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This thesis is the combination of two research publications working towards

automating functional modeling. Functional modeling is an underutilized yet crit-

ical tool for concept generation and product design. Understanding the difficulty

both novice and expert designers have in implementing functional modeling in

their design process, this research sets out to streamline the process of functional

decomposition and help designers include functionality in their designs. Using ex-

isting consumer product data from a Design Repository database, we developed an

algorithm to find correlations between component and function and flow, returning

component-function-flow (CFF) combinations. The automation process organizes

these connections by component-function-flow frequency (CFF frequency), thus

allowing the creation of linear functional chains.

The first publication explores a preliminary method to automate the generation



of linear functional chains using an Automated Frequency Calculation and Thresh-

olding (AFCT) Algorithm. We use datasets of various scale and specificity to find

correlations between functions and flows for components of products in the Design

Repository. We use the results to predict the most likely functions and flows for

a component, and then verify the accuracy of our algorithm by cross-validating

a subsection of the data against the automation results. We then apply existing

grammar rules to order the functions and flows in a linear functional chain.

The second publication describes the methodology used to develop a new met-

ric, which we refer to as weighted confidence, to provide insight on the fidelity of

the data returned by the above AFCT algorithm. In the previous publication, we

found that CFF frequency is the best metric in formulating the linear functional

chain for an individual component; however, we found that this metric did not ac-

count for prevalence and consistency in the Design Repository data. The weighted

confidence metric is calculated by taking the harmonic mean of two metrics we

extracted from our data, prevalence, and consistency.

Improving these automation results, allows us to further our ultimate objective

of this research, which is to enable designers to automatically generate functional

models for a product given constituent components.
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with all my scattered interests and for whole heartily supporting me in this latest

endeavour. Last but not least, I would like to thank my sweet adorable parents,

Larry and Sue Edmonds, who have helped give me lots of opportunities to learn

and grow throughout my life.



TABLE OF CONTENTS

Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Glossary of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Functional Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Design Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 An Association Rules Approach for Mining the Relationship between
Product Components and Functions . . . . . . . . . . . . . . . . . . . 11

3.2 Optimizing an Algorithm for Data Mining a Design Repository . . . . 14

3.3 Summary of Manuscripts . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Data mining a design repository to generate linear functional chains: a step

toward automating functional modeling . . . . . . . . . . . . . . . . . . . 16

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.1 The Design Repository . . . . . . . . . . . . . . . . . . . . . 22
4.3.2 Machine Learning and Data Mining . . . . . . . . . . . . . . 24

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.1 SQL Query . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2 Automated Frequency Calculation and Thresholding Algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5.3 Using F1 Scores to Validate Accuracy . . . . . . . . . . . . . 36
4.5.4 Linear Functional Chains . . . . . . . . . . . . . . . . . . . . 38

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



TABLE OF CONTENTS (Continued)

Page

5 A Weighted Confidence Metric to Improve Automated Functional Modeling 46

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.1 Automated Frequency Calculation and Thresholding (AFCT)

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.2 Weighted Confidence Metric . . . . . . . . . . . . . . . . . . 57

5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5.1 Automated CFF frequency Calculation and Thresholding (AFCT)

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5.2 Weighted Confidence Metric . . . . . . . . . . . . . . . . . . 66
5.5.3 Linear Functional Models . . . . . . . . . . . . . . . . . . . . 70

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A Functional Model Example . . . . . . . . . . . . . . . . . . . . . . . . 93

B Additional Component Examples . . . . . . . . . . . . . . . . . . . . 94



LIST OF FIGURES

Figure Page

4.1 Cost Analysis Over Time During Concept Generation . . . . . . . . 20

4.2 Design Repository Data Schema [6] . . . . . . . . . . . . . . . . . . 23

4.3 Example of Grammar Rule application . . . . . . . . . . . . . . . . 34

4.4 Query Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Frequency Algorithm Results for Components in the Consumer Prod-
ucts Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Component Based Linear Functional Chains . . . . . . . . . . . . . 40

5.1 Design Repository Data Schema [6] . . . . . . . . . . . . . . . . . . 54

5.2 Example To Illustrate Threshold Automation For The Component
Pulley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Consistency Versus Prevalence . . . . . . . . . . . . . . . . . . . . . 68

5.4 Weighted Confidence Verus CFF Frequency With The Occurrence
Of The Component As The Size Of The Bubble . . . . . . . . . . . 69

5.5 Example Data For The Four Quadrants Of Combined Weighted
Confidence And CFF Frequency. . . . . . . . . . . . . . . . . . . . . 71

5.6 Linear Functional Chains Of The Four Examples in Figure 5.4 . . . 73



LIST OF TABLES

Table Page

1.1 Terminology Utilized Throughout This Thesis . . . . . . . . . . . . 4

3.1 Sample of Verification Dataset [44] . . . . . . . . . . . . . . . . . . 14

4.1 Accuracy Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Example dataset to illustrate threshold automation for the compo-
nent Electric Cord . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Validation Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Sizes of Testing and Training Sets . . . . . . . . . . . . . . . . . . . 38

4.5 F1 Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Metrics Developed For Weighted Confidence . . . . . . . . . . . . . 59

5.2 Description Of The Combination Of CFF Frequency and Weighted
Confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Range, Average, and Median Of The Component Function Flow
Associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



LIST OF APPENDIX FIGURES

Figure Page

A.1 Black And Decker Dustbuster Functional Model . . . . . . . . . . . 93

B.1 Example Components To Illustrate Limitations Of Threshold Au-
tomation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



Chapter 1: Introduction

The concept generation phase of the design process is an area where the most

creativity and innovation occur [47]. This early design phase is where the least

cost for changes occurs, so there is significant research on tools and tactics to

improve the concept generation phase and how to improve the efficiency of the

process. There are multiple tools that product designers use during this phase

to help guide the creative process towards a viable concept. One of these tools

is deriving the functionality of the product through a functional decomposition,

graphically represented by a functional model [45] [2]. Consistency and unifor-

mity are built into the process with the widely accepted use of the Functional

Basis and Component Basis terms [40] [17] [23]. However, even with consistency

built into the process, functional models can vary widely by the individual user

input [29]. Additionally, functional modeling if often overlooked or omitted from

concept generation because designers have a difficult time considering design in

terms of the functionality of the product. Rather designers are more comfortable

with component-based solutions, often benchmarking existing products [28]. In-

corporating functional modeling early into the design phase can help the shift of

resources in the project lifecycle to earlier in the design process when the cost of

making changes is low, but the impact of those changes is high.
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1.1 Motivation

In order to encourage more widespread use of functional decomposition in the de-

sign process, we explore the fundamental underpinnings necessary for a data driven

method for automating functional modeling. We utilize data from an existing de-

sign repository. Mining this data in Oregon State University’s Design Repository

for the existing correlations between component, function, and flow of constituent

product components allows us to connect function to product component, informa-

tion that can provide the designer with the functional breakdown of components.

The motivation for automating functional modeling is three-fold, increasing the

use and comprehension of functional modeling, improving the Design Repository

by expanding the data and streamlining the process of adding products, and con-

necting components to function and flow to allow for the inclusion of function in

component-based design.
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1.2 Glossary of Terms

Throughout this thesis, there are terms used that may have alternative meanings

or for conciseness are defined with an acronym. Therefore, Table 1.1 provides a

list of definitions of terms and acronyms used in this thesis.
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Table 1.1: Terminology Utilized Throughout This Thesis

Term Definition

The Design
Repository

A data-base containing 142 consumer products at different
levels of abstraction including artifact, component,
function and flow.

Product
Function

Characterized in a verb-object (function-flow) format [40].

Function A description of an operation to be performed by a device or
artifact, expressed as the active verb of the sub-function [40].

Flow A change in material, energy or signal with respect to time.
Expressed as the object of the sub-function, a flow is the re-
cipient of the functions operation [40].

Component The lowest level of a system or product in the repository.

Component-
Function-Flow

(CFF)

The correlated function and flow with each individual
component found in the Design Repository.

Data-Driven
Design

Methodologies for extracting information and insights
from data and existing research to improve design processes.

Linear
Functional

Chain

A component-based linear section of a full functional model.

CFF Frequency The measure of how often a CFF combination appears in a
given dataset.

Automated
Frequency
Calculation and
Thresholding
(AFCT)
Algorithm

An algorithm that returns the CFF frequency of the
component-function-flow (CFF) combinations and applies
a threshold the returned only the top 70% of functions
and flows per component.

Prevalence The measure of the commonness of the component.
Consistency The measure of how uniform the CFF combinations are per

component.

Weighted
Confidence

The harmonic mean of the two metrics, prevalence and
consistency, which is a measure of the AFCT data fidelity
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1.3 Contributions

This thesis consists of two manuscripts that describe the beginning stages of au-

tomating functional modeling. The presented methodology uses an Automated

Frequency Calculation and Thresholding (AFCT) algorithm to find the component-

function-flow (CFF) frequency of the CFF combinations in a Design Repository.

The results of this algorithm are improved by using a weighted confidence metric,

which was developed based on the consistency and prevalence of the CFF frequency

data. The contributions to the field are as follows:

1. The development of an algorithm to automatically create linear functional

chains based on the most likely functions and flows per component.

The AFCT algorithm orders the CFF frequencies from largest to smallest,

sums the frequencies of each CFF combination, and uses a threshold of 70%

of the sum of frequencies of combinations for each component. These likely

functions and flows can be turned into linear function chains using existing

grammar rules and designer expertise. This algorithm can be applied to

the data in the Design Repository by designers who are interested in the

connection between component and function and flow.

2. The development of a weighted confidence metric to improve data fidelity of

the AFCT algorithm.

The contribution of this metric is not to replace CFF frequency as a method

of finding the most likely component-function-flow correlations but to im-

prove the reliability of the automation results by providing additional infor-
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mation about the data fidelity from the weighted confidence metric.

3. The formation of methodology for weighting any dataset with a wide range

of individual occurrences.

The weighted confidence metric can be adopted and applied to any dataset.

The framework of this metric allows researchers to include rare data or other

outlying data by indicating the prevalence and consistency of the data being

utilized.

4. Expanding and improving the data in the Design Repository.

This research is the beginning steps of fully automating functional models,

which will allow new products to be more easily added to the repository

by a variety of users without requiring functional modeling expertise and

minimizing the concern of consistency in data entry. The streamlining of the

process of adding new products with automating functional modeling allows

not only individual products to be added by users but also the addition of

entire repositories.
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Chapter 2: Background

2.1 Functional Decomposition

A functional model is the graphical representation of the functional decomposition

of a product, and example of a Black and Decker Dustbuster can be seen Figure

A.1 in the Appendix, which demonstrates the complexity of functional models.

