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Abstract approved:

Complex oscillations including chaotic motions have been identified in

off-shore and submerged mooring systems characterized by nonlinear fluid-

structure interactions and restoring forces. In this paper, a means of controlling

these nonlinear oscillations is addressed. When applied, the controller is able to

drive the system to periodic oscillations of arbitrary periodicity. The controller

applies a perturbation to the nonlinear system at prescribed time intervals to guide

a trajectory towards a stable, periodic oscillatory state. The controller utilizes the

pole placement method, a state feedback rule designed to render the system

asymptotically stable. An outline of the proposed method is presented and

applied to the fluid-structure interaction system and several examples of the

controlled system are given. The effects of random noise in the excitation force

are also investigated and the subsequent influence on the controller identified. A

means of extending the controller design is explored to provide adequate control
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in the presence of moderate noise levels. Meanwhile, in the presence of over

powering noise or system measurements that are not well defined, certain filtering

and estimation techniques are investigated for their applicability. In particular,

the Iterated Kalman Filter is investigated as a nonlinear state estimator of the

nonlinear oscillations in these off-shore compliant structures. It is seen that

although the inclusion of the nonlinearities is theoretically problematic, in

practice, by applying the estimator in a judicious manner and then implementing

the linear controllers outlined above, the system is able to estimate and control the

nonlinear systems over a wide area of pseudo-stochastic regimes.
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1. INTRODUCTION

1.1 General

In the recent past, nonlinear effects in dynamical systems have been of great

interest. As scientists and engineers exhaust the applicability of linear analysis

techniques to highly complex nonlinear systems, means and methods of analyzing

these systems with other techniques are needed. Over the past several decades, an

explosion of such tools has occurred. The realm of nonlinear dynamics has become

one of a tremendous amount of activity. Since Edward Lorenz discovered that

small variations in initial conditions can cause large changes in a system output

(Lorenz, 1963), researchers have been mystified by these phenomena and

challenged to understand them. The advent of computational techniques and power

has given an effective tool for visualizing and studying these systems. Analytical

techniques have evolved as well. Many special fields of analysis have blossomed

with the increased interest in the need for nonlinear analysis techniques.

One such area of interest is that of chaotic systems. Chaotic response occurs

in systems and processes in many, if not all of the engineering and scientific fields

including both the physical sciences as well as the biological sciences. Some

selected areas of interest where chaotic motion commonly occurs include fluid

flows (Brandstäter et. al., Libchaber, 1987), chemical reactors (Epstein, 1983,

Smith et. al., 1983), vibrations of beams and elastic structures (Olmstead, 1977,

Moon and Shaw, 1983), plasmas (Horton and Reichi, 1984, Cheung and Wong,
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1987, Stafford et. al., 1990, King et. al., 1994), feedback systems (Baillieul et. al.,

1980), harmonically driven electrical circuits (Murali and Lakshmanan, 1991, Testa

et. al., 1982, Matsumoto et. al., 1984, Szemplinska-Stupnicka and Bajkowski,

1986), cardiac arrhythmias (Glass, et al., 1987, Glass, et al., 1983), biological

populations (May, 1987) and ship stability (Thompson et. al., 1990, Virgin, 1987).

Nonlinear response characteristics were originally studied by such great

mathematicians and physicists as Henri Poincaré (in the 3-body problem) in the late

19th century. Then, there wasn't the aid of the computational power that the modern

computer gives us and hence all calculations were done by hand. It is for this

reason that chaos, although understood to exist at those early times, wasn't fully

appreciated until much later.

Chaos, loosely defined, is the unpredictable response of deterministic

systems. A chaotic system is any deterministic system that exhibits unpredictable

responses to known inputs. Deterministic, by it's very definition, implies complete

knowledge of the system, including the system response. However, the

unpredictability of chaotic systems exists as well. It is this unusual characteristic

that is of interest to scientists today. The unpredictability is both a burden as well

as a tool.

Deterministic chaos refers to the unpredictable response of a nonlinear

system which can be modeled by a set of deterministic differential equations.

Hence, deterministic chaos comes from those systems where complete knowledge
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of all of the essential properties are known. Conversely, a deterministic system may

have random inputs or its state may not be well known. This type of system is

sometimes called non-deterministic or stochastic chaos. For the purposes of the

current work, the unpredictable responses of the deterministic system with additive

noise will be of importance.

Currently, the potential for chaotic oscillations is not taken into account

during the design process in many nonlinear engineering systems. The chaotic

response to certain excitations can cause many undesirable effects. Catastrophic

failure of the systems in question can occur due to these undesirable response

characteristics, as in the over turning of equipment in the ocean or seismic

environment. Alternatively, the undesirable nonlinear oscillations can create

problems with position identification of moored systems when knowledge of the

position is critical. These undesirable responses have been investigated with an

attempt to understand the motions themselves. The current work studies the

undesirable motions in an attempt to dampen them, or to get rid of them entirely.

Through the application of active control techniques, it can be shown that the

nonlinear oscillations can be controlled.

1.2 Problem Overview

Recently, complex nonlinear motions, including chaotic responses, have

been predicted in compliant offshore structures and ocean mooring systems
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(Thompson, 1983, Thompson, Bokaian and Ghaffari, 1984, Bishop and Virgin,

1988, Pan and Davies, 1997). Many of these types of systems can be characterized

by a large geometric nonlinearity in the restoring force, and viscous drag and inertia

excitations (Gottlieb and Yim, 1990, 1992). Nonlinear techniques to identify the

parameters leading to chaotic motions for such systems have been developed

(Gottlieb, Feldman and Yim, 1996, Narayanan, Yim and Palo, 1998). Isaacson and

Phadke (1994) demonstrated the existence of chaotic motions in a small scale

experiment of a linearly moored system with impact. A medium-scale experiment

of a mooring system has been conducted at the wave research facility at Oregon

State University in an attempt to validate analytical predictions (Gottlieb, Yim and

Lin, 1997, Lin and Yim, 1998).

Currently, chaotic motions of these moored fluid-structure interaction

systems are not considered in their design. These systems may be considered as a

model of sonars, remote sensors and data collection devices deployed near the

ocean floor. Stochastic analytical predictions (Lin and Yim, 1995, Lin and Yim,

1997), and preliminary analysis of experimental data of the mooring system have

demonstrated the likely presence of chaotic motions under noisy environments.

Nonlinear and chaotic responses have also been identified in models of

engineering systems in the offshore and seismic environments (Yim and Lin 1991a,

Pompei et al. 1998). In the case of the free-standing equipment or structures

installed on these offshore and seismic systems, it can be shown that through the
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base support excitation, these "rocking blocks" can also be set into highly nonlinear

complex motions (Hogan 1990, Yim and Lin 1991b). In particular, under certain

periodic (Lin and Yim 1996a) or random (Lin and Yim 1996b) base motions,

overturning response may occur, causing potentially catastrophic results. Should

the unpredictability of the chaotic behavior observed in these and the other

associated fluid-structure interaction systems be deemed undesirable, methods of

real-time on-line analysis of the system response and subsequent control of the

nonlinear motions are needed.

Methodology for the analysis of highly nonlinear systems has grown at a

rapid pace. Understanding the mechanism for these random seeming fluctuations

has given rise to the ability to begin to approach the question of controlling them as

well. A need has been identified with respect to the design practice of engineers as

they push the envelope of materials and implementation of their processes. This

need has created the new realm of chaotic systems control. The topic of this

research is to study the implementation characteristics of control systems designs to

the ocean structural systems outlined above. Design and application of a control

technology ensues with special attention paid to controlling the system about an

harmonic cycle.

Because the ocean environment is stochastic in nature, any deterministic

controller may experience problems associated with the noise. These problems may

or may not be insurmountable. Further research indicates methods that can be used
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to increase the effectiveness of a particular control scheme. Once the effective limit

of a controller has been reached, methods of predicting or filtering the chaotic

signal may be needed. This topic is addressed as well.

1.3 Control of Chaotic Systems

The previous section indicated the need for control of complex responses in

ocean and associated systems. As will become evident, there has been a large

movement towards easy-to-use and more importantly, easy-to-implement control

algorithms. There has been a large boom in control research. The Ott-Grebogi-

Yorke (1990a & b) method is just one of many methods that has been devised to

render the chaotic dynamics to a predictable pattern. Many proposed control

algorithms have been introduced since Ott, Grebogi and Yorke introduced their

seminal work on controlling chaos. Ott et al. realized that the chaotic oscillations

can be used to an advantage. They showed that by using the sensitivity to initial

conditions exhibited by a chaotic system, a chaotic trajectory can be directed

towards a stable operating state. This method of control has been demonstrated on

various engineering systems, both in simulation as well as in practice. Spano et al.

(1991) demonstrated the application of the OGY controller to the oscillations of a

magneto-elastic ribbon giving possibly the first experimental evidence that control

of chaos was obtainable. Meanwhile, Singer et al. (1991, 1992) applied the control

technique to stabilize the flow within a thermal convection loop.
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The OGY method has also been applied to many other experimental systems

where numerical simulations have been utilized for verification of its applicability.

Romeiras et al. (1992) successfully demonstrated the method on several distinct

systems, the Henon map and the double rotor. Hong et al. (1997) demonstrated

controlling unstable orbits in the kicked double rotor while Ding et al. (1994)

demonstrated control for preventing the capsizing of ships due to the chaotic

response in the ocean environment. Ogorzalek (1993) studied control of an

electrical circuit, the Chua's Circuit, while Mehta and Henderson (1991) exhibited

control to generate aperiodic orbits.

Extensions of this method have been implemented in order to expand the

region and applicability of control. Shinbrot et al. (1990, 1992a, 1992b)

demonstrated how the method could be modified in order to target a particular

trajectory. Meanwhile, Epureanu and Dowell (1998) discuss the optimality of the

particular implementation characteristics and indicate a means of increasing its

effectiveness. Nitsche and Dressier (1992) discuss utilizing the method in the case

where the system dynamics are not known a priori but a time history is available.

In either case, whether it is the study of control of a particular chaotic

system trajectory or the study of the control technology itself, it is apparent that the

need has arisen for methodology for robust, low energy and easily applicable

controllers in order to render the system dynamics non-chaotic. Moreover, since

systems in the ocean environment, as studied here, may be subjected to excitations
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which instigate nonlinear and chaotic motions, methods of these types may be of

interest to the design engineer. The implementation of an easy-to-use control

algorithm is of paramount importance to the systems described above and is studied

in this report.

In this study, an analysis and control procedure which uses the chaotic

response to its advantage is presented. By characterizing the nonlinear system

response with unstable periodic orbits (UPO's), a consistent means of investigating

these strange attractors is obtained (Lathrop et al., 1989, Auerbach et al., 1987).

Particular system trajectories are identified and then used to control the chaotic

responses. The proposed control method utilizes the local linearity about an

unstable cycle to maintain a periodic response within the chaotic operating regime.

To maintain stability of the desired periodic response, this method applies a small

perturbation about the unstable cycle at discrete time intervals (Ott et al., 1990).

Moreover, to better emulate the nature of the ocean and seismic environments and

to determine the controller's effectiveness under the stochastic case, a random

(noise) process is incorporated into the excitation model and methodology for

increasing the effectiveness of the controller under these circumstances is

investigated.
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1.4 Organization

This dissertation is composed of four manuscripts and a series of supporting

appendices. The manuscripts have been submitted to peer reviewed journals, the

first already having appeared in that journal. The primary author on these

manuscripts is the same as for this dissertation.

The first manuscript, Chapter 2 of this dissertation, titled "Control of Noisy

Chaotic Motion in a System with Nonlinear Excitation and Restoring Forces,"

which appears in Chaos, Vol. 7, No. 2, 290-300, 1997, describes a deterministic

ocean structural system, modes of oscillations for the system and subsequent

control of those motions. Methods of extending the deterministic controller for

increasing noise intervals are also investigated.

The second manuscript, (Chapter 3) titled "Nonlinear Rocking Responses of

Free Standing Rigid Blocks: Part I Deterministic Control" (submitted to the

Journal of Engineering Mechanics, Manuscript Number EM/2005/024246)

introduces the second system under consideration, the so-called rocking block

system. Here, it is assumed that there is equipment on a platform undergoing

excitation. This may arise for equipment on a ship undergoing oscillations from

waves, for example. It can be shown that under certain conditions of the base

excitation, the equipment can undergo periodic or chaotic oscillations as well. The

difference here is that the chaotic rocking response can not be considered steady-

state as in the case of the mooring system. This is due to the fact that the equipment
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may topple and hence not only are the dynamics fundamentally changed, but the

equipment can be damaged.

Chapter 4, "Stochastic Control of Sensitive Nonlinear Motions of an Ocean

Mooring System," (submitted to the ASME Journal of Offshore Mechanics and

Arctic Engineering, Manuscript Number OMAE-05-1071), revisits the mooring

system response in an effort to gauge the effects of filtering and feedback control.

In particular, the Iterated Kalman Filter is investigated in order to extend the limits

of controllability under increasing noise levels. While it is known that Kalman

Filtering will not work for the fully nonlinear case, in general, certain

considerations are made in order to apply the filtering technique to a linearized

subset of the controlled system in order to achieve the goals.

The final paper (Chapter 5) titled "Nonlinear Rocking Responses of Free

Standing Rigid Blocks: Part II - Stochastic Filtering and Control" (submitted to the

Journal of Engineering Mechanics, Manuscript Number EM12005/0242467) re-

introduces the nonlinear dynamics of the rigid rocking block system. Then, the

results of applying the methodology identified in the previous papers for the control

of the steady-state chaos, with and without noise, are presented including detailing

the increase in controllability in the presence of increasing noise levels. The

controller is then extended with the use of the Iterated Kalman Filter.

The fundamental difference between the nonlinear dynamics of the two

systems is evidenced by the fact that in the Mooring System, chaos is stable while
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in the Rocking Block system it is not. That is, once a chaotic state in the Mooring

System is obtained, it will stay in that state until such time as a change in the

dynamics occurs. However, in the Rocking Block, this is not necessarily true since

the block may topple at any given time and without warning. The final chapter

discusses the differences between the two systems and how the control

methodology is impacted by these differences.
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2. Control of Noisy Chaotic Motion in a System

with Nonlinear Excitation and Restoring Forces

2.1 ABSTRACT

This study examines the complex and chaotic oscillations of a dynamical

system with nonlinear excitation and restoring forces for the purpose of controlling

these oscillatory states. The physical system, modeled as a system of first order

nonlinear ordinary differential equations, takes into account a geometric nonlinearity

in the restoring force, a quadratic viscous drag and a harmonic excitation force. It is

controlled using small perturbations about a selected unstable cycle and control is

instigated for periodic cycles of varying periodicities. The controller, when applied on

the dynamical system with additive random noise in the excitation, successfully

controls the system with noise levels in excess of 5% of the total energy, giving the

first evidence that (stochastic) control of these systems is possible.
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2.2 LEAD PARAGRAPH

Sensitive nonlinear dynamics including chaotic oscillatory behavior has been

observed in experimental data of a moored, submerged structure. This phenomenon

has been verified through analysis and computer simulation of the governing dynamical

system. Methods of analyzing system response to harmonic and noisy excitations and

subsequent control are needed, should this unpredictability of the observed behavior

be deemed undesirable. This study presents an analysis and control procedure which

uses the chaotic response of the system to an advantage. By describing the nonlinear

response with unstable periodic orbits (UPO's), a locally linear mapping of the

dynamics is obtained. This linear mapping is subsequently employed in a controller

design and the controller is applied to the moored structure. Finally, robustness of the

controller is investigated under noisy conditions and modifications to the controller are

made in order to maintain control of the moored structure under the conditions when

noise is present in the excitation. The methods presented are equally applicable to

most chaotic systems for which the response time history can be monitored.
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2.3 INTRODUCTION

Recently, chaotic responses have been predicted in a system characterized by

a large geometric nonlinearity in the restoring force and viscous drag excitation."2 An

example of a system modeled by these types of nonlinearities is a mass moored in a

fluid medium subject to wave excitations. These systems include sonars, remote

sensors and data collection devices deployed for mineral exploration, which are of

interest to the U. S. Navy and the U. S. Bureau of Mines, are typically suspended by

cables from the ocean floor. This class of fluid-structure interaction problems contain

highly nonlinear drag and mooring effects. However, despite being of fluid origin,

which often indicates infinite dimensionality, the overall effects of the nonlinear fluid

loads on the structure can be approximated in terms of an added inertia and a nonlinear

coupling of the Morison form"2. The nonlinear mooring resistance force can be

approximated by a low order polynomial. Hence the resulting mathematical models

of these systems are reducible to a low degree system of ordinary differential equations

of the Duffing type. This order of approximation is often acceptable for preliminary

analysis and design of the types of fluid-structure systems considered (see Refs. 1 and

2 for detailed justifications).

Currently, chaotic motions of moored fluid-structure interaction systems
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employed by the U. S. Navy and the U. S. Bureau of Mines are not considered in their

design. Preliminary analysis of experimental data from such a system has

demonstrated the likely presence of chaotic motions in noisy environments.3 Should

the unpredictability of the chaotic behavior observed in these and other associated

fluid-structure interaction Systems4'5 be deemed undesirable, methods of analyzing

system response to harmonic and noisy excitations and subsequent control of the

systems are needed. The analysis and control procedure presented in this study uses

the chaotic response to its advantage. By describing the nonlinear response with the

unstable periodic orbits (UPO's) of the system, a consistent means of characterizing

these strange attractors is obtained.6'7'8 This characterization can include the calculation

of such invariants as the topological entropy, the Hausdorff dimension,7 the multi-

fractal spectrum9 or the Lyapunov spectrum.'°

In this study, particular system trajectories are identified and then used to

control the chaotic responses. The proposed control method utilizes the local linearity

about an unstable cycle to maintain a periodic response within the chaotic operating

regime. To maintain stability of the desired periodic response, this method applies a

small perturbation about the unstable cycle at discrete time intervals." The proposed

method has been applied successfully to several physical systems, including control of

a thermal convection loop'2"3 and the chaotic oscillations in a continuous stirred tank



reactor.'4 Other control methods including the use of artificial neural networks for

adaptive learning of chaotic oscillations for model reference control of these

oscillations has been examined in the cases of chaotic fluid flows'5 and plasmas.'6"7

Section II describes the physical system which includes nonlinear effects of

fluid structure interaction as well as nonlinear geometric stiffness. Numerical

investigations show that this system possesses periodic, quasi-periodic and chaotic

responses to certain combinations of driving wave amplitudes and frequencies. The

regions of chaotic responses are first identified by a semi-analytical method of

investigating the bifurcation structure and routes to chaos.2 The analytical predictions

are highlighted in Section III. These information are used in Section IV to numerically

investigate chaotic oscillations of the system. h Section V the notion of an UPO is

introduced and a method of obtaining them is outlined. This method uses only the

response time series of the chaotic system and hence is applicable to many systems in

which the dynamics are not precisely known a priori, but a chaotic time series is

available. The ability of the method to identify appropriate unstable cycles in a general

chaotic system, and subsequent control of the chaotic responses is investigated in

Section VI.

The controller utilizes a selected UPO to maintain a trajectory in an oscillatory

manner, essentially rendering the system response periodic, even though the system is
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otherwise operating in a chaotic parameter regime. Section VII gives the results of

applying this technique to the nonlinear oscillator defined in the previous sections.

Finally, since the proposed control scheme uses a first order approximation

about an UPO, it is expected that the addition of noise may cause some stability

problems with the controller. Several avenues of rendering a robust controller are

available, these include filtering the noise and geometric projection. Filtering either

assumes prior knowledge of the model (as in Kalman filtering'8) or it assumes

knowledge about the nature of the noise (as in statistical linearization'9). Geometric

projection,20'2' on the other hand, uses the fuzzy image of the dynamics (via a strange

attractor in phase space) to project a trajectory back onto the original phase space.

However, in this study, a modification of the controller is employed to obtain the

desired robustness. This modification extends the method in the case when noise is

present and is discussed in Section VIII.

2.4 SYSTEM WITH GEOMETRIC AND HYDRODYNAMIC

NONLINEARITIES

Figure 1 shows a system moored by cables in a fluid medium. The fluid itself

is undergoing motion and an associated excitation force is described by the forcing
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function FØ,*,t), where k = dx/dt and x = dk/dt. With restraints for vertical and

rotational motion, this system is modeled as a single-degree-of-freedom system for the

surge, x.2 The (nonlinear, second order ordinary differential) equation of motion is

derived by using the fact that the system is hydrodynamically damped with external

forcing. The forcing excitation is modeled as the sum of a constant current and an

F(

b b

Figure I A moored system suspended by cables and subject to current and wave
excitation.
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oscillatory wave term. Because the cables are thin and the dimensions of the mass are

small compared to the orbital motions of the wave particles, the fluid-structure

interaction can be modeled accurately by use of the small-body theory which assumes

that the presence of the structure does not influence the wave field. This implies that

the waves flowing past the structure do not change due to the fluid-structure

interaction. The mooring angle produces a geometric nonlinearity in the restoring force

that can become highly nonlinear for b = 0, a two-point system, or nearly linear for b

> d for the four-point system. The equation of motion for this system is given by Refs.

1 and 2 as

m X + c X + R(X) = F(X,x,t) (la)

where the nonlinearities are contained in the restoring force R and the excitation force

F. The restoring force describes the geometric configuration of the mooring lines and

assumes linear elastic behavior so that the nonlinearity is strictly due to the geometric

configuration of the system. The restoring force can be shown2 to have the form

d2 + b2
1

(ib)R(X) = k (x + b sgn(x))
d2 + (X + b sgn (X) )2
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where sgn(X) is the signum function defined by

+1 for X > 0
sgn (X) = OforX=O

-1 for X < 0

The excitation force is a combination of viscous drag and inertial components

based upon the interactions between the moored structure and the fluid medium. This

excitation force is modeled by

F(X,tt) = ?(u u- + X) + (ic)

The system parameters are given by the system mass m, damping c, and line

stiffness k. A, t are the hydrodynamic viscous drag and added mass, p is the fluid

density, V is the displaced volume of fluid, u = u(t) is the fluid particle velocity under

current and waves given by u(t) = u0 + u1 sin(ut) and u1 = u1(a,).

