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I. INTRODUCTION

The Problem

Two hundred and eleven (211) nursing care facilities are located in

Oregon, with about 60% in the Willamette Valley and 40% at population

centers across the state. These are classified as Skilled Nursing

Facilities (SNF), Intermediate Care Facilities (ICF), and facilities

for the mentally retarded (SNF/MR and ICF/MR). The nursing facilities

are regulated through inspection by the State Health Division, Health

Facilities Licensing and Certification Section. The inspection group's

name describes its functions. About 80% of the Section's workload en-

tails Federal Medicare and Medicaid certification inspections, entailing

about 2000 reports per year. Annual inspections for state licensing,

plus investigations of complaints from nursing care clients and their

families constitute the remaining 20% of the Section's workload.

At present, all nursing homes, including hospital nursing units,

are served by one staff of inspectors centrally located in Portland.

Following a State Executive Department Administrative Analysis [14] of

the Health Facilities Section, a question arose: can the total cost of

inspections be reduced by locating inspectors at decentralized offices

across the state? This thesis tackles that question.

Model Formulation

The Oregon State Health Facilities Licensing and Certification

Section (HFLC) is charged with responsibility for inspecting nursing

homes across the state to insure that homes comply with state licensing
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and Federal certification requirements. Nursing facilities, including

facilities for the mentally retarded and hospital nursing care units,

are presently located at 77 Oregon locations as shown in Figure 1. The

distribution of homes changes little from year to year. Usually, three

to five homes are added or dropped from the total each year. Each home

requires several visits by an inspector each year, as outlined in Figure

2. Homes must be inspected for annual state licensing and qualification

for Federal Medicare and Medicaid payments. The Medicare certification

information satisfies the requirements of Medicaid, so it is reasonable

that the Federal inspections in each home should be made at the same

time. Provision is made in current Federal regulations to adjust the

two certification periods so that the two inspections are coterminous,

that is, the inspections fall due on the same date. Further, the state

and Federal inspections are complementary, utilizing the same survey

data, but requiring different write-ups. Hence, one survey visit is

utilized for both, and again, the Federal certification period may be

adjusted so that the State and Federal inspections are coterminous.

In essentially all cases, the inspector finds deficiences that

must be corrected. Previously, the inspector had to make a second

visit to cite and, if necessary, fine a home for a deficiency. A third

visit was made to check the deficiency correction. The 1977 Oregon

State Legislature changed the law so that a home may be cited and fined

on the first visit; the second visit is the follow-up visit. The state

requires the follow-up visit within 30 days of the original survey; the

Federal Government requires a follow-up within 60 days of the inspec-

tion.



Figure 1. Distribution of nursing facilities in Oregon



Demand Per
Facility

Number of
Visits

Duration Each
Visit (Days) Description

1 1 3 Original survey for State licensing and Federal Medicare and

Medicaid Certification; a sample of clients is interviewed,

homes are inspected, and facilities may be cited and fined

for deficiencies.

1 1 1
State Licensing follow-up to check corrections to deficiencies

under State regulations; must be within 30 days of original

survey.

1 1 1
Federal certification follow-up to check Medicare and Medicaid

deficiency corrections; must be within 60 days of original

survey.

1 1 1 MIPRT follow-up - review findings of Medical Independent

Professional Review Team and cite deficiencies which have not

been corrected.

0 - 4 2 1 Each complaint requires one investigation visit and one follow-

up visit. Facilities usually receive between zero and four

complaints per year; "bad" homes may be higher.

0 1
Changes of Ownership require repetition of the first four

visits:

1 3 Licensing and certification survey

1 1 State licensing follow-up

1 1 Federal certification follow-up

1 1 MIPRT follow-up
CHOW have varied between 19 and 30 total for the state in

recent years.

Figure 2. Required Annual Visits to Each Nursing Facility
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The inspector schedules the first licensing and certification

visit at his discretion, the visit is unannounced, in order to maintain

an element of surprise. Generally, the second and third visits then

fall near the end of the 30 and 60 periods during which homes correct

reported deficiencies. All visits must be completed before the end of

the one-year licensing for continued state licensing and 45 days before

the end of the period for renewed Federal Medicare and Medicaid certi-

fication. Approximately twenty of the 211 Oregon nursing care facilities

are state-licensed but choose to remain uncertified for Medicare and

Medicaid payments. In this analysis, it is assumed that all homes are

both licensed and certified.

At present, a follow-up visit is also required to review deficien-

cies found by a Medical Independent Professional Review Team - MIPRT -

from the State Division of Adult and Family Services (formerly Public

Welfare Division). A MIPR team visits each home once per year to

interview each client in the home and review that person's medical care.

Deficiencies which MIPRT notes can only be acted upon by the Health

Facilities Licensing and Certification Section, so HFLC conducts the

follow-up. This interaction between state agencies causes delay, ac-

cording to the State Executive Department report [14]. HFLC may assume

the total MIPRT function in the future; here it is assumed, as recom-

mended by the Executive Department [24], that HFLC conducts only the

follow-up.

Beyond these required annual inspection visits, inspectors' time

is required to service demands which occur more randomly. Complaints

occur that require investigation, usually followed by a citation for a
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deficiency and a follow-up visit to check on the correction. Changes of

ownership (CHOW) require that a home be relicensed and recertified under

the operation of the facility's new management.

Infrequently, a home is decertified because of deficiencies. This

process requires several visits by the inspector, often accompanied by

the inspector's supervisor. The inspector must file reports and lengthy

correspondence, and perhaps meet with the HFLC legal counsel, as facil-

ities often initiate lawsuits to maintain their certification. Decerti-

fication is very rare, and is excluded in our study.

Inspectors are occasionally called upon for consultation visits by

homes requiring information. These short visits are usually scheduled

along with other visits in the area, and are here viewed to be included

in the demand data for licensing and certification.

The inspector's time is taken up with travelling, on-site visits,

meetings, and also with report writing. Fourteen hours are budgeted

to write a Medicare/Medicaid report to the Federal Government following

each certification visit; state licensing requires no report beyond the

survey form completed during the visit. Follow-up and complaint visits

generate additional paperwork.

Costs of inspection activities fit well into fixed, variable, and

step cost categories. The inspector's office location generates a

fixed cost. The inspector's salary is a fixed cost on an annual basis,

or variable on a per-hour basis. Transportation cost is variable,

based on mileage and cost of an inspector's time. Step costs consist

of the per diem paid for meals and lodging when an inspector or the

supervisor is away from home base. If reasonable cost figures can be
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developed, then a mathematical model can be used to express total cost

of operating from some number of optimally located HFLC offices. The

optimal plan can be compared with the present single-office plan to

identify any potential cost savings to the State government and, ulti-

mately, to Oregon taxpayers.

Several factors must be considered in the location analysis. De-

mand must be satisfied to insure that nursing home clients receive prop-

er care. Travel expenses and the costs of operating an additional HFLC

office must be determined. The required number of inspectors must be

estimated. The cost implications of these factors are shown in Figure

3. As the number of offices increases, the travel cost decreases and

the fixed office cost increases. Total cost is the sum of the fixed and

variable cost functions, each of which includes step cost elements. It

can be seen that in order to minimize cost, we must analyze the trade

off between fixed office costs and variable transportation costs.

Search for a Solution Algorithm

The decentralized inspection office location problem fits well into

the category of problems known as discrete multi-facility plant (ware-

house) location. Some characteristics of the problem, however, are

more appropriately classified by the so-called multi-terminal problem

found in vehicle routing problem (VRP) literature. Both groups of

literature are related to the problem at hand. The discrete multi-

facility plant location model is discussed first.
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Total cost

Number of offices opened

Figure 3. Relationship of Multi-Office Location Costs
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II. DISCRETE MULTI-FACILITY PLANT LOCATION LITERATURE SURVEY

Problems which can be modelled in discrete multi-facility plant

location algorithms are characterized by a known set of customer demands

which must be satisfied by a least-cost geographic arrangement of serv-

ice facilities. Common problems include the location of warehouses in

a distribution system and the location of plants in a multi-plant pro-

duction system. Discreteness of the problem resides in the requirement

that service facilities must be located at points taken from a list of

candidate sites. Given the customer demands and candidate server sites,

we wish to find both the number and location of service facilities, and

the size or capacity of each that minimizes the total cost.

Small multi-facility problems can be solved by inspection. With

increasing size, the computational burden of the problem - a combina-

tional one increases swiftly. Two principal techniques are available

to solve moderate to large-sized problems: heuristics and integer

programming (IP).

Heuristics

Heuristic solutions employ rules or guidelines to find a good, but

not necessarily optimal, solution. Kuehn and Hamburger [33] developed

a heuristic solution to the location problem about fifteen years ago.

Their program starts with no warehouses and locates warehouses one by

one until any additional warehouse increases total cost. It then

enters a "bump and shift" routine that computes the savings that would

result from dropping or relocating individual warehouses. The authors
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ran a 50 customer, 24 warehouse problem in two minutes, 30 seconds on a

rather slow IBM 650 computer.
1 Lovro [38] notes that their run times

appear to increase with the number of warehouses times the number of

customers.

Feldman, Lehrer and Ray [15] in 1966 extended the Kuehn and

Hamburger algorithm to handle a concave cost function, Fi, the fixed

annual cost of operating a warehouse. Feldman, et. al., modelled Fi as

being proportional to the size of the warehouse, while Kuehn and Ham-

burger employed a constant fixed cost of warehouse operation. The

Feldman heuristic starts with a full list of warehouses, and drops ware-

houses from the list to produce cost savings. The authors found that

their solutions were as good as Kuehn and Hamburger's, with run times

on an IBM 7094 averaging less than one minute for the 50 customer, 24

warehouse problem.
2

Ross and Soland [48] have recently developed a heuristic based on

the generalized assignment problem. They found in dealing with the

uncapacitated plant location problem that their procedure was less

efficient than other existing procedures because it failed to capitalize

on the problem's special structure. The authors suggest that further

specialization of their heuristic is necessary in order to efficiently

solve the problem.

Heuristics avoid two problems inherent in integer programming sol-

utions: large computer memory requirements and long computer processing

1 Kuehn and Hamburger do not identify the computer language used.

2 Computer run times should not be taken as a strict measure of pro-

gram efficiency; different machines vary widely in computing speed.



TABLE I. SOLUTION TECHNIQUES INVESTIGATED

Discrete Multi-Facility Plant Location Technique

Heuristics

Kuehn and Hamburger

(1). 9)
Feldman, Lehrer and Ray

(p. 10)

Ross and Soland
(p. 10)

Exact Solutions

Cutting
Planes

Bender's
Decomposition

Group
Theoretic Enumeration

Gomory (p.19)

Bowman and Nemhauser

(p. 21)

Spielburg
(p. 24)
Ellwein and
Gray (p. 24)

Shapiro (p.22)
Wolsey (p.22)

Balas (p. 23)
Land and Doig
(p. 23)
Dakin (p. 23)

Tomlin (p. 23)

Gepoffrion
(. 23)
Effroymson and
Ray (pp. 23,26)
Khumawala
pp. 23, 39, 41)

Gorry and Shapiro
Rardin and Unger (p.

CF.
24)

Spiel burg
(pp. 24, 40)
Ellwein and Gray
(p 24)
Akinc (p.39)
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Vehicle Routing Problem

Heuristics Exact Solutions

Wren and Holliday (p. 34) Svestka and Huckfeldt (p. 33)

Gillett and Johnson (p. 35) Golden, Magnanti and Nguyen (p. 34)

Russel (p. 35)
Chistofides and Eilon (p. 33)

Tillman (p. 35)

Golden, Magnanti and Nguyen

(p. 35)

Lin (p. 33)

Lin and Kernigham (p. 33)

Clarke and Wright (p. 35)

Dantzig and Ramser (p. 34)

Little, Murty, Sweeney, and

Karel (p. 33)
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times. Traditionally, heuristics were the only practical tool for

solving large problems. The first generation of computers ran ten to

twenty times slower than the present generation machines, and limited

memory was often a restriction on problem size. Larger, faster comput-

ers and the development of efficient integer programming formulations

of the multi-facility location problem have made IP an attractive solu-

tion technique for many problems of a useful size. As McGinnis notes

in a recent survey:

"With advances in computer technology and the state of the

art in integer programming, many previously intractable

problems are now being solved." (McGinnis, [41], p. 11)

IP Principles

While heuristic solutions are approximate, IP yields exact solu-

tions that optimize total cost. An IP can be described as a linear

program (LP) in which all coefficients X..
ij

in the objective function

are constrained to take on integer values. A mixed integer program

(MIP)requiresthat.somesubsetof.theX..1J be integers. The facilities

location problem is appropriately modelled by an MIP in which the inte-

ger subset of variables is constrained to values 0 and 1 to denote,

respectively, a warehouse closed or opened at a prospective site. We

shall denote the integer variables Y. as a Y vector, corresponding to

j possible office sites Y.. The problem is stated most simply as

Problem "P
o
."

m n

Problem P
o

: minimize E E C..X.. + E f.Y.
.

i=1 j=1 J1

(1)
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n

s.t. z X.. = D. i = 1, 2, 3, ..., m (2)

13

E XIJ.. 5 Q.Y. j = 1, 2, 3, ..., n (3)
J J

>X13 .. 0 (4)

Y.
J

= 0, 1 (5)

where: m = number of customers

n = number of possible plants (candidate office sites)

X..
13

= fraction of demand of customer i which is satisfied by

a plant located at site j

Y = {
1 if a plant is located at site j

.

0 otherwise

C. = cost of supplying the entire demand of customer i from

a plant located a site j

f. - fixed cost resulting from locating a plant at site j

Qj = capacity of candidate site j

D. = customer i demand
3

The first set of constraints (Equation 2) requires that each de-

mand be satisfied while the second set of constraints (Equation 3) puts

capacity constaints on the candidate facility sites. The capacity con-

straints, Qi, can be dropped if there are no capacity restrictions or

made arbitrarily large and then tightened to anlyze the effect of im-

posing such restrictions. The first term of the objective function

summarizes all variable costs (VC); the second term collects all fixed

costs (FC) associated with opening a plant site. The model can be

viewed as a trade off between FC and VC.
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Existing IP techniques fall into four categories: enumeration,

Bender's Decomposition, cutting planes, and group theory. All tech-

niques for solving the IP formulation use three basic strategies:

separation, relaxation, and fathoming. These procedures provide a

framework for study of the various solution algorithms.

Separation

In most algorithms, the first step is to make a reasonable attempt

to solve Problem P. If, in the result, all integer variables, Y., are

not integer-valued, Po is separated into several subproblems, called

descendents, each of which constrains one Y. to each of the integer

values it may assume. In Problem P
o'

two subproblems are formed, with

a particular Y. set equal to 0 and 1. This initializes a list of sub-

problems or candidate problems (CP). One CP is selected from the list

and its solution is attempted. If it can be solved, a new problem is

selected from the candidate list and its solution is attempted; other-

wise, its descendents are separated and added to the candidate list.

This separation procedure continues until the candidate list is exhaus-

ted. If no CP is feasible, then Po is infeasible. The best solution

at any point is the lowest cost solution that possesses an all-integer

Y vector. The final such minimum cost solution must be the optimum

solution of P
o

, provided that degeneracy in any separation of a CP is

limited by only one descendent of the separation being feasible.

Relaxation

Any IP problem can be relmi,d by loosening or dropping any of its
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constraints. The only restriction on the relaxed problem is that its

set of feasible solutions falls within the feasible solution space of

the original Problem Po. Dropping the integer constraints on the Y

vector is a relaxation of P
o

. Call the relaxed problem P
r

. According

to the solution space restriction, if Pr has no feasible solutions, then

neither has P. The minimum P
o
objective function must be greater than

or equal to the Pr minimum, and if the Pr result is feasible in Po, then

it must be an optimum solution to Po. Regrettably, the objectives of

finding a Pr that is easy to solve, and one whose solution satisfies Po,

conflict. As we make P
r
easier to solve, in general, the gap between

P
r
and P

o
grows larger.

Fathoming

The separation procedure yields a combinatorial number of candi-

date problems which must be evaluated or fathomed. It is desired to

find whether or not the feasible solution space of each CP may possibly

contain an optimal solution of Po. If not, the CP can be eliminated

from further study; if so, one goes on to try and find the CP optimum.

If it can be determined that the CP cannot yield a feasible solution

better than that found so far, then again the CP can be dropped from

further consideration. The best solution found at any point that

satisfies the original Problem Po is called the incumbent.

Suppose a particular CP has been relaxed to CPr. If CPr has no

feasible solution, then the same is true of CP. It is said that CP has

been fathomed; it can be eliminated from further investigation. If

CP
r

has some feasible solution, CP
r

, and that solution is greater than
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the current incumbent, then CP is again fathomed, and can be eliminated.

Otherwise, the relaxed problem optimum CPr must be further evaluated.

If CPr is feasible in P
o

, it becomes the new incumbent. Alternately,

if CPr is not feasible in P
o

, it must be separated and its descendents

added to the CP list, or one must persist in trying to fathom CP by

choosing a new relaxation, CPr .

Geoffrion and Marsten [19] summarize this procedure for fathoming,

or completely evaluating, a CP in terms of three fathoming criteria (FC).

A CP is fathomed if any one of the criteria is satisfied. F(P) denotes

the solution set of problem P. Z* is the current incumbent. The fath-

oming criteria are:

(FC1) An analysis of CPr reveals that CP has no feasible

solution; e.g., F(CPr) = 0;

(FC2) An analysis of CPr reveals that CP has no feasible

solution better than the incumbent; e.g., CP
r

Z*;

(FC3) An analysis of CPr reveals an optimal solution of CP;

e.g., an optimal solution of CPr is found which happens

to be feasible in CP.

Separation, relaxation, and fathoming form a circuitous procedure,

as shown in Figure 4. Decision rules within the procedure have a

marked effect on the speed with which the optimal result is found. It

is desirable to quickly obtain a good solution to Po. The first incumbent

will then lead to elimination of, it is hoped, many CP's by FC2. The

candidate selection rule, also, is important in efficiently eliminating

CP by FC2, and also in reaching the optimal result for Po by FC3. Two

candidate selection rules are used: Last-In-First-Out (LIFO) and
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C START :) (: STOP :)

Step 2Step 1 v

INITIALIZE
CANDIDATE

LIST

Step 3 Step 4

SELECT
CANDIDATE
PROGRAM

Yes

ATTEMPT TO
FATHOM

SEPARATE
CANDIDATE
PROBLEM

Figure 4. General form of enumerative algorithms.
(from [41], p. 13)
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Priority. Under the LIFO rule, the last problem to be added to the candi-

date list is selected. Under the Priority rule, an index is assigned

to each CP that determines the order of CP selection. An example of a

priority index is the lower bound (LB) on the optimal solution of a CP.

This is the value CP
r

, not feasible in P
o

, which is set aside in the

fathoming procedure. The need to store the unfathomed (CPr ) values in

memory increases the information storage requirements of Priority over

LIFO.

IP Algorithms

The three strategies of separation, relaxation, and fathoming are,

in general, standard procedures in all IP algorithms. Current IP algo-

rithms can be segregated into four categories that differ principally

in the approach used to fathom the candidate problems.

Cutting-Plane Algorithms

Historically, cutting-planes was the first approach used in solv-

ing the IP formulation. First used by Gomory [22], the approach re-

laxes all integrality constraints and solves the associated LP to

obtain an initial feasible solution, CPr .
FC1 and FC3 are then ap-

plied until termination. The separation routine resulting from FC2 is

never used. Rather, each time CPr passes FC1 and FC3 without being

fathomed, the problem is tightened by adding a linear constraint, or

"cutting plane" (see Figure 5). The linear program to be solved at

the n
th execution of CP

r
,
consists of the original LP with all inte-

grality constraints dropped and n-1 linear constraints added.
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Feasible Solution Space for the relaxed

problem linear program

(

Cutting-planes restricting the FSS to

feasible integer solutions

0 Feasible integer solutions

Figure 5. Illustration of Gomory Cutting-Planes



21

Each new cut must correctly tighten the previous relaxation, yet

still yield a valid relaxation of the CP. That is, a portion of the

feasible solution space of a current LP must be eliminated without

lopping off any feasible integer solutions of the original LP. Several

researchers besides Gomory have developed methods to do this. One ex-

ample is Bowman and Nemhauser [5].

Bender's Decomposition

In certain integer programs, and MIP problems including the ware-

house location problem Po, fixing the values of the integer-valued Y

vector results in a special problem structure for the remaining contin-

uous variables Xij. For any feasible solution containing an all inte-

ger-valued Y vector, the remaining optimization problem is an LP net-

work optimization as Wagner [63] points out.

Bender's Decomposition assigns feasible values to the discrete

variables Yj, j = 1, 2, 3, ..., n; in the warehouse location case,

these are binary assignments of 0 or 1. The remaining LP is then

solved, and the entire discrete/continuous solution (the first incumb-

ent) is recorded. The solution is modified by a system of linear

restrictions on its integer-valued variables. If untested feasible

integer Y vector values are found to still exist in the feasible solu-

tion space, one (or more) Y assumes one (or more) untested integer

value(s) to form a new feasible Y vector solution. The remaining con-

tinous X
ij

variables are again included in the solution of the linear

program, and the complete solution is compared with the incumbent and

replaces it if the objective function value is lower. This process
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continues until all the Y vector alternatives have been explored. A

branch and bound process is often used to keep track of the search

process.

Group Theoretic Approach

This technique solves integer programs by exploiting the so-called

group theoretic properties of the problem. The group theoretic approach

was initiated by Gomory and extended by Shapiro [51], [52]. The pro-

cedure has been applied almost exclusively to the pure integer program-

ming formulation, that is, the MIP without any continuous variables X
ij

.

Wolsey [65] applied the Group Theory technique to MIP in 1971 to solve

a small problem.

In general terms, the group theoretic approach forms the dual of

the linear program relaxation of Problem Po. This dual relaxation is

then tightened by adding constraints on the integer variables. The

feasible solution space is narrowed to include only feasible integer

solutions from which the optimum is then selected.