Novice and experienced designers all have difficulty building functional models

because of the complicated process, and this can lead to the functional modeling

process being entirely omitted from the concept generation phase. Yet we know

that concept generation is more complete when function is considered [45]. While

there are significant research and information available on how to build functional

models [45] [2], Sridharan and Campbell point out that even though there is a

formal language, the Functional Basis [40] [17], repeatability is still difficult among

students and researchers[20]. In order to help solve the consistency issue with

building functional models, Nagel et al. developed grammar rules. Additional

researchers, Sridharan and Campbell and Bohm and Stone, developed grammar

rules and tested their rules with students building functional models. The students

given the grammar rules created more consistent functional models and had a

more full understanding of functional decomposition than the students without the

grammar rules[38] [4]. Bohm and Stone developed rules associated with individual
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functions and dictate the allowed incoming and outgoing flows [4].

To simplify the process of automation, we have chosen to begin by building

individual component based linear functional chains rather than full complex func-

tional models. We have shown in previous research that finding associations be-

tween functions and flows and component allows us to build these linear functional

chains [44]. Building these linear functional chains, we found several of the gram-

mar rules in the previous research applicable to our current research. We will apply

the grammar rules to the component-function-flow combinations to determine the

appropriate order of the functions and flows for the linear functional chains. Start-

ing with this simplified model, we can work out the issues and problems with

automation rather than starting with such complexity as a full product functional

model.

2.2 Design Repositories

A design repository is a product database where data can be searched and retrieved

at different levels of abstraction to help improve design knowledge and data-driven

design decisions[43]. A well-populated repository with different levels of abstrac-

tion offers designers a wealth of information to aid in decision making. The Design

Repository1 we are using is comprised of 142 consumer-based electro-mechanical

products and is housed online through the Design Engineering Lab at Oregon State

University. The design information of each product can be divided into seven main

1The Design Repository is a database of design information. A basic web interface is available
at ftest.mime.oregonstate.edu/repo/browse
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categories: artifact, function, failure, physical, performance, sensory, and media-

related information types. In its current form, the repository has a tools section,

where designers can select single or multiple products from the list of products and

create three different outputs from the information. The first output is the Design

Structure Matrices (DSM), which is a matrix representation of the assembly model

[8]. The second output is Function Component Matrices (FCM), which is a matrix

representation of the function and component relationship [22]. The last output is

the Configuration Flow Graph, which connects the flows to each other (CFG) [21].

These tools provide the user with a wealth of information. However, in its current

form the repository can be difficult to navigate for novice users; additionally, users

are not able to input new products.

Additional design repositories include bio-inspired repositories such as askna-

ture.org, IDEA-INSPIRE, and DANE (Design by Analogy to Nature Engine)[15].

These tools are used by designers to inspire creative and innovative solutions based

on function derived in biology. Product data management (PDM) systems are also

similar databases to a design repository. PDMs store and retrieve the product and

part data, revision history, bill of materials, and CAD models [42]. PDMs are typ-

ically proprietary software and used internally by industry, in contrast the Design

Repository is publically accessible. While helpful for innovation and information,

these repositories do not provide the user with the amount of detailed function

based information that the OSU design repository stores. The database structure

of the OSU repository also provides mapping and connections between the cate-

gories of the product systems, such as function and component, shown in Figure
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5.1.

As we develop our automation process, it becomes easier in the future to add

information from other repositories such as the ones listed above, which signifi-

cantly expands our database. We are working with additional OSU researchers to

house the information from an existing Sustainable Design Repository in the OSU

Design Repository [14]. Combining this information adds additional products, as

well as sustainable design information such as LCA analysis and manufacturing

processes. Expanding on the work presented in the Function-Human Error Design

Method (FHEDM), Soria et al. have been using Design Repository data to de-

velop new relationships, such as incorporating the user, user interactions, human

error [48] [37]. The database structure of the Design repository provides map-

ping and connections between categories of the product systems, expanding these

connections to include sustainability and user-system interactions will bring these

important considerations to the early phase of design decisions.
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Chapter 3: Related Research

In addition to the two publications presented in this thesis, I assisted students

Melissa Tensa and Alex Mikes with research related to automating functional mod-

eling. Below briefly outlines two publications that resulted from this work. The

first was authored by Melissa Tensa and submitted to ICED 2019 the 22nd Inter-

national Conference on Engineering Design titled Toward Automated Functional

Modeling: An Association Rules Approach for Mining the Relationship between

Product Components and Function. The second was authored by Alex Mikes and

submitted to IDETC/CIE 2020 The International Design Engineering Technical

Conferences titled Optimizing an Algorithm for Data Mining a Design Repository

to Automate Functional Modeling.

3.1 An Association Rules Approach for Mining the Relationship

between Product Components and Functions

This thesis builds on previous work using the association rules to find correlations

with repository data [44]. In this work, we found associations between component-

function-flow on a smaller dataset found in the repository (12 Black and Decker

products). We used the Apriori algorithm to find the associations between compo-

nent and function-flow. Association rules describe the relationship between items
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in item sets. The typical application of association rules is in a market-based

analysis. For example, in a supermarket, 90% of customers who buy bread and

butter also buy milk [1]. The Apriori algorithm is often used to find these types

of associations. Well-documented, the algorithm is useful for dealing with large

datasets and iteratively looks for frequent itemsets [30]. The Apriori algorithm

outputs three measures; support, confidence, and lift. Thresholds of each measure

set by the user control the output of the algorithm and can influence the results.

Agrawal suggests the support threshold should be set high enough to ensure the

relationship is significant [1].

Support determines the probability of the prevalence of an item within all of

the itemsets [26]. Confidence determines the probability of two items appearing in

the same itemset. Lift, known as the interestingness measure, is the ratio of the

support of the association and the support values of the individual items within the

itemset. While all three measures provide information, we were most interested

in the confidence of the CFF associations. An example of how confidence can

be described in our dataset is what is the probability that the component battery

associated with the function-flow store electricity compared to other function-flow

combinations that appear for the component battery?

For this work, we created a learning set of Black and Decker consumer products

found in the Design Repository to find the CFF combinations using association

rules. We compare the CFF combinations found in the learning set to a verification

product case, the Delta jigsaw.

We first retrieved our selected data by querying the repository database. We
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then used the Apriori algorithm to determine the probabilities of associations be-

tween components, functions, and flows. The Apriori algorithm output the three

measures of association: Support, Confidence, and Lift. Table 3.1 shows a sample

of components and the Apriori algorithm results. The table displays a x if the

function and flow were also found in the verification product, the Delta jigsaw.

This verification product helps determine the accuracy of the results from the al-

gorithm; the verification product was not included in the original learning dataset.

The results showed some similarities between the CFF combination associations of

the Black and Decker dataset and the Delta jigsaw verification product. However,

we learned that our results were limited due to the size of the data set and the

choice to only use one product in our verification process.

Based on these findings, we improved upon this research method in our forth-

coming work. First, we decided to expand both our learning and verification

datasets to test the robustness of our methodology. Additionally, since confidence

was the primary metric we found useful in our data analysis, we decided to rely

only on the confidence data, which we refer to as CFF frequency in all subsequent

research, moving away from using association rules. We also implemented a 70%

threshold to return the most likely functions and flows rather than all of the results.

I describe this expanded research in 4
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Table 3.1: Sample of Verification Dataset [44]

Head Body Confidence (%) Support (%) Lift (%) Jigsaw

Blade export mechanical 16.67 0.35 1443.33
separate solid 16.67 0.35 1202.78 ×
export solid 16.67 0.35 759.65 ×
import solid 16.67 0.35 601.39 ×

transfer mechanical 16.67 0.35 313.77 ×
guide mechanical 5.56 0.12 481.11

secure solid 5.56 0.12 54.67
guide solid 5.56 0.12 45.82

Cam change mechanical 66.67 0.23 2510.14 ×
transfer mechanical 33.33 0.12 627.54 ×

Electric Wire transfer electrical 66.13 4.73 938.82 ×
secure solid 17.74 1.27 174.60

position solid 12.90 0.92 87.99
guide solid 3.23 0.23 26.61

Screw couple solid 93.85 7.04 913.15 ×
position solid 6.15 0.46 41.96

Spring position solid 47.37 1.04 323.00
guide solid 21.05 0.46 173.63 ×

store mechanical 10.53 0.23 4557.89
supply mechanical 10.53 0.23 4557.89

secure solid 5.26 0.12 51.79
couple solid 5.26 0.12 51.21

3.2 Optimizing an Algorithm for Data Mining a Design Repository

The optimization process outlined in this publication is designed to improve our

AFCT algorithm. Here we investigated ways to find the optimize the threshold

values used in the algorithm. In the AFCT algorithm, we have been setting the

classification threshold at 70% to based on the Pareto Frontier from the Form Fol-

lows Form method [4]. However, we know that this may not be the most optimized

threshold. We use the AFCT algorithm to retrieve data for the optimization pro-

cess. This methodology is described in depth in 4. To determine the optimized

threshold, we iterated through the verification process using 18 different values of



15

classification thresholds (10, 15, 20, 25. . . 95%) [27]. The optimum value for

the classification threshold was found to be 55%. This research was completed

after both publications presented in this thesis, so the threshold used in the AFCT

algorithm in this work remains 70%. The optimized 55% threshold result can be

used in future work. Additional future work could include optimizing the classi-

fication threshold separately for individual components or sub-assemblies. Note:

Additional optimization research was published in this paper, but is not directly

related to the research in this thesis, and therefore is not discussed.

3.3 Summary of Manuscripts

The first manuscript presented in this thesis is the Data mining a design repository

to generate linear functional chains: a step toward automating functional model-

ing, submitted to DCC 2020 and found in chapter 4. The objective of the first

manuscript is to further explore a preliminary method to automate the generation

of the linear functional chains of components using the AFCT algorithm.

The second manuscript presented in this thesis is the A Weighted Confidence

Metric to Improve Automated Functional Modeling, presented at IDETC 2020 and

found in chapter 5. The objective of this manuscript is describe a methodology for

developing a weighted confidence metric to improve the data fidelity of the AFCT

algorithm.



16

Chapter 4: Data mining a design repository to generate linear

functional chains: a step toward automating functional modeling

Authors

Katherine Edmonds

Design Engineering Laboratory

School of Mechanical, Industrial &

Manufacturing Engineering

Oregon State University

Email: edmondka@oregonstate.edu

Alex Mikes

Design Engineering Laboratory

Email: mikesa@oregonstate.edu

Bryony DuPont

Design Engineering Laboratory

Email: Bryony.DuPont@oregonstate.edu

Robert B. Stone

Design Engineering Laboratory

Email: Rob.Stone@oregonstate.edu



17

Proceedings of the 2020 ASME International Design & Engineering Technical

Conferences

42st Design Automation Conference (DAC)

IDETC 2020

August 16-19, 2020, St. Louis, MO, United States of America



18

Ninth International Conference on Design Computing and Cognition - DCC’20

29 June1 July 2020. Georgia Institute of Technology, Atlanta, USA. Preceded by

Workshops. 27-28 June 2020.