Assuming the structure does not alter the fluid flow, performing an equivalent

linearization on the quadratic drag force and normalizing, a dimensionless first order

autonomous nonlinear differential equation can be obtained:

* =y
= -R(x) y y + F(y,x,O) (2a)
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where x = XId and the resulting nonlinear restoring force becomes

1R(x) = (x + sgn(x)){
____________I (2b)

'1 +p2 V'l + (x + p sgn(x))2j

and the excitation force is given by

F(y,x,O) = f0 f1 sin(0) (2c)

The appropriate dimensionless constants are defined by

iJi= k c+?.1
(2d)

m + d m +

and the constants f0 and f1 depend upon the hydrodynamic characteristics of the system.

Although at first glance this system appears to be significantly more complex than the

simple nonlinear systems presented in standard texts, e.g. Nayfeh and Mook,23 it turns

out that, the fluid-structure system possesses nonlinear response properties very similar

to those of the Duffing system"2.
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Figure 2 - Degree of geometric nonlinearity as a function of mooring angle.

2.5 ANALYTICAL PREDICTIONS

Numerical simulations ofthe response ofthe structure in the fluid medium have

been shown to exhibit periodic, quasi-periodic and chaotic responses in surge motion
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as depicted in Figure 1. This response has been verified through an analytical

treatment of Eqs. (2a) - (2c). In this analysis, a Hamiltonian approach is employed to

examine the fundamental geometric nonlinearity and a harmonic-balance method22'23

is used to investigate the frequency response characteristics of the primary, sub- and

super-harmonics.23 A variational approach is also employed to identify a bifurcation

structure and routes to chaos of the model)'2

The associated Hamiltonian24 of the system described by Eqs. (2a) - (2c) is

obtained by neglecting the damping term (by setting y = 0) and the forcing term (F

0). From this formulation, the natural period, T, of the Hamiltonian is computed from

the natural period, T 27c/w, , where

1-i
Ix

max I

dx
('I) j (3)

y(x) = /(V(x0) V(x))2
(4)

and V(x) is the potential energy and is given by

V(x) =
[

t (1 +( +x)2 + Vi
+(

x)2)] (5)
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Figure 3 Frequency response curves subject to a)
current and wave excitation (y = 0.5, i.j = 10.0, f0 = 0.01,
f1 = 0.1) and b) wave excitation alone (y = 0.01, 4r =

10.0, f = 0.0, f1 = 2.0).
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Equation (3) characterizes the geometric nonlinearity and is sometimes called

the frequency response (or backbone) curve.23 The curvature of the backbone curve

shows the degree of nonlinearity. For a weak nonlinearity the curvature is near zero

and the backbone curve resembles a vertical line. For a strong nonlinearity the

curvature is positive for a stiffening system and negative for a softening system. This

is exhibited in Figure 2 which gives the result for Eqs. (2a) - (2c) for the stiffening

case. As can be seen, the mooring angle creates a strong nonlinearity for
1

= 0 and a

weak nonlinearity for 3>> 1.

The harmonic balance22'23 method of approximating a solution to the system

[Eq. (2a) - (2c)] is applied to study the frequency response characteristics of the

resonance modes. The method assumes an approximate solution of the form

x0(t) = E Ak cos(kot+4k) (6)

where M is the order of the approximation and Ak is the amplitude of the k-th

harmonic. This approximate solution is then substituted into the original equations and

the resulting expressions are rearranged and squared. By equating the harmonic terms

and the constant terms separately to zero, a set of nonlinear algebraic equations in the

Ak's and is obtained and subsequently solved using standard procedures.22 Figure
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3 shows the zero-th and first order amplitude as a function of frequency. As is evident,

this system exhibits a jump phenomena as the frequency is swept through the values

shown.23

The system bifurcations are identified by considering a perturbed solution of

the form x(t) = x0(t) + E(t), where x0(t) is an approximate solution and E(t) represents

a small perturbation. Substituting this into Eqs. (2a) - (2c) and linearizing the resulting

expression yields

E + yE + 1IJH[x0(t)]E = 0 (7a)

where y and i]i are defined in Eq. (2d) and the periodic function H is given as follows

H(x0) = (1 +f32)_12 (i + [x0 + psgn(x0)]2)_3'2 (7b)

Performing a Fourier series expansion on H produces a generalized Hill's equation23 of

the form

E + + *H [OJE = 0 (8a)



for

H[O = a cos(nO) (8b)

Note that Eqs. (8a) (8b) define parametric excitation and resonant interaction

where harmonics of all orders are possible. The use of Floquet Theory (described in

detail in Ref. 23) gives the particular solution to the variational equation as

E(t) = exp((t)Z(t) (9)

where the real part of the constant determines the stability of the approximate

solution, and the complex part of corresponds to the natural frequency of the

periodic response. The function Z is periodic in T, i.e., Z(t) = Z(t+T).

By investigating the order of the harmonic part of the solution the sub- and

super-harmonic solutions can be determined. The procedure is conducted by

examining the symmetric solution Z(t) = Z(t+T12) or the period doubled solution Z(t)

= Z(t+2T). The boundaries of the stability regions can be obtained by performing a

harmonic-balance approximation to the Hill's variational Eq. (8a) at the stability limits

where d(/dt = 0. (Specific details of the solution procedure can be found in Ref. 2,
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while a description of the general procedure can be found in Ref. 23.) For the fluid-

structure interaction systems of interest to the U. S. Navy and the U. S. Bureau of

Mines, preliminary experimental results have indicated that the primary resonance is

of major concern.3 Although, the analysis procedures described in this study are

equally applicable to higher order resonances, primary resonance will be employed for

demonstration purpose.

The above analysis yields the frequency response curve of the primary

resonance, Z(t) = Z(t+T), given by

22 21 (a-a) y2a0 ± ya+2*y (a1 _)2(aaoai)2] (10)

Note that in Eq. (10), y 1. For the undamped system, 'y = 0, and Co /(1Ja0I2). The

distribution of the a's and their influence on system behavior had been examined'2

Similarly, the stability boundaries for the '/z subharmonic can also be obtained

by inserting the period-doubled solution x,12(t) = b112cos(O/2) (corresponding to Z(t) =

Z(t+2T)) into Eq. (8a). This yields the frequency response curve

Co2 = 2{a0 ± y4_2y2a0+2a] (11)
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Now, the regions of bifurcations can be approximated by observing that the

intersections of the frequency response curves obtained from Eq. (6) and the

investigations of the stability regions which lead to the frequency response curves

given by Eqs. (10) - (11) as shown in Figure 4. From this analysis, obviously the

strength of the geometric nonlinearity (as evidenced by ) plays an important role in

the ultimate response of the system. In fact, by examining the frequency response

characteristics and equating them with the stability regions a period-doubling

bifurcation structure is obtained.

2.6 NUMERICAL INVESTIGATIONS

The analytical investigations above provide a guide for a numerical search in

parameter space for various types of responses including the existence and co-existence

of periodic solutions, period-doubling bifurcations and chaos. Extensive numerical

investigations and many examples as presented in Ref. 2 show that Eqs. (2a) - (2c)

exhibit periodic, quasi-periodic and chaotic motions. These motions were verified

through the analytical predictions discussed above. As a demonstration, Figure 5

shows one of the many possible chaotic responses of the system, where the parameter

values used were u = 0.335, y = 0.01, i 4.0, 3 0.0, f0= 0.0, and f1 = 2.0. In the
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chaotic regime, this system exhibits both steady-state chaos and transient chaos, where

the system undergoes a transient chaotic response before it settles into periodic or

quasi-periodic oscillations.2 Figures 5a - 5d show the phase space portrait, Poincaré

section, frequency spectrum and a typical time series, respectively, of a chaotic

response. The Poincaré sections are obtained by stroboscopically sampling the time

series every 2it/F and plotting the points sequentially i.e. by plotting x(t) vs. x(t+F) for

1' the sampling period. One can notice the fractal structure of the Poincaré section.

The presence of an abundance of these complex harmonic responses predicted by the

analytical and numerical results indicate that their influence on extreme and fatigue

designs of the fluid-structure interaction systems may need to be included in the future.

2.7 UNSTABLE PERIODIC ORBITS

The numerical simulations together with the analytical results show that the

oscillatory nature of Eqs. (2a) - (2c) exhibit a range of modes, including periodic, sub-

and super-harmonics and chaotic motions. A means of analyzing the chaotic motion

by using the time series alone has been introduced by Refs. 6 and 7. The procedure

utilizes the unstable periodic orbits of a system. Since a chaotic attractor contains a

multitude of UPO's of varying periodicities, much of the nonlinear characteristics can
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be identified through these special cycles. It is well known that UPO's are dense in a

chaotic attractor,9" and in fact this is a necessary condition for chaos to exist.26 This

fact is exploited in the following discussions.
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Figure 5 - Chaotic response of the nonlinear system with parameter values (0

0.335, y = 0.01, i = 4.0, 3 = 0.0, f0= 0.0, and f, = 2.0 exhibiting the a) chaotic
attractor, b) Poincaré section, c) Power spectrum and d) time history of the
(surge) position.

The basic idea behind the use of an UPO is that if the chaotic system is allowed

to evolve long enough, then a trajectory will return arbitrarily close to a given unstable



44

cycle, arbitrarily often. This is because these cycles are dense on the attractor and that

they are periodic and yet unstable. Thus, if the system is on a cycle it will remain on

it for all time. However, if there is any minute deviation from the cycle, then the

chaotic trajectory will diverge from this unstable cycle. Because of the "mixing"

property of the chaotic attractor, some time later the trajectory will again come

arbitrarily close to this UPO.

In other words, suppose that a chaotic time series x(t) is available. Let 11 > 0

be given, then at some time tin the time series x-x <ri, that is the chaotic trajectory

has come arbitrarily close to the UPO, x, of period p. At some time F later XP-X+F

<r and the trajectory has come close to the UPO again. To identify the unstable cycle

of period p, a search through the data set for all points separated by F time steps that

are a distance of apart is performed. To ensure that the points obtained by this search

correspond to a particular unstable cycle and not another nearby unstable cycle, not

only are the points that are identified used but also their images under integration (or

iteration for discrete systems). This is done by restricting the points of interest to those

with iterates of which are within ô > r of each other, x+1-x+1 <ô. That is, all points

such that x-x <q and XP-Xt+r <r are considered and that x1-x1+1 <ô to ensure

that only one cycle is included and not several nearby cycles.

In practice, this is typically performed on a Poincaré section where the
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continuous flow is mapped to a discrete iterative dynamical system of one less degree

of freedom. Let Z1 be a point on the Poincaré section and suppose Z, is an unstable

periodic point on the section representing the UPO of period p. Then, the algorithm

for calculating the UPO consists of searching the data set on the section, {Z1}1, for

all points that are within r of Z the set {: Z-Z1 <r }. Once these points have

been identified, their corresponding image, or next iterate, is investigated. The set of

points whose images (i.e. the next iterates) are within ô, Z-Z1,, <ô, for some

r, are considered to correspond to that UPO, otherwise they correspond to a different

UPO and are not further examined.

The last step is to identify the stability characteristics of the UPO, which is

performed by using a least squares procedure to calculate a linear map, A, which maps

Z1 to Z, where Z and Z, correspond to the periodic point Z. This is accomplished

by creating the vectors D {d1} and E = {e}, where the d's are the deviations of the

points from the UPO under consideration, d1 Z1 - Z, and the es's are the deviations of

the iterates from the image of the UPO, e= Zj+r- Z,1.. The point corresponding to the

UPO, Z, is taken as the centroid of points under consideration.

The linear map A (an n x n matrix, where n is the dimension of the Poincaré

section, usually taken as 2) is calculated by a least squares method that minimizes the

error orthogonal to the approximate solution of the matrix equation DA-E 2 which,
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since D and E are vectors, has solution given by A = mv (DTD) DTE.25 The stability

characteristics of the UPO are governed by the eigenvalues of the map A.

Figure 6 - Schematic of the action of the controller on a point. The control law
pushes the point Z+1 towards the stable eigenvector of Z1.
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2.8 CONTROL OF CHAOTIC SYSTEM RESPONSES

Once a periodic cycle has been selected for control and the corresponding linear

map A has been calculated, control of the system about an unstable cycle can be

maintained by applying a small perturbation to the chaotic trajectory about the UPO on

the Poincaré plan. That is, the system is allowed to oscillate chaotically until the first

time the trajectory enters within the r ball of the chosen UPO. Once within this ball,

a small perturbation in the direction of the stable eigenvector of the linear map can be

applied to ensure that upon the next return to the Poincaré section the trajectory is still

within 11 of the UPO. Figure 6 is a schematic of this operation in which the pointZH,

is perturbed toward the stable eigenvector of the UPO.

A means of finding the magnitude and direction of the perturbation is obtained

by employing the pole placement method2728 which is a state feedback rule devised to

render the eigenvalues of the controlled system stable. A linear map describing the

evolution of a trajectory from a point close to a periodic point on the Poincaré section

to its next iterate is calculated as before. It remains to find a feedback rule which,

when added to the linearized system, renders the nonlinear system stable.

Consider the dynamical system (linearized within the 11 ball as in Section V)

represented by the state-space system



* = Ax + By (1 2a)

where x is the response of the system, y is the external forcing, A is the linear mapping

and B is a column vector. Suppose that the external forcing can be written as y = y +

y where y describes a control input and y is the usual external excitation. Next,

consider a feedback law of the form y = - KTx, then Eq. (12a) can be rewritten as

* = (A - BKT)x +
BYe (1 2b)

Now, the homogeneous portion of Eq. (1 2b) determines the linear systems natural

behavior, hence if the external excitation is ignored and the subscript from y is

dropped, then a feedback of the form y = - KT x can be considered and Eq. (12b) takes

the form

* = (A - BKT)x (13)

The goal is to find a vector KT such that the eigenvalues of the matrix (A - BKT)

are asymptotically stable2829 (i.e. <1 for i=l ...n). This ensures that the fixed points
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of the associated system, Eq. (12b), are stable. The eigenvalues of the matrix (A -

BKT) are called the regulator poles while the problem of placing these poles in an

appropriate spot on the complex plane is called the pole placement problem.3° The

solution to this problem lies in the fact that one is free to choose KT in an advantageous

way, as long as the eigenvalues have the appropriate characteristics. If the system

given by the pair (A, B) is controllable, then a solution to the pole placement problem

always exists.27 It can be shown that (A, B) is controllable when the n x n

controllability matrix, C, has full rank, for the controllability matrix defined by

C=[BABIA2BH..An-1B] (14)

and where the columns of C are made up of the column vectors B, AB, A2B, ... A'B.

The control law then consists of picking the entries in the vector KT, called gains, so

that the roots of the characteristic equation [Eq. (15)] are in prescribed positions. Since

the A's are known, this amounts to choosing the c1's in the characteristic polynomial

ABKT0) = det (Al (A-BK T))

(A-A1)(A-A2) (A-An) = (15)

c + c1A +
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A general method for calculating the ci's is given by Ackerman's formula for pole

placement in Ref. 30. The idea is to transform the pair (A, B) into controllable

canonical form27 by constructing a particular transformation matrix, solving for the

gains in terms of the controllable canonical form and then transforming back. The

result yields the choice of gains as KT = (.o+ c, .., -a, + c,) G' where G = C A is the

transformation matrix, C is the controllability matrix and A has the form2728'3°

0n-1 0n-2

0n-2 0n-3

A=

01 1

1 0

1

10

00
00

(16)

The c's are the coefficients of the characteristic polynomial ItABK (?) and the 01's are

the coefficients of the characteristic polynomial 7tA(?). For the case where A is 2 x 2,

it can be shown that an optimal choice (in the sense of time to control) for the gain

vector is KT = [An, -A21 where A is the unstable eigenvalue and ?, is the stable

eigenvalue of A."28

One can now formulate an algorithm to control a chaotic system utilizing this
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control law on a Poincaré section. First, the linear map, A, of an unstable cycle is

constructed as before and its eigenvalues identified. Then, setting x = Z Z* and k

Z+1 Z in Eq. (13) yields the control law for the discrete UPOs on the Poincaré section

as

Z1=(A - BKT)(Z1 - z*) + z* (17)

Then, calculating the eigenvalues of A, ) and ? choosing KT = [?, -?A1 and

applying Eq. (17) whenever the trajectory comes within r ofZ* on the Poincaré section

yields the desired stable characteristics. The final point left to consider is a relative

distance on the Poincaré section a trajectory can be from Z and still be able to

guarantee that the controller will perform adequately. The answer to this lies in the fact

that since it was required that Z - Z+1 <y by construction then, combining this with

Eq. (17) yields

zi z < Y
(18)

I A - BKT

Since KT was constructed to render the eigenvalues of the matrix A - BKT stable, and

(A - B KT)i exists, this defines an area of width 2y I A - B KT about Z for which
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the control should be applied.

2.9 APPLICATION OF CONTROL TO A MOORED STRUCTURE

Consider the chaotic oscillations of Eqs. (2a) - (2c) for the parameter values

given as before (u = 0.335, y = 0.01, Ii = 4.0, 3 = 0.0, f0= 0.0, and f1 2.0) exhibited

in Figure 5a - 5d. A search was done on the Poincaré data exhibited in Figure 5b to

obtain all points that were near a period-i orbit. This is done by comparing all points

Z1 that are close and whose next iterate Z11 are also close (where the Z.'s are taken by

stroboscopically sampling the position, x). Then, the UPO of period 1 is estimated as

the mean of the set of points found to correspond to it (c.f. Section V). Utilizing this

method, the system structural response data found a UPO of period-i at the values Z

= {x, *]T where x = 0.2623 and * = - 0.0677. A linear map is constructed which maps

the points near the UPO Z toward Z along the direction of the stable eigenvector as

seen in Figure 6. In this case the linear map is given by

0.8793 0.2766 (19

0.4553 -0.0729

which has a practically neutrally stable eigenvalue ? = 0.9970 and a stable eigenvalue



= - 0.1906. If the feedback control is applied only to the position x, this gives

B=[]
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(20)

Choosing the gain vector KT = [? -?A] yields the control poles at Pi,2 =

0.2951, 0.1044]. Thus, each time the system trajectory crosses the Poincaré section

near Z the controller affects this point by applying the control law Eq. (17), ensuring
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Figure 7 Example of controlling the system about a period-i cycle showing the
Poincaré points versus time before and after control is applied.
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that the trajectory returns near the point Z on the next return to the Poincaré section.

The results of this application are shown in Figure 7, which is a plot of the Poincaré

points versus time exhibiting the controlled periodic oscillation after an arbitrary

duration of chaotic oscillations.
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Figure 8 - Example of controlling the system about a period-3 cycle.

To further demonstrate the effectiveness of this strategy, a higher order

periodicity is identified and the controller is again applied. Analysis of the higher order
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motions, and in particular period-3 motion, is very similar to that of the primary

resonance case treated in Section III (and has been examined in detail in Refs. 1 and

2 and, hence is not reported here). Figure 8 shows the results of this calculation for a

period-3 orbit identified at the point Z = [x, kIT for x = - 0.3609 and * = 0.0359. The

linear map obtained for this case is given by

0.9904 -0.113
A= (21)

-0.097 -0.145

which has a neutrally stable and a stable eigenvalues A = 1.000 and - 0.1544,

respectively. The controller poles are placed at P1.2 = [- 0.6177, 0.2068] and the

controller Eq. (17) is again applied to initiate control each time the system trajectory

intersects the Poincaré section near the UPO at Z with period 3. The system oscillates

chaotically until the trajectory comes close to the period-3 UPO at which time the

controller is applied and subsequently the system oscillates between the period-3

points.

Observe that, despite the complexity of the dynamics between points in time

where control is applied, the method produces a desired periodic motion through small

adjustments. This method works well for arbitrary chaotic time series. The algorithm

to control this chaotic system is to first obtain enough Poincaré points to be able to
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characterize an unstable periodic orbit, typically a minimum of 20 points. Once the

unstable orbit is identified, a linear map is obtained by a least-squares minimization of

the matrix equation involving the points near the UPO and their iterates. Given this

map, a feedback law is postulated that places the control poles in a stable operating

regime. Finally, the system is allowed to oscillate until the trajectory enters within r

of the UPO. At this time, control is applied to produce the desired periodic orbit.

N
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Figure 9 Effects of increasing noise on the Poincaré portraits.
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2.10 CONTROL OF SYSTEM WITH NOISE

The benefit of using small perturbations to control a deterministic nonlinear

dynamical system within the chaotic operating regime has been presented above.

However, for a typical real physical system such as a moored fluid-structure system,

there will be noise added to the system through measurement errors as well as a

random component in the excitation. For example, Figure 9 shows the Poincaré map

of the noisy chaotic response obtained by adding (band-limited) white noise of finite

variance to the excitation term in the deterministic case (as shown in Figure 5b). Here,

the noise energy content is increased from 1.4% (Figure 9a) to 5.5% (Figure 9d) of the

forcing energy. In this case a series ofPoincaré sections about the chaotic attractor can

be constructed by stroboscopically sampling every 2it/rF, where r is the number of

sections desired. This yields r separate controllers evenly distributed throughout the

cycle, thus decreasing the long term effects of the noise with respect to an individual

controller. By applying the above control scheme on each Poincaré section, the UPO

can be targeted from one section to the next. If these sections are selected

appropriately, then the effects of noise can be minimized.

Figure 10 shows the results of adding the white noise to the excitation term in

the period-i example above. Here, the noise energy level is increased from 1.4% to
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5.5% of the forcing energy to exhibit the effects of the noise on the controller without

making any modifications to the control scheme. Figures 1 Oa - 1 Od are the Poincaré

points from the controlled system as the noise is increased. Observe that, as the noise

level is increased from 0% to 5.5%, the system goes from being completely controlled,

to a mode where the controller appears to be effective only during limited durations,

and finally to the point where the effects of noise overpowers the influence of the

controller. For the system and example considered, the controller appears to have

acceptable performance with no modifications for upto 2.7% noise energy.
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A simple modification to the control scheme can dramatically increase the

controllability of the system. By taking several Poincaré sections around a single cycle,

and then building a feedback controller on each section, the effects of the noise are

reduced proportionally to the number of sections the controller is applied on per cycle.
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Figure 11 Control of noisy chaos when control is applied on 4 control sections
and the noise levels go from 1.4%-5.5%.

