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A METHOD OF SOLVING NONLINEAR SIMULTANEOUS

EQUATIONS WITHOUT USING JACOBIAN

CHAPTER I

INTRODUCTION

Two of the important drawbacks of using Newton's me-

thod to solve the equation

T(Tc) = 0 (1.1)

where i is mln-dimensional vector, and T is a column

vector of functions f., i = 1,2,, n are

(1) The iterations may not converge if the initial

estimate is not sufficiently close to the solution, and a

"good" first approximation is not always available.

(2) The Newton's method calls for the evaluation of

the Jacobian at each step. For complicated functions it may

be difficult to obtain the derivatives analytically, and

even when this is possible, the labor involved is usually so

huge that made the method undesirable or even impracticable.

In the first part of this thesis we describe in de-

tail some of the methods that do not require the Jacobian

matrix. In the second part, one of these methods is de-

scribed in more detail. To ensure that good initial guesses

are available, we insert a parameter into the equation.

When the Jacobian of the parameterized system becomes
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nearly singular, we do an automatic change of parameter to

try to get by the singular point. This method is compared

with the modified Newton's method for six test cases.



CHAPTER II

Quasi-Newton Methods

The algorithm using Newton's method to solve equa-

tion (1.1), 1r(i) = 5 is defined by

i(i+1) (j(i))-1 y(i) (i)
-1

if J , (2.1)

3

.where i(0) is the initial approximation and ththe 1--

approximation to the solution of (1.1). J(i) being the Ja-

cobian matrix of Y evaluated at 7(i) and "r(i)= 1-(x(i)).

In practice, instead of using (2.1), one may solve the equi-

valent ,37(i+1)_3-7(i)) _7(i)valent system, J k for the solution

of a system takes fewer operations than inverting a matrix.

At each iteration of the Newton's method, the Jacobian must

be computed. For complicated functions, the partial deriva-

tives are usually even more complicated than the function

itself. In order to reduce the amount of computation, one

may modify the Newton's method by either calculating the Ja-

cobian once exactly, inverting it at the first iteration,

and use the same matrix throughout all iterates, or calcu-

late the inverted Jacobian every k iterations,where k is a

small positive integer greater than one. If the first al-

ternative is used, the convergence rate is not as good as

using (2.1), but only one inverse is needed [6]. The sec-

ond alternative is a compromise between the two.

There are other variations of the Newton's method,



4

in which no exact Jacobian is required. Only some approxi-

mation to the Jacobian (or that of the inverse of the Jaco-

bian) matrix is needed, and this matrix is being modified

throughout the process. Methods of this type are often re-

ferred to as quasi-Newton methods. The advantage of the

quasi-Newton methods is that no exact Jacobian is required,

and in some particular methods, the modification of the

iteration matrix does not require any more evaluations of

the function 7' than would have been required if the

iteration matrix were held constant. It is then reasonable

that these methods will be economical in terms of function

evaluations; but since the Jacobian matrix is only approxi-

mate, it is also expected that the total number of itera-

tions would be more than that of the Newton's method.

The Secant Method

The secant method for simultaneous non-linear equa-

tions is a generalization of the secant method for a single

function of one variable. Solving equation (1.1) by this

(1)
method, n+1 trial guesses x , x

(2) x (n+1) must

be given and the next guess is is formed from these pre-

vious n+1 points. The idea of this method is outlined by

Wolfe [12]. Given the n+1 guesses, we find n+1 scalars,

000C1
c2,

so that
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n+1
(a) c.=1

j=1 3

n+1
(b) c.T(R(j)) = 5

j=1 3

are satisfied. Then the next guess 37* is defined by

n+1
x* = c.R(j).

j=1 3

This process is continued, replacing i(j) by i*, where

II T. (i( j)
is the maximum over the j's, j=1, 2, n+1,

for some norm, say the Euclidean norm. The process stops

when some convergence criterion is reached. This method

is based on the following fact.

If (1) T(R) = a i+ BR, a is ann-dimensional

vector, B is alnxn matrix

n+1
(2) 1 c.=1

j=1 3

n+1
(3) 1 c.Y(R(j))= S

j=1 3

n+1
--(j)

then RI' = c4 x is a root of T(R). So if
j=1

T(R) is approximately equal to its two term Taylor series

expansion around some point close to the roat,andthec.'s,

j=1, n+1 are as described in (a), (b) above, then

the generated is approximately a root of T(R).
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The main computational effort in this method is spent on

finding the c's, which are obtained by solving a system

of n+1 linear equations. A computation scheme developed

by Wolfe indicated this set of n+1 linear equations are

changed only partially from step to step, so after the ini-

tial step, the work involved is actually less than solving

a general linear system. We will give the algorithm below.

Let c = (c
1,

c2, c , c )

n n+1

37 = (0, 0, 0, 1) T.

(1)
(1) Obtain n+1 guesses, x , x

(2) ... , x
(n+1)

and evaluate the function f at these points.

(2) Form an n+1 by n+1 matrix A whose elements

are given by

3
A1.. ,= f.(x

(j) ), 1=1,2,,n and j=1,2,, n+1

A..
13

= 1 i=n+1, and j=1,2,, n+1

(3) Solve Ac = y for c, or equivalently,

c = A-17.

n+1
(4) = c. Tc(3)

j=1 3

(5) Test for convergence

(6) Find j so that 111(3E(j) 11 2= max OT(R.(k))112.

k=1,2 ,n+1

(7) Replace x(j) by i* and evaluate T(i(j)).
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(j) ,, 7i(j)),1)T(8) Let 13 = (floc ), f2k(j)x ) , ,
f (

and q = A-1 p

.th
Form the new matrix A* by replacing the 3--

column of A with F, then (A*)-1 is given by

(A*)-jk 1 = (A-1)
jk

/q
j'

for k=1, n+1

kk /= (A-1'
'

(A %1' Iki".), k

and k=1, n+1

(9) Replace A by A*, go to (3).

This method was tested by Wolfe on a number of

problems where n=2, and his experimental results showed

that the convergence is of order 12( 5 +1), which is the

same as the secant method when n=1, as shown in Jeeves

[9]. No further comparisons or tests for n greater than

two were made.

Barnes' Generalized Secant Method [1]

Algorithm.

Let Ti(i) thbe the i-- approximation to the solution

of T(R) = b.-, and B(i) the Jacobian at Tc(i), respec-

tively. As before, T(i)=F(R(i)), and R(1) is the ini-

tial guess to a root of Y(i). 6i(1) is defined by

and

B(1) 8x(1)
_r(i)

(2.3)

R.(1+1)
= x
(i)

+ i(i) (2.4)
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Then the correction matrix D (i) to be applied to B (i)

is chosen so that the corrected Jacobian B
(i+1)

.=B
(i)

+D
(i)

satisfies the equation T(i+1)
=I

.(i)
3Z(i) D

(i) is given

by

D (i) f
(i+1) (i)

)

T

(i) TSX(i)
(2.5)

where (T (i)
)

T
(i)is the transpose of z T(i) is ob-

tained by the following rule.