4.1 Abstract

Populating the different types of data for a design repository is a difficult and time-

consuming task. In this work, we report on techniques to automate the population

of data related to product function. We explore a preliminary method to automate

the generation of the functional chains of components from new products based

on hierarchical data from an existing design repository. We use datasets of various

scale and specificity to find correlations between functions and flows for components

of products in the Design Repository. We use the results to predict the most

likely functions and flows for a component, and then verify the accuracy of our

algorithm by cross-validating a subsection of the data against the automation

results. We apply existing grammar rules to order the functions and flows in a

linear functional chain. Ultimately, these findings suggest methods for further

automating the process of generating functional models.

4.2 Introduction

Product design in engineering is a well-studied process [31], yet many aspects re-

main difficult and hard to define after decades of research, especially the early
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stages of concept generation. However, that concept generation phase is the one

part of the design process where there is the most room for creativity and inno-

vation [47]. Additionally, the concept generation phase is the least costly time

of the design process to integrate major changes[45] and exploration during this

phase should be encouraged. We use the term designers broadly to refer to those

who are working in their field to develop new concepts or products, as well as it-

erating on existing concepts and products. During concept generation in product

design, designers focus on gathering accurate customer needs, determining engi-

neering specifics, deriving the functionality of the intended product, and ideating

potential form solutions.

Functional decomposition is a well-known abstraction technique that allows de-

signers to develop a graphical representation of a products functionality as a func-

tional model [45] [2]. There has been extensive work done to develop consistency in

the nomenclature, beginning with the development of the Functional Basis terms

[40] [17]. However, as Nagel et al. [29] point out, there is still inconsistency in user

input in the structure of functional models. Novice and experienced designers all

have difficulty building functional models because of the complicated process, and

this can lead to the functional modeling process being entirely omitted from the

concept generation phase. Yet we know that concept generation is more complete

when function is considered [45]. Figure 4.1 shows how incorporating functional

modeling early into the design phase can shift the majority of resources in the

project lifecycle earlier in the design process when the cost of making changes is

low, but the impact of those changes is high. While the above is true, designers are
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often more comfortable with component-based solutions, and tend to focus more

on components rather than the functionality of a sub-assembly or product. This

type of design often benchmarks existing products during the concept generation

phase [28].

Figure 4.1: Cost Analysis Over Time During Concept Generation

Eckert and Stacey [11] designate the term source of inspiration for the conscious

use of previous designs in the design process. Design repositories can provide de-

signers with data at multiple levels of abstraction, such as components, functional

representations (e.g. functions and flows), or high level customer needs responses,

offering a central location for source of inspiration products. Our research uses

data from an existing design repository, know as the Design Repository, to sup-

port this type of reuse in design. Our data-driven design (DDD) approach leverages

research from the multi-decade long project developing a design repository [43] [6]

[8] [22] [38]. For our purposes, we define data-driven design as methodologies for

extracting information and insights from data and existing research to improve
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design processes [34].

We utilize the extensive previous work on the repository and expand the most

recent work; the Form Follows Form approach [4] [5]. The Form Follows Form

(FFF) approach is based on the concept that most designers think in terms of

components rather than function when in the concept generation phase. Utilizing

this concept, we capture the underlying functionality of the chosen components

using data from the design repository [5]. In the FFF approach, Bohm et al. cal-

culated the frequency of function and flow associated with components separately.

Our research continues to build on this concept by developing a combined asso-

ciation between component and function-flow of CFF, to predict the most likely

functions and flows associated with each component. We choose to only consider

the incoming flows to simplify our analysis, as we found in analyzing our datasets

that less than 5% of the results have different inflow and outflow. With this data,

we build linear functional chains for components. These linear functional chains

will ultimately help us develop a method for automating the creation of functional

models. As this research develops, machine learning from the combined CFF com-

binations is anticipated to help eliminate errors such as illogical or impossible CFF

combinations in attempting to combine them later during functional modeling au-

tomation.

There is significant research on developing consistency in the grammar and syn-

tax of functional models [40] [17][22]. The Design Repository has this consistency

in language built into the data, for example, functions are entered using the Func-

tional Basis terms [40], and components with the Component Basis terms [3]. This
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terminology allows us to create correlations that remain consistent throughout the

datasets.

Our immediate research objectives are to 1) mine the design repository for

datasets 2) calculate frequencies of CFF combinations and apply a classification

threshold with an automation algorithm, 3) validate the accuracy of the automa-

tion algorithm, and 4) apply existing rules to develop linear functional chains based

on our findings.

4.3 Background

4.3.1 The Design Repository

A design repository is a product database where data can be searched and retrieved

at different levels of abstraction to help improve design knowledge and data-driven

design decisions[43]. A well-populated repository offers designers a wealth of in-

formation to aid in decision making. The Design Repository1 we are using is

comprised of 142 consumer-based electro-mechanical products and is housed on-

line through the Design Engineering Lab at Oregon State University. Each product

is divided into seven main categories of design information: artifact, function, fail-

ure, physical, performance, sensory, and media-related information types. A visual

reference of the data schema (i.e., the connections between data) is shown in Figure

5.1 [6].

1The Design Repository is a database of design information. A basic web interface is available
at ftest.mime.oregonstate.edu/repo/browse
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Figure 4.2: Design Repository Data Schema [6]

While there is significant research and information available on how to build

functional models [45] [2], Sridharan and Campbell point out that even though

there is a formal language, the Functional Basis [40] [17], repeatability is still chal-

lenging among students and researchers[20]. To help solve the consistency issue

with building functional models, Nagel et al. [29] developed grammar rules. When

applied correctly, these grammar rules help determine the appropriate order of

the linear functional chains. Additional researchers, Sridharan and Campbell and

Bohm and Stone, developed grammar rules and tested their rules with students

building functional models. The students, given the grammar rules, created more

consistent functional models, and had a better understanding of functional decom-

position than the students without the grammar rules[38] [4]. Bohm and Stone



24

developed rules associated with individual functions and dictate the allowed incom-

ing and outgoing flows [4]. We found several of the grammar rules in the previous

research applicable to our current research. We apply these grammar rules to the

data returned from the automation algorithm.

4.3.2 Machine Learning and Data Mining

Data mining and machine learning are general terms that refer to many different

techniques of using information to predict results. The work that we are doing is

considered data mining because our algorithms extract knowledge from the data

and do not alter it based on the findings, which would be considered machine

learning. However, we borrow some of the terms and methods that are traditionally

applied to machine learning problems to find patterns within our data.

A classifier is an algorithm learns from data, finds patterns within it, and then

predicts whether something is or is not within a class. An example is a classifier

that predicts whether or not an email is spam[9]. The machine learning algorithm

looks at examples of emails that a person has labeled as spam or not spam and

finds patterns within them to label any other email as spam or not spam[24]. The

accuracy of this classifier is quantified by testing it against other emails labeled as

spam or not spam and recording which predictions were correct and incorrect.

We are using data mining techniques to find the frequency of occurrence of

CFF combinations in products in the design repository. We use that frequency

information to predict what functions and flows a component will have in a new
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product.

4.3.2.1 Frequency

In our previous work [44], we used the Apriori algorithm to find associations be-

tween component and function-flow. During data analysis, we found that using

association rules was excessive for the results we wanted to obtain. We simplified

our calculations, focusing on the frequency of CFF combinations, which is numeri-

cally equivalent to the confidence metric from association rules. The Form Follows

Form approach uses a similar method of calculating the frequency of the function

and flows correlated with each component [5].

Frequency determines the probability of two items appearing in the same item-

set. In our datasets, we find the frequency by calculating how often a component

and function and flow appeared together. The frequency values for all CFF com-

binations for each component sum to 100%, regardless of the number of functions

and flows per component. For example, the CFF combination screw and couple

solid appears in the consumer products dataset 589 times out of 647 total CFF

combinations for the compenent screw, so the frequency of that combination is

589/647 or 91%.

Sometimes a CFF combination may only appear once if it is an unlikely com-

bination or is a specialized component or function only appearing in one product

in the repository, such as pressure gauge and indicate mechanical. In these cases,

the frequency that the CFF combination occurs is 100%.
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4.3.2.2 Threshold

In our work, we are predicting the functions and flows for components, and our

threshold is a cutoff that predicts that the top 70% of functions and flows would

be likely for future components. Our automation algorithm orders the frequencies

from largest to smallest, sums the frequencies of each CFF combination, and applies

a 70% threshold to each component. This algorithm is different from a traditional

classifier that would discretely label a class based on individual probability. This

70% threshold was developed based on previous research by Bohm, who found that

70% of functions and flows are realized within the first 30% of unique instances of

a particular component, which he credited to the Pareto optimal gaming theory

[4]. We found in our data analysis that the 70% threshold is often the point where

adding additional functions and flows for a component contributed a negligible

delta to the sum of frequencies and decreased the accuracy of the automation

results.

4.3.2.3 Cross-Validation

A common method to find the accuracy in a machine learning classifier is known

as cross-validation, which withholds a subset of data from the initial set, so the

machine learning algorithm does not learn from this subset. This subset is then

used to find the accuracy of how well the classifier performed at predicting results

[16]. Testing with data from which the classifier did not learn is essential for

reducing bias in the results [39]. The subset of withheld data is known as the
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testing set and the rest of the data that the machine learning algorithm processes

is known as the training set.

Due to the variability in data, cross-validation is often performed multiple times

with different testing and training sets and averaged over all iterations. Kohavi

found that 10-fold cross-validation produces the best results for most applications

even when additional computational power is available [19], so we use this method

to determine the accuracy of our automation algorithm using the metrics of pre-

cision, recall, and the F1 Score. The general method is known as k-fold cross

validation[10].

In our previous work, we used a single product (a Delta jigsaw) for our testing

set, and the Black and Decker dataset was our training set [44]. This initial

exploration helped us gain valuable insight into the initial stages of this process,

but cross-validation is a more robust method.

4.3.2.4 Precision, Recall, and the F1 Score

The method and effectiveness of calculating accuracy varies based on the type of

data being used. Simple accuracy is calculated as a ratio of correct responses to

total responses. In our case, a correct response is when the data mining algorithm

finds a function-flow combination for a component that matches the testing set.

Simply counting correct responses misses some of the additional ways in which the

automation can be wrong. Precision, recall, and the F1 score account for these

cases by using the confusion matrix shown in Table 4.1 to calculate ratios of the true
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positives, false positives, and false negatives [36]. Note that true negatives are not

included in the calculation for metrics because, for many systems, including ours,

most results are true negatives, and including these in our accuracy calculations

would highly increase our results and make the classifier appear to be performing

better than it is.

Table 4.1: Accuracy Confusion Matrix

Predicted CFF?
Yes No

Yes True Positive False Negative
Actual CFF?

No False Positive True Negative

Precision is the ratio of correct CFF combinations to all CFF combinations

identified by the automation algorithm (Equation 4.1). This number is the ratio

of CFF combinations that were identified as being in the product that are actually

in the product.

Recall is the ratio of correct CFF combinations to all CFF combinations found

in the automation algorithm (Equation 4.2). This number is the ratio of the actual

CFF combinations that were correctly predicted.