Figure 11 shows the results of the previous example with 4 control sections.

Each of the 4 sections has been created by sampling the same time series data set at 4



times the rate of that in Figure 10, r = 4. Then, using the scheme outlined above, a

linear map on each section is constructed, finally, each time a trajectory crosses a

section within the control tolerance, Eq. (17) is applied for that section. Figure 11

shows the results for one of the sections and the varying noise levels. With 4 control

sections, an increase from 2.7% to 4.15% noise can be acceptably controlled.

The number of control sections verses the amount of noise that the system

controller is able to handle are shown in Figure 12. Here, two levels of control

influence, i.e. two different values of (0.05 and 0.1), are employed. It is assumed that

the system is fully controlled if it can be controlled for 100 Poincaré points (or about

5

2
C
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(0

0

0
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Number of Control Planes, r

Figure 12 - Effects of increasing number of control sections on the increasing
amounts of controllable noise for several control tolerances.
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85,000 time series data points). Figure 12 indicates an approximately linear

relationship between the controllable level of the energy of the noise versus the number

of sections required for complete control.

2.11 CONCLUDING REMARKS

This study examines control of the chaotic oscillations of a fluid-structure

interaction system. The system under consideration, although of fluid origin, is

modeled as a low degree of freedom system by considering cases for which the small

body theory applies. This assumes that the structure does not influence the wave field,

allowing for the nonlinear fluid loads to be approximated in terms of an added inertia

and a nonlinear coupling. This, together with restraints on vertical and rotational

motion and, by approximating the nonlinear mooring resistance with a low order

polynomial, yields the desired low order system.

The nonlinear dynamics of the fluid-structure interaction system have been

demonstrated to exhibit chaotic oscillations under certain environmental conditions and

verified on data obtained from experiments. This fact is used to an advantage in the

design of a controller. This study outlines a method for controlling chaotic systems,

in general, with the use of the systems dynamics and small perturbations. The method
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uses a chaotic time series to categorize unstable periodic orbits. This is done by

mapping the time series to a Poincaré section and then obtaining the unstable periodic

orbits through an exhaustive search of the Poincaré points. This produces a linear map

for which the pole placement method of feedback control can be applied. The method

was first applied to the model to verify control. Then, the method was applied to the

model in the case that band-limited white noise of finite variation was added to the

excitation term, producing the first indications that (stochastic) control of moored

systems is possible.

An unstable periodic point can be identified by realizing that after p iterations

(where p is the periodicity of the cycle), a trajectory will return to a neighborhood of

its corresponding unstable cycle. By investigating all of the points that are a small

distance apart after every p iterates the set of UPO's of period p can be obtained.

Given a UPO of period p, control can be applied by taking advantage of the

local linearity of the UPO. A linear map is constructed from the set of points about the

periodic cycle and then the stability of this map is investigated. The controller uses the

pole placement procedure to perturb a trajectory toward the periodic cycle along the

stable direction of the linear map. This ensures that the linear system dynamics are

locally stable and system control is achieved. This control amounts to small

perturbations to the system trajectory at prescribed times to maintain the desired
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oscillatory characteristics. The control algorithm is then applied to the fluid-structure

interaction system. The controller was able to stabilize the chaotic oscillations of the

system about periodic orbits of arbitrary periodicity. As examples, the control of a

period-i orbit and a period-3 orbit were demonstrated.

An extension of the system was investigated to achieve a more robust controller

under the circumstances that additive noise is present in the excitation force. This

extension applies the same algorithm of control design to a series of Poincaré sections

produced by stroboscopically sampling every 2rtIrF, where r is the number of sections

desired. This yields r separate controllers evenly distributed, thus decreasing the long

term effects of the noise with respect to an individual controller. This method appears

to yield a linear growth in the amount of noise that the system is able to handle. More

robust control schemes will be examined in the near future.

Finally, should the responses of the prototypes corresponding to the model tests

mentioned in the beginning of this study confirm the existence of chaotic motions in

the (noisy) field environments, the analysis and control method presented in this study

can be applied to suppress these motions if desired. Extensions of this study to the

multi-degree-of-freedom physical models and subsequent design of practical

controllers for experimental tests are being examined.
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2.14 LIST OF FIGURES

Figure 1 - A moored system suspended by cables and subject to current and wave

excitation.

Figure 2 - Degree of geometric nonlinearity as a function of mooring angle.

Figure 3 - Frequency response curves subject to a) current and wave excitation (y = 0.5,

'I'
= 10.0, f= 0.01, f1 = 0.1)and b)wave excitation alone (y = 0.01, 4r = 10.0, f0=0.0,

f1=2.0).

Figure 4 - Stability diagrams of the system with linearized excitation for a) current and

wave excitation (y = 0.01, iji = 10.0, 3 = 0.0, f0 = 0.01, f1 = 0.1) and b) wave excitation

alone (y = 0.01, iji = 10.0, 3 = 1.0, f0 = 0.0, f = 2.0).

Figure 5 - Chaotic response of the nonlinear system with parameter values = 0.335,

y = 0.01, ii = 4.0, 3 = 0.0, f0= 0.0, and f1 = 2.0 exhibiting the a) chaotic attractor, b)

Poincaré section, c) Power spectrum and d) time history of the (surge) position.



Figure 6 Schematic of the action of the controller on a point. The control law pushes

the point Z1 towards the stable eigenvector of Z1.

Figure 7 Example of controlling the system about a period-i cycle showing the

Poincaré points versus time before and after control is applied.

Figure 8 Example of controlling the system about a period-3 cycle.

Figure 9 - Effects of increasing noise on the Poincaré portraits.

Figure 10 - Effects of increasing noise on the controller in Figure 7.

Figure ii - Control of noisy chaos when control is applied on 4 control sections and the

noise levels go from 1.4%-5.5%.

Figure 12 - Effects of increasing number of control sections on the increasing amounts

of controllable noise for several control tolerances.
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3.1 Abstract:

An understanding of the rocking response and overturning stability of rigid

blocks is of importance to the preservation of free-standing equipment and

structures placed in the ocean and seismic environments. Previous studies have

indicated a wide spectrum of possible responses under support excitation including

periodic, quasi-periodic and chaotic motions, which may lead to overturning. To

avoid potentially catastrophic chaotic responses, a means of actively controlling the

nonlinear oscillations is presented. Part I of this two-part study presents system

responses to purely deterministic excitations while Part II presents the case where a

low intensity additive random noise component is included in the excitation. The

controller is able to maintain the dynamical system in a periodic oscillatory state of

arbitrary periodicity for prescribed cases in the corresponding chaotic region of the

uncontrolled system. The proposed control methodology applies a force to induce

small perturbations about the nonlinear system trajectory at prescribed times in

order to guide it towards a stable operating state. This is accomplished by creating

a locally linear map about a desired trajectory. Then, a feedback controller is

designed to guide the system trajectory towards the associated stable eigenvector of

the linearized system, ensuring that the trajectory is maintained in a neighborhood

of the desired periodic motion during the interval between sampling. This paper

outlines the proposed method using a simple, standard control algorithm (pole

placement) to emphasize the ease of which control of these highly sensitive,
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nonlinear systems can be maintained as exhibited by an application to the free-

standing rocking blocks. Estimates of the energy required to maintain control of the

rocking motions are given.

'Research Program Leader, U. S. Department of Energy, Albany Research Center, Albany, OR 97321
2Professor, Civil, Construction and Environmental Engineering Dept., Oregon State University, Corvallis, OR 97331.
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3.2 Introduction

Nonlinear and chaotic responses have been identified in models of engineering

systems in the offshore and seismic environments (Thompson 1983 and 1984,

Gottlieb and Yim 1990 and 1991a, Pompei et a! 1998, Jeong, et al 2003, and Lenci

and Stega 2005). In the case that free-standing equipment or structures should be

installed on these offshore and seismic systems, it can be shown that through the

base support excitation, these "rocking blocks" can also be set into highly nonlinear

complex motions (Hogan 1990 and Yim and Lin 1991b). In particular, under

certain periodic (Yim and Lin I 996a) or random (Yim and Lin 1 996b) base

motions, overturning response may occur, causing potentially catastrophic results.

In an effort to avoid this scenario, a means of effectively controlling the rocking

block motions is needed to preserve the integrity of the systems under all modes of

excitations. Moreover, to better emulate the nature of the ocean and seismic

environments and to determine the controller's effectiveness under the stochastic

case, a random (noise) process needs to be incorporated into the excitation model.

In this study, it is assumed that the supporting base of the rigid blocks is either

under going periodic oscillations (Part I) or is periodic with low amplitude, band

limited white noise component (Part II, Yim and Lin 1996a). Under these

conditions, it can be shown that these base motions may cause highly sensitive,

nonlinear (quasi-periodic or chaotic) responses in the free standing rigid blocks.
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Due to the intrinsic characteristics of these types of nonlinear motions (including

topological transitivity and sensitivity to initial conditions), a means of efficiently

achieving the desired control is possible. By applying small forces to induce

perturbations to the nonlinear system response at prescribed intervals, one may

effectively control the nonlinear oscillations.

Control of the rocking motions can be accomplished by applying relatively

small generalized forces, in this case moments, about the rocking edge of the block.

This can be achieved by attaching a small mass at the top of the block and inducing

relative accelerations of the mass via a control mechanism. By creating a locally

linear map of the nonlinear system about a desired trajectory identified as an

unstable periodic cycle, the necessary displacements of the mass can be calculated

to achieve control (Lathrop and Kostelich 1989, Auerbach et al 1987, ott Grebogi

and York 1990, Romeiras et al 1992). This can be performed on a Poincaré section

(Bergé, Pomeau and Vidal 1984) which is a mapping of the continuous dynamical

system to that of a discrete dynamical system of one less degree of freedom.

Because of the nature of these types of nonlinear systems, this mapping preserves

many of the interesting characteristics and dynamic invariants that are indicative of

highly sensitive systems, including chaotic systems. Thus, the unstable periodic

cycles are preserved and their dynamic characteristics maintained. Moreover, the

locally linear map will necessarily contain both stable and unstable eigenvalues

defining the directions for which the continuous dynamical system expands or
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contracts. These eigen-directions are used to design a feedback controller which

ensures that the linearized system has stable eigenvalues. The pole placement

method is employed to ensure the required stability (Franklin, Powell and Emami-

Naeimi 1991). This simple, standard method is chosen to emphasize the ease of

which control of highly nonlinear systems such as the rocking block can be

maintained.

This work follows along the same line as the seminal one proposed by Ott,

Grebogi and York (1990). However, in their work, the assumption was made that a

system parameter is available which can be altered, giving an effective means of

making minor changes to the dynamics of the system. For the rocking block system

such a parameter is not available for control. In this study, the control method is

modified by applying a moment to induce desired perturbations to an observable of

the system, the angular position. It is assumed that an external means of applying

the moment is available and many such mechanical control systems are conceivable

as mentioned above.

This paper introduces a mathematical description of the rocking block system.

Then, an outline of the proposed control methodology is presented and the method

is applied to the rocking object in order to minimize the over turning probability of

the system. In Part II, extensions to the methodology are indicated for the case with

low intensity randomness in the excitation and the resulting controller is applied to
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the system when there is additive noise present. Finally, an estimate of the relative

magnitude of the perturbation energy required to maintain control is given.

3.3 Rocking Response of Rigid Blocks

The system under consideration is

that of a free standing rectangular rigid

body subject to horizontal base

excitation as shown in Figure 1

Considering only cases where the

coefficient of friction is substantial

enough that there will be no slipping

between the rigid body and its base,

the block may move rigidly about one

of the two centers of rotation

Figure 1 - A free standing rigid body
subject to horizontal base excitation.

represented as 0 and 0'. If rocking should occur, it is assumed that the body will

oscillate rigidly about these centers of rotation until toppling occurs or the body

comes to rest again. The governing equations of motion for the rigid body with

positive and negative angular displacement are given by

10 + MgRsin(O,. 6)+ MRagx cos(Ocr 6) 0 6>0 (1 a)
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Io&+MgRsin(Ocr+O)+MRagcos(8r+9)=O 8<0 (ib)

where J, is the moment of inertia about the center of rotation 0 (or 0') M is the

mass of the rigid body, g is the force of gravity, R is the distance from 0 (or 0') to

the center of mass, agx is the base excitation, H and B are the height and width of

the object and Ocr = cof1(H/B) is the critical angle defining the angular position for

which toppling occurs under static conditions.

The transition between rocking motions about 0 and 0' is accompanied by an

instantaneous impact when the angular displacement crosses zero either from the

positive or the negative direction. Associated with the impact is a finite amount of

energy loss which is accounted for by a reduction in the angular velocity of the

object after impact. It is assumed that the angular velocity after impact is related to

the angular velocity before impact through the impact parameter, e, defined by the

following relationship:

O(i)=eO(t), 0e1 (2)

where e is the coefficient of restitution, t is the time just after impact and I is the

time just prior to impact. In this study, the base excitation agx is assumed to be

harmonic with constant amplitude a and single frequency w ((t)=O) or harmonic

with additive noise (ç(t)O).
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agx = a cos(wt + 0) + (t) (3)

Note that there are four sources of nonlinearities present in this system. The

first nonlinearity is the righting moment about the edges which gives rise to the

nonlinear restoring forces as a function of angular displacement, 8. The second is

associated with the coupled parametric excitation. The third is associated with the

energy loss at impact and is represented as a jump discontinuity in the angular

momentum while the fourth is due to the change in centers of rotation resulting in a

transformation from one governing equation to the other.

Many of the nonlinear responses of this type of systems have been identified

and their importance reported in the literature (e.g., Hogan 1989 and 1990, Iyengar

1996, Jeong 2003, Lenci 2005, Lin 1996a, b, Yim 1980, 1991a, b) and hence will

not be repeated here. For this study it is sufficient to identify certain responses to

the base excitation and their effect on the motion of theigid block. In particu1, it

has been shown that this system undergoes responses ranging from periodic, quasi-

periodic, chaotic to overturning.

It is convenient to normalize the angular displacement and angular velocity
c) d)

with respect to the critical angle Ocr for plotting and interpretation of the results as

follows:

09/9cr, e=o/cr (4)
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1 0.1

0.2

Angular Position, 8 8.

- I 0.40
-0.1 -0.05 0 0.05 0,1 -0.1 -0.05 0 0.05 0.1

Angular Position, 0 0.

0.5

0

1 0 1)
Angular Position, 0 0.

Figure 2 - The response of the rigid rocking object subject to base excitation
for the cases a) periodic phase space (A=6.5, w=15.70796, e=O.925), b)
periodic Poincaré section, c) quasi-periodic phase space (A=4.O, co=15.70796,
e1 .0), d) quasi-periodic Poincaré section, e) chaotic phase space (A=4.6,
w=2.7, e=0.5) and f), chaotic Poincaré section.
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This results in the normalized horizontal base excitation amplitude A = agx/(g8cr).

e) I)

Figure 2 shows the phase space portraits and the corresponding Poincaré sections

for some of these various responses. Specifically, Figs.2a & b show the periodic

response, Figs.2c & d the quasi-periodic response and Figs.2e & f the chaotic

response. The Poincaré surface of sections is an alternate way of representing the

responses and is obtained by stroboscopically sampling the time series at 2w/F

intervals and then plotting the points sequentially, i.e., by plotting ®(t) vs.

for F the sampling period. This technique gives a suitable means of viewing the

geometric complexity of the time histories. In this study, it is assumed that the

nonlinear motion observed in Figs.2e & f is deemed undesirable, and means of

rendering these nonlinear oscillatory states periodic are necessary.

3.4 Unstable Periodic Orbits

The numerical simulations together with the analytical results presented in the

literature show that the oscillatory nature of the rocking block system described by

Eqs.(l)-(3) exhibit a range of modes. A means of analyzing the chaotic motion by

using the time series alone has been introduced Auerbach et a! (1987) and Lathrop

and Kostelich (1989). The procedure utilizes the unstable periodic orbits (UPO's)

of a system. Since a chaotic attractor contains a multitude of UPO's of varying

periodicities, much of the nonlinear characteristics can be identified through these
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special cycles. It is well known that UPO's are dense in a chaotic attractor

(Grebogi, Ott and York 1988), and in fact this is a necessary condition for chaos to

exist (Devaney 1987). This fact is exploited in the following discussions.

The characteristic of importance in the use of an UPO is that if the chaotic

system is allowed to evolve long enough, then a trajectory will return arbitrarily

close to a given unstable cycle, arbitrarily often. This is because these cycles are

dense on the attractor and that they are periodic and yet unstable. Thus, if the

system is on a cycle, it will remain on it for all time. However, if there is any

minute deviation from the cycle, then the chaotic trajectory will diverge from this

unstable cycle. Because of the "mixing" property of the chaotic attractor, at some

time later the trajectory will again come arbitrarily close to this UPO.

In other words, suppose that a chaotic time series x(t) is available. Let an

arbitrarily small scalar "distance" c > 0 be given, then at some time t in the time

series x-xtI < c, and the chaotic trajectory has come arbitrarily close to the UPO,

x, of period p. At some time F later x-x+j-I <c and the trajectory has come close

to the UPO again. To identify the unstable cycle of period p, a search through the

data set for all points separated by F time steps that are a distance of c apart is

performed. To ensure that the points obtained by this search correspond to a

particular unstable cycle and not another nearby unstable cycle, not only are the

points that are identified used but also their images under integration (or iteration

for discrete systems). This is done by restricting the points of interest to those with
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iterates of which are within r > c of each other, Ix+ixt+iI< 11. That is, all points

such that < C and x-x+j--I < c are considered and that Ix1x+d< ii to ensure

that only one cycle is included and not several nearby cycles. Figure 3 is a

schematic of this operation. The points which fall within the c-ball and whose

iterates fall within the i-ball are picked for future calculations while the points

outside the i-ball are discarded from future consideration.

In practice, this is

p /
typically performed on a

Poincare section where the
0

continuous flow is mapped to : .
a discrete iterative dynamical A BL

system of one less degree of ZP

freedom Let Z1 be a point on

the Poincaré section and [

suppose Z is an unstable
Figure 3 - Schematic of selection of Poincaré
points corresponding to an IJPO and theperiodic point on the section
corresponding controller action on the locally
linear system.representing the UPO of

period p. Then, the algorithm for calculating the UPO consists of searching the data

set on the section, {Z1}N1=1, for all points that are within e of Z, the set {: IZpZlI <

c}. Once these points have been identified, their corresponding image, or next

iterate, is investigated. The set of points whose images are within n' IZ-Z+I <ri,



for some scalar "distance" ii > e, are considered to correspond to that UPO,

otherwise they correspond to a different UPO and are not further examined.

The last step is to identify the stability characteristics of the UPO, which is

performed by using a least squares procedure to calculate a linear map, A, which

maps Z to Z1+, where Z1 and Z+ correspond to the periodic point Z. This is

accomplished by creating the vectors D = {d1} and E = e1}, where the d's are the

deviations of the points from the UPO under consideration, d1 = Z1 - Z, and the e's

are the deviations of the iterates from the image of the UPO, e = Z+ The

point corresponding to the UPO, Z, is taken as the centroid of points under

consideration.

The linear map A (an n x n matrix, where n is the dimension of the Poincaré

section, usually taken as 2) is calculated by a least squares method that minimizes

the error orthogonal to the approximate solution of the matrix equation IIDA-E112,

which, since D and E are vectors, has solution given by A = mv (DTD) DTE (Strang

1986). The stability characteristics of the UPO are governed by the eigenvalues of

the map A.



3.5 Control of Chaotic Responses

Once a periodic cycle has been selected and the corresponding linear map, A,

calculated, control of the system about this cycle can be maintained by applying any

number of control schemes. Potential controllers that have appeared in the

literature for these types of systems include the pole placement control employed in

Auerbach et a!, the linear quadratic regulator and H control (Hammand et a!

1996), optimal control (Abarbanel et a! 1997), and stochastic control (Fowler

1988). In each case, a state feedback control law is formulated which either places

physical constraints on the system poles or minimizes a predefined cost function for

the system. Figure 4 is a state feedback diagram indicating the control strategy

outlined. For the problem under consideration, the state feedback controller is

designed to apply a small perturbation to the chaotic trajectory about the UPO on

the Poincaré plan. That is, the system is allowed to oscillate chaotically until the

first time the trajectory enters within the ii ball of the chosen UPO. Once within

this ball, the feedback controller applies a small perturbation to the measured signal,

in the direction of the stable eigenvector of the linear map. This action ensures that

upon the next return to the Poincaré section, the trajectory is still within ii of the

UPO. By referring again to Figure 3, the application of the control is clearly

identified in this schematic of the operation.
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Recall that the control is applied only on the Poincaré section in which the point

Z+1 is perturbed toward the stable eigenvector of the UPO while the system is left

untouched otherwise. Because of this discrete application of the control and due to

the fact that the "perturbations" are small in comparison to the amplitude of the

system structural response, this methodology requires very little energy to obtain

the desired system response.

A means
Plant

Input, u*( >Output, x

of finding the = f(x,

magnitude and

direction of the Deterrnimstic

perturbation is

olIcr

obtained by
Figure 4 - State feedback diagram for control of the
nonlinear system.

employing the

pole placement method (Romeiras et al 1992 and DeCarlo 1989), a state feedback

rule devised to render the eigenvalues of the controlled system stable.