(a) T(1) is chosen arbitrarily. For simplicity,

S
(1)

it is chosen to be , as to ensure
II 6)7(1) 11 2

(T(1))
T
6)7(1)

(b) If i > n, T(i) is chosen orthogonal to the

previous n-1 steps, 67 (i-n+1) , Sx
(i-1)

(c) If i < n, then T(i) is chosen to be ortho-

gonal to the previous (i-1) steps, Sx (1) i(i-1)

only. In this case, T(i) is not uniquely determined. It

(i)is suggested that we take z to be the linear combina-

tion of SR(1) Si(i), which is also orthogonal to

(i-1)
Sx (1)

, (Sx . The magnitude of T(i) is arbitra-

rily chosen to be one. Barnes has a detailed discussion

in finding the vector T. This is done essentially by the

Gram-Schmidt process.

In this method, no explicit evaluation of the Jaco-

bian is required, and at each step, a linear system is
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solved to obtain (5(i), then the Jacobian matrix is cor-

rected. Some work is involved in finding 7 at each step,

but no more function evaluation is required in this method

than if B were held constant. Barnes proved that this

method will converge within n iterations, if f is li-

near.

A Class of Quasi-Newton Methods

Broyden [2] discussed a class of methods not using

derivatives in 1965. We will first describe the general

set up of the method, and then go into some specific me-

thods, finally summarize Broyden's experimental results on

the efficiency of various methods.

The class of methods.

Let
7(i)

be the i approximation to the solution

of (2.1). Define p (i) by

17(i) = -(B (i)
)

-1f (i) (2.6)

where B(1) is some approximation to the Jacobian at

37(i). The next approximation to the solution is given by

7(1+1) 7(1) t(i) 5(1) (2.7)

where t(1) is a scalar chosen to prevent the process

from diverging. When t(i) = 1 and B(i) = J(i), this

is just Newton's iteration. The heart of this class of

methods lies in the improvement of the iteration matrix
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B(1). Broyden imposes some conditions that the improved

matrix B
(i+1)

must satisfy. Consider the following.

3z = T(i) + t 5(i)
,Define (2.8)

thenforeachf.,j = n, f. is a function of

the single variable t. Taking the derivatives of i in

(2.8) with respect to t, we get

di -(i)
dt P

(2.9)

8f.

Since exists for each j, k=1, n, we dif-
Dx
k

ferentiate f. with respect to t, then

df. n 8f. dx
k

dt
_ 7 . j=1,2,,n (2.10)
k=1 9x

k
dt

Combining (2.9) and (2.10), using matrix notations, we get

dT -(i)
= J P

dt

J being the exact Jacobian at i.

(2.11)

Broyden contends that any approximation to J should sa-

tisfy equation (2.11). Assuming the derivatives are labo-

rious byrious to calculate, we will approximate h differences.
at

Consideringeachf.as a function of t alone, and ex-

panding it in a two-term Taylor series yields

f( t( )
f
-(i+1) df

s dt

Combine equation 2.12 with 2.11. We have

(2.12)
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F(t(i)-s) T(i+1) s J F(i) (2.13)

We want to find B
(i+1)

so that the following equation is

satisfied.

T(i+1)_T(t(i)-s(i)) = s(i)B(i+1)F(i)
(2.14)

The choice of t
(i) and s

(i) will be discussed later in

this chapter. Before we summarize the above general proce-

dure, we observe that if the inverse of an approximate

Jacobian is used instead of the approximate Jacobian in

equation (2.6), then we can reduce the operation of solv-

ing a system of linear equations to a matrix-vector multi-

plication operation at each step. So we define

-1
H

(i)
= (B (1)) (2.15)

and use H(1) as the iteration matrix in the following al-

gorithm.

Algorithm.

(a) Let i = 0, obtain an initial approximate solution

x(i) and an approximate Jacobian B (i)
, invert

-1
B (i)

, set H (i) = (B (i)
) ; calculate T(i)=T(X(i)).

(b) Let F(i) = -H F (i)

37(i+1) 7(i)+ t(i)i7(i)

(d) Evaluate T(i+1) = 1-(3Z(1-41))

(e) Test for convergence
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(f) set y(i) =
77(i+1) -T

(g) Find H(i+1) So that it satisfies

H
(i+1)y (i)

= s (i) p(i)

(h) i = i+1, go to (b).

In step (g), the matrix H
(i+1)

is not uniquely deter-

mined. With different choices of H
(1. +1)

that satisfy

(g) and various t
(i)

and s
(i)

we can derive a whole

class of methods without derivatives.

Particular methods.

Method 1.

B
(i+1)

is chosen so that the change in f pre-

dicted by B
(1+1) in a direction q(1), orthogonal to

T(i) is the same as would be predicted by B(i), that is

B
(i+1)()

q = B
(i) (i)

, where (Ei
(i)

)
TF(i) = 0

(2.16)

It is easy to verify that B (i+1)
, given by

(i) (i) (i)(i) (i)(i+1) (i) (y -s B p )p= B + (2.17)
s
(i)

(p
(i)

)

Tp (i)

satisfies (2.16) and the equation 7(i) = s
(i)

B
(i+1)

p
(i)

.

Since we chose to use H as the iteration matrix, we have

to correct H rather than B, and formula 2.17 cannot

readily be used. If we apply Householder's formula [8],

which says for a non-singular matrix A and vectors x,7,



all of order n, and if (A+xy
T

i) is non-singular, then

- y-T
(A +T-1; )

-1 = A-1 A-1xA-1

1+y A-1x
(2.18)

13

-(i) -s (i) B (i)-(i)p.Now letting B (i) y
A. to be x, and

s(i)(-5(i))T(130.))

iS(i) to be 7, we can get H(1-1-1) from H(i) with very

little computation.

H(i+1) = H(1)
(H(i)(i)-s(i)F(i))k-3-(i) H(i)

(2.19)

(P
(i)

)

T
H
(i)

y
(1)

Method 2.

Instead of requiring equation 2.16 to be true, here

we require

Hu-Fuei) 7(1) 0-)with v y = 0 (2.20)

Since H.
(i 1)

must also satisfy H (i+1) (i)-(i)y = -s p

we can see that H (1 +1) is uniquely defined by

H (1+1) = H (i) (H(i)7(i)-s(i)P(i))Y(i)

(y
-(i)

)

Ty (i)
(2.21)

But Broyden [2] found that this method is unsatisfactory in

practice, so it will not be further discussed.

The choise of t
(i)

and s(i).