The F1 Score is the harmonic mean of precision and recall that equally balances

the importance of the two metrics and punishes extremes (Equation 4.3). F1 is a

more powerful metric than simple accuracy and provides a better analysis of the

ability of an automation algorithm to predict results.

Precision =
TP

TP + FP
(4.1)
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Recall =
TP

TP + FN
(4.2)

F1 =
2 ∗ precision ∗ recall
precision + recall

(4.3)

4.4 Methods

In this work, we mine the design repository for data to find the most likely functions

and flows correlated with each component for several datasets. We refer to this

correlation as component-function-flow (CFF). We are building on previous work

using association rules, where we found associations between component-function-

flow on a single dataset (12 Black and Decker products) [44]. Here, we expand

our learning datasets as well as our validation methods. We chose three data sub-

sets from the repository driven by component: 23 products with the component

heating element, 32 products with the component blade, and 44 products with

the components container/reservoir. We applied our automation algorithm (de-

scribed later) on each dataset separately and calculated the accuracy of its ability

to predict function and flows for an input component. We then compared the

accuracy results of each of the three data subsets to a dataset containing all 142

consumer products from the design repository and an additional subset con-

taining 12 products that were all made by Black and Decker.

We chose products with the heating element, blade, and container/reservoir

components in an attempt to single out products with similar functionality. We

chose the Black and Decker products because this was the most extensive dataset
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available to provide a company product portfolio, which offers a subset of products

based on construction rather than functionality. We hypothesize that narrowing the

dataset to functionality based on component will yield more accurate function and

flow prediction results. The Black and Decker and consumer product datasets serve

as reference datasets to test our theory. We developed an automation algorithm in

Python, which calculates and sums the frequency of each CFF appearing in each

dataset. The algorithm applies a classification threshold to the top 70% sum of

frequencies for each component. The correlations found within the 70% threshold

in our data mining process can then be used to predict the linear functional chain

of a component.

Step 1. Retrieve Datasets. To extract information, we query the reposi-

tory to create five test datasets: 1) all consumer products; 2) all Black and

Decker consumer products to represent a general product family by the same

manufacturer; and three subsets of consumer products with 3) heating element,

4) blade and 5) container/reservoir as a component in the assembly to repre-

sent products with a similar component and functionality. We chose to combine

reservoir and container into one dataset because of the similarity of functionality,

and combining them allowed us to have a similar size dataset as the other two

component-based datasets.

Step 2. Automated frequency and thresholding Next, we apply an

automation algorithm to each of the five datasets, implemented in Python v3.7.

First, the algorithm calculates the frequency of the functions and flows for each

component in the input dataset; then, those values are sorted from largest to
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smallest, summing to 100%. The threshold is applied to capture the top 70% of

the sum of frequency values for each component in each dataset, based on the

Pareto Frontier from the Form Follows Form method [4]. The results from the

electric cord component from the blade dataset provide a simple example in Table

4.2.

Table 4.2: Example dataset to illustrate threshold automation for the component
Electric Cord

Electric cord
Frequency
delta

Running sum of
frequency

Threshold

Import electrical 0.35 0.35 Keep
Transfer electrical 0.3 0.65 Keep
Export electrical 0.15 0.8 Keep
Position solid 0.12 0.92 Reject
Couple solid 0.08 1 Reject

For the electric cord example, the frequency of the first two functions and flows

sums to 65%, so the third is added to the list to reach the 70% threshold, which

brings the sum to 80%. Our method assumes that capturing approximately 70% of

the total frequencies will begin to give an accurate representation of the functions

and flows that a component usually performs. Additionally, this Pareto optimal

threshold is the point where adding additional functions and flows for a component

usually contributed a negligible delta to the sum of frequencies and increased the

error in the automation results.

Step 3. Cross-Validation. As a means of verifying the accuracy of the au-

tomation algorithm, we use a 10-fold cross-validation method to find the precision,

recall, and F1 score of each iteration. The design repository categorizes products
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by an identification number, which we randomize and separate into ten folds.

For example, the blade product dataset contains 32 products. This number

is not divisible by ten without a remainder, and our data requires each product

to remain intact, so we actually have eleven folds. Ten folds have three products

each, and the eleventh fold has the remaining two products.

We apply the frequency calculation and thresholding algorithm three times for

each dataset that we queried. The first validation is a traditional cross-validation

and finds the accuracy of the automation algorithm when the training set comes

from the component-specific dataset (blade, heating element, reservoir/container),

and the testing set is also the component-specific dataset. The second validation

finds the accuracy when the training set is the consumer products dataset, and the

testing set is the component-specific dataset. The third validation uses the Black

and Decker dataset as the training set and the component-specific dataset as the

testing set.

We stray from traditional cross-validation in two of three of these validation

tests by selecting the folds for the testing set and training set from different

datasets. This method gives us a cross-reference for accuracy between datasets

and allows us to see if one dataset is better at predicting results for itself or for

another dataset. The three variations of accuracy testing are shown in Table 4.3.

These three validations were performed for each of the three component-specific

datasets, resulting in nine F1 scores.

One of the benefits of traditional cross-validation is that the testing set is

withheld from the training set to reduce bias in the results. With this method of
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validation, when the testing set and training set come from different datasets, the

folds contain some overlapping data. To combat bias, we made sure to remove all

products in the fold for the testing set that were also in the folds for the training

set.

Table 4.3: Validation Cases

Validation Number Testing Set Source Dataset Training Set Source Dataset
1 Component-specific Component-specific
2 Component-specific Consumer products
3 Component-specific Black and Decker products

Step 4. Apply Grammar Rules to Determine Linear Functional

Chain. After analyzing and organizing the results of the top 70% of the func-

tions and flows, we apply the grammar rules described in section 2.1 to the results

to determine the linear order of the functions in the functional representation. For

the electric cord example in Table 4.2, the three functions are import, transfer,

and export. They all have the same flow of electrical energy between them. The

grammar rules developed by both Nagel et al. [29] and Bohm et al. [4] state that

the import function occurs first and only once per flow in a chain of components,

so it is placed first. The grammar rules also state that export is the last function in

a chain of components, which leaves transfer as the middle function in this chain.

A visualization of this process can be seen in Figure 4.3.
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Figure 4.3: Example of Grammar Rule application

4.5 Results

4.5.1 SQL Query

The results of our SQL query can be seen in Figure 4.4. The total number of CFF

combinations is the number of times a component has a particular function and

flow regardless of the number of times they repeat in the dataset. The number of

unique combinations is the number of times a component has a particular function

and flow at least once, and additional instances of that combination are no longer

unique. The number of products in each dataset can be seen in Table 4.4.
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Figure 4.4: Query Results

4.5.2 Automated Frequency Calculation and Thresholding Algo-

rithm

The algorithm returned CFF combinations for all five datasets filtering out the

combinations that were above the threshold. Figure 4.5 shows the CFF combi-

nations for four components in the consumer products dataset, results above the

black line are the CFF combinations found within the threshold. As seen in Figure

4.5, the 70% threshold is often the point where adding additional functions and

flows for a component contributed a negligible delta to the sum of confidence. In

order to remain consistent, all of the results are taken from the consumer database.

As seen in Figure 4.5 A, the component screw had one result above the threshold
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because the frequency result for couple solid is 91%, the remaining 17 functions

and flows only contribute to 9% of the results . While screw only has one result,

blade (Figure 4.5 D) is representative of a component with more function and flows

returning 11 results above threshold, an additional 21 results below threshold were

not shown, for clarity in the figure. Washer and heating element can also be

seen in Figure 4.5. Additionally, components with the most results were reservoir,

circuit board and wheel with 22, 20, and 16 function and flow combinations in

threshold respectively. We found that 98% of the dataset has at least 2 or more

CFF combinations per component.

Frequency is calculated as the ratio of the number of times the CFF combination

occurs over the total number of CFF combinations for that component. Returning

to the screw example, the function and flow screw couple solid occurs the most at

589 times out of a total of 647. Conversely the consumer products dataset had

200 CFF combinations that only occurred once, which returns a ratio of 1/1 or

100% frequency. The other four datasets followed this same trend with a larger

percentage of results occurring once or twice and a lower percentage occurring

more than 20 times. As we expand the data in the repository we hope to decrease

the number of times a CFF combination occurs only once.

4.5.3 Using F1 Scores to Validate Accuracy

We used the 10-fold cross validation method to quantify the accuracy with pre-

cision, recall, and the F1 score when applying the top 70% of the most frequent
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(a) Screw (b) Washer

(c) Heating Element (d) Blade

Figure 4.5: Frequency Algorithm Results for Components in the Consumer Prod-
ucts Dataset

functions and flows found for a component for each of the three testing datasets.

The number of products in each dataset, the size of a single fold (which is also

the size of a testing set), and the size of the remaining nine folds (the size of the

training set) is show in Table 4.4.

Each training dataset is tested against three testing datasets, itself, consumer

products, and Black and Decker products. The results of the average F1 scores

are shown in Table 4.5. For each of the three testing datasets, we performed a
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Table 4.4: Sizes of Testing and Training Sets

Dataset Number of Products
Size of Testing Set
(Size of Single Fold)

Size of Training Set
(Size of Nine Folds)

Blade 32 3 29
Heating Element 23 2 21
Reservoir 44 4 40
Consumer 142
Black and Decker 12

single factor ANOVA test to see if there is a significant difference in our F1 scores

across the training datasets. We found that all three testing datasets (blade,

reservoir/container, and heating element) were significantly different with

=0.05. We then performed a two-sample t-Test assuming equal variances to deter-

mine within each testing dataset, which training sets were significantly different.

Within each testing dataset, there was a significant difference found for all com-

binations, except the comparison of Blade and Black and Decker within the

Blade testing set. The direction of the significant difference trends toward the

consumer products dataset, which consistently had the highest F1 score.

Table 4.5: F1 Scores

Testing dataset: Blade Testing dataset: Reservoir Testing dataset: Heating Element
Training dataset F1 scores Training dataset F1 scores Training dataset F1 scores
Blade 0.4354 Reservoir 0.3967 Heating Element 0.4044
Consumer 0.4471 Consumer 0.4072 Consumer 0.4067
B&D 0.4419 B&D 0.2937 B&D 0.3215

4.5.4 Linear Functional Chains

In this section, we test the automation process described in the methods by build-

ing likely functional chains for four single components, which are the same four



39

components featured in section 4.2, Figure 4.5. The results of the functional linear

chains can be seen in Figure 4.6. Screw is a very simple example with only one

function and flow. As demonstrated in the results, components vary in complex-

ity and therefore vary in functional chains. This complexity is based both on the

component itself, such as the difference between screw and blade, but is also based

on the product in which the component performs the function, for example blade

within a knife versus blade within a more complex product like a jigsaw. We apply

the following grammar rules adapted from Bohm and Stone, to the blade func-

tional chain; a) import is automatically placed as the first function for a chain and

b) export is automatically placed as the last function for a chain [4]. The gram-

mar rules also dictate that the convert function has separate inflows and outflows;

therefore the automation would branch off the function-flow export thermal from

convert mechanical. This same rule is applied to the results of heating element,

convert electrical is branched off into transfer thermal.
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Figure 4.6: Component Based Linear Functional Chains

4.6 Discussion

In review, we mined the Design Repository for CFF combinations, we then applied

a Pareto optimal threshold to find the most likely combinations, developed linear

functional chains for individual components, and by validating the accuracy of the
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frequency calculation and thresholding algorithm, we were able to test our hypoth-

esis. We hypothesized that restricting the training set to constitute products that

all share a similar component would give more accurate results for automating the

generation of linear functional chains. For example, products having the compo-

nent blade would have more similar functionality with other products having the

component blade as opposed to products outside that dataset. As stated before,

we found support with this hypothesis in previous work, using one product, the

Delta jigsaw, as a validation method [44].

