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Introduction

Formulas for the buckling loads of flat sandwich panels under unifor m
compression along two opposite edges and subject to various edg e
conditions were presented in Forest Products Laboratory Report No .
1525 . As stated in that report, the effect of shear deformation in th e
core was neglected in the derivation of the formulas, since they wer e
an adaptation to sandwich panels of formulas applicable to panels o f
plywood in which the effect is usually negligible . The present repor t

-This progress report is one of a series prepared and distributed by
the Forest Products Laboratory under U . S. Navy, Bureau o f
Aeronautics No . NBA-PO-NAer 00619, Amendment No . 1, and
U. S. Air Force No. USAF-PO-(33-038)48-41E . Results her e
reported are preliminary and may be revised as additional data
become available .

?Original report dated May 1948 .

_Maintained at Madison, Wis . , in cooperation with the University o f
Wisconsin.
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is devoted to determining approximately the effect of the shea r
deformation of the core in two groups of problems : (1) the reductio n
in the compressive buckling load of rectangular panels subject to
each of the four edge conditions treated in Report No . 1525 ; (2) the
increase in the central deflection of rectangular panels under unifor m
transverse loads and subject to the conditions that all edges ar e
simply supported or that they are all clamped .

The same underlying method of obtaining approximate results is use d
in both groups of problems . It is believed that a more satisfactor y
determination of the adequacy of the method can be obtained from th e
deflection of panels under uniform transverse load than from compressiv e
buckling loads because the latter are usually not sharply defined, bu t
are obscured to a greater or less extent by the initial lack of flatnes s
of the panels .

The method employed in treating both groups of problems was use d
in several British reports concerned with the behavior of sandwic h
panels having isotropic cores and faces . 4

The method is here extended to apply to sandwich constructions havin g
orthotropic facings and cores . Two of the orthotropic axes of th e
core and facings in the rectangular panels are assumed to be paralle l
to the edges of the panels . The third orthotropic axis is the n
perpendicular to the facings of the panels . It is believed that th e
method may be expected to yield better approximations if the Young' s
moduli of the core in the two directions parallel to the edges of th e
panel are equal or nearly equal than if they are widely different .
Hence, the method may be expected to apply reasonably well to panel s
with honeycomb cores and with cores of end-grain balsa, hycar ,
cellular cellulose acetate, and similar materials . Results for panel s

4Williams, D ., Leggett, D . M . A . , and Hopkins, H . G . "Flat Sandwic h
Panels Under Compressive End Loads," Report No . A. D . 317 4
Royal Aircraft Extablishment, June 1941 .

Leggett, D . M . A. , and Hopkins, H. G. , "Sandwich Panels and
Cylinders Under Compressive End Loads," Report No . S. M. E .
3203, Royal Aircraft Establishment, Aug . 1942 .

Hopkins, H. G. , and Pearson, S . "The Behavior of Flat Sandwic h
Panels Under Uniform Transverse Loading," Report No . S. M. E .
3277, Royal Aircraft Establishment, March 1944 .
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with either isotropic facings or cores or with both facings and core s
isotropic can be obtained at once from those for orthotropic facing s
and cores.

In order to obtain relatively simple approximate formulas, energ y
methods :are used. As in the British reports to which reference i s
made in footnote 4, it is assumed that any line in the core that i s
initially straight and normal to the middle surface of the core wil l
remain straight after the deformation. of the panel, but that i n
general it will not be normal to the'deformed middle surface bu t
will deviate from this . normal direction by an amount that is expresse d
by a parameter k. The parameter k is determined with the aid o f
energy methods . .

In applying the formulas of Part I to the buckling panels whose iso-
tropic facings'are stressed beyond the proportional limit, it i s
recommended that E f, the modulus of the facings, be replaced
throughout by a reduced modulus . This procedure was followed i n
Forest Products Laboratory Reports ' Nos . 1525-A, B, C, and D, and
was found to improve materially the agreement between the predicte d
and observed buckling loads of the panels with aluminum facings tha t
were stressed beyond the proportional limit. The complete theoretica l
justification for the replacement of E f by a reduced modulus has no t
been established . In the 'appendix to this report, however, iris shown
that this procedure is correct ,for a panel acting as a column under a
compressive load if the effect of shear deformation in the core i s
taken into account by the method used throughout the body of the report .

1 . BUCKLING UNDER COMPRESSIVE END LOAD

Expressions for the Components of Displacement and Strain

As the xy plane, choose the undeformed middle surface of the core .
The axes of x and y (fig . 1) are the intersections of this middle surfac e
with the planes of two adjacent edges of the panel. The axis of z (fig . 2 )
is perpendicular to the undeformed middle surface . In the middl e
surface of the core, let the components' of the displacement b e

u = 0, v = 0, w=f(x,y)-

	

(1 )
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where f(x, y) will be chosen to satisfy the boundary conditions in eac h
of the cases to be considered .

Denote the components of the displacement at a point of the core whos e
ordinate is z by uc , v c , and we and assume tha t

uc = -k z 6w , v c = -k z y , we = w
Y

where k is a parameter to be determined . It would probably be bette r
to use different parameters k l and k2 in the expressions for u c and vc,

but the resulting analysis would be considerably more complicated
than if the same parameter is used . Accordingly it seemed best to
use but one parameter and to determine by test the adequacy of th e
resulting approximate formulas .

