## AN ABSTRACT OF THE THESIS OF

<u>Shweta Keshari</u> for the degree of <u>Master of Science</u> in <u>Civil Engineering</u> presented on <u>December 3, 2009</u>. Title: <u>Effect of Constituent Materials and Curing Methods on the Abrasion Resistance</u> <u>and Durability of High Performance Concrete for Pre-Cast Pre-Stressed Bridge Deck</u> <u>Slabs.</u>

Abstract approved:

#### Todd V. Scholz

This thesis is the consequence of a research effort undertaken by the School of Civil and Construction Engineering at Oregon State University and funded by the Oregon Department of Transportation (ODOT) and the Federal Highway Administration (FHWA). The principal objective of the effort was to reduce the life cycle cost of bridges by developing one or more materials systems for precast and pre-stressed bridge deck components that improve the studded tire wear (abrasion) resistance and durability of bridge decks.

Degradation of the concrete bridge decks due to abrasion caused by the studded tires and accelerated corrosion of the reinforcing steel in the concrete often triggers costly, premature rehabilitation or replacement of these bridges. High performance concrete (HPC) can provide improved abrasion resistance, but is more costly than ordinary concrete and can exhibit early age cracking when used for cast-in-place concrete members, which can accelerate corrosion of embedded reinforcing steel. However, several studies have suggested that HPC developed for precast members offers a viable alternative to cast-in-place concrete deck slabs due in part to improved control of the curing process. The scope of this research was to develop one or more mixture designs for HPC that improve the durability and abrasion resistance of the bridge decks through careful selection and proper proportioning of the constituent materials and improved control of the curing process. The materials investigated in this research included silica fume, slag, and fly ash as partial replacement of Type I and Type III portland cement mixed with crushed aggregate and river gravel. Phase I of the study included development of 15 mixture designs incorporating various combinations of the materials. Mixtures were cast under controlled laboratory conditions and cured using a variety of methods. The results of tests conducted on the cured samples indicated that the mixture with silica fume and slag had greater strength than the mixture with silica fume and fly ash mixture, and that mixtures with crushed rock provided better abrasion resistance than those with river gravel. Results from the chloride ion penetration test for permeability indicated that mixtures cured in saturated lime water for 28 days exhibited reduced permeability in comparison to mixtures which were steam cured followed by ambient curing.

Following phase I, a pilot study was undertaken to identify the best curing method to apply during production at precast yards to assist high early strength gain so that the concrete member can be removed from the casting bed in a matter of several hours as well as to facilitate high ultimate strength, improved abrasion resistance, and low permeability. The pilot study indicated the best curing method to be steam curing followed by application of a curing compound.

Phase II of the research study included seven mix designs and focused on various levels of supplementary cementitious materials. It adopted the curing method suggested by the pilot study. Results from phase II indicated that slag was better in enhancing durability of the concrete than fly ash. Increasing the proportion of silica fume did not improve the properties of high performance concrete significantly.

Some other interesting results indicated that compressive strength was inversely proportional to wear rate and chloride ion penetration. Wear rate was directly proportional to chloride ion penetration. There was no relationship between durability factor (freeze-thaw test) and compressive strength or chloride ion penetration.

Two mixtures were identified as having significantly improved abrasion and permeability characteristics over the control mixture (ODOT bridge deck mixture). Both included slag and silica fume as supplementary cementitious materials as a partial replacement of portland cement and one did not contain an air entraining admixture.

©Copyright by Shweta Keshari

December 3, 2009

All Rights Reserved

Effect of Constituent Materials and Curing Methods on the Abrasion Resistance and Durability of High Performance Concrete for Pre-Cast Pre-Stressed Bridge Deck Slabs

by

Shweta Keshari

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented December 3, 2009

Commencement June 2010

Master of Science thesis of Shweta Keshari presented on December 3, 2009.

APPROVED:

Major Professor, representing Civil Engineering

Head of the School of Civil and Construction Engineering

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request.

Shweta Keshari, Author

#### ACKNOWLEDGEMENTS

Firstly, I would like to thank God for all His blessings and my parents, Dr. G.C. Keshari and Mrs. Rita Lal for bringing me to life and teaching me to take baby steps towards success with patience and perseverance. I would like to thank my husband, Subrat Sahu for his unflinching faith on me and his ever-enthusiastic encouragement to go one more step farther in pursuit of excellence in professional as well as personal life. I would like to take this opportunity to express my gratitude to my in-laws, my younger brothers, Siddharth and Saurav, my friend Nirjharini Sahoo, and my all other friends and relatives. Without their love and support, I would not have reached so far in life.

Now standing at the doorstep of reaching a career milestone and setting the next one, as I reflect on my past in quest for the defining moment which transformed my career and my life, it is my introduction to and my association with Dr Todd V. Scholz that stands out conspicuously. I would like to quote Dan Rather who says "The dream begins with a teacher who believes in you, who tugs and pushes and leads you to the next plateau." I had also read somewhere "A good teacher is like a candle; it consumes itself to light the way for others." I have held these sayings dear to my heart; these sayings have been so true in my life and Dr. Todd is the physical embodiment of the "teacher" these sayings refer to. I take this opportunity to express my heart-felt gratitude to Dr. Todd who has been my mentor, my advisor, and my source of inspiration.