As mentioned earlier, t(1) is chosen to prevent the

process from diverging. Broyden forced the Euclidean norm
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of 4i) to be a non-increasing function of i. By doing

so, even though convergence is not guaranteed, divergence,

however, can be prevented. One may choose t(1) to mini-

mize the norm of f
(i+1)

or just take any t (i) so that

irei+1) it F(i)
(i+1)Perhaps minimization of the norm of f will

give the greatest immediate improvement to the approxima-

tion, but in order to find t which minimizes the norm

of
y(i+1)

, the vector function r needs to be evaluated

a number of times. In fact, Broyden found that in order

to minimize the norm of f
(i+1)

, four to six function

evaluations were needed, compared with only one to three

evaluations in the norm reduction case. Unless the number

of iterations in the norm minimization case is consider-

ably less than the norm reduction case, it would take even

more function evaluations than the latter. In later sec-

tions, we will see that the norm minimization is indeed a

poor strategy compared with the norm reduction method. If

one simply chooses the Newtonian value of unity for t 1

it would require the least work in correcting the iteration

matrix H, but this does not always give a norm reduction

in f(l). With a poor initial estimate of the solution,

the Newton's method frequently fails to converge. Taking

t (i) equal to one may be a good strategy if a good

initial estimate of the solution is available. We will



15

leave the discussion of how to get a good initial estimate

for Chapter III. Since the precise method of norm reduc-

tion or minimization is not of main interest here, we will

refer the actual procedure of finding t (i) to section

seven and Appendix II in Broyden's paper [2].

The correction on Bi or Hi in the above method

depends on the derivative of f with respect to t,

(equation 2.11), and the value of 11 is approximated by
dt

the finite differences [Y(t(1)-s(1))-T(t(i+1))1s(i)

(equation 2.12). We should choose s(i) so that g is
dt

being approximated as close as possible. Furthermore, it

should be done with no extra function evaluations other

than those necessary for the norm reduction. In the case

where t
(i) is always one, the only possible choice of

s(i) is t(i). However, if in the process of norm reduc-

tion or minimization more than one function is being evalu-

ated, then there may be several choices of s
(i)

. Suppose

the norm of f is evaluated successively at t = tk,

k = 2,, where t1 = 1, and tz = t (i)
. Further-

more, t (i) is the value of t that reduces (or mini-

mizes) the norm of T(i)
, then we choose s

(i) =t -t
i-1

(2.22). We will not go into a detailed discussion on how

the s(i) is chosen here; this topic is referred to

Broyden [2], section six.

In the subsequent comparison of methods, if s
(i)
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is chosen to be equal to t( i)
, then the term "full step"

is used, if s
(i) is given by equation (2.22), it is

called "incremental".

Some experimental results and comparison.

Broyden's comparison of the various methods are

based on what he defined as Mean Convergence Rate, R, de-

fined by

N
R = 1 kn I

m Nm
(2.23)

where m is the total number of function evaluations and

N Nm are the initial and final Euclidean norms of Y.

Method 1, using norm minimization, norm reduction, full

step, and incremental are compared with the constant mat-

rix method and the basic method. In the constant matrix

method, the Jacobian is calculated first by finite diffe-

rences and then inverted; this same matrix H
(0)

is used

throughout all iterations. In the basic method, at each

iterate, H
(i) is recalculated the same way H

(0)
is

calculated.

In Broyden's first four test equations, method 1

with norm reduction, full step variation and the basic me-

thod, (both the norm reduction and minimization) did con-

sistently well, but the norm minimization variants of me-

thod 1 tended to be slow. The incremental method seemed
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to be either very efficient or very slow. Broyden sug-

gested that probably a better method of choosing s could

make this method more competitive, but no more experiments

were done regarding this respect. The constant matrix did

reasonably well if a good initial estimate to both the

Jacobian and ;7 at the solution were available, otherwise,

it tended to have a low mean convergence rate. In no case

was it better than method 1 with full step reduction.

Based on the results from the first four test equations,

Broyden tested six more equations, comparing the basic me-

thod with method 1, full step reduction only. He concluded

that norm reduction is a better strategy than norm minimi-

zation. He also tentatively concluded that if a reason-

ably good initial estimate of the solution is available,

method 1 with full step norm reduction is superior to the

basic method; otherwise the basic method is better. But he

also mentioned in all of his test cases, method 1, with

full step reduction has never failed to converge when the

basic reduction converges. The former may be a very good

alternative to the basic method, especially when a good

initial estimate of H
(0)

is available.

In a later paper [3], Broyden found that norm re-

duction is not necessary, or even inhibits convergence, if

a good initial estimate is available. Throughout the pre-

ceeding discussion, it is clear that a good initial esti-

mate is imperative for rapid convergence, and we will
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discuss how it can be done with the use of a parameter

in Chapter III. In Chapter IV, we describe a method using

Broyden's method 1 with s
(i) =t (i)

, always equal to unity,

and with the use of a parameter to solve a system of non-

linear equations. We conclude this chapter with a func-

tion minimization method which may be used in solving a

system of equations.

Least Square Minimization Method

Any method which minimizes a sum of squares of non-

linear functions can be applied to solve equation (1.1) in

the following way. Let F(x) = [fic.(3i)]
2

= ri(3) II
2

,

2
k=1

or in matrix notation:

T(i) = 1-(37)TE(3Z) (2.24)

where T denotes transpose. Suppose a minimum of F is

found and at the minimum F(K) = 0, since F is the sum

of n non negative terms, the R that minimizes F also

solves the system f(x) = T.

In this section we first describe the generalized

least square method and then introduce Powell's modifica-

tion [11] which does not require any derivatives. We dif-

ferentiate (2.24) with respect to 7,

Fl(i) = 21.(3i)T1.1(7) (2.25)

.th
Let R* be 1 approximation to the position of the
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minimum 7, and define a vector T so that 3i*+T =

then the derivatives in equation (2.25) evaluated at

equal to zero.

1(TEIr+T)TP(i*+T) = UT (2.26)

Expanding each term in the above equation by a two-term

Taylor series about 3i*, we obtain

(Y(K*)+P(x *)T)T(P(70')+P(R*)T) UT (2.27)

If we assume the term TH(37*)T. is small compared with

P(37/) , we have

T(R*)111'(x *) + TTP(Tc*)TP(x *) =
T
0 (2.28)

Using matrix notation, letting J denote 1'(T1,), re-

write (2.28)

16p9TJ TTJTJ ; uT

The generalized least square method is defined by

TTJTJ _T(37*)Tj
(2.29)

Solving (2.29) for T and Ti(1-4-1) is defined to be

+ mT, where am is a scalar minimizes the function

F(T*+XT). A procedure described by Powell [10] can be

used to find the minimum of F along the line R* +

Powell's iterative procedure not using deriva-

tives essentially approximates the derivatives by finite

differences, but after the initial iteration, all subse-

quent calculations of derivatives by differences actually
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use function values already evaluated during the course of

minimization, hence no substantial extra computation is

needed. In this iterative scheme, an estimate 7* to the

position of the minimum T; n linearly independent vec-

torstors d
1

, d
-2

, d
n

and an estimate of the derivatives

are required. We define TM to be a finite difference

approximation to the derivative of f in the direction

3 , for i = 1, 2,, n, that is

(i) (i)y = J d i = 1,2,,n. (2.30)

The magnitude of the j(i)
's are chosen so that each of

the vectors y satisfies the following

(i)112
= i = 1,2,,n (2.31)

At the initial iteration, d
(1)

, d
(n)

. are chosen to

be coordinate directions,
a(1) = (0,0,,S ,0,,0) T

i I

where the S
i

(i)
's are chosen so that each y satisfies

(2.31).

