Cluster Ensembles for High Dimensional Clustering:
An Empirical Study

Xiaoli Z. Fern XFERN@EECS.OREGONSTATE.EDU
Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engmeermg
Center, Corvallis, OR 97331, USA

Carla E. Brodley BRODLEY@CS.TUFTS.EDU
Electrical Engineering and Computer Science, Tufts University, 161 College Avenue, Medford, MA
02155, USA

Editor:

Abstract

This paper studies cluster ensembles for high dimensional data clustering. We examine
three different approaches to constructing cluster ensembles. To address high dimension-
ality, we focus on ensemble construction methods that build on two popular dimension
reduction techniques, random projection and principal component analysis (PCA). We
present evidence showing that ensembles generated by random projection perform better
than those by PCA and further that this can be attributed to the capability of random
projection to produce diverse base clusterings. We also examine four different consensus
functions for combining the clusterings of the ensemble. We compare their performance
using two types of ensembles, each with different properties. In both cases, we show that
a recent consensus function based on bipartite graph partitioning achieves the best perfor-
mance.

Keywords: Clustering, Cluster ensembles, Dimension reduction, Random projection

1. Introduction

Clustering for unsupervised data exploration and analysis has been investigated for decades
in the statistics, data mining, and machine learning communities. The general goal of
clustering is to partition a given set of data points in a multidimensional space into clusters
such that the points within a cluster are similar to one another. Many clustering algorithms
require a definition of a metric to compute the distance between data points. Thus, their
performance are often directly influenced by the dimensionality used for calculating the
chosen distance metric. Data sets with high dimensionality pose two fundamental challenges
for clustering algorithms. First, in a high dimensional space the data tend to be sparse
(the curse of dimensionality Bellman, 1961). Indeed, Beyer et al. (1999) demonstrated
that as the dimensionality increases, the difference in distance between a given point and
it nearest neighbor and other points in the data set often becomes negligible—making it
difficult if not impossible to identify any clustering structure in the data based on distance
measures. Second, there often exist irrelevant and/or noisy features that may mislead
clustering algorithms (Dy and Brodley, 2004). For example, with the presence of irrelevant

features, points from distinct clusters may appear to be closer (as measured by the Euclidean
distance) than points from the same cluster.

To ameliorate the problems caused by high dimensionality, clustering is often used in
combination with dimension reduction techniques. Representative examples of commonly
used dimension reduction techniques include principle component analysis (PCA), feature
selection (Agrawal et al., 1998, Dy and Brodley, 2004) and projection pursuit (Huber,
1985, Friedman, 1987). The goal of dimension reduction for clustering is to form a lower
dimensional representation of the data such that “natural” clusters are easier for clustering
algorithms to detect. To achieve this goal, dimension reduction techniques often rely on
some “interestingness” criterion to search for a single lower dimensional representation.
However, because the true structure of the data is unknown, it is inherently ambiguous
what constitutes a good low dimensional representation. This makes it difficult to define
a proper “interestingness” criterion. An alternative approach to this problem that we
explore in this paper is to use multiple low-dimensional representations of the data. Each
representation is used to cluster the data and a final clustering is obtained by combining
all of the clustering solutions. Note that each low-dimensional representation presents the
clustering algorithm with a different view of the original data. By combining the results
from many different views, we expect to accumulate information about the structure of the
data and produce better and more robust clustering results.

Although several recent papers have addressed cluster ensembles (Strehl and Ghosh,
2002, Fern and Brodley, 2003, Topchy et al., 2003), research in this area has been limited
in a number of ways. First, there has not been a systematic investigation of this approach
for high dimensional data clustering despite its clear promise as discussed above. Second,
empirical evaluations of existing cluster ensemble systems have been limited to a small
number of data sets, some of which are artificially constructed. We believe that a more
thorough empirical evaluation is warranted. Lastly, the current cluster ensemble literature
has mainly focused on the problem of combining multiple clusterings (commonly referred to
as the problem of consensus function) and little guidance is available for how to construct
cluster ensembles (i.e., produce multiple clustering solutions). Many different approaches
can be used to construct cluster ensembles and they may produce ensembles that vary
significantly with respect to the amount by which the individual clustering solutions differ
from one another (diversity) and how good each clustering solution is (quality). Further, it
is likely that different consensus functions may be better suited to different types of cluster
ensembles. An in-depth study of the above issues will provide useful guidance for applying
cluster ensemble techniques in practice.

This paper investigates cluster ensemble techniques in the context of high dimensional
data clustering. First, we examine three approaches to constructing cluster ensembles. To
address high dimensionality, our ensemble constructors build on two popular dimension
reduction techniques: random projection (RP) and principle component analysis (PCA).
Second, we examine four consensus functions for combining clusterings. Through in-depth
empirical analysis, our goals in this paper are to study:

e the suitability of different ensemble construction methods and different consensus
functions for high dimensional clustering,

o the influence that the diversity and quality of base clusterings have on the final en-
semble performance, and

o the relationship between the performance of various consensus functions and the basic
properties (diversity and quality) of cluster ensembles.

Our study indicates that, in comparison to the traditional approach of a single cluster-
ing with PCA dimension reduction, cluster ensembles are generally more effective for high
dimensional data clustering. Among the various ensemble construction techniques exam-
ined in this paper, the random projection based approach is shown to be most effective in
producing ensembles with high diversity and good quality for high dimensional data. Last,
our experiments on four different consensus functions show that although there is no uni-
versal single best consensus function, on average the bipartite graph partitioning consensus
function (Fern and Brodley, 2004) is the most stable and effective approach for combining
cluster ensembles.

The remainder of this paper is arranged as follows. In Section 2, we introduce the basics
of cluster ensembles. Section 3 describes three different methods for generating cluster
ensembles and Section 4 introduces different consensus functions. Section 5 describes the
data sets used for our experiments, the related parameter choices and experimental methods.
Sections 6 and 7 present the experiments on ensemble constructors and consensus functions
respectively. In Section 8, we review the related work on cluster ensembles. Section 9
summarizes the paper and discusses directions for future work.

2. Cluster Ensembles

A cluster ensemble consists of two parts: an ensemble constructor and a consensus function.
Given a data set, an ensemble constructor generates a collection of clustering solutions—
i.e., a cluster ensemble. A consensus function then combines the clustering solutions of the
ensemble and produces a single clustering as the final output of the ensemble system. Below
we formally describe these two parts.

Ensemble Constructor: Given a data set of n instances X = {X;,X,,---, X}, an
ensemble constructor II generates a cluster ensemble, represented as IT = {r!,72,... 77},
where r is the ensemble size (the number of clusterings in the ensemble). Each clustering
solution n* is simply a partition of the data set X into K* disjoint clusters of instances,
represented as n' = {ci,d}, -, 4.}, where Uxci = X. For simplicity this paper assumes
that hard clusterings are used. However, it should be noted that each consensus function
examined in this paper can be applied to cluster ensembles with soft clusterings, directly
or with minor modifications.

Consensus Function: Given a cluster ensemble II and a number K, the desired number
of clusters, a consensus function I' uses the information provided by IT and partition X into
K disjoint clusters as the final clustering solution 7;. In a more general case, one can also
use the original features of X in combination with II to produce the final clustering. In this
study we focus on the case where the original features of X are only used during ensemble
construction.