I would also like to thank my professors Dr. John A. Gambatese, Dr. David N. Sillars, Dr. Jason Ideker for their allowing me to grow under their tutelage. I would like to thank Dr. Ping-Hung Hsieh for his consent to be my minor advisor and Dr. John Sessions for his consent to be the Graduate Council Representative of my thesis defense committee.

I thank the Oregon Department of Transportation and the Federal Highway Administration and their technical advisory board for funding this project.

I would also like to thank Mr. James Batti and Mr. Manfred Dittrich for their help and support in the research laboratory.

I take this opportunity express my gratitude to all my friends at the Oregon State University for being there in my life and making my life lively. I specially thank Indu Peruri, Pratheeksha Premraj, and Suraj Darra for their unconditional support, love and affection.

Finally, I would like to thank God again for everything in life

## TABLE OF CONTENTS

|   |     |       |                                              | Page |
|---|-----|-------|----------------------------------------------|------|
| 1 | Π   | NTRO  | DUCTION                                      | 1    |
|   | 1.1 | BACI  | KGROUND                                      | 1    |
|   | 1.2 | PURF  | POSE                                         | 3    |
|   | 1.3 | SCOP  | РЕ                                           | 3    |
| 2 | L   | ITERA | ATURE REVIEW                                 | 4    |
|   | 2.1 | HIGH  | I PERFORMANCE CONCRETE                       | 4    |
|   | 2.2 | Сна   | RACTERISTICS OF HPC                          | 5    |
|   | 2.3 | CON   | STITUENT MATERIALS                           | 6    |
|   | 2.  | .3.1  | Cement                                       | 6    |
|   | 2.  | .3.2  | Blended cements                              | 7    |
|   | 2.  | .3.3  | Supplementary Cementitious Materials         | 8    |
|   | 2.  | .3.4  | Aggregates                                   | 11   |
|   | 2.  | .3.5  | Admixtures                                   | 12   |
|   | 2.4 | MIX   | DESIGNS                                      | 13   |
|   | 2.  | .4.1  | Washington DOT study                         | 14   |
|   | 2.  | .4.2  | Montana study                                | 17   |
|   | 2.  | .4.3  | Strategic Highway Research Program Study     | 18   |
|   | 2.  | .4.4  | Structural Engineering Research Center Study | 23   |
|   | 2.5 | CON   | STRUCTION PRACTICES                          | 24   |
|   | 2.6 | ABR   | ASION RESISTANCE CONCRETE                    | 24   |
|   | 2.  | .6.1  | Case Study I                                 | 25   |
|   | 2.  | .6.2  | Case Study II                                | 27   |
|   | 2.  | .6.3  | Case Study III                               | 28   |
|   | 2.  | .6.4  | Case Study IV                                |      |
|   | 2.  | .6.5  | Case Study V                                 | 29   |
|   | 2.  | .6.6  | Case Study VI                                | 31   |
|   | 2.7 | IMPL  | EMENTATION OF HPC                            | 32   |
|   | 2.8 | BENI  | EFITS OF PRE-CAST BRIDGE DECK SLAB           | 34   |
|   | 2.9 | GRA   | ND SUMMARY                                   | 34   |
| 3 | E   | XPER  | IMENT DESIGN                                 | 36   |
|   | 3.1 | PHAS  | se I                                         | 36   |
|   | 3.  | .1.1  | Experimental Matrix                          | 36   |

# TABLE OF CONTENTS (Continued)

|         |                                        | Page |
|---------|----------------------------------------|------|
| 3.1.2   | Treatments                             |      |
| 3.1.3   | Response Variables                     | 40   |
| 3.1.4   | Mixture Designs                        |      |
| 3.2 Pil | OT STUDY                               |      |
| 3.2.1   | Experimental Matrix                    |      |
| 3.2.2   | Treatments                             |      |
| 3.2.3   | Response Variables                     |      |
| 3.2.4   | Mixture Designs                        |      |
| 3.3 PH  | ASE II                                 |      |
| 3.3.1   | Experimental Matrix                    |      |
| 3.3.2   | Treatments                             |      |
| 3.3.3   | Response Variables                     | 51   |
| 3.3.4   | Mixture Designs                        |      |
| 4 MAT   | ERIALS AND METHODS                     |      |
| 4.1 MA  | ATERIALS DESCRIPTIONS                  |      |
| 4.1.1   | Aggregates                             | 54   |
| 4.1.2   | Cement                                 |      |
| 4.1.3   | Slag                                   |      |
| 4.1.4   | Fly ash                                |      |
| 4.1.5   | Silica Fume                            |      |
| 4.1.6   | Admixtures:                            |      |
| 4.1.7   | Curing Compound                        |      |
| 4.2 LA  | BORATORY CONCRETE MIXING METHOD        |      |
| 4.3 CA  | STING                                  | 60   |
| MAKING  | SILICA-FUME CONCRETE IN THE LABORATORY | 60   |
| 4.4 Cu  | JRING                                  | 61   |
| 4.5 TE  | ST METHODS                             |      |
| 4.5.1   | Fresh Properties of Concrete           |      |
| 4.5.2   | Hardened Properties of Concrete        |      |
| 4.5.3   | Permeability                           |      |
| 4.5.4   | Strength                               |      |
| 4.5.5   | Freeze-Thaw Resistance                 |      |