Enumerative Algorithms

Enumerative algorithms encompass
those procedures which use im-

plicit enumeration or branch and bound (B & B) to methodically search

the set of all possible integer solutions. B & B algorithms use var-

ious strategies to
"prune" from the B & B "tree" all CP which cannot

lead to an optimal result. In B & B, when a problem is separated into

descendent subproblems, each new CP becomes a branch off of the problem

node. A tree is formed, as shown in Figure 8 (p. 43), since each Y
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vector value is represented by a path from the original problem node -

the root on the left - to the final branch node at which the Y vector

value, or CP, is fathomed. A branch is bounded when, at some node in

the branch, the objective function value exceeds the present least up-

per bound obtained from some other branch. The branch is then pruned

or eliminated from further investigation under FC2.

Enumerative algorithms fall into two general categories resulting

from early work in two separate areas. The first, originally developed

in this country by Balas [2], applies only to all-integer problems.

Such algorithms fathom candidate problems using logical implications

found within the problem constraints. The application of these proced-

ures has been limited, according to Geoffrion and Marsten [19] by com-

puting times that grow exponentially with the number of variables.

A second category, pioneered by Land and Doig [34], bases the

fathoming test on the linear programming relaxation of Po. This pro-

cedure has lead to several efficient computer programs for mixed as

well as pure integer programs,
including Dakin [10], Tomlin [61],

Geoffrion [18], and the B & B procedure of Efroymson and Ray [12]

subsequently modified by Khumawala [30].

Overview of IP Model Formulations

Of the four categories of integer programming techniques delineated

here, the bulk of development work has been in enumerative algorithms.

This was pointed out by Geoffrion and Marsten in their 1972 survey [19],

and again in 1977 by McGinnis [41]. Computer program efficiency is very

important in solving problems of a useful size, as the model is combin-
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atorial. The early cutting-plane algorithms showed highly irregular

computational performance; McGinnis contends that this discouraged

their development. Geoffrion and Marsten suggest a method for using

the cutting-plane approach to fathom candidate problems in an enumera-

tive algorithm. This has not been applied in the literature. Gorry

and Shapiro [23] outlined a similar strategy of combining enumeration

with a group theory approach.

Rardin and Unger [46] used a group theoretic approach to develop

tight bounds on an optimal solution in the branch and bound procedure.

After solving CPr to obtain CPr as the lower bound on the optimal

result, they attempted to improve the LB using group theory.

Bender's inequalities have found application as a fathoming pro-

cedure in enumerative algorithms by Spielburg [54] and Ellwein and

Gray [13], though neither appears to be as efficient as the simplified

procedure used by Khumawala [30] (see Table II).

As noted previously, the bulk of development of exact IP solution

techniques to solve the discrete multi-facility location problem has

centered around enumeration technqiues. The special structure of Po

lends itself well to implicit enumeration or B & B strategies. McGinnis

states:

... problem (P ) has been a popular subject for study,

primarily becaus8 it has a structure to which general

purpose algorithms may readily be adapted." (McGinnis,[41], p. 12)

This special structure can be exploited by rearranging the objec-

tive function:
n n m

Problem P
1

minimize { E f.Y. + minimum E E C..X..} (6)

j
j=1

j=1 i=1



TABLE II. COMPUTATIONAL RESULTS FOR STANDARD PROBLEMS (CPU TIMES IN SECONDS).

Capacities Qk 5000 15000 Uncapacitated

Fixed Costs fk 7.5 12.5 17.5 25 7.5 12.5 17.5 25 7.5 12.5 17.5 25

*(Open Init./Open Opt.) (11/12) (11/12) (11/12) (11/12) (9/11) (7/9) (3/7) (3/5) (9/11) (7/9) (3/5) (3/4)

Sa [50] 90.6 108.0 96.0 87.6 94.2 457.2 900+

Soland [53] 38.7 5.8 4.2 - 271.3

Akinc [1] 10.21 9.15 9.26 9.58 0.23 0.43 38.65 34.39 47.5 0.44 0.30 0.15

Ellwein & Gray [13] - 88.8 92.4 127.8 - - 15.0 63.0

Buffin [6] - 27.0 25.0 - 87.0 - 43.8 28.2

;,:cGinnis [40] 2.1 2.5 2.8 3.5 - -

16x50 problems

(Open Init./Open Opt.) (11/17) - - (10/15) (6/11) - (10/15) (6/11) (4/8) (2/4)

Khumawala [30]
1.50 1.36 1.66 0.85

Akinc [1] 0.23 120+ 120+ 120+ 0.75 7.75 120+ 120+ 0.68 1.65 1.34 0.46

Ellwein & Gray [13] -
196.2

Buffin [6] - - - - 123.0 - - -

25x50 problems

+ : time limit exceeded
* :

refers to the number of sites fixed open initially by

the L- andri-simplifications discussed in Chapter V,

Section 3

Table is from McGinnis [41], p. 16.
IN)
CJ1
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s.t. (5) s.t. (2), (3), (4)

The inner minimization can be solved as a transportation problem

if the capacity constraints (3) hold, or, if not, by assigning each

demand to its least cost source and solving n one-row optimizations.

This partitioning is then used to solve Po by implicity enumeration,

as in Balas [3]. Frequently, a B & B procedure is used to keep track of

subproblems which have been solved, until all Y vector values have been

treated.

Efroymson and Ray [12] exploited the structure of the problem to

obtain an efficient B & B optimization procedure. The authors relaxed

the integer constraints on the Ys5 (Equation 5) to

0 < <Y 1.
(7)

Their 1966 paper noted that, with this change, the constraints (Equation

3) would hold as equalities in the optimum solution. Therefore, the

integer Y. were eliminated from the objective function to form the

relaxed problem:
m n f.

Problem P2: minimize E 2: [C.. + ] X.. (8)

1.1 j=1
ij Q 13

s.t. E Xii Qi (9)

.1=1

n

E X.. = D. i = 1, 2, 3, ..., m (2)

j=1

X.. z 0 (4)

0 < Y. < 1
(7)
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Both the implicit enumeration (Equation 6) and relaxed (Equation

8) problems have a transporation problem structure. Thus, procedures

more efficient than a general IP may be used to enumerate and solve

candidate problems.

Limitation of Discrete Multi-Facility Algorithms for the HFLC Analysis

The most suitable technique for modelling the HFLC facility location

problem is the discrete multi-facility formulation. Various problem

characteristics support this. First, the relevant costs of the HFLC

problem fit well into categories of variable cost based on mileage and

fixed cost attributable to opening an inspection office. Second, the

objective function of minimized cost of HFLC operations matches the

model objective function, with its trade off between variable cost of

transportation and added fixed cost of facility location. Third, the

number of inspectors located at each office location should be uncon-

strained, and the present office in Portland should have no particular

advantage or weight over the other possible locations. The model en-

compasses these assumptions.

HFLC office site selection requires that certain cities be denoted

as possible office locations; correspondingly, the model locates ware-

houses at given (discrete) locations. Finally, efficient optimizing

procedures exist for solving the discrete location model.

These characteristics all support selection of a discrete multi-

facility location algorithm to model the HFLC problem. The fit is not

perfect, however. All such multi-facility algorithms are modelled

after a problem in which the distance function to be minimized is the
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total of straight line distances from each warehouse to each customer.

In the HFLC case, this distance would be the Euclidean path from an in-

spection office to each of the cities served by the office (see Figure

6a). This travel pattern assumes that an inspector makes a single

visit to a home and then returns to the office. This is a valid as-

sumption for optimal location of facilities, as the random nature of

demands widely spaced in time will result in most trips following the

office-to-facility-and-back round trip. Figure 6b illustrates this for

a small randomly generated problem in which inspectors visit more than

one facility on a single trip. Interestingly, in the absence of data

on the interaction between facilities, an exact multi-facility algo-

rithm now yields an approximate best-guess result if it is possible

to visit more than one demand location on a single trip.

The total cost, however, for centralized and decentralized plans

reflect a bias in the following manner. With the inspection office

located in Portland, inspectors frequently travel long distances to

nursing facilities, and are lodged for one or more nights at the dis-

tant location. Inspectors fill out travel proposals for overnight

lodging. In reviewing their agendas for a three month period in 1976,

it was noted that inspectors usually stayed overnight if one way dist-

ance to the facility was greater than 60 miles. Forty-seven cities,

or 62% of Oregon cities served are more than 60 miles from Portland.

A lodging per diem is paid if the inspector is more than 50 miles from

home. With travel over long distances required to many Oregon cities,

inspectors will often schedule several days worth of work in the

general area visited. In essenco, they form tours. Often the tour is



6 visits

Figure 6a. Travel pattern under discrete multi-facility location

with six visits required to each demand site.

6 visits

Demand locations 1-5

() Number of trips

Figure 6b. Travel patterns with tours, for a set of randomly

generated tours with six visits required to demand

sites.
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formed by travelling to a particular facility, and scheduling visits

to other nursing homes in the area on the return trip if time permits.

It would be expected that inspectors return home on weekends, so tours

would be a maximum of one week in length. This occasionally is not

true, with inspectors remaining lodged at a distant city over a weekend.

Tour building is not a general rule, either. An inspector will often

travel more than 60 miles, conduct a short visit, and return. Even when

visiting a facility at a long distance, inspectors will return after a

visit because of meetings or a report deadline.
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III. VEHICLE ROUTING PROBLEM LITERATURE SURVEY

A problem of n demand centers and m possible supply points can be

modelled as a multiple terminal delivery problem. Formulation for this

problem follows the physical model of a vehicle routing problem (VRP)

in which several trucks are
dispatched from m depots to supply single

demands of n customers. The routing models with fixed depots are

constrained by fleet, delivery point, and route structure restrictions.

Travelling Salesman Problem

The vehicle routing problem is one of several variants and exten-

sions of the ubiquitous Travelling Salesman problem. The problem has

received much attention, as chronicalled by Bellmore and Nemhauser [4].

The Travelling Salesman problem can be formulated as an integer program

as follows, with integer variables X
ij

valued:

=
1 if the salesman goes from city i to city j

Xij
{

i0 if otherwise

Then if c
ij

denotes the cost of travel or distance between city i

and city j, the objective function is:

m n

minimize Z= E E c.. X.

1=1 j=1 1Xi J

(10)

The following 2n constraints insure that each city will be includ-

ed in the tour once and only once:

E X.. = 1 j = 1, 2, 3, ..., n
(11)

i=1

n

E X. = 1 j = 1, 2, 3, ..., n
(12)
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In the travelling salesman problem, the salesman must return to

the depot from which the route originated. These constraints do not

eliminate the possibility that a route will end somewhere other than

the central depot. Such a tour through a subset of the n cities is

termed a subtour. Constraints must be added to eliminate all subtours

of length (n-1) or less. The following (n-1)
2

- (n-1) constraints are

added:

Y. - Y. + nX.. < n-1 i = 2, 3, ..., n
j= 2, 3, ..., n

(13)

where (n-1) additional variables (Yj, j = 2, 3, ..., n) are added.

These constraints exclude subtours by the following argument. Any sol-

ution containing a subtour must have at least two subtours, since each

city must be visited once, by the constraints (11) and (12). Therefore,

a subtour always exists which does not contain some city s. Suppose

that such a subtour of length K exists, K (n-1), with K variables Xij

equal to one. Adding up the K constraints from (13) for these K vari-

ables yields the inequality

Kn s K(n-1)

which is false for all K > 0.

The constraints in (13) do not eliminate any feasible tours, as

shown by Cooper and Steinburg [9]. Suppose a feasible tour exists in

which city i is the mi-th visited, i = 1, 2, 3, ..., n, and Yi = mi,

i = 1, 2, 3, ..., n. If X..
1J

= 1 in this tour, city j is visited immedi-

atelyaftercityi,sothatym.+1 and constraint (13) is satis-

fied for X
ij

since

Y. - Y + nK = m. - (m. + 1) + n (1) = n 1.

1 j ij 1 1
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If
1J 1Jin this tour, (13) is also satisfied for X.., since

(Y. - Y.) is at most equal to (n-1). The largest Y. is n; the smallest
1 J 1

is one.

ThelPiravellingSalesmanformulationhasn2variables..,(n-1)

variables Y., and a total of n
2

- n + 2 constraints. Other approaches,

both heuristic and exact, include Lin [35], Lin and Kernighan [36],

Christofides and Eilon [7], and Little [37].

The Travelling Salesman problem is a vehicle routing problem with

one depot, and one vehicle or server whose capacity meets or exceeds

total demand. The model can be extended to several vehicles, several

depots, different vehicle capacities, and restrictions on route length.

Multiple Travelling Salesman Problem

The Multiple Travelling Salesman Problem (MTSP) accounts for more

than one vehicle (salesman). All salesmen report to one central depot.

The objective is to visit each demand point exactly once by one of m

salesmen, so that total demand is satisfied and total distance travel-

led by all m salesmen is minimized. There are no capacity or route

length restrictions; that is, each salesman has sufficient capacity to

satisfy total demand. Svestka and Huckfeldt [55] solved the problem

exactly, using a B & B procedure, with up to 60 demand locations.

Vehicle Dispatching Problem

The direct extension of the MTSP again deals with a set of m de-

livery routes terminating at one central depot. Each demand point has

a known demand requirement that is satisfied by one visit of a salesman.
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The problem adds capacity and maximum route time constraints to the

tours. The problem was first considered by Dantzig and Ramser [11].

Multi-Depot Vehicle Routing Problem

The vehicle dispatch problem can be altered slightly to allow

multiple depots. Again, a single visit satisfies all demand of each

location; demand at any location does not exceed the capacity of any

truck (salesman). Integer programming and heuristics are possible

solution techniques.

IP Formulation

An IP for the multi-depot VRP was formulated by Golden, et.al.

[21]. The formulation is of interest for very small problems only, with

the number of variables equal to (n
2 )*(NV), where NV is the total num-

ber of possible salesmen, and n is the number of demand points. For

comparison, the MPOS (IP) system on Oregon State University's CDC Cyber

73 will accept up to 100 variables; the HFLC problem encompasses about

(n2)*(NV) = (772)*(20) = 118,580 variables. With the HFLC problem

beyond the scope of the optimizing procedure, heuristic solutions were

next explored.

Heuristic Solution Techniques

While the VRP has been widely studied, the multi-depot problem is

represented in the literature by only a few papers.

Wren and Holliday [66] generate one solution arbitrarily, and then

improve the solution by exchan(jing nodes one at a time between routes
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until no further improvement can be made. The authors report results

with problems of up to four depots and 320 demand points.

Gillett and Johnson [20] solve the multi-depot problem in two

stages. First, locations are assigned to depots by partitioning the

problem into subproblems. Then, several single depot VRP's are solved

independently.

Russel [49] developed a multi-depot heuristic which showed good

results using the Lin and Kernighan heuristic [36] for the single-tour

travelling salesman problem. The heuristic is attractive, since it is

the only multi-depot heuristic which incorporates sequencing and due

date restrictions, and time constraints on tours. Unfortunately, it

cannot solve moderate-sized or large problems due to high computer

storage space requirements:

[2 * (N + M)2 + 52* (N + M) + 9000] = [2 * (77 + (20*50))2 +

52 (77 + (20*50)) + 9000] = 2,843,862 words.

The HFLC problem thus requires approximately 2.8 million words of core

storage, far beyond current computer capacity.

Tillman [57] developed a heuristic based on the single-terminal

heuristic of Clarke and Wright [8]. Tillman's heuristic forms an

initial solution by assigning each demand point to the nearest depot,

with one salesman serving each demand point. The solution is

by joining points on a route to minimize the distance travelled. The

route formed is assigned to the terminal associated with the improve-

ment, and the number of salesmen necessary to meet demand on the route

are assigned. See Figure 7.

Golden, et.al. [21] also proposed an algorithm based on Clarke



Figure 7a. Link demand sites Fl, F2, F3 to Depot.

Figure 7b. Link demand sites F/ and F2.

Figure 7c. Link demand sites F1 and F2 and demand sites F2 and F3.

36
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and Wright's single-terminal heuristic. The authors obtained solutions

to five problems from Gillett and Johnson [20] in 4-10 times less CPU

time, but having 2-8% higher solution values. The largest problem at-

tempted by Golden, et. al. was the largest problem solved by any

heuristic. A problem with two depots and 600 demand points was solved

in less than 55 seconds on an IBM 370/168.
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IV. SELECTION OF A SOLUTION PROCEDURE

Multi-Depot VRP Heuristics Versus Discrete Multi-Facility Algorithms

The multi-depot VRP has been investigated with an eye toward model-

ling the HFLC problem. In order to model the problem, inspectors would

make weekly tours for a total of about (50 working weeks/inspector) *

(1 tour/week) * (20 inspectors total) = 1000 tours. Multiple visits

to each demand location would occur, and time constraints on follow-up

visits would be satisfied by the tours formed. Total cost of transpor-

tation and facility location would be minimized. None of the VRP

heuristics can do this. All reflect the structure of the truck routing

problem, with a single demand at each location satisfied by the single

visit of a server. None of the programs developed so far can model

weekly tours, yet also satisfy total demand over a year. The one

heuristic [49] which does model sequencing and time constraints cannot

model a problem of this size. All the multi-depot VRP heuristics are

involved, lengthy and inefficient as compared to the more efficient dis-

crete multi-facility plant location algorithms. A highly specialized

and inefficient algorithm would be of little future use to the State

Executive Department.

Adaptation of one of the multi-depot VRP heuristics to solve a

problem with the HFLC problem
characteristics was judged to be pro-

hibitive, if not impossible.

With multi-depot VRP heuristics ruled out as infeasible at their

current state of development, the problem solving focus returned to the

discrete plant location algorithms.
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If additional data were known, tours would be simulated in a dis-

crete multi-facility model. If the transition probabilities the

probabilities of travel from one location i to another demand or office

location j were known, tours could be simulated. Sequencing and time

constraints on tours could be satisfied; tour building would continue

until a counter in the program determined that demand at all locations

had been satisfied. Several sets of simulated data could be entered

into the discrete multi-facility algorithm, with each tour's mileage

and demand treated as one demand location. Such data is not known,

even approximately, in this problem. Without data to support a simu-

lation, this analysis reserves that approach for the area of further

study.

Algorithm Selection

With multi-depot VRP formulations proving to be infeasible, and

simulation impossible, it was decided that an efficient multi-facility

plant location algorithm, with its close representation of the problem,

should be pursued for office location with an error term attached to

resulting cost estimates.

The discussion of discrete multi-facility plant location algorithms

noted that heuristics have been superseded by MIP solutions for prob-

lems of moderate or large size. Only really large problems of several

hundred demand locations must rely on heuristics. Of the MIP techni-

ques, enumerative algorithms have been most well-developed. Of these,

the branch and bound algorithms of Akinc [1] and Khumawala [30] offer

the greatest efficiency, according to McGinnis' March 1977 survey [41].
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Table II, p. 25, shows computational run times for several MIP formula-

tions. In addition, Lovro [38] in 1975 compared the B & B algorithms

of Spielburg [54] and Khumawala. Spielburg's algorithm offers the

capability to make use of a previous solution or a good solution that

is not optimal. This gives Spielburg's algorithm the capability of

solving large problems. Khumawala's algorithm, on the other hand,

appears to be more efficient, although a direct comparison on similar

computers has not been published. Akinc's and Khumawala's algorithms

offer similar efficiency. Due to its high efficiency, and the availa-

bility of the computer code, Khumawala's algorithm was selected to

model the problem.



V. DESCRIPTION OF THE ALGORITHM

The Objective Function

Khumawala's algorithm uses an improved version of a branch and

bound formulation originally formulated by Efroymson and Ray [3].

Those authors developed a simpler formulation based on Po. Relaxing

the capacity constraints Qj and simplifying, Efroymson and Ray pro-

duced the following relaxed problem:
g.

j minkck UK [C + !S- ]P1: Xij = 1 if (ci +
1 2 ki nk

= 0 otherwise

Y. = 0, jEk
o

n.

=

J-1

X

ij

/n

j

, JEk2

(14)

(15)

41

= 1, jeki

gk = fk, ice k2
(16)

= 0, k k
1

where kn = the set of closed offices, not available for use. Y.'s are

set equal to zero.

k
1

= the set of open offices, available for use. Y.'s are set

equal to one.

k
2

= the set of offices which are not assigned open or closed.

Y.'s are fractional, the office is "free".

c
ij

= cost of transportation from city i to city j

f. = fixed cost of locating office j

P. = set of those customers which can be supplied by office j
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n. = the number of elements in .

J

Pj

The problem now has the structure of a transportation problem with

the set of supply constraints removed. Problem P1 is used to solve the

linear program at nodes in the B & B tree.

Branch and Bound Procedure

The procedure first drops all integrality constraints on the Y.

and solves the initial LP. Its solution, Z
o'

becomes a lower bound

(LB) for subsequent, more highly constrained subproblems. If all Y. in

the LP result are integer-valued, then the problem is solved. Other-

wise, the Yj must be integerized. Any feasible all-integer solution is

a "terminal" solution. All other feasible solutions are "nonterminal."

A B & B procedure is entered into in which each service facility j is

assigned to be used (Yj = 1) or assigned not to be used (Yj = 0). Book-

keeping is accomplished by assigning the Yj to sets K0, K1, or K2.

Each assignment of a Yj to values 0 and 1 produces a new pair of

candidate problems to be fathomed. Figure 8 illustrates the procedure,

with Y
k
set equal to

0 to obtain X
k0'

1 to obtain Zkl.

At each stage, the algorithm branches from successive non-integer

(nonterminal) Y
k
nodes until all Y

k
are integer valued, a terminal

solution. The objective function becomes an upper bound (UB) for

future solutions. Infeasible solutions are eliminated according to

FC1.

All remaining nonterminal nodes must be investigated, so the algo-
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Figure 8a <UB

infeasible >UB

initial

LB

UB

<UB

terminal
solution (UB)

for Z
II

< Z
20

< Z
51

Figure 8b

remaining CP

Figure 8c

branching rule - branch

from minimum (Z
k0'

Z
kl

)

Figure 8. Branch and bound procedure after finding one terminal solution
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rithm returns to nodes (CP) that have objective function values less

than the current UB, and begins branching. The branching rule followed

is least lower bound (LLB), that is, the nonterminal node with the

smallest objective function value LB is selected (see Figure 8c). (LIFO

is used in some algorithms. In Figure 8a, for example, LLB would sel-

ect node Xil as the CP. LIFO would select node Z51. Geoffrion and

Marsten [19] note, in general, better results with LLB). The fractional

Y. at that node is constrained to 0 and 1, and LP's are solved at the

two additional nodes. The solution value at each node (if feasible)

becomes a new LB for all branches emanating from that node. Infeasible

nodes are "pruned." If a nonterminal solution is greater than the

current UB, then the branch is pruned. Figure 8a illustrates these

rules after one terminal solution has been found.