3. Ensemble Constructors

In this section, we introduce three ensemble constructors. Because our goal in this paper is
to cluster high dimensional data, we focus on approaches that build on dimension reduction
techniques. Note that for all approaches described below, we use K-means as the base
clustering algorithm for its simplicity and computational efficiency.

3.1 Random Projection Based Approach

Our first ensemble constructor is based on random projection, a dimension reduction tech-
nique that has seen growing popularity due to its simplicity and theoretical promise. We
will refer to this approach as the RP-based approach and the resulting ensembles as RP
ensembles.

Our motivation for using random projection is threefold. First, in comparison to tradi-
tional dimension reduction methods such as PCA, random projection is a generic dimension
reduction technique that does not use any “interestingness” criterion to “optimize” the pro-
jection. Specifying a proper “interestingness” criterion for a data set can be challenging due
to the unsupervised nature of clustering tasks. Second, random projection has been shown to
have promise for high dimensional data clustering. In 1984, Diaconis and Freedman showed
that various high-dimensional distributions look more Gaussian when randomly projected
onto a low-dimensional subspace. Recently, Dasgupta (2000} showed that random projec-
tion can change the shape of highly eccentric clusters to be more spherical. These results
suggest that random projection combined with standard K-means clustering may be well
suited to finding structure in high dimensional data. Lastly, our initial experiments (Fern
and Brodley, 2003) on random projection for clustering high dimensional data indicate that
clustering with different random projection runs results in different clustering solutions that
can be complementary to each other. We conjecture that this is a desirable property for
cluster ensembles, rendering random projection a natural candidate for constructing cluster
ensembles. Below we introduce random projection and the RP-based ensemble constructor.

A random projection from d dimensions to d' dimensions is simply a randomly generated
linear transformation, represented by a d x d' matrix R. The transformation matrix R is
typically generated by first setting each entry of the matrix to a value drawn from an
iid. N(0,1) distribution and then normalizing the columns to unit length. Generally
speaking, a matrix R generated as described above will not be orthonormal. To obtain a
real projection matrix, we need to further orthogonalize R. However, as shown by Hecht-
Nielsen (1994), high dimensional vectors with random directions may be sufficiently close
to being orthogonal. Therefore, in our experiments we do not perform orthogonalization.

Given a d-dimensional data set represented as an n X d matrix X, where n is the number
of total data points in X, the mapping X X R results in a reduced-dimension data set X’. We
then apply the standard K-means algorithm to the new data set X' to obtain a clustering
solution. To construct a cluster ensemble, the above process is repeated multiple times and
each time a different projection matrix is randomly generated.

The RP-based ensemble constructor requires two parameters: d', the new dimension for

random projection; and kg, the desired number of clusters for K-means in each clustering
run. We will discuss the parameter choices in Section 5.2.

3.2 Combining PCA and Random Subsampling

PCA is a widely used dimension reduction technique. It selects projection directions to
maximize data variance. Although the variance criterion used by PCA cannot guarantee
finding a good low-dimensional representation of the data for clustering (Fukunaga, 1990),
it is often considered to be a useful heuristic. Indeed, when comparing random projection
with PCA applied to produce a single clustering, we observed that in many cases PCA
leads to better performance than random projection. Given a data set, PCA choose pro-
jection directions deterministically, therefore, in order to use PCA for constructing cluster
ensembles, we combine PCA with random subsampling. '

Specifically, given a high-dimensional data set X, we first apply PCA to reduce the
dimension of the data from from d to d'. Subsampling is then applied to the reduced data
to generate cluster ensembles. Particularly, for each clustering run, we randomly subsample
the given reduced data with sampling rate 65%. ! Subsampling is performed without
replacement to avoid duplicating instances. Note that K-means only clusters instances
that appear in the current subsample—resulting in the possibility that some instances are
never clustered in the entire ensemble. To avoid this situation, in each clustering run we
further assign each instance that is absent from the current subsample to its closest cluster
based on its Euclidean distances (using the reduced d’-dimensional representation) to the
cluster centers.

In the remaining part of the paper, we will refer to this ensemble constructor as PCASS
and the resulting ensembles as PCASS ensembles. Note that we also explored an alternative
approach, where we subsample first and then apply PCA. By doing so, subsampling is
used as a tool for producing different principle projection directions. However, empirical
comparisons between these two approaches indicate that they produce highly similar cluster
ensembles. An possible explanation is that the features of the high dimensional data sets
studied are highly redundant—applying PCA to subsampled data leads to very similar
projection directions. In light of the similar behavior of the two approaches, we will focus
on PCASS in our future discussion.

3.3 Combining Random Projection with PCA

When PCA is used in PCASS for constructing cluster ensembles, a critical limitation is
that it produces only a single low-dimensional representation of the data in different clus-
tering runs. If significant information is erroneously discarded by PCA, all clustering runs
(performed on subsamples) in the ensemble will suffer the same loss without exception. In
contrast, although a single run of random projection may lead to significant information
loss, the other random projection runs in the ensemble can potentially compensate for the
loss incurred in that run. To benefit from the strengths of both approaches, our third
ensemble constructor combines random projection with PCA.

Given a high-dimensional data set X, we first apply random projection to reduce the
dimension of the data set from d to dy. PCA is then applied to the dj-dimensional data
to further reduce the dimension to dy and form the final low-dimensional representation of
the data, which is then clustered by K-means. We refer to this ensemble constructor as
RPPCA, and the resulting ensembles as RPPCA ensembles.

1. The sampling rate was arbitrarily selected.

4. Consensus Functions

A consensus function takes an ensemble of clustering solutions and combines them to pro-
duce a single (presumably better) final clustering. Note that combining clusterings is a
difficult task that does not come with a simple and natural solution. Because there is no
clear correspondence relationship among clusters obtained from different clusterings, we can
not directly apply simple schemes such as majority vote. In this paper we examine four
different consensus functions, each of which approaches the clustering combination problem
by transforming it into a more familiar problem. In particular, the first three consensus
functions each reduce the clustering combination problem to a graph partitioning problem,
and the fourth approach reduces it to a standard clustering problem.

4.1 Consensus Functions Using Graph Partitioning

Consensus functions using graph partitioning have two main advantages. First, graph parti-
tioning is a well studied area and algorithms such as spectral clustering have been successful
in a variety of applications (Shi and Malik, 2000, Dhillon, 2001). Second, cluster ensembles
provide a simple and effective way to define similarity measures for computing the weight
of the edges in a graph, which is an important and sometimes hard to satisfy prerequisite
for the success of graph partitioning techniques (Bach and Jordan, 2003). Below we first
describe the basics of graph partitioning and provide the necessary notation.

The input to a graph partitioning problem is a graph that consists of vertices and
weighted edges, represented by G = (V,W), where V is a set of vertices and W is a
nonnegative and symmetric |V'| x |V| similarity matrix characterizing the similarity between
each pair of vertices. To partition a graph into K parts is to find K disjoint sets of vertices
P = {P,P,, --,Px}, where UyP;, = V. Unless a given graph has K, or more than K,
strongly connected components, any K-way partition will cross some of the graph edges.
The sum of the weights of these crossed edges is often referred to as the cut of a partition
P: Cut(P,W) =3 W(,j), where vertices ¢ and j do not belong to the same set.

Given a weighted graph, a general goal of graph partitioning is to find a K-way partition
that minimizes the cut, subject to the constraint that each part should contain roughly the
same number of vertices. In practice, various graph partitioning algorithms define different
optimization criteria based on the above goal. In this paper, we use a well-known spectral
graph partitioning algorithm by Ng et al. (2002).