Denote by ui, vi, wi (i = 1, 2) the components of the displacement a t

the upper and lower faces of the core. The subscript 1 will refer t o
the upper face, z = c/2, and the subscript 2 to the lower face, z = -c/2 ,
where c is the thickness of the core . From (2) it follows that

ui = (-1) i kc Sw v = (-1) kc Ow W. = w.
2 Sx ' 1

	

2 Sy '

It will be assumed that the shear deformation in planes perpendicula r
to the panel may be neglected in the facings because of their relativel y
high shear moduli . Denote by f the thickness of the facings and b y

ufi , Vfiy wfi (i = 1, 2) the components of displacement in the middl e

surfaces of the upper (i = I) and the lower (i = 2) facings ,
respectively, Then

i
ufi = ui + (-1)i f Sw =

	

(kc + f) Sw
2 S X

	

2

	

SX

vfi = vi + (-1)i f Sw = (-1) (kc + f) Sw

26y

	

2

	

Sy

	

(4)

Wfi = W.

(2)

(3)
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Love' s5 notation will be used for the components of strain . Primed
letters will denote components of strain in the core while unprime d
letters will denote the corresponding components in the facings . .
Then from (2) it follows that :

	

w

	

6 2w= -k z b•2w , e'

	

= -k zxx

	

w

Sx2 .

	

YY

	

6
y2

e'yz = (1-k) sy e' z - = (1-k) bx

	

(5 )

62w
. e'x = --2k z	

	

Y

	

6x6 y

From (4) it follows that the membrane strains in the facings (strain s
. in their middle surfaces) are :

S 2e

	

= ( 2 )1 (kc + f)

	

eyy = (1)1. (kc + f)
6 2w

xx

	

Sx2

	

S y2

2
exy = (-1)1 (kc + f) b w

Sxb y

Superposed on this state of strain in the facings are the flexura l
strains arising from the bending of the facings about their middl e
surfaces . These strains in either, facing are expressed by th e
equations :

62w

	

2

	

6 2wexx -z'
6x2

e yy = - z' b y2 , .e xy = -2z'
bxby '

where z' is measured from the middle surface of the facing unde r
consideration.

-Love, A. E . H., "The Mathematical Theory'of Elasticity ." 1927 .

J - _.

(6)

(7 )
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Strain Energy In the Core and Facing s

The strain energy in the core is expressed in terms of the strains b y
the following integral : 6

a b c/ 2

	

1

	

2

	

2
O O -c/ 2

	

Uc __ 2?~'

	

E'x e, xx + E, y e, YY

+ 2 E'x6'yx e' e'YY + A' µ'yz e'2yz

	

(8)

+ k' .L' zx
e' 2

zx + X' N''xY
e'2xy dzdydx

where X'

	

1-v' xy yx, E' x and E' y are Young's moduli, µ'Yy , y7 , and

µ' zx are moduli of rigidity, and er' xy and v' yx are Poisson's ratios .

After substituting the expressions for the strain components fro m
equations (5) and performing the integration with respect to z equatio n
(8) can be written in the form :

Uc = U cb + tics

	

(9)

where

a b3
Ucb 24X? S S rE'x(b22)2 + E'y ( b22 ) 2

	

(10 )
Sx

	

y
0 0

+2E'x a'

	

S2wS2w +4X' µ' ( 62w ) 2
Yx 6x2 6y2

	

xy bxSy

U

	

= c(1-k)2 a b`

	

6w
2 +

	

b~" 2

	

dydx .

	

(1 1cs

	

2

	

J Lyz()

	

µ'zx (Sx)

	

)
Y

_See for example U. S. Forest Products Laboratory Reports Nos ,
1312 and 1503 .

dydx.

0 0
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Of these two parts of the strain energy of. 'the care the first, Ucb, will
be called the strain energy of the core . in bending and the second, Ucs ;
the strain energy of the deformation of the core in shear .

The strain energy of the two facings is the sum of the strain energie s
of the states of strain (6),and (7) . The n

u

	

f(kc+f) 2
f

	

4 X

+ ZEx (ryx 62w 2 + 4X -µ(
2

)2 dydx
Sx2 6 y2 xy Sxby

- 6 2 2Ex(S2w)2+E
e---l

6x2

	

y Sy2

S 2w 6 2w

	

S2w
+2Ex6 x

	

+4µx (

	

) dydx.
y Sx2 Sy2

	

Y Sxb y

On combining these two integrals it follows that :

a b
U _ [3(kc + f) Z + fZ]f

	

J. E (6 2w ) Z
f

	

12X.

	

I }

	

x Sx0 0

2 2

	

2

	

2 2
+Ey ( S

2
) +2Exvyx62w 2 S Z +4X p. (-6

w) dydx.
Sy

	

Sx Sy

	

Sxb y

The elastic constants,that appear in (12) have the same significanc e
for the facings that those of (10) and (11) have for the core .

Case I . Panels With All Edges Simply Supported

For panels with all edges simply supported the function w = f(x, y) ,
the deflection of the middle surface, is chosen to b e

Rept. No . 1583
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Ex
(S 2w) EY (6 2w) 2

- 'o

	

Sx2

	

Sy 2

(12)



(13)

(14)

w = C sin ax sin 13 y

where

p _ na a'

	

b

In choosing the form (13) it has been assumed that the ratio Z. of the

sides of the panel is such that the panel will buckle into a single half -
wave . If there appears to be a possibility that the panel will buckl e
into more than one half-wave, p in (13) must be replaced by nE3 = nn

-
5-throughout and that value of the integer n chosen which leads to th e
smallest buckling load . This replacement can be made in the fina l
formula for the buckling load .