Once a node (CP) has been shown to be infeasible, greater than the

current UB, or terminal, the CP is fathomed. The initial IP has been

relaxed to an LP, separated into CP, and each CP fathomed. The optimal

solution is, clearly, the minimum terminal node value - the least UB.

COMPUTATIONAL EFFICIENCY

Khumawala improved the computational performance of the Efroymson

and Ray procedure by adding three types of efficiencies:

1) At each step of the B & B algorithm, an LP relaxed problem is

to be solved. Khumawala used information already available at

that stage to solve the LP very rapidly.

2) At each stage, the B & B algorithm selects a free office from

set K
2

and constrains it open and closed. Khumawala developed
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and tested formal rules for selecting the free office, and

found one very efficient rule. These rules are referred to as

branching decision rules.

3) Several improvements were made to the computer program, so

that storage space was used more efficiently.

Efficiencies (1) and (2) follow in more detail.

LP Simplifications

1. A minimum possible savings value is determined for opening a

field office. If it is positive, then the office is fixed open, i.e.,

Y
j

is assigned to K1. Mathematically, the computation is:

v
ij

= Min KENi n(K1UK2)' k j
[MAX (C 0)]

kj

6..=(E.cP. v..) - f.
1 j 1j

where Ni = the set of warehouses j which can supply customer i. (If

prohibitive routes exist, not all warehouses will be able

to supply all customers.)

Khumawala notes that for A. > 0, Y. = 1 for all branches emanating from

thenocleunderconsideration.Delta(v
..)is the minimum savings that

results if office j is opened to service city i. If the sum of all

deltasforofficejisgreaterthanf,the
cost of opening office j,

then it pays to open the office.

2. The second simplification is an updating procedure. It re-

duces n., the number of cities which office j can serve.

"If for jEk2, iEPJ

Min
kE nN (Cki Cij)i
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then inj is reduced by one." (Khumawala, [30], p. B-721; some

changes in notation)

If a fixed-open warehouse can supply demand center i cheaper (at lower

variable cost) than any of the "free" offices at the node, then demand

center i should not be considered as a possible customer of the free

field offices.

3. The third simplification contrasts with the first. While the

first simplification determines if the minimum possible cost savings

warrants the opening of a field office, the third determines whether the

cost reduction resulting from an office already open is still warranted.

Hence, it determines whether the open office can be closed, and, also,

whether a free office can be closed. Khumawala states:

"For jEk2, iEPi

[MAX (Oki C.., 0)]W
ij

= Min
kEN nk

1

kl ij

Q.=(E W..) - f3
iEP 13

If j < 0, the Y. = 0 for all branches emanating from the node."

(Khumawala [80], p. B-721; some changes in notation)

W
ij

is the minimum savings resulting from city i being served by office

j. If the sum of all such savings for office j is less than the cost

of opening office j, then the office is closed.

These simplifications are cycled through at each node, as shown

in Figure 9. When no further simplifications can be made, the LP is

solved. The entire solution procedure is shown in Figure 10.

Khumawala ([30], p. B-721) reduces the size of the LP at each node

by opening only the offices that will minimize the objective function
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at the node, based on the already-computed deltas. If (ji) is the

value of j that minimizes C
ij

over all j in N n(K
1
UK

2
), then customer

i should be supplied from ji if:

vi (ii) f(ii)/n(ii)

vi .
(ji) > 0

if (ji) c K2,

if (ji) c Kl,

where the v
ij

's, the minimum savings resulting from opening office i,

were computed in simplification 1 (steps S-1, Figure 9). Proof that

the result is optimal is given in Khumawala's dissertation [31].

Branching Decision Rules

In order for branching to continue after the LP at a node has been

solved, an office must be selected for the set of free offices, K2, at

the node selected under the LLB branching criteria. This office selec-

tion is performed by the branching decision rule. Khumawala [30] test-

ed eight such rules and found, in most cases, selection of the office

with the largest positive omega gave the best performance. Efficiency

is again gained by using the Qj computed in simplification 3 (step

S-7, Figure 9).

To summarize Khumawala's algorithm, an initial LP is simplified

and solved. An office is then selected by the branching decision rule

and constrained open and closed. In both cases, the resulting pair

of problems are simplified and solved. The first terminal solution

obtained becomes the UB. All nonterminal solutions are retained as

CP. A new CP is selected by the branching decision rule, and the new

pair of LP's are simplified and solved. Each resulting solution, if
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terminal, is compared with the current UB and, if less, becomes the new

UB. If the solution is nonterminal, it is compared with the current

LLB, and the minimum value denotes the next node selection. When no

nonterminal nodes with solutions less than the current UB can be found,

the procedure ends; the current UB is optimal.
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VI. HFLC PROBLEM ANALYSIS

Demand Data

The number and locations of nursing facilities in Oregon is quite

stable. Demand at each location is comprised of predictable inspection

visits, plus a less certain number of complaint and change of ownership

visits. Licensing and certification visits and follow-up visits, in-

cluding MIPRT follow-ups, can be modelled well as deterministic, if it

is assumed that the inspector staggers inspections throughout the year,

so that all demand is satisfied. Sequencing requirements could be

violated if an inspector is too overloaded at a particular time of

year to service all demands.

Complaint and change of ownership visits, however, were seen to

occur randomly during the year. Available records of complaints and

CHOW consisted of four years of data listing the number of complaints

by county per year, and the total number of CHOW for the state each

year.
3 It was seen that the average number of complaints per home

varied by county, and by year within counties. Figures 11 a-d show

complaint totals per county for each year; the number of homes in each

county was assumed to be constant. It appeared that the number of

complaints in each county hovered around some high or low level. The

fluctuation from year to year had no apparent pattern. Frequency

histograms for the number of complaints per home each year (Figure 12

a-d) and for the four year data (Figure 13) showed no obvious under-

lying distribution.

3 Data is listed in Appendix 1
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Further, the HFLC inspection group supervisor [64] suggested that

complaints have tended to be higher in metropolitan areas such as Port-

land and Salem, and lower in remote cities, largely, perhaps, as a re-

sult of media exposure and proximity to the State government. While

complaint data showed different levels per home by county, and each

single county level fluctuated without trend over time, the state totals

for four years suggested an increase over time. While the data for only

four years is a poor basis for long-range forecasting, it does indicate

an upward trend in recent years.

The simplest method for handling complaint data would be to deter-

mine the average or mean number of complaints per home and assign that

number of complaints to all homes. The wide variability in both the

level of complaints by county and the number of complaints per home by

county leads one to suspect that this would be an erroneous assumption.

Comparing each year of data in Figure 11 suggests that the levels

of complaints by county are fairly stable from year to year, with some

counties high and others low in complaints per home. The total number

of homes in the state remained nearly constant during the four year

period, with a change of only one or two each year. Unfortunately, no

record was kept for the number of homes in each county per year. If we

assume that the number of homes per county has been constant at the pre-

sent level over the past four years, then the level of complaints per

home fluctuates in the same manner as total complaints in Figure 11.

It would be of interest to determine whether complaint data can

be modelled by the density function of a known distribution such as,

say the standard normal.
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Four questions, thus, arise in analyzing complaint data:

1) Is an average number accurate?

2) If not, does the level of complaints per home in a county

remain about the same?

3) Does the data indicate that an underlying distribution is

present? and,

4) Can we be confident that the statewide data showed an increase?

Several statistical tests were performed to answer these questions.

The question of whether one mean is valid for all four years was treat-

ed by a comparison of means and variances for the four years. The means

were compared in an F-test; it was concluded, for a = .05, that the

hypothesis of equal means for all four years could not be rejected. An

F-test comparison of variance inferred that all years do not have equal

variances.
4 This would suggest that the use of a four-year mean to

assign an average number of complaints to each home is poorly supported

due to the presence of changes or shifts in the number of complaints in

the counties from year to year.

The level of complaints per home in each county appears to be

stable, within some range for each county, over the four years. This

second area of inquiry was treated by a contingency table test for

homogeneity of the data. This contingency table tests the hypothesis

that the proportion of total complaints which falls in a county varies

from year to year.
5

The F-test results showed, for a = .01, .05 and

.10, that the data does not present evidence sufficient to conclude

4 F-Tests are listed in Appendix 5.

5 Contingency Table tests are found in Appendix 6.
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that the proportion of complaints in a county varies from year to year.

Therefore, a pattern of levels of complaints per home by county sug-

gested by Figure 11 cannot be refuted statistically. In modelling

complaint demand, this pattern should be preserved.

The third question concerning an underlying density function was

investigated by an Approximate Chi-Square Test for Poisson and Normal

models. The results showed that the Normal distribution is not

appropriate for the data. For the Poisson distribution, however, the

null hypothesis,

H
o

: the distribution is Poisson

was accepted. We concluded that the Poisson is a reasonable model for

the data.

The last question asks whether trends can be detected in complaint

and CHOW levels. Admittedly, a total of four data points is too small

a snapshot for long run forecasting. It does tell us, however, whether

the complaint and CHOW means appear to be stationary or changing in

recent years.

Interestingly, a least squares analysis of complaints showed that

93% of the change in yearly complaint totals is explained by the fit of

the data to a straight line.? The prediction intervals (a = .05) for

future years were quite small, considering the small sample size of four.

The least squares fit of CHOW data was very poor, with only 8% of

the variation explained by the regression. This could have been expect-

ed; the CHOW figures appeared to fluctuate or cycle.

6 Found in Appendix 7.

Calculation is found in Appendix 8.
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To summarize, the statistical tests pointed toward an increasing

number of complaints based on the past four years' experience. The

statewide distribution of complaints per home changed from year to year,

but the number of complaints in each county varied in some high or low

range, and the number of complaints/home were not the same, county by

county.

In addition, the nature of complaint data should be considered.

Complaint records for individual facilities or cities, if they existed,

might indicate that particular homes were high or low in complaints, or

followed a trend in time. Use of that information would have been a

poor data base for long run location of inspectors. A home may change

management or physical facilities, and may improve or deteriorate, chang-

ing the level of complaints. Media, also, seems to have an effect. A

series of articles in the March 6-10, 1977 issues of the Portland-based

newspaper "The Oregonian" prominantly displayed nursing home problems

and HFLC activities in Oregon. Publicity such as this may contribute

to an increasing level of complaints.

It could be possible that a would-be complaintant outside of the

Portland area might not expect to receive action on a complaint from a

faraway state agency, and could decline to complain. The same person

might be induced to complain to an inspector at a nearby Adult and

Family Service Office. Complaints might increase under a decentralized

office plan.

For these reasons, it was decided that several levels of complaints

per county should be analyzed in order to determine the sensitivity of

office location with varying demand. Also, a method was sought to
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utilize the county complaint data, since the consistent high or low

levels of complaints per home in different counties precluded the use of

a statewide average. Complaint demand by county appears to occur

randomly, influenced by many factors, including visibility of HFLC

operations, and the level of care that clients and their families

perceive in each home.

The Demand Model

Monte Carlo simulation was chosen to assign complaints to homes in

a county. The number of complaints per county was an inputted variable,

so that the structure of the complaint/home data by county was maintain-

ed; it was varied in the sensitivity analysis.

The fallacy of maintaining that one home in a county generated a

fixed average number of complaints over time was eliminated. It was

assumed that, within a county, each facility was equally likely to gen-

erate a complaint. Complaints were assigned to homes using a uniform

distribution and a Monte Carlo simulator; several simulation runs ana-

lyzed the sensitivity of results with various numbers of complaints as-

signed to each county. Change in the number of complaints per county

analyzed the problem sensitivity to changes in the number of complaints

statewide.

Change of ownership of a nursing facility requires that the facil-

ity be relicensed and recertified, with initial and follow-up visits;

the four-year data varied between 19 and 30 CHOW per year. With no ad-

ditional data to support a pattern of CHOW across the state, it was as-

sumed that each home in the state had the same probability of changing
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ownership. Monte Carlo simulation was again used, given a certain num-

ber of CHOW, to randomly assign CHOW to homes.

Each CHOW was assigned four visits, consisting of the licensing and

certification visit, two follow-ups, and one MIPRT follow-up. Each com-

plaint was modelled as requiring two visits - an initial investigation

and one follow-up visit. The number of visits per complaint or CHOW was

a usual or average figure obtained from HFLC, with no data available to

support a range of values.

Each facility also requires the annual licensing and certification

visit, two follow-ups, and MIPRT follow-up. The first licensing visit

requires three full days of on-site inspection. The other visits re-

quire one day on-site. This time duration for visits is, again, a common

or average figure that reflects the usual time required for each type of

visit. Inspections require sampling of patient records, but, overall,

the time required for inspection is independent of the size of the home;

the standard routine is not highly variable. Follow-up visits are some-

what more variable, and depending on the number and gravity of deficien-

cies, a follow-up may take two hours to two days. The majority require

one day. Complaint visits are also variable in duration, but, again,

the one day visit is a reasonable assumption and the correct value in

nearly all cases.

Model of Present Operations

At present, the staff of sixteen health facility inspectors and

one supervisor are located at a central office in downtown Portland. A

large nonproductive time and travel expense is incurred by inspecting
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all facilities within the state from the Portland office. The most

distant facility is 386 miles away. 27% of the Oregon cities with nurs-

ing facilities are more than 200 miles from Portland. 48% are more than

100 miles away. 'To reach the more distant locations, inspectors spend

up to one full day travelling in each direction. The inspector may

spend one to three nights lodged in the distant city.

A per diem is paid for meals by the State if the inspector is 25

or more miles from the office, and for lodging if he is 50 or more miles

away.

State cars are used for transportation, charged to HFLC at $0.11/

mile. Air travel has recently been approved, on occasion, for travel to

Pendleton and Klamath Falls. The arrangement is not typical or presently

feasible at other locations. Air travel was excluded from this analysis.

Decentralized Plan Model

Locating inspectors at decentralized offices has the benefit of

reduced travel time and cost. Nineteen cities were chosen as candidates

for inspection offices after consultation [24] with State Management

Analyst Mike Greany. It was felt that the cities should be natural

centers in the Oregon roadway system, and should offer services suffic-

ient to attract potential inspectors and their families. Adult and

Family Services has offices in the candidate cities (and in nearly every

Oregon town of any size). A major assumption of the plan required that

HFLC inspectors be located in existing State Adult and Family Service

Offices. Secretarial service that is presently obtained at the Port-

land Office would be obtained at AFS offices. This includes services
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such as photocopying, telephone answering, and typing. Telephone serv-

ice cost would remain the same, since one extension would be removed

in Portland and added elsewhere. The state tie (SPAN) line has the same

charge regardless of where the telephone is located. It is assumed that

office furniture would be available at AFS locations; otherwise, an ad-

ditional purchase and/or moving cost would be incurred initially.

Lease on office space would increase $495 per office per year.
8

This was based on an increased cost allocated to the location of the

first inspector in each office as follows. Beyond the first desk in

any office, the rate per additional desk drops. An inspector in Port-

land is charged for office space at a lower additional-office rate. If

that inspector position is relocated to another city, the primary posi-

tion is charged the higher rate. Additional personnel are charged at

the same rate at the outlying office as in Portland. Hence, the added

cost for the inspection office space, including maintenance, at an out-

state location is the differential added cost of locating the first in-

spector.

It was anticipated that postage cost would increase with frequent

report mailings to Portland and memorandum mailings from Portland super-

vision to inspectors. Thirty dollars per month was allocated for post-

age per office as a rough but adequate estimate.

Presently, inspectors meet with their supervisor every Monday

morning to discuss Federal and State regulation changes, problems, pro-

cedures, and for training. These weekly meetings have been described both

as vital and unnecessary. At any rate, travel to Portland for a weekly

8 Fixed costs are formulated in Appendix 4.
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four-hour meeting by all inspectors is infeasible under a decentralized

plan. An alternate plan, endorsed by Management Analyst Mike Greany,

was modelled. It was assumed that once a month the Portland-based sup-

ervisor would travel to each inspection office to brief the inspectors

during a half-day meeting. This should allow ample time to discuss de-

velopments which could not be resolved by mail or telephone. In addi-

tion, the supervisor would take on the role of quality controller, able

to sample both the inspector's work and the level of care in homes that

were visited.

A qualitative difficulty under decentralization is the possibility

that inspectors serving the same group of nursing facilities will be-

come so empathetic with home operators that they will lose their objec-

tivity, and bend rules to the advantage of the facilities. The periodic

appearance of the supervisor on-site could help the inspector maintain

a stance of objectivity. The supervisor could also act as a source of

information and advice to facility administrators and staff.

Management Analyst Mike Greany also noted that the element of

surprise would probably be increased under a decentralized plan. Cur-

rently, an inspector, having travelled a long distance from Portland,

sometimes visits several facilities on a single trip. Home operators

anticipate this, and forewarned by a nursing facility grapevine, can

prepare for the visit. With mulitple offices, the inspector is close to

a greater number of facilities. In many cases, the inspector's next

move would not be so obvious.
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Summary of Costs

Fixed Costs

Fixed costs included the incremental or added FC which would be

incurred by opening an added inspection office outside Portland, plus

the added cost of supervisor's travel to monthly meetings.

The cost of opening each inspection office included the cost of

office space (including maintenance) and postage. The cost per year of

each added decentralized office included:
9

Office lease $495

Postage 360

Subtotal $855 7year

In addition, the supervisor's travel cost for monthly meetings was

a cost incurred in decentralized location. Since the cost was based on

the travel from Portland to each office location, the travel cost had a

fixed value associated with each possible office. The cost was:
10

transportation cost + supervisor wage cost per mile + per diems

for out-of-town travel = {[($0.11/mile + $0.14/mile)*2*(mileage)]

+(per diems based on mileage) } *(12 meetings) (17)

The first term in the expression gives the state car and supervisor time

costs of round trip mileage. The second bracketed term, the per diem,

is a step cost estimate of the meals and lodging that are required by

the supervisor, based on mileage. Per diems ranging from $2.75 to $59.25

were assigned;11 gives ranges of mileage were used, with a per diem as-

9 Developed in Appendix 4.

10 Developed in Appendix 3.

11 Developed in Appendix 2.
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signed to each. These step costs were included in field office costs

for the location analysis.

Variable Costs

Variable costs that changed with office locations, again based on

the common denominator of mileage were:

cost of state car per mile,

inspector's wage and travel cost per mile, and,

per diem cost based on mileage.

For each nursing facility, these costs were incurred for every vis-

it. Each facility received four visits per year one three-day licens-

ing and certification visit, two one-day follow-ups, and one MIPRT

follow-up. In addition, the inputted number of complaints and changes

of ownership, entailing two and four visits respectively, were assigned

to demand locations by Monte Carlo assignment. The annual number of

visits per facility was:

Visits = 4 + (Assigned complaint and CHOW visits). (18)

The per diem and mileage costs depended on distance and whether the

visit lasted one day or three days. Figure 14 illustrates this. On a

one day visit, if one-way mileage was greater than 60 miles, the inspec-

tor stayed overnight; otherwise, the inspector returned to home base.

It was assumed that travel time was scheduled so that the inspector had

ample time to conclude the visit in one day. If the one day visit re-

quired travel to a facility more than 60 miles from the office, the

inspector received a per diem that included lodging. If the facility

was less than 60 miles away, the per diem included meals, but not
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lodging.
12

Three-day per diems were assumed to also show two patterns, based

on the 60 mile cut-off point. For facilities less than 60 miles away,

it was assumed that the inspector left the office early - before 8:00

a.m. if necessary, and returned each day. If one-way distance was great-

er than 60 miles, the inspector was lodged for four nights at the facil-

ity location, as shown in Figure 14. Meal per diems were paid during

the three days of inspection, and for travel prior to and after the

three days.
13 These inspector per diem step costs were included in the

variable costs, c ij .

As Figure 14 illustrates, for a three-day licensing and certifica-

tion visit to a facility 60 miles away or less, two added round trips

were necessary in the midst of the inspection. Therefore, in this one

case, the number of visits per home was the number of annual visits,

VISITS, in expression (18), plus two:

(VISITS + 2).
(19)

For each nursing facility, the total variable cost of meeting its

annual inspection requirements was formulated as follows.

If the facility was 60 miles or less from a HFLC office, the VC

expression for supplying the demand of facility i from office location

j was:

VC (i,j) = {[(1 3 -day visit)*(round trip mileage)*(3 round trips)*

(inspector wage and travel cost per mile)] + (3-day per diem cost)

+ {(Visits 1 1-day visits)*[((round trip mileage)*(1 round trip)*

12 Developed in detail in Appendix 2.

1 3 Developed in Appendix 2.
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(inspector wage and travel cost per mile)) + (1-day per diem cost)]}

(20)

where the first bracketed term expressed the cost of the three-day

licensing and certification visit, and the second bracketed term yield-

ed the cost of the remaining (visits-1) one-day trips. Note that the

total number of visits were:

[(1 3-day visit)*(3 round trips)] + [(visits-1 1-day visits)*

(1 round trip)] = (visits + 3-1) round trip visits

= (VISITS + 2) round trip visits

as in (19).

Similarly, if a facility i was more than 60 miles from a HFLC of-

fice site j, the corresponding variable cost expression was:

VC (i,j) = t[(1 3-day visit)*(round trip mileage)*(1 round trip)*

(inspector wage and travel cost per mile)] + (3-day per diem cost)

+ {(visits-1 1-day visits)*[(round trip mileage)*(1 round trip)*

(inspector wage and travel cost per mile) + (1-day per diem cost)]}

(21)

where the number of visits in this case was:

[(1 3-day visit)*(1 round trip)] + [(visits-1 1-day visit)*(1 round

trip)] = (Visits) round trips

as in (18).

The variable costs were computed for all demand locations and of-

fice site locations (i,j), and each was multipled by the number of

nursing facilities at the demand locations.
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Office Personnel Requirements

Once nursing facilities had been assigned to offices, the corre-

sponding demand at each office was expressed as the number of inspect-

ors required at each office. The optimal results of the algorithm were

not necessarily integer inspector requirements. State budgeting pro-

cedures are geared to expressing demand in non-integer terms; each in-

spector, or full-time equivalent (FTE) position, is expressed fraction-

ally as twelve man-months. For this reason, it was desired to find the

optimal, even if non-integer, result an absolute best solution.