Given the basics of graph partitioning, we now introduce three different consensus func-
tions, each of which formulates and solves a different graph partitioning problem given a
cluster ensemble. The first approach models instances as vertices in a graph and the second
models clusters as vertices. They were proposed by Strehl and Ghosh (2002). Here we
refer to them as the instance-based and cluster-based graph formulations respectively to
characterize their key distinction. Finally, the third consensus function, recently proposed
by Fern and Brodley (2004}, models instances and clusters simultaneously as vertices in a
bipartite graph.

4.1.1 INSTANCE-BASED GRAPH FORMULATION

The Instance-Based Graph Formulation (IBGF) approach constructs a graph that models
the pairwise relationship among instances of the data set X. Below we formally describe
IBGF.

Given a cluster ensemble II = {r!,---, 7%}, IBGF constructs a fully connected graph
G = (V,W), where '

e V is a set of n vertices, each representing an instance of X.

e W is a similarity matrix and W (i, j) = %Ele I(g-(X;) = g+(Xj;)), where I(-) is an
indicator function that returns 1 if the argument is true and 0 otherwise; g,(-) takes
an instance and returns the cluster to which it belongs in #".

W (i,j) measures how frequently the instances ¢ and j are clustered together in the
given ensemble. In recent work (Fern and Brodley, 2003, Monti et al., 2003), this similarity
measure has been shown to give satisfactory performance in domains where a good similarity
(or distance) metric is otherwise hard to find. Once a graph is constructed, one can solve the
graph partitioning problem using any chosen graph partitioning algorithm and the resulting
partition can be directly output as the final clustering solution.

Note that IBGF constructs a fully connected graph with n? edges, where n is the number
of instances. Depending on the algorithm used to partition the graph, the computational
complexity of IBGF may vary. But generally it is computationally more expensive than the
other two graph formulation approaches examined in this paper.

4.1.2 CLUSTER-BASED GRAPH FORMULATION

Note that clusters formed in different clusterings may contain the same set of instances or
largely overlap with each other. Such clusters are considered to be corresponding (similar)
to one another. Cluster-Based Graph Formulation (CBGF') constructs a graph that models
the correspondence (similarity) relationship among different clusters in a given ensemble
and partitions the graph into groups such that the clusters of the same group correspond
(are similar) to one another.

Given a cluster ensemble II = {r!,--. 7}, we first rewrite I as II = {c},- - ,c}{l, el

cf,---,cﬁn} where c§ represents the jth cluster formed in the ith clustering 7 in the

ensemble II. Denote the total number of clusters in IT as t = Ele K,. CBGF constructs
a graph G = (V, W), where

e V is a set of t vertices, each representing a cluster

e W is a matrix such that W (i, j) is the similarity between the clusters ¢; and c¢; and
| |

is computed using the Jaccard measure as: W(i,j) =]2—:%27
Partitioning a cluster-based graph results in a grouping of the clusters. We then produce
a final clustering of instances as follows. First we consider each group of clusters as a
metacluster. For each clustering in the ensemble, an instance is considered to be associated
with a metacluster if it contains the cluster to which the instance belongs. Note that an
instance may be associated with different metaclusters in different runs and we assign an

Cluster 1 ! Cluster 2
.+7"7"~., Cluster 2 2~~~ Cluster4 ' ' '
:" b \‘\ / .'. K / ¥
; o \ O\\ |
: « ! .. ! Instances :
- \e K s e o e o o o 0/0 0 o o
',' ‘\“ . ’,' ° ! :
o T ‘o .
\ ',' ‘\‘ '/' :
oo Cluster 1 e NGlster 3 ;
- Cluster 3 1 Cluster4
(a) Clustering 1 (b) Clustering 2 (c) Bipartite Graph

Figure 1: An example of the Hybrid Bipartite Graph Formulation

instance to the metacluster with which it is most frequently associated. Ties are broken
randomly.

A basic assumption of CBGF is that there exists a correspondence structure among
different clusters formed in the ensemble. This poses a potential problem—in cases where
no such correspondence structure exists, this approach may fail to provide satisfactory
performance. The advantage of CBGF is that it is computationally efficient. It generates a
fully connected graph with #? edges, where ¢ is the total number of clusters in the ensemble.
This is significantly smaller than the n? of IBGF, assuming ¢ < n.

Strehl and Ghosh (2002) also proposed a hypergraph-based approach, which models
clusters as hyperedges and instances as vertices in a hypergraph and uses a hypergraph
partitioning algorithm to produce a final partition. Conceptually, this approach forms
a different type of graph and has the limitation that it can not model soft clustering.
Practically, our initial experiments show that it performed worse than IBGF and CBGF on
our data sets. Due to the above reasons, we choose not to further discuss this approach in
this paper.

4.1.3 HyBRID BIPARTITE GRAPH FORMULATION

The Hybrid Bipartite Graph Formulation (HBGF) approach models instances and clusters
simultaneously in a graph. The graph edges can only connect instance vertices to cluster
vertices, resulting a bipartite graph. Below we first describe HBGF and then explain its
conceptual advantages over IBGF and CBGF. :

Description of HBGF: Given a cluster ensemble II = {r,--- ,7rR}, HBGF constructs
a graph G = (V, W), where

e V =VCUV!, where V¢ contains ¢ vertices each representing a cluster of the ensemble;
VI contains n vertices each representing an instance of the data set X.

o W is defined as follows. If the vertices 7 and j are both clusters or both instances,
W (i,j) = 0; otherwise if instance i belongs to cluster j, W(i,j) = W(j,7) =1 and 0
otherwise.

0 AT
A 0
rows correspond to the instances and columns correspond to the clusters. A(i,j) is an
indicator that takes value 1 if instance ¢ belongs to the j-th cluster and 0 otherwise.

Figure 1 shows an example of HBGF. Particularly, Figures 1(a) and (b) depict two dif-
ferent clusterings of nine instances and Figure 1(c) shows the graph constructed by HBGF,
in which the diamond vertices represent the clusters and the round vertices represent the
instances. An edge between an instance vertex and a cluster vertex indicates that the clus-
ter contains the instance. All edges in the graph have equal weight of one (edges with zero
weights are omitted from the graph). In this graph, cluster vertices are only connected to
instance vertices and vice versa, forming a bipartite graph. If a new clustering is added
to the ensemble, a new set of cluster vertices will be added to the graph and each cluster
vertex will be connected to the instances that it contains.

Shown in Figure 1(c) as a dashed line, a partition of the bipartite graph partitions the
cluster vertices and the instance vertices simultaneously. The partition of the instances can
then be output as the final clustering.

Although HBGF’s vertex set is the sum of IBGF’s and CBGF’s vertex sets, it forms a
sparse graph and, as shown by Dhillon (2001), due to its special structure the real size
of the resulting bipartite graph partitioning problem is n X ¢, where n is the number of
instances and ¢ is the total number of clusters in the ensemble C. This is significantly
smaller compared to the size n? of IBGF, assuming that ¢ < n.

Note that W can be written as: W = [where A is a connectivity matrix whose

Conceptual advantages of HBGF: Comparing to IBGF and CBGF, HBGF offers two
important conceptual advantages. First, the reduction of HBGF is lossless — the original
cluster ensemble can be easily reconstructed from an HBGF graph. In contrast, IBGF
and CBGF do not have this property. To understand the second advantage of HBGF,
it should be noted that IBGF and CBGF consider the similarity of instances and the
similarity of clusters independently and, as shown below, such independent treatment may
be problematic.