## TABLE OF CONTENTS (Continued)

|   |          |                                                   | Page |
|---|----------|---------------------------------------------------|------|
| 5 | EXPE     | RIMENT TEST RESULTS                               | 72   |
|   | 5.1 РНА  | SE I                                              | 76   |
|   | 5.1.1    | Fresh Properties of Concrete                      | 76   |
|   | 5.1.2    | Hardened Concrete Properties                      | 77   |
|   | 5.2 Pilo | DT STUDY                                          | 89   |
|   | 5.2.1    | Freshly-Mixture Concrete Properties               | 89   |
|   | 5.2.2    | Hardened Concrete Properties                      | 90   |
|   | 5.3 Рна  | ASE II                                            | 96   |
|   | 5.3.1    | Freshly-Mixed Concrete Properties                 | 96   |
|   | 5.3.2    | Hardened Concrete Properties                      | 96   |
| 6 | DISCU    | JSSION OF RESULTS                                 |      |
|   | 6.1 SUM  | IMARY OF FINDINGS                                 |      |
|   | 6.1.1    | Types of SCM                                      |      |
|   | 6.1.2    | Types of Aggregate                                |      |
|   | 6.1.3    | Curing Methods                                    |      |
|   | 6.1.4    | Level of Silica Fume                              | 107  |
|   | 6.1.5    | Relation between Different Response Variables     |      |
|   | 6.2 SEL  | ECTION OF BEST MIXTURE DESIGN                     | 112  |
|   | 6.2.1    | Durability Comparison                             | 112  |
|   | 6.3 VAI  | LIDATION OF ABRASION TESTS RESULTS BY ALASKA ODOT | 114  |
| 7 | CONC     | LUSIONS AND RECOMMENDATIONS                       | 117  |
|   | 7.1 Con  | NCLUSIONS                                         | 117  |
|   | 7.2 REC  | COMMENDATIONS                                     | 118  |
| 8 | REFEF    | RENCES                                            | 120  |
| 9 | APPEN    | NDICES                                            | 126  |
|   | 9.1 App  | PENDIX A                                          |      |
|   | 9.2 API  | PENDIX B                                          | 131  |
|   | 9.3 API  | PENDIX C                                          | 136  |
|   | 9.4 API  | PENDIX D                                          | 167  |
|   | 9.5 App  | PENDIX E                                          | 173  |
|   | 9.6 App  | PENDIX F                                          |      |
|   | 9.7 App  | endix G                                           |      |

| Figure                                                                         | Page    |
|--------------------------------------------------------------------------------|---------|
| 1: Flow chart for mixing procedure [54]                                        | 60      |
| 2: Contractor and laboratory steam curing regimes                              | 62      |
| 3: Revolving disks with studs                                                  | 64      |
| 4: Measurement of depth of wear using micrometer                               | 65      |
| 5: Arrangement of slots on aluminum plate                                      | 65      |
| 6: Abraded surface after test showing depth of abrasion                        | 66      |
| 7: Setup for conditioning the specimen                                         | 67      |
| 8: Chloride permeability specimen cell                                         | 68      |
| 9: Setup for the rapid chloride penetration Test                               | 68      |
| 10: Specimen wrapped in felt                                                   | 70      |
| 11: Wrapped specimen submerged in water                                        | 70      |
| 12: Ready for vacuum seal process                                              | 70      |
| 13: Wet specimen inside vacuum seal bag                                        | 70      |
| 14: Vacuum seal process complete Figure 15: Ready to be kept in free: chamber  | ze-thaw |
| 16: Fundamental transverse frequency measurement of sample using dynamic testi | ing 71  |
| 17: Example for interpretation of confidence interval                          | 75      |
| 18: Abrasion in terms of wear rate at 30 minutes for Phase I                   | 79      |

## LIST OF FIGURES

# LIST OF FIGURES (Continued)

| Figure                                                                                | Page    |
|---------------------------------------------------------------------------------------|---------|
| 19: Average charge passed for different concrete mixtures in phase I                  | 81      |
| 20: Average compressive strength at 28 days                                           | 83      |
| 21: Average compressive strength at 90 days                                           | 83      |
| 22: Durability Factor of Concrete                                                     | 84      |
| 23: Relative Dynamic Modulus for Water Curing                                         | 84      |
| 24: Relative Dynamic Modulus for Steam Curing A                                       | 85      |
| 25: Relative Dynamic Modulus for Steam Curing B                                       | 85      |
| 26: Surface scaling clearly evident for edge during freeze and thaw cycle for control | ol 87   |
| 27: Broken control mixture specimen                                                   | 87      |
| 28: Surface scaling not evident in EASB                                               | 88      |
| 29: Surface scaling evident in ECW                                                    | 88      |
| 30: Comparison of compressive strength between steam and water curing with 95%        | 6 CI 91 |
| 31: Compressive strength for different curing types with 95% CI                       | 92      |
| 32: Effect of different duration of water curing                                      | 93      |
| 33: Effect of curing compound for 1 day water curing                                  | 94      |
| 34: Effect of curing compound for steam curing                                        | 94      |
| 35: Compressive strength gain over time                                               | 95      |
| 36: Average wear rate at 30 minutes for phase II                                      | 99      |