Mathematically, the goal of this method is to construct a matrix, called a gain

matrix, which assigns the poles of the controlled system in prescribed positions, i.e.

the spectral assignability problem. In order to solve the general problem of spectral

assignability, the canonical single input case is first considered. Then, a means of

constructing a transformation matrix from a general single-input system to the

canonical single-input system is explored. Next, the general multi-input case



becomes an exercise in transforming the multi-input case into the canonical single

input case. Using the spectral assignability technique identified for the canonical

single input case, a feedback matrix is constructed and the feedback matrix for the

multi-input case is found by taking the appropriate inverse transformations.

The controllable canonical form is a convenient means of representing the linear

dynamical system in question. The controllable canonical form is the system

defined by the state model

=(A-bKT)x

where the matrices A and are given by the special forms

(5)

0 1 0 00
0

0 0 1 00 0

(6)

0 0 0 ... 0 1
0

an anl '1fl2
2 1

Then, by expanding the determinant of A-XI about the bottom row, we see that the

characteristic polynomial 7tA(X) = det{A ?J} is



(2)=(2-2 )(2-2 )...(2-2 )=
I 1

(7)
2 n-1 na +a j2+a2A ++a12 +2

Now, consider the dynamical system (linearized within the e ball) represented

by the state-space system

I = Ax + by (8a)

where x is the response of the system, y is the external forcing, A is a linear map and

b is the input vector. Assume, furthermore, that the pair (A, b) is in controllable

canonical form, Eq.(6). Suppose that the external forcing can be written as y = Yc +

Ye where y describes a control input and Ye is the usual external excitation. Next,

consider a feedback law of the form Yc
KTx, then Eq.(8a) can be rewritten as

x=(AbKT)x+by (8b)

Now, the homogeneous portion of Eq.(8b) determines the linear systems natural

behavior hence, if the external excitation is ignored and the subscript from Yc is

dropped, then a feedback of the form y= KT x can be considered and Eq.(8b) takes

the form



- = +

E:E

(9)

The goal is to find a gain vector KT such that the eigenvalues of the matrix (A - bKT)

are asymptotically stable (i.e. I? < 1 for i1...n). This ensures that the fixed points

of the associated linearized system are stable. The eigenvalues of the matrix (A-

bKT) are called the regulator poles while the problem of placing these poles in an

appropriate spot on the complex plane is called the pole placement problem

(Franklin et a! 1991). The solution to this problem lies in the fact that one is free to

choose KT in an advantageous way, as long as the eigenvalues have the appropriate

characteristics. Notice that the state feedback matrix is

A=A-bKT =

o 0 0 0

o o I 0 0

0 0 0 0

(-â k) (-â - k1)

which has characteristic polynomial

(2)=
(i_hxT)

(3, + k ) + (ã_1 + k_1 )2 + + + k1 )2"

-a +anl2+an2A + +a21 +'

(10)

(11)



and where the Xi's specify the coefficients of the desired characteristic polynomial.

Assigning the spectrum of the characteristic polynomial is equivalent to specifying

the coefficients ui's. This in turn solves the spectral assignability problem for the

system in controllable canonical form.

Now, suppose the pair (A, b) is not in controllable canonical form. Assume that

the system is still a single input system (b = 1) and that the system is controllable,

then a solution to the pole placement problem always exists (Romeiras et a! 1992).

It can be shown that (A, b) is controllable when the n x n controllability matrix, C,

has full rank, for the controllability matrix defined as

= Ab A2b An_1bJ (12)

and where the columns of C are made up of the column vectors b, Ab, A2b, ... A''b.

The system (A, b) can be transformed into controllable canonical form by

introducing the transformation matrix constructed as follows. Let v be the last row

of C' (notice that C' exists by assumption). Define the state transformation matrix

Y such that z = Yx by

vA vA2 vAn_I] (13)
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Then, Y' exists by construction. Applying the state transformation to the original

system yields the transformed system

= YA Y1 + Thy (14)

Define A=YAY' and =Yb, then the pair (A', ) has the controllable canonical form

and the spectral assignability follows as before. Now, should the pair (A, b) not be

completely controllable as assumed, then the part that is not completely controllable

can still be assigned an arbitrary spectrum. The solution here relies on a non-

singular transformation which converts the state model to the Kalman controllable

canonical form. The Kalman controllable canonical form identifies and extracts the

completely controllable modes of the system and then builds a state feedback

controller for this part of the problem. This is mentioned here for completeness,

however, for the current problem, this generalization is not required.

The control law then consists of picking the entries in the gain vector Kr so that

the roots of the characteristic equation are in prescribed positions. Since the X's are

known, this amounts to choosing the â1's in the characteristic polynomial IAbKT(X).

Then, applying the inverse transformation yields the desired control law for the

original system. Notice that the eigenvalues for the original system and the

transformed system are the same since the particular transformation matrix

constructed is a similarity transformation matrix. This procedure is called
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Ackerman's formula for pole placement. For the case where A is 2 x 2, it can be

shown that an optimal choice (in the sense of time to control) for the gain vector is

KT=
[Xe, -XXJ, where X is the unstable eigenvalue and X is the stable eigenvalue

of(Nitsche and Dressier 1992).

One can now formulate an algorithm to control a chaotic system utilizing this

control law on a Poincaré section. First, the linear map, A, of an unstable cycle is

constructed as before and its eigenvalues identified. Then, setting x = Z1 Z and x

= Z1+1 Z in Eq.(9) yields the control law for the discrete UPOs on the Poincaré

section as

Z1 =(A_bKT)(Z1_Z)+Z (15)

Then, calculating the eigenvalues of A, X and X, choosing KT= {, -X)] or some

other equally acceptable poles for control of the nonlinear system values, and then

applying Eq.(15) whenever the trajectory comes within c of Z on the Poincaré

section yields the desired stability characteristics.

Finally, it is necessary to determine the relative distance on the Poincaré section

a trajectory can deviate from Z and still be able to guarantee that the controller will

perform adequately. The answer to this lies in the fact that since it was required

that IZt Z1+j <r by construction then, combining this with Eq.(15) yields
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*
/7

A_bKfl
(16)

Since KT was constructed to render the eigenvalues of the matrix (A bKT) stable,

and (A bKT) exists, this defines an area of width 2 /
I

A b KT about Z for

which the control can be successfully applied.

3.6 Application to Rocking Response

The controller presented above was applied to the rocking response of the rigid

block. Several cases of the nonlinear oscillations are considered with low order

oscillations of primary importance. For this system, we mainly will demonstrate

the control application to the primary resonance case. However, other periodic

responses can be controlled in a similar fashion as shown.

3.6.1 Primary Resonance

Since primary resonance is of importance as previously described, the first

example exhibits the effectiveness of the methodology with respect to this

oscillatory state. By searching the data set seen in Fig.2f for all period-i

oscillations and then calculating a first return map, A, as outlined, the method found

a primary resonance case at Z = [0.5977, -0.68 12]. The first return map is given by



5.3467 1.7973 1
A =1

L- 4.2966 - 0.8651]
(17)

An interesting artifact of this problem is that the stable eigenvector is apparently

strongly attracting while the unstable eigenvector is strongly repelling. The stable

and unstable eigenvalues are given by X=0.8536 and X=3.6279. This artifact is

most evident by studying the Poincaré section, Fig.2f, and by noticing the extent of

the apparent linearity of the chaotic attractor in the region of Z*. This indicates that

the stable and unstable directions can be decoupled from one another, making the

control matrix (AbKT) diagonal. For this case, the control matrix used was

A bKT
r_0251 0 1

0 0.390]
(18)

with regulator poles read directly as pI,2=[-O.25l, 0.390].

Fig.5 plots the results of controlling the chaotic system using the control law

defined by Eq.(15) for Z and with the control matrix given by Eq.(18) to maintain

the period-i oscillation. Fig.5a is a plot of the phase space portrait for the

controlled system. A circle is placed at the point on the phase space where control

is applied for reference. Fig.5b plots the Poincaré points versus time. Notice the

random-like response prior to the time at which control is applied. This arbitrary
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duration of chaotic response

prior to control is due to the i

fact that the system is .

L -1allowed to oscillate in a
-08 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Angular Position.

chaotic fashion until the

trajectory falls within the e- . . .

ball Once there, the

controller is applied at each I

crossing of the Poincaré 0 00 50 200 250 300

plane, maintaining the stable
Figure 5 - Control of a primary resonance case
for the rocking of the free standing equipment, a)oscillations seen in Fig.5. .
the phase space plot and b) the Poincare points
plotted as a function of time.The next example

investigates a different primary resonance case.

3.6.2 Secondary Period-i Oscillation

A second period-i oscillation was found at Z*=[O.0167, -0.645]. Again, for this

case, the controller can be decoupled due to the apparent strong attraction of the

stable eigenvalue. The control matrix used for this example was

r060 1
A_bKT

L o 1.00]
(19)



Fig.6 plots the results of this 2

simulation. The control action
1

allows the block to oscillate

about both centers, however,

for the positive angular

momentum, the oscillation

amplitude is small while for the

negative angular momentum

the amplitude is large.

95

-1 -08 -0.6 -0.4 -02 0 0.2

Angular Position, 8

0 20 40 60 80 100 120 140 160 180 200

Figure 6 - Control of a secondary period-i
3.6.3 Period-9 Oscillation oscillation for the a) phase space portrait and

b) the Poincaré points plotted as a function of

A period-9 oscillation was time.

found at Z*=[O.0457, 0.0550]. Again, by the nature of the position of this point on

the chaotic attractor, the control law can be defined to be diagonal, hence the two

states can be decoupled as before. The control matrix used for this example is

T 1100 0 1
A bK

[
0 0.25J

(20)



Fig.7 plots the results of this
04

simulation. As before, the 02

system is allowed to oscillate

until the trajectory enters the
o
-008 -006 -004 -002 0 002 0.04 0.06 0.08

Angular Position,

control region. Then, the

controller is turned on and the
005

system is locked into the 0 ........................

desired oscillatory mode.
-005

50 100 150 200 250 300 350 400 450 500

3.6.4 Period-13 Oscillation Figure 7 - Control of a period-9 oscillation for
a) the phase space portrait and b) the Poincaré

As a final example, another points plotted as a function of time.

higher order oscillatory state is used to exhibit the effectiveness of the method to

control the chaotic system to arbitrary unstable periodic orbits. Figure 8 shows the

results for this case. Here, a period-13 orbit was identified at Z' = [0.0105, -0.193].

In this case, however, the modes cannot be decoupled and the control matrix is

given by

0.45679 - 0.014211
A bKT

[ 0.36295 0.90379]
(21)
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Fig.8a is the phase space portrait while Fig.8b the Poincaré points corresponding to

the controlled motions. The last two examples show that, higher order trajectories

can be maintained with relatively little extra work.

3.7 Relative Energy to Maintain Control

As is evident from Figure 9, the distance that the controller is required to move

a trajectory on the control plane is small in comparison with the amplitude of

oscillation. Hence, the relative energy exerted in order to maintain control with this

methodology is small in comparison to the excitation moment. Recall that on a

given controi plane, tne

controller is only required to be

operational when a trajectory

intersects a Poincaré plane and
-008 -006 -0.04 -0.02 0 0.02 0.04 006 006

Angular Position, 0

only within the ball of radius c.
0

The maximum distance that a o.o

trajectory can be moved on that 0

-0.05 .

ball is given by c/2, where c is
0o so so ISO 200 250 300 350 400 450 500

the chosen error tolerance for
Figure 8 - Control of a period-13 oscillation

the given problem (for all showing a) the phase space portrait and b) the
Poincaré points as a function of time.
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examples above, it was chosen as c=O.05). Meanwhile, the interval of time for

which control can be instigated is determined by the sampling period of the system

(here T=O.O1), the control action

must be complete within this

interval.

The moment required to

maintain this control can be

calculated as follows: Recall that

the feedback control rule has the

form y = KTx where x is the

distance between a trajectory on

the Poincaré plane and the UPO, x

=Z,-Z. Then,

I0

10

10 20 30 40 50 60 70 80 90 100

Figure 9 Controller action on the
Rocking Block System indicating the
distance a trajectory must be moved in
order to maintain control.

T *
Ymax max{I -K (Z, Z ) }

max{I KT
I

=e(kl2 +k22)

(22)

So, the corresponding mean force is obtained by integrating this over a period,

where the integral is given as
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<F>=jImax '8(rt)dl (23)OH

where c5(r) is the Dirac delta

function with unit area and H is the

height of the rigid object. If these

equations are applied to the system

for the primary resonance case, the

ratio of the mean force, <F,

required to maintain the necessary

stable motions to the force applied

by the external forcing is

<F>/<Magx> 2.13 x iO4. This

indicates that the force necessary to

achieve and maintain control of the

systems unstable oscillations, even
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in the event of noise, is small in
Figure 10 - Effects of band limited white noise to the

comparison to the force exerted by control system for period-i control as seen in the
Poincaré points. Here, the signal to noise ratio is

the external excitation. decreased from a) SNR=27.75, b) SNR6.93, c)
SNR=5.54 and d) SNR=4.29 where the controller is
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3.8 Control Under Noisy Excitation

The benefit of using small perturbations to control a deterministic nonlinear

dynamical system within the chaotic operating regime has been presented above.

However, for a typical real physical system such as the rocking of a rigid block,

there will be noise added to the system through a random component to the

excitation as well as measurement errors. Additive noise has the effect of

destabilizing the chaotic attractor.

Figure 10 plots the effects of noise on the controller for one of the primary

resonance cases presented. Notice that for small amounts of noise, the controller

appears to behave normally. However, as the noise intensity is increased, the

controller looses the ability to maintain achieve control, and even then there may be

periods where control is achieved in between periods where control can not be

maintained. Finally, with even slight amounts of noise, the system completely

looses the ability to track an unstable periodic orbit and all control is lost. This

happens in this case, even though the system has not yet toppled. Part II of this

study will address means of increasing the controllability under increasing noise

intensities.
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3.9 Concluding Remarks

This paper outlines a method of controlling the potentially catastrophic,

unstable, highly nonlinear oscillations of free-standing equipment or structures

placed in offshore and seismic environments. The proposed method is designed to

avoid such dangerous situations and is developed through a modification of the

OGY method in which a system parameter must be available for adjustment in

order to change the dynamics of the system. Here, a physical device is placed on

the system which applies a moment to the nonlinear system in order to perturb the

system trajectory towards a stable eigenvector of the linearized first return map. In

effect, this modification adjusts an observable of the system, the angular position or

angular velocity, in order to maintain control.

The method utilizes the unstable characteristics of the chaotic attractor to an

advantage. By observing the fact that there exists a multitude of unstable, periodic

orbits, one can utilize the locally linear dynamics to build a feedback control law

capable of rendering the nonlinear oscillations periodic. An outline of the

methodology is presented with several examples pertaining to the rigid rocking

block system. These examples clearly demonstrated the successful control of the

highly nonlinear complex responses and the robustness of the methodology,

reducing the complex motions to selected desirable periodic motions through the
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use of a simple standard control technique (pole placement). The force required to

maintain control is also investigated. It is found that through the discrete

application of the controller, the ratio of the force applied by the controller to the

force of the external excitation is small.

In a real ocean or seismic environment, noise will exist in the system, whether

through a random component of the excitation or through measurement error. It is

expected that this may cause problems with the controller. Methods of decreasing

the effects of the noise are available. These methods include filtering and stochastic

projection, both of which try to reconstruct the deterministic nonlinear dynamics

from the noisy data. However, in the case that the noise level is relatively small

compared to the forcing amplitude, it is expected that the proposed control

methodology will be sufficiently robust against these disturbances. In Part II, a

simple modification to the controller is developed in order to increase the

effectiveness of the control in the presence of a decreasing signal to noise ratio

(increasing noise intensity). It is shown that this modification is acceptable for low

noise intensities. In order to increase the controllability, stochastic filtering

techniques are investigated in Part II as well.

Finally, although the proposed methodology utilizes linear control theory,

highly complex, nonlinear oscillations can be controlled in these systems. This is

true because the method utilizes the systems sensitivity and topological transitivity

to an advantage. Because a chaotic attractor has a multitude of unstable, periodic
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cycles, any particular cycle can be used for control. Since the controller applies

small perturbations to the system trajectory, on the scale of several orders of

magnitude less then the forcing amplitude, little energy is required in the

implementation. More advance control techniques, such as optimal control, etc.,

can be applied to achieve gains in cost or energy saving. Moreover, the

methodology is equally applicable to many offshore and land-based structural

systems where there is a potential for highly nonlinear and possibly chaotic

responses.
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4.1 Abstract

Complex sensitive motions have been observed in ocean mooring systems

consisting of nonlinear mooring geometries. These physical systems can be modeled

as a system of first order nonlinear ordinary differential equations, taking into account

geometric nonlinearities in the restoring force, quadratic viscous drag and harmonic

excitation. This study examines the controllability of these systems utilizing an

embedded approach to noise filtering and online controllers. The system is controlled

using small perturbations about a selected unstable cycle and control is instigated for

periodic cycles of varying periodicities. The controller, when applied to the system

with additive random noise in the excitation has marginal success. However, the

addition of an Iterated Kalman Filter applied to the system increases the regime under

which the controller behaves under the influence of noise. Because the Kalman Filter

is applied about locally linear trajectories, the feedback of the nonlinearities through

the filter has little effect on the overall filtering system.
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4.2 Introduction

Sensitive nonlinear responses, including chaotic motions, have been predicted in

a mass moored in a fluid medium subject to wave excitations and which is

characterized by a large geometric nonlinearity in the restoring force and viscous drag

excitation. These systems include sonars, remote sensors and data collection devices

deployed in the ocean environment and which are of interest to the U. S. Navy and the

U. S. Department of Energy. This class of fluid-structure interaction problems contain

highly nonlinear drag and mooring effects. The overall effects of the nonlinear fluid

loads on the structure can be approximated in terms of an added inertia and a nonlinear

coupling of the Morison

form."2 The nonlinear

mooring resistance force can

be approximated by a low

order polynomial and hence

the resulting mathematical
F(

models of these systems are

reducible to a low degree

b b

system of ordinary differential Figure 1 - Schematic of a moored structure subject
to current and wave excitation

equations. This order of



approximation is often acceptable for preliminary analysis and design of the types of

fluid-structure systems considered.

Preliminary analysis of expenmental data from such a system as modeled here has

demonstrated the likely presence of sensitive and chaotic motions in noisy

environments.3 These sensitive motions are not considered in the fluid-structure

system design. Should the unpredictability of the sensitive behavior observed in these

systems be deemed undesirable, methods of analyzing the system response to harmonic

and noisy excitations and subsequent control of the systems are needed. By

representing the desirable states of motion of the nonlinearresponse of the system with

unstable periodic orbits (UPOs), a consistent means of characterizing the strange

attractors can be obtained.4 Thus, the system can be characterized by such topological

invariants as the entropy or the Lyapunov spectrum.5 The analysis and control

procedure presented in this study utilizes this representation of the sensitive response

to its advantage.

Figure 1 is a schematic of a system moored by cables in a fluid medium. The fluid

itself is undergoing motion and an associated excitation force is induced which can be

described by a forcing function of the form F(*,'i,t), where * = dx/dt and i = d*/dt.

With restraints for vertical and rotational motion, this system is modeled as a single-

degree-of-freedom (SDOF) system for the surge, x) The nonlinear, second order,



ordinary differential equation of motion is derived by using the fact that the system is

hydrodynamically damped with external forcing. The forcing excitation is modeled as

the sum of a constant current and an oscillatory wave term. Because the cables are thin

and the dimension of the mass is small compared to the orbital motions of the wave

particles, the fluid-structure interaction can be modeled accurately by use of the small-

body theory which assumes that the presence of the structure does not influence the

wave field. This implies that the waves flowing past the structure are not affected by

the interaction with the structure.

The mooring angle produces a geometric nonlinearity in the restoring force that can

become highly nonlinear for b =0, a two-point system, or nearly linear for b> d for the

four-point system. The equations of motion are taken from the prototypical form for

second order nonlinear differentials:

m + c X + R(X) = F(X,X,t) (1)

where the nonlinearities are contained in the restoring force R(X) and the excitation

force F(X,i,t). The restoring force describes the geometric configuration of the

mooring lines and assumes linear elastic behavior so that the nonlinearity is strictly due

to the geometric configuration of the system. The restoring force has the form
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R(X) = k + b sgn(X)) ;

I id2+b2
1 (2)

d2 + (X + b sgn ()2

and where sgn(X) is the signum function defined by

+1 for X > 0

sgn(X)= OforX=O
-i for X < 0

(3)

The excitation force is a combination of viscous drag and inertial components based

upon the interactions between the moored structure and the fluid medium. This type

of excitation force is found to be modeled by

F(JçX,t) =
- (4)

(u-))lu-)j +t(ü-)+pVi

which couples the fluid motion and the structure motion through the inertial interaction

between the two constituents in motion, the moored structure and the fluid medium.

The system parameters are identified as the system mass m, damping c, and line

stiffness k = 2EAIf(d2+b2) and where EA is the elastic cable force. The line lengths

b and d are observed in Figure 1 while A and jx are the hydrodynamic viscous drag and

added mass, p is the fluid density and Vis the displaced volume of fluid. u = u(t) is

the fluid particle velocity under current and wave excitation and is given by u(t) = u0

+ u1 sin(wt) and u1 = u1(a,w), where a and tO are the wave amplitude and frequency
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respectively.

Assuming that the structure does not alter the fluid flow, that is, that the wave field

does not change due to the motions of the moored structure, employing the small body

theory, and then employing an equivalent linearization process on the quadratic drag

force and finally normalizing, then, an autonomous set of first order nonlinear

differential equations are obtained which are given by:

x=y
= -R(x) .y y + F(x,y,O)

where x = X/d.

(5)

Under the equivalent linearization, the nonlinearity is seen to be strictly due to the

geometric configuration of the system which is manifested in the restoring force.