Comparing two pairs of instances (X1, X3) and (X3, X4), we assume that X; and
X, are never clustered together in the ensemble and the same is true for pair (X3, X3).
However, the instances X; and X, are each frequently clustered together with the same
group of instances in the ensemble, i.e., X3 and X, are frequently assigned to clusters that
are similar to each other. In contrast, this is not true for X35 and X4. Intuitively we consider
X, and X, to be more similar to one another than X3 and X4. However, IBGF will fail to
differentiate these two cases and assign both similarities to be zero. This is because IBGF
ignores the information about the similarity of clusters while computing the similarity of
instances.

A similar problem exists for CBGF. For example, consider two pairs of clusters (c1, c2)
and (c3, c4). Assume that ¢ Nca = ¢ and c3 Ncy = ¢. And further assume that the
instances of ¢; and those of ¢, are often clustered together in other clustering runs, whereas
this is not the case for c3 and c4. Note that CBGF will assign both similarities to zero
while intuitively we would consider clusters c¢; and cz to be more similar to one another
than clusters c3 and c4. CBGF fails to differentiate these two cases, because it does not
take the similarity of instances into account.

Table 1: Description of the data sets

Name Description Source

EOS Land-cover classification data set #1 Friedl et al. (2002)
MODIS Land-cover classification data set #2

HRCT High resolution computed tomography lung image data | Dy et al. (1999)
CHART Synthetically generated control chart time series UCI KDD archive

(Hettich and Bay, 1999)

ISOLET6 Spoken letter recognition data set (6 letters only) UCI ML archive
MFEAT Handwritten digits represented by Fourier coeflicients (Blake and Merz, 1998)
SATIMAGE StatLog Satellite image data set (training set)

SEGMENTATION | Image segmentation data

In contrast, HBGF allows the similarity of instances and the similarity of clusters to
be considered simultaneously in producing the final clustering. Thus it avoids the above
problems of IBGF and CBGF.

4.2 Consensus Function Using Centroid-based Clustering

The fourth consensus function, proposed by Topchy et al. (2003), transforms a cluster
ensemble problem into a standard clustering problem by representing a given ensemble as a
new set of features and then using the standard clustering algorithm K-means to produce
the final clustering. Below we refer to this consensus function as KMCF, standing for
K-Means Consensus Function. ’

Given a cluster ensemble IT = {#!,.-., 7"}, KMCF first creates a new set of features
as follows. For each partition 7% = {ci,c}, - ,cf,{,-}, it adds K* binary features to the new
feature set, each corresponding to a cluster in #*. The resulting new feature set will contain
t features, where ¢t is the total number of clusters of ensemble II. Note that for an instance,
the feature corresponding to cj- takes value 1 if that instance belongs to cluster c;, and 0
otherwise. The new features are then standardized to have zero mean. Finally, K-means is
applied to the standardized new features to produce the final clustering.

5. Experimental Setup

In this section we describe the data sets used in our experiments, related parameter settings
and the evaluation criterion.

5.1 Description of the Data Sets

Our experiments use eight data sets obtained from a variety of domains and sources. Table 1
briefly describes these data sets. Note that the ISOLET6 data set is a subsample of the

10

Table 2: Summary of the data sets

CHART | EOS | HRCT | ISOL. | MFEAT | MODIS | SATI. | SEGM.
#INST. 600 | 2398 | 1545 | 1800 | 2000 4975 | 4435 | 2310
#CLASS 6 8 8 6 10 10 6 7
ORG. DIM. 60 20 183 | 617 76 112 36 19
dr,dp,d2 10 5 20 30 10 10 5 5
dy 20 10 40 60 20 20 10 10
ko 10 15 15 15 15 15 15 15

Table 3: Required parameters for ensemble constructors.

Approach || Parameters

RP ko # of clusters for each clustering run
d, dimension to reduce to for RP

PCASS ko # of clusters for each clustering run
dyp dimension to reduce to for PCA
r subsampling rate

RPPCA ko # of clusters for each clustering run
dy Intermedium dimension for RP
ds Final dimension for PCA

UCI Spoken letter recognition data set obtained by randomly selecting six out of a total of
twenty-six letters. We chose to use only six letters to make sure that the IBGF approach
can be applied within a reasonable amount of time. The MFEAT data set comes from the
UCI multiple-feature data set. Note that the original data set contains several different
representations of the same data, among which the Fourier coefficients were used in our
experiments. In rows 2-4 of Table 2 we present the main characteristics of these data
sets. The dimensions of these data sets range from dozens to hundreds. Rows 5-7 list the
parameters selected for each data set, which we discuss in Section 5.2. It should be noted
that all of the eight data sets are labeled. However, the labels are omitted during clustering,
and used only for evaluation.

5.2 Parameter Settings

In this paper, we examine three different ensemble constructors and four consensus func-
tions. For the consensus functions, the only parameter to be specified is k¢, the desired
number of the final clusters. Because we have access to the class information of our data
sets, our experiments set k¢ to be the same as the class number (shown in row 3 of Table 2)
for all data sets and all consensus functions.

11

In Table 3, we summarize the parameters to be specified for each ensemble constructor.
One parameter that is common to all ensemble constructors in ko, the number of clusters
for K-means in each clustering run during ensemble construction. The choices of kg for
each data set are shown in the last row of Table 3. These numbers are arbitrarily selected.
Note that we use a slightly smaller number for the CHART data set because it contains
only 600 instances.

The remaining parameters are decided as follows. First, for PCASS, we select dp, the
dimensionality for PCA, by requiring that 90% of the data variance be preserved. Note that
because the resulting dimensionalities for HRCT, ISOLET6 and MFEAT are still high, for
computation efficiency we relax the requirements for these three data sets to preserving
only 80% of the data variance. The sampling rate r of PCASS is set to be 65% (arbitrarily
selected). In order to have direct comparisons between RP and PCASS, we set d,, the
dimensionality for RP, to be the same as d,. Finally, for RPPCA, we have two dimension
parameters, the intermediate dimension d; used by RP and the final dimension ds used by
PCA. We set the final dimension dz to be the same as dp, and set d; to be 2 x d,.

Here we argue that the exact choices of the above discussed parameters will not strongly
influence the final performance. While the quality of the individual base clusterings may
be significantly affected when different parameters are used, as we combine more and more
base clusterings, we expect the ensemble performance to be comparable for different pa-
rameter settings. To verify our conjecture, we examined other choices for both d, (the final
dimensionality used by ensemble constructors) and kg (the cluster number for K-means in
base clustering). Indeed, we also examined the case where we select d, and kg randomly
for each individual clustering run from a given range. All settings result in comparable
performance. This is possibly due to the fact that cluster ensembles aggregate the informa-
tion of multiple base clusterings—although the individual base clusterings may differ when
parameters change, the total aggregated information remains comparable.

5.3 Evaluation Criterion

Because the data sets used in our experiments are labeled, we can assess the quality of the
final clusterings using external criteria that measure the discrepancy between the structure
defined by a clustering and what is defined by the class labels. Here we choose to use an in-
formation theoretic criterion—the Normalized Mutual Information (NMI) criterion (Strehl
and Ghosh, 2002). Treating cluster labels and class labels as random variables, NMI mea-
sures the mutual information (Cover and Thomas, 1991) shared by the two random variables
and normalizes it to a [0, 1] range. Note that the expected NMI value of a random partition
of the data is 0 and the optimal value 1 is attained when the class labels and cluster labels
define the same partition of the data.