The T's are found by the following equation

Y
(i)

F(X* ,X11 Y-FE.1 ,,X*)-1(X*)
[

E. l

l' n
= Si

1
1

Where all

i = 1,2,,n (2.32)

c., i=1,2,,n are scalars, chosen to yield

reasonable estimates to the derivatives. Now define a

vector T by
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q.a(i) (2.33)
i=1 1

The scalars qi, i=1,2,,n are chosen so that T sat-

isfies equation (2.29). Let R denote the matrix whose

column vectors are
T(i)

and the vector q=(qi ...,qn)
T

Combining equations (2.29), (2.33) and assuming the approx-

imation of equation (2.30) is a good one, we solve the

following for q.

T
T T

q R R = -f(x*) R (2.34)

_*
Then at the next iteration, x is replaced by i* + AmT,

where Xm is a scalar which minimizes F(P + X'). Be-

fore commencing the next iteration, one of the directions

a(j) is replaced by T; and the derivatives of Y along

T should be calculated. This CO) to be replaced by T

is the one that maximizes the following expression

[Y(i) fk kk=1
i =

after j is determined, the vector T(i) should be re-

placed by the derivative of Y along T. To calculate

this new T, (3) , we can make use of the function values

already obtained in finding am. If for k=1,2,,m,

F(x * +Xj) is calculated, we choose Az, Xj which yield

the lowest and the next lowest values of F(i* + AT).



TApproximate TT (x*+x0) by
¶(K*+XtT)-1(3c*+Xj.g)

(X X.)
k 3

and denote the last quantity by the vector U. We have

T(31*+A97) T(Tc*I-A
)
3)

x x.
(2.35)
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Further improvement of 7(j), which approximates J a(j),

is obtained from the following.

ii.T(R*+Am7")

= u ( ) 7(x*-1-AmT) (2.36)
11f(X*+X T)II2m 2

If the square of the Euclidean norm of 7(3) as defined

in (2.36) is not one, it should be scaled to be so. Using

the 7(j) defined in equation (2.36) and replacing 37*

by Tifc+xmT, a(j) by T, the next iteration can now

begin.

It is found by Powell that this method which re-

quires no derivatives has the same convergence properties

as the generalized least square method, and that it can

be very effective even if the individual functions in

(2.24) do not tend to zero at the minimum.



CHAPTER III

Construction of Parametrized Equations

The method of using a parameter to generate good

initial guesses in solving equation (1.1) is originally

due to Davidenko, and investigated by some others [7, 6,

3]. The idea is the following: choose a parameter be-

longing to a real interval I. (y can be chosen to be-

long to a product of intervals, but we will only discuss

the real parameter case. For further theory on this to-

pic, see [6].) Define a function Y(y,R), so that for

some
10

,y
m

E I, 1.(y
0'

= U is solvable and

Form,70 = Y(7) .
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Rather than solving the original equation

(1.1), we solve a series of intermediate problems by vary-

ing y from yo to ym, solving equations for

Y = rYO Y1 r ,yreNowforeach
yi

,the solution for

the equation T(yi_1,) can serve as a good guess, pro-

vided the increments for the Y's are chosen properly.

The parameter is inherent in some physical problems, or it

may be inserted.

An obvious way to insert a parameter is to set

1(y,) = (1 -y)3 + yl-(Z), 0 < y < 1. Generally if there

is a function Ti(i), whose solution is obtainable, (say a

system of linear equations),we may set
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F(y,x) = (1-y)4(x) + yY(R), 0 < y < 1, [6]. Broyden [3]

also suggested the following. Given some approximation

R (0) to the solution of (1.1), we solve the sequence

1-(7) = 1-(7(0)).yi,

so that 1 > yi

E (i) = E(°)-y has

and the Jacobian

these solutions,

i = And the y's are chosen

> > ym = 0. If the equation

a solution x for all y, 0 < y < 1,

of Y exists and is non-singular at all

we may set T(y,ii) = r(R) - f(0)y, and

(1.1) can be solved. These are just some ways the para-

meter can be inserted. See Freudenstein and Roth [7] for

a different example.

If the initial estimate to the solution is not suf-

ficiently close to the root, then Newton's method, and in

fact, most functional iteration methods frequently fail to

solve the problem. With the use of a parameter, the same

equation can often be solved. However, there is one prob-

lem involved with the use of a parameter. Suppose there

is one or more y., 1 < j < m, such that the Jacobian of

the function becomes nearly singular, then one or more of

the intermediate problems cannot be solved. The whole

process breaks down at this point and the solution cannot

be reached. In practice, we detect a possible singular

Jacobian from the increment of y. Suppose

y.
1 1

y.
-1

+ h, i = 1, m; we specify an upper limit
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Z
1

to be the maximum number of iterations allowed for

each problem. If the process does not converge within Zi

iterations, we decide the previous solution as an initial

guess is not close enough and the step size is too big; so

h is halved. Now if the process converges in fewer than

a lower limit k
2

set for the number of iterations, we

can take a bigger step and go faster, h is then in-

creased. A proper increment for y is important for it

has to be small enough so that the solution at yi_1 may

serve as a good initial estimate for the next step, and

big enough so that it will take a reasonable number of

steps to converge. A threshold is set for the increment;

if the increment of y at any step falls below the thresh-

old, we may encounter a nearly singular point. The

change of parameter method originated by Davis is one way

to deal with the singularities. I have used this method on

several equations and found it to be successful. The expe-

rimental results are presented in Chapter V. Before we

describe how the change of parameter method works, I would

like to mention a method that Freudenstein and Roth use to

treat singularities. Since I did not use this method in my

programs, it will be mentioned only briefly here. Suppose

the function 1(7) in equation (1.1) to be solved is in

the following form
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) T
13j0

P.. (1)..13 (37
1

), i = 1, 2, n (3.1)

=

where m is a positive integer and the (P's are some

functions of K. Another function 4(i), in the form

qi(K) = To qij (Pij(R), i = 1, 2, n (3.2)

has a known root. One may solve a set of M+1 intermedi-

ate equations .74(k)(i), where

(k)
. (x) = fq. .+(p..-q. .)7140. .(7),

gi 13 13 13 m 13
j=0

(3.3)

As we solve equation (3.3) for k = 0,1,2,,M the co-

efficients of (Pii(7c) are varied, changing from those in

equation (3.2) to those in equation (3.3). In this method,

singularities are detected by the Jacobian determinant; if

it drops below a predetermined value, we have a nearly

singular point. At this point the coefficients are only

incremented one at a time and the effect on the Jacobian

determinant is noted, then the coefficients are selective-

ly incremented so as to increase the value of the Jacobian

determinant above the predetermined minimum. After this

is done, the regular increment may be re-introduced. Even

though there is no guarantee that this routine would work,

Freudenstein and Roth found in practice they do eliminate

the singularities in a large majority of cases.