To assign inspectors to offices required integer demand. To ob-

tain integer office demands, the optimal result was perturbed until an

integer or near-integer demand resulted.

The number of inspectors required at each office XINSPj, was

computed as follows:

XINSPj := {[(Homes.)*(62 hours/home)] + [(Complaints and CHOW's)*

(8 hours)] + (Total miles travelled/average MPH))

[(2080 work hours/year)*(Efficiency Factor)] - 48 meeting hours

where:

Homes. = number of nursing facilities i serviced by office j

Complaints and CHOW's = total number of complaints and ownership

change visits at facilities served by office j

Total miles Travelled = total round trip mileage required to meet

all demands of facilities served by office j

Average MPH = the average speed, throughout the state, of inspect-

or travel, in miles per hour
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Efficiency Factor = a rating factor that determined the percentage

of work hours that an inspector was available for normal

inspection duties; the excluded time included vacations,

personal and fatigue time, training, meetings and confer-

ences, and exceptional demand time requirements such as

decertification hearings, special reports to the Federal

government; the factor yielded standard time.

62 hours/home were allotted to each home for inspections, with the

following breakdown:

1 3-day certification and licensing visit
2 follow-up visits, 1-day duration each

1 MIPRT follow-up, 1-day duration

Time required to complete Federal
certification report (state budget figure)

24

16

8

14

62 total hours

8 hours or one full day were required for each complaint or CHOW visit.

48 meeting hours equal to 12 four-hour meetings per year with the sup-

ervisor were required of each inspector.

2080 work hours/year was the amount of time available annually per in-

spector based on 52 weeks and 40 hours per week.

The numerator of the demand expression computed the number of man-

hours needed to meet the regular expected inspection requirements of

all homes served by office j. The denominator was the number of hours

available per inspector to serve the inspection demand.

An efficiency factor of 70% was chosen. This factor is used

as a rule of thumb by the Budget and Management Division, Executive

Department for estimating the rating factor in State agencies.
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VII. THE COMPUTER ANALYSIS

The computer code for Khumawala's branch and bound algorithm was

modified and extended to tackle the HFLC model. Provision was made to

assign complaints and changes of ownership to nursing facilities using

a Monte Carlo Simulator. A routine was developed to calculate step

costs as well as fixed and variable costs, and changes were incorpor-

ated so that the algorithm could make use of actual distance data,

rather than relying on less accurate Euclidian distances.
14

A routine

was added to compute the total cost of annual operations, including

the total cost of employee salaries. The solution technique is com-

pared with other major solution procedures in Table III.

Model Result Analysis

Analysis of the data required multiple computer runs. Results

were obtained for the centralized and decentralized costs of operation

under these model conditions

Model Conditions

present costs, demand and efficiency model results

variation of parameters of cost,

demand and efficiency

worst possible case

best possible case

model sensitivity

14 Inter-city distances were compiled for the study by the State of

Oregon Mileage Control Unit.



TABLE III. COMPARISON OF SOLUTION TECHNIQUES

Author

Distance
Norm

Maximum
n

Maximum
m

Step
Costs?

Form
Tours?

Demand
Satisfied

by

Multiple
Visits?

Exact
Solution
Procedure?

Allow
Maximum
Load?

Allow
Maximum
Distance?

Allow
Office
Capacity
Constraints?

Multi -Depot Vehicle Routing Procedures

Gillett and
Johnson [20]

Wren and
Holliday [66]

Golden, et.al.
[21]

Tillman and
Cain [58]

Tillman [57]

Euclidean

Euclidean

Euclidean

Euclidean

Euclidean

5

4

2

5

5

250

320

600

50

50

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

Yes

No

Yes

Yes

Yes

No

No

Yes

Yes

No

No

No

No

No

No

No

No

Discrete Multi- Facility Plant Location Algorithms

Khumawala [30]

Sa [50]

Soland [53]

Ellwein and
Gray [13]

Euclidean

Euclidean

Euclidean

Euclidean

25

25

25

25

50

50

50

50

No

No

No

No

No

No

No

No

No

No

No

No

Yes

No

Yes

No

No

No

No

No

Yes

No

No

No

No

No

Yes

Yes

Ryan's Application of Khumawala's Branch and Bound Algorithm

Ryan (1977) Actual or
Euclidean 30 100 Yes No Yes Yes No Yes No

rn
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For both centralized and decentralized cases, twenty computer runs

were performed in which, by changing the sequence of random numbers in

the Monte Carlo Simulator, complaints and CHOW's were assigned to dif-

ferent locations.

In assigning complaints, our technique preserved the approximate

Poisson distribution of complaints per county in the data. It also

modelled the assumption that complaints occur randomly. The following

example illustrates the Monte Carlo technique (see Figure 15).

In 1977, three complaints occurred in Yamhill County. Six nursing

facilities were located in three cities in Yamhill County: two homes

in McMinnville, three in Newburg, and one in Sheridan. Our example

divides the interval zero to one into a number of increments equal to

the number of homes in the county. Each home has an equal share of the

interval; here it equals one-sixth. We then generate three random

numbers between zero and one, corresponding to the three complaints.

Each random number is assigned to the interval which encloses its value.

If the first random number generated is 0.250, then a complaint would

be assigned to home 1. The second and third random numbers would assign

the second and third complaints as shown in Figure 15. For our example,

home 1 receives two complaints, home 5 has one complaint, and the other

homes would have no complaints. In the location analysis, demand in

Newberg and McMinnville would have increased by one and two complaints,

respectively. Changes of ownership were assigned in a similar manner

across the state.

A sequence of random numbers, then, generated the assignment of

complaints and CHOW. The computer's random number generator required an
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initial value, or seed, to generate a sequence of numbers which, because

the sequence would have started over after several thousand numbers,

were pseudo-random numbers. A particular seed always generates the same

sequence of pseudo-random numbers. Hence, to analyze a change in as-

signment of complaints and CHOW, twenty program runs were performed

with twenty seed values.

City

McMinnville
Newberg
Sheridan

Total

YAMHILL COUNTY

Number of

Nursing
Facilities

2

3

1

6

Facilities I Home 1

Cumulative 0
Probability

City

Random
Number:

1/7

3/4

1/60

Number of
Complaints
per home

*

1/6

McMinnville

Number of
Complaints

N/A

3

Home 2 Home 3 i Home 4 Home 5 Home 6

1/3 1/2 2/3 5/6 1

2

Number of
Complaints
per city 2

Newburg

0 0 0

*

5

Sheridan

0

0

* indicates assignment of one complaint

Figure 15. Example of Assignment of Complaints in a County.
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The results, listed in Table IV, were deterministic because each

solution was uniquely determined by the model parameters, including the

Monte Carlo sequence of random numbers. No guarantee of normality in

the distribution could be made. Rather than express the results in

terms of a mean and confidence interval, which assumes normally distri-

buted random error terms were present, we used values from the twenty

runs which evaluated a worst case savings figure. The highest cost

figure for decentralized location, and the lowest cost figure for cent-

ralized location were used in the determination of an expected minimum

savings figure. The optimal decentralized cost figure resulted from

non-integer assignments of inspectors to offices. This figure is noted

for the State budgeting requirement which is based on man-months. The

results showed that six offices should always be opened: Astoria, Bend,

Eugene, Medford, Portland, and Salem. The seventh office opened, either

Pendleton or LaGrand, was sensitive to the pattern of complaint and CHOW

demand in northeastern Oregon. The choice of either city as the seventh

office opened could rest on qualitative considerations. Pendleton was

here selected because it appeared in the majority of cases eighteen

out of twenty present cost runs. Likewise a selection had to be made

between Coos Bay and Reedsport in the southern coast area. Reedsport

appeared only once in twenty runs; Coos Bay was therefore selected. Ad-

ditional support for the selection of these eight sites was given by the

sensitivity analysis, since the eight appeared in nearly all computer

runs and were included in the best and worst cases. The minimum cost

savings with non-integer assignment of inspectors was $57,461.

In order to apply the decentralized result, integer numbers of in-
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TABLE IV. SOLUTION RESULTS

Decentralized Location

RND

Seed
Run

Facility
Total

Location Cost
Cost

Number of
Inspectors

2323 1 36885 260853 14.691

9999 2 37030 260755 14.677

5656 3 37397 261442 14.707

8134 4 36417 260322 14.678

7345 5 38419 262394 14.729

6321 6 36374 260260 14.674

3789 7 36989 261009 14.702

1313 8 37170 261160 14.696

7058 9 37533 261569 14.705

8176 10 37763 261866 14.719

1111 11 39177 263214 14.742

9876 12 37642 260240 14.626

3333 13 37936 262069 14.725

9898 14 36508 260406 14.677

5555 15 37572 261620 14.707

2345 16 36896 260853 14.689

6754 17 37602 261697 14.717

1921 18 37426 261481 14.709

8633 19 37844 260635 14.646

4444 20 38387 262598 1 14.741

Centalized Portland Office

2323 1 85245 322973 16.739

9999 2 84782 322449 16.727

5656 3 86505 324448 16.784

8134 4 85735 323607 16.769

7345 5 89166 327521 16.869

6321 6 83396 320796 16.672

3789 7 84373 321959 16.711

1313 8 82746 320059 2 16.654

7058 9 87399 325471 16.811

8176 10 85227 322927 16.734

1111 11 88170 326422 16.848

9876 12 89933 323493 16.911

3333 13 86505 324433 16.781

9898 14 84441 321983 16.701

5555 15 85601 322785 16.739

2345 16 86901 324903 16.796

6754 17 84599 322192 16.712

1921 18 85192 322929 16.742

8633 19 89535 328024 16.897

4444 20 85768 323582 16.758

1 Highest result with Pendleton included in the solution

2
Lowest cost result
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Decentralized Location, Integer Staff Assignments

RND

Seed
Run

Facility
Location
Cost

Total

Cost

Number of
Inspectors

2323 1 41250 268024 14.936

9999 2 41817 268682 14.954

5656 3 42849 269871 14.987

8134 4 40682 267376 14.919

7345 5 44024 271221 15.023

6321 6 40857 267541 14.917

3289 7 42651 269635 14.979

1313 8 41710 268544 14.948

7058 9 43766 270894 15.009

8176 10 42752 269758 14.934

1111 11 44501 271760 3 15.036

9876 12 42693 269690 14.982

3333 13 43082 270125 14.991

9898 14 41670 268493 14.946

5555 15 42192 269084 14.960

2345 16 42797 269781 14.979

6754 17 42487 269451 14.975

1921 18 42184 269095 14.964

8633 19 43918 271109 15.022

4444 20 43482 270578 15.002

3 Highest result with five facilities
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spectors had to be assigned to the offices. The optimal non-integer

result was perturbed slightly to find a near-optimal plan that resulted

in integer assignments. It was noticed that demand in the area clust-

ered around a possible office site might be sufficient to merit the op-

ening of the office, but was never large enough to require one full in-

spector full time equivalent (FIE) even in the highest demand, worst

case solution. This was true of Astoria and Bend. Since there were no

other office sites that could possibly serve these areas plus adjoining

demands to produce integer inspector requirements at lower cost, these

two cities were dropped from the list of candidate sites (See Figure

16). The opening of an office to serve Northeastern Oregon demand re-

sulted in all three cases. Location at Pendleton, however, produced

lowest cost. In twenty present case complete runs, 192 sensitivity anal-

ysis runs, and this integer capacity analysis, Pendleton was nearly al-

ways selected. The other offices opened in the non-integer solution

exhibited integer assignments. Hence, with integer assignment of in-

spectors, five offices were opened: Eugene, Medford, Pendleton, Port-

land, and Salem. The cost savings of this plan, again based on the

highest cost assignment of complaints and CHOW from twenty computer

runs, was $54,020; the number of inspectors at each site was 2, 1, 1, 8,

and 3 respectively, as outlined in Figure 17.

It has been noted that the visiting of more than one facility on a

round trip by inspectors the formation of tours - could reduce the

travel time and distance in the preceeding results. This gain from the

formation of tours was difficult to estimate, since the sequencing of

demands that leads to tour formation was not known. Alternately
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additional offices opened in the non-integer-staff optimum

2

l'U'lLANU )

1

3

1

2 2

,, ""- 2". 11

1
2 .Frlt Lft I ,,

1.11 '---.

1

*1

11

)

3

E)3

*1 fj
I PENDLE TON I

1
J

2

....

2

1

C r

1

Figure 16. Multi-office locations with integer-valued staff assignments



I. Solution values for:
Total
Cost

Number of
Inspectors

1. Centralized Portland office location -
least cost from 20 computer runs

2. Multi-facility location with integer
assignments of staff highest cost

result from 20 computer runs

$320,059

$271,760

16.654

15.036

II. Modification of computer result to reflect integer assignments.

Cost Term

Fixed cost office opening costs and
supervisor's travel cost*

Variable cost state car cost and in-
spectors per diem

Inspectors' wages, Portland - (17.0

inspectors * $14,994)

Inspectors' wages, Multi-office
(15.0 inspectors * $14,994)

Supervisor's wages

Value

Portland Multi-office

0

53,803

254,898

16,544

5,201

24,570

224,910
16,544

Total $325,245 5271,225

III. Minimum

=

cost savings

325,245
- 271,225
$ 54,020

IV. Detail

* Values

of multi-office inspector assignments:

Location Computer Value Integer Value

Eugene
Medford
Pendleton
Portland

Salem

2.073
1.160
1.109
7.669
3.025

2

1

1

8

3

TOTAL 15

from computer results

Figure 17. Minimum multi-office cost savings with integer assignments.
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stated, the transition matrix probabilities of moving from location to

location cannot presently be determined.

In order to analyze the effect of reduced travel time and cost due

to formation of tours, a simple assumption was made. If we assume the

total distance travelled should be reduced by some percentage, and the

per diem costs should remain approximately the same, then total cost

varies as shown in Figure 18. Figure 18c shows that, under these assump-

tions, the integer staff decentralized location plan should become more

attractive for reduction of ten and twenty per cent in total mileage

travelled in both centralized and decentralized plans. At 40% reduc-

tion in distance for both plans, these savings in favor of decentrali-

zation drop about $4,000, from $54,020 to $50,002. The long distances

from Portland to many nursing facilities versus the shorter distances

under the multi-facility plan should yield a greater reduction of dis-

tance for the single-office case if tours are formed. If we model this

more stringent assumption that the centralized Portland location of in-

spectors should have gained an estimated 40% efficiency while the de-

centralized plan gained only say, 10%, then the savings for decentral-

ized offices should have been $45,254 (Figure 18d). Without further

information on the formation of tours by inspectors, this 14.34% savings

figure is a rough but reasonable lower bound on the savings that would

have been realized with tour formation under the multiple office plan.

Sensitivity Analysis

It was desired to know how the multi-facility location reacted to

changes in cost, demand, and efficiency. In order to do this in an
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Reduction in total
mileage of integer
central-office result

Integer number
of inspectors
required

0
Total

Cost

Reduction in total cost
from integer central
office solution of
$325,245

10%
20%
30%

0 40%

17

16

16

16

$322,816

320,387
317,958

315,529

$ 2,429

4,853
7,287
9,716

a. Reduction in travel for Portland central

office plan (integer staff).

Reduction in total Integer number ® Reduction in total cost

mileage of integer of inspectors Total from integer multi-officE

multi-office result required Cost office solution of
$271,225

0 10% 15 $270,275 $ 950

20% 15 259,326 1,899

30% 15 268,376 2,849

40% 15 265,527 5,698

b. Reduction in travel for the multi-office

plan (integer staff).

Reduction in
mileage Savings

0% $ 54,020

10% 52,541

20% 51,061

30% 49,582

40% 50,002

c. Savings figures for reduction in mileage (0-0)
applied to both Portland and multi-office cases.

10% reduction in distance for multi-office plan,

40% reduction in distance for central-office plan;

0_® =
$45,254 = 14.34%

d. Savings figure.

Figure 18. Estimate of reduction in travel distance with tour formation.
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exact, organized manner, a multi-factor experiment was designed. The

best and worst values for the parameters in the model were estimated and

the number of complaints was set at three levels. These three levels

were worst, present, and best case values. The worst case value assum-

ed that the present trend in a rising number of complaints will continue

and used the approximate number of complaints four years from now -

54415. The recent marked rise in complaints should level off at some

point; it was estimated that this value lies in the area of the level-

off point. The present case used the number (377) and distribution of

complaints that occurred in Oregon in 1977. The best case modelled a

return to the level (and distribution) of complaints in 1976 - 243 com-

plaints.16

The other parameters were varied between high and low values.

These were:

Changes of Ownership

Efficiency

Speed, MPH

Number of Visits

Salary: Inspector

Supervisor

Office Opening Cost

best worst

20 40

75% 60%

60 45

3 6

$14,994 $17,993

16,544 19,853

600 1,200

for comparison:

modelled value

30

70%

55

4

$14,994

16,544

855

The best case salary levels reflected current costs; the worst case values

were present cost plus 10%. Other values were estimates of reasonable

15 Value is based on least squares calculation found in Appendix 8.

16 Complaint data are listed in Appendix 9.
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endpoint values for the parameters.

Multi-factor design of the experiment required 3*26 = 192 model

results. This large multi-factor design allowed us to explicity ana-

lyze the many cases or scenarios modelled by variation of the parameters.

Neter and Wasserman [44, p. 551] point out the efficiency of the pro-

cedure when used with an F-test analysis of variance. In our case, the

analysis of variance would not be strictly correct. As in the Model

Result analysis of the previous section, these deterministic results

lack the unknown random error terms which the F-test analysis of vari-

ance analyzes. Degrees of freedon, here, equalled zero. We made use

of the multi-factor format to present the mean, high, and low solution

results for each parameter value when all other parameters were varied -

a total of thirty-two cases for each value of each parameter. The mean

averaged the effects of all other parameters to estimate the change in

results due to the parameter in question. The high and low values es-

tablished the expected range for all possible cases at the given param-

eter value. These values are displayed in Figures 19.1 19.3, and

mean figures plus the range of solution values at the high and low

parameter values are listed in Table V.

Total cost appeared to be most sensitive to the efficiency rating

factor for inspector's time and to salary levels for inspectors and the

supervisor, exhibiting about twenty per cent change between high and

low parameter values. The number of complaints had a noticeable but

less marked effect on total cost. The number of CHOW, the travel speed,

the number of visits per facility, and office opening cost had small

observed effects on total cost (see Figure 19.1 19.3).
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Figure 19.1a. Total cost versus efficiency at three

levels of complaint demand.

Complaints Efficiency
Total Cost ($1000's)

200 250 300 350 400 450

Low
.75

Med
.75.

,

.60

High
.75

,

Figure 19.1b. Range of total cost for efficiency equal to 75% and

60% at three levels of complaint demand. Means are

shown connected between complaint levels.
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Figure 19.2a. Total cost versus low and high wage levels

at three levels of complaint demand.

Complaints Efficiency
Total Cost ($l000's)

200 250 300 350 400 450

Low
Low
High

141111116.
Med

Low
High

High
Low
High

Figure 19.2b. Range of total cost for low and high wage levels

at three levels of complaint demand. Means

shown connected between complaint levels.
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COMPLAINTS
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Figure 19.3a. Total cost versus complaint level.

Total Cost ($1000's)

Complaints 200 250 300 350 400 450

Low t

\\\:
Medium

High
-.

'

Figure 19.3b. Range of total cost at three levels of complaint

demand. Means are shown connected between complaint

levels.



TABLE V. SENSITIVITY ANALYSIS

Number of Complaints = 243

Parameter

*

Solution
Lowest
Solution
Result

Average at
Low Parameter

Value

Highest
Solution
Result

Lowest
Solution
Result

Average at
High Parameter

Value

Highest
Solution
Result

Change in
Average Value

A

1 27826 37526 49013 28466 38229 49665 703 1.87

CHOW 2 217752 278320 338317 224639 278320 346182 5061 1.85

3 12.200 14.539 16.124 12.639 14.539 16.547 .476 3.38

1 27826 37877 49665 27826 37877 49665 0

EFF 2 217752 250216 284744 265312 301363 346182 51147 20.44

3 12.200 12.656 13.133 15.372 15.946 16.547 3.290 26.00

1 27826 35792 44397 31007 39963 49665 4171 11.65

MPH 2 217752 275229 340159 220516 276350 341382 1121 .41

3 12.200 14.173 16.213 12.384 14.430 16.547 .257 1.81

1 27826 32978 38590 36355 41090 49665 8112 24.60

VISITS 2 217752 272086 333472 225693 282617 346182 10531 3.87

3 12.200 14.151 16.163 12.381 14.327 16.547 .176 1.24

1 27826 36550 46153 29735 39205 49665 2655 7.26

WAGES 2 217752 254253 293242 257648 300451 346182 46198 18.17

3 12.200 14.274 16.547 12.200 14.328 16.547 .054 .38

1 27826 35621 44865 31930 40134 49665 4513 12.67

OFFICE 2 217752 274677 335359 222296 280027 346182 5350 1.95

COST 3 12.200 14.274 16.547 12.234 14.328 16.547 .054 .38

*1 = Facility Location Cost Result 2 = Total Cost 3 - Number of Inspectors



Number of Complaints = 337

Parameter

*

Solution
Lowest
Solution
Result

Average at
Low Parameter

Value

Highest
Solution
Result

Lowest
Solution
Result

Average at
High Parameter

Value

Highest
Solution
Result

Change in

Average Value

1 30374 40292 51974 30797 40742 52399 450 1.12

CHOW 2 235532 294677 362090 244160 302842 367531 8165 2.77

3 13.272 15.259 17.352 13.701 15.743 17.914 .484 3.17

1 30374 40517 52399 30374 40517 52399 0 -

EH: 2 235532 269347 305819 287273 328172 372331 58825 21.84

3 13.272 13.718 14.218 16.723 17.284 17.914 3.566 26.00

1 30374 38285 46837 33837 42749 52399 4464 11.66

MPH 2 235532 296422 365798 238648 301096 372331 4674 1.58

3 13.272 15.360 17.551 13.482 15.642 17.914 .282 1.84

1 30374 35652 41362 38863 45382 52399 9730 27.29

VISITS 2 235532 293865 359658 243426 303653 372331 9788 3.33

3 13.272 15.371 17.530 13.452 15.631 17.914 .260 1.69

1 30374 39097 48691 32452 41937 52399 2840 7.26

WAGES 2 235532 273824 315298 278644 323644 372331 49870 18.21

3 13.272 15.449 17.914 13.272 15.503 17.914 .004 .03

OFFICE
1 30374 38256 47599 34516 42778 52399 4522 11.82

COST
2

3

235532
13.212

296232
15.484

367531
17.914

240122
13.308

301286
15.518

372331

17.914

5054
.034

1.71

.22

*1 = Facility Location Cost Result 2 = Total Cost 3 = Number of Inspectors LC)



Number of Complaints = 544

Parameter
*

Solution
Lowest
Solution
Result

Average at
Low Parameter

Value

Highest
Solution
Result

Lowest
Solution
Result

Average at
High Parameter

Value

Highest
Solution
Result

Change in
Average Value

1 31621 41599 53334 32945 42847 54721 1248 3.00

CHOW 2 268728 335830 411369 275872 344949 422917 9119 2.72

3 15.461 17.730 20.070 15.884 18.243 20.677 .513 2.89

1 31621 42223 54721 31621 42223 54721 0 -

EFF 2 268728 306263 346146 329001 374516 422917 68253 22.29

3 15.461 15.917 16.410 19.481 20.056 20.677 4.139 26.00

1 31621 39838 48795 35373 43983 54721 4145 10.405

MPH 2 268728 338030 416369 271870 342748 422917 4718 1.40

3 15.461 17.844 20.313 15.670 18.129 20.677 .285 1.60

1 31621 37875 44688 39273 46571 54721 8696 22.96

VISITS 2 268728 336371 413921 275475 344408 422917 8037 2.39

3 15.461 17.887 20.548 15.614 18.086 20.677 .199 1.11

1 31621 40705 50770 33872 43741 54721 3036 7.46

WAGES 2 268728 311724 357597 318404 369055 422917 57331 18.39

3 15.461 17.985 20.677 15.461 17.989 20.677 .004 .02

OFFICE
1 31621 39638 48729 36269 44808 54721 5170 13.04

COST
2

3

268728
15.461

337091

17.944

415713
20.594

274552
15.531

343688
18.029

422917
20.677

6597
.085

1.96
.47

*1 = Facility Location Result 2 = Total Cost 3 = Number of Inspectors
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Between-Complaint-Level Solutions

Complaint Level

Solution 243 337 544

Lowest Solution 1 32978 35652 37875
Result 2 250216 269347 306262

3 12.656

Highest Solution 1 41090 45382 46571
Result 2 301363 328172 374516

3 15.946 17.284 20.056

Average Solution 1 37737 40517 42119
Result 2 276571 298759 340389

3 14.291 15.501 17.987

1 2780 (7.37) 1602 (3.95)
Change (%) 2 22180 (8.02) 41630 (13.93)

3 1.210 (8.47) 2.486 (16.04)

*1 = Facility Location Result 2 = Total Cost 3 = Number of Inspectors
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The facility location analysis incremental costs were a part of

total costs. It is of interest to separate these costs to observe their

contribution to total cost. The location analysis cost was affected

most by the change in the number of visits, travel speed, and office

operating cost (see Figure 19.4). The change in number of complaints

appeared to be less important, while the level of CHOW had little effect.