6. Experiments on Ensemble Constructors

In this section, we empirically evaluate the three ensemble constructors described in Sec-
tion 3. The purpose of our experiments is to study the suitability of the various ensemble
constructors for the high dimensional clustering task.

12

6.1 Upper-Bound Performance Analysis

Given a cluster ensemble we have a variety of choices for consensus functions and for an
ensemble using a different consensus function may lead to a different result. To obtain a
unified evaluation of the ensemble constructors, we evaluate each cluster ensemble using the
following procedure. Given a cluster ensemble, we apply all of the four consensus functions
to the ensemble, resulting in four final clusterings. We then evaluate the obtained four
clusterings using the class labels and record the best NMI value obtained. We refer to this
as the upper-bound performance evaluation for each ensemble constructor.

In Figure 2, we plot the upper-bound performance of the three ensemble constructors.
The y-axis shows the NMI value and the z-axis shows the ensemble size. Each performance
line consists of eleven data points. The first left-most point has ensemble size one, showing
the average quality of the base clusterings produced by an ensemble constructor. To obtain
this value, we use each ensemble constructor to generate an ensemble of size 50 and average
the quality of the 50 base clusterings. The other ten data points show the performance
of ensembles with ten different ensemble sizes, ranging from 10 to 100. For each ensemble
size, ten different ensembles are generated using each constructor and the plotted values
are averaged across the ten runs.

Comparing with base clusterings: Recall that the optimal NMI value is 1, which is
achieved when the evaluated clustering and the class labels define the exact same partition of
the data. The larger the NMI value the better the performance. Comparing the ensembles
with their base clusterings, from Figure 2 we see that RP ensembles consistently improve
over the base clusterings for all eight data sets. In contrast, RPPCA fails to improve for
the SEGMENTATION data set, whereas PCASS fails to improve for the HRCT, EOS and
MODIS data sets.

Comparing with regular clustering with PCA dimension reduction: As another
base-line comparison, we apply PCA to each data set to reduce the dimension to d, (using
the same values as shown in Table 2), and then apply K-means to the reduced data with
k equal to the class number. The resulting performances are shown in Figure 2 by dotted
lines. 2 As shown by the figures, we can see that all three types of ensembles outperform
regular clustering with PCA dimension reduction.

Comparing the three ensemble constructors: From Figure 2, we observe that RP
ensembles achieve the best performance among three ensemble constructors for all but the
SATIMAGE data set. The performance lines of RP ensembles generally show a clear im-
proving trend as the ensemble size increases. RPPCA also improve with an increase in
ensemble size, but its final performance tends to be inferior to RP. In contrast, PCASS
behaves rather differently from the other two. Particularly, its base clusterings often have
better quality compared to the other two approaches while the performance improvements
introduced by ensembles are often less significant or even negligible in some cases. Interest-
ingly, we notice that for the ISOLET6 and MFEAT data sets, the base clusterings generated
by RP have significantly lower quality compared to those by PCASS. However, as we in-

2. Note that it may appear surprising that in some cases this base-line performance is inferior to the
performance of the base clusterings. This can be explained by the fact that larger k values are used by
K-means in producing base clusterings.

13

crease the ensemble size, RP ensembles gradually improve to have similar (for ISOLET6)
or better (for MFEAT) final performance.

The above comparisons suggest that, among the three ensemble constructors, random
projection (RP) generates the best performing cluster ensembles in most cases. Further, we
conjecture that the superiority of RP ensembles is because RP produces more diverse base
clusterings. To verify this conjecture, we examine the diversity and quality of the cluster
ensembles using the process described below. Note that the approach we take here is similar
to what was used by Dietterich (2000) for analyzing supervised ensembles.

Diversity-quality analysis: Given a cluster ensemble, we graph the diversity versus
quality for each pair of clusterings in the ensemble as a cloud of diversity-quality (d-q)
points. Each d-q point corresponds to a pair of base clusterings in the ensemble. To
measure the diversity (shown on the y axis of a graph), we calculate the NMI between
each pair of base clusterings. To obtain a single quality measure (shown on the x axis of a
graph) for each pair, we average their NMI values as computed between each clustering and
the class labels. Note that when the NMI between two clusterings is zero the diversity is
maximized. In contrast, maximizing the average NMI of each pair maximizes their quality.
From the distribution of the d-q points, we can obtain information about the quality and
diversity of a given ensemble. For example, for an ensemble to have high diversity and good
quality, its d-q points should be close to the right-bottom region of a graph.

We will first compare the RP ensembles and PCASS ensembles in Figure 3 by examining
the distribution of the d-q points of both approaches. For each approach, we obtain its
d-q points using an ensemble of size 50. Note that the d-q points shown in the figures
are uniformly subsampled to enhance the readability. Our first observation is that, for
all eight data sets, the d-q points of RP ensembles are located below those of PCASS
ensembles, indicating that the clusterings of RP ensembles are generally more diverse than
those of PCASS. Further, we relate the results shown in Figure 3 to the performance
evaluation shown in Figure 2. Examining each data set individually, we make the following
observations.

e For the CHART data set, the d-q points of RP ensembles and PCASS ensembles
largely overlap. Correspondingly, we see that the performance lines of these two
ensembles as shown in Figure 2(a) are also close to each other.

e For the EOS, HRCT, MODIS, and SEGMENTATION data sets, we see that the
quality of the two types of ensembles are similar whereas the diversity of RP ensembles
are higher. Comparing the upper-bound performance of the two approaches for these
four data sets shown in Figure 2, we observe that higher diversity leads to larger
performance improvement over the base clusterings.

o For the ISOLET6, MFEAT and SATIMAGE data sets, we note that the RP ensembles
have lower quality but higher diversity compared to PCASS ensembles. For ISOLET6
and MFEAT, we observe that, in comparison to PCASS, the final performance of
RP ensembles are comparable or better although they begin with base clusterings
of lower quality. This suggests that, for cluster ensembles, lower quality in the base
clusterings may be compensated for by higher diversity. However, this is not always the
case. Particularly, we also observe that PCASS outperforms RP for the SATIAMGE

14

Table 4: Diversity and quality of RP ensembles and RPPCA ensembles.

RP RPPCA

Diversity | Quality | Diversity | Quality
CHART 0.5876 | 0.6439 | 0.4542 | 0.5020
EOS 0.6243 | 0.2690 | 0.6468 | 0.2547
HRCT 0.4307 | 0.2746 | 0.4342 | 0.2598
SATIMAGE 0.4962 | 0.4826 | 0.5165 | 0.4606
MODIS 0.5958 | 0.4421 0.5880 | 0.4053
ISOLETS6 0.6083 | 0.6672 | 0.7401 0.7385
MFEAT 0.5458 | 0.5484 | 0.5962 | 0.5518
SEGMENTATION | 0.6069 | 0.4781 0.7358 | 0.5352

data set. The difference between SATIMAGE and the other two data sets is that
SATIMAGE is the only data set where RP’s d-q points lie in a different region from
PCASS’s d-q points. Particularly, all of the PCASS’s d-q points have quality higher
than 0.5, whereas many of RP’s points have quality lower than 0.5.