# LIST OF FIGURES (Continued)

| Figure                                                                         | Page |
|--------------------------------------------------------------------------------|------|
| 37: Average wear rate at 60 minutes                                            | 99   |
| 38: Chloride ion permeability test at 56days                                   | 100  |
| 39: Average compressive strength at 1 day                                      | 101  |
| 40: Average compressive strength at 28 days for phase II                       | 102  |
| 41: Average compressive strength at 56 days for phase II                       | 103  |
| 42: Type 2 and type 3 failure [adopted from ASTM C 39]                         | 103  |
| 43: Type 3 failure                                                             | 104  |
| 44: Relationship between compressive strength and permeability of the concrete | 108  |
| 45: Relationship between compressive strength and wear rate of the concrete    | 109  |
| 46: Relationship between wear rate and permeability of the concrete            | 110  |
| 48: Relationship between durability factor and permeability of the concrete    | 111  |
| 47: Relationship between compressive strength and durability factor            | 111  |
| 49: Durability comparison of HPC                                               | 113  |
| 50: Prall test for abrasion of concrete                                        | 115  |

## LIST OF TABLES

| Table                                                                                                    | Page        |
|----------------------------------------------------------------------------------------------------------|-------------|
| 1: Materials Used in HPC Mixtures [4]                                                                    | 13          |
| 2: Mix Designs Used for the WSDOT Study [2]                                                              | 15          |
| 3: Evaluation Criteria for the WSDOT Study. Adapted from [9]                                             | 16          |
| 4: HPC Mix Designs used in the Montana Study [22]                                                        | 17          |
| 5: Percentage Replacement of Cement with the Supplementary Cementitious Mate                             | erials      |
| (SCM) Used in the Mix Designs for the Montana Study [22]                                                 | 17          |
| 6: Criteria Used to Categorize the HPC Mixtures Used in the Strategic Highway Rese<br>Program Study [24] | earch       |
| 7: Potential Applications for the HPC Mixtures Used in the Strategic Highway Rese<br>Program Study [24]  | earch<br>19 |
| 8: Aggregate Sources Used in the Strategic Highway Research Program Study [24]                           | 20          |
| 9: Mixture Proportions of VES (A) Concrete with Four Different Aggregate Types [2                        | 24]20       |
| 10: Mixture Proportions of VES (B) Concrete with Four Different Aggregate Types                          | [24]<br>21  |
| 11: Mixture Proportions of HES Concrete with Four Different Aggregate Types [24]                         | 21          |
| 12: Mixture Proportions of VHS Concrete with Fly Ash [24]                                                | 22          |
| 13: Mixture Proportions of VHS Concrete with Silica Fume [24]                                            | 22          |

# LIST OF TABLES (Continued)

| Table                                                                                                    | Page          |
|----------------------------------------------------------------------------------------------------------|---------------|
| 14: Mix Proportions of the HPCs [25]                                                                     |               |
| 15: Mix Proportions Used for Case Study I [20]                                                           |               |
| 16: Mix Proportions for 1 m <sup>3</sup> of Concrete [30]                                                |               |
| 17: Mix Proportions Using ASTM Class C Fly Ash [12]                                                      |               |
| 18: Mixture Proportions and Properties of Fresh Concrete Used for the Kins<br>Stilling Basin Repair [31] | zua Dam<br>29 |
| 19: Mixture Proportioning [32]                                                                           | 30            |
| 20: Mixture Proportions for the GGBFS Study [33]                                                         |               |
| 21: Phase I experimental matrix                                                                          |               |
| 22: Summary of flexural tests and compressive tests for Control mixture                                  |               |
| 23: Summary of mixture designs for phase I                                                               | 45            |
| 24: Nomenclature for mixture designs used for identification                                             |               |
| 25: Experimental matrix for the pilot study                                                              |               |
| 26: Phase II experimental matrix                                                                         | 50            |
| 27: Summary of mixture designs for phase II*                                                             | 53            |
| 28: Physical Properties of Coarse and Fine Aggregate                                                     | 55            |
| 29: Physical and chemical analyses of ASH GROVE type III cement                                          | 56            |

# LIST OF TABLES (Continued)

| Table                                                                          | Page              |
|--------------------------------------------------------------------------------|-------------------|
| 30: Physical and chemical analysis of NewCem slag                              | 57                |
| 31: Physical and Chemical Analyses of Class F Fly Ash                          | 58                |
| 32: Tests results for fresh properties of concrete in phase I                  | 77                |
| 33: Summary of tests results for hardened properties of concrete in phase I    |                   |
| 34: Test results for fresh properties of concrete for pilot study              | 89                |
| 35: Average compressive strength at different specified duration of curing for | pilot study<br>90 |
| 36: Tests results for fresh properties of concrete for phase II                |                   |
| 37: A summary of tests conducted on the hardened properties of concrete in ph  | ase II 97         |