The number of inspectors required to meet demand was apparently in-

fluenced predominately by the efficiency rating factor, and was also

affected somewhat by the number of complaints. Other factors did not

appear to significantly affect the number of inspectors required.

Best and worst case values are listed in Table VI. Worst case

costs and inspector requirements resulted from running the model with

the most adverse values assigned to all parameters; best case results

came from the assignment of the most favorable parameter values. The

expected total savings incurred by a multi-office plan was $44,869 in

the best case. Under the increased demand and higher costs of the

worst case, the savings magnitude was much greater, equal to $141,412.

In addition to these analyses, a study was performed to determine

the effect of increased office opening cost on the five-office integer-

assignment solution. All other cost, efficiency and demand parameters

were fixed at present case levels, and office opening costs, for office

locations other than Portland, were incremented by $500 steps. The

results, listed in Table VII showed that the five offices Eugene,

Medford, Pendleton, Portland and Salem should be opened at fixed

added-office cost levels up to $6,000. For the range of added-office

costs from $6,000 to $9,500, Medford, Pendleton, Portland, and Salem
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Figure 19.4a. Total cost versus low and high numbers of
visits at three levels of complaint demand.

Total Cost ($1000's)
Complaints Visits 20 30 40 50 60

owLow

High
1

Medium
Low 1

High
i

High
Low

High

Figure 19.4b. Range of total cost for a low and high number
of visits at three levels of complaint demand.
Means are shown connected between complaint levels.
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TABLE VI. BEST AND WORST CASE SOLUTIONS

Best Case Worst Case

Facility Location Cost $27,826 Facility Location Cost $54,721

Total Cost 217,752 Total Cost 422,917

Number of Inspectors 12.200 Number of Inspectors 20.677

Facilities Opened and Facilities Opened and
(Number of Inspectors) (Number of Inspectors)

Astoria (.346) Astoria (.755)
Bend (.373) Baker (.777)
Coos Bay (.493) Bend (.620)
Eugene (.902) Coos Bay (.761)
Medford (.879) Eugene (1.389)
Pendleton (.861) Klamath Falls (.428)
Portland (5.871) Medford (.902)
Salem (2.474) Pendleton (.502)

Portland (10.678)
Salem (3.866)



TABLE VII. SOLUTION RESULTS WITH VARIOUS

FACILITY OPENING COSTS

OPENING TOTAL
COST VC FC COST

NUMBER OF
INSPECTORS OFFICES *
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855 24570 5201 271760 15.036 E, M, Pe, Pt, S
1000 24570 5781 272340 15.036 E, M, Pe, Pt, S
5000 24570 21781 288340 15.036 E, M, Pe, Pt, S
5500 24570 2378 1 290340 15.036 E, M, Pe, Pt, S
6000 29215 19465 293568 15.229 M, Pe, Pt, S
6500 29215 20965 295068 15.229 M, Pe, Pt, S
7000 29215 22465 296568 15.229 M, Pe, Pt, S
7500 29215 23965 298068 15.229 M, Pe, Pt, S
8000 29215 25465 299568 15.229 M, Pe, Pt, S
8500 29215 26965 301068 15.229 M, Pe, Pt, S
9000 29215 28465 302568 15.229 M, Pe, Pt, S
9500 29215 29965 304068 15.229 M, Pe, Pt, S

10000 36089 20882 308118 15.646 M, Pt, S
10500 42992 10815 311694 16.096 E, Pt
11000 42992 11315 312194 16.096 E, Pt
11500 42992 11815 312694 16.096 E, Pt
12000 42992 12315 313194 16.096 E, Pt
12500 42992 12815 313694 16.096 E, Pt
13000 42992 13315 314194 16.096 E, Pt
13500 42992 13815 314694 16.096 E, Pt
14000 42992 14315 315194 16.096 E, Pt
14500 42992 14815 315694 16.096 E, Pt
15000 42992 15315 316194 16.096 E, Pt
20000 42992 20315 321194 16.096 E, Pt
20500 42992 20815 321694 16.096 E, Pt
21000 42992 21315 322194 16.096 E, Pt
21500 57260 0.00 326422 16.848 Pt
22000 57260 0.00 326422 16.848 Pt
22500 57260 0.00 326422 16.848 Pt
23000 57260 0.00 326422 16.848 Pt
23500 57260 0.00 326422 16.848 Pt
24000 57260 0.00 326422 16.848 Pt
24500 57260 0.00 326422 16.848 Pt
25000 57260 0.00 326422 16.848 Pt
30000 57260 0.00 326422 16.848 Pt

* E Eugene
M Medford

Pe Pendleton
Pt Portland
S Salem
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should be opened; at a $10,000 opening cost, Medford, Portland, and

Salem should be opened. For fixed added-office costs from $10,500 to

$21,000, Eugene and Portland should be HFLC office sites; for office

opening costs of $21,500 or more, Portland only should be the site of

an HFLC office. It should be noted that this result demonstrated that,

at a $21,500 cost of opening each office outside of Portland, the addi-

tional offices should not be opened. The result did not indicate that

Portland is the best office site in the state under a single-office

plan.
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VIII. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

Conclusions

The first objective of this analysis was to find a method for

solving a multi-office location problem. After a literature survey

that investigated and compared the available solution techniques for

discrete multi-facility location and multi-depot vehicle routing prob-

lems, a discrete multi-facility location algorithm by Khumawala was

selected. This branch and bound procedure was chosen because it mod-

elled the important characteristics of this multi-facility problem,

yielded minimum cost solutions, and the computer code was available.

The procedure represents the current state-of-the-art in exact multi-

facility location algorithms, and was found to run efficiently. On

Oregon State University's CDC Cyber 73, the Fortran IV program required

127,500 octal words of memory space; average run times ranged from .75

seconds for a one office, seventy-seven demand location problem to 3.85

seconds for a nineteen office, seventy-seven demand site problem.

The second objective was to obtain a result to support or reject

the hypothesis of reduced HFLC inspection cost under a multiple office

plan. Demand and cost data were collected and analyzed graphically and

statistically (Chapter VI). In order to model the agency's activities,

the computer program was modified to allow random elements in demand,

include step costs, permit the use of actual or straight line distances,

compute the number of staff required at each office, and evaluate the

total cost of annual operations. The program determined the optimal

office locations and staff requirements based on the trade-off between
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added fixed costs of locating offices and variable costs of transport-

ation to demand sites that minimized cost.

In our study, the model indicated a fifteen percent improvement in

cost with decentralization, based on integer-valued office staffs.

Multiple computer runs established the minimum expected cost reduction.

The final objective of the study was to determine the practicality

of the optimal multiple office plan. The plan has the following merits:

1) The sensitivity analysis showed that multiple offices opened

under present conditions should remain open under a variety of

foreseeable future circumstances, including the most adverse

conditions of demand and cost projected over a four-year peri-

od.

2) Assumptions of increased future cost and demand improve the

cost savings attributable to decentralization; decreased cost

and demand reduce the savings by a smaller amount (Sensitivity

Analysis, Chapter VII).

3) Staffing requirements are integer-valued.

4) The analysis places a bound on the reduction in the modelled

costs due to the gain in efficiency from the formation of

tours.

5) Multiple visits to each facility have been considered.

The decentralized plan has other attributes. The supervisor's

role as a health care expert, inspection observer, and quality control-

ler is enhanced. The element of surprise in inspection visits is in-

creased. The cost results and qualitative items must be weighed a-

gainst the loss of centralized control under decentralization. This
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task lies with the appropriate State decision maker. The study re-

sults have been presented to the Budget and Management Division of the

State Executive Department, and the computer program has been supplied

to the Division for use in future multi-office location problems.

Recommendations for Further Study

The present model can be improved in the following ways:

1) Compile data for the transition matrix probabilities of

travel between locations. Then simulate weekly tours that

is, a path of visits to one or more facilities that returns

to the office at week's end using an approach such as the

Markov Chain in Inoue [28] until all demands are satisfied.

Modify the computer program to assign each tour as one round

trip, with distance and demand equal to the total tour values.

The distance function for a possible office site is then the

sum of the tour length plus the minimum distance from the fac-

ility to the tour path. The branch and bound algorithm can

then be applied. In the result, blocks of fifty tours can be

assigned to one inspector to compute office staff sizes. Tours

can thus be modelled external to the present multi-facility

algorithm.

2) Forecast the long-term changes in demand and costs, and rerun

the model.

3) Compile better data for the frequency versus length of visits

needed to service various types of demand. More intensively

standardized inspection procedures may be needed.
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A need for development of a new algorithm to optimize facility

location when office staff, salesmen, or vehicles can visit more than

one demand location on a round trip is made obvious by this study.

While much research has been directed toward both discrete multi-

facility plant location and vehicle routing problems (VRP), we found

it difficult to marry the two bodies of techniques.

Present multi-depot VRP's rely on inefficient and inexact heuristics

that do not minimize the fixed cost/variable cost trade-offs. The heu-

ristics allow only single visits to each demand site. The factorial

number of possible tours in a network makes the problem very difficult

to solve. Multi-facility algorithms, on the other hand, optimize cost,

can be programmed to allow multiple visits, and balance fixed and vari-

able costs. The existence of efficient discrete multi-facility opti-

mizing procedures encourages their extension to implicitly model tours.

This study has utilized the discrete multi-facility location model

to solve a practical multi-office problem. The need has been demon-

strated for a new class of solution techniques for large problems that

blends elements of discrete multi-facility location models and multi-

depot vehicle routing models. Hopefully, we have marked the proper

direction for the future development of such a technique.
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APPENDIX 1

Nursing Home Complaints

By County

Complaints per Home

*
By County

County
5/76-

4/77
5/75-

4/76
5/74-

4/75
5/73 --

4/74
5/76-

4/77
5/75-

4/76
5/74-

4/75
5/73-

4/74
Number of
homes,4/76

1. Baker 1 1 0 0 0.50 0.50 0.00 0.00 2
2. Benton 2 9 0 2 1.00 4.50 0.00 1.00 2
3. Clackamas 50 39 35 22 2.50 1.95 1.75 1.10 20
4. Clatsop 3 3 6 1 1.00 1.00 2.00 0.33 3
5. Columbia 2 0 0 1 1.00 0.00 0.00 0.50 2
6. Coos 2 5 3 2 0.33 0.83 0.50 0.33 6
7. Crook 0 1 1 1 0.00 1.00 1.00 1.00 1

8. Curry 1 0 0 0 1.00 0.00 0.00 0.00 1

9. Deschutes 2 1 2 2 0.50 0.25 0.50 0.50 4
10. Douglas 5 3 2 2 1.25 0.75 0.50 0.50 4
11. Gilliam 0 0 0 0 0.00 0.00 0.00 0.00 1

12. Grant 0 0 0 0 0.00 0.00 0.00 0.00 1

13. Harney 0 0 0 0 0.00 0.00 0.00 0.00 1

14. Hood River 2 0 0 1 1.00 0.00 0.00 0.50 2
15. Jackson 4 8 4 3 0.44 0.89 0.44 0.33 9
16. Jefferson 0 0 0 0 0.00 0.00 0.00 0.00 1

17. Josephine 2 1 0 0 0.50 0.25 0.00 0.00 4
18. Klamath 4 3 6 4 2.00 1.50 3.00 2.00 2
19. Lake 0 0 0 0 0.00 0.00 0.00 0.00 1

20. Lane 8 6 9 9 0.53 0.40 0.60 0.60 15
21. Lincoln 0 2 0 2 0.00 2.00 0.00 2.00 1

22. Linn 4 6 3 3 0.80 1.20 0.60 0.60 5
23. Malheur 1 0 0 2 0.50 0.00 0.00 1.00 2
24. Marion 42 30 16 13 2.10 1.50 0.80 0.65 20
25. Morrow 0 0 0 0 0.00 0.00 0.00 0.00 1

26. Polk 2 3 9 3 0.50 0.75 2.25 0.75 4
27. Tillamook 5 4 3 1 2.50 2.00 1.50 0.50 2
28. Umatilla 1 1 1 1 0.20 0.20 0.20 0.20 5
29. Union 2 1 0 0 1.00 0.50 0.00 0.00 2
30. Wallowa 0 0 0 0 0.00 0.00 0.00 0.00 1

31. Wasco 11 0 0 2 3.67 0.00 0.00 0.66 3
32. Washington 30 13 17 17 2.31 1.00 1.31 1.31 13
33. Yamhill 3 1 3 3 0.50 0.17 0.50 0.50 6
34. Multnomah 44 40 40 39 1.83 1.67 1.67 1.63 24
35. Portland 104 62 54 34 3.85 2.30 2.00 1.26 27

TOTAL 337 243 214 170

Changes of Ownership

5-76 to 4-77 5-75 to 4-76 5-74 to 4-75 7-73 to 4-74

30 24 19 28

*
Based on the number of homes per county in April, 1976.
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Nursing Facility Locations

City Number of
Facilities

City Number of
Facilities

Albany 3 Madras 1

Ashland 2 McMinnville 2
Astoria 2 Medford 6
Baker 2 Milton-Freewater 1

Bandon 1 Milwaukie 2
Beaverton- Mollala 1

Marylhurst 3 Mount Angel 2
Bend 3 Myrtle Point 1

Brookings 1 Newberg 3
Burns 1 Newport 1

Canby 2 Nyssa 1

Central Point 1 Ontario 1

Colton 1 Oregon City 4
Condon 1 Pendleton 4
Coos Bay- Portland 46

North Bend 3 Prairie City 1

Coquille 1 Prineville 2
Cornelius 1 Redmond 1

Corvallis 4 Reedsport 1

Cottage Grove 2 Rockaway 1

Dallas 2 Roseburg 3
Enterprise 1 Salem 15
Eugene- Sandy 2

Springfield 11 Scappoose 1

Florence 2 Seaside 2
Forest Grove 4 Sheridan 1

Gaston 1 Silverton 2
Gladstone 3 Saint Helens 1

Grants Pass- Sublimity 1

Merlin 4 Sweet Home 1

Gresham 6 The Dalles 3
Heppner 1 Tigard 3
Hermiston 1 Tillamook 1

Hillsboro 3 Toledo 1

Hood River 2 Troutdale 2
Independence 1 Vale 1

Junction City 1 West Linn 1

Klamath Falls 3 Woodburn 2
La Grande 2

Lake Oswego 1

Lakeview 1

Lebanon 1

Lincoln City 1



APPENDIX 2

STEP COSTS: PER DIEM COST FORMULATIONS

State Employee Per Diems

Breakfast $ 2.75
Lunch 2.75
Dinner 6.50
Lod in 13.00
Total 25 00

Key

B

L

D

Lodg
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Meal per diems are paid if an inspector is more than 25 miles from

the office. Lodging is paid if an inspector is more than 50 miles from

the office. It is assumed that per diem cost behaves as a step cost

based on mileage. Travel speed is estimated at 50-60 mph.

Supervisor Per Diem Costs

Distance to Outlying
Office (Miles)

Per Diem
Cost

Per Diems Paid (Round
Day 2

Trip)
Day 3Day 1

0 24 $ 0.00 -

25 59 2.75 L

60 - 99 9.25 L,D
100 199 25.00 L,D Lodg, B
200 299 34.25 L,D Lodg, B,L,D
300 + 59.25 L,D Lodg, B,L,D Lodg, B,L,D

We assume that the supervisor travels to nalf-day meetings at out-

lying HFLC offices. Per diems are based on distance and time. For

example, if mileage to an office is 60-99 miles, the time required for

travel in each direction is one to one and one half hours. The inspec-

tor, though eligible for a lodging per diem, can travel the round trip

distance and conduct the meeting in one day. Suppose distance is 300

miles or greater. The inspector must spend at least six hours travel-

ling in each direction. We tabulate the maximum number of per diems

that could be expected to occur, assuming that the inspector travels the



114

first day, travels and/or meets with inspectors during the second day,

and returns on the third day.

Inspector Per Diem Costs for One-Day Visits

Distance to Nursing
Facility (Miles)

Per Diem
Cost

Per Diems Paid (Round Trip)
Day 1 Day 2 Day 3

0 24 $ 0.00 -

25 - 59 2.75 L

60 - 99 25.00 L,D Lodg, B

100 - 174 47.25 D Lodg, B,L,D B
175 - 299 52.75 L,D Lodg, B,L,D Lodg, B,L
300 + 62.00 B,L,D Lodg, B,L,D Lodg, B,L,D

Inspectors visits are modelled as requiring one full day on-site.

We assume, for distances up to 60 miles, that the inspector returns to

the office on the day of the visit. For a distance between 60 and 99

miles, we modelled a case frequently found in the inspector's travel

agendas. The inspector travels to the facility on the afternoon of day

one and begins the inspection. On day two the inspector finishes the

visit and returns. For distances greater than 99 miles, we visualize

the inspector travelling on the first day, inspecting on the second,

and returning on the third. Added per diems for days 1 and 3 reflect

added time on the road" which includes more meal per diems as distance

increases.

Inspector Per Diems for Three-Day Visits

Distance to
Nursing Facility

(Miles)

Per

Diem
Cost

Per Diems Paid (Three Round Trips)

Day 1 Day 2 Day 3

0 24

25 59

$ 0.00

$ 8.25 L L L
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Distance
to

Nursing
Facility
(Miles)

Per
Diem
Cost

Per Diems Paid (One Round Trip)

Day 1 Day 2 Day 3 Day 4 Day 5

60 - 99
100 174
175 - 299
300 +

97.25
100.00
102.75
112.00

D

L,D
L,D

B,L,D

Lodg,B,L,D
Lodg,B,L,D
Lodg,B,L,D
Lodg,B,L,D

Lodg,B,L,D
Lodg,B,L,D
Lodg,B,L,D
Lodg,B,L,D

Lodg,B,L,D
Lodg,B,L,D
Lodg,B,L,D
Lodg,B,L,D

B

B

B,L

B,L,D

The licensing and certification visit requires three days on-site.

We assume that the inspector returns to the office each day if one-way

distance is less than 60 miles. If distance is 60 miles or more, the

inspector is lodged at the nursing facility location. Per diems on

days 1 and 5 reflect added travel time.
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APPENDIX 3

VARIABLE COST FORMULATION

Three types of costs are incurred by the HFLC Section in travelling

from office j to nursing facility k:

1. (cost of state car)kj

2. (per diem cost)
kj

3. (inspector time cost)kj

The variable cost of satisfying all demand of facility k from office j

is:

VCkj = (number of visits/year)*{[(distance kj$2)*

(state car cost/mile + inspector time cost/mile)] +

per diem cost /visit}

1. State car cost is $.11/mile.

2.Perdiemsvarywithstepsindistance.,the approximation is
outlined in Appendix 2.

kj

3. An inspector's time is used nonproductively for travel. We base
the worth of an inspector on his salary. The budgeting figure
used by the State for inspectors is $14,994.

Cost per mile of inspector's time = WAGEMI (salary/year)

(hours/year)*(miles/hour)

At an average of 55 mph, this cost is $14,994 -(*-) $.1311/mile.
2080) (55

We have assumed that homes are visited four times per year, plus

twice for each complaint and four times for each change of ownership.

For a facility with one complaint and no changes of ownership, the

variable cost would be:

VCkj = [4 + 1*(2) + 0*(4)] visits * {[(distance kj*2)

* ($.11 + $.13)] + (one three-day per diem + five one-day

per diems)} .
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Our assumptions require that if the distance is less than sixty

miles, the inspector makes three trips to license and certify; if the

distance is more than sixty miles, the inspector makes one round trip

and stays overnight at the facility location. The VC expressions for

distances greater than sixty miles and distances less than or equal to

sixty miles differ in the number of licensing visits modelled.