In comparing RPPCA with RP, it is rather surprising to see that RPPCA performs
so poorly compared to RP because RPPCA was designed with the goal of combining the
strength of random projection and PCA. Indeed, our empirical evaluation appears to suggest
that RPPCA actually inherits the weaknesses of RP and PCA. To analyze the diversity and
quality of RP ensembles and RPPCA ensembles, we show the average diversity and quality
of the two types of ensembles in Table 4. We present this comparison using a table because
the d-q points of RPPCA tend to overlap those of RP, making it hard to interpret a figure.

In Table 4, we present the eight data sets in two groups based on whether RPPCA gen-
erates base clusterings of higher quality compared to RP. The first group contains five data
sets. For these five data sets, RPPCA actually generates base clusterings that are of lower
quality than those generated by RP. This indicates that our approach of combining PCA
with RP does not necessarily lead to better dimension reduction performance for clustering,
at least with the parameters setting used in this paper. Among these five data sets, the
diversity of RPPCA ensembles is significantly higher than RP only for the CHART data
set, for which the final ensemble performance of RP and RPPCA are comparable. For the
other four data sets, the diversity of RPPCA ensembles are either lower(EOS, SATIMAGE)
or similar (HRCT, MODIS). Correspondingly, we observe that RPPCA ensembles perform
worse than RP ensembles for these four data sets. In the second group, we see three data
sets for which RPPCA does improve the base clusterings compared to RP. However, as we
see from the table, RP ensembles are much more diverse for these three data sets. Conse-
quently, the final performance of RP ensembles are still better or at least similar compared
to RPPCA ensembles.

In conclusion, the above diversity-quality analysis shows strong evidence that the high
diversity of RP ensembles is, if not the reason, at least an important contributing factor for
its superior performance in comparison to the other two approaches. Generally speaking,
our observation suggests that if the base clusterings of two ensembles are of similar quality,
the higher the diversity the better the final ensemble performance. In cases where the base
clusterings of two ensembles differ in quality, high diversity may also compensate for low

15

quality. But this may depend on the particular data set and the extend to which the quality
drops. :

6.2 Reality Performance Analysis

Note that the upper-bound evaluation used in the previous section measures the best perfor-
mance achievable by each ensemble constructor using the four consensus functions described
in Section 4. In reality, we can not achieve this performance because we do not have the
ground truth for selecting the best result from four candidate clustering outputs. To evalu-
ate the ensemble constructors in a more realistic setting, we use a second procedure based
on an objective function defined by Strehl and Ghosh (2002). This objective function, re-
ferred to as the Sum of NMI (SNMI), measures the total amount of information shared by a
final clustering and the participating clusterings in the given ensemble and is computed as
follows. Given a cluster ensemble I = {rx!,-.-, 7"} and a final cluster ¢, SNMI is defined
as:

T
SNMI=Y NMI(x xf)

=1

where NMI(7%,nf) measures the normalized mutual information between a base clustering
and the final clustering /.

We apply the four consensus functions to each given ensemble and among the four clus-
tering outputs we select the clustering that maximizes the SNMI value. We then compute
the NMI value between the selected clustering and the class labels as the evaluation of
the ensemble. In Figure 4, we plot the new performance measure of the three ensemble
constructors.

From Figure 4, we observe that, among the three ensemble constructors examined here,
the ensembles generated by RP perform best in most cases. This is consistent with what
we observe in the upper-bound performance analysis. It should be noted that SNMI some-
times fails to select the optimal clustering, which can be inferred from the fact that the
performance based on SNMI is in some cases significantly worse than the upper-bound
performance presented in Section 6.2. Note that, among the eight data sets used in the
experiments, the difference between the upper-bound performance and the SNMI-based
performance is least significant for the ISOLET6 data set, for which we see the highest
base-clustering quality. This suggests that SNMI may be best suited as an objective func-
tion for cluster ensembles when the base clustering quality is high.

7. Experiments on Consensus Functions

In this section, we evaluate the four consensus functions described in Section 4. Although
we have identified RP as the most effective ensemble construction approach among the
three constructors examined, we choose to evaluate the consensus functions using both RP
ensembles and PCASS ensembles. This is because RP and PCASS behave differently with
respect to the diversity and the quality of the resulting base clusterings. Particularly, RP
produces base clusterings that are highly diverse, whereas the base clusterings of PCASS
are often better in quality compared to RP. We are interested in evaluating the consensus

16

Table 5: The rates of improvement over base clusterings achieved by four consensus func-
tions when applied to RP ensembles.

IBGF(I) | CBGF(C) | HBGF(H) | KMCF(K) | Ranking
Chart .225 .248 .232 .235 I<H<K<C
Eos .032 -.082 .050 .041 C<I<K<H
Hrct .043 -.063 .039 .192 C<H<I<K
Isolet6 275 .262 .276 .143 K<C<I<H
Mfeat .258 .202 .260 .204 C<K<I<H
Modis 119 114 118 102 K<C<HK<I
Satimage .276 179 .260 171 K<C<H<I
Segmentation 077 125 131 .023 K<I<C<H
Average 163 123 171 139 C<K<I<H

functions using both types of ensembles and finding out if their performance is sensitive to
these basic properties of cluster ensembles.

7.1 Evaluation of Consensus Functions Using RP Ensembles

To generate RP ensembles, we use the same set of parameters as described in Section 5.2.
For each data set, we use RP to generate ensembles of ten different ensemble sizes. They
are 10, 20, ---, up to 100 respectively. For each ensemble size, ten different ensembles are
generated. This creates a pool of 100 RP ensembles for each data set. For each ensemble
II; in the pool, we measure the quality of its base clusterings using NMI and the class
labels and average them to obtain the average base-clustering quality (represented as ¢;) of
ensemble II;. To evaluate a consensus function using II;, we apply the consensus function
to IT; to produce a final clustering, which is then evaluated using NMI and the class labels.
Denoting the obtained NMI value as fmi, we then calculate r; = fomi _ 1, which measures
the rate that ensemble II; improves over its base clusterings when the particular consensus
function was used to produce the final clustering. We use r; as the final evaluation of the
consensus function under ensemble II;.

For each data set, a pool of 100 RP ensembles are used to evaluate each of the four
consensus functions. We evaluate the improvement rate for every ensemble in the pool and
average the 100 results to obtain a final evaluation. Note that we choose not to separately
present the evaluation results for different ensemble sizes to facilitate a clear presentation
and interpretation of the results. More importantly, we believe that this choice will not
influence our evaluation results because from Section 6 we see that the ensemble performance
appears to be stable for different ensemble sizes.

17

Table 6: The rates of improvement over base clusterings achieved by four consensus func-
tions when applied to PCASS ensembles.

TBGF(T) | CBGF(C) | HBGF(H) | KMCF(K) | Ranking
Chart .0315 .0857 .0546 .1638 I<H<C<K
Eos -.0997 -.4041 -.1047 -.0138 C<H<I<K
Hrct -.0161 -.1103 .0081 -.1305 K<C<I<H
Isolet6 .0888 .0830 .0992 -.1336 K<C<I<H
Mfeat .0330 .0181 .0313 -.0483 K<C<HKI
Modis .0003 -.0156 -.0045 -.0764 K<C<H«I
Satimage .2154 .1709 .2205 -.1910 K<C<I<H
Segmentation || -.0479 .0517 .0432 -.1330 K<I<H<C
Average .0257 -.0151 .0435 -.0703 K<C<I<H

Columns 2-5 of Table 5 show the improvement rates of the four consensus functions. We
show the results of each data set as well as the average of all data sets. The numbers shown
for each individual data set are obtained by averaging 100 results whereas the numbers
shown for the overall average are obtained by average 800 results.