## TABLE OF APPENDIX

| Table                                                        | Page |
|--------------------------------------------------------------|------|
| 1: Summary of batch weights for one cubic yard of concrete:  |      |
| 2: HPC mixture design spreadsheet                            | 130  |
| 3: Compressive strength for control mixture (w/c ratio=0.3)  |      |
| 4: Compressive strength for control mixture (w/c ratio=0.35) |      |
| 5: Compressive strength for control mixture (w/c ratio=0.40) |      |
| 6: Flexural strength for control mixture (w/c ratio=0.30)    |      |
| 7: Flexural strength for control mixture (w/c ratio=0.35)    |      |
| 8: Flexural strength for control mixture (w/c ratio=0.40)    | 135  |
| 9: Control Mixture                                           | 137  |
| 10: EAW                                                      | 137  |
| 11: EASA                                                     | 138  |
| 12: EASB                                                     | 138  |
| 13: EBW                                                      | 139  |
| 14: EBSA                                                     | 139  |
| 15: EBSB                                                     |      |
| 16: ECW                                                      |      |
| 17: ECSA                                                     | 141  |
| 18: ECSB                                                     |      |

| TABLE OF APPENDIX ( | Continued) |
|---------------------|------------|
|---------------------|------------|

| Table    | Page |
|----------|------|
| 19: EDW  |      |
| 20: EDSA |      |
| 21: EDSB |      |
| 22: CW   |      |
| 23: CSA  |      |
| 24: CSB  |      |
| 25: EAW  |      |
| 26: EASA |      |
| 27: EASB |      |
| 28: EBW  |      |
| 29: EBSA |      |
| 30: EBSB |      |
| 31: ECW  |      |
| 32: ECSA |      |
| 33: ECSB |      |
| 34: EDW  |      |
| 35: EDSA |      |
| 36: EDSB |      |

| Table     | Page |
|-----------|------|
| 37: CW    |      |
| 38: CSA   |      |
| 39: CSB   |      |
| 40: EAW   |      |
| 41: EASA  |      |
| 42: EASB  |      |
| 43: EBW   |      |
| 44: EBSA  |      |
| 45: EBSB  |      |
| 46: ECW   |      |
| 47: ECSA  |      |
| 48: ECSB  |      |
| 49: EDW   |      |
| 50: EDSA  |      |
| 51: EDSB  |      |
| 52: Mix 1 |      |
| 53: Mix 2 |      |
| 54: Mix 3 |      |

| TABLE OF APPENDIX (Co | ontinued) |
|-----------------------|-----------|
|-----------------------|-----------|

| Table               | Page |
|---------------------|------|
| 55: Mix 4           |      |
| 56: Mix 5           |      |
| 57: Mix 6           |      |
| 58: Mix 7           |      |
| 59: Mix 8           | 171  |
| 60: Mix 9           |      |
| 61: Mix 10          |      |
| 62: Mix 11          |      |
| 63: Control Mix     |      |
| 64: Mix A           |      |
| 65: Mix B           | 175  |
| 66: Mix C           | 175  |
| 67: Mix D           |      |
| 68: Mix E           | 176  |
| 69: Mix S           | 177  |
| 70: Mix T           | 177  |
| 71: Control Mixture |      |
| 72: Mix A           |      |

| TABLE OF APPENDIX ( | Continued) |
|---------------------|------------|
|---------------------|------------|

| Table           | Page |
|-----------------|------|
| 73: Mix B       |      |
| 74: Mix C       |      |
| 75: Mix D       |      |
| 76: Mix E       |      |
| 77: Mix S       |      |
| 78: Mix T       |      |
| 79: Control-C1  |      |
| 80: Control- C2 |      |
| 81: Control- C3 |      |
| 82: Mixture A1  |      |
| 83: Mixture A2  |      |
| 84: Mixture A3  |      |
| 85: Mixture B1  |      |
| 86: Mixture B2  |      |
| 87: Mixture B3  |      |
| 88: Mixture C1  |      |
| 89: Mixture C2  |      |
| 90: Mixture C3  |      |

| TABLE OF APPENDIX | (Continued) |
|-------------------|-------------|
|-------------------|-------------|

| Table           | Page |
|-----------------|------|
| 91: Mixture D1  |      |
| 92: Mixture D2  |      |
| 93: Mixture D3  | 189  |
| 94: Mixture E1  | 189  |
| 95: Mixture E2  | 190  |
| 96: Mixture E3  | 190  |
| 97: Mixture S1  | 191  |
| 98: Mixtures S2 |      |
| 99: Mixture T1  |      |
| 100: Mixture T2 |      |