In this research, we had four general findings: Finding 1: With more robust

validation methods, the results in Table 4.5 show that learning from the most

possible products will return a higher accuracy than any restricted-size dataset.

The component-specific datasets had lower accuracy when cross-validated against

component-specific data than when cross-validated against all consumer products.

The Black and Decker dataset is the smallest, containing 12 products, and con-

sistently had the lowest F1 score when used as the training set. The consumer

products dataset is the largest, containing 142 products, and consistently had the

highest F1 scores.

Finding 2: We suggest that because the F1 score is calculated for an entire

testing set, which often contains rare components that might have only one function

and flow in the testing set, this may decrease the overall accuracy of function and

flow results per component. As is often the case in large datasets, the accuracy

of the data input can be a concern. Over the 20 years of the development of

the Design Repository, many different contributors have worked on this project.
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This turnover has led to some inconsistencies in the data; for example, container

and reservoir are often used interchangeably or as seen in Figure 4.5, screw is

91% correlated with couple solid but there are 17 other results, which could be

due to individual input variations. This noise of the additional rare or mislabeled

CFF combinations in the datasets can certainly reduce the accuracy of the results,

especially for the larger consumer products dataset.

Finding 3: While finding 1 suggests that learning from more data returns

more accurate results, restricting the dataset based on the component may re-

turn more refined results for functionality. For example, the heating element, and

reservoir/container component-specific datasets have six CFF combinations for the

component heating element, the consumer products dataset has 10, and the blade

dataset only returned one result. Heating element and reservoir/container have a

high overlap in products, such as coffee makers, but blade products are unlikely to

contain heating element as a component. There may be times when a designer de-

sires more refined results and a smaller learning dataset can be used if the products

have the component of interest in the learning set.

Finding 4: In developing the linear functional chains, we demonstrated more

simple examples, such as screw and washer. As complexity increases, grammar

rules are necessary to order the function and flow results. Only two existing gram-

mar rules applied to our findings in heating element and blade. As we expand our

work in developing linear functional chains, we will need to expand on the research

around grammar rules to create additional rules required to connect flows at the

interface of components. Individual analysis allows for the development of new
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rules to handle each situation, but automation is possible based on investigating

the interactions between component, function, and flow. While significant future

work is required to fully automate the functional modeling of a product, these

findings offer a starting point

4.7 Conclusion

Functional modeling is a complicated and challenging process for both novice and

expert designers. However, during concept generation in product design, it is im-

perative to derive the functionality of the intended product because the function

of the product is critical in linking customer needs to a form solution. We know

from research, designers often think and design in component-based solutions. Our

research finds connections between component and function and flow, information

that can provide the designer with the functional breakdown of components. A

functional approach to design is specialized; functional design accounts for vari-

ance in design for different purposes. We used data from the Design Repository

to find the CFF combinations for five datasets: all consumer products, a Black

and Decker consumer product family, and consumer products with the component

blade, heating element, and reservoir. Our automation algorithm orders the fre-

quencies from largest to smallest, sums the frequencies of each CFF combination,

and uses a threshold of 70% of the sum of frequencies of combinations for each

component. This threshold is the point where most of the functionality is preserved

with a minimal contribution of error.
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We then applied existing grammar rules to create component-based linear func-

tional chains, the first step in automating functional modeling. Our results con-

firm the notion that function and flow correlations can be used to build a linear

functional chain of individual components within a product. We found that the

accuracy of data mining depends on the size and quality of the learning set used,

with larger datasets providing more accurate results. However, using a broad or

narrow dataset will depend on the goals of the designer.

Research has found inconsistency among designers when building functional

models. We think that our future work towards an automated functional model

generator will ultimately help standardize the language and syntax used in func-

tional models, just as the work on Functional Basis and Component Basis terms

have helped improve language and syntax consistency in the repository. As we

have seen in the data in the design repository, designers are individuals dealing

with human bias and perceptions; automation can help create more uniform func-

tional models.

This uniformity will improve the process of designers contributing to the design

repository, and enable more products to be added with higher consistency. The

repository provides the user with a wealth of information; however, in its current

form, the repository can be challenging to navigate for novice users. As stated

above, streamlining the process of adding new products with automating functional

modeling allows not only individual products to be added by users but also the

addition of entire repositories. Enabling products to be entered by users will further

increase the size and quality of the data in the Design Repository and increase the
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accuracy of our automation process. This automation will also allow engineers to

design a new product based on components and receive the functionality of the

components.
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5.1 Abstract

Expanding on previous work of automating functional modeling, we have devel-

oped a more informed automation approach by assigning a weighted confidence

metric to the wide variety of data in a design repository. Our work focuses on

automating what we call linear functional chains, which are a component-based

section of a full functional model. We mine the Design Repository to find cor-

relations between component and function and flow. The automation algorithm

we developed organizes these connections by component-function-flow frequency

(CFF frequency), thus allowing the creation of linear functional chains. In pre-

vious work, we found that CFF frequency is the best metric in formulating the

linear functional chain for an individual component; however, we found that this

metric did not account for prevalence and consistency in the Design Repository

data. To better understand our data, we developed a new metric, which we refer

to as weighted confidence, to provide insight on the fidelity of the data, calculated

by taking the harmonic mean of two metrics we extracted from our data, preva-

lence, and consistency. This method could be applied to any dataset with a wide

range of individual occurrences. The contribution of this research is not to replace

CFF frequency as a method of finding the most likely component-function-flow

correlations but to improve the reliability of the automation results by providing

additional information from the weighted confidence metric. Improving these au-

tomation results, allows us to further our ultimate objective of this research, which

is to enable designers to automatically generate functional models for a product
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given constituent components.

5.2 Introduction

The data stored in design repositories is useful to designers during the concept

generation phase, particularly for design activities such as generating functional

models. The Design Repository 1, unique in the depth and breadth of information

and abstraction, is a product database where data can be searched and retrieved at

different levels of abstraction including the functions and flows associated with the

constituent components of each product[43]. However, our previous research with

the Design Repository discovered that there are outliers in the product function

data that are either inconsistent or rare in occurrence. We developed a metric to

consider the fidelity of this data and allow designers to retrieve the data still, yet

be aware of the fact that the data may be an anomaly. Frequently outliers in data

are discarded or not included in the analysis by the researchers in order to reduce

noise. However, in the concept generation process, designers may receive valuable

creative insight from these unlikely results.

The concept generation phase of the design process is an area where the most

creativity and innovation occur [47]. This early design phase is where the least

cost for changes occurs, so there is significant research on tools and tactics to

improve the concept generation phase and how to improve the efficiency of the

process. There are multiple tools that product designers use during this phase

1The Design Repository is a database of design information. It is currently housed at Oregon
State University. A basic web interface is available at ftest.mime.oregonstate.edu/repo/browse
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to help guide the creative process towards a viable concept. One of these tools

is deriving the functionality of the product through a functional decomposition,

graphically represented by a functional model [45] [2]. Consistency and uniformity

are built into the process with the widely accepted use of the Functional Basis

and Component Basis terms [40] [17] [23]. However, even with consistency built

into the process, functional models can vary widely by the individual user input

[29]. Additionally, functional modeling if often overlooked or omitted from concept

generation because designers have a difficult time considering design in terms of

the functionality of the product. Rather designers are more comfortable with

component-based solutions, often benchmarking existing products [28]. However,

research has shown that concept generation is more robust when the function is

considered [45]. Incorporating functional modeling early into the design phase can

help the shift of resources in the project lifecycle to earlier in the design process

when the cost of making changes is low, but the impact of those changes is high.

With the knowledge of the importance of incorporating functional decomposi-

tion into the early design phase, we have focused our research on how to improve

the process of developing functional models with the use of existing product func-

tionality data from the Design Repository. Using the existing connections between

component function and flow from the Design Repository, we are mining data to

work towards automating functional modeling. Our research team’s reasoning for

automating functional modeling is three-fold, increasing the use and comprehen-

sion of functional modeling, improving the Design Repository by expanding the

data and streamlining the process of adding products, and connecting components



51

to function and flow to allow for the inclusion of function in component-based

design.

We are building on our research team’s previous work towards the automation

of functional modeling and the expansion of the Design Repository. Utilizing the

information in the Design Repository, this work is centralized around finding the

correlations between components and function and flow or CFF combinations.

While this work will be described more in-depth in the Background section, a brief

introduction follows here.

We begin by expanding the Form Follows Form approach, which is based on

the concept that designers most often think in terms of components rather than

function when working in the concept generation phase [5]. Bohm et al. calculated

the CFF frequency of the function and flows correlated with each component sep-

arately. We first used the Apriori algorithm to find the combined associations be-

tween component and function-flow using a subset of the consumer products data,

applying a threshold to determine the most likely functions and flows per compo-

nent [44]. During data analysis, we found that some of the metrics of association

rules were unnecessary. The team then simplified our calculations, focusing on the

CFF frequency of CFF combinations, which is numerically equivalent to the con-

fidence metric from association rules[12]. We developed an automation algorithm,

referred to as the Automated Frequency Calculation and Thresholding Algorithm

or AFCT, that returned the CFF frequency of the component-function-flow (CFF)

combinations and applied a threshold the returned only the top 70% of functions

and flows per component. We validated the accuracy of our algorithm on multiple
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subsets of the consumer product dataset, finding that increasing the size of the

dataset for data mining increases the accuracy of our automation algorithm[12].

Restricting the dataset essentially reduced the size of the results from which the

algorithm could learn. The limitation of our current automation process is that

prevalence, the measure of the commonness of the component, and consistency,

the measure of how uniform the CFF combinations are per component, are not

considered, which we refer to broadly as data fidelity.

The weighted confidence metric replaces a common approach of removing rare

data; instead, our metric allows all data to be included by describing the data

fidelity. We were unable to find a numerical tool or quantification that returned

the synthesis of prevalence and consistency in our dataset, so we developed our

own metric. Here we create a metric to account for prevalence and consistency

that will be a better measure of confidence in the automation results than simple

CFF frequency.