If (one-way mileage < 60):

VCkj =

{[(one 3-day visit)*(2*distance kj)*(3 round trips)*(car cost.mile +

wagemi)] + (3-day per diem)}

{(visits-1 1-day visits) *[((Distance kj*2)*(1 round trip)*(car cost/mile

+ wagemi)) + (1-day per diem)]}

The first bracketed term is the cost of the three-day licensing and

certification visit; the second term is the cost of the remaining one-

day visits.

Likewise, if (one-way mileage > 60):

VC
kj

-

{[(one 3-day visit)*(2*distance
kj

) + (1 round trip)*(car cost/mile

+ wagemi)] + (3-day per diem)}

{(visits-1 1-day visits)*N(distancekj*2)*(1 round trip)*(car cost/mile

+ wagemi)) + (1-day per diem)]}.

To determine the total variable cost of serving the demand of some

city i, we sum up the variable costs of serving all facilities k in that

city.



homes
VC

ij
= E VC

kj
k=1

where homes = the number of facilities in city i.

118
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APPENDIX 4

FIXED COSTS

Fixed costs are associated with the cost of operating an additional

office j. These are office space and maintenance cost, office support

costs, and supervisor's travel cost.

1. OFFICE SPACE

State budgeting model: one-man office requires 200 ft.
2

at $.55/ft.2/month., (1)

additional office stAff requires
125 ft.2 at $.55/ft./month. (2)

This cost includes maintenance. The resulting incremental cost

to establish an outlying office is the higher rate (1) paid for the

first inspector, less the lower rate paid in Portland for the inspector

(2); this applies only to the first inspector. Additional staff at each

outlying office are charged under (2) as they were charged in Portland.

Office Space Cost = (12 mo./year)*(200-125 ft.2)*($.55/ft.2/mo.)

= $495/year, j=1,2,3,...,n

2. OFFICE SUPPORT COSTS

Telephone and SPAN-line cost is the same at centralized and de-

centralized offices, as is secretarial service. Extra postage is re-

quired at outlying offices. If reports average about five ounces, a

montly postage allowance of $30.00 would allow about 45 first-class

report mailings.

Support Cost = ($30/mo.)*(12 mo.) = $360/year, j=1,2,3,...,n
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3. SUPERVISOR'S TRAVEL COST

The supervisor must travel to outlying offices once a month for

meetings with inspectors. This cost is:

SOR=("transPortationcostfl-1-(magecostPermile.)-1-

(perciems.)-

Salary is used as the measure of the worth of the supervisor's

time and a speed of 55 mph is assumed.

$16,544/yearWAGE SP = $.1446/mile(2080 hours/year)*(55 miles/hour)

State car cost = $.11/mile

SUPR. = {[($.11/mile + $.1446/mile)*(Distance.*2)] +(per diem

based on distance)}* 12 meetings.

4. FIXED COST.

FC. = Office Space Cost + Office Support Cost + SUPR.

= $495 + $360 + SUPR.



mean

T. = Ex

Ex2

APPENDIX 5

COMPARISON OF MEANS*

Complaints/Home

1977 1976 1975 1974

.952 .775 .603 .564

33.310 27.110 21.120 19.750

68.212 52.531 35.474 22.178

121

.724

n. = 35 p = 4

n = 140

Total SS = (68.212 + 52.531 + 35.474 + 22.178) 140(.724)2 = 105.010

33.310
2
+ 27.110

2

5

+ 21.120
2

+ 19.750
2

SST 140(.724)
2

= 3.2053

SSE = Total SS SST = 101.806

MSE
SSE SSE

nl + n2 + n3 + n4 -p 136 = .749

MST =
p

SST
1 3

SST

HYPOTHESIS

TEST

HO: P1 P2 P3 P4

H1: Pi # P2 # P3 # p4

Reject if F = MSE
T

MSE

= p - 1

v2 = n p

F otS,v,,v2

= 3

= 136

F
.10,

F
.05,

F
.01,

3,

3,

3,

136

136

136

=

=

=

2.08

2.60

3.78

* Taken from Mendenhall [43] p. 330.

1.068
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MST
F =

MSE
= 1.427

CONCLUSION

Cannot reject (H0: equal means) at a = .10, .05, or .10



COMPLAINTS

mean

T. = Ex
1

2
EX

1977 1976 1975 1974

9.63 6.94 6.11 4.86

337 243 214 170

18253 8339 6582 3786

ni = 35

n = 140

p = 4

123

X = 6.89

337+243Total SS = (18253 + 8339 + 6582 + 3786) - 140
(337 +244+0214 +170

2

30322

337
2
+ 243

2
+ 214

2
+ 170

2
r337+243+214+1701

2

SST = 140 L = 42835 140

SSE = Total SS - SST

MSE =
SSE 29894

n1 + n2 + n3 + n4 - p 136

= 29894

220

MST = SST 143

HYPOTHESIS

TEST

HO: 1-11 112 113 u4

H1: Pi / P2 / p3 / P4

vl P 1 3

= n - p = 136

MST
Reject H0 = 2.08

0
if F =

MSE
> F

2,vi,v2
F
.10, 3, 136

.F
.05, 3, 136

= 2 60

F
.01, 3, 136

= 3.78
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MST
F = 0.650

MSE

CONCLUSION

Cannot reject (H0: equal means) at a = .10, .05, or .01
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mean

s2

COMPARING VARIANCES*

Complaints/Home

0 0 0
1977 1976 1975 1974

.952 .775 .603 .564

1.036 .963 .818 .570

1.074 .927 .669 .325

Year F Value

(1,2) F = 1.074/.927 = 1.159
= 35(1,3) F = 1.074/.669 = 1.605

n1 = n2 = n3 n4 =

(1,4) F = 1.074/.325 = 3.305
(2,3) F = .927/.669 = 1.386
(2,4) F = .927/.325 = 2.852
(3,4) F = .669/.325 = 2.058

HYPOTHESIS Ho: ai
2

=
2

, i = 1,2,3,4 j = 2,3,4, i < j

H1: a.
2

# cyj
2

, = 1,2,3,4 j = 2,3,4 i < j

S
2

1
TEST STATISTIC F =

2 '
Sit > Sj2

S.

REJECTION REGION F > F u/2,
34, 34 = 1.84F

.05, 30, 30

CONCLUSION

Cannot say with 90% confidence that these years have unequal
variance:

(1977. 1974)

(1976, 1974)
(1975, 1974)

* From Mendenhall [43], p. 238.
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Can reject (H0: equal variances) for these years:

(1977, 1976)
(1977, 1975)
(1976, 1975)



mean

s2

COMPARING VARIANCES

COMPLAINTS

1977 1976 1975 1974

9.629 6.943 6.029 4.857

21.010 13.987 12.394 9.331

441.420 195.636 153.611 87.068

127

Year

(1,2)

(1,3)

(1,4)

(2,3)

(2,4)

(3,4)

HYPOTHESIS

F Value

F = 21.010
2
/13.987

F = 21.0102/12.3942

F = 21.0102/

F = 13.9872/12.3942

F = 13.9872/

F = 12.3942/

H0:
6i2

=

2

1

F =

2

9.3312

9.3312

9.3312

0.
2

'

G2
j '

S.2

= 441.420/195.636 =

= 441.420/153.611 =

= 441.420/ 87.068 =

= 195.636/153.611 =

= 195.636/ 87.068 =

= 153.611/ 87.068 =

i = 1,2,3,4 j = 2,3,4

i= 1,2,3,4 j= 2,3,4

S
2

> S.
'

2.256
n

1
=n

2
=n

3
=n

4
=35

2.874

5.070

1.274

2.247

1.764

i < j

i< j

TEST STATISTICS
2

S.

REJECTION REGION F > F
a/2, 34, 34

=F
.05, 30, 30

1.84
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CONCLUSION

Can say with 90% confidence that these years have unequal variances:

(1977, 1976)
(1977, 1975)
(1977, 1974)

(1976, 1974)

Cannot reject (H0: equal variances) for these years:

(1976, 1975)
(1975, 1974)



APPENDIX 6

CONTINGENCY TABLE COMPLAINTS*

Yeari

COUNTY.
J

B B C CC CCCD DGGHH JJJ KL LL LM MM P TUUWWW Y M PTotal
1977 1 2 50 3 2 2 0 1 2 5 0 0 0 2 4 0 2 4 0 8 0 4 1 42 0 2 5 1 2 0 11 30 3 44 104 337

1976 1 9 39 30 51 01 3 0 0 0 0 8 0 1 30 62 60 30 0 3 41 1 0 0 13 1 40 62 243
1975 0 0 35 60 31 02 2 0 0 0 0 4 0 0 60 90 30 16 0 9 31 00 0 17 3 40 54 214
1974 0 2 22 1 1 2 1 0 2 2 0 0 0 1 3 0 0 4 0 9 2 3 2 130 3 1 1 0 0 2 17 3 39 34 170

Total 2 13 146 13 3 12 3 1 7 12 0 0 0 3 19 0 3 17 0 32 4 16 3 101 0 17 13 4 3 0 13 77 10 163 254 964c.
J

* From Mendenhall [43], p. 288.



E (nib) = ricj

Year
i

COUNTY.
J

B B CCCCCCDOGGHHJJJ K L

1977 .70 4.54 51.04 4.54 1.05 4.20 1.05 .35 2.45 4.20 0 0 0 1.05 6.64 0 1.05 5.94 0

1976 .50 3.28 36.8 3.28 .76 3.02 .76 .25 1.76 3.02 0 0 0 .76 4.79 0 .76 4.29 0
1975 .44 2.89 32.41 2.89 .67 2.66 .67 .22 1.55 2.66 0 0 0 .67 4.22 0 .67 3.77 0
1974 .35 2.29 25.75 2.29 .53 2.12 .53 .18 1.23 2.12 0 0 0 .53 3.35 0 .53 3.00 0
Total 2 13 146 13 3 12 3 1 7 12 0 0 0 3 19 0 3 17 0c.
J

COUNTY.
J

YeariLLLM M M P T U U W W W Y M P Total r.
1

1977 11.19 1.40 5.59 1.05 35.31 0 5.94 4.54 1.40 1.05 0 4.54 26.92 3.50 56.98 88.79 337
1976 8.07 1.01 4.03 .76 25.46 0 4.29 3.28 1.01 .76 0 3.28 19.41 2.52 41.09 64.03 243
1975 7.10 .89 3.55 .67 22.42 0 3.77 2.89 .89 .67 0 2.89 17.09 2.22 36.18 56.39 214
1974 5.64 .71 2.82 .53 17.81 0 3.00 2.29 .71 .53 0 2.29 13.58 1.76 28.74 44.79 170
Total 32 4 16 3 101 0 17 13 4 3 0 13 77 10 163 254 964 n

c.



X2
4

35
= E E En.. - E(n..)]2

1=1 j=1 lj
13

E(nij)

= 32.84309078

30.80024717

26.54904905

+ 23.62751049

= 113.8198975 d.f. = (r-1) (c-1) = (4-1)(35-1) = 102

Use a = .05, reject null hypothesis, H0: cell probability (E(nij)) = nij), all (i,j) ; that is,

the two classifications are independent if the computed statistic X
2

X2102, .95

z X2
100, .95

= 124.342

X2
100, .90

= 118.498

Data does not present sufficient evidence to indicate that the proportion of complaints in a county

varies from year to year. Pattern, by counties, of a level of complaints, cannot be refuted

statistically.



CONTINGENCY TABLE - COMPLAINTS/HOME

COUNTY.
J

Year.
1 BBCC C CCCD DGGHH JJJ K L L L

1977 .50 1.0 2.5 1.0 1.0 .33 0 1.0 .5 1.25 0 0 0 1 .44 0 .5 2 0 .53 0

1976 .5 4.5 1.95 1 0 .83 1 0 .25 .75 0 0 0 0 .89 0 .25 1.5 0 .4 2

1975 0 0 1.75 2 0 .5 1 0 .5 .5 0 0 0 0 .44 0 0 3 0 .6 0

1974 0 1 1.1 .33 .5 .33 1 0 .5 .5 0 0 0 .5 .33 0 0 2 0 .6 2

Total 1 6.5 7.3 4.33 1.5 1.99 3 1 1.75 3 0 0 0 1.5 2.10 0 .75 8.5 0 2.13 4

COUNTY

YeariLMMMPTU
1

W W W Y M P Total r.

1977 .8 .5 2.1 0 .5 2.5 .2 1.0 0 3.67 2.31 .5 1.83 3.85 33.310
1976 1.2 0 1.5 0 .75 2 .2 .5 0 0 1 .17 1.67 2.3 27.110
1975 .6 0 .8 0 2.25 1.5 .2 0 0 0 1.31 .5 1.67 2 21.120
1974 .6 1 .65 0 .75 .5 .2 0 0 .66 1.31 .5 1.63 1.26 19.750
Total 3.2 1.5 5.05 0 4.25 6.5 .8 1.5 0 4.33 5.93 1.67 6.80 9.41 101.290 n

n
_



E (nii) = ricj :

Year
i

COUNTY

B B C C C C CC D DGGHH J J J K

1977

1976

1975

1974

.329

.268

.209

. 95

2.138

1.740

1.355'

1.267

2.401

1.954

1.522

1.423

1.424 .493

1.159 .401

.903 .313

.844 .292

.654

.533

.415

.388

.987 .329

.803 .268

.626 .209

.585 .195

.576

.468

.365

.341

.987 0

.803 0

.626 0

.585 0

0 0

0 0

0 0

0 0

.493

.401

.313

.292

.691

.562

.438

.409

0 .247 2.795

0 .201 2.275

0 .156 1.772

0 .146 1.657
Total 1 6.5 7.3 4.33 1.5 1.99 3 1 1.75 3 0 0 0 1.5 2.10 0 .75 8.5

Year.
1

COUNTY.
3

L L L L M M M P T U U W W W Y M P Total

1977

1976

1975

1974

0 .700

0 .57

0 .444

0 .415

1.315

1.071

.834

.78

1.052

.856

.667

.624

.493 1.661 0

.401 1.352 0

.313 1.053 0

.292 .985 0

1.398

1.138

.886

.829

2.138 .263

1.74 .214

1.355 .167

1.267 .156

.493

.401

.313

.292

0 1.424

0 1.159

0 .903

0 .844

1.95

1.587

1.236

1.156

.549

.447

.348

.326

2.236

1.82

1.418

1.326

3.095

2.519

1.962

1.835

33.310

27.110

21.120

19.750
Total 0 2.13 4 3.2 1.5 5.05 0 4.25 6.5 .8 1.5 0 4.33 5.93 1.67 6.80 9.41 101.290cj

4 35
X2 = E E

i-1 j=1

[1,1__Em.n2

E(n..)
= 11.61892442

9.64448972



9.81258588

+6.75257751

= 37.82857753

Cannot reject Ho: Two classifications are independent for

d.f. = (r - 1) (c 1) = (4 1) (35 1) = 102

X
2

= 124.342
100, .95

X2100, 90
= 113.498.

.
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APPENDIX 7

APPROXIMATE CHI-SQUARE TEST FOR POISSON AND NORMAL MEANS*

NORMAL DISTRIBUTION:

HYPOTHESIS H0: the distribution is normal

H1: the distribution is not normal

K = Four categories

E

, 2

Yl<-3

xi

REJECTION REGION

i=1

Reject Ho if Yk_3 > x2

n = 140

npi = 35

pi = .25

Category

- 0
0 1

1 2

2 - 5

np.

X = .721

EX = 101.290

EX
2

= 178.395

d.f. = k-3 = 1, a = .05

4.95 = 3.84

Number of observations

33

59

22

10

(101.290)
2 1/2

S =
178.395

140 = .870
140 1

From standard normal table, the four intervals on Z meeting the

.25 probability requirement are

(--, -.675), (-.675, 0) 0, .675), (.675, +-)

* From Guenther [26], p. 316.
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Z x-P ; x = cZ + p SZ +

Intervals on X are:

(-03, .134), (.134, .721), (.721, 1.308), (1.308, +.0)

number of
observations
in interval 49

TEST STATISTIC

39 24 28

(49-35)
2

(39-35)
2

(24-35)
2

(28-35)
2

= 10.91
1 35 35 35 35

CONCLUSION

Reject H0: distribution is normal at a = .05

(can reject at a = .005, x2
; 995

= 7.88)
1

POISSON DISTRIBUTION:

HYPOTHESIS

k-1

H0: pl = p(0',11), P2 = P(1',11), pk-1 = p(k-2;p), pk = 1 - E p.;

i=1

H
1

: p's are not given by Poisson

REJECTION REGION

2
Reject Hu..

if Y
124.3 a = .05

n-2 X138;.95

n = 140 observations, d.f. = n-2 = 140-2 = 138
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Cate or Number of observations

0 1

1 2

2 - 3

3 4

4 5

5 -

>( = .721

49

59

22

7

2

1

For pi from cumulative Poisson distribution:

Category xi .

p1
np.

1

(Xi - npi)

np.
1

1 49 .49658 0 = .49658 69.521 6.057
2 59 .84419 .49658 = .34761 48.665 2.195
3 22 .96586 .84419 = .12167 17.034 1.448
4 7 .99425 .96586 = .02839 3.975 2.302
5 2 .99921 .99425 = .00496 .694 2.458
6 1 1.0000 - .99921 = .00079 .111 7.120

Total 140 1.0000 140.00 21.580

TEST STATISTIC

Y
138

= 21.580

CONCLUSION

Do not reject Ho and conclude that Poisson is a reasonable model.



APPENDIX 8

LEAST SQUARES REGRESSION*

Y = (-104460.50) + 53.0 X

Complaints

Year i Y.
1

X.
1

X.2 X.Y.
1 1

Y.
2

1

1974 1 170 1974 335580

1975 2 214 1975 422650

1976 3 243 1976 480168

1977 4 337 1977 666249

4

E 964 7902 15610406 1904667 247314
1=1

X = 1975.50

Y = 241.00

= (-2147.80) + 1.10 X

CHOW

n = 4

Year i Y.
1

X.
1

X.
2

1

X.Y.
1 1

Y.
2

1

1974 1 28 1974 55272

1975 2 19 1975 37525

1976 3 24 1976 47424

1977 4 30 1977 59310

4

E 101 7902 15610406 199531 2621
i=1

-5( = 1975.50

= 25.250

* From Mendenhall [43], p. 254.

n = 4
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Coefficient
of

SE
Determination r

2
= 1

SSE

n = 4

(X - 7)2
+ +

p
4.303; t

.025,2
SSX

t
.05,2

= 2.92

d.f. = n - 2

( E X,)
2

SS = E X.
2

-
i=1

X
i=1

n
( E X.1 )( Y.)

SS = E X.Y.
i=1 i=1

nXY

n
2 (

E Yi)
SS

Y
= E Y. - i=1

i=1

2

SSE = SS 13 SS
Y 1 XY

S2 2 SSE
n - 2

COMPLAINTS CHOW

SSX 5.000

SSY 14990.00

SS
XY

265.00

SSE 945.00

S
2

472.50

S 21.73

5.00

70.750

5.50

64.70

32.350

5.687
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r
2

Y =
0

+ 0
1

xp

COMPLAINTS CHOW

93.70% 8.55%

Pred. Int. 95% 95%

1978 373.50 + 147.89 28.00 + 38.70

1979 426.50 + 179.92 29.10 + 47.08

1980 479.50 + 215.33 30.20 + 56.34

1981 532.50 + 252.72 31.30 + 66.13

1982 585.50 + 291.31 32.40 + 76.22

1983 638.50 + 330.69 33.50 + 86.53

1984 691.50 + 370.61 34.60 + 96.97
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APPENDIX 9

THREE COMPLAINT LEVELS MODELLED

May '76 Apr '77

Present-E= 337

May '75 Apr '76

LOW-E= 243

(May '74 - Apr '75)*(2.5)

High-E= 544

Baker 1 1 1

Benton 2 9 1

Clackamas 50 39 87
Clatsop 3 3 15
Columbia 2 0 0
Coos 2 5 7

Crook 0 1 3

Curry 1 0 0
Deschutes 2 1 5

Douglas 5 3 5

Gilliam 0 0 0
Grant 0 0 3

Harney 0 0 1

Hood River 2 0 0

Jackson 4 8 10
Jefferson 0 0 0
Josephine 2 1 0

Klamath 4 3 15
Lake 0 0 0
Lane 8 6 23
Lincoln 0 2 1

Linn 4 6 8

Malheur 1 0 0
Marion 42 30 40
Morrow 0 0 0
Polk 2 3 22
Tillamook 5 4 8
Umatilla 1 1 2

Union 2 1 1

Wallowa 0 0 0

Wasco 11 0 1

Washington 30 13 43
Yamhill 3 1 7

Multnomah 44 40 100
Portland 104 62 135
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APPENDIX 10

Low Complaints

= 243

Run

No.

Facility
Location
Solution

Total

Cost of
Operation

Number
of
Inspectors

1 31007 33 31757 1 268795 33 277489 1 15.604 33 16.163
2 35134 34 35957 2 273684 34 281689 2 15.661 34 16.163
3 33553 35 34390 3 318901 35 329272 3 15.604 35 16.163
4 37696 36 38590 4 323961 36 333472 4 15.661 36 16.163
5 40638 37 41353 5 278585 37 288448 5 15.909 37 16.547
6 45569 38 46153 6 286653 38 293248 6 16.124 38 16.547
7 44065 39 44865 7 329604 39 341382 7 15.909 39 16.547
8 49013 40 49665 8 338317 40 346182 8 16.124 40 16.547
9 27826 41 28466 9 265312 41 273909 9 15.372 41 15.925

10 31930 42 32666 10 269989 42 278109 10 15.414 42 15.925
11 29735 43 30441 11 314721 43 324976 11 15.372 43 15.925
12 33852 44 34641 12 319526 44 329176 12 15.414 44 15.925
13 36355 45 36963 13 273960 45 283428 13 15.600 45 16.213
14 41264 46 41763 14 281222 46 288228 14 15.762 46 16.213
15 38925 47 39597 15 324054 47 335359 15 15.600 47 16.213
16 43847 48 44397 16 331800 48 340159 16 15.762 48 16.213
17 31007 49 31757 17 220516 49 227480 17 12.384 49 12.828
18 35134 50 35957 18 225230 50 231680 18 12.429 50 12.828
19 33553 51 34390 19 260965 51 269260 19 12.384 51 12.828
20 37696 52 38580 20 265814 52 273460 20 12.429 52 12.828
21 40638 53 41353 21 229363 53 237250 21 12.626 53 13.133
22 45569 54 46153 22 236766 54 242050 22 12.797 54 13.133
23 44065 55 44865 23 270537 55 279944 23 12.626 55 13.133
24 49013 56 49665 24 278452 56 284744 24 12.797 56 13.133
25 27826 57 28466 25 217752 57 224639 25 12.200 57 12.639
26 31930 58 32666 26 222296 58 228839 26 12.234 58 12.639
27 29735 59 30441 27 257648 59 265851 27 12.200 59 12.639
28 33852 60 34641 28 262294 60 270051 28 12.234 60 12.639
29 36355 61 36963 29 225693 61 233266 29 12.381 61 12.867
30 41264 62 41763, 30 232456 62 238066 30 12.509 62 12.867
31 38925 63 39597 31 266133 63 275164 31 12.381 63 12.867
32 43847 64 44397 32 273280 64 279964 32 12.509 64 12.867
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Medium Complaints

= 377

Run

No.