Table 5 also present the ranking of the four consensus functions for each data set and
for the final average. Note that the notation A < B indicates that the performance of A on
average is inferior to B and the difference is statistically significant (according to paired t-
test with significance level 0.05). In contrast, A < B indicates that the average performance
of A is better than that of B but the difference is not statistically significant. Finally, we
highlight in boldface the best performance obtained for each row in the table.

The first observation we make is that no single consensus function is the best for all
data sets. Indeed, each of the four consensus functions examined wins the top position for
some data set. Among the four consensus functions, HBGF and IBGF appear to be more
stable than the other two functions because on average they achieve better performance and
win the top positions more frequently than the other two approaches. The performance of
HBGF and IBGF is similar but on average HBGF achieves a higher improve rate of 17.1%
(averaged across the eight data sets used in our experiments).

7.2 Evaluation of Consensus Functions Using PCASS Ensembles

We generate PCASS ensembles to evaluate the consensus functions using the same procedure
as described in the previous section. The values of the parameters are set as described in
Section 5.2.

From the results shown in Table 6, we observe that HBGF again achieves the most stable
performance among the four consensus functions. On average, its improvement rate over

18

base clusterings is 4.35%. This is consistent with the results we observe for RP ensembles.
In comparing Table 5 and 6, we observe that all consensus functions see certain degradation
in the improvement rates over the base clusterings for PCASS ensembles—suggesting that
the consensus functions are influenced by the base-clusterings diversity and quality.

Among the four consensus functions, we note that KMCF sees the most significant
degradation and fails to improve over the base clusterings for all but the CHART data set.
We argue that the failure of KMCF may be directly attributed to the reduced diversity of
the PCASS ensembles. In comparing the performance of KMCF across different data sets,
we notice that low diversity in base clusterings tends to correspond to poor performance of
KMCF. For example, among the eight data sets, KMCF sees the worst performance for the
SATIMAGE and ISOLET®S data sets, which are the data sets that have the least diversity
in the ensembles.

In contrast to KMCF, we see a different trend for CBGF, where poor final performance
often correlates with low quality in base clusterings. Indeed, among the eight data sets,
CBGF performs the worst for EOS and HRCT, and we observe that they are the data sets
for which PCASS ensembles have the lowest base-clustering quality.

Finally, for HBGF and IBGF, we do not see either the quality or diversity dominating
the final performance. Instead, the final performance of these two approaches appears to
be influenced by both factors.

In conclusion, our experiments suggest that, among the four consensus functions, HBGF
and IBGF often perform better than CBGF and KMCF. The performance of HBGF and
IBGF tends to be comparable, but on average HBGF performs slightly better. We also
observe that KMCF is sensitive to the diversity of the ensembles—low diversity leads to
poor KMCF performance. In contrast, CBGF is more influenced by the quality of the base
clusterings.

8. Related Work On Cluster Ensembles

The framework of cluster ensembles was recently formalized by Strehl and Ghosh (2002).
There have been many instances of the cluster ensemble framework in the literature. They
differ in how they construct the ensembles (different ensemble constructor) and how they
combine the solutions (different consensus function).

Examples of ensemble constructors include using different bootstrap samples (Fridlyand
and Dudoit, 2001, Strehl and Ghosh, 2002), using different initializations to randomized
clustering algorithms such as k-means (Fred and Jain, 2002}, using different feature subsets
to perform clustering (Kargupta et al., 1999, Strehl and Ghosh, 2002) and using multiple
different clustering algorithms (Strehl and Ghosh, 2002). In this paper, we focused on con-
struction approaches that build on dimension reduction techniques in attempt to address
problems caused by high dimensionality. We identified RP as an effective ensemble con-
structor. Further, we conducted an in-depth analysis of the properties of the ensembles
generated by different constructors, providing an explanation for the effectiveness of the
RP ensemble constructor.

A main focus of the cluster ensemble research has been placed on combining clusterings
and a variety of consensus functions are available in the literature. In this paper we do not
intend to cover all existing consensus functions in our comparisons. Instead, we chose to

19

examine four consensus functions that have been shown to be highly competitive compared
to other alternatives (Strehl and Ghosh, 2002, Topchy et al., 2004, Fern and Brodley, 2004).
Below we review various alternative consensus functions and relate them to the consensus
functions examined in this paper.

Many existing techniques for combining clusterings bear strong similarity with the IBGF
approach in the sense that they generate an instance similarity matrix based on a given
cluster ensemble. The difference lies in how the matrix is used to produce the final clustering,
for which various techniques, such as simple thresholding (Fred, 2001) and agglomerative
clustering algorithms (Fred and Jain, 2002, Fern and Brodley, 2003, Monti et al., 2003),
have been examined.

There also exist a number of cluster-based approaches that are similar in essence to
CBGF. These approaches seek to find a correspondence structure among clusters that are
formed in the ensemble and use a voting scheme to assign instances to clusters once a corre-
spondence structure is found. CBGF finds such a correspondence structure by partitioning
a graph describing the similarity relationship among clusters. Other approaches include
using a relabeling process (Dudoit and Fridlyand, 2003) to map the clusters to virtual class
labels, and clustering the cluster centers to group similar clusters together (Dimitriadou
et al., 2001).

9. Conclusions and Future Work

In this paper, we studied cluster ensembles for high dimensional data clustering. First,
we examined three different ensemble constructors for generating cluster ensembles, which
build on two popular dimension reduction techniques: random projection (RP) and prin-
cipal component analysis (PCA). We empirically evaluated the ensemble constructors on
eight data sets, and concluded that cluster ensembles constructed by RP perform better
for high dimensional clustering in comparison to 1) the traditional approach of a single
clustering with PCA dimension reduction and 2) ensembles generated by the other two
ensemble constructors examined in the paper. In an attempt to explain the superiority of
RP ensembles, we analyzed the diversity and quality of the ensembles generated by differ-
ent constructors. Our analysis indicates that if the base clusterings have similar quality,
the higher the diversity, the better the ensemble can potentially perform. Further, high
diversity may also compensate for low base clustering quality. These results provide strong
evidence that RP’s superior performance can be attributed to the fact that it produces
highly diverse base clusterings.

We also examined four different consensus functions for combining clusterings. We
used two different types of cluster ensembles (RP and PCASS ensembles) to evaluate the
four consensus functions. We identified two of the graph partitioning based approaches,
the HBGF and IBGF approaches, as superior to the other two approaches. On average,
HBGF improved over base clusterings by 17.1% for RP ensembles and by 4.4% for PCASS
ensembles, whereas IBGF improved by 16.3% and 2.6% respectively. Overall, HBGF slightly
outperformed IBGF. The experiments suggested that all of the four consensus functions are
influenced by the quality and diversity of the base clusterings. We saw evidence that KMCF
is highly sensitive to the diversity of the base clusterings. Therefore, if a cluster ensemble
lacks diversity, KMCF should be avoided as the choice for consensus function. In contrast,

20

CBGF is sensitive to the quality of the base clusterings. And finally, the quality and
diversity of base clusterings jointly impact HBGF and IBGF, making them more stable
when facing the trade-off of the quality and diversity of the base clusterings.