On substituting (13) in (10) and (11), performing the integrations and
introducing certain abbreviations it is found that

Ucb
C2abk2c32

p 2a
96x.'

u

	

C2 abc(1-k) 2 (3 2 K' ,

where

a 2H' =E' x - -2.b +E' b2 +2A'

a A' = E' a-'

	

+ 2 X' (17 )

b 2K' = µ' + µ' -yz

	

zx 2a

The substitution of (13) in (12) yields after some reduction :

cs

	

8

(15 )

(16 )
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C2 abfC3(kc+ f)2 + f2J 	 1;1
.2p2 H

	

(18)
48 X

where
2

	

'2 '
aH Ex a-+ Ey ,+ 2A

A=Exo +2).µmay

The work done by the compressive .load P per inch of edge during

	

buckling is found from the integral,

	

'

W Z I l .(w)2 dydx
0 0

to be

PC 2 abp 2

The condition for'instability of the panel is expressed b y

W • Ucb + Ucs

	

(23 )

After substituting (15), (16), (18), and (22) in (23) and solving for P
it is found that

2 1, 2 3

	

2
P=iI	 kcH' +(1-k)2cK'+

	

[3(kc+f)2 +f2]H

	

(24)
12XI a2 6Xa

In this expression k is to be chosen so- that P is a minimum .

Uf

(19)

(20 )

(21 )

(22 )
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From 6P = 0, it follows tha t.

	

6k

Tr 2f 2 H1 -
k =	 2Xa2 K'

	

(25 )

1+	 c2 H' + Tr 2 cf H
12X' a K'

	

2Xa2 K'

If this value of k is substituted in (24), an approximate formula wil l
be obtained for Pcrs' the buckling load per inch of edge when th e
effect of shear deformation of the core is taken into account . How -
ever, a further approximation is possible that leads to a muc h
simpler formula for Pcrs .

The second term in the denominator of (25) will normally be muc h
smaller than the third term . The ratio of the second to the thir d

term is found to be 6 A f H

	

This ratio will be small for sandwiche s

with weak cores and facings that are not too thin in comparison with th e
thickness of the core . For example, for a square panel whose facing s
and core are isotropic, H' = 4E' and H = 4E and X may be taken equa l

to X' . If c = O. 5, f = 0 .01, E' = 10 4 , E = 2 x 10 6 , the ratio in question
is equal to 1 x 50 x l = 1 . If the sides of the panel are 10 inche s

6

	

200

	

2 4
long, the third term of the denominator of (25) is equal to O . 282 . The
value of the second term is then O . 0117 . The change made in th e
denominator by neglecting this term is thus, in this case, about 1
percent . The term in question contains the factor H' and consequentl y
arose from the term U cb in equation (23) . It will now be assumed tha t
the term containing H' in equation (24) for P may also be neglected .
This is equivalent to neglecting the term U cb in equation (23) . When
this is done equations (Z4) and (25) take the following forms :

irr 2f
P = (1-k) 2 c K' + 6X.a2 [3(kc + f) 2 + f ] H,

	

(26 )
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- n 2 f2 H
k =	 2Aa2 K' .

X . } n2cfH
(27 )

2)a2 K1

When this value of k is sub-stituited `in (26) an approximate expression
is obtained for the critical load P per inch of edge, as corrected fo r
the effect of shear deformation in the core . This load has been
denoted previously by P

	

to distinguish it from p • , the loadcrs

	

cr
obtained by the formulas of Forest Products Laboratory Report
No . 1525 in which the effect of shear deformation is neglected .

Before this substitution is made, a change of notation will be adopted .
This is done in order to express the results in a form that will b e
found for each of the other edge conditions, although the constant s
entering the formulas for , the other 'condition will have differen t
meanings in each case .

In equations (26) and (27) le t

R =

	

n2

	

11 =
~2

	

(E b2 + E a2 + 2A) . (28)
2Xa 2 2)■.a2

	

x a2

	

- b2

Then

1 - f2 R•

	

• k-=
( 29 )

} cf R

1 L•
On substituting this value of k in (26) as modified by,-,the introduction
of R, the following equation is obtained for the buckling load Pcr s
corrected for shear :

[3f(c + f) 2 + f3(I + K')R
cfR

Pcrs - .

	

3(1
cfR+

	

)
T,

K'
, t • ~. 1
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Formula (30) can be put in a more significant form if it is noted that
the numerator divided by 3 is approximately the buckling load pe r
inch of edge of the panel when no allowance is made for the effects o f
shear deformation in the core . For if the effects of shear deformatio n
of the core are neglected, as well as the direct contribution of th e
core through its bending stresses to the stiffness of the panel, th e
buckling load per inch of edge is given by the formula_7

	

2 3

	

3

	

2

	

2
p =n (h	 - c) (E b +E a +2 A)cr a2

	

12x

	

x a 2

	

Y b 2

(h3 - c 3 )R= 3f(c + f) 2 + f3] R

	

6

	

3

4 2
Then, if the term, c f R, is neglected in the numerator of

K'
equation (30), this equation can be written in the form :

	

p

	

Pe r
crs 1 +

where

0 = c f R
K'

The term neglected will normally be small in comparison with the su m
of the remaining terms in the numerator of (30) . For

?Formulas (6) and (9) of Report No . 1525 with n = 1 . In obtaining thi s
formula approximate expressions have been used for the constant s
D1 , D2 , and K as defined on page 3 of Report No . 1525 . The
approximations consist in neglecting the terms (Ex/x)cc3, (Ey / X) cc3

and (A/x)c c 3 from the respective numerators of the definitions o f
D 1, D 2, and K of Report No . 1525 . This amounts to neglectin g
the contribution of the core to the stiffness of the panel in any othe r
way than by merely separating the faces . Obviously this approxi-
mation is justified only for cores whose elastic constants are smal l
in comparison with those of the faces .
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Now r), which appears in the corrective factor 1/(1 + r~) in (32), ma y
be expected to be less than unity in cases of practical interest . For
such cases the error cbmmitted .by , i]eglecting the term in question i s
obviously small .