27

We next outline the change of parameter method.

For further theory of this method, the readers are refer-

red to Davis [6]. Suppose the Jacobian matrix of the

equation

(3.4)

becomes nearly singular at Y*, Yo < Y* < Ym. We define

a new parameter peI*, another real interval, and a

continuously differentiable function G which maps a

neighborhood of (p*,*) into I, such that

y* = G(p *,x *). Then the function F near y* is defined

by

T(y 7) = T( G ( p ,R) ,x) = T* ( p (3 . 51

While the Jacobian matrix [a] is singular at y*
k j k

the matrix [3c3 ] may not be. Differentiating (3.5)
k j,k

with respect to xk, we get

aF.
@G--1 (pu3Z) = --2 (y,R) + (p,TE) (3.6)

axk DJ
33ck

3X

If J denotes the Jacobian of F at 7i, J* the

Jacobian of T*, T the derivative of T with respect

to gamma and Gx, a row vector, the derivative of G

with respect to Te, equation (3.6) can be rewritten in

vector notation



J* = J + F Ux (3.7)
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In practice, the function G is chosen to be

G(p,x) = p+V37, V being a n-dimensional row vector

c(1,1,,1), or c(-1,1,11), where c is a scalar

factor determined so that the change of parameter method

is most effective, if it works at all. Now the change of

parameter equation is

y= p+ v R (3.8)

with this particular G, we rewrite (3.7) as

J* =J+F V (3.9)

Cullop [4] suggested a proper choice of c may be one so

that 1JII = HY VI If we choose to use the maximum

norm, this means c nlIF00 =
Y c°'

so

c
010,

where both J and F are evaluated at
n ry

the last convergent solution x(j) at the j
th

step.

After making some progress with the new parameter p, we

switch back to the original parameter and proceed until

the last equation is solved.

The change of parameter method may or may not work.

If the dimension of the null space of J evaluated at

y*,T* has dimension more than the dimension of the para-

meter space, (in this case, one) or F is in the range

of the Jacobian, this method will not work. In the first
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case, a parameter with dimension greater than one may be

used, even though it is more complicated. In the latter

case, a different parametrized equation has to be set up

and a new set of equations solved.

From the experience with several equations, the

change of parameter method seemed to work very well. In

the next chapter, programming details about the change of

parameter are explained.
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CHAPTER IV

Details of a Method Not Using Jacobian

In this chapter, we give the programming details of

a method which solves a system of non-linear equations

with a scalar parameter. In this algorithm, all the inter-

mediate equations are solved using Broyden's method 1 as

described in Chapter II. A subroutine RHO is written to

take care of the change of parameter, if any singular

points should arise during the process. First we give the

information about how this program can be used, the various

subroutines used in the program, the main program and fi-

nally some flow charts.

Subroutines To be Provided by the User

There are three FORTRAN subroutines the user must provide.

(1) For initial values.

SUBROUTINE GIVEN (N, G, GL, SH, HL, X, CF)

COMMON (If needed)

DIMENSION X(10)

In this subroutine, all the variables in the para-

meter list are to be assigned a value in the subroutine.

It is called only once at the beginning of the main prog-

ram. Any other initialization for the user subroutines

can also be done here. Below is a list of the names of
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the variables and their corresponding inputs.

Parameter Input

N Dimension of the system, not to ex-

G

ceed 10.

Initial value of gamma. (The value

of gamma for which the solution of

f(y,R)=U is known or solvable.)

GL The last value of gamma. (The gamma

for which F(y,X)=0 is to be

solved.)

SH Initial increment for gamma.

HL The threshold for gamma, in absolute

value.

X An n-dimensional vector, the ini-

tial guess to solve r(y,R)=U.

CF Convergence factor, if

Hi(i+1)-R(i)11
2

CF117i(1 +1)11
2

the iteration will stop.
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(2) For function values

SUBROUTINE PG (G, X, F)

COMMON (If needed)

DIMENSION X(10) , F(10)

The function value of F(G X) is calculated and

stored in F.

(3) For the partial derivatives of f with respect to

gamma.

SUBROUTINE PGAM (N, X, PL)

COMMON (1-f needed)

DIMENSION x(10),PL(10)

The partial derivative of F with respect to G is

evaluated analytically and assigned to PL.

The main program and all its necessary subroutines

are stored in *ASEN. *ASEN and the three user provided

object decks must be loaded together. If the user sub-

routines are stored in a saved file, say USER, then after

the job card, we only need

8
7 LOAD, *ASEN, USER

RUN

7 LOGOFF
8

Subroutines in *ASEN

Below we give the names of each subroutines used in
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the main program along with a brief description about what

is accomplished in each. In all of the cases below, N

stands for the number of variables in the problems to be

solved. In some cases further details are given later in

this chapter.

(1) SUBROUTINE AX(A, X, N, Y)

DIMENSION A(10, 10), X(10) , Y(10)

Multiply the matrix A with a vector X to get a

N
column vector Y. Y. = A.. X.

1 13 3

(2) SUBROUTINE XA(X, A, N, Y)

DIMENSION A(10, 10) , X(10) , Y(10)

Similar to (1), but X now is a row vector, the

N
order of multiplication is XA = Y, Y. = j1 x. A...

3 31

(3) SUBROUTINE PROD (N, A, B, P)

DIMENSION A (10) , B(10)

P is a scalar product of vectors A and B,

N
P = I A.B.

1 1
i=1

(4) SUBROUTINE PRODM (N, A, B, C)

DIMENSION A(10) , B(10) , C(10, 10)

Multiply a column vector A with a row vector
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B to get a matrix C, C.. = A.
1

B..
13 3

(5) SUBROUTINE ANORMM (C, N, UBM)

DIMENSION A(10, 10)

UBM is the maximum norm of the matrix A.

N
UBM = Max IA..1

i j=1
13

(6) SUBROUTINE ANORMINF (N,X,P)

DIMENSION X(10)

i=1,2,...,N

The value P is defined to be the maximum norm of

the vector X.

P = Max IX.'

(7) SUBROUTINE TNORM (N,V,TN)

DIMENSION V(10)

i=1,2,,N

TN is the Euclidean norm of the vector V.

N
TN= 1 V.

2

i=1

(8) SUBROUTINE INVERSE (N, D, B)

DIMENSION X(10), B(10, 10), D(10, 10), A(10, 20)

Given any matrix D as input, the inverse D is

obtained by Gauss elimination with partial pivoting.

(Row interchanges, if needed) output is the matrix B.