Hence, the restoring force describes the geometric configuration of the mooring lines,

assuming linear elastic behavior of the mooring lines. The restoring force has the form

R(x) = 'I, (x + f3 sgn(x)) *
1 1

/'p2 1i+(r+psgn(x))2
(6)

Although the excitation force is a combination of viscous drag and inertial

components based upon the interactions between the moored structure and the fluid

medium, through the normalization process, the excitation force is found to have the

form:



F(x,y,O) = f sin(0)

I 4

(7)

where the viscous drag and inertial components are combined into the current and

amplitude parameters. The appropriate dimensionless constants are defined by

k b c+A1J= =- ; .y= (8)m+ d m+i

The constantsj andf depend upon the hydrodynamic characteristics of the system and

are given by

A u0
2(1 +C)2J_C(±)2f= "=m+i

where Ca and Cdl are the inertial drag coefficient and the linearized drag coefficients,

S is the projected drag area, and p is the water mass density. The associated wave

frequency is obtained through the relation 0 = cot where t is time.

Although at first glance this system appears to be significantlymore complex than

the simple nonlinear systems presented in standard texts it turns out that the fluid-

structure system possesses nonlinear response properties very similar to those found

in classic nonlinear systems such as the Duffing system.6



4.3 Mooring System Response

As has been mentioned, a complete analysis of this system appears in the literatur&

2.7-8 and hence only some of the important results for the purposes of this paper are

repeated. This system includes at least three types of dynamic response based upon

wave and current excitation, these being periodic, quasi-periodic and chaotic responses.

A fourth state exists, when no motion is observed. This implies that the wave and

current excitations are not of a significant magnitude to transfer enough energy to the

mooring system in order to instigate motion. The no-motion state is uninteresting and

won't be studied further. In fact, for this discussion, only the chaotic response of the

system is of importance and therefore the other states will not be included.

Highly nonlinear (chaotic) oscillations are those deterministic oscillations which

are characterized by a random-like, unpredictable response and yet includes underlying

order and structure. The unpredictability stems from the sensitivity to initial

conditions. That is, two nearly identical initial conditions give rise to vastly different

outcomes, they become macroscopically separated after a finite amount of time.9

However, this alone is not enough to define sensitive (chaotic) response. A sensitive

system must also possess an element of regularity as well as it must be

indecomposable. The regularity usually stems from the so-called unstable periodic

orbits. That is, two infinitesimally close points will come arbitrarily close to one

another after a predefined period of time.4 However, because they are unstable, the



periodicity is lost under integration. The third element is the notion of

indecomposability. Most easily thought of as the fact that a point within the chaotic

system will enter within an arbitrarily small neighborhood of any other point at some

time under the integration.9 Putting these three conditions together, one can see that

chaos posses an element of unpredictability (sensitivity to initial conditions), regularity

(unstable periodic points) and the fact that it is the smallest set which contains these

necessary conditions (indecomposability).9 Notice that these chaotic attractors are

stable in the sense that as t -, all trajectories of the system tend towards them.

Figure 2 plots one of the many possible highly nonlinear (chaotic) responses of the

mooring system shown. This example is given for the system parameter values

0.335, = 0.01, ij = 4.0, f3 = O.O,f0= 0.0, andf1 = 2.0. Figures 2a -d plot the a)

Poincaré section, b) phase space portrait, c) frequency spectrum and d) a typical time

series, respectively, of the chaotic response. Notice that through only small

changes in the system parameters, change fundamentally different response

characteristics are obtained, whether it leads to afrom periodic to chaotic dynamicsor

from one strange attractor to another. The presence of an abundance of these complex

harmonic responses predicted by associated analytical techniques and verified by

numerical results indicate that their influence on extreme and fatigue designs of the

fluid-structure interaction systems may need to be considered in the future.
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Figure 2 Chaotic response of the mooring system showing a) the phase space portrait, b)
the period 3 Poincaré section, c) the frequency spectrum and d) a time series plot.

4.4 Feedback Control of Chaotic Systems

This section introduces the notion of feedback control as applied to sensitive

nonlinear systems. Control of chaos has been a topic of wide research since Ott,

Grebogi and Yorke1° introduced a method, now called OGY control, in 1990. This

method utilizes periodic pulses to direct a trajectory towards the stable eigenvector of



a linearized model of
Plant

I > Output, xInput, u
the chaotic system. X = tx, u)1

Figure 3 is a

I
Deterministic

schematic of a general Controller

feedback controller. Figure 3 - Schematic of feedback control of a general plant
represented as a set of differential equations

The input is the system

excitation, variables or parameters which define the system and set it into oscillation.

The output is the result of the plant dynamics and any external adjustments that can be

made. These external adjustments can be via control or through some random

component. For now, we will consider only the purely deterministic case. The plant

is a set of relations, usually differential equations, which relate the output to the input.

The feedback box is a set of relations which tell how the system should be adjusted in

order to maintain a certain operational state of the plant based upon known

measurements.

The goal of the feedback control is to render the system dynamics into a known,

stable operating mode. This can be accomplished by any of a number of methods and

control theory is a rich field of study. Here, the pole placement algorithm is

considered in order to place the unstable eigenvalues (poles) of the uncontrolled system

within the unit circle on the complex plane, ensuring that the eigenvalues of the

controlled system are stable and hence the dynamics are well behaved. This technique

was devised for linear systems, however. But, because of the nature of the sensitive
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systems considered, there are instances under which this methodology is useful. Recall

that there is a set of unstable periodic orbits embedded within any given strange

attractor. These unstable periodic orbits can, in fact, be modeled by a linear set of

equations and hence the linear pole placement method is applicable under these

conditions.

In order to describe the nonlinear dynamics by a linear set of equations, a useful

tool called Poincaré Sections must be introduced. Poincaré Sections are obtained by

stroboscopically sampling the time series at regular intervals and then plotting one

point against the previous. This has the effect of decreasing the dimension of the

problem by one dimension. Moreover, it has the effect of rendering the continuous

time dynamical system into a discrete time one, a feature that becomes useful for the

application of control. Yet, all of the nonlinear dynamics are maintained in the

reduced system. From this, the unstable periodic orbits of all orders can be identified.

A linear map of a given unstable periodic orbit is constructed and this map used as the

basis for the control algorithm. Because the map is unstable, it will have at least one

eigenvalue greater than unity.

Once a suitable set of linear equations have been obtained, the Pole Placement

technique can then be employed in order to render the unstable system stable."

EquationlO is the feedback control law on a Poincaré Section where Z is the centroid

of the points under consideration on the Poincaré Section, A is the linear map created

about Z and KT is the feedback law obtained through Pole Placement:



Z1=(A - bKT)1 - z) + z (10)

4.5 Applications of Feedback Control

The algorithm to control the chaotic dynamics of the systems is to first obtain

enough Poincaré points to be able to characterize an unstable periodic orbit, typically

a minimum of 20 points. Once the unstable orbit is identified, a linear map is obtained

by a least-squares minimization of the matrix equation involving the points near the

UPO and their iterates. Given this map, a feedback law is postulated that places the

control poles in a stable operating regime. Finally, the system is allowed to oscillate

until the trajectory enters within ri of the UPO. At this time, control is applied to

produce the desired periodic orbit.

This algorithm is successful in maintaining stable, harmonic oscillations of the

mooring system under deterministic situations. The next section presents the results

of the application of this control algorithm to the mooring system for primary

resonance aswell as a number of sub-harmonic resonance cases. The following section

calculates a bound on the amount of energy required to achieve and maintain this

control.

In the physical environment, there will be noise added to the system. Whether this

noise is a random component to the excitation or strictly through measurement error,

the state of the system may not be well characterized. The addition of noise is expected
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to present problems for the deterministic controller. The problems associated with

additive noise in the mooring system are then outlined. These problems are addressed

and a means to increase the controllability under the influence of a random component

in the excitation is presented. Finally, the effects of the noise on the mooring system

and the application of the new control methodology is presented. Estimates on the

magnitude of noise under which the deterministic OGY controller is still able to

function appropriately are given as well.

4.6 The Deterministic Mooring System

In this section, the controller outlined above is applied to the mooring system.

Several cases are presented to indicate the wide variety of oscillatory states that are

obtainable with this method. In each case, consider the chaotic oscillations of

Equations (5) -(7) for the parameter values given as before (o=O.335, y=O.Ol, iti=4.O,

3=O.O, f0=O.O, and f1=2.0). In order to investigate the structure of the chaotic attractor,

the Poincaré section (Figure 2b), the probability density of the attractor is computed to

identify regions of high probability that an unstable periodic orbit (UPO) will be found.

The probability density gives a starting point for the search for UPOs and also yields

a measure of the stability of the chaotic attractor under the influence of noise."
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4.6.1 Primary Resonance Control

A search was done on the Poincaré data to obtain all points that were near a period-

1 orbit. This is done by comparing all points Z1 that are close and whose next iterate

Z11 are also close (where the Z's are taken by stroboscopically sampling the position,

x). Then, a UPO of period-i is estimated as the mean of the set of points found to

correspond to this set. Utilizing this method on the system structural response data, a

UPO of period-i was found at the values Z = [x, *]T where x -0.2623 and * -

0.0677. A linear map is constructed which maps the points near the UPO Z* toward

Zt along the direction of the stable eigenvector. In this case the linear map is given by

14746 -03997
A=

1.4692 -0.4450
(11)

which has a practically neutrally stable eigenvalue ? = 0.9970 and a stable eigenvalue

= - 0.1906. If the feedback control is applied only to the position x, this gives

bT [1 0] (12)

Choosing the gain vector KT [?, yields the control poles at p12 = {-0.295 1,

0.1044]. Thus, each time the system trajectory crosses the Poincaré section near Z the

controller affects this point by applying the control law, Equation (10), ensuring that

the trajectory returns near the point Z on the next return to the Poincaré section. The
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results of this application are shown in Figure 4. Figure 4a is a plot of the Poincaré

points versus time exhibiting the controlled periodic oscillation after an arbitrary

duration of chaotic oscillations while Figure 4b is the corresponding oscillatory state

in phase space.

The average transient length expected before being able to apply the controller is

computed to be <t> 48 iterates (returns to the Poincaré map) for the case outlined."

Observe that, despite the complexity of the dynamics between points in time where

control is applied, the method produces a desired periodic motion through small

adjustments.

4.6.2 1/2 Sub-Harmonic Control

Again, a search was done on the Poincaré data to obtain all points that were near

a period-2 orbit. A UPO of period-2 was found at the values Z = [x, *]T where x =

0.3301 and * = -0.1884. A linear map is constructed as outlined and, in this case is

given by

0.8793 0.2766

0.4553 -0.0729 (13)

which has an unstable eigenvalue = 1.0927 and a stable eigenvalue A -0.0631.

If the feedback control is applied to the position as in the previous case, and choosing

the gain vector KT = [?, -A?] yields the regulator poles at P,,2 [-0.03 16+0.7194 i,



124

-0.0316-0.7194 i ], which have magnitude 0.5 186. Each time the system trajectory

crosses the Poincaré section near Z the controller, Equation (10) is applied ensuring

that the trajectory returns near the point on the next return to the Poincaré section.

The results of this simulation are shown in Figure 4. Figure 4c is a plot of the

Poincaré points versus time and Figure 4d the corresponding phase space portrait of the

controlled system.

4.6.3 1/3 Sub-Harmonic Control

To further demonstrate the effectiveness of this strategy, a higher order periodicity

is identified and the controller is again applied, in this case a period-3 orbit. A period-3

orbit was identified at the point = [x, *111 for x - 0.3609 and * = 0.0359. The linear

map obtained for this case is given by

0.9904 -0.113

-0.097 -0.145
(14)

which has a neutrally stable and a stable eigenvalues A = 1.000 and ? = - 0.1544,

respectively. The controller poles are placed at P1,2 = [- 0.6177, 0.2068] and the

controller is again applied to initiate control each time the system trajectory intersects

the Poincaré section near the UPO at Z with period 3. Figure 4e-f plots the results of

the period-3 control.
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Figure 4 - Control of the ocean mooring system, a-b) primary resonance, c-d) V2 sub-
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4.7 Relative Energy to Maintain Control

The magnitude of the instantaneous displacement a trajectory undergoes under the

action of the controller is small by construction of the algorithm, as it is for the

instantaneous change in the velocity as well. Therefore, the relative energy exerted in

order to maintain control with this methodology is small in comparison to the

excitation force. Recall that on a given control plane, the controller is only required

to be operational when a trajectory intersects a Poincaré plane and only within the ball

of radius i. The maximum distance that a trajectory can be moved on that ball is given

by q/2, where r is the chosen error tolerance for the given problem (for all examples

above, it was chosen as i = 0.05). Meanwhile, the interval of time for which control

can be instigated is determined by the sampling period of the system, the control action

must be completed within this interval.

The energy imparted to the system by the controller during a Poincaré "interval"

in moving the trajectory towards the stable eigenvector from it's current position is

obtained through an investigation of the equilibrium equations of motion during the

change in position and velocity. The (work) energy imparted to the system to change

the system position is given by u &c, where u is the control input and zx is the change

in position. Recall that the equilibrium equations can be written as
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j + yx + R(x) F(0) = ô(t-T) u(r)

where ô(t-T) indicates that u(t) is applied only on the Poincaré plane. Then,

substituting the instantaneous change x, into Equation (15) and rearranging and

collecting terms the following term is obtained:

Lx
u(T,) = - (1 + y&) + LR(x) LF(0) (16)

where the approximation ii/it is used. Here, x, Li and Lt are all known

values as well as the system parameters. So, the power required to instigate a

movement of Lx is obtained by

Ix u(T,)I
17)Pwr=-I=I I

tI I 4t
I

Similarly, the energy imparted to adjust the momentum is given by M where

M = m + t for m the system mass and .i the added mass (the mass of the displaced

volume of fluid). In this case, the normalized equations of motion indicate that M =

1 and we have the total power required to instigate a motion in position and velocity

to obtain control on a Poincaré plane as



1 2.

x u(T) 2

Pwr= + 18

For the period-i case, the power required to maintain instantaneous control of the

system on the Poincaré plane is PwrperIQdI = 0.0025 per cycle in dimensionless units.

The mean power input to the system in order to instigate the nonlinear motions in the

first place is give by

Pwr, F(s) di (19)

and is calculated to be Pwr 1.0739 per cycle. This argument indicates that the

power input required by the controller is several orders of magnitude less then the

power required to drive the system, indicating that control can be achieved with little

overhead to the overall design of the system.

4.8 Effects of Additive Noise

The benefit of using small perturbations to control a deterministic nonlinear

dynamical system within the chaotic operating regime has been presented above.

However, for a typical, real physical system such as a moored fluid-structure system,

there will be noise added to the system through measurement errors as well as a

random component in the excitation. Additive noise has the effect of destabilizing the
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chaotic attractor.

Here, the noise energy content is characterized by the signal-to-noise ratio (SNR)

defined as log10 (P/P) where P is the power of the noise free signal and P, is the

power of the noise and where the power is defined by

T

p = ! t x(t)2 di
Ti

0

(20)

A simple modification to the control scheme can dramatically increase the

controllability of the system. A series of Poincaré sections about the chaotic attractor

can be constructed by stroboscopically sampling every 2rc/rF, where r is the number

of sections desired. This yields r separate controllers evenly distributed throughout the

cycle as exhibited by Figure 5, thus decreasing the long term effects of the noise with

respect to an individual controller.'2 By applying the above control scheme on each

Poincaré section, the UPO can be targeted from one section to the next. If these

sections are selected appropriately, then the effects of the noise can be minimized.
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/

Figure 5 - Multi-plane control is achieved by constructing r separate control planes
distributed evenly throughout phase space as exhibited here for r = 8 for the Mooring
System.
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0.2 02 , .:

Figure 6 - Effects of noise on the chaotic mooring system attractor as seen through the
Poincaré section of the mooring system for a SNR of (a) 2.42, (b) 2.07, (c) 1.81 and (d)
1.48.

4.9 The Stochastic Mooring System

Figure 6 shows the Poincaré map of the noisy chaotic response obtained by adding

(band-limited) white noise of finite variance to the excitation term in the deterministic

case as the noise intensity increases (hence the SNR decreases) from a SNR of 2.42

(Figure 6a) to 1.48 (Figure 6d). An examination of the corresponding probability

density for this case indicates that destablization of the sensitive dynamics manifests
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itself as an overall increase in the number of orbits which appear to be UPOs, but in

fact are not."
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Figure 7- Effects of additive noise on mooring system control for the period-I cycle and
for the SNR of(a) 2.42, (b) 2.07, (c) 1.81 and (d) 1.48.

Figure 7 plots results of the addition of the noise to the period-i controlled system

(Figure 4a-b). As the noise intensity is increased and the corresponding SNR decreases

from 2.42 to 1.48 there is a corresponding destablization of the system dynamics as

well as the controller and a loss of control is realized. Observe that, as the noise level

is increased, the system goes from being completely controlled, to a mode where the

controller appears to be effective only for limited durations finally to the point where



the effects of noise overpowers the influence of the controller.
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If the controller is modified to operate on multiple planes per cycle, it is expected

that control will be maintained for an increasing intensity of noise. Figure 8 shows the

results of the period-I example with noise and operating under control on 8 sections,

where each section has an associated linear reconstruction and controller created as

outlined.

The number of control sections verses the amount of noise that the system

controller is able to handle for this case is shown in Figure 9. Here, two levels of
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control influence, i.e. two different values of (0.05 and 0.1), are reported. It is

assumed that the system is fully controlled if it can be controlled for 100 Poincaré

points (or about 85,000 time series data points). This analysis indicates an

approximately linear relationship between the controllable level of the energy of the

noise versus the number of sections required for complete control for this system.

5

a)4

003
ci
U)

0Z2

1

0
0 1 2 3 4 5 6 7 8

Number of Control Planes, r

Figure 9 - Effects of the number of control planes used versus the noise level for the
mooring system.



4.10 Estimation and Stochastic Filtering

The previous sections introduced the idea ofcontrolling a nonlinear, chaotic system

and applied this technique to the mooring system. The control system was then tested

and consequently modified in the case where additive noise is present. The extension

of the control algorithm was based on the rate at which reconstructed Poincaré Planes

were constructed and then a linear controller was built on each of these planes. In this

way, moderate amounts of noise can be handled. In order to increase the effectiveness

of the control system in the presence of other then moderate levels of noise, the

Kalman-Bucy Filter is considered. This section gives a brief introduction to the

Kalman-Bucy Filter and several variants as they apply to nonlinear systems.

4.11 The Kalman-Bucy Filter

The Kalman Filter addresses the general problem of estimating the state of a first

order, discrete time system that can be represented as a system of linear difference

equations. (For the purposes here, it suffices to consider only the discrete time Kalman

Filter.) Consider the system of equations

with the measurement equation

= Axk + Buk + Wk
(21)

Zk = Hx + v (22)



where Xk EJV' is the state variable, A is an n x n matrix of state coefficients relating the

state at time k to the state at time k+l in the absence of either a driving force or process

noise. Uk E is the vector of control inputs while B is an n x 1 matrix that relates the

control inputs to the state. Wk represents the process noise. Similarly, Zk EJ1m is the

measurement, H is an m x n measurement matrix which relates the state to the

measurement and
k is the measurement noise.

The process and measurement noise are assumed to be white noise with normal

probability distributions given by

p(w) = N(O,Q) (23)

p(v) = N(O,R) (24)

and are assumed to be independent of one another. In practice, the noise covariance

Q is either determined on some basis of intuition, or it us guessed. Similarly, the

measurement covariance, R, is provided by a signal processing algorithm or is again

guessed. And, in general, the noise levels are determined independently, hence there

are no correlations between the two noise processes. The details of the development

of the Kalman Filter and the Iterated Kalman Filter as used here can be found in King."

4.12 Stochastic Control of Chaotic Systems

The Kalman Filter data processing algorithm and it's variants for nonlinear

systems, the Extended Kalman Filter and the Iterated Kalman Filter, have been



successfully applied to an assortment of nonlinear and chaotic systems, both for

filtering as well as control purposes.'3 The Kalman Filter has also been applied in

order to obtain a reference trajectory for control purposes, in this case, the Extended

Kalman Filter was exploited.'4

For the purposes here, we apply the Kalman Filter for noise reduction and then

utilize the previous control method previously defined in order to bring the response

of the system to a stable, periodic orbit. Of interest is the extent to which the Kalman

Filter can be applied under the presence of increasing noise levels while still being able

to maintain system dynamics and control. That is, it is expected that the Kalman Filter

will successfully reduce noise levels in the systems as exhibited by the previous work,

however, as the noise intensity increases, how well does the Kalman Filter perform?

The Iterated Kalman Filter is utilized since it is generally believed that the standard

Kalman Filter cannot successfully filter the data except under special

Because of it's increased potential for convergence and robustness, the IKF becomes

the ideal method of

ensuring stable

filtering to the

fiduciary trajectory,

which is then used

for control purposes.

= f(x, u) SDOFi,
1¼

LH Deterministic
-1 Controller

State Estimator
(Kalman Filter,
EKForF-P)

Figure 10 - Kalman Filter approach to controller the discrete time
Figure 10 is a nonlinear system.



diagram of the filtering and control process. The nonlinear system output at each time

step is put through the Kalman Filter. The estimate of the state is then used in the

control algorithm to maintain stability. Recall that the system is allowed to oscillate

until the trajectory enters within the c-ball at which time the control is applied. Also

recall that this is performed on a Poincaré plane and hence, the time step indicated is

that discrete time between planes. However, this can be relaxed so that the Kalman

Filter is applied at each numerical integration time step and the control applied only on

a Poincaré plane.

Recall the nonlinear ordinary differential equations governing the evolution of the

system response of the mooring system, Eqs. (5)-(7) and, where w1(t) and w2(t) are

noise components added to the position and velocity respectively. It is assumed that

the frequency of excitation is known and that the noise is additive to the position and

velocity alone. By "discrete mooring system," it is meant that all control actions are

taken on the Poincaré plane. However, as previously indicated, the IKF is applied at

each numerical integration. Thus, the linearization procedure inherent in the IKF is

applied locally at each step and the system trajectory smoothed, bringing the state back

to the intended fiducial trajectory.