#### **1 INTRODUCTION**

Studded tires have been attributed to pervasive pavement wear in the winter dominated United States and other countries since their introduction in 1960s. Studded tires cause considerable wear to concrete surfaces, even when the concrete is of good quality. The ruts caused by the studs lead to the reduced pavement life and increasing pavement life cycle cost. The design life expectancy based on a limiting wheel path rut depth of 19 mm, at which the pavement would require rehabilitation, for asphalt and portland cement concrete (PCC) pavements is 14 years and 25 years respectively. The time to reach a 19 mm rut for an asphalt pavement exposed to studded tires at 35,000 ADT is about 7 years and for PCC pavements exposed to studded tires at 120,000 ADT, the estimated time to reach a 19 mm rut is less than 10 years. The pavement wear rate has been increasing alarmingly with the increased adoption of studded tire use among the populace exposed to snowy driving conditions. The studded tires do provide increased traction and safety in winter driving conditions; but the ruts, after attaining the critical depth, present themselves as a safety hazard by causing increase in splash and spray, and hydroplaning during rainy driving conditions. The rehabilitation of highways with ruts attaining critical depth becomes imperative to ensure driving safety. The estimated annual cost for increased pavement wear attributed to use of studded tire in the state of Oregon has increased from \$1.1 million in 1974 to \$42 million in 1994, and this trend continues [1]. At present, the debate to ban the use of studded tires at the cost of safety during long winter driving conditions in states like Oregon has not reached any conclusion. The researchers in industry and academia have only one option at present; and that is to explore the possibilities of concretes of higher strength for pavement construction.

#### 1.1 Background

Degradation of the concrete decks from wear and corrosion (due to permeable mixture) due to the studded automobile tires require costly, and often premature, replacement or rehabilitation of many of ODOT's bridges. The damage caused by studded tires is due to the dynamic impact of the small tungsten carbide tips of the studs, of which there are approximately 100 in each tire [2]. Efforts have been made to study the properties of existing concrete as related to studded tire wear and develop more wear-resistant types of

concretes. Although the reported research results show promise, no affordable concrete has yet been developed that will provide the same service life of the pavements exposed to studded tires as compared to pavements made of existing concrete and exposed to unstudded rubber tires.

Polymer cement concrete and polymer-fly ash concrete provide better resistance to wear at the cost of skid resistance. Steel fiber concrete provides better wear resistance, but abraded loose steel fibers can cause additional scour of the concrete pavement, and the exposed fibers can adversely affect the tire wear [2]. High Performance Concrete (HPC) is intended to meet the design engineer's minimum requirements for compressive strength and to enhance the long-term properties of the concrete such as durability, abrasion resistance, low permeability to protect against corrosive-ion attack on reinforcing steel, and cracking resistance. It is well known that adding approximately 7% silica fume to the concrete significantly increases the strength and reduces the permeability of the concrete. However, real-life experiences reveal that this improvement often comes with an increased propensity for early-age cracking in the cast-in-place (CIP) bridge decks that essentially negates the benefits of lower permeability and high strength. In fact, ODOT has changed its bridge deck concrete specifications to limit the strength of the concrete in order to reduce the level of cracking seen in the field. Precast components allow bridge elements to be manufactured under controlled factory conditions, which should provide a higher level of quality. Also, prefabricated components can be assembled more quickly at a bridge site without the need to wait for fresh concrete to reach threshold strengths before continuing construction activities. Precast deck panels could allow HPC designed for abrasion resistance to be used for bridge decks while maintaining production controls to minimize cracking.

This study strives to develop one or more materials systems for precast and pre-stressed bridge deck components that improve the studded tire wear (abrasion) resistance and durability of bridge decks.

## 1.2 Purpose

The overall purpose of this project was to develop one or more materials systems for precast and pre-stressed bridge deck components that would reduce the life-cycle cost of bridges by improving the studded tire wear (abrasion) resistance and the durability of bridge decks. Specifically, the experiment objectives are to:

- Develop a hardened concrete mixture that is more resistant to abrasion than a conventional ODOT bridge deck mixture.
- Develop a hardened concrete mixture that is more resistant to chloride ion penetration than a conventional ODOT bridge deck mixture.

## 1.3 Scope

The scope of the project was to conduct an extensive literature review to investigate past research on HPC with emphasis on abrasion and corrosion resistance followed by a laboratory study to develop such a mixture for Oregon in phase I of the research study through investigation of factors including 1) varying combinations of supplementary cementitious materials (i.e., silica fume plus slag versus silica fume plus fly ash); and 2) two different coarse aggregate types (i.e., crushed versus natural aggregate). Mixtures were tested following water curing and steam curing. Different curing types were investigated in a pilot study to obtain the best curing method that could be adopted in the field and at the same time give results similar to that obtained by water curing. All the samples were tested for various response variables (i.e., compressive strength test, abrasion test, rapid chloride penetration test RCPT test and freeze and thaw test). Phase II focused more on various levels of silica fume and their effect on the properties of HPC . All the mixtures were tested for the same response variables in the phase II except for freeze-thaw test.