In obtaining (26) and (27), and (30) which results from combining them ,
the assumption was made that Ucb , the strain energy of the core ire
bending, could be neglected . A consideration_of .the magnitudes of th e
quantities involved ' in usual sandwich constructions indicates that th e
assumption is a plausible one . ,Numerical calculations of a numbe r
of special cases have shown satisfactory agreement between th e
results obtained by using-(24). and (25) and those obtained by' using (32) ,
which is a close approximation to (30) .

The approximate formula,for Pcrs is given by equation (32) with the

constant r i defined in equation (33) . The quantities R and K' appearing
in the definition of 1l are defined in equations (28) and (17), re -
spectively.

Up to this point, it has been assumed that the panel will buckle in a
single longitudinal half-wave . If it appears likely that the panel wil l
buckle into n longitudinal half-waves, the letter b is to be replace d
by b/n in all formulas . The smallest value of P

	

that is found fo r
cr s

the various values of n is the buckling load per inch of edge .

Case II. Panels having the loaded
edges simply supported and th e
remaining edges clamped

For panels having the loaded edges simply aupported and the remaining
edges clamped the procedure is exactly the same as for Case I, excep t
that for a panel buckling in a single longitudinal half-wave the deflectio n
of the middle surface is now chosen to be given b y

w=Csin 2 axsin3y

	

(34 )

instead of by (13) .
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As in Case I, the strain energy of the core in bending Ucb is neglected .
The strain energy of the shear deformation of the core is found fro m
(11) and (34) to b e

U _C2 abc (1-k) 2 [3:.L,

	

a2+

	

a2cs

	

32

	

yz

	

zx

The strain energy in the facings, Uf, is found from (12) and (34) to b e

Uf=C2abf113(kc+f)2+f2J Exa4 +Eyp 4 + A2 a 2 R 2

	

(36 )
12X

The work done by the compressive load P per inch of edge during
buckling is found to be

W 32 P C 2 13 2 a b

From the condition for instability of the panel

W=Ucs +Uf

it follows that

P c(1-k) 2 IV

	

C3(kc+f) 2 +f2' R
3

	

9

where

K' =3µ'yz+4µ'zX ,
a

R= 8 . rr 2 E b 2

	

3 E a 2 + A
xa2

	

x a 2 + 16 yb2 2

(3 5 )

(37 )

(38 )

(39 )

(40 )
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The load P will be a minimum with respect to k i f

k =	 K'
1 + c f R

K'

This expression for k is the same in form as that in equation (29) bu t
the quantities K' and R are defined by (39) and (40) instead of by (17 )
and (28).

The substitution of this value of k in (38) yields, after some reduction ,

p

	

J3f(c + f) 2 + f3 (1+TI)]R
crs

	

9(1 + ti)

(41 )

(42)

1 - 12R

where

cfR
K'

(43 )

After neglecting the term f3 T1 R, equation (42) can be written

Pcrs

	

F'cr

	

(44 )
1 + 1]

where Pcr is the buckling load per inch of edge without correction fo r
shear deformation, for in accordance with equation (11) of Fores t
Products Laboratory Report No . 1525 ,

1 bn2

	

b 2

	

3

	

a 2 K
Pcr

	

D1 a2 + T6 D2 b 2 + 2

_ (h3 - c3)R = {3f(c + f)2 + f3]R
18

	

9

(45 )
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In arriving at this form, the contribution of the core was neglecte d
in calculating? D I , D2,_ and K. The justification for neglecting the

term of f3l R in the numerator of equation (42) is found in the dis-
cussion following equations (32) and (33) .

The analysis just given assumes that the panel buckles into a singl e
longitudinal half-wave . If there appears to be a possibility that th e
panel will buckle into more than one half-wave, (3 in (34) must b e

replaced by n p - n b throughout and that value of the integer n chose n

which leads to the smallest buckling load . As in Case I, this re -
placement can be made in the final formulas .

Case III . Panels having the loaded
edges clamped and the remaining
edges simply supported

The analysis used in the remaining cases is identical in plan wit h
that used in the previous cases . In each instance, the buckling load
per inch of edge is given by the formul a

P

	

= Pc r
crs 1 + i

where Per is the buckling load per inch of edge without correctio n

for shear, as obtained from the approximate formulas of Fores t
Products Laboratory Report No . 1525, the core being neglected in
calculating? D I , D 2, and K and wher e

cfR
r 1 = K'

with proper definitions for R and K' in each instance .

From this point on, only the form assumed for the deflected middl e
surface and the expressions for the quantities P cr , R, and K' will b e
given.

(46)

(47)
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(h3- c3)R
pcr

	

3 0

For one longitudinal half-wave :

w = C sin a x sin2 Ry,

b 2
K' =4µ'yz+3µ'zx- ,

a 2

2

	

2

	

2
AR= 8~ 2 ( 3 Exb+E a +),

) a

	

a 2

	

Y b2 2

p
= (h

3	 -	 c3) Rcr

	

24

For two longitudinal half-waves :

w = C sin a x sin (3y sin 2 3y. (51)

(This choice is suggested by the fact that w vanishes along the nodal
line, y = b/2, while the slope does not vanish along this line . )

K' = 5µ' yz + µ' zx

	

(52 )b

IT2

	

b 2

	

a 2
R =

	

(Ex

	

+ 41 Ey

	

+ 10A) ,
2xa

	

a 2

	

b 2

For three longitudinal half-waves :

w = C sin a x sin Py sin 3(3y,

b 2K' =10µ'yz+ zx b 2a

R. = n2 (Ex b2 + 136 E a2 + 20A) ,
2Xa

	

a

	

Y b2
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(49 )

(50 )

(53 )

(54 )

(55 )

(56)

(57)



(66)