(9) SUBROUTINE GJACOB (N, H, G, X, PX, P)

DIMENSION X(10) , PX(10, 10), Y(10) , P(10), PP(10)
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The Jacobian of the function F(G,X) is approximated

using finite differences. The function value

P = F(G,X) has to be calculated before calling

GJACOB. H is a small scalar. The Jacobian is

stored in PX.

PX13 ..

(10) SUBROUTINE JINVERSE (N, G, X, F, H, SH, DN)

DIMENSION X(10) , F(10), H(10,10) , D(10,10) , B(10,20)

Given current values of the parameter G, X, and

F = F(G,X) and a scalar SH, the approximate

Jacobian D is first calculated and then inverted.

Outputs are a scalar DN, the maximum norm of D;

and a matrix H, the inverse of D.

(11) SUBROUTINE PREDICT (N, X, PI, PL, SH)

DIMENSION X(10) , PI(10!10), PL(10) , XP(10)

Upon entry to this subroutine, X solves F(G,X)=5.

By calling PREDICT. X is "corrected" using Taylor

series expansion so that it may be a better initial

guess to solve F(G+SH,X). The partial derivatives

with respect to gamma, PL; the approximate inverse

of the Jacobian, PI; all evaluated at X, should

be available before calling this subroutine.

(12) SUBROUTINE RINC (SH, SR, H, V, PL, N)

DIMENSION H(10,10) , V(10) , PL(10)
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When we change the parameter using the equation

y = p+vx, the increment for the p parameter SR

is calculated in RINC.

(13) SUBROUTINE GINC (SH, SR, H, V, PL, N)

DIMENSION H(10,10) , V(10) , PL(10) .

Similar to RINC, but this time the increment of

y, SH is calculated.

(14) SUBROUTINE BROY (N, N2, I, H, X, F, ID, V, G, R, CF)

DIMENSION X(10) , F(10) , P(10), FM(10) , Z(10), T(10) ,

B(10,10) , H(10,10) , V(10) , Y(10)

This subroutine solves the equation F(G,X) =

using Broyden's method (or F(R+v.X, X) = 6, if it

is in the R parameter). The value ID equals to

zero indicates it is in the G parameter, other-

wise R. I is the total number of iterations it

took to satisfy the stopping criterion, if conver-

gent. CF is the same as described in SUBROUTINE

GIVEN. N2 is the maximum number of iterations

allowed each time BROY is called. If the stopping

criterion is still not met on the N2th iteration,

the process is considered non-convergent. H is an

approximate inverse of the Jacobian F or F*.

(15) SUBROUTINE RHO (N, N1, N2, G, HL, IC, SH, SR,IT,

IFF, X, XM, XMl, V, PL, H, HB, CF)
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DIMENSION X(10),XM(10), XM1(10) , PL(10), V(10) ,

H(10,10) , HB(10,10) , Q(10) , P(10) , F(10) ,

Z(10), B(10,10) , U(10) .

When a possible singular point is detected, the sub-

routine RHO is called to effect a change of para-

meter. If the change of parameter works, after nine

successful steps in RHO, the routine would go back

to the main program. XM, XMl are storage locations

for values of X from the two previous successful

steps; HB is the approximate inverse of the

Jacobian of Tr*(R,X).

General Strategy

In this section, we will describe how the main

program works. Given an equation 1(y,i); two particular

values of y, yo, and ym; and a good estimate to a

solution of 17(y0,3i) = 0, this program attempts to solve

Y(ym,37) = 5, by varying y from yo to ym and solving

the equation F(y,70 = b. for some intermediate gammas.

Each of these equations are solved by Broyden's method. If

no singular points are encountered as we solve f(yi,) =5,

i = 0,1,2,,m, then the main subroutine we use is BROY.

BROY will be flow charted in the next section. In solving

17(yi,7i) = U, we allow a maximum of N2 iterations (N2
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is taken to be eight, the choice of this number is dis-

cussed later in this chapter.) If the two norm of the dif-

ferences of (j+1) and x(j) is less than or equal to

the convergence factor CF times the two norm of x
(j+1)

thej+lthiterateforthesolutiontof(y.,i) =

1 < j < 7, then the method is considered successful,

otherwise not successful.

In deciding an approximate increment for the para-

meter, we choose to do the following. If the process con-

verges in exactly N1 iterations (we will take N1 to be

six; this choice will be discussed below), we will leave

the present increment SH alone; if more than six, the

step size is halved, regardless of convergence or non-

convergence. Every time the increment is halved, its ab-

solute value is checked against the threshold HL set by

the user, if ISHI is less than HL, a change of para-

meter will take place. In the case of failure of conver-

gence, the previous convergent value of 3i, the approxi-

mate inverse of the Jacobian, H; and gamma G from the

last step are restored. In the case of two or fewer ite-

rations, we decide that the step size is too small, and is

replaced by three times SH. For the case of three to

five iterations, the increment is doubled. The only excep-

tion to the above rule of increasing the step size is at

the step immediately after SH was halved; in this case,

the step size is not to be increased. The above discussion
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on increasing or decreasing the step SH of the G para-

meter works the same way for the SR of the R parameter.

The numbers six, eight, etc., used here in deciding the in-

crease or decrease of the increment are chosen quite arbit-

rarily, but they seem to work fairly well. As for the maxi

mum number of iterations allowed to solve each equation, it is de-

cided based on Cullop's [4] experiments. He used six as

an upper limit in the modified Newton iteration, since the

methods not using Jacobians supposedly take more itera-

tions than Newton's, we allow two more iterations in the

upper limit. It is not known yet whether some other

numbers will be more efficient. If the iteration is suc-

cessful, the values of X, H, G are stored, and then

printed in the following order. The value of gamma, G;

the number of iterations it took to converge, I; the

cummulative number of iterations, IT; the number of

times the Jacobian is calculated by finite differences,

IFF; the increment of gamma, SH; (in the RHO subroutine,

the increment of R, SR is printed instead of SH, and

then R is also printed). On the next line, print all

components of the solution X. The value of G is com-

pared with the last value of gamma, GL; (GL = Ym), if

they are equal, the final answer of the root X and the

function value at X are printed. If G is not equal to

GL, the parameter is incremented and begin to solve the

next equation. In the gamma parameter before we add SH
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to G, we make sure the resulting value of G does not

pass by the final gamma GL. This is done by making sure

ISHI < IGL -GI, if SH has the same sign as GL-G.

We have mentioned in Chapter III, the solution

to f(yi,3i) = 5 may serve as an initial guess for

F(Yi+1,7) = U. However, we can improve this guess with

little extra work. This is done in subroutine PREDICT.