Facility
Location
Analysis

Total

Cost of
Operation

Number
of

Inspectors

1 33837 33 34333 1 291244 33 299577 1 16.988 33 17.530
2 38008 34 38533 2 296197 34 303777 2 17.048 34 17.530
3 36608 35 37162 3 345500 35 355458 3 16.988 35 17.530
4 40801 36 41362 4 350632 36 359658 4 17.048 36 17.530
5 43422 37 43870 5 300971 37 309292 5 17.290 37 17.846
6 48315 38 48691 6 306742 38 315298 6 17.352 38 17.914
7 47070 39 47599 7 356132 39 367531 7 17.290 39 17.914
8 51974 40 52399 8 362090 40 372331 8 17.352 40 17.914
9 30374 41 30797 9 287273 41 295572 9 16.723 41 17.263
10 34516 42 34997 10 292001 42 299772 10 16.768 42 17.263
11 32452 43 32919 11 340734 43 350652 11 16.723 43 17.263
12 36611 44 37119 12 345597 44 354852 12 16.768 44 17.263
13 38863 45 39194 13 295868 45 304104 13 16.949 45 17.500
14 43742 46 44055 14 301406 46 309853 14 16.996 46 17.551
15 41599 47 42000 15 350008 47 359894 15 16.949 47 17.500
16 46486 48 46837 16 355686 43 365798 16 16.996 48 17.551
17 33837 49 34333 17 238684 49 245339 17 13.482 49 13.913
18 38008 50 38533 18 243452 50 249539 18 13.530 50 13.913
19 36608 51 37162 19 282427 51 290372 19 13.482 51 13.913
20 40801 52 41362 20 287337 52 294572 20 13.530 52 13.913
21 43422 53 43870 21 247477 53 254077 21 13.722 53 14.163
22 48315 54 48691 22 253055 54 259871 22 13.771 54 14.218
23 47070 55 47599 23 291938 55 301019 23 13.722 55 14.218
24 51974 56 52399 24 297665 56 305819 24 13.771 56 14.218
25 30374 57 30797 25 235532 57 242160 25 13.272 57 13.701
26 34516 58 34997 26 240122 58 246360 26 13.308 58 13.701
27 32452 59 32919 27 278644 59 286558 27 13.272 59 13.701
28 36611 60 37119 28 283341 60 290758 28 13.308 60 13.701
29 38863 61 39194 29 243426 61 249960 29 13.452 61 13.889
30 43742 62 44055, 30 248820 62 255550 30 13.489 62 13.929
31 41599 63 42000 31 287078 63 294921 31 13.452 63 13.889
32 46486 64 46837 32 292582 64 300634 32 13.489 64 13.929
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High Complaints

= 544

Run

No.

Facility
Location
Analysis

Total

Cost of
Operations

Number
of

Inspectors

1 35373 33 36871 1 332961 33 341753 1 19.745 33 20.278
2 39981 34 41568 2 339501 34 349259 2 19.863 34 20.458
3 38375 35 40013 3 395484 35 405874 3 19.745 35 20.278
4 42951 36 44688 4 402379 36 413921 4 19.863 36 20.458
5 44090 37 44825 5 341265 37 350462 5 20.001 37 20.594
6 49511 38 50770 6 347871 38 357597 6 20.070 38 20.677
7 47934 39 48729 7 405969 39 415713 7 20.070 39 20.594
8 53334 40 54721 8 411369 40 422917 8 20.070 40 20.677
9 31621 41 32945 9 329001 41 337795 9 19.481 41 20.014

10 36269 42 37669 10 335099 42 344626 10 19.569 42 20.149
11 33873 43 35301 11 390732 43 401124 11 19.481 43 20.014
12 38497 44 40009 12 397096 44 408361 12 19.569 44 20.149
13 39273 45 39945 13 336343 45 345496 13 19.673 45 20.251
14 44734 46 45832 14 342693 46 352141 14 19.724 46 20.313
15 42163 47 42873 15 398652 47 409538 15 19.673 47 20.251
16 47601 48 48795 16 405155 48 416369 16 19.724 48 20.313
17 35373 49 36871 17 271870 49 279014 17 15.670 49 16.093
18 39981 50 41568 18 278046 50 285963 18 15.764 50 16.236
19 38375 51 40013 19 322175 51 330587 19 15.670 51 16.093
20 42951 52 44688 20 328632 52 337965 20 15.764 52 16.236
21 44090 53 44825 21 279381 53 286923 21 15.874 53 16.345
22 49511 54 50770 22 285775 54 293622 22 15.928 54 16.410
23 47934 55 48729 23 331453 55 339250 23 15.928 55 16.345
24 53334 56 54721 24 336853 56 346146 24 15.928 56 16.410
25 31621 57 32945 25 268728 57 275872 25 15.461 57 15.884
26 36269 58 37669 26 274552 58 282286 26 15.531 58 15.991
27 33873 59 35301 27 318404 59 326817 27 15.461 59 15.884
28 38497 60 40009 28 324438 60 333552 28 15.531 60 15.991
29 39273 61 39945 29 275475 61 282839 29 15.614 61 15.072
30 44734 62 45832 30 281665 62 289291 30 15.654 62 16.122
31 42163 63 42873, 31 325609 63 334349 31 15.614 63 16.072
32 47601 64 48795 32 331922 64 340949 32 15.654 64 16.122
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Factor levels for runs 1-64 at each level of complaints:

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CHOW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

EFF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

MPH 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1

VISITS 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1

WAGES 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

OPCOST 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

Run 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

CHOW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

EFF 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

MPH 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

VISITS 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

WAGES 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

OPCOST 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Run 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

CHOW 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

EFF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MPH 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

VISITS 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

WAGES 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

OPCOST 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Run 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

CHOW 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

EFF 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

MPH 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

VISITS 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

WAGES 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

OPCOST 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
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CHOW = Changes of ownership

EFF = Efficiency rating factor

MPH = Travel Speed

VISITS = Number of visits excluding
complaint and CHOW visits

WAGES = Salary levels for inspectors (I)
and the supervisor (S)

OPCOST = Fixed cost

= Low Value = High Value

20

.75

60

3

$14,994
$16,594

$ 600

40

.60

45

6

$16,493
$18,198

$1,200

BEST CASE - Run 25 WORST CASE - Run 40 1

Facility Location Cost $ 27,826 Facility Location Cost $ 54,721

Total Cost $217,752 Total Cost $422,917

No. of Inspectors 12.200 No. of Inspectors 20.677

Facilities Opened and Facilities Opened and
(No. of Inspectors) (No. of Inspectors)

Astoria (.346) Astoria (.755)
Bend (.373) Baker (.777)
Coos Bay (.493) Bend (.620)
Eugene (.902) Coos Bay (.761)
Medford (.879) Eugene (1.389)
Pendleton (.861) Klamath Falls (.428)
Portland (5.871) Medford (.902)
Salem (2.474) Pendleton (.502)

Portland (10.678)
Salem (3.866)



Best scan available.
Original copy faded.

APPENDIX 11

The Computer Program

-PROC.,RAM HIALTH1 '3/73 OPT=1

1

5
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FIN 4.E+_LE, 77/19/1;. C1.S

DRU,;A, HEtLTH1 ( INPJT,OUTPUT,TAFE5=INPUT,TAPEb.OUTPUT)
ITt :LC , MOTU, MEG XS ;--J-NIVT,P'TTC:r704

nIPcNSICN IFC(30),IVC(30.1LL)),HOEL(6ii,100),HDELS(E.C.30),

1MEGA2(50,3C)iJO(60,301,MINC(10C1,7(50).Y(E0,30),IJ0(3C),
2ISCL(50,1U!1,D(11'3),OFF(30),OFFF(30),AHILES(35,19Z1,
31a(F'11,1C1,k1TE.C,10),K2(60,30),LN(630-0Y,ICELJ6i;',ICOT-,IL):(3:),-
4sup;(?,10),rpm(2,13),CtLPO'1(2,10).NUHCFL(50),NUMCTY(5),TOTHH(40).
cr-FITTTS-OT,TC.n.,(J)77U4J,r.7.17T:riTT-T-57-TTF1-7.77E-miiirrTT11_-._
6,CE".CHOk(1Cfl.CUS(100),CUST(1LC)

r

C ppoGtnvvAcIAEL,-- LIST

KC - -11Or PT_ I
15 C wl - THE SET OF OFFICES THAT HAVE HEN OPENED

x7' - THE ,ET -OF-OFFICES -"'HAT-HtVE-1EEN t%CSE0'
C LN - THE SET OF CUSTOMERS WHICH CAN BE SUPPLIED BY OFFICE- DEL - THE SET nc-OFFICEs THAT HAVE-BEEN OPENEt-Ati't'PESULT-O
i. THE CELIA CALCULATIONS AND THEI.k RESPECTIVE CUSTOMERS

--FT,.:71-7FFTCS
C - CEP:,D FOR 'SERVICE, NUMBER CF HOMES
Tv^-- T1-EVART-ABLF tOSTS-RESULTING -FROm TRAVEL- COSTS ANO
CPERAIING COSTS

-t - DELTA
25 C m1=IS - OF THE DELTAS FOR t SPECIFIC OFFICE AND NOOF

- CMEGE'S
C JC - THE SET OF OFFICES W-IICH CAN SUPPLY CUSTOMER IC

- TOTtL COST
- E';U:LS a OF THE OFFICE. IS CLOSED ANC 1 IF THE CFFICE IS
OPEN

C `CL - TIF. SET OF OPEN CFFICES IN TFE TE=PINAL SOLUTIONS
hh - THE_ -lumnrRoc--1,-a!snttDFF-T.cE-to!!:t1IrNs

C N" - TF= NUH5ER Or CUSTOMEPS
LSO - UPPEP BOUND

35 C L-3D - LCWEP BOUN1
-C 'LBON -- NEw UPPER BOUND NODE

nt_e3r, - NRt; Lnw:o. BOUNC NOCE
HCO:imgER.-1)F-11S-T1 NOOtt,-IN-V.EfT.TO.ATtU--

C )7E; - II,TEPATIONS
f !DIEM - SUPERVISORS -PER -DIEM r0,= ?PAVEL TO INSPECTOR STATION

FPCM FOPTLAND
INSPECTORS. PER DIEm-FOP ONE -OAY VISIT

- INSPECTORS PER DIEM FCP THREE-DAY VISIT
a!DR(11,1)' --HIutAGE, A-S-SOCIAT.ffStPf=-10IISOP

45 C PER Cli4 COST FOP TRAVEL FRCH P1RTLAND
FC4(1,I)-- MILEAGE, AND 004(2,I) - -ASSOCIATED INSPECTO=-

CN -CtY PER DIPM
C- -CALPCM(1,I) --MILEAGE4-AND CALFDH(2,I)-- ASSOCIATED INSPECTOR

THREE-CAY PER DIEM

'r/143X----ENMPOINTOF-*-e-ITI'S-MO-C*Pte-INT.ERIAt

'30

55

IIHNG(I) - NUMtER Cr CH:,NGES OF OWNERSHIP IN COUNTY I
-T-THM - TOTAL NUM1RF, OF HOMES 'IN THE STATE
NromP - TOTAL NUm3Ek CF COMPLAINTS IN THE STATE
V:ACErT - THE COST P=R MIL= OF AN-INSPECTORS Tim=

C ,AGZS0 - THE COST PEP MILE OF IH= SUPERVISOR'S TImL

VARILLES MAY BE ;,HANGED
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Rj

-7PCr.RANI-HE--ALTH1 OP1=1:

70

79

dO
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FT -N 4.t+L.45 77/09,09. t1.71

C VISITS - THE AVERAGE NUmB7P OF TRIPS -C A HOME PEP YPAP,
C A/r4-7--4-/-TS

CAR - THE COST P: CF OPE PATING A. ST4Tr CAF
ASALI - IN7PrCTORS ANNUAL !IAL4mY
,SACS - SUPEPVISOPS ANNUAL SALARY
CPCrST - THE ADDED FIXES COST OF CPFNING A BRANCH C7FIrE

C AmPM - THE AV7RACE TRAVEL SPEED
THE '7FFIO1fLNC-Y-PA-Cit,R-F0P---Il1Y4EtT9R5 -TIMt

C

SDME CCmmENTS ABOUT T47 INPUT OATt
1. 'HE FCLLOWING MUST B'E SUPPLIED -

C NUMB:), CF NURSING FACILITY LOCATIONS (CITIES), NC
NUmBEF CF POSSIPLE INSPECTOF LOCATIONS, NW

C NUMBER rF COUNTIES WITH HOMES, NUMCC
TCTAL NUmBEP Oc JHANGE-S OF CwNERSHIP, NCkNG

C MCNIt CARLO RANDOM NJM3ER SEED, ISEEC
WAREHOUSE NUMBER tNh) FOP POPTLAND, NPTLD

C SLSTO)ER NUM3ER (NC) FOR FOCTL4NO DATA, IPTLO
2. A C T 1J A 1.---*-1t T :+t-i-N-S PECTO1?-t. OCArT -t-Ntf1--e-tSIOME1

C CITY J, AND NUMBER r7 HONES IN J MUST BE SUPPLIED
7. STEP COST MILEAGE AN' COST FIGURES ARE ENT RED NEXT -

r SuoR, CAL0Em
T. . NUmBEF CF COMPLAINTS (NUmCPL), NUM97F Oc CITIES (NU"CTY),
C AND NUmPER 07 HOMES PEP COUNTY (TO'km) MUST GE GIVEN

-f- 5. AtPk-AtETIC-Ntk,±S-P19--/N5-e=CIATICNS-ANt-kCME tee-A-TI-C-NS
C ARE READ

P. BY COUNTY, A CITY ICENTIFYING NLmBEP - NCITY -SAME AS INDEX
C I=1,NC, AND NUMBER CF t-10)'SS 77P CITY IN THE COUNTY - HOMES -

MUST 67 GIVEN.
C

T-

93 C THIS FRCGPA1 ASSIGNS TO HOMES A USER-SUFcLIED NUMBER OF COMPLAINTS AND
7- CHANGES OF OWNERSHIP BY MONTE CARLO ASS1GNmENT. -ACTUAL DISTANCE
C IS USES.

100

105

-C A 2 :VELANATI-CT, -OF-T-Tf17-11:97,7-RITUSIE1-TCT-STItVZ-TNTS-cPC-5(tEr C-X.r--9E
C FOUND IN AN ARTICLE-. 9Y KHUm4hALA, 9. m., RAN EFFICIENT B7ANCH ANC
C 90UNC -ALIORIIHm FOR-THE- WAREHOUSE-LOCATICN PPCBLEM,z ZZHANAGEMENT
C. SCIEkCEzt, VOL. ld, NO. 12, (AUGUST 1972).

C

THS- CP If 'NAL -O-CMPt1T P--(50 112 A m--C-AN-B5_`---F-0-ti-NM9--1-h---A tc-ttNotlf3t_11-Sk

OISSERTATION. YHUMAWALA, 9. M.. ZAN EFFICIENT BRANCH AND ACUND
t ALGORITHM FOR- WAREHOUSE LOCATIONS,-KRANNERT--GRADUATESCHCCL OP
C INJUTRIAL ACMINISTRATION, PUR3UE UNIVERSITY, JUNE 1970.

110

C

71! c-7.9-mATt-tItT.OTT-z-kFtCCF-7-1-Cm'-tt'e-t-T1-0111-,-.214f7-4--!VE:-11-F,
1 FACILITY . PER YEAR1/30X,14L704CBILE COST IS TI,P3.2,2 P

*ILE:/..7.C7ItCOST Oc-INSPECTOPS TIME IS !1,74.2.. °tR MILE//3CX,
1CCST CF SUFFRVISORS TIME IS Z,F4.2,1 PER .'ILE1/7CY,/CC,ST OF
1TING AN INSPECTION OFFICE IS 14t,F.2-,4 PEP Y7APz/30Y,1AV7R4G7 TPA4
1EL SPEED IT 1,E3.3,t mo-,t/13X,17FFICI7NCY FACTOR IS /,E3.2/30X,/RA

vuw91-J-c--GE-NS9A70--tE7-I-S---13,1x-Tt-T--CTALNtU'rBEF--C.'f,""PLtIT:Tf.---------------
1 = z,I4/30).(TOTAL OWNERSHIP CHANGES = 1,13)



vrCT,F'AN NOALT91 72/72 OPT=1 FTN 4.6+L-4E

149

771,79/9.

115 7F133 roPP,AT( //41X,2FACILITY LocATIon arair.F.Istr-z,4x,tFiFsT TFRMINAL S
111LUTION rCuNC WTLS . TT
1110)

1000-1 rOPYtTt13I51-
10003 rOrkAT(///EX,SOLUTION INrEASI9LET1

120 10004 FOro.ATt//5),-ATHE -DRTIMAL SOLUTION 4.TOUNC-ATER-x,I7,t -ITERATIONSt,4
1X,==,2X,r15.2/5X,tTOTAL FIXED COSTt,39X,1=1,2X,r15.2/5X1TOTAL VA
1RTA°L 7 5-XTY-THT-2UL ulIOt1r-1A-7 -r7C:1:13AT---TTr_

1ION NuHEER1,12x,1=±,7x,I7/5A,:THE MAXIMUM NUM9EP. OF NCDES USFC WAS

125 11005 FOrtny(//2A,A4,44,5X,tSUPFLIES THE FOLLOWING FACILITIES:/t-t,2F.x,t
.111A.31A9LE -.CCcl.:6Y.,1COmPLA:NTs/,Ex,r0141,E-p-sHip cH;;NcEs/00(sTA,-=p .RE
1OUIFECx,2k,-,t-DISTANCE TO t,A4,44,3Y,tNO. OF HOHESt/lX)

175

fl0T t v:7 t71E), A4, A-4,7X,1 ,F17.2,1J? rIT,-177, , ,-11-1":75.
1, LESg,12X.F4.01

10uC7 Fu..,CT(//41XiXTO'ALCOSTANALYS25/11.-t,4X,-TFC-- 017CFNTPCL17 oFrI
10E COST .5UPERVICJR TPA4EL(CA; COST AND PER DIEHS1z,61,1=z,r15.2/

- INSPI-LI:TDR-TR-AVEL( CAR--COST-ANC--PEC-=mS)75X,g=t,F15.2/5-
1Y.,tINSrECTCR5 WAGES, BASED ON SALARY OF 3t,r7.1,1 AND ,F-7.3,t INS
fr. t-T-TC4. Rt. t, J7, 15 .27 '3-Air-STIP.: ti V T. Crs7.7-a 41, tr-trD-rl.C'0TG
lt=1,EX,F9.2//5YTOTAL COST OF oPERATIONSt,56x,t=1,r15.2)

itoc8 Fr7.7rAT( /x,A4,114,7x,1127,-177u:Tsr,F7.7.,2-x-.tSTAFF.-r/9,tToT-AL -PCUND TP
lIF MILEAGE IS .F1 1.2,2 NILES.Y/9X,tCOST CF OPENING OFFICr IS $t,F
1111-.1,-r.t/9/,-tNUM2E,R-OF CCrIPLAINT-ANC-C-HANGE-of-owNERSHIP VISITS IS
1 ,F4.0)

OPNA/ t

10011 r0r,wAT( //5Y,tTOTAL INSPECTOR MILES TRAVELLF0t,6X,Y=t,r11.2/5X,zSUP
lErvISOR MILES TRAVL:LLED,11X,7=-4,F11.2/5x,tTOTAL Num.9E Cr INSFECT
10PS1,11X,1.1,p11.3)

19999 rOP).ATt20t12,1Y.))
145 23000 FCRrATt16(I2,r3.0))

20 CZ FecyA-Tt20tF4.311
21003 rO,RteT(5(2F7.2))
213C4 FCPwATt11(12,F4.t1/1-
977Pi Pc;!.AT(//5,tCOHouTATIoNS DISCGNTINuEC F07< YORE STORAGE. SOLUTION

-153 1GIvEN DELO* M.Y -NOT NECESSARILY Y--9E OPTIMAL-t1
HEAC(5,10001) ,NC,NI,NS,NL,NUHCO,NCHNG,,ISEED,NPTLD,IPTLO
riC 15! 1-1,rw

155

1E5

vii.7(5,29012) (A4ILES(I,J),J=1,Nc)
15P- CONTINUE

REA7(5,20012) (D(I),I=1,No)
P.,,A7(5,20000) (271,1t141)-,PCm(2,I)41=1,NI)
REA,(5,2007) (suPR(1,I),PR(2,I),I=1,Ns)
?ECC(5,2 001 tt t-m7-1 ti-cr vStt.POi
PEAr(5,19955) (NUHC9L(I),I.1NuHCC)
PFAFt5211:)-INUMCTYtT),ICT4t4tI),I=14NUHCC)
RFL.1*(5,110C5) tOFF(J),OrrF(J),J=1,NN)
-PEAC(5,19009) (CUSti1,CUST(J), ..t,--1,NC)-
DC 159 I=1,NUHC0

REAC(5,20C30, (NCITY(I,J),HOHEStI,J),J=1.N11
-159 CCNTINUE

S ITS=44.0

A CA II=14994.



r-mOuAM HLItLT141 -72/72-

1"P

199

900

OPT=1

wAGEr1=ASALI/(2090.*Am0H)

wAGESR.ASALS/(2090.*Am.=,H)
OPCCST=855.C9

150

77N-4,t+446 7"/03/01. 01.31

SET UP--INTERVALS FOR rON7P. CARLO ASSIGNIE-NT-BY COUNTY -OF CHANGES
OF CRNERSRIF

CALL PANSET(ISEED)
TTRit,=9,

DC 1E.0 I=1,NU,TO
T7Ht,=TTHH+ICTHm(IY-
ICHNG(I)=C
laCN-T.TNCE

DO 1E3 I=1,NC
Ocw(It=C':f..CFL(I)--DE1CHOwlI4=-0.