Using the same paramaters as before, the chaotic (noise free) system response for

these parameter values is seen in Figure 2a-2d. Meanwhile, the noisy chaotic response

is exhibited in Figure 8, where the Poincaré section becomes "cloudy" under the

addition of noise. As is evident in Figure 9, the addition of increased noise renders the
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system uncontrollable with only small amounts of noise, even as the number of control

planes is increased. For this reason, the Kalman Filter is applied in order to investigate

the ability for the filter to reduce the effects of the noise, stochastically, for increased

prediction of the current state and consequently to produce a stable, robust controller.

The implementation of the IKF introduces several parameters for which there is

some control over. First, the number of Gauss-Newton iterations is predetermined.

The implementation here applies a set number of iterations for the IKF update scheme

as opposed to monitoring the difference between succeeding filtered points. Let Mbe

the number of Gauss-Newton iterations. It should be apparent that if M = 0, then the

IKF reduces to the Extended Kalman Filter. The number, N, of measurement points

used in the calculations can be set as well. This is the number of time measurements

that will be used in the smoothing operation.

For the Mooring System, the following equations define the filter inputs:

f1(x1, x2, x3) = x2

f2(x1, x2, x3) =

f3(x1, x2, x3) = ()

I \
-yx2-f1 sin (x3)

+

where the Jacobian is given by (where ij1,2,3)

o i o
1

aJ
1 -Y -fi cos (X3)

I 2\3t2I I1 +xj )

0 0 1 j

(25)

(26)
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The measurement function, h, is given by

11 0 011xih(x)=Hx_{0
1 oJ[yj (27)

where, again, v1(t) and v2(t) are white, Gaussian, uncorrelated measurement noise

variables. For the application here, it is sufficient to define the measurement functions

as linear functions of the state variables. That is, we allow

and

h1(x, y, t) = x (28)

h2(x, y, t) = y (29)

so that the "linearized" measurement equations are, simply

z1 h1(x, y, t) v1(t)

z2 h2(x, y, t) v2(t)

(30)

Given this representation of the state and measurement equations for the mooring

system, and given the parameter values cited previously, the Iterated Kalman Filter can

now be applied. Figure 11 is a plot of the Poincaré section for the noisy mooring

system and the subsequent application of the Iterated Kalman Filter. Here, the noise

magnitudes for the separate measurement and state noise variables are 1w1 I = 0.05, 1w2
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= 0.05,
1v11 = 0.01, 1v21 = 0.01, and the

noise magnitude for the initial

conditions are 0.01 respectively.

Four Gauss-Newton iterations are

used while only two measurement

points are utilized in the filter

process. Figure 1 la is the noiseless

system response as seen on the

Poincaré section while Figure 1 lb is

the noisy response. Figure 1 ic is the

result of applying the Iterated Kalman

Filter to the noisy system. Figure 12

plots three of the period-i orbits of

the system and their iterates for the

4
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original dynamical system and the Figure 11 - Application of the IKF to the
nonlinear mooring system.

associated orbits when noise is

applied and then filtered with the IKF. Here, the solid circles are the points associated

with the unstable periodic orbit of the noise free system while the lightly colored circles

are the iterates. The solid triangles represent the unstable periodic orbits after the

filtering process and the lightly filled triangles are the iterates in this case.

Notice that the magnitude of the difference between the filtered and original
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dynamical system is minimized to such an extent that it is enough to achieve the

desired control objective with only a single control plane, in which case, the unstable

periodic orbit (the associated dynamic invariant of interest) is maintainedas previously

shown.
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Figure 12 - Unstable periodic orbit and iterates under the influence of the IKF for three of
the period-1 cycles found within the Mooring System.

As exhibited, the Iterated Kalman Filter was successful in separating the noise from

the chaotic signal for moderate levels of noise and consequently the control scheme

previously defined is applicable. The IKF becomes a sub-optimal estimator, in the

least squares sense, for the nonlinear signal. This is accomplished by iterating the time

update and the covariance matrix in order to obtain a more accurate estimate of the

actual system trajectory shadowed. Notice, however, that the Iterated Kalman Filter
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can be used as a predictor as well.

4.13 Concluding Remarks

This study examines control of the chaotic oscillations of a fluid-structure

interaction system. The system under consideration, although of fluid origin, is

modeled as a low degree of freedom system by considering cases for which the small

body theory applies. The method uses a chaotic time series to categorize unstable

periodic orbits. This is done by mapping the time series to a Poincaré section and then

obtaining the unstable periodic orbits through an exhaustive search of the Poincaré

points. A linear map is produced for which the pole placement method of feedback

control can be applied. The method was first applied to the nonlinear system to verify

control. Then, the method was applied to the model in the case that band-limited white

noise of finite variation was added to the excitation term, indicating that (stochastic)

control of moored systems is possible. An extension of this methodology was

investigated by obtaining a series ofPoincaré sections, stroboscopically samplingevery

2rt/rl', where r is the number of sections desired, and building a corresponding

controller on each section. This yields r separate controllers evenly distributed, thus

decreasing the long term effects of the noise with respect to an individual controller.

Finally, under increasing levels of noise, an Iterated Kalman Filter was succesfully

applied in order to filter this noise.
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Finally, should the responses of the prototypes corresponding to the model tests

mentioned in the begirming of this study confirm the existence of chaotic motions in

the (noisy) field environments, the analysis and control method presented in this study

can be applied to suppress these motions if desired. Extensions of this study to the

multi-degree-of-freedom physical models and subsequent design of practical

controllers for experimental tests are being examined.
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5.1 Abstract

An understanding of the rocking response and overturning stability of rigid

blocks is of importance to the preservation of free-standing equipment and

structures placed in the ocean and seismic environments. Previous studies have

indicated a wide spectrum of possible responses under support excitation including

periodic, quasi-periodic and chaotic motions, which may lead to overturning. To

avoid potentially catastrophic responses, a means of actively controlling the

nonlinear oscillations is presented. In Part I of this report, responses to purely

deterministic excitations were investigated. It was shown that the controller

designed was able to maintain stable system response under the conditions outlined.

The control methodology introduced applied a small force to induce small

perturbations about a nonlinear system trajectory at prescribed times in order to

guide the system towards the stable operating state. This was accomplished by

creating a locally linear map about the desired system trajectory. A feedback

controller was designed based upon this linear reconstruction in order to guide the

system trajectory towards the associated stable eigenvector of the linearized system,

ensuring that the trajectory is maintained in a neighborhood of the desired periodic

motion during the interval between sampling. In Part II, the methodology is tested

against increasing levels of noise. It is expected that as the noise level increases,

the controller will loose its ability to maintain a stable operating condition. In order

to combat this, the Iterated Kalman Filter is employed in order to filter the data. It
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is known that Kalman Filtering will not work in the general nonlinear case.

However, this methodology produces a locally linear map where the Kalman Filter

is effective. This paper outlines the proposed method defined it Part I. Then, the

Iterated Kalman Filter is utilized to study the varying effects due to an increase in

noise intensity. From this, an estimate of the amount of noise that is able to be

handle before catastrophic toppling of the system is guaranteed, at which time

control is no longer effective.

'Research Program Leader, U. S. Department of Energy, Albany Research Center, Albany, OR 97321
2Professor, Civil, Construction and Environmental Engineering Dept., Oregon State University, Corvallis, OR 97331.
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5.2 Introduction

In Part I of this two-part study, the nonlinear responses of the rigid rocking of free

standing equipment subject to base excitation was investigated. This type of system may

include models of engineering systems in the offshore and seismic environments as

reported. In this study, it is assumed that the supporting base of the rigid blocks is either

under going periodic oscillations or is periodic with low amplitude, band limited white

noise component (Yim and Lin 1996a). As was exhibited in Part I, even though these

complex oscillations may appear to be problematic, control of the deterministic motions

can be achieved. This was accomplished by applying small moments to the system at

strategic times in order to achieve control. However, this control technique may not be

robust under the presence of increasing levels of low amplitude, band limited what noise.

The addition of an increasing intensity of random noise, such as may be encountered in

an ocean or seismic environment, may impose a significant problem for the control

scheme. Part II investigates the controllability of the rocking system under increasing

noise intensities. First, a simple modification of the control algorithm is investigated. It

is seen that this modification increases the regime that the control algorithm is applicable

for the rocking system. To continue to increase this regime and to address the issue of

measurement error, the Kalman Filter and several if its variants are investigated to the

point where the stable motions are unachievable and over turning becomes imminent.



151

5.3 Control Under Noisy Excitation

The benefit of using small perturbations to control a deterministic nonlinear

dynamical system within the chaotic operating regime was presented in Part I. However,

for a typical real physical system such as the rocking of a rigid block in seismic or ocean

environments, there will be noise added to the system through a random component to

the excitation or measurement errors. A means of characterizing the influence of the

noise on the rocking system is given by the signal-to-noise ratio (SNR) defined as the

power of the noise free signal divided by the power of the noise, where the power is

given by

iT 2
P=JO(t) di (1)

TO

where T is the period of the system.

Figure 10 in Part I plotted the results of adding (band limited) white noise to the

excitation term a primary resonance example. In this example, the signal to noise ratio

was decreased from 27.75 (the nearly noise-free case) to 4.29 in order to exhibit the

effects of the noise on the controller without making any modifications to the control

scheme. Observe that, as the noise intensity increases, the system goes from being

completely controlled, to a mode where it takes a much longer transient period before the

controller latches onto the desired system trajectory and obtains the necessary control,
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and finally to the point

where the effects of noise

overpowers the influence
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Figure 1 - Effects of multiple control planes on the period-i
controller exhibited in Fig. 9 for the signal to noise ratio of a)

the time series at intervals SNR27.75, b) SNR=5.54, c) SNR=3.08 and d) SNR=2.80
control section.

of 2r/rF, where r is the

number of sections desired (King and Yim 1996). This yields r separate controllers

evenly distributed throughout the cycle, thus decreasing the long term effects of the noise

with respect to an individual controller. By applying the above control scheme on each
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Poincaré section, the desired UPO can be targeted from one section to the next. If these

sections are selected appropriately, then the effects of noise can be minimized.

This modification to the overall control scheme outlined can significantly increase the

controllability of the system. For the rocking block system, by taking several Poincaré

sections along a single cycle, and then building a feedback controller on each section, the

effects of the noise are reduced with respect to the number of sections the controller is

applied per cycle. Figure 1 shows the results of the previous example (Part I) with 4

control planes.

Each of the 4 sections has been created by sampling the same time series data set at 4

times the rate of that in

Figure 10 of Part I (r = 4).

Then, using the scheme

outlined previously, a linear

map on each section is o

constructed, finally, each

time a trajectory crosses a

section within the control

tolerance, Eq.(15) from Part I 2 3 4 5 6 7 8

Number 01 Control Planes

I is applied for that section.
Figure 2 - The number of control planes required to control

The SNR is decreased from the system versus the signal to noise ratio.
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27.75 in Fig.la to 2.80 in Fig.ld. After this point, further additions of noise cause the

system to overturn and further control is not possible for this case.

The number of control

sections versus the noise
I

I I I I I I

intensity that the system 0.5

controller can handle is I

I I I I I I

0 -3 10 20 30 40 50 60 70 80 90 100

') T1-
Xv

Tis11own in igure . 11is I
I I I I

analysis indicates an

approximately logarithmic =
C

I I I I I

relationship between the iO3i0
20 30 40 50 60 70 80 90 100

controllable level of noise
0.5

versus the number of sections

required to maintain control. C

-3 10 20 30 4o so 60 70 so o 100xO
Tim

I I I I I

This is due to the inherent

instability leading to

overturning of this particular 0
I I I I I

0 10 20 30 40 50 60 70 80 90 100

system and it is evident that Time

Figure 3 Controller action on a single control planethe addition of more control
indicating the distance a trajectory must be moved in order
to maintain control under increasing noise intensities.

planes only makes marginal

increases in the controllability of the system in the presence of increasing noise levels.

The noise level will reach an intensity under which this control scheme will no longer
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work and continuous control methodologies, requiring substantially more energy, are

required.

Figure 3 plots the controller action as a function of time for different noise levels. As

is evident from the Figure, the distance that the controller is required to move a trajectory

on the control plane is small in comparison with the amplitude of oscillation. Hence, the

relative energy exerted in order to maintain control with this methodology is small in

comparison to the excitation moment. Recall that on a given control plane, the controller

is only required to be operational when a trajectory intersects a Poincaré plane and only

within the ball of radius c.

5.4 Kalman Filtering

In an effort to increase the regime where control is achievable, the Kalman Filter and

its derivatives are investigated. The extension of the control algorithm was based on the

rate at which reconstructed Poincaré Planes were constructed, then, a linear controller

was built on each of these planes. In this way, moderate amounts of noise could be

handled. In order to increase the effectiveness of the control system in the presence of

other then moderate levels of noise or measurement error, the Kalman-Bucy Filter is

considered. The Kalman Filter data processing algorithm and it's variants for nonlinear

systems, the Extended Kalman Filter and the Iterated Kalman Filter, have been

successfully applied to an assortment of nonlinear and chaotic systems, both for filtering
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as well as control purposes (Fowler 1989, Julier et al 1997, Waliker and Mees 1997,

1998). The Kalman Filter has also been applied in order to obtain a reference trajectory

(for control purposes), in this case, the Extended Kalman Filter was exploited (Cazelles et

al 1995).

wv/
k

Plant
4,Input, U = f(x, t)

Deterministic State Estimator
Controller (Kalman Filter)

Figure 4 - Stochastic Filtering and control of the nonlinear dynamical system.

AOutput, x

The apparent universality of the Kalman Filter has spumed much interest across a

wide platform of applications. Since the Kalman Filter is a second order estimator, it has

proven to have wide ranging applicability with robust results, in general. For the case of

the systems considered, it appears that the important sensitive nonlinear characteristics

are retained while under the influence of the estimation procedure (Fowler 1988, 1989).

However, because the Kalman Filter is defined for linear (possibly time-varying or of

arbitrary observation intervals, which could be extremely complex) it is expected that the

filter in general will not be robust against the nonlinear systems studied here. Extensions

to the Kalman Filter have been introduced, namely the Extended Kalman Filter
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(Anderson and Moore 1979) and the Iterated Kalman Filter (Maybeck 1982, Walker

1998, Walker et a! 1998). Both of these extensions to the Kalman Filter increase the

robustness of the Kalman Filter for nonlinear systems. As will be seen, the Extended

Kalman Filter (EKF) is a special case of the Iterated Kalman Filter (IKF)

The idea in the use of the Kalman Filter is to produce an estimate of the state of the

system at each time step or, alternatively, on each Poincarè Plane. This state estimate is

based upon the known dynamics and incorporates an unknown system error or an

unknown measurement error in such a manner as to render the cost of that error at a

minimum (Figure 4). Then, with this estimate of the state, system control on the

estimated state can be instigated. The aim is to produce a state estimator that does the

best job possible. This estimate is the Iterated Kalman Filter as applied to the nonlinear

system dynamics of the rocking response of the rigid block.

Recall that the derivation of the Kalman Filter was based on linear systems. Fowler

(1986) in his PhD dissertation showed that the Kalman Filter can be used with some

success on certain nonlinear systems. He showed that a control system based upon the

Kalman Filter estimator yields significant improvement with respect to covariance over

other control systems. He also showed that for nondissipative systems, the improved

performance translated to improved stability (Fowler 1988 and 1989). However, in

general, the covariance matrix will grow, particularly with respect to prediction, as the

nonlinearities take effect. That is, while filtering in a linearized portion of phase space,
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the optimal filter performs well. As a trajectory strays from this linearized field, the

performance of the filter will degrade.

In order to obtain further improvement under this more general case, the Extended

Kalman Filter (EKF) and the Iterated Kalman Filter are investigated. The EKF is an

extension of the Kalman Filter where the filter is continually updated by creating a

linearization around the previous state estimate, starting with the given initial guess. A

first order Taylor series approximation of the system dynamics is calculated at the

previous state estimate as well as the measurement function at the corresponding

predicted state. Consider the nonlinear difference equations

with measurement update

Xk+I =f(xk,uk,wk) (2)

Zk =h(xk,vk) (3)

where Wk and Vk represent the process and measurement noise respectively. To estimate

the process with these nonlinear state and measurements, we perform a linearization

about the previous estimate. This is done by investigating the linearized versions of

Eqs.(2) and (3), which are seen to be given by
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x =. +A(x )+Ww (4)
k+l k+l k k k

z = +H(x )+Vv (5)
k k k k k

where A is the Jacobian matrix given by

A (6)
0x

W is the Jacobian matrix given by

H is the Jacobian given by

and V is the Jacobian given by

W ,u ,O) (7)
if Ow k k

J

Oh.

H = --(x ,O) (8)
ii Ox k

J

Of.

V =-(x '0) (9)
ii Ov k

J

Now, define the notation for the prediction enor to be

and the measurement error to be

CX Xk (10)

e =z (11)
z k k
k



Substituting Equation (10) and (11) into Equation (4) and (5) yields

and

CX A(xk-k)+ek

Zk Xk

160

(12)

(13)

where Ek and 7k are ensembles of independent random variables with zero mean and

covariance matrices WQWT and VRVT,

Notice that these last two equations closely resemble the difference equations for the

discrete Kalman Filter (King 2006). This suggests that we use the measured residual,

Eq.(1 1), and a second, hypothetical Kalman Filter to estimate the prediction error,

Eq.(10). This estimate is then used to obtain the a posteriori state estimates for the

nonlinear process. Suppose that the interim estimate is given as k, then the a posteriori

state estimate is

Xk Xk + e/ (14)

The random variables defined in this process have probability density functions

defined by
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P(e, ) = N(O,E{ CX
TJ)

p(ek)= N(O,WQkWT)

P(k)= N(O,VRkVT)

(15)

Given this, the predicted value of the interim estimate, k, is zero and the (hypothetical)

Kalman Filter used to estimate it is simply

= Kk (16)

Substituting this back into Eq.(11) and then using the measurement residual Equation

(14) we obtain

Xk k +Kk(zk k) (17)

where, it is evident that we don't really need the hypothetical Kalman Filter. We can

now use this for the measurement update in the Extended Kalman Filter (EKF) with k

and 2k as defined in Equations (4) and (5) and the Kalman gains , Kk (Anderson and

Moore 1979)

Kk =PH[(HkP,H[+Rk)' (18)
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and the appropriate substitution for the measurement error covariance. The complete

EKF algorithm is shown in Figure 5 and the complete set of EKF equations are give by

4+i =f(xk,uk,O)

k+l = AkPkAJ +WQkWT

with the measurement update given by

(19)

Kk =P,H[(HkP,Hr+VRkVTY'
= + K(zk - h( '0)) (20)

1k =(I-KkHk)P

where, as with the discrete Kalman Filter, Eq.(20) corrects the state and covariance

estimates with the measurement Zk. Notice that the Jacobian, jjk in the equation for the

Kalman gain Kk serves to correctly propagate only the relevant components of the

measurement information, that is, the observable components of the state.

Now, taking this one step further, we define the Iterated Kalman Filter by noticing

that an iteration technique can be applied to update the state estimate and covanance

matrix, consequently improving performance. That is, within a given time step, the

sequences {Xk'} and {p'} can be defined inductively as follows:
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Xk X +K(zk -h(4)-H-4)
(21)

p'1

where

(22)

and

K (23)

are the updates for the linearized measurement matrix and the Kalman gain. The

induction process begins with the initial conditions

XkXk, (24)

where the initial covariance matrix is taken to be the last one calculated in the previous

step. This gives the update for the IKF as

(25)

It is evident that for i = 0 in Eqs.(21)-(22) we obtain the EKF. Also notice that both

methods reduce to the ordinary Kalman Filter in the case that the measurement function

is affine.
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It can be shown that the IKF is capable of providing better performance then the

ordinary Kalman Filter in the presence of significant nonlinearities since the IKF

introduces a reference trajectory which is incorporated into the estimates iteratively

(Maybeck 1982, Bell and Cathey 1993, Bertsekas 1996). Notice that the iterations can be

stopped by any number of convergence criteria such as when two consecutive values
k1

and k'' differ by a pre-defined

amount or after a predetermined

number of iterations. Bell (1994)

showed that this iteration technique

becomes a Gauss-Newton process

under these conditions. The trade off

for this technique, of course, is
Figure 5 - The Extended Kalman Filter with time

computational power required to update (project ahead) and measurement update
(correct for the projection).

perform the iterations within each time

step.

5.5 Filtering of the Rocking Response

The Kalman Filter, therefore, addresses the general problem of estimating the state of

a first order, discrete time system that can be expressed as a system of linear difference

equations. Consider, then, the system give by:
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= Axk + Buk + Wk (26)

with the associated measurement equation

ZkHXk+Vk (27)

where xk E is the state variable, A is an n x n matrix of state coefficients relating the

state at time k to the state at time k+1 in the absence of either a driving force or a process

noise. Uk E is the vector of control inputs while B is an n x 1 matrix that relates the

control inputs to the state. The Wk represents the process noise. Similarly, Zk E m is the

measurement, H is an m x n measurement matrix which relates the state to the

measurement and Vk is the measurement noise.

The process and measurement noise are assumed to be white noise with normal

probability distributions given by

p(w) = N(O,Q)

p(v) = N(O, R)

and are assumed to be independent of one another. In practice, the noise covariance Q is

either determined on some basis of intuition, or an assumption is made of its structure.



Similarly, the measurement covariance, R, is provided by a signal processing algorithm

or it is again, assumed. In general, the noise levels are determined independently, hence

there are no correlations between the two noise processes. The details of the

development of the Kalman Filter and the Iterated Kalman Filter as used here can be

found in King (2006).

For the purposes here, we apply the Kalman Filter for noise reduction which then can

be utilized in the control methodology previously defined in Part I in order to bring the

response of the system to a stable, periodic orbit. Of interest is the extent to which the

Kalman Filter can be applied under the presence of increasing noise levels while still

being able to maintain system dynamics and control. That is, it is expected that the

Kalman Filter will successfully reduce noise levels in the systems as exhibited by the

previous work, however, as the noise intensity increases, how well does the Kalman

Filter perform? The Iterated Kalman Filter is utilized since it is generally believed that

the standard Kalman Filter cannot successfully filter the data except under special

circumstances. Because of the increased potential for convergence and robustness, the

IKF becomes the ideal method of ensuring stable filtering to the fiduciary trajectory,

which is then used for control purposes.