We consider R as a function of y, where f(y,Ti.) = 5,

let R(i) = i(y.) and f(yi,x (i)
) = 5, upon differen-

tiation with respect to y, we get

or

x
(i) 67uY (i) (i)ky.,x ) + f (y.,x ) =

-1
(1)c - (y,7c(i)) 0-))
dy x y

(4.1)

Now write a two term Taylor series expansion for x(y)

about Y., we get

(i+1) -(i) -
= x + 30(y.)SH (4.2)

'Equation (4.2) will provide a good approximation if

SH is sufficiently small; combining this with equation

(4.1), we have

)7(i+1),.i 37(i) yx(yi,-31-(i))-1 Fy(yi,3E(i))SH (4.3)

Hopefully, the right hand side of equation (4.3) will give

(1 +1) -()a better approximation to x than x alone.
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From now on, H will denote an approximate inverse of

the Jacobian, and PL denotes the partial derivative of

F with respect to y. Rewriting (4.3) in this new nota-

tion, we get

x(i+1) (i)
x - H PL SH (4.4)

In the RHO parameter, the above theory works the same

way. Suppose the change of parameter is given by

y = V is a constant row vector and

F(Y,T) = F(P+vK,K) = F*(P,K) (4.5)

Let HB denote an approximate inverse of the Jacobian to

the function on the right hand side of equation (4.5).

Since the partial derivative of F with respect to y is

the same as that of Fic with respect to p, to get a bet-

ter prediction in RHO, we simply change H to HB and

SH to SR in equation (4.4).

When ISHI < HL, the subroutine RHO is called,

and the parameter p is tried, where

y = p+VR, V = (4.6)

c is a scalar factor as described in Chapter III. Then

HB and SR are calculated. The derivation of HB is

covered in Chapter II and III, (equations 2.19, 3.3, 3.4).

We will just restate the result here with the notation of

this chapter.



HB H - HPLVH=
1+VHPL

(4.7)
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The R increment SR is calculated in RINC. If we dif-

ferentiate equation (4.6) with respect to y, we get

1 cc*, +
dx

(4.8)

Combining this with equation (4.1), using notation of this

chapter we get

dp
= 1 + V.H.PL

dy (4.9)

Now dp, dy are fair approximations to SR and SH. SUB-

ROUTINES RINC and GINC calculate SR from SH and vice

versa based on equation (4.9), replacing dp, dy by SR

and SH.

At the first iteration where we switch from one pa-

rameter to another, we recalculate the solution at the

same point (the last convergent point before changing para-

meter) with the new parameter, this usually takes only one,

at most two iterations. The reason for recalculating the

same point is to ensure that the new Jacobian is non-sin-

gular. After eight more successful steps in the new para-

meter RHO, the program returns to the G parameter.

Solving T*(p,7) = 0 involves slightly more work than

solving F(Y,74.) = 5, for the equation provided by the user

is in the G parameter, so whenever the function value is

required, the value of G has to be available before T
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can be evaluated. In RHO, since G is a function of

both R and X, when either R or X is changed, G

must be recalculated. Also in RHO, there is no way to

check whether G is equal to GL. Aside from these dif-

ficulties, solving F4(p,70 = 0 in RHO is on the whole

the same as solving 17(y,i) =:15. We use the same crite-

rion for convergence, and increasing or decreasing step

size in both. In the RHO parameter, however, if ISR1

falls below HL, there are several alternative approaches.

If there had been six or more successive iterations in

RHO, we go back to the original parameter assuming the

singular point is passed. In the case of fewer than six

iterations, another vector V = c(-1,1,,1) is tried,

giving a new parameter R'. Switch back to the G para-

meter if we can get at least six successful iterations.

Suppose the second change of parameter is tried and could

only bring from three to six successful steps before ISR1

falls below HL again, the G parameter is tried anyway,

hoping these steps in R"have brought it past the singu-

lar point. However, if R' only yields two or fewer suc-

cessful steps, we consider it a failure and set IC = 0

to indicate this fact, then return to the gamma parameter.

In this case, if only one (or no) successful step in the

gamma parameter is obtained, a message will be printed,

and the user should find a different way to parametrize

the equation.
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It is found in all test cases, nine successful steps

in R suffices to bring the equation past the singular

point. In case that nine steps are not sufficient (this

fact is indicated by the failure of convergence if switch

back to the G parameter), the program will go back to

the R parameter and continue from where it had left off

without having to calculate HB and SR again.

At the beginning of the program, and whenever a

change of parameter takes place (from G to R or vice

versa), the approximate Jacobian is calculated and then

inverted. The matrix H (or HB) is being corrected as

we go along. If there is no change of parameter needed,

only one Jacobian is evaluated. Even in the change of

parameter case, it is not clear, without further experi-

ments, whether the finite difference evaluation of the in-

verse of the Jacobian may be skipped without leading to

slower convergence or even non-convergence.

One last point we ought to mention here before we

turn to the flow charts is that whenever we change from

one parameter to the other, it is possible that we may

proceed in a direction where the previous X are calcu-

lated again. If we have no way to detect this situation,

the value GL may never be reached, and the equation is

not solved. To avoid retracing the curve, after the se-

cond successful step in a different parameter, we make

sure at least one component of the solution X or the



45

gamma parameter does not retrace itself. We can illustrate

this as follows. Suppose we change from G to R, we la-

bel the three consecutive points of X(G), say P1, P2,

P3; the points P1, P2 are calculated by solving

f(G,X) = 0, P2 (again) and P3 are found by solving

f*(R,X) = U. Calculate the corresponding G in each of

these points, say G1, G2, G3. If at least one of the

following equations is true, we keep the calculated step

SR. The equations are

and

(G3 -G2) (G2 -G1) > 0

(X(3)-X! 2)
) (X(2) - X!

1)
) > 0 1<i<N

If none of the above equations are true, change the sign

of SR and recalculate the point P3. This idea of

checking for retracing curve is due to Cullop [4].

Flow Charts
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CHAPTER V

Comparison of Some Methods with Experimental Results

Basis for Comparison and Test Equations

The method described in Chapter IV is compared with

the modified Newton's method programmed by Cullop [4].

Both of the methods use a parameter to ensure a good ini-

tial guess to be available. Also each program has a sub-

routine to take care of the change of parameter, if needed.

Cullop's modified Newton's method works as follows. In

applying the iterative scheme defined in equation (2.1),

the Jacobian matrix is calculated on the first and fifth

iteration. At each iteration, the system

J(i(i+1)-x(1)) = -1-(i) is solved. The basis of compari-

son is the actual computer time used. We also list the

total number of iterations for reference in each case.

Both methods are programmed in FORTRAN, and run on

CDC 33000. We will first list the six test equations to

be solved, then the ones with parameter, and the initial

conditions.