Our immediate research objectives are to 1) mine the Design Repository for

the consumer product dataset, 2) apply the automation algorithm to calculate the

frequencies of CFF combinations and apply the classification threshold, 3) develop

a metric that would give more confidence in the automated results of our algorithm,

and 4) test our methodology by developing example linear functional chains.
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5.3 Background

5.3.1 Automated Frequency Calculation and Thresholding (AFCT)

Algorithm

The Design Repository is the ongoing result of decades of repository research and

is comprised of 142 consumer-based electro-mechanical products housed online

through the Design Engineering Lab at Oregon State University [43, 7, 8, 22, 38].

Each product is divided into seven main categories of design information: artifact,

function, failure, physical, performance, sensory, and media-related information

types [6]. A visual reference of the data schema (i.e., the connections between data)

is shown in Figure 5.1. These different levels of abstraction to help improve de-

sign knowledge and data-driven design decisions[43]. We define data-driven design

as methodologies for extracting information and insights from data and existing

research to improve design processes [34].

Our data-driven design approach focuses on a specific connection, the component-

function-flow combination (CFF combination), by extracting the connection

from the data in the Design Repository. In Figure 5.1, the letter B denotes the

component basis type and function flow connection, and the letter A denotes the

larger component-function-flow structure. The term artifact refers to the common

component name, where the component basis term refers to the Component Basis

terms developed by Kurtoglu et al. 2005 [22]. The function and flow utilize the

Functional Basis terms developed by Stone and Hirtz [40] [17]. The Component
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and Functional Basis terms allow us to compare CFF combinations to each other

with the knowledge that there is consistency in the language.

Figure 5.1: Design Repository Data Schema [6]

We pick up where the Form Follows Form (FFF) approach left off, working

to capture the underlying functionality of the chosen components using data from

the design repository [5][4]. In the FFF approach, Bohm et al. calculated the

CFF frequency of function and flow associated with components seperately. Our

research continues to build on this concept, attempting to streamline the automa-

tion process by combining the component-function-flow association refereed to as

CFF combinations. We chose only to consider the incoming flows to simplify

our analysis, as we found in analyzing our datasets that less than 5% of the results

have different inflow and outflow. We first used association rules with the Apri-

ori algorithm to find the CFF combinations using a small subset of the consumer
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products data, applying a threshold to determine the most likely functions and

flows per component [44]. Association rules are a type of data mining that de-

scribes the relationship between items in item sets [30] [25]. During data analysis,

we found that association rules returned more metrics than we needed [12]. We

simplified our calculations, focusing on the frequency (CFF frequency for clarity)

of CFF combinations, which is numerically equivalent to the confidence metric

from association rules. CFF frequency is calculated as the ratio of the number of

times the CFF combination occurs over the total number of CFF combinations for

that component. An example with the component screw, demonstrates the ratio.

The function and flow screw couple solid occurs the most at 589 times out of a

total of 647, so the CFF frequency of the combination is 589/647 or 91%. Some

CFF combinations only occurred once in the dataset, which returns a ratio of 1/1

or 100% CFF frequency.

Next, we determined that a threshold needed to be applied to extract the most

likely functions and flows for each component. The Pareto Frontier motivates

the 70% threshold from the Form Follows Form method [4]. We found in our

data analysis that the 70% threshold is often the point where adding additional

functions and flows for a component contributed a negligible change in the sum of

frequencies and decreased the accuracy of the automation results. We created an

automation algorithm to report the likely functions and flows automatically; this

algorithm is referred to as the Automated Frequency Calculation and Thresholding

Algorithm or AFCT. The AFCT algorithm orders the CFF frequencies of the CFF

combinations per component from largest to smallest, sums the frequencies of each
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CFF combination, and then applied a threshold the returned only the top 70% of

functions and flows per component. Edmonds et al. validated the accuracy of the

AFCT algorithm on multiple subsets of the consumer product dataset, determining

that the largest dataset was the most accurate [12]. This finding indicates that a

restricted dataset limits the results from which the AFCT algorithm could learn.

The ultimate goal of this research is utilize data from the Design Repository to

further the automation of functional models. A functional model is the graphical

representation of the functional decomposition of a product, and an example of

a Black and Decker Dustbuster can be seen Figure A.1 in the Appendix. Figure

A.1 demonstrates the complexity of functional models. To simplify the process

of automation, we begin by building individual-component-based linear functional

chains. We have shown in previous research that finding associations between

functions and flows, and components, allows us to build these linear functional

chains [44] [12]. Starting with a simplified model, we can work out the issues

and problems with automation rather than starting with such complexity as a full

product functional model. With the CFF combinations returned from the AFCT

algorithm, we build linear functional chains for components.

Functional decomposition has been the subject of extensive research [45] [2].

Some of this research involves developing grammar rules to help solve the consis-

tency issue with building functional models [29] [38]. Kurfman et al. found that

despite a formal language, repeatability was a challenge among both novices and

experts [20]. These grammar rules help determine the appropriate order of the

functions and flows for a product while developing a functional model. We apply
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grammar rules to the creation of linear functional chains.

5.3.2 Weighted Confidence Metric

Weighting is a commonly used tool when dealing with statistical probabilities or

uncertainty [46] [41]. Based on the idea that not all results are equal, a weight can

be assigned to a probability to increase or decrease its influence on the results. In

our work, the inequality in results comes from varying frequencies and consisten-

cies in our data. In using our ACFT algorithm described above, we found that

CFF frequency did not account for the prevalence or consistency of the CFF com-

binations in the dataset. In other words, a CFF combination that occurred five

times could have the same CFF frequency as a CFF combination that occurred

500 times in the dataset. Weighting these rare CFF combinations the same as

combinations with high prevalence can create a false sense of confidence in the

analysis. Additionally, some CFF combinations only occur once, returning a CFF

frequency of 100%. This data is likely associated with a component that does not

often occur in products. However, data that has low prevalence is still useful and

vital to include in our automation process. We do not want to eliminate the results

with low frequency or consistency, but we want to indicate additional information

about the influence that is not found in those metrics alone. Therefore, we devel-

oped quantitative descriptors for our data with the aim of using them to build an

improved metric for CFF frequency.

OHalloran et al. developed a frequency weighting metric that helps understand
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reliability and uncertainty in early design phases [33]. Their work uses The Design

Repository to calculate and predict failure based on the number of occurrences.

They calculate frequency weights and apply them to a Hierarchical Bayes model

in a similar manner to the Holt-Winter method that is used to forecast based on

Exponentially Weighted Moving Averages (EWMA) [18][35]. Their overall method

is the Early Design Reliability Prediction Method (EDRPM), and it calculates

weights based on occurrence instead of the time series data in EWMA [32].

Our method of calculating a weighted confidence metric is similar to the EDRPM

because it accounts for occurrence (prevalence) and is similar to IPW because it

accounts for rarity (consistency). We blend the two metrics together to give a

weighted confidence factor that best represents the data in the Design Repository.

We chose to use the harmonic mean to combine prevalence and consistency to

create the weighted confidence metric because of its superior application in using

ratios [13].

5.4 Methods

The purpose of this methodology is to develop a way to improve the CFF frequency

data fidelity, ultimately improving our linear functional chain automation results.

Below, we present the methods in four steps: 1) retrieve consumer products data

from the Design Repository, 2) apply the CFF frequency and thresholding au-

tomation algorithm, 3) develop a weighted confidence metric, and 4) create linear

functional chains.
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Table 5.1: Metrics Developed For Weighted Confidence

Metric Measure Description
Example
Component:
Electric Wire

Example
Component:
Housing

CFF count
per component

The number of CFF combinations
per component in the dataset.

651 1257

Max CFF count
per component

The component with the max number
of CFF combinations in dataset.

1257 1257

Unique CFF
combinations

The number of unique CFF
combinations per component

39 101

Unique CFF
combinations
in Threshold

The number of unique CFF
combinations per component
within the 70% threshold of the dataset.

2 7

Prevalence
This metric accounts for the
commonness of the component
in the dataset

The ratio of the number of times a
component occurs in the dataset to
the max number of times any
component occurs in the dataset

0.51 1

Consistency
This metric determines how
uniform the CFF combinations
are per component

The ratio of the total unique CFF
combinations per component to
the unique CFF combinations in the
threshold dataset (scaled 0 to 1)

1 0.73

Weighted
Confidence

This metric describes the both
prevalence and consistency of
the CFF combination data.

The harmonic mean of prevalence
and consistency

0.68 0.85

Step 1. Retrieve Data

To test this methodology, we chose to work with the largest dataset in the Design

Repository-the consumer products dataset. We previously found the consumer

products dataset is the most accurate and gives the most confidence in the au-

tomation results. In verifying the accuracy of the AFCT algorithm results, we

tested the algorithm on four smaller datasets, both component-specific and a com-

pany based product portfolio. We found that learning from the most possible

products returns the highest accuracy [12]. To extract the information needed, we

query the Design Repository for the component and function and flow connection

for the 142 consumer products.
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Step 2. Apply the Automated Frequency Calculation and Thresh-

olding (AFCT) Algorithm

We utilize the automation frequency calculation and thresholding algorithm (AFCT)

developed previously to retrieve CFF frequency and thresholding data for the con-

sumer products dataset [12]. Once the threshold was applied, the unique function

and flows per component were reduced to a range of 1 to 22 compared to 1 to 101.

An example component can be seen in Figure 5.2. For the component pulley,

the CFF frequency of the first two functions and flows sums to 63%, so the third

is added to the list to reach the 70% threshold. This brings the sum to 74% and

results in rejecting the last four results. For example, based on the results from

Figure 5.2, the order of the linear functional model would be secure solid, guide

solid, and transfer mechanical. We use grammar rules and design knowledge to

put the function and flow in linear order, not the magnitude of the CFF frequency.

Note that the third and fourth results for pulley have the same CFF frequency,

the AFCT algorithm arbitrarily removes one of these results over threshold. This

limitation will be discussed in more depth in the Assumptions and Limitations

section.

Step 3. Develop a Weighted Confidence Metric

As described previously, the AFCT algorithm returns the most likely functions and

flows per component. While the results of the algorithm are invaluable for the au-
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Figure 5.2: Example To Illustrate Threshold Automation For The Component
Pulley

tomation process, the CFF frequency calculation does not indicate the prevalence

or consistency of the component. For example, housing, electrical cord, and screw

were three components that appeared well over 100 times in the repository. With

examples like this, we can be confident in the fidelity of AFCT algorithm results.

However, many results only occur once in our dataset, returning a 100% CFF fre-

quency. These rare CFF combinations have a high CFF frequency, yet the fidelity

of this result is much lower. This example demonstrates that the magnitude of the

CFF frequency is not indicative of the fidelity of the data. To improve the fidelity

of the results of our AFCT algorithm, we developed a weighted confidence metric

to account for the data fidelity of the automation results.

In order to create the weighted confidence metric, we took the harmonic mean

of two metrics, prevalence, and consistency. To reiterate, prevalence measures
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the commonness of the component, and consistency measures how uniform the

CFF combinations are per component. These metrics are described in Table 5.1.