Recall the nonlinear ordinary differential equations governing the evolution of the

system response of the rocking system, Eqs.(1)-(3) in Part I. It is assumed that the

frequency of excitation is known and that the noise is additive to the position and velocity

alone. By "discrete rocking system," it is meant that all control actions are taken on the
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Poincaré plane. However, as previously indicated, the IKF is applied at each numerical

integration. Thus, the linearization procedure inherent in the IKF is applied locally at

each step and the system trajectory smoothed, bringing the state back to the intended

fiducial trajectory.

Recall that the nonlinearities for this system are 4-fold and are seen as firstly, the

righting moment about the edges giving rise to the nonlinear restoring force as a function

of angular displacement, 0. The second nonlinearity is associated with the coupled

parametric excitation. The third nonlinearity is associated with the energy loss at impact

and is represented as a jump discontinuity in the angular momentum while the fourth

nonlinearity is due to the change in centers of rotation resulting in a transformation from

one governing equation to the other.

Using the same parameters as before, the chaotic (noise free) system response for

these parameter values is seen in Figure 2 in Part I. Meanwhile, the effects of noise on

the chaotic response and the ensuing control are exhibited in Figure 10 of Part I. As is

evident in Figure 10 (Part I), the addition of increased noise renders the system

uncontrollable with only small amounts of noise, even as the number of control planes is

increased. For this reason, the Kalman Filter is applied in order to investigate the ability

of the filter to reduce the effects of the noise, stochastically, for increased prediction of

the current state and consequently to produce a stable, robust controller.

The implementation of the IKF introduces several parameters for which there is some

control over. First, the number of Gauss-Newton iterations is predetermined. The



implementation here applies a set number of iterations for the IKF update scheme as

opposed to monitoring the difference between succeeding filtered points. Let M be the

number of Gauss-Newton iterations. It should be apparent that if M = 0, then the IKF

reduces to the Extended Kalman Filter. The number, N, of measurement points used in

the calculations can be set as well. This is the number of time measurements that will be

used in the smoothing operation.

For the rocking system, the state equations for the rocking response are given by

Eqs.(1)-(3) in Part I of this study. In order to construct an appropriate Iterated Kalman

Filter, the decoupled system will be investigated. For the case where the angular

momentum is 0> 0, a Kalman Filter can be constructed via the following:

and the 2 x 2 Jacobian is

f1(x1,x2,t)=x2
(29)

f2(x1,x2,1)= x1 cos(ut+q5)

jj[0 11
(30)

a1 [i oj

Similarly, for the period of time where the angular momentum is negative (0 < 0), the

corresponding state equations are given by
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J (x1 ,x2 ,t) = x2

(32)
f2(x1 ,x2,t)= x1 +1 a cos(1 +0)

and, again, the 2 x 2 Jacobian is

p=[o 11 (33)
af1 [1OJ

for i, j = 1,2. The measurement function, h, is defined by

r1000 2 l[1l
h(x)=Hx=I

[10 100j[x2j
(34)

For the application here, it is sufficient to define the measurement functions as linear

functions of the state variables as indicated.

Figure 6 plots the noise free phase space with corresponding primary resonance

points while Figure 7 plots the Iterated Kalman Filter result for the rocking response with

the noise addition and including the same two primary resonance points (as defined in

Part I and King 2006). In this particular case, the unfiltered noisy case toppled rather

quickly (Figure 8). Comparisons of the structure of the filtered phase space with the

noise free phase space show that the overall dynamic structure appears to be maintained.

This is fortunate for purposes of control.



The Iterated Kalman

Filter for this case utilized

two measurement values

and 4 Gauss-Newton

iterations per time step in

order to achieve the desired

filtered response. Notice

that these values can be

adjusted as necessary to

meet the needs of the filter.

The questions of

whether the underlying

dynamics of the system are

preserved is of importance

for control. Because the

filter itself is built upon

intimate knowledge of the

nonlinear dynamics, it is

reasonable to expect that

the important invariants are
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Figure 6 - The phase space of the noise free rocking
response.

Figure 7 - The phase space representation of the filtered
response of the rocking block with primary resonance
points.
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7 seem to indicate that at
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transitivity are preserved

through the filtering
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Data utilized here were Figure 9 - Effects of nonlinear filtering on the primary
resonance unstable orbits.
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obtained from the data sets used to create the plots exhibited in Figures 5 and 6. From

this, it appears that the primary resonance case is maintained with only a slight variation

in the underlying structure of the unstable cycles. (This variation is a direct effect of the

nonlinear filter itself.)
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Figure 10 Increased levels of noise on the rocking system dynamics and the structure of the
invariant attractor after application of the Iterated Kalman Filter.
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As indicated

previously, increasing the

level of noise has the

effect of destabilizing the

complex motions of the

system. Part I detailed

how this occurs while

Part II indicated a means

of controlling the system
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with moderate levels of Figure 11 Effects of increasing noise level on the two
primary resonance points. Squares indicate the noise free case,

noise. Figure 10 plots the circles for case b in Figure 6, left triangle for case c and right
triangles for the final case.

effects of increasing the

noise levels on the system phase portrait and after applying the Iterated Kalman Filter.

Of interest is the maximum achievable level that can be successfully filtered and yet still

maintain the necessary underlying dynamics in order to instigate control. In this case, the

signal to noise ratio is decreased from the deterministic case (SNR>>0.0) to a signal to

noise ratio of near unity. Figure 11 plots the corresponding effects on the points defining

the primary resonance states identified earlier. Notice how the noise destabilizes the

resonance cases and in particular the primary resonance case corresponding to Figure 5 in

Part I is completely destabilized by the time the SNR surpasses 4.
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Meanwhile, the primary resonance case corresponding to Figure 6 in Part I maintains

coherence until the SNR begins to near unity at which case, the system dynamics are

indistinguishable from the noise. The reason for this can be explained since for this

example, the amplitude of motion is quite small and therefore the noise doesn't have as

much of a relative effect. That is, since the motion has small amplitude, the noise

contribution is much smaller and the system behaves better for longer. This gives an

indication of where control should be maintained as well, since this also implies that

smaller amounts of energy will be required to maintain control.

5.6 Concluding Remarks

These two papers outline a methodology for controlling the potentially catastrophic,

unstable, highly nonlinear oscillations of free-standing equipment or structures placed in

offshore and seismic environments. The proposed method is designed to avoid such

dangerous situations and is developed through a modification of the OGY method in

which a system parameter must be available for adjustment in order to change the

dynamics of the system. Here, a physical device is placed on the system which applies a

moment to the nonlinear system in order to perturb the system trajectory towards a stable

eigenvector of the linearized first return map. In effect, this modification adjusts an

observable of the system, the angular position or angular velocity, in order to maintain

control.
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The method employs the Iterated Kalman Filter in order to obtain an unstable

periodic fiducial trajectory of the system which can then be utilized in an advantageous

way. Since it is known that these unstable trajectories are dense within this class of

nonlinear system, stable characteristics of the system can be targeted with success. That

is, observing that there exists a multitude of unstable, periodic orbits, one can utilize the

locally linear dynamics about these orbits to build a feedback control law capable of

rendering the nonlinear oscillations periodic. An outline of the methodology was

presented in Part I with several examples pertaining to the rigid rocking block system.

These examples clearly demonstrated the successful control of the highly nonlinear and

complex responses of the system, reducing the complex motions to selected desirable

periodic motions through the use of a simple standard control technique (pole placement).

The force required to maintain control was also investigated where it was shown that

through the discrete application of the controller, the ratio of the force applied by the

controller to the force of the external excitation is small.

Noise will naturally exist in any real seismic or ocean environment, whether

introduced through a noise component in the excitation or through measurement noise.

An attempt was made to exhibit that this noise component causes problems with the

deterministic controller and to what extent the deterministic controller maintained a

robust operating state. In the case that the noise level is relatively small compared to the

forcing amplitude, it was shown that the proposed control methodology was not

sufficiently robust against these disturbances. However, a simple modification to the
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controller was developed in this study to increase the effectiveness of the control in the

presence of a decreasing signal to noise ratio (increasing noise intensity). By

stroboscopically sampling the time series at every 2i/rF intervals, where r is the number

of sections desired, r separate controllers can be constructed which are evenly distributed

about an unstable cycle. This modification decreases the long term effects of the noise

with respect to an individual controller. This extension appears to yield a logarithmic

growth in the amount of noise that the system is able to handle up to the point where the

noise intensity overpowers the system controller and toppling occurs. Further research

into this area is necessary.

Methods of decreasing the effects of the noise further were investigated as well.

These methods include filtering and stochastic projection, both of which try to

reconstruct the deterministic nonlinear dynamics from the noisy data. Continuing the

effort to expand on the realm of controllability, variants of the Kalman Filter were

investigated. Specifically, the Iterated Kalman Filter was implemented in order to filter

the band limited noise introduced through the base excitation as well as through

measurement error. This technique was successful in filtering the noise while

maintaining the important dynamic invariants of interest.

Finally, although the proposed methodology utilizes linear control theory, highly

complex, nonlinear oscillations can be controlled in these systems. This is true because

the methodology utilizes the systems sensitivity and topological transitivity to an

advantage. Moreover, since the controller applies small perturbations to the system
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trajectory, on the scale of several orders of magnitude less then the forcing amplitude,

little energy is required in the implementation. More advance control techniques, such as

optimal control, etc., can be applied to achieve gains in cost or energy saving (Abarbanel,

1997). Note that the methodology is equally applicable to many offshore and land-based

structural systems where there is a potential for highly nonlinear and possibly chaotic

responses.
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6. CONCLUSIONS

This study examines the application of small perturbations to efficiently

drive the complex responses of a nonlinear system to arbitrarily selected harmonic

responses. Specifically, two separate nonlinear systems were utilized in order to

test the ability to control the highly sensitive oscillations found in these, and other,

ocean structural systems. The first of the two nonlinear dynamical systems

introduced was that of a submerged, moored structure in the ocean environment

subject to wave and current excitation. An example of such a system is a moored

barge or a sonar buoy tethered in a fixed location. The dynamical system is

modeled as a low degree of freedom system by considering cases for which the

small body theory applies. This assumes that the structure does not influence the

wave field, allowing for the nonlinear fluid loads to be approximated in terms of an

added inertia and a nonlinear coupling. This, together with restraints on vertical

and rotational motion and, by approximating the nonlinear mooring resistance with

a low order polynomial, yields the desired low order dynamics. The second system

investigates equipment that is not affixed to its mounting platform and which may

be located where the base may undergo excitation in the horizontal and vertical

directions. These situations are typically found in ocean and seismic situations

where the 'base' oscillation can transfer unwanted motions to the equipment. That

is, it can be shown that through the base support excitation, these "rocking blocks"
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can also be set into highly nonlinear complex motions. Chapters 2 and 3 of this

dissertation give a brief analysis of the complex oscillations exhibited by these

disparate ocean structural systems.

The nonlinear dynamics of the ocean structural systems have been

demonstrated to exhibit chaotic oscillations under certain environmental conditions.

This phenomenon has been calibrated on data obtained from experiments for both

systems under consideration. For this reason, the control of these oscillatory states

is of interest. This study outlines a method for controlling these chaotic motions by

small perturbations to the system trajectory. The method utilizes the structure of the

chaotic time series to an advantage. By categorizing the nonlinear dynamics by

mapping the time series to a Poincaré section and then obtaining the unstable

periodic orbits through an exhaustive search of the Poincaré points, some of the

interesting dynamics are obtainable. This methodology produces a locally linear

map for which the pole placement method of feedback control can be applied. The

method was then applied to the two different models to verify control.

An extension of the method was investigated to achieve a more robust

controller under the circumstances that additive noise is present in the excitation

force. This extension applies the same algorithm of control design to a series of

Poincaré sections produced by stroboscopically sampling every 2n/rF, where r is the

number of sections desired and F is the fundamental frequency of the system. This

yields r separate controllers evenly distributed about an unstable cycle, thus
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decreasing the long term effects of the noise with respect to an individual controller.

This extension appears to yield at least a linear growth in the intensity of noise that

the system is able to handle. Meanwhile, a means of investigating the power

required to maintain control of the nonlinear oscillations during a particular

crossing of the Poincaré plane was presented as well. This analysis investigated the

equilibrium equations of motion to formulate a form for the instantaneous power

required to instigate the necessary shift in position and velocity in order to move the

trajectory towards the stable eigenvector of the linearized system.

This method appears to be ideal for nonlinear systems for which there is

little noise present. With small adjustments, the system can be driven to any

desired state. This is particularly attractive if, for instance, it is undesirable for the

nonlinear system to become locked in primary resonance. The controller can be

used to ensure that the resulting oscillatory state is not one of these predefined

undesirable modes of oscillations. The papers presented in Chapters 2 and 3

discuss the specific results of the two ocean structural systems in question. Recall

that the important difference between these two nonlinear dynamical systems is that

in the mooring system the nonlinear oscillations can be considered steady state (in a

macro sense) while in the rocking system the nonlinear oscillations cannot be

considered steady state due to the fact that the block can topple. However, the

control algorithm works equally well for either case as long as in the later case,

control is instigated prior to toppling.
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Currently there are several limitations to the methodology outlined. First, as

is evident in the controller design, it is necessary for the system trajectory to come

arbitrarily close to the desired trajectory before the controller can be applied.

However, means of targeting a trajectory do exist in linear control theory. These

methods may be extended for this case also. More importantly though, the addition

of increasing levels of system or structural noise is ofconcern. In order to combat

this, the Iterated Kalman Filter was investigated to determine whether the noise

could be mitigated. Because the first step of the control algorithm is to create a

locally linear map of the system in question where all subsequent actions are taken,

it was postulated that the theory of Kalman Filtering was applicable even though the

overall dynamics are nonlinear in nature. Chapters 3 and 4 apply the Iterated

Kalman Filter to the dynamical systems in order to investigate whether this notion

with stood the implementation without proof. It was found through this work that

the Iterated Kalman Filter behaved well under these conditions for both of the

systems.

Finally, although the proposed methodology utilizes linear control theory,

highly complex, nonlinear oscillations can be controlled in these systems. This is

true because the methodology utilizes the systems sensitivity and topological

transitivity to an advantage. Moreover, since the controller applies small

perturbations to the system trajectory, on the scale of several orders of magnitude

less then the forcing amplitude, little energy is required in the implementation.
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More advanced control techniques, such as optimal control, etc., can be applied to

achieve gains in cost or energy saving. Note that the methodology is equally

applicable to many offshore and land-based structural systems where there is a

potential for highly nonlinear and possibly chaotic responses.



APPENDIX A UNSTABLE PERIODIC ORBITS

A means of analyzing the complex motions of chaotic systems by using the

time series alone has been introduced"2 The procedure utilizes the unstable periodic

orbits of a system to an advantage. Since a chaotic attractor contains a multitude of

UPO's of varying periodicities, much of the nonlinear characteristics can be identified

through these special cycles. It is well known that UPO's are dense on a chaotic

attractor,3 and in fact this is a necessary condition for chaos to exist.4 This

characteristic of a chaotic system is exploited in the following discussions.

It is instructional to

formalize the notion of a

Poincaré section here. This

method was originally devised

by Henri Poincaré in the

1890's in an effort to

understand the N-body

problem of planetary motion.5

The Poincaré section is a
Figure A.1 Periodic Sampling of a time series to

method of inspecting the create a Poincaré section.
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continuous time phase space of a periodically driven system by projecting it onto a

discrete time phase space by sampling the phase space variables at discrete time

intervals. A natural choice for the discretization interval is that of the natural period,

T = 2Tt/, where w is the driving frequency of the system. Figure A. 1 is a schematic

of this operation where the flow of the system, the 3-D phase portrait, is sampled at

regular intervals. These sampling points are then plotted against one another. That is,

if Z(t) is a point sampled in this manner and Z(t+Tf) is the next point, then Z(t) is

plotted against Z(t+Tf). The relationship between the points Z(t) and Z(t+Tf) is called

the Poincaré map. The Poincaré map proves to be a useful tool in understanding and

manipulating chaotic dynamical systems. This method is sometimes called

stroboscopic sampling for obvious reasons.

Since the nonlinear dynamical system is deterministic, so too is the Poincaré

map. This is true due to the fact that any point on the continuous trajectory, x(t),

uniquely determines a point at a later time, x(t+Tf). Thus, if Z(t) = x(t), that is, the

point is on the Poincaré plane, then Z(t) uniquely determines Z(t+T). Z(t+Tf) is the

image of Z(t) on the Poincaré plane and there exists a deterministic map relating Z(t)

and Z(t+Tf), Z(t+Tf) = F(Z(t)). It must be noted that the map, F, relating Z(t) to Z(t+Tf)

is not easily determined in general.

Studying the dynamics on the Poincaré section has certain advantages. These



include the decrease in dimension. At least one of the variables is eliminated. In this

case, time is eliminated explicitly from the dynamics. The Poincaré map transforms

the points on the section according to the dynamics of the continuous nonlinear system.

Therefore, the invariants of the three dimensional set are transformed to the Poincaré

map as well. Because of this, remarkable insight can be gained by studying these lower

dimensional systems. This is true for unstable periodic orbits as well. However,

instead of having to study the flow in order to identify the unstable periodic orbits, all

that is required is to study the reduced system.

An unstable periodic orbit of a chaotic system is defined as an orbit or cycle

of the system which has the property that it is both periodic and unstable. That is, if

a trajectory of the system is on a cycle, it will remain on it for all time. However, if

there is any minute deviation from the cycle, then the chaotic trajectory will diverge

from this unstable cycle at an exponential rate. Because of the "mixing property" of

a chaotic attractor (topological transitivity), at some time later the trajectory will again

come arbitrarily close to the UPO. It appears that a large portion of the unstable cycles

in a chaotic system have low periodicity. For example, it is reported that 84% of the

cycles in the Rössler System have period less then 16,6 while 95% of the recurrence

times (a measure related to periodicity) in the Belousov-Zhabotinskii (B-Z) chemical

reaction are found in a small number of intervals, or equivalently, periodicities.'



The characteristic of an unstable periodic orbit returning arbitrarily close to a

given unstable cycle, arbitrarily often, can be exploited. If the chaotic system is

allowed to evolve long enough, then a trajectory will eventually come close to the UPO

(in theory, there does exist a set of initial conditions of measure zero for which the time

evolution of the chaotic attractor will never come close to the UPO). Because of this

fact, one can obtain the stability characteristics of an unstable cycle through an analysis

of the rate of divergence from the unstable cycle. At least locally, this can be

accomplished by studying the eigenvalues of the linearized system about the cycle in

question. Moreover, by examining a large number of the periodic cycles, certain global

invariants of the chaotic attractor can be identified, including the topological entropy,2

the Hausdorff dimension,2 the multifractal spectrum,3 and the Lyapunov spectrum.7

These global invariants give a measure of the complexity of the system and hence are

useful in its characterization.

Suppose that a time history of a chaotic system, x(t), is available. Let r > 0 be

given, then at some time tin the time series, x,,-x < and the chaotic trajectory has

come arbitrarily close to the UPO, x, of period p. At some time Y later x-xy <T

and the trajectory has come close to the UPO again. Often times, Y is selected as an

integer multiple of the period of excitation. In order to identify the unstable cycle of

period p, a search through the data set for all points separated byY time steps that are
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a distance of r apart is performed. Since 11 is arbitrary, it is possible for points of two

distinct periodic orbits to be grouped as one. It is necessary to be able to tell these

distinct periodic orbits apart hence, not only are the points that are identified used to

characterize the unstable cycle, but their images under iteration are also used. This is

done by restricting the points of interest to those with iterates within ô > r of each

other, x1-x+1 < ô. That is, all points such that xp-x <r and x-x+y <r are

considered and that x+1-x+1 <ô to ensure that only one cycle is included and not

several nearby cycles.

In practice, this is typically performed on a Poincaré section. For continuous

time dynamical systems with periodic driving force, a natural choice of the sampling

interval is that of the driving period (Y = F). Let Z. be a point on the Poincaré section

and suppose Z is an unstable periodic point on the section representing the UPO of

period p. Then, the algorithm for calculating the UPO consists of searching the data

set on the section, {Z1}"1, for all points that are withinTl of Z. Once these points

have been identified, their corresponding image, or next iterate, is investigated. The

set of points whose images are within ô, Z-Z1 <ô, for some ô > i, are considered

to correspond to that UPO, otherwise they correspond to a different UPO and are not

further considered for control purposes (Figure A.2).

A linear map representing the local dynamics of the UPO is constructed by



using a least squares procedure. This is accomplished by creating the vectors D = {d1}

and E = {e1}, where the d's are the deviations of the points from the UPO under

consideration, d1 = Z - Z, and the ei's are the deviations of the iterates from the image

of the UPO, e1 = Z1 Zp+r. The point corresponding to the UPO, Z, is taken as the

centroid of points under consideration. The linear map A (an n x n matrix, where n is

the dimension of the Poincaré section, usually taken as 2) is calculated by a least

squares method which minimizes the error orthogonal to the approximate solution of

the matrix equation DA-E 2 which, since D and E are vectors, has a solution given

by A = mv (DTD) DTE.8

The stability P

characteristics of the

UPO are governed by the

. ,.
eigenvalues of the map A .