Case 1. This is a test equation used by Freudenstein

and Roth [7]
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f
1
= -13 + x

1
+ ((-x

2
+5)x

2
-2)x

2

f2 = -29 + xl + ((x2+1)x2-14)x2

F
1
= -71+x

1
+((-x

2
-13)x

2
-50)x

2
+y(58+(18x

2
+48)x

2
)

F
2
= 129+x

1
+((x

2
-19)x

2
+106)x

2
+y(-158+(-18x

2
+120)x

2
)

Initial values: x
1

= 15, x
2
= -2, 0 < y < 1

Case 2. This test equation differs slightly from the

above case, but no change of parameter is needed.

fl = -13 + xl + ((-x2+5)x2+2)x2

f2 = -29 + xl + ((x2-14)x2+262)x2

Fl= -71+x1+((-x2-13)x2-50)x2+y(58+(18x2+52)x2)

F2= 129+x1+((x2+19)x2+106)x2+y(-158-(33x2-156)x2)

Initial values xi = 15, x2 = -2, 0 < y < 1

Case 3. Polynomial equations

F1 = y(xix2x3+4x33 )+xl+x2-xix3-8

F2 = y(x3x22 +xix3)-2x1+x2/2+x
3

2
+4

2 2
F
3

= y(xi+x2+x3)x3+xix3-x22 +x2x3-1

Initial values are x
1
= 3, x

2
= 2, x 3 = 1;

they solve the system when y=0. Different equations are

obtained when we set different final values for gamma.
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If the last y is chosen to be one, no change of parameter

is necessary, however, if the last y is set to be a nega-

tive number, say -1, there are several times a change of

parameter is needed.

Cases 4-6.

These three examples are taken from elasticity de-

scribed in Davis' Technical Report [6]. They describe the

deformation of a shallow clamped symmetric spherical cap

under uniform pressure. These equations are very compli-

cated and hence not given here. Two of the parameters in-

volved in these equations are A and p
2

. A is inver-

sely proportional to the pressure applied to the cap and

2
ip is related to the thickness of the cap. In each of

these cases,
2 is held constant, and the A parameter

is incremented from zero to one. It is found that when

p2 is small, (less than seven) , no change of parameter is

2
inecessary, but if p is big, then there are several sin-

gular points and the bigger p
2 gets, more singular points

arise.

Case 4.
2

Case 5.
2

Case 6.
2

= 5 0 < X < 1

= 9.8 0 < X < 1

= 15 0 < X < 1

Each of the test cases involves six equations and six
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unknowns. The initial values of x, when A =O, are all

set to be (1,1,1,1,1,1).

The above test equations were solved by both the

modified Newton's method and the Broyden's method with the

same initial guess to 7, convergence criterion and the

threshold for the step size of the parameter.

Experimental Results and Case Discussions.

Case 1. Using the modified Newton's method, the solution

(5,4) is found without changing the parameter.

With Broyden' method, a change of parameter is

necessary at A = 0.92362 and finally the

program returns to the original parameter and the

solution at A = 1 is reached.

Modified Newton

CPU time (sec.)

No. of iterations

7.3

157

Broyden

6.9

425

If we try to solve this problem with Newton's me-

thod, using the same initial guess (15,-2), but without

the use of a parameter, the iteration will not converge to

any solution, see [7]. Broyden [3] has also worked on this

equation but used a different parameter 0, and the me-

thod failed. The failure of the method may due to the

singularity of the Jacobian as 0 decreases from 0.418

to 0.368. Since Broyden's method described in his paper
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did not take care of singularities, the process broke down

and the solution is never reached. Frudenstein and Roth

[7] also solved this problem with their parameter perturba-

tion procedure.

Case 2. In this test equation, both the modified Newton's

method and Broyden's method converge to the solu-

tion (-8.43481, -1.91165) when y=1 without a

change of parameter.

Modified Newton Broyden

CPU time (sec.) 6.4 4.1

No. of iterations 9 17

Case 3. In this test case, the parameter is set to be

equal to zero initially; then we let y increase

when y = 1, we solve the following set of equa-

tions without any change of parameter:

fl = xix2x3 + 4x2 + xi + x2 - xix3 - 8

f
2
= (x

3
x
2

2 + x x
3

) - 2x
1 3
+ x

2
/2 + x2

4

f
3

2= (x1 + x22 + x32 )x3 + xix3 - x2 + x2x3

Modified Newton

CPU time (sec.)

No. of iterations

7.83

36

1

Broyden

4.0

34
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The solution is (2.42649, .72091, .15863).

Now if we let y go into the negative direction,

there are several singular points. In this case we did not

look for a final solution for any specific gamma, only the

behavior of the components of the solution x(y) are

noted. But if we compare the time each of the two methods

took to reach a value of gamma, say 0.041, the modified

Newton took about 14 seconds compared with 11.5 seconds

using Broyden's method. In both methods, there were four

times the parameter p had to be used. y would first de-

crease and then increase until it became positive and the

curve is not traced further. The behavior of the solution

may be best illustrated with a graph of one of the compo-

nents of x, we plot x1(y) below

-.2 -.1

y<0

rt xi

-20

-20

-10

y>0

0.1 0.2 0.3
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Case 4. With p
2 = 5, no change of parameter is necessary.

Modified Newton Broyden

CPU time (sec.)

No. of iterations

6.7

11

5.0

18

Case 5. With p2 = 9.8 in both methods, the parameter was

changed twice.

Modified Newton Broyden

CPU time (sec.)

No. of iterations

Case 6. p
2

= 15.

27.9

352

16.9

388

There were also two places the parameter was needed

to be changed for both methods to reach the solution at

A = 1.

Modified Newton

CPU time (sec.)

No. of iterations

27.1

364

Broyden

27.6

597

This is the first test case that Broyden's method

is inferior to the modified Newton's in terms of computing

time, but the difference of .5 second in 27 seconds is not

significant.
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Conclusion

In view of the above experimental results, the me-

thod that does not require exact Jacobians being described

in Chapter IV is more efficient than the modified Newton's

method in terms of getting to the solution in less comput-

ing time. Another advantage is that it saves the user some

time to punch cards for the Jacobian. The number of itera-

tions needed to solve each intermediate problems vary from

equations to equations. For the modified Newton's method,

it appears three and four are the typical numbers of ite-

rations; for Broyden's method it is five and six. It is

then expected that the function F(y,3i) is evaluated more

often in the latter case, and experimental results confirm

this. (The only exception is case 3.) If it is impracti-

cal to calculate the Jacobian, then the Newton's iteration

cannot be applied at all.

There are, of course, some other methods that do not

use derivatives. (See Chapter II.) It is not clear which

one of them is most efficient. Due to the limited amount

of time available to complete this thesis, I regret that I

can do no further comparison among these quasi-Newton me-

thods.

Finally, some comments on the partial derivatives of

F(y,x) with respect to gamma. It is used in getting a

prediction to the solution of F(yi+1,R") = 0 from the
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solution of f(yi,K) = U. It may be better, in terms of

computational effort, not to use the prediction at all; or

this derivative may be calculated by finite differences

also. The latter case seems to be very plausible, for the

Jacobian we used in predicting is never exact anyway. So

getting an approximate partial derivative of F with re-

spect to gamma would not affect the overall computing time

appreciably. In either case it will save the user the

trouble of getting the derivative with respect to gamma

and we could then have a method which used no partial de-

rivatives at all.
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