### 2 LITERATURE REVIEW

The contents and findings of the literature review has been obtained from various sources including reports from NCHRP projects 12-65 and 12-69 (mentioned above), the Transportation Research Information Services (TRIS) database, the National Technical Information Service (NTIS) database, the International Transport Research Documentation (ITRD) database, Transportation Research Board (TRB) journals, American Concrete Institute (ACI) publications, Portland Cement Association (PCA) publications, American Concrete Pavement Association (ACPA) publications, and reports from other states (e.g., California, Nevada, Texas, Nebraska, Ohio, Maryland, and New York) that have investigated abrasion-resistant concrete and/or use of precast concrete panels for concrete pavement rehabilitation. The experiences gained from the ODOT, Region 4 Mill Creek project is also included as part of the literature review.

#### 2.1 High Performance Concrete

An extensive amount of research has been undertaken to develop high performance concrete (HPC), as well as sustainable concrete. According to ACI, "HPC is defined as a concrete meeting special combination of performance and uniformity requirements that cannot always be achieved routinely using conventional constituents and normal mixing, placing, and curing practices" [3]. It is a concrete consisting of special properties designed depending on the requirements of the structure. A normal strength concrete having properties such as high durability and low permeability can be called a HPC. These requirements may involve enhancements of the following:

- Ease of placement and completion without segregation
- Long-term mechanical properties
- Early-age strength
- Toughness
- Volume stability
- Long life in severe environments

### 2.2 Characteristics of HPC

The structural and construction requirements of the structure must be met by the concrete to be used. Both early age and long-term strength are critical characteristics for HPC. Specified design strengths of 8,000 psi or more for 28 day strength are defined as high strength concrete. This designation was made in 2002, by the ACI Committee on High Strength Concrete [3]. HPC must be designed to provide long service life in severe environments [3]. Accordingly, the concrete must be able to provide protection against abrasion, weathering action, and chemical attack. A high early strength mixture is used for fast track paving. "An example of a fast track concrete mixture used for a bonded concrete highway overlay would be 380 kg of type III cement, 42 kg of type C fly ash, 6 ½% air, a water reducer and a w/c ratio of 0.4" [4]. The NCHRP-12-65 report was reviewed and the compressive strength specified for the precast concrete deck panels at 28 days was kept as 6200 psi to 6500 psi. [3]. Also, the Minnesota Department of Transportation (Mn/DOT) has specified a minimum compressive strength of 6500 psi for the inverted-t precast section (deck slab) [4]. HPC also requires a high modulus of elasticity greater than 6,500,000psi (44816 MPa).

It should have high durability capable of withstanding corrosion of embedded steel and other severe service environments. The other structural characteristics include high abrasion resistance, volume stability and toughness and impact resistance. The concrete must be able to withstand the effects of various agents such as heating and cooling, wetting and drying, freezing and thawing etc. This again differs depending on where the structure is being constructed and the environmental factors affecting it. HPC must be capable of inhibiting bacterial and mold growth. It also needs to be resistant to frost and chemical attack.

The concrete mixture must be constructible i.e. it should be workable, pump-able and easily consolidated within the confines of any steel or fiber reinforcements. To achieve these properties a mid-range concrete should have a 6 to 8 inch slump. A flowing concrete should have a slump greater than 8 inches without segregation. It should also posses reduced pumping pressures and easy finishing characteristics. HPC should have normal setting time, accelerated strength gain and low temperature freeze protection to be

placeable in cold weather. It should have normal slump retention and control of hydration to be placeable in hot weather. In order to achieve controlled hydration it should have extended setting time as required by the project conditions.

### 2.3 Constituent materials

High performance concrete constitutes various materials like cement, supplementary cementitious materials, both fine and coarse aggregates and admixtures which reduces the water requirement considerably. This section mainly furnishes a detailed overview of ingredients of concrete.

#### 2.3.1 Cement

The rate of early strength development depends on cement composition and other factors such as cement fineness, use of supplementary cementitious materials, curing temperatures, admixtures, w/c ratio and curing conditions. "For high strength concrete, cement should produce approximately minimum 7-day mortar cube strength of approximately 4350 psi (30 MPa)" [4].

Portland cement is manufactured to conform to ASTM C 150- 07 specifications which designates five types: I (and IA), II (and IIA), III (and IIIA), IV, and V.

## 2.3.1.1 Type I Cement

Type I cement or normal portland cement is general purpose cement which is suitable for most of the construction practices except for that where some special properties are needed. It is used in pavements, bridges, reinforced concrete buildings, culverts, reservoirs, water pipes, etc.

#### 2.3.1.2 Type II Cement

This is used where moderate sulfate resistance is required or for structures exposed to seawater. This is also used where moderate heat of hydration is required as in mass concrete, dams, large piers, heavy retaining walls and abutments. Type IIA is an air entraining cement used when the air entrainment is desired for the same uses as Type II cement. Some cement are specified as Type I/Type II, indicating that the cement meets

the requirements of the indicated types and is being offered as suitable for use when either type is desired.

