medford	(.902)
	(2.474)		Pendleton	(.502)
			Portland Salem	$\begin{aligned} & (10.678) \\ & (3.866) \end{aligned}$

## Best scan available. Original copy faded.

## APPENDIX 11

The Computer Program















[^0]:    ${ }^{3}$ Data is listed in Appendix 1

[^1]:    6 Found in Appendix 7.
    7 Calculation is found in Appendix 8.

[^2]:    9 Developed in Appendix 4.
    10 Developed in Appendix 3.
    11 Developed in Appendix 2.

[^3]:    ${ }^{3}$ Highest result with five facilities

[^4]:    15 Value is based on least squares calculation found in Appendix 8.
    16 Complaint data are listed in Appendix 9.

[^5]:    *1 = Facility Location Result $2=$ Total Cost $3=$ Number of Inspectors