162 CONTINUE
SINCR=1.1/TTHI,
DC 4E2 J=1,NUP.00
-IF1-.;IST;lt-Ga
PTICX(J)=ICTHm(J)4SINCR
GC TO 162

161. PTIGY(J)=PTIDx(J-1)+TCTHm(J)*SINCR
162 CONTINUE

"s.-STG4 tHrovt=or---ruti-s14-r-p----rn C VNTrASSVett*-UNT-FCrf-,1
c DIETI9UTICN FGR CHANG:LS PER HOME

235

211

DC 1E5 I=1,NCHNG
PNC.4ANF(1fL.)
DC 166 J=1,NU4C0
IF1Cr\a;1.-::-.-F711771-11-1--70-0 TII 1-b7

166 CONTINUE
-167 CRNG (J) =ICNNIGIJ +1
166 CCNTIqUE

C SET OP INTERVAL SCALE POP MONTE CARLO ASSIGNMENT CF COMPLAINTS
C" --8Y tCUNTY-
c

NCC*P=0.
DC 170 I=1,NU4C0
NI.NumcTytI)
N2=NuY,CFL(I)

_ 143--tiCHrlO(2)-

NCC"R=NCDeP+N2
PINCR=1.0/9CTHm(I)
DC 172 J=1,N1
IF(J.G1-.1) GO TO 174-

229 PTICx(J)=HCt,ES(I.J)*RINCR
-GC 7t"," 172

174 PTICX(..1)=PT:Ox(J-1)+HOH:SlI,J)*RINCR
-192 CONTINUE

C

225 ASSIGN CCMFLAINTS TO-N,'ImES-1N-A-COUNTY USING UNIF04 CISTRIBUTION
r

IP(t'2.EC.C) .00-1.0 1'7
DO 176 19.NC=1,h2



151

PROGRAY 44LTH1 73/77 OPT71- -FTN 4.E.+446 77//C1.

C31

235

-24'0

RNc,--ANF(1CG.)
D0'171' JOTY=1,N1
I5(5N3.LE.77IDA( JCTY)) GO TO, 183

115 CONTINUE
13C DEY(ECITY(1,JOTY))=DEY(NCITY(I,JOTY))+2.

D7f.'C7L(NCITY(I.JOTY))=DEYCPL(NCITY(I.JOTy)141.
176 CONTINUE
17 7 thr.7T.C.-C). -Gr-T u 113

C ASSIGN OHANGL 07 OWNZ7SYI7 TO-HOYE-3 IK t-CUNTY USING UNI5OPY
DISTIBUTICN

DO 132 IRNC=1.N3
7N,--AN-Ft1TT:1
DC 134 JCT,I=1,N1
I7t7NO.LE.FTICYtiOT-1.1) GO T-0 J!'16

245 114 CCNTINUE
DEHtNCITY1:1,--.10TY11=1EYiNCITYCI,jCTY1144.
Dcwfkow(NCITY(I,JOTY1)=D5m.CHOH(NOITY(I,JOTY))+1.

19 C Lryliwur-
17] CONTINUE

25I 00-2 Ili-7:1-0,-W

C

ASSIGN -SUPS-PVIS07-7E-OIEY
C

255

265

270

275

290

20,5

rrtrw7nETT---Turt-Iln-Ta

GC IC 75
DO 27'IS=1.NIS
IF(A4ILES(1W,IPTt.DY,LT.SUPKt1 -.iIS) -GO TO 23

77 OCNTINUE
s-,,r-suc-Rt7,tar
GC TC 29

23 SOIE"=SUPRI2,IS-11
.29 SPCCST=ANI1ES(Iw,IPTLD)24.*(CA5,<4-hASES714-SDIEM

CCS1
-e-

I7C1Iw1=SPOCCT+OPCOST
-75 -DO 2 IC=1,NC

ASSIGN-INSJECTO-ONE---DAY-PER-OIE4---
c

oc-.1.-1-s=to,1
IF(fhILEs(iw,ic).LT.Po%1(i,Is)) GO TO
CONTINUE
POIEm=7CY(2,NI)
GC TC E

P0I5"=PD4(2.IS-11
C-

C ASSIGN INSAECTOR THREE -JAY PER DIEM

E CC 31 IL0=1,NL
I7(ct,ILES(DI,I0).LT.CADY(1,ILCI)-G0

31 CONTINUE
DfIErt=CALOYIZ,Ntt
GC TO 73



P,cOGIRtm W.ZtLT81 71/72 CoT=1

72 PoIE4L=CALF0t,(2.IC,7-11

152

FIN -77/09/19. 1.1I.2

U

C 4API52LE CCST

290 33 IF(thILES(IC).GT.60.) GO To 3.
IVC(1w,10)=AvItES(IW.I77)*2.4(CARd-wtGE,,I)-4-1(VISITS+2.14-OtIC)470

1))+PCIEN*EIVISITS-1.)*D(IC)40EM(IC))+F3IE!...*O(IC)
YC TC Z

34 IVC(IW,IC)=,"ILES( iw.IC)42.*(CAP+;,AGE"I)*(vISITS40(IC )4-0E4(IC))+-P
45 107.E1"1(VISJT`:-1.1+O(IC)+o,EmtIC))+FOIEL*0(IC)

2 CONTINUE
14;RITE(5,303) NISITS,CA=04AGE14I4wAG;7S0.0P7,071.4,40,4,EcF.IS=E.17.NCCmo,

1W-,1-NG

330 C INITIALIZATION

310-

315

320

325

NPIRST=0
NxTc=z
NKTr.1=0
LLN1T!.-9,91E1-t

XLE:=0.0
UBC=LLN
MCOE=1
NCO =;
NU9CN.NCDE
/7,,E-c=1

KOCE=0
DC 1000 IW=101w-
J0(NCD.T.,I) )=0
KZ(NCC,=,Iw)=1
K1.(NCOE,Iw1 .3

-x2(N,.,:,rw)=1
LN(NOOE,I,)=NC
Ou 10,4 IC=1,NC
JO(NCOE,TH)=JO(NOOE,Iw14-0(IO)
IF(Iw.GE.e)G3 TO 1101
ICEL(NCOE,IL)=0

1-1:1---CON7INUE
ILN(iw)=LN(NOCE,IW)
IJC(Iw).-iCtN00E,1W)

1000 CCNTINUE
GC TC ??.6

1

330

3-35

343

tczE LF-fr.TEU

1 CONTINUE
ITE;;=ITER+1
IF(l9ON.E0.1)GO-J0 4143-
IF(NKTR.=C.1.0Q.NKTI.T0.1) GG TO 4192

L193 NGDF=m0CE+1 ,

MC2E=NO0=

STC4t.G77 4L1CTMENT CHECK

GC IC 419.:



153

F90G.7:4M K-1,LTH1 73/7.! OPT=1 -FIN 4.6+446 -7'709/09 CI

4195 NOCE=KOCE
K07 = =C

345 OC F;187 IC=1.NC
I CEL (NOCE IC) =IDEL (NLBON,IC)
MDEL (NODE IC) =PD CL (NLeDN.I.=;)

t. CONTINUE
OC c? I W=1 ,NW

TIITNCTML.i10-YULOILF7TITTi41
KZ (NCOE )=KZ (NLB1N. )

X11 EC2:7-1IWI=KIINL-33NTWI
K2 (NCD.E,IM )=K2(NLB/N, IW)
LN INOCT.IWY=-LNINL30, P41

35 t."OCIS (NODE lIk )=MOELS( N1. 9ON.IW )

1.17. -5 CT c-3: = G » t14.371`,

92 CONTINUE
--GC IC 4194

»192 NOCE=NLE3N
n13 »194 IFINKT9.EG.TYGO TO 3T86

GO TC (3912,39111.NKTR
37 t, t, v U TT_ srrT7177 i-N-K171
3911 NKTC.NKTR-1

GO -TO 3913-
-'85 911 NKT;1=NKTR1-1

7913 KZ (NOC-E,KK1) =1
K2 (NCO.E.'<K10=0
,II -TO 786

3912 NKTC.NKTR-1
/7-3 GC 1C-- 3914

912 NKTC1=NKTR1-1
3914 K1 f NCO': ,KKt,)=1

K2(NODE,KKn)=0
'GC' TO '71!7

375
C S ICA T ION-CYCLE-
C

78E CONTINUE
DO 29 IC=1 .NC

8S KKI _1
KTP=C
DO 10 Ik=1 ,NW
IF (KZ (NCDE ,IW ) .E0.1)G0 TO 10
I c (1,1 ( ICDE 11W)..EQ.1-.ANO.IDtL(NOOE.11-.;) .E.-O.j14) GO TO -20

395 KTC=KTP...1

It t3,a -70 -1/

IF (KT9.E0.2) GO TO 1?
IF I IVCI lw, .GE.lTNC2-) GO -TO 1.0

GC IC 12
-390 11 m.INC1=IVCA I4, ICI

ms;=p,

GO TO -14
12 CONTINUE

'4.I6C1=ANIIN1(MINO10IVC(IWIC))
395 IC(4INO1.EC.IVCITW.ICI) GC TO 13

MINC2=IVC(IM.IO)
GO TC 10

13 -01I1Tc2=ICAtiNfiC1



DPOG=1", Hr-at.THI 73/72

400

405

41.3

-415

4?0

43)

435

440

OPT,1

10 CONTINUE
I-Fl-Kff . 01 -GC, TO 19
lc (kTP.Erl.11 GO TO 1.
0GEL(NOC_,IC) =MW
MCE.--.L (NOCE, IC) =MI NC2-9INCI
GC TO 20

13 K1 (NODE )=1
1-NOCE ?1",

KKK =KKK +1
GC TO -70

FEt fI9ILITY -CHECK
C

154

FT*4 4 77/19/-09.

t3 IF f-N-O0E.Nt G±T s0 74
WPI TE-: (6, 10003)
STOP

?) CCNTINUE
KT=,=KKK
DO 25 I W=1 ,NW
I F I r 21,4-C1 E ;4) .-EC1:11--G-3--T-Cr--25
MDELS(NCDE
OC IG=1 'NC
IF ( TCEL (NC CE 'IC) .NE.IW) GO TO 30
-MOE LE (NOCE ,It4)=MOELS(NOD7. 'Del 'OEUNODE.IC)

33 CONTINUE
F CEt. SIN C '1141 t- ,--

26 KTP:KTR
K I (NCOE.,IW)=1
K2(NCDE,IW)=0
CCNTINUE
DO 4396 IN=1,NW

r /COE /WI 01-GO TO 47,B6
GC IC 473E1

43:tE CONTINUE
GC TO 789

43-0E1 -IF tKIP.E0.0 GC TC 7a4
797 CONTINUE

OC 42 I%_1 ,t
IF(v2(NCOE.lw).E0.3) GO TO 42

(NCOE ,I141=ILN(IS4)
JO (NODE )=IJD(
OC LI. IC=I, 'NC
Mr'rICEL INC CE, IC)

T.K1tNcE: t- -a .1 G 0

L N (NODE ,DA)=LN (NODE,IW) -1
-445- Jt7; fNCOE., )=-JOtNOOE,Iiit

41 CONTINUE
L7 CONTINUE

JW=1
t3 F_ . f.4.1-: 1 t-

45) JW=JVA +1
GC TO

-4 OC 45
MIN;(IC)--=I1G(iYi, IC)

4'55 I G T kir) e-- TO-s7
DC +E. I F--:Jo%



-pR07,2A HFA1 TH1 73/71 OPT=1

460

465

475

41-u-

4.55

-1490

495

5-tn

505

511

IF(K1 (NCCE,7W).E0.3) GO TO 46
-47 Tr=10\...

mINC(IO)=48IN1(mINC(IC),IC:(Iw,IC))
L.s CONTINUE

KTR=0
DO 4c IW=1,Nw
IF(K?(NODE,Iw).E0.0) GO TO 49
mEGT-7(NO7ETIM1-=7.5TrCJINY-
DO CO IC=10,0
14,-G,15(NCD5,114)=M,TGA-SiN017-ilwr+Am11)

50 CONTINUE
I5(8EGS(NCC.,5-,IWI.,1T-.0.1 GO It- 49
KZ(NCOE,Iii1 =1
K7T-NC^r--;Iwi=0--
K7P=KTp+1

-1 COrTINUE
DO 4329 Iw=1.Nw
IFIK2iNC-CE,110.-511 G0 TO "4329
GC IC 47251

43z,a-

GO TO 789
4129I--/FTY7P)
789 Z(NCCE)=3.

DC fl Il4=1,NW
I5(kl(qCOE,Iw).E0.11 GO TO 52
TtNLL-T,:4r-c.
GO 70 60
(NCCE,Iw)=1.

C LINEAR-pRoc:FAm

rtr -CCTT:NLE
00 57 IC=1,NC
KW=ICELfNOCE,IC)
IF(K7MCDE,Kl.E0.1) GO TO 538
1Ft-te1(NCDE,KW)-.E0.1)G0 TO 54
IF(lN(NCDEON).E0.0) XX=9.999999E 50
IfftININE,WTE0.31 GO TO 1-51
XJt,tPLCATUNCNODE,KwY)
XX=IFC(xv4)/kiN

151 IF(8CEL(NO[TE,IC).GT.XX) GC 10 54
578- 314=1

IF(K7(NOOE,Jvt).E0.0) GO TO 539
3$1-=.7+,+1

GO TO 540
39 A4=IvC(J44,10)-

IF(IN(NCDE,Jw).E.C.0) XX=9.999999E 53
IFitNINCCE,J10.E0.C)-GO-TO .152--
XJN=5LOAT(LN(NGDE,JW))
xx.-IFOCJI447x.-Jr--

155

77togiol.

152 IF(kF(NCDE,JWI.E1.11 A4=44 + XJ

Kwrjw
Jw=J6+1
IFtJt4.GT.NP) -GO TO 54
DC 55 I4,=Ji,,Nw
IFIt2INCC-E.J.wtvE-f-.%11-St-7t 5.5
7!9=1,C(.1W,10)



156

r-PCGR;,+, 51,TALTH1 70/71 OP T =1

IF(LN(NODE,IW).E0.01 XX=S+9999995: 50

FTN 4.+446 7 /0Q/04,

51 077-72-1-5--
XJN,--5LCAT(LN(N0)5+IN))
XX=IFC(Iw)/XJN

157 IF(x2(NOOE,I04).E0.1)33 =9P + XX

IF(An.NE.FF1 GO TO 56
520 TF(x1(NO)S,I4).E0.1) G) TO 57

CC TO

'IF(A.NE.9E) GO TO 55
57 104-.1h

525 55 CONTINUE
54 XJN=5LOAT(LN(NO0E+<41)

/Ft!. N-1 c9E , .-E-0;

1.5(1N(NO0E,KW).E0.3) GO 70 154
XX=1./.IN

530 154 I5(K1fNC)E,KWI.E0.1) CO TO 58
Y(NCCF,Kw)=Yx + YJNO3E4K14)

58 7(NC2E)=Z(NGDE)+IVC(KW,IC)
53 /CILIN00E,-.1-CY=KW

KTP=0
535 00-4173 -11.e=1-,NW

IF(TINO0E,I+).EQ.0.) GO TO 4174
Z(NGEE)=LANCLIE).+IFC(I+0*'fINOCE,IW)-

4174 iPtY(NOCE,Iw1.E0+0..OR.Y(NODE,IW).EQ.1.) GC TO 4173

-K,F -xTR+1

543 4173 OCNTINUE
IF(kTP) 71,71,72-

71 CONTINUE

C IS 1F-1-7 S1LLTICN TERMINAL

IF(NPIRST+EC.1) GO TO 711
W4ITE(6,5813) -ZIMOOE1,ITE
N5IcST=1

550 C IS 71-E SOLLTION OPTIMAL
TT
711 IF(NCOE.E0.1) GO TO 6759

IcILEO+GT+7(NOOEtt GO-TO 791
Z (NGOE)=LLN
KOCE=NOCE555
IF(NKTR.NE.C.OP+NKTR10) GO TO 1

-GC-TO-1236
790 U90=7(KOCE)

IfiNLBONONE+1) K03E=NU6ON-
563 NUECN=N005

ITPCFT=ITE.g
7(NCOE)=LLN
IFANxTR:NE+topc.t-i-Nf-w-.'.> -Ge-i3

1136 OCNTINUE
565 JW=1

XLN=LLN
7911 114=,;k+1

I F ( Z ( J W ) . L T . U B ) ) GO TO 791:
I Fi tivf 1-1 .Ltt0---<03:- 1t+

573 7(.1)=LLN



Or;P:M HEALTH1 72/72 CPT=1

575

5715-C

595

C

-'53L1TTrm
C

/F (jw-mODE ) 7911,7794,7799
7910 XL E0=2(JW)

NLeCN=JW
IF (.,W.EO.MCCE) GO TO 7914

DO 7913 I=JW,MODE
IF (7111 ;1.7-2-31--GO-T-0--'7713-

IF ( Z(I) KODE=I
7 (I )=LLN
SC TC 7913

-77 g17. -I F T, LITO-71 :EVZ -T-71)-T-S0-1Cr-7-41

xLec=z (1)
-NL9.CN=I

7913 CONTINUE
1914 'CONTINUE

595

605

610

C

S --TFE 71t iTCr TV°, al

157

-FN 4. E 4L45- 77/x3/09. -C1.7.

.LF REC. Ll.X13C1 G-0 TO -7749
7 (NLeDN)=L1N
GO -TC 2163

72 IF ( NOCE .NE .1) GU TO 791
"XL 2O Z tNt=1
NLE.17N=N006
Z (NOCE) =LLN
GC 10 2162

74 2 (NCOE)=LLN
KOCE=NOOE
Gt -It-7731

791 IF (2(NOCE) .LT .U32) GO TO 7791
(NOOE)=L-LN

K CC E=NOCE
7791 IF iN<T9.1E.C.0R.NKT-R1.NE. J -t -GO -TO 2

GC 10 1236
21E7 JW-1

NOOP=NL EON
-5791 IF (K2 (NODE .JW).E C.1) GO TO 5762-

J h=jM41
GO TO 5741

5762 CONTINUE

615 C A c7;EE OFFICE IS SELECTEC 91' A BRANCHING CECISION PULE

625

KKw=jW
JW=JW4.1
OC 6721 I=J6,Nw
:F tK2 (NODE-, I T7-77721
IF ().EGAS (NCOE.KKW).G-7.mGA.ANOCE,I)) GO TO E721
KKktrI

4721 CONTINUE
NKT,=1=2
GC TO 1

-67 ":9 -U9B=7iNODE
I 7; OcT=ITE;



--ea-CSFtM-HEALTH1 73/73 OPT=1

633

-t3-5

643

GC TO 778
T T9 14F-Ilf (6 97 )

GC TO
7'P9 CON1INUE
97792' CONTINUE

-t

C FACILITY LCCAT:ON ANALYSTS

-645

158

FIN » 4.646 77/99/29. 01.31.

FUSC=0.
OC P3 I=1-0o,
IF(Y(NUECN.I).E.C.0.) GO To 53
FuEC=FUED.IFO(I)

pl CONTINUE

weITE(6,10304) ITER,U6),FU31,VU33,ITPCPT,moca

653

660

TOTAL COST ANALYSIS

TSNI=TI,I.)CEM=X0=0.
00 --c:3

IF(Y(NUEDN.I).E0.3.) GO TO 93
TfrI=TS!,I+A!,Itf:StI,I0T-L.-014-24.
DC P4 J=1,Nc
IFt150L(NUECN.J).NE.I4 GO TO -94
XCEfr.XCE4+CP,(1)
XC-xl.,wat.1)

IF(APILESCI,J).GT60) GO TO 95
--Tr.I=TIrI+ArISA/..1)*2-..*(OEm(J)-4-(VISIIS4-2.)*D(J))
GO 7C 94

95 TIt,I=TIP,I+Ar,,ILEStI,J)*2-..*(LEJ)*VISITS*0(J))
94 CONTINUE
-97- CONTINUE

TINSF.(X04.62.+X*9.+TIP,I/AMPH)/(2050.*EFF-45.)
SALI=TINSP*ASALI
FU,-.:.[=FUE3-764I*NAG:SP
VUEf7=vU130-I1MI*WAGEMI
TOTAL=FLI3C+VUPO+SALI+ASALS
1.4FIllttt71P-13/-0,-TrUP-aTt*SAt-T7TINTStri..-S4-Itt
WP.ITE(6,1CC11)TI4I,TSmI,TINSP

C OUTPUT FOP EACH FACILITY

670 DO P2 I=1,N
r-t-,y (NO EION I1-7711

675

68)

wPIT-7(6,10CC5) OFF(I),OFPF(I),OFF(I),CFF;-(II
TIh
DC ,P1 J=1,NC
IF(ISOL(NUEON,J).NE.I) Go To 81
TDE,=TCE+CE.,(J)

HorEYI=AmILES(I, ) )*2.41DEm(J)+(VISITS42.)*OLM
SC 10 84

$15 L'.0r-"I=At4ILES(I,J)42.4-(2Em(J)+VISITS*C(J))
n4 XINP.-(C(J)462.+07.M(J)4-5.+HO4E-MI/AmPH)/1.2050. EFF-48.1-

TINP=TINcF4XINS0

WPI1E(6,1UCC6) ,OUST 11.0.EmCPL (J),C.:"^CH'36(J) ,XINSD,



-PmnC,T01-147AITRI 7-3/77 OPT=1

565 1ILES(I,J),9(J)
-71 CONTINUE

159

rTN 4.4,L4b- -77/19/09. GI

WFI1 (5,1CCN) OFr(I),OFFF(?),TINSP,TCTMI.IFC(I),TOEm
P2 CONTINUE

STCc
ENO