	

p = (h3-	 c3 )RCr 6 0

Case IV . Panels having all edge s
clamped. For one longitudinal
half-wave :

w = C sin2 a x sin2 Py,

2
K, = µ' yz + zx ba

2

	

b2

	

2
R= i (3Exb2+3E a +2A),

3Xa

	

a

	

Y

P = (h3 - c 3 ) Rcr

	

6

For two longitudinal half-waves :

w = C sin2 a x sin Py sin 2Py,

b 2K' = 15µi yz + 4µi zx

	

,a z

1-21R = T2(16Ex aZ + 123 Ey b2 + 40A)
2Xa2

For three longitudinal half-waves :

w = C sin2 a x sin py sin 3 Py,
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(h3 - c3 ) R
Pcr = 90

(58)

(59)

(60)

(61 )

(63 )

(64)

(65)



K' =15 '

	

+ 1 '

	

b2
4 µ yz 2 µ zx

~2

	

b 2

	

a2R =

	

(2E - + 51E - + 10A),
2)■a2

	

x a 2

	

Y b 2

2(h3 - c3 ) R

	

P =cr

	

45

In all cases the constant R, which appears in (33) (also in (43) and
(47)), the definition of ri; may be expressed in terms of P by solvin g

c r
the appropriate equation connecting Pcr and R.

2 . DEFLECTION UNDER UNIFORM TRANSVERSE LOAD

I . Panels with simply supported edge s

The increase in the central deflection associated with shear defor-
mation of the core will be determined approximately by assuming tha t
the displacements of points in the core are represented by equation s
(2) . The form of the deflected middle surface of the panel is taken t o
be given by equation (13) ,

w = C sin ax sin Py..

The coefficient C, the deflection at the center of the panel, and th e
parameter k of equations (2) will be determined to make a minimu m
the total potential energy of the system composed of panel and load .

A more general procedure would be to follow that used in the paper b y
Hopkins and Pearson . and take w to be given by

w= E

	

E w

	

, (71 )

where

m n mn

wmn = Cmn sin amx sin (a ny (72)

(68 )

(69 )

(70)
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mgr

	

_ MT
am= a , Rn- b

The expressions (2) for the displacement would then be replaced b y

uc = -Em En k mn
z S Sx

n , vc = - Em En kmn b
Smn

	

(74)
Y

The use of the energy method will lead to pairs of equations, each pai r
containing only one of the coefficients C mn and the associated paramete r
kmn. For a panel that is square or nearly so, however, the assumptio n
of a single term as in (13) of the double Fourier's series for w lead s
to quite accurate values of the central deflection for panels in whic h
the effect of shear deformation can be neglected . The following
analysis is based upon the use of equation (13) .

It will be assumed that sides of the rectangular panels considered ar e
nearly equal . On the basis of the behavior of panels of isotropic
materials in which correction for shear deformation is not necessary ,
it appears that satisfactory results may be obtained by the use of a
single term of (71) if the ratios of the longer to the shorter side i s
less than 1 .4 . This statement applies only to the calculation of th e
central deflection . More terms are necessary for the calculation of
bending moments and shearing forces .

By using equations (13) and (2) the expressions for U cs , the strain
energy of the deformation of the core in shear, and Up the strain
energy of the facings, are given by (16) and (18), respectively . As

8,For orthotropic panels, the ratio in question is b E1 1 / 4 where El
a E2

associated with the direction x parallel to the side a is defined by th e
Ex (h3 - c 3)

	

E (h3 - c3 )equation E l =	
h3
	 and in like manner E2 =	 y	

h 3
	 , Ex

and Ey being the moduli of the facings . In case the ratio as determined
in this way turns out to be less than unity, interchange b and a, and E l
and E2 to determine the approximate range within which restrictio n
to a single term of the double Fourier's series may be considered t o
be adequate .
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in the case of buckling, the strain energy of the core in bending will b e
neglected . The work WI done by the uniform load p per unit area i s

W t = p S f w dydx = 4pab C

0 o

	

n

The total potential energy of the system is then

W=Ti cs +Uf - W 1

In the expression (18) for Uf introduce the quantity R, which will be
defined in terms of H by the equation

(75 )

(76)

Then (76) becomes

2
R= L

2Xa2

H = a2 H
2K

(77 )

W = C 2 abc (1 .. k) 2 p2K , + C 2 abf [3(kc + f) 2 +f2J (3 2R 4pabC (78 )
IT

8

	

24

	

2

In this equation K' is defined by (17) and H, which occurs in the definitio n
of R, is defined by (19) .

The quantities C and k are to be found from the equation s

6W

	

6 W=0and= 0
6C

	

6k

6W = C abc (1 k) 2 13 2 K' + C abf [3(kc + f) 2 +f 2]R 2R - 4pab = 0 (79 )
6C

	

4

	

12

	

.Tr 2

4

	

4

From (80) it follows tha t
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6W = -C 2 abc (1 - k) 13 2K' + C2 abcf (kc + f) PZR = 0

	

(80 )
6 k



f2R1 _
(81 )K'k =

1 + cfR
K '

On substituting this value of k in (79) it is found that (79) reduce s
following equation :

to th e

cf4R2
CE3 2 [3f(c + f) 2 + f 3] R +	 K'

1+ cfR
K'

12
(82)

Let

cfR
K'

and note that

	

3

	

3
3f(c + f) 2 + f3 = h	 - c

2

It follows from (82) that

g6p

	

(1

	

TO

	

C w2 r3 2R (h3 - c 3 + Zf3 r1)

	

+ )

In accordance with the discussion following equations (32) and (33) th e

term 2f3 1 in the denominator will be neglected in comparison with
(h3 - c 3 ) . Then (85) becomes

	

g6p(1+ T~)	C = _	
2 I3 2R (h3 - c 3r

	

)

For a panel in which no correction is to be made for shear deformatio n
in the core, the parameter k of equations (2) is to be replaced by unity .
At the same time replace C in (13) by C o so that Co is the centra l
deflection of a panel for which no correction for shear deformation i s
necessary . The expression for the total potential energy then becomes :

(83 )

(84 )

(85)

(86 )
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Co t ab(h3 - c 3 ) ‘3 2R 4p ab Cow

48

	

Tr 2

if use is made of (84) .