Two example components demonstrate the numbers used to calculate the weighted

confidence metric and are shown in Table 5.1. Consistency was scaled from 1 to

0 to make it equal in magnitude to prevalence so that the harmonic mean could

be estimated. Harmonic mean in Equation 5.1 is a more representative mean

when dealing with ratios rather than the arithmetic mean [13], where n is the

number of variables used to calculate the mean, in our case n = 2 (consistency and

prevalence), a1 is consistency, and a2 is prevalence.

HarmonicMean = H =
n

1
a1

+ 1
a2

+ · · · + 1
an

(5.1)

High prevalence is demonstrated in Table 5.1, the component housing occurs

1257 times in the dataset. Housing is a component that occurs in almost all

consumer products, so naturally, it would have a high prevalence. An example of

low prevalence is analog display, which only occurs once, indicating that only one

product in the repository has this component. An example of high consistency

is shown in Table 5.1, electric wire has the highest ratio of total unique CFF

combinations to unique CFF combinations in threshold, 39/2. Demonstrating

that even though there are 39 combinations for electric wire, only two of those

combinations represent 70% of the results, transfer electrical (44%) and couple

solid (26%).
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Step 4. Create Linear Functional Chains

We can use the likely functions and flows found by the AFCT algorithm to develop

linear functional chains. The weighted confidence metric can be used to determine

the fidelity of the linear functional chain. We show four distinct example compo-

nents from the dataset that are representative of the four combinations of high-

and low-CFF frequency and weighted confidence below:

1. High CFF frequency, high weighted confidence

2. Low CFF frequency, high weighted confidence

3. Low CFF frequency, low weighted confidence

4. High CFF frequency, low weighted confidence.

These categories represent the four quadrants in Table 5.2. As stated above,

CFF frequency alone cannot determine the prevalence and consistency of data.

Combining the weighted confidence metric with CFF frequency, as seen in Table

5.2, provides additional information improving our automation process. High CFF

frequency indicates that the component has few functions and flows associated

Table 5.2: Description Of The Combination Of CFF Frequency and Weighted
Confidence

High
Weighted

Confidence

Multiple results per
component that occur
many times.

One or two CFF results
that occur many times in
the dataset.

Low
Weighted

Confidence

Multiple results per
component that only
occur a few times.

One or Two CFF results
per component that only
occur once.

Low CFF frequency High CFF frequency
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with it, and high weighted confidence indicates that the component often appears

in the data and has consistent, unique function and flows. Low CFF frequency

indicates that the component has many associated functions and flows, while low

weighted confidence indicates that the component is rare in the data and is not con-

sistent with unique function and flows. We chose an example component from each

quadrant to demonstrate an automated linear function chain, using the function

and flow combinations found by the CFF frequency calculation and thresholding

algorithm.

To form the order of the linear functional chain, if there are more than one

function and flow per component, we order the functions and flows based on pre-

viously created grammar rules. For example, Bohm et al. state that the import

function occurs first and only once per flow in a chain of components, and that ex-

port is the last function in a chain of components [4]. Grammar rules do not exist

for every combination of function and flow. Currently, we are creating the linear

functional chains by hand using expert knowledge. As this research progresses, we

will develop additional grammar rules, which will help continue to automate the

process of developing functional models.

ASSUMPTIONS AND LIMITATIONS

The primary limitation in our previous work (that this research seeks to eliminate)

is that a CFF combination could appear a few times or several hundred times in

the dataset, and with only the CFF frequency calculation, there was not a way
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to determine the difference. We make key assumptions in this research: primarily,

we assume that due to the use of the Functional and Component Basis terms,

the data in the Design Repository is consistent. For example, one function and

flow combination that appeared for both components rivet and screw is couple

solid. This consistency allows us to compare function and flow across components.

However, we know that at times due to multiple entries from different researchers,

we do need to account for variance and error, such as the component basis terms

container and reservoir being used interchangeably. Input fidelity and linguistic

imprecision, such as the difference between container and reservoir, are two con-

cerns. This is ultimately why we chose to develop the weighted confidence metric

to help account for any erroneous data.

While we found the 70% threshold worked for the majority of components,

some components fall outside this typical pattern. For example, the components

condenser and screen have an even split of the CFF frequency across all results.

This equal distribution creates a unique situation where the threshold arbitrarily

eliminates the last function and flow. Figure B.1 in the Appendix shows the AFCT

algorithm results for both components. In cases like this example and the pulley

example (Figure 5.2), future work is needed to optimize the threshold in the AFCT

algorithm.
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5.5 Results and Discussion

5.5.1 Automated CFF frequency Calculation and Thresholding (AFCT)

Algorithm

The 142 products were composed of 132 different component basis types and 161

functions and flows that were combined to create the CFF combinations. The query

and algorithm returned 11,394 CFF combinations for the 142 consumer products

in the Design Repository. The range, average, and median of the different CFF

combinations can be seen in Table 5.3.

5.5.2 Weighted Confidence Metric

The weighted confidence metric improves the automated results of the CFF fre-

quency calculation and thresholding algorithm by incorporating the prevalence

and consistency of the data. The relationship between consistency and prevalence

was not proved to be a 1-to-1 relationship for a significant portion of the data,

demonstrating the importance of including both metrics in the weighted confi-

dence calculation, see Figure 5.3 trend line.

Figure 5.4 shows the relationship between CFF frequency and weighted con-

fidence. Each point represents one CFF combination. The size of the bubble is

the number of CFF combination occurrences per component in the dataset; for

example, housing has 1257 CFF combinations (the max number of occurrences for

a component in the dataset) seen in the top left of the figure. Figure 5.4 shows



67

Table 5.3: Range, Average, and Median Of The Component Function Flow Asso-
ciations

Range Average Median

Total individual CFF
combinations per component

1-1257 133 55

Individual CFF combinations
per component within threshold

1-908 105 45

Total unique CFF
combinations per component

1-101 27 22

Unique CFF combinations
per component within threshold

1-22 10 9

that the weighted confidence metric is needed to improve data fidelity of CFF

frequency results, as high weighted confidence values are found across all CFF

frequency values. A low CFF frequency is not indicative of the importance of the

CFF combination; rather, it simply indicates that there are multiple results per

component. The average number of unique functions and flows per component

is 10, illustrating that most components have multiple associated functions and

flows. Figure 5.4 shows the large percentage of the CFF combinations have a CFF

frequency below 40%. For example, housing, which has 7 CFF combinations in

threshold, resulting in low CFF frequency for each combination. However, housing

has the highest prevalence in the dataset, resulting in a high weighted confidence

value, which is more indicative of the fidelity of the data than the CFF frequency

values. In Figure 5.5, we have partitioned the parameter space into four quadrants

to show examples of four combinations of CFF frequency and weighted confidence

values discussed in the methods and shown in Table 5.2. The results demonstrate
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Figure 5.3: Consistency Versus Prevalence

that while CFF frequency is needed to return the likely functions and flows per

component, the magnitude of CFF frequency is not essential; however, the magni-

tude of the weighted confidence can indicate confidence in the automation results.

Here, we briefly describe four specific results from Figure 5.5.

A. Low CFF frequency, high weighted confidence The automation algo-

rithm returned 7 CFF combinations within the threshold for the component hous-

ing. Multiple CFF combinations per component result in a lower CFF frequency

per combination. Housing is the component with the highest prevalence in the

dataset at 1257, and it has high consistency with a ratio of 101 unique CFF com-
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Figure 5.4: Weighted Confidence Verus CFF Frequency With The Occurrence Of
The Component As The Size Of The Bubble

binations to 7 unique CFF combinations in the threshold. Since housing has both

a high prevalence and consistency in the dataset the weighted confidence value is

also high at 85%. The top CFF combination was Housing - Position Solid with a

CFF frequency of 23%, the other 6 combinations had a lower CFF frequency.

B. High CFF frequency, high weighted confidence Screw has very high CFF

frequency because within the threshold; there is only one CFF combination, Screw

- Couple Solid. This combination has a CFF frequency of 92%, meaning Couple

Solid is the most likely function and flow for the component Screw. Like housing,
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screw has both a high prevalence and high consistency. The prevalence is how

often screw appears in the dataset, 647 times. Consistency is the ratio of unique

CFF combinations to unique CFF combinations within threshold, which is 18 to

1. The weighted confidence metric is 66%.

C. Low CFF frequency, low weighted confidence Condenser- Convert Gas

is an example of a CFF combination that has low CFF frequency but also a low

weighted confidence value. The automation algorithm returned five unique CFF

combinations for condenser, but there were only a total of six results in the Repos-

itory. The component condenser only shows up in three of the 142 products in

the Repository, indicating that this a rare component in our products. The low

weighted confidence metric, 0.8%, indicates low fidelity of the automation results.

D. High CFF frequency, low weighted confidence Analog Display-Indicate

Mechanical is an example of a CFF combination that only occurs once in the

Repository. The CFF frequency is therefore very high, 100%, but the weighted

confidence is very low, 0.15%. CFF combinations that only occur once return a

false high CFF frequency that can be illuminated by the low weighted confidence

metric.

5.5.3 Linear Functional Models

To translate our findings into automation, we developed four linear functional

chains based on our four examples above in Figure 5.5. Each example component

came from one of the four quadrants shown in Table 5.2. The linear functional
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Figure 5.5: Example Data For The Four Quadrants Of Combined Weighted Con-
fidence And CFF Frequency.

chains are a demonstration of the automation process described in the methods.

The AFCT algorithm returns the most likely functions and flows for a component.

If there is more than one function and flow returned for a component, the results

are ordered using existing grammar rules and expert knowledge. The components

in Figure 5.6 demonstrate that components vary in complexity and therefore vary

in functional chains. Screw, for example, has only one function and flow, couple

solid, whereas condenser has many more functions and flows. This complexity
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can also be attributed to the function the component performs in the product;

for example, a knife blade performs a more straightforward function than a jigsaw

blade.

For the linear function chains shown in Figure 5.6, the higher weighted con-

fidence metric for housing and screw indicates higher data fidelity than the two

components with lower weighted confidence, condenser, and analog display. As

seen in Figure 5.6 A., housing is an example of a component with multiple re-

sults; these results need to be ordered linearly. For the flow of human material,

we apply the following grammar rules adapted from Bohm and Stone a) import is

automatically placed as the first function for a chain and b) export is automati-

cally placed as the last function for a chain [4]. Currently, grammar rules do not

exist to describe the order functions such as position, guide, couple, and secure.

Therefore, using our knowledge of functional models, we determined that position

solid must come before guide solid, and guide solid would come before couple solid,

and couple solid would come before secure solid. The same reasoning was applied

to the component condenser, Figure5.6 C. As we move toward automation, we will

continue to develop grammar rules to improve the machine learning of our process.