To conclude, we have identified random projection as an effective solution for generating
cluster ensembles and HBGF as a good candidate for combining the clusterings. For future
research, we note that, in this paper as well as previous research on cluster ensembles, all
base clusterings are treated equally by consensus functions. There is no doubt that some
of the base clusterings may be better than others. An interesting question is whether we
can improve the consensus functions by assigning weights to the base clusterings according
to their quality. Finally, we note that the empirical performance of cluster ensembles levels
off as the ensemble size increases. This indicates that very large ensemble sizes may be
unnecessary. However, it remains an open question how can we decide a proper ensemble
size when applying cluster ensembles in practice.

References

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering
of high dimensional data for data mining applications. In Proceedings of the 1998 ACM
SIGMOD International Conference on Management of Data, pages 94-105. ACM Press,
1998. '

F. R. Bach and M. I Jordan. Learning spectral clustering. In Advances in Neural Infor-
mation Processing Systems 16, 2003.

R. Bellman. Adaptive control processes. Princeton University Press, 1961.

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest neighbors mean-
ingful? In Proceedings of the International Conference on Database Theories, pages
217-235, 1999.

C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998. URL
http://wuw.ics.uci.edu/~mlearn/MLRepository.html.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons,
1991.

S. Dasgupta. Experiments with random projection. In Uncertainty in Artificial Intelligence:
Proceedings of the Sizteenth Conference (UAI-2000), pages 143—-151. Morgan Kaufmann,
2000.

1. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning.
In Knowledge Discovery and Data Mining, pages 269-274, 2001.

T. G. Dietterich. An experimental comparison of three methods for constructing ensembles

of decision trees: Bagging, boosting and randomization. Machine learning, 2:139-157,
2000.

21

E. Dimitriadou, A. Weingessel, and K. Hornik. Voting-merging: An ensemble method for
clustering. In Proceedings of International Confernce on Artificial Neural Networks, pages
217-224, 2001.

S. Dudoit and J. Fridlyand. Bagging to improve the accuracy of a clustering procedure.
Bioinformatics, 19, 2003.

J. G. Dy and C. E. Brodley. Feature selection for unsupervised learning. Journal of Machine
Learning Research, 5:845-889, 2004.

J. G. Dy, C. E. Brodley, A. Kak, C. Shyu, and L. S. Broderick. The customized-queries
approach to CBIR using EM. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 400-406. IEEE Computer Society Press, 1999.

X. Z. Fern and C. E. Brodley. Random projection for high dimensional data clustering: A
cluster ensemble approach. In Proceedings of the Twentieth International Conference on
Machine Learning, pages 186-193, 2003.

X. Z. Fern and C. E. Brodley. Solving cluster ensemble problems by bipartite graph parti-
tioning. In Proceedings of the Twenty First International Conference on Machine Learn-
ing, pages 281-288, 2004.

A. L. N. Fred and A. K. Jain. Data clustering using evidence accumulation. In Proceedings
of International Conference on Pattern Recognition, 2002,

A.L.N. Fred. Finding consistent clusters in data partitions. In Proceedings of the Third
International Workshop on Multiple Classifier Systems, pages 309-318, 2001.

J. Fridlyand and S. Dudoit. Applications of resampling methods to estimate the number
of clusters and to improve the accuracy of a clustering method. Technical Report 600,
Statistics Department, UC Berkeley, 2001.

M. Friedl, D. Mclver, J. Hodges, X. Zhang, D. Muchoney, A. Strahler, C. Woodcock,
S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf. Global land cover

mapping from modis: algorithms and early results. Remote Sensing of Environment, 83:
287-302, 2002.

J. H. Friedman. Exploratory projection pursuit. Journal of the American Statistical Asso-
ciation, 82(397):249-266, 1987.

K. Fukunaga. Statistical Pattern Recognition (second edition). Academic Press, 1990.

R. Hecht-Nielsen. Context vectors: general purpose approximate meaning representations
self-organized from raw data. In Computational Intelligence: Imitating Life, pages 43-56.
IEEE press, 1994.

S. Hettich and S. D. Bay. The UCI KDD archive, 1999. URL http://kdd.ics.uci.edu.

P. J. Huber. Projection pursuit. Annals of Statistics, 13(2):435-475, 1985.

22

H. Kargupta, B. Park, D. Hershberger, and E. Johnson. Collective data mining: A new
perspective toward distributed data mining. In Advances in Distributed and Parallel
Knowledge Discovery. MIT/AAAI Press, 1999.

S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus clustering: A resampling-based
method for class discovery and visualization of gene expression microarray data. Machine
Learning, 52:91-118, 2003.

A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In
Advances in Neural Information Processing Systems 14, pages 849-856, 2002.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transaction on Pattern
Analysis and Machine Intelligence, 22(8):888-905, 2000.

A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining
multiple partitions. Machine Learning Research, 3:583-417, 2002.

A. Topchy, A. K. Jain, and W. Punch. Combining multiple weak clusterings. In Proceedings
IEEE International Conference on Data Mining, pages 331-338, 2003.

A. Topchy, A. K. Jain, and W. Punch. A mixture model for clustering ensembles. In
Proceedings of SIAM Conference on Data Mining, pages 379-390, 2004.

23

(a) Chart

0.4
0 50 100
(c) Hret
0.4
0.35

0.25

0.

2 0 50 100
(e) Mfeat-fou

0.8

(g) Satimage

(b) Eos
0.35
-~ RP
~&~ RPPCA
PCASS
0.3 ~#e- PC
0.25£ ; E E E
0.
20 50 100
(d) Isoleté

0 50 100
(f) Modis

0.6

M

0.3
0

50 100

(h) Segmentation

0.7

0.4

0 50 100

Figure 2: Upper-bound performance of the three types of ensembles.

24

(a) Chart

1 i
0.8 N
0.6 :f
oaf [
0.2 '
]
% 0.5
(c) Hrct
1 i
0.8 !
0.6 ;‘ !
0.2 !
]
% 0.5 1
(e) Mfeat
L :
0.8 ! f
0.6 !
oal ?ﬁ,_,_,_,_,_
0.2 !
]
% 0.5 1
(g) Satimage
1 :
0.8 .i
0.6 o
S
0.2 !
1
% 0.5 1

(b) Eos
1 .
1| * PCASS
0.8 'L x RP
1
1
o6f ¥ o
1
04 i
]
0.2 |
]
0
0 0.5 1
(d) Isoleté
1 .
1
. 4
0.6 ! #
-l-I-I-I-I-ITl-l-t-l-l-l-
04 i
1
0.2 i
1
0
0 05 1
(f) Modis
1

0.8 {
oof #

1
04 i
1
02 i
]
0
0 0.5 1
(h) Segmentation
1 i
0.8
0.6 3
i e
04 i
1
0.2 X
0 1
0 0.5 1

Figure 3: Diversity-quality analysis of RP ensembles and PCASS ensembles.

25

(a) Chart ‘ (b) Eos

1 0.35
- RP
-8~ RPPCA
0.8 0.3 ~d- PCASS

0'40 50 100 02 0 50 100 .

(c) Hrct (d) Isolet6

0.4

0.35

0.25

0'20 50 100 0'60 50 100

(e) Mfeat (f) Modis

0'50 50 100 0'30 50 100
(9) Satimage (h) Segmentation
0.8
0.7
0.6}
0.5
0.4 04
0 50 100 0 50 100

Figure 4: SNMI-based evaluation of the three types of ensembles.
26