It follows immediately from the equatio n

5W

96p

Tr 2(32 R(h3. -

The presence of the factor (h 3 - c 3 ) in equation (88) is to be attribute d
to the fact that the contribution of the core to the bending stiffness o f
the panel has been neglected .

Equation (86) may then be writte n

C = Co (l + ri) (89)

This equation states that the central deflection of a panel as corrected
for the effect of shear deformation in the core is to be found b y
multiplying by the factor (1 + 11), the central deflection as calculate d
for the panel without allowance for the effect of shear deformation .
The quantity Tl is defined by equation (83) . Written out in ful l

b 2

	

a 2
Tr 2 cf (Ex

	

+ E 2 + 2A)=

	

a

	

Yb

	

(90 )

2xa 2

	

+(µ~yz

	

zx a
')

where the primed letters for the elastic constants refer to the core an d
the unprimed letters for such constants refer to the facings .

that

(87 )

(88 )

Rept. No . 1583

	

-23 -



II . Edges clamped

The form of the deflected surface will be chosen to b e

w = C sin2 a x sin2 (3y

	

N.

(91 )

where

ITa=

	

, _ir
a

	

b

This choice of the form of the deflected surface leads to satisfactory re-
sults for the central deflection of isotropic panels in which shear defor-
mation can be neglected if the ratio of the larger to the smaller side o f
the panel is less than 1 . 4. For the corresponding ratio in the case o f
orthotropic panels see footnote . .By using equations (11) and (12), th e
strain energy Ucs of the shearing deformation of the core and U f , the
strain energy of the facings, are found to be, respectively :

U = 3C2abc (1 - k)2 p 2K'
'cs

	

3 2

C 2abf [ 3 (kc + f) g + £g] i gR
Uf

_

32
(93 )

where

K' =p' Yz + b 2
zx

	

'
a

(94)

R = 2n2 (3E
b2

+ 3E a2 + 2A)

	

(95 )
3Xa2

	

x
a 2 b 2

The work W t done by the load is readily found .

W t = p ( ( w dydx =
p C ( (

sin2 ax sin2 (3y dydx = pCab

	

(96 )

0 0

	

0 0
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The total potential energy W of the system is therefor e

W=U +U - W
cs

	

f

W _ 3C 2abc (1 - k) 2 R 2K' + C 2 abf [31kc + f)2 +f	 P 2R
32

	

3 2

The values of k and C that render W a minimum are to be obtained fro m
the equation s

SW = 3Cabc (1 k) 2 r2K' + Cabf f3(kc + f) 2 + f2] (32 R - pab = 0 (98 )
SC

	

16

	

16

	

4

SW - 3C2abc (g - k) R2K' +	 3C 2abcf (kc + f) (3 2R = 0
Sk

	

16

	

1 6

From (99)

f2R_1 -k	 -Kr
1 + cfR

K'

By substituting this value of k in (98) the following equation is obtained :

[3f(c + f )2 + f3 R + cf4R2
K'

Let

cfR
K'

and make use of equation (84) . It follows from '(101) that :

pCab-
4

(97 )

and

(99 )

(100 )

Cpl
16

(101 )

(102 )
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C=_	 8p (l+rl)	

p 2R(h 3 - c 3 + 2f 31)

If 2f 3 1 is neglected in comparison with h 3 - c3 , equation 103 becomes :

C= 8p(l +r) )

p 2R(h3 - c3 )

If Co denotes the central deflection of a panel when no allowance is mad e

for shear deformation, it is easily found from (97) by setting k = 1 and
C = C o , that

	

C	 8po =
R 2R(h3 - c3 )

It is readily checked that, for a panel of isotropic facings and core i n
which the contribution of the core to the bending stiffness is neglected ,
equation (105) gives the central deflection with an error of less than 4
percent if the ratio of the longer side to the shorter side of the pane l
is 1 . 4 or less .

In accordance with equations (104) and (105) the correction of th e
central deflection for shear deformation in the core is to be obtaine d
from the equatio n

C = Co (1 + 11), (106 )

where rl is defined by equation (102) .

	

Written out in full

b 2

	

a2
21r 2cf(3EX a2 + 3E bZ + 2A)

(107 )r1 = 2
3)`a (µ yZ + µ ZX a2)

The argument for neglecting the term of 2f 3 r1 in the denominator of
equation (103) is identical with that following equations (32) and (33) .

(103 )

(104 )

(105 )
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a, b

c
f
h=c+2f
exx . . . . exy
e'

	

. . e'xx

	

xy
uc , v c , wc
u, v, w
ui , vi ,wi (i=1,2)

ufi , vfi , wfi (i = 1, 2 )

Ex, Ey

E', E'x

	

y

K'

P
Pcr s

Pcr

R

Uc

Ucb

Uc s
Uf
W

Notation

dimensions of the panel with the sides b paralle l
to the line of action of the compressive load .

thickness of the core .
thickness of each facing .
thickness of the panel .
components of strain in facings .

components of strain in core .

components of displacement in core .
components of displacement at center of core .
components of displacement at upper and lowe r

faces of core, respectively .
components of displacement in middle of uppe r

and lower facings, respectively .
Young's moduli of facings .