The grammar rules also dictate that the convert function has separate inflows and

outflows; therefore, the automation would place transfer gas before convert gas for

the component condenser seen in Figure 5.6.
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Figure 5.6: Linear Functional Chains Of The Four Examples in Figure 5.4

5.6 Conclusion

We set out to assess the prevalence and consistency of the outlying component-

function-flow combination (CFF combinations) in the Design Repository data. In

previous work, we found that CFF frequency was a suitable metric to determine

a components likely function and flow, but was unable to identify the prevalence
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and consistency of the components in the dataset. Our work developed a weighted

confidence metric to supplement CFF frequency during the automation process.

The weighted confidence metric supports CFF frequency by analyzing the com-

ponents data fidelity, identifying the range of low to high confidence. Figure 5.4

demonstrated the distribution of CFF combinations across frequency and weighted

confidence. The range of distribution of CFF frequency is shifted towards the lower

end of the spectrum because the majority of components in the consumer products

dataset have multiple function and flow outputs resulting in the division of CFF

frequency across all instances. However, the weighted confidence is distributed

more evenly across all CFF combinations, indicating that there is a range of data

fidelity in the Design Repository. Ultimately we need both metrics in order to au-

tomate the process; the CFF frequency metric returns the most likely function and

flow results for each component, and then the weighted confidence metric accounts

for prevalence and consistency in the data. With the weighted confidence metric,

we are now able to capture occurrences of all components in a given dataset, thus

improving the results of our automation algorithm. By including the weighted con-

fidence metric, we have eliminated the tendency to discard useful outliers to reduce

the noise in analysis such that these outliers can now be included in the concept

generation process. The inclusion of these outliers can provide valuable creative

insight to designers. We have provided a simple method that researchers could

implement with their own datasets to weight results versus discarding outliers,

ultimately increasing the robustness of data analysis.

This methodology has helped increase the utility of automated functional mod-
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eling. However, there is still much to be done to fully automate the process of

creating complex functional models for entire products. The next step would be

to integrate the weighted confidence metric into the AFCT algorithm, returning

both metrics. Future work should also look at optimizing a threshold specific to

each component, identifying where adding additional function-flow combinations

has a negligible change. In order to broaden linear functional chains to the full

functional model, work must be done on connecting components to each other, as

well as connecting the components through flows.

One of the main goals of this research is to help expand the Design Repository.

As we develop our automation process, it becomes easier in the future to add infor-

mation from other repositories, which significantly expands our database. We are

working with additional OSU researchers to house the information from an exist-

ing Sustainable Design Repository in the OSU Design Repository [14]. Combining

this information adds additional products, as well as sustainable design information

such as LCA analysis and manufacturing processes. Expanding on the work pre-

sented in the Function-Human Error Design Method (FHEDM), Soria et al. have

been using Design Repository data to develop new relationships, such as incorpo-

rating the user, user interactions, human error [48] [37]. The database structure of

the Design repository provides mapping and connections between categories of the

product systems, expanding these connections to include sustainability and user-

system interactions will bring these important considerations to the early phase of

design decisions.
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Chapter 6: Discussion

This research is the first step towards automating functional modeling forward. In

review, we mined the data from the Design Repository for component-function-flow

(CFF) combinations and developed linear functional chains based on individual

components.

In the first manuscript, we first tested our hypothesis that restricting the train-

ing dataset to products that all share a similar component would give more accu-

rate results for automating the generation of linear functional chains. For example,

products having the component blade would have more similar functionality with

other products having the component blade as opposed to products outside that

dataset. We found support with this hypothesis in previous work, using only one

product, the Delta jigsaw, as a validation method [44]. Expanding our datasets and

validation methods, we tested the accuracy of the automated frequency calculation

and thresholding (AFCT) algorithm. We expanded to five datasets, which included

three component-based datasets (blade, heating element, and reservoir/container),

one product portfolio (black and decker), and the full consumer products dataset.

We used the k-fold cross-validation method to test the accuracy of our algorithm.

We tested the three different component-based datasets against itself, the Black

and Decker dataset, and all consumer products dataset. The results of this val-

idation process determined that our hypothesis was false, the consumer reports
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dataset consistently had the highest F1 score, indicating that the accuracy of data

mining does depend on the size and quality of the learning set used, with the larger

datasets provide higher accuracy in the results. We applied existing grammar rules

and designer expertise to create a few example linear functional chains. These re-

sults confirm the notion that the findings of our AFCT algorithm can be used to

build a linear functional chain of individual components within a product.

In the second manuscript, we hypothesized that we could improve the data

fidelity of the results from our AFCT algorithm by creating a metric that accounts

for the prevalence and consistency of the data. In the previous manuscript, we

found that CFF frequency was a suitable metric to determine a components likely

function and flow. However the limitation of our current automation process is that

prevalence, the measure of the commonness of the component, and consistency,

the measure of how uniform the CFF combinations are per component, are not

considered. Some CFF combinations appear many times, resulting in high levels

of confidence in our results. Housing, electrical cord, and screw were three

components in the repository that appeared well over 100 times in the repository.

However, many results only occur once or twice in our dataset, resulting in a lower

confidence. In this manuscript, we provided the methodology to create a weighted

confidence metric that replaces the common approach of removing rare data. This

metric allows all data to be included by describing the data fidelity. Since we

were unable to find a numerical tool or quantification that returned the synthesis

of prevalence and consistency in our dataset, we developed our own metric. In

order to create the weighted confidence metric, we took the harmonic mean of two
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metrics, prevalence, and consistency.

We applied this metric to four example linear functional chains:

1. High CFF frequency, high weighted confidence

2. Low CFF frequency, high weighted confidence

3. Low CFF frequency, low weighted confidence

4. High CFF frequency, low weighted confidence.

We concluded that the components with higher weighted confidence metric

indicate higher data fidelity than the components with lower weighted confidence.

The following general findings summarize this research:

Finding 1: The results of the more robust validation methods show that

learning from the most possible products will return a higher accuracy than any

restricted-size dataset. The component-specific datasets had lower accuracy when

cross-validated against component-specific data than when cross-validated against

all consumer products. The Black and Decker dataset is the smallest, containing

12 products, and consistently had the lowest F1 score when used as the training

set. The consumer products dataset is the largest, containing 142 products, and

consistently had the highest F1 scores.

Finding 2: We suggest that because the F1 score is calculated for an entire

testing set, which often contains rare components that might have only one function

and flow in the testing set, this may decrease the overall accuracy of function and

flow results per component. As is often the case in large datasets, the accuracy

of the data input can be a concern. Over the 20 years of the development of the

Design Repository, many different contributors have worked on this project. This
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turnover has led to some inconsistencies in the data; for example, container and

reservoir are often used interchangeably. Another example, the component screw

is 91% correlated with couple solid but there are 17 other results, which could be

due to individual input variations. This noise of the additional rare or mislabeled

CFF combinations in the datasets can certainly reduce the accuracy of the results,

especially for the larger consumer products dataset.

Finding 3: While finding 1 suggests that learning from more data returns

more accurate results, restricting the dataset based on the component may re-

turn more refined results for functionality. For example, the heating element, and

reservoir/container component-specific datasets have six CFF combinations for the

component heating element, the consumer products dataset has 10, and the blade

dataset only returned one result. Heating element and reservoir/container have a

high overlap in products, such as coffee makers, but blade products are unlikely to

contain heating element as a component. There may be times when a designer de-

sires more refined results and a smaller learning dataset can be used if the products

have the component of interest in the learning set.

Finding 4: In developing the linear functional chains, we demonstrated more

simple examples, such as screw and washer. As complexity increases, grammar

rules are necessary to order the function and flow results. Only two existing gram-

mar rules applied to our findings in heating element and blade. As we expand our

work in developing linear functional chains, we will need to expand on the research

around grammar rules to create additional rules required to connect flows at the

interface of components. Individual analysis allows for the development of new
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rules to handle each situation, but automation is possible based on investigating

the interactions between component, function, and flow. While significant future

work is required to fully automate the functional modeling of a product, these

findings offer a starting point.

Finding 5: Future work will look at finding the threshold specific to each

component where adding additional function-flow combinations has a negligible

change. We found the 70% threshold worked for the majority of components, but

some components fall outside this typical pattern. For example, the component

screen, has an even split of 25% frequency across four results; the algorithm auto-

matically sorts the first three results it sees, leaving the last result out arbitrarily.

In cases like the above example, future work is needed to improve the algorithm

in such cases of uniform distribution. We have explored changing the classifica-

tion threshold to see how that affects the results, and a more thorough method

should be investigated. Optimizing the classification threshold to individual com-

ponents would increase the accuracy of the AFCT algorithm results and ultimately

the automation process.

Finding 6: The range of distribution of CFF frequency is shifted towards the

lower end of the spectrum because the majority of components in the consumer

products dataset have multiple function and flow outputs resulting in the division

of CFF frequency across all instances. However, the weighted confidence is dis-

tributed more evenly across all CFF combinations, indicating that there is a range

of data fidelity in the Design Repository. Ultimately we need both metrics in order

to automate the process; the CFF frequency metric returns the most likely func-
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tion and flow results for each component, and then the weighted confidence metric

accounts for prevalence and consistency in the data.

Finding 7: By including the weighted confidence metric, we have eliminated

the tendency to discard useful outliers to reduce the noise in analysis such that these

outliers can now be included in the concept generation process. The inclusion of

these outliers can provide valuable creative insight to designers. We have provided

a simple method that researchers could implement with their own datasets to

weight results versus discarding outliers, ultimately increasing the robustness of

data analysis.

Finding 8: We have shown that the AFCT algorithm returns can be used to

develop linear functional chains. In order to broaden linear functional chains to

the full functional model, work must be done on connecting components to each

other, as well as connecting the components through flows. Future work should

investigate the connections between components by looking at sub-assemblies and

assemblies of products in the repository, as well as, the connections of incoming

and outgoing flows for each function.
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Chapter 7: Conclusion

As this research develops, our ultimate goal is to automate the process of en-

tering additional products into design repositories. Streamlining the process of

adding new products with automating functional modeling allows not only indi-

vidual products to be added by users but also the addition of entire repositories.

Enabling products to be entered by users will further increase the size and qual-

ity of the data in the Design Repository and ultimately increase the accuracy

of our automation process. Short term goals include combining the information

from an existing Sustainable Design Repository in the OSU Design Repository

[14]. Additionally, Soria et al. have been using Design Repository data to develop

new relationships, such as incorporating the user, user interactions, and human

error [48] [37]. The database structure of the Design repository provides map-

ping and connections between categories of the product systems, expanding these

connections to include sustainability and user-system interactions will bring these

important considerations to the early phase of design decisions.

We posit that this work will have broader impacts by providing designers insight

on the functionality of components. These CFF correlations can assist designers

and students in building functional models during the concept generation phase,

enabling designers to design the whole product, rather than taking a parts up

approach. Additionally, this work can also be used by educators to help improve
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student understanding of product functionality by connecting function-flow with

a component.
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Appendix A: Functional Model Example

Figure A.1: Black And Decker Dustbuster Functional Model
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Appendix B: Additional Component Examples

Figure B.1: Example Components To Illustrate Limitations Of Threshold Automa-
tion