Now, for purposes

of control, the length of

time for the system to

reach the 1)-ball from an Z1+1

arbitrary set of initial
Figure A.2 - Estimating unstable periodic points on a

conditions is random. Poincaré Plane



The probability distribution of this chaotic transient is exponential with average

transient length <t> & for K> 0. K is the scaling exponent and i is the maximum

allowable deviation imparted by the controller.9 For a two-dimensional

diffeomorphism, the scaling exponent is expressed as'°

i lnj)
K = 1+-

2 ln(1IlA3)
(A.1)

where ? and X are the unstable and stable eigenvalues of the unstable periodic orbit,

respectively.
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APPENDIX B POLE PLACEMENT

Once a periodic cycle has been selected and the corresponding linear map, A,

is calculated, control of the system about this cycle can be maintained by applying a

state feedback control law to the system. Figure B. 1 is a state feedback diagram

indicating the flow of information through the dynamical system. For the problem

under consideration, the state feedback controller applies a small perturbation to the

chaotic trajectory about the UPO. This action is performed on the Poincaré plane and

hence is a discrete controller for a continuous dynamical system. The system is

allowed to oscillate chaotically until the first time the trajectory enters within the ri-ball

of the chosen UPO on the Poincaré plane. Once within this ball, the feedback

controller applies a small perturbation to the measured signal, in the direction of the

stable eigenvector of the linear map. This action ensures that upon the next return to

the Poincaré section

the trajectory is still
Input, u

within i of the UPO.

Figure B.2 is a

schematic of this

Output, x

Figure B.1 - State feedback diagram for a linear (time
operation on the varying) system.



Poincaré section in which the point Z, is perturbed toward the stable eigenvector of the

A means of finding
P

the magnitude and

direction of the

perturbation is obtained by x z

employing the pole ABKT

placement method The

pole placement method is a
4.-

state feedback rule devised

to render the eigenvalues

of the controlled system Figure B.2 Control of the unstable periodic orbit on
the Poincare Plane via Pole Placement.

stable.' Mathematically,

the goal of this method is to construct a matrix, called a gain matrix, which assigns the

poles of the controlled system in prescribed positions. The action of assigning the

poles of the controlled system is sometimes called the spectral assignability problem.

In order to solve the general problem of spectral assignability, the canonical single

input case is first considered. Then, a means of constructing a transformation matrix

from a general single-input system to the canonical single-input system is explored.
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The general multi-input case becomes an exercise in transforming the multi-input case

into the canonical single input case. Using the spectral assignability technique

identified for the canonical single input case, a feedback matrix is constructed for this

system and then the inverse transformations are applied to the feedback matrix to

obtain the feedback matrix for the multi-input case. Since the transformation matrices

are similarity transformations, the eigenvalues will remain the same for both the

canonical single input case and the general multi-input case, ensuring that the system

remains stable under these transformations.

The controllable canonical form is a convenient means of representing a linear

dynamical system. The controllable canonical form is the system defined by the state

model

* = Ax + by

where the matrices A and 6 are given by the special forms

0 1 0 ... 00 0

0 0 1 ... 00 0

b=
0 0 0 ... 01 0

an! an2 ... 1

(B.1)

(B.2)
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Then, by expanding the determinant of A-?J about the bottom row, we see that the

characteristic polynomial 7tA(?.) = det{A - AT) is

( A)(A
'2)

(A An) = + + ... + + A (B.3)

Consider the dynamical system (linearized within the 1-ball) represented by the state-

space system

= Ax + bu (B.4)

where x is the response of the system, u is the external forcing, A is the linear mapping

and b is the input vector. Assume, furthermore, that the pair (A, b) is in controllable

canonical form. Suppose that the external forcing can be written as u = u + Ue where

u, describes a control input and ue is the usual external excitation. Next, consider a

feedback law of the form u = -K'x, then Equation (B.4) can be rewritten as

x = (A - bKT)x + bUe (B.5)

The homogeneous portion of Equation (B.5) determines the linear systems natural



behavior, hence if the external excitation is ignored and the subscript from u is

dropped, then a feedback of the form u - KT x can be considered and Equation (B.5)

takes the form

x = (A - bKT)x (B.6)

The goal is to find a gain vector KT such that the eigenvalues of the matrix (A - bKT)

are asymptotically stable,2 i.e.
I

< 1 for i=1...n, this ensures that the fixed points of

the associated system are stable. The eigenvalues of the matrix (A - bKT) are called the

regulator poles while the problem of placing these poles in an appropriate spot on the

complex plane is called the pole placement problem.3 The solution to this problem lies

in the fact that one is free to choose KT in an advantageous way, as long as the

eigenvalues have the appropriate characteristics. Notice that since the system is

assumed to be in controllable canonical form, the state feedback matrix is

A - bKT =

o 1 0

o 0 1

0 0 0

(-a-k) (-a_1 -k_1) (-a_2k_2)

0 0

0 0

0 1

(-a2-k2) (-a1-k1)

(B.7)



which has characteristic polynomial

AbKT (A) = (a+k) + (a1-1-k1)A + ... + (a1+k1)A''

(A A1)(A A2) (A A) a + + +
+ (B.8)

and where the c's specify the coefficient's of the desired characteristic polynomial.

By specifying the position of the regulator poles, one can calculate the k1's in the gain

matrix, KT, hence solving the spectral assignability problem (for the system in

controllable canonical form).

Now, suppose the pair (A, b) is not in controllable canonical form. Assume that

the system is still a single input system (b = b) and that the system is controllable, then

a solution to the pole placement problem always exists. It can be shown that (A, b) is

controllable when the n x n controllability matrix, C, has full rank, where the

controllability matrix is defined by

c =[b AbA2b A'b] (B.9)

and where the columns of C are made up of the column vectors b, Ab, A2b, ... AT11b.

The system (A,b) can be transformed into controllable canonical form by introducing



the transformation matrix constructed as follows. Let v be the last row of C-' (notice

that C' exists by assumption). Define the state transformation matrix T such that z =

Tx by

V

vA

T= vA2

vA ''
(B.1O)

Then, T' exists by construction. Applying the state transformation to the original

system yields the transformed system

= TAT'z + Tbu (B.l1)

Define A=TAT' and t =Tb, then the pair ( A, b) have the controllable canonical form

and the spectral assignability follows as before. Should the pair (A, b) not be

completely controllable as assumed, then the part that is not completely controllable

can still be assigned an arbitrary spectrum. The solution here relies on a nonsingular

transformation which converts the state model to the Kalman controllable canonical

form. The Kalman controllable canonical form identifies and extracts the completely
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controllable modes of the system and then builds a state feedback controller for this

portion of the problem.4 This is mentioned here for completeness, however, for the

current problem, this generalization is not required.

The control law then consists of picking the entries in the gain vector KTso that

the roots of the characteristic equation are in prescribed positions. Since the 's are

known, this amounts to choosing the a1's in the characteristic polynomial TtAbKT(?).

Then, applying the inverse transformation yields the desired control laws for the

original system. Notice that the eigenvalues for the original system and the

transformed system are the same since the particular transformation matrix constructed

is a similarity transformation matrix. This procedure is called Ackerman's formula for

pole placement.5 For the case where A is 2 x 2, it can be shown that an optimal choice

(in the sense of time to control) for the gain vector is KT= [An, where A is the

unstable eigenvalue and ?. is the stable eigenvalue of A.'9'28

One can now formulate an algorithm to control a chaotic system utilizing this

control law on a Poincaré section. First, the linear map, A, of an unstable cycle is

constructed as before and its eigenvalues identified. Then, setting x Z1 Z and k =

Z11 Z in Eq. (B.6) yields the control law for the discrete UPOs on the Poincaré

section as
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Z1 =(A - bKT)(Z z + z *
(B.12)

Calculating the eigenvalues of A, and A, and either using Ackerman's formula to

determine specified regulator poles or by choosing KT = [? -AA] and applying Eq.

(B.12) whenever the trajectory comes within r of Z* on the Poincaré section yields the

desired stability characteristics.

The relative distance on the Poincaré section for which a trajectory can be from

Z and still be able to guarantee that the controller will perform adequately can be

calculated by combining the fact that since it was required that Zt - Z1 < ô, by

construction, combining this with Eq. (B.12) yields

=!Z1_Z*H o
(B.13)

I
A - bKT

Since KT was constructed to render the eigenvalues of the matrix A - bKT stable, and

(A - bKTYI exists, this defines an area of width 2ô I A - b KT about Z for which the

control should be applied.
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APPENDIX C KALMAN-BUCY FILTER

The Kalman Filter' addresses the general problem of estimating the state of a

first order, discrete time system that can be represented as a system of linear difference

equations. (For the purposes here, it suffices to consider only the discrete time Kalman

Filter.) Consider the system of equations

with the measurement equation

Xk+l = Axk + Buk + Wk (C.1)

= Hxk + Vk (C.2)

where Xk EJt is the state variable, A is ann x n matrix of state coefficients relating the

state at time k to the state at time k+ 1 in the absence of either a driving force or process

noise. Uk e R1' is the vector of control inputs while B is an n x 1 matrix that relates the

control inputs to the state. Wk represents the process noise. Similarly, Zk Ejtm is the

measurement, H is an m x n measurement matrix which relates the state to the

measurement and k
is the measurement noise.

The process and measurement noise are assumed to be white noise with normal

probability distributions given by

p(w) = N(O,Q) (C.3)

p(v) = N(O,R) (C.4)
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and are assumed to be independent of one another. In practice, the noise covariance

Q is either determined on some basis of intuition, or it is guessed. Similarly, the

measurement covariance, R, is provided by a signal processing algorithm or is again

guessed. And, in general, the noise levels are determined independently, hence there

are no correlations between the two noise processes.

In order to estimate the state in the presence of the noise through the

measurement, z, Kalman introduced the optimal recursive estimation procedure for

linear discrete time systems. The method utilizes previous estimates of the state and

the current measurement to estimate the state at the current time. That is, let *k

ER'denote the a priori state estimate at time step k given the knowledge of the system

prior to step k. Notice that the "super minus" indicates that this is the estimate at this

time. Then, let t Ejt be our aposteriori estimate at step k given measurement zk. We

define the a priori and the a posteriori error estimate as follows:

and

The a priori error covariance is then

ek Xk k
(C.5)

ek Xk Xk (C.6)

= E [eeJ (C.7)

and the a posteriori error covariance estimate is
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T
1k = E [ek ek I (C.8)

In order to derive the equations that compute the a postenori estimate k as a

linear combination of an a priori estimate k and a weighted difference between an

actual measurement Zk and the measurement prediction Hk k' we must recall that the

probability of the a priori estimate k is conditioned on all prior measurements, Zk

(Bayes Rule). That is

pz px
px

t'2

(C.9)

where p, is the probability of obtaining x conditioned on z, p, is the prior estimate of

x, p is the likelihood estimate of z given prior measurements and p is independent

of x. Thus, the estimate at time k is a combination of the known quantities.

Now, since the state estimate Xk is given as a linear combination of the a priori

estimate and a weighted difference ofthe measurement and the predicted measurement,

we have

Xk = + Zk H) (C.1O)

where the difference Zk Hk k is the innovation (or, in some texts, the residual). The
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innovation sequence reflects the discrepancy between the predicted measurement Hk

k and the actual measurement Zk. A residual of zero indicates that the two are in

complete agreement.

The n x m gain matrix K is chosen to minimize the a posteriori error covariance,

Eq. (C.8). This is accomplished by substituting Eq. (C.1O) into Eq. (C.6) and then

substituting this result into Eq. (C.8). The indicated expectations are taken and then

the derivative of the trace of the result with respect to K is taken and set to zero. One

of the many forms of the gain, K, which minimizes the a posteriori covariance is given

by

Kk = PHkT( HkPHkT+Rk)1 (C. 11)

where it is evident that as

the measurement error

covariance Rk approaches 7
/ Time / Measureme

Update Updatezero, the gain K weights the (prediction)/ \\ (prediction)

residual more heavily. That /

is, the actual measurement,

zk, is "trusted" more while
Figure C.1 Time-measurement update cycle for the

the predicted measurement, Kalman Filter.
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Hk k' is trusted less. On the other hand, as the a priori estimate error covariance
k

approaches zero, the gain K weights the residual less heavily. That is, the measurement

is trusted less while the measurement is trusted more.

So, the Kalman Filter algorithm is a recursive data processing algorithm which,

as it turns out, is optimal with respect to almost any criterion available. It incorporates

all available measurements, regardless of their precision, to estimate the current state.

The algorithm is depicted in Figure C. 1 where we see that the filter cycle projects the

current state estimate ahead in time and then the measurement update adjusts this

prediction based on the measurement at that time.

Consider again Eqs. (C.1)-(C.2) where the system equations are allowed to vary

with time:

Xk+l = Akxk + Bkuk + Wk (C.12)

with measurement equation

The time update is then given by

= Hkxk + Vk (C.13)

= + Bkuk (C.14)

= AICPkAkT
+ (C.15)

and the measurement update is then
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Kk = P*HkT( HkPHkT + Rk)1 (C.16)

= + I<(Z H) (C.17)

Pk=(I-K,/-Ik)P (C.18)

Notice that the structure of the Kalman Filter is that of a predictor corrector

method. The time update, Eqs. (C. 11 )-(C. 12), calculates the a priori state estimate and

error covariance matrix. Then, the measurement is made and incorporated into the

corrector portion through Eqs. (C. 1 6)-(C. 18). The measurement update computes the

new Kalman gain

prior to the

measurement, which

is incorporated in Eq.

(C. 18) calculating the

a postenon estimate

of the state. Finally,

the a posteriori error

covariance is

/ ____________________________________

Time U;date Measurement Update

I

14 = PJHk2( HkP1E +

.

I Z Hkxk

= AhP4 = - xy p;

calculated. After Figure C.2 The Kalman Filter operation indicating the time
update (project ahead) and measurement update (correct for

each time and the projection).
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measurement update pair, the process is repeated with the prior a posteriori estimates

used to project the new a priori estimate, recursively conditioning the current estimate

on all of the previous measurements. Figure C.2 diagrams the complete recursive

algorithm in the context of Figure C.1.

Initial conditions for the Kalman Filter can be given in order to start the

algorithm. In general, we define the initial conditions as

= E [x0] (C.19)

and the initial covariance matrix is

P0 = E [(x0 0)(x0 (C.20)

In the implementation of the filter, either the measurement error covariance matrix Rk

or the process noise covariance matrix Qk could be measured prior to the filter

operation. In particular, it is plausible for the measurement error covariance matrix to

be measured since it is tacitly assumed that there is a measurement of the process.

And, as such, there will be an off-line means of obtaining an estimate of the error

covariance matrix, Rk prior to filter operation. In the case of the process noise

covariance, the choice is often times less deterministic, especially since this noise

source is often used to represent the uncertainty in the process. So, the process noise

covariance can be used to "tune" the filter. For example, sometimes a poor model can

be utilized as the state representation simply by injecting enough uncertainty into the
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filter through Qk. In any case, whether we have a rational basis for choosing the system

parameters, superior performance of the filter can be obtained through judicious

choices of the filter parameters Rk and Qk.

It is important to remember that the Kalman Filter gives a linear, unbiased,

minimum error variance recursive algorithm to optimally estimate the unknown state

of the linear dynamics of a system whose noisy measurements are taken at discrete time

intervals. The Kalman filter yields an optimal estimate of the state Xk, optimal in the

sense that the spread of the estimate error probability density is minimized. That is, the

Kalman Filter minimizes the cost function given by

Jk(xk) = xk)TM(k xk)] (C.21)

where M is some positive semi-definite matrix. The Kalman Filter also maintains the

first and second order moments of the state distribution as we might imagine

and

E [xkl (C.22)

E [(xk xk)J (C.23)

Hence, in the case that the noise is Gaussian, the Kalman Filter gives the minimum

variance estimate of the state. If the noise is not Gaussian, the Kalman Filter gives the

linear minimum variance estimate having the smallest covariance of all such linear

estimates. In this sense, the filter is optimal.
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Also notice that *k+1 is a one-step ahead prediction. This is a very interesting

fact in that should it be necessary to predict many steps ahead, the construct is already

available. For N-step ahead prediction we consider the state transition from k+1 to N

given by

k+N-1

Xk+N = 4Ik+Nk+1Xk+1 + $+ (B1u1 + w.) (C.24)
i=k+1

where 4Nk is the state transition matrix.2 Taking the conditional expectation yields

k+N-1

Xk+N/k 4)k+N,k+lXk1/k + k+N,1 Ru1 (C.25)
i=k+1

where it is explicitly shown that the expectation is taken with condition on k. Since the

state transition matrix defines the evolution of the state from time i to time j > i, this

gives a very simple means of computing the N-step ahead prediction of xk. Similarly,

the measurement variable is obtained by a strait substitution

Zk+N = (C.26)

Hence, not only is the Kalman Filter the optimal estimate of the state of the system, but

it can be used as an optimal predictor of the future state of the system.
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C.2 The Extended Kalman Filter

Recall that the derivation of the Kalman Filter was based on linear systems.

Fowler3, in his dissertation showed that the Kalman Filter can be used with some

success on certain nonlinear systems. He showed that a control system based upon the

Kalman Filter estimator yields significant improvement with respect to covariance over

other control systems. He also showed that for nondissipative systems, the improved

performance translated to improved stability. However, in general, the covariance

matrix will grow, particularly with respect to prediction, as the nonlinearities take

effect. That is, while filtering in a linearized portion of phase space, the optimal filter

performs well. As a trajectory strays from this linearized field, the performance of the

filter will degrade.

In order to increase improvement under this more general case, the Extended

Kalman Filter (EKF) and the Iterated Kalman Filter are investigated. The EKF is an

extension of the Kalman Filter where the filter is continually updated by creating a

linearization around the previous state estimate, starting with the given initial guess.

A first order Taylor series approximation of the system dynamics is calculated at the

previous state estimate as well as the measurement function at the corresponding

predicted state. Consider the nonlinear difference equation

= J( Xk, Uk, Wk) (C.27)
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with measurement update

Zk = h( Xk, Vk) (C.28)

where, again, Wk and Vk represent the process and measurement noise, respectively. To

estimate the process with these nonlinear state and measurements, we perform a

linearization about the previous estimate. This is done by investigating the linearized

versions of Eq. (C.27) and (C.28), which are seen to be given by

and

Xk+l = Xk+1 + A(xk Xk) + WWk (C.29)

Zk = + H (xk xk) + VVk (C.30)

where A is the Jacobian matirx

W is the Jacobian

H is the Jacobian

and V is the Jacobian

Elf

A. = __!(xk, Uk, 0) (C.31)

Elf

W. = --(x, Uk, 0) (C.32)
'

ah.
H = L(xk, 0) (C.33)

' a.

Elf

V. = L(xk, 0) (C.34)
' a.
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Now, define the notation for the prediction error to be

eX (C.35)

and the measurement error to be

Zk
= Zk Zk (C.36)

Substituting Eq. (C.35) and (C.36) into Eq. (C.29) and (C.30) we obtain

e A (xk xk) + (C.37)
Xk

and

Zk
H + 'p1k

(C.38)

where Ck and 1]k are ensembles of independent random variables with zero mean and

covariance matrices W Q WT and V R VT.

Notice that these last two equations closely resemble the difference equations

for the discrete Kalman Filter defined in the previous section. This suggests that we

use the measured residual, Eq. (C.36), and a second, hypothetical Kalman Filter to

estimate the prediction error Eq. (C.35). This estimate is then used to obtain the a

posteriori state estimates for the nonlinear process. Suppose that this interim estimate

is given as êk, then the a posteriori state estimate is

Xk + ek (C.39)

The random variables defined in this process have the following probability density

functions



p(ë) iv(o, E[ë eXT])

W Qk WT) (C.40)

POlk) N(O, VRk VT)

Given this, the predicted value of the interim estimate, e, is zero and the

(hypothetical) Kalman Filter used to estimate it is simply

ek KkëZ (C.41)

Substituting this back into Eq. (C.39) and then using the measurement residual Eq.

(C.36) we obtain

= + Kk(zk zk) (C.42)

where it is evident that we don't really need the hypothetical Kalman Filter. We can

now use this for the measurement update in the Extended Kalman Filter with k and 2

as defined in Eqs. (C.27) and (C.28) and the Kalman gain, Kk from Eq. (C.16) and the

appropriate substitution for the measurement error covariance. The complete EKF

algorithm is shown in Figure C.3 and the complete set of EKF equations are given by

= J( Xk, Uk, 0) (C.43)

= A/PkAkT + WQkWT (C.44)

with the measurement update equations given by
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Kk = PHkT(HkPHkT + VRkVT)1 (C.45)

= Xk + K(Zk h(, o)) (C.46)

(I KI-I) Pi (C.47)

where, as with the discrete Kalman Filter, Eqs. (C.45)-(C.47) correct the state and

covariance estimates with the measurement Zk. Notice that the Jacobian, Hk, in the

equation for the Kalman gain Kk serves to correctly propagate only the relevant

components of the measurement information, that is, the observable components of the

state.

Now, taking this one step further, we define the Iterated Kalman Filter by

noticing that an iteration technique can be applied to update the state estimate and

covariance matrix, consequently improving performance. That is, within a given time

step, the sequences {xk} and {P'} can be defined inductively as follows:

i+1

Xk = Xk + K' (zk h(xk') Hk'( xe)) (C.48)

D
k K' H)P (C.49)

where

i ah
Hk =

and

(C.50)
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2I

(C.51)

are the updates for the linearized measurement matrix and the Kalman gain. The

induction process begins with the initial conditions

Xk = Xk = 1k-1 (C.52)

where the initial covariance matrix is taken to be the last one calculated in the previous

step. This gives the update for the JKF as

= Xk
, k+i

= (C.53)

It is evident that for

i = 0 in Eqs. (C.48)-

(C.49) we obtain

the EKF. Also

notice that both

methods reduce to

the ordinary

Kalman Filter in the

case that the

N
/

Time Update Measurement Update

4.1
x, ,

14 = PHk1HkPIHkI + kV1)

= AP.4 WQW
h( o))

Figure C.3 - The Extended Kalman Filter with the time
m e a s u r e m e n t update (project ahead) and the measurement update (correct

for the projection).
function is affine.
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It can be shown that the IKF is capable of providing better performance then

the ordinary Kalman Filter in the presence of significant nonlinearities since the IKF

introduces a reference trajectory which is incorporated into the iteratively estimates.4

Notice that the iterations can be stopped by any number of convergence criteria such

as when two consecutive values
k'

and k differ by a pre-defined amount or after a

predetermined number of iterations. Notice that this iteration technique becomes a

Gauss-Newton process under these conditions.5 The trade-off for this technique, of

course, is computational power required to perform the iterations within each time step.
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