Young's moduli of core .

a constant in the formula 71 = cfR/K' . A different
definition in each case .

transverse load per unit area .
compressive buckling load per inch of edg e

corrected for the effect of shear deformation .
compressive buckling load per inch of edge whe n

effect of shear deformation is neglected .
a constant in the formula 71 = cfR/K' . A different

definition in each case .
strain energy of deformation of the core ,

associated with buckling .
flexural strain energy of the core.

strain energy of shear deformation of the core .

strain energy of deformation of the facings .

work done by the load P per inch of edge o f
sandwich. It is associated with the shortenin g
of the panel in bending to the form w = cf(x, y) .
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X = 1 - axy ayx for the faces .

Q- '

	

- 'xy

	

yx
for the core .

µxy shear modulus of facings in plane xy correspondin g

to the orthotropic axes x and y .

yz,

	

zx '

°xy ' °yx

Cr' xy'

	

v'
yx

µ' xy shear moduli of core .

Poisson's ratios of facings .

Poisson's ratios of core .
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APPENDIX9

Use of the Reduced Modulus in the Buckling Formulas

for Isotropic Facings When the Facings Are Stresse d

Beyond the Proportional Limi t

In Forest Products Laboratory Reports Nos . 1525-A, B, C, and D th e
buckling stress for the sandwich panels with aluminum facings wa s
usually above the proportional limit . In such cases the formula fo r
calculating the buckling stress was modified by replacing the modulu s
of the facings by . a reduced modulus . A theoretical justification o f
this procedure is not known, but it leads to results that are considere d
to be in satisfactory agreement with the results of tests .

Some support can be found for this procedure by applying the method o f
Williams, Leggett, and Hopkins± that was applied in the present repor t
to the buckling of sandwich panels, to the buckling of a sandwich colum n
whose isotropic facings are stressed beyond the proportional limit . It
will be found that the formula for buckling below the proportional limi t
stress will apply if the Young's modulus of the facings is replaced by a
reduced modulus, Er .

1

In I;figure 3, A, is shown a section of the column made by a plane perpe n
diCular to the facings and parallel to the direction of loading and i n
figure 3, B, is shown a part of this .section drawn to a larger scale . It
is assumed that, at the instant when buckling begins, the modulus of
the facing that is beginning to be convex outward becomes, because o f
the diminishing stress in that facing, the usual modulus of the materia l
of the facings below the proportional limit . In the facing that i s
concave outward the modulus will be the tangent modulus of the
material at the stress at which buckling begins . As a consequence ,
the neutral axis will be displaced by an amount that is to be determined
in the course of the analysis .

-This appendix was prepared from the notes of C . B. Smith, formerl y
mathematician at the Forest Products Laboratory .
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Let the x-axis be chosen to coincide with the neutral axis at the instan t
at which buckling begins . In figure 3, B, the facing that is to be convex
outward (the left-hand facing) is taken to be at a distance t from th e
x-axis, while the other face is at a distance c-t . The modulus in the
left-hand facing, z > t, will be Ef, the modulus of the facings at a

stress below the proportional limit, while that in the right-hand
facing will be Et , the tangent modulus of the material of the facings a t
the stress in question .

Denote the core, the left-hand and the right-hand facings by the sub -
scripts c, 1, and 2, respectively . Denote components of the dis-
placement parallel to the x and z axes by u and w, respectively, an d
assume that w is independent of z .

In the core let

uc= -kz S x

Then at the inner boundary z = t of the left-hand facin g

ul =-kt 6 w
S x

And at the inner boundary z = -(c - t) of the right-hand facin g

u2 = k(c - t) 6w
S x

The effect of shear deformation in the facings will be neglected . Hence ,

at the center, z = t + f , of the left-hand facing ,
2

u =u

	

f5w =_(kt+f) Sv'fl

	

1 2 Sx

	

2 S x

and at the center, z = -(c , t) - f of the right-hand facing .
2

uf2 = u2 +2f bbw x = k(c

(108 )

(109 )

(110 )

(112 )
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The expressions for the strains in core and facings follow:

In the core the shearing strain i s

(e ) _ buc + 8w = (1 - k) 8w

	

(113 )

The energy of the core that is associated with the direct strains (exx)c
that are developed in bending will be neglected . Consequently, an
expression for this component of strain will not be written down.

xzc

	

8z

	

6x

	

6

x exx = -(k t +-) 6 2w , in the left-hand facing ;

	

(114)

The membrane strains e xx in the facings are :

2 6x2

exx = k(c - t) + If 6 2w , in the right-hand facing .

	

(115 )
2

	

2
6x

The flexural strains of the facings associated with bending about th e
middle planes of the facings will be expressed as usual :

where z' is a coordinate perpendicular to each of the respective middl e
planes of the facings .

Let

(116)

be the modulus of rigidity of the core in a plane perpendicular to th e
facings and parallel to the direction of loading .

6 2w

8x2
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As usual, assume that the lateral deflection of the column as bucklin g
begins is given by

w = A sin a x

where

(117 )

(118)

and L is the length of the column.

The strain energy Wc of the core per unit width associated with this
lateral deflection is, since the energy of the core in bending i s
neglected,

(
L t

We
2 J

f

	

(eXZ )2 dzdx
o t-c

(119 )

, L t
~ (1-k) 2

2

	

_c
( ) 2 dzdx

=	 (1-k) 2 A2a2Lc
4

The strain energy Wf of the facings per unit width is made up of tw o
parts for each facing, one part being associated with the membran e
stresses, the other with the flexural stresses . It is to be noted that
in one facing E = Ef , while in the other E = Et. Since w is positive in
the direction of z positive, the left-hand facing of the column i n
figures 3, A, and 3, B, will be considered to be convex outward .
Consequently, Ef is to be associated with the left-hand facing and Et
with the right-hand facing . Accordingly with subscripts 1 and 2
referring to the left- and right-hand facings, respectively ,
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Wf = f L( Ef(e )2 dx + 2. L Et(exx)2 dx
J

	

~oo

	

'

+ 24X L Ef(S22)2dx+ Z4~ L Et (S2Z )2 dx

	

(120)

	

o

	

bx

	

I

	

6x

-Eff (kt + -) 2
L

(62w) 2 dx + Etf Ek(ct) +

	

2 L 62w} 2 dx

	

2 f Sx2

	

2~

	

2

	

f S
0

	

0

3 L

	

3 L
+ Eff r (62w ) 2 dx + Etf y ,62w ‘ 2 dx

24X ) 6x‘

	

24X

	

63E2
0

	

0

After entering the value of w from (117) it is found after some re-
duction that

2 4
Wf = A	 48X fL 12Ef (kt + 2)2 + 12Et k(c-t) + z 2

	

(121 )

+ (Ef + Et) f2

The work W t done by the compressive load P per unit width in bucklin g

to the form (117) is given by

L

S
0

P
WZ = 2

(8w )2 dxSx (122 )

Then

P A 2 a 2 LW 1 =

	

4

(123 )
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From the condition for instabilit y

W t = W e + Wf

it is readily found tha t

P = (1 - k) 2 c +
1 Z~

12Ef (kt + 2 ) 2

+ 12E t
[k(c -

t)+- 2 +(Ef +Et)f 2

The parameters k and t are to be chosen to make Pa minimum .

6PFrom -- = 0, it follows tha t
6 k

fat Eft(kt + -) + Et(c-t) k(c-t) + Z

	

- Xµ' (1 -k)c = 0

	

(126 )

From
SP = 0 it follows tha t

Efk(kt +± ) - E tk k(c-t) + 1 = 0 .

	

(127 )
2

If equations (126) and (127) are solved for k and these values of k ar e
equated, an equation is obtained that can be solved for t . It is found
that

l.µ' [2Etc - (Ef - Et )f] - cf 2 a 2 Ef E t
t =

2 Fµ' (Ef + Et) - f2 a 2 Ef Et]

(124)

(125 )

(128 )
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On substituting this value of t in the equation expressing k in terms of

	

t that is obtained from (127) it is found that

	

-

(Ef + Et) - f2 a2
k

XN.' (Ef -+ E) + cf a2 Ef Et

After substituting (128) and (129) in (125) and making rathe r
reductions it is found that

cf a2 E
121

	

1 +	 r
2kµ '

where

E =

	

-r Ef +Et

In equation (130) it will be convenient to introduce the abbreviatio n

cfa2 E

	

Tr2 cf Er

	

r
11=	

2}iµ'

	

2k L 2 µ'

If, further, the term 2Er f 3 is added and subtracted in the numerator o f
equation (130) and the relation,

h3 - c 3 = 6f(c+f) 2 + 2f 3,

cf a 2 Er

P

	

= a2 6Er f(c+f) 2 + f3 (Ef + Et) 1 +	
µ°	crs

	

2 h

2Ef Et
131 )

(132)

is used, this equation can be

_ 11.2 Er (h3 - c3 )
Pcrs

written:

+
f3 [(Ef + Et) (1 + r~) - 2E]
-	

E r 6f (c + f) 2 + 2f312k L 2 (1 + I)
(133 )

Rept. No . 1583

	

-35 -



By reference to equation (32) of the body of the report it is easy t o
identify the coefficient of the expression in brackets with the buckling
load per unit width of a very wide (a - co) isotropic sandwich panel o f
height L whose faces have the modulus E r. This expression als o
includes the correction for shear deformation in the factor 1 + q in
the denominator, for it follows from (31) with b = L and a = co, and
with Ex = Ey = A = Ef for isotropic facings that

,w2(h3 -
c3) EfP (134 )

cr

	

12X. L2

and from (33), (28) and (17) under the same circumstances that

(135 )
.n.2 cf Ef

2XL2 µ'

It may be noted that in the expression (132) for the modulus Ef i s
replaced by the modulus Er .

For cases of practical interest the second term in the brackets in equatio n
(133) can be neglected in comparison with unity . Then equation (133 )
becomes

12x L2 (1 + r~) 12k L 2 (1 + n 2 cf EJ

2), L2

Now from (134) and (135) when the buckling stress is below the pro-
portional limit

n2(h3
- c3)Ef

	

n2(h3
- c3 ) EfP =	crs

	

2

	

2 cf Ef )12X L2 (1 + ii) 12X L2 (1 +	
2 . L 2 µ'

It is evident that (136) is obtained from (137) by replacing E f throughout
by Er . This fact is adduced to give some support to the procedure of

n2(h3 - c3) Er	 n2 (h3 - c 3 ) E
P

	

=	 r	 	 (136 )crs

(137 )
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replacing Ef throughout by Er in the formulas for the buckling loads o f
panels with various edge conditions if the isotropic faces are stresse d
beyond the proportional limit .

Except for very high stresses for which the tangent modulus E t is a
small fraction of the modulus Ef, the reduced modulus E r , as defined
by equation (131), agrees closely with usual reduced modulus define d
by the equation

'E
= 4Ef Et

r (+J)2
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. 4-40



M 75977 F

Figure 1 .--Flat sandwich panel in compression .

Z

0

2 K 75978 F

Figure 2 .--Cross section of sandwich panel .

t f



A
z 14 75979 F

Figure 3 .--Cross sections of sandwich column . A,
entire column ; B, portion of column showing
position of neutral axis .
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