### 2.3.1.3 Type III Cement

This is used when high early strength is desired as in early removal of forms for cast-inplace concrete, precast concrete, and slip formed concrete. It is beneficial in cold weather conditions because of its faster rate of hydration, and hence faster rate of strength gain. Type IIIA is an air entraining cement used when air entrainment is desired for the same uses as Type III cement.

#### 2.3.1.4 Type IV cement

This is used when low heat of hydration is desired in massive structures such as large gravity dams, where the temperature rise resulting from heat generated during curing is a critical factor. It develops strength at a slower rate than Type I cement.

### 2.3.1.5 Type V cement

Type V is sulfate-resisting cement used only in concrete exposed to severe sulfate attack as with soils or ground water having high sulfate content. It develops strength at a slower rate than Type I cement.

### 2.3.2 Blended cements

There are five classes of blended cements specified under ASTM specification C 595-05[5]:

- Portland blast furnace slag cement (Type IS)
- Portland- pozzolan cement (Type IP and Type P)
- Pozzolan-modified portland cement (Type I (PM))
- Slag cement (Type S)
- Slag-modified portland (Type I (SM))

Slag cement develops strength very slowly. Portland pozzolan cement includes four types (IP, IP-A, P and P-A) of which P and P-A are used when high early strength is not required. All the other blended cements can be used for general construction purposes.

#### 2.3.3 Supplementary Cementitious Materials

Various cementitious materials such as fly ash, silica fume, slag, calcined clay, calcined shale, etc. have been used in HPC to produce high strength. The following paragraphs describe these materials in more detail.

#### 2.3.3.1 Fly Ash

Fly ash is the fine material that results from the combustion of pulverized coal in a coalfired power plant. Fly ashes are classified in ASTM C 618-05 [7] as either Class F or Class C. Class F fly ash has pozzolanic properties. Class C fly ash has pozzolanic and cementitious properties. The Class C fly ash content of concrete generally ranges from 15 to 40 percent by mass of the cementitious materials, and Class F fly ash content ranges from 15 to 25 percent by mass of cementitious material [4]. Class C fly ash has more calcium content than Class F fly ash. Class F ashes generally improve sulphate resistance more efficiently than Class C ashes [8]. Fly ash reduces permeability and chloride diffusivity and hence increases resistivity to chloride ion attack, making it a beneficial material in concrete that is exposed to chlorides (e.g., bridge decks) [9]. Fly ash also binds up the alkalis in the concrete and, thereby, reduces the potential for alkali silica reactivity. The addition of fly ash to concrete enhances the strength gain at later ages, making it beneficial when high-strength concrete is specified at ages of 56 or 90 days.

Nasser and Lai [10] found that 20% replacement of cement with Class C fly ash containing 4 to 6% air content improves the resistance to freezing and thawing. However, it was found to decrease when 35-50% of Class C fly ash was used in concrete containing 6% air. For high strength concrete, use of Class C fly ash can lead to higher 28 day and 91 day compressive strengths and higher 7-day and 28-day flexural strengths at lower cementitious contents as compared with concrete containing no fly ash [11]. According to Naik et al [12], concrete incorporating Class C fly ash offers more abrasion resistance than Class F fly ash concrete with 35% cement replacement. In another study [13], it was found that concrete abrasion resistance was not greatly influenced by inclusion of Class C fly ash with 40% of total cementitious materials. A slight decrease in the abrasion resistance of high volume fly ash concrete, especially at fly ash content above 50%, was

noted as compared to the reference mixture without fly ash. Rafat Siddique [14] in his study concluded that Class F fly ash can be suitably used with 50% of cement replacement in concrete for use in pre-cast elements and reinforced cement concrete construction.

In summary, fly ash produces the following properties in concrete as compared to a similar mixture containing no fly ash: (1) equal or greater flexural and compressive strengths; (2) equal or better workability and cohesiveness; (3) equal or greater resistance to abrasion; and (4) improved long term durability to provide serviceability and performance throughout the life of the structure [11]. It also improves workability, decreases bleeding, reduces heat evolution, decreases permeability, has minimal effect on modulus of elasticity, and has variable effects on creep and shrinkage.

Fly ash may be used as a partial replacement for or an addition to portland cement. Its performance however depends upon the quality and performance of the other constituents of the mixture. In a mix design a minimum quantity of Portland cement is required to maintain early strength, setting times etc. Fly ash can be used in addition to improve the workability, strength, and durability of the concrete mixture.

#### 2.3.3.2 Silica Fume

Silica fume, also known as condensed silica fume or microsilica, is a very fine pozzolanic material produced as a by-product in the production of silicon or ferro-silicon alloys. The silica fume content of concrete generally ranges from 5 to 10 percent of the total cementitious materials content [4]. It should conform to the requirements in ASTM C 1240-05[15]. Silica fume increases the durability of concrete by reducing the permeability, thereby slowing the rate of penetration of aggressive chemicals such as deicing salts. The use of silica fume can result in rapid chloride permeability values of less than 500 coulombs when tested in accordance with ASTM C 1202-10 (Rapid Chloride test) whereas a maximum value of 1000 coulombs is often specified *[2]*. Whiting and Detwiler (1998) observed that increasing the silica fume content up to approximately 6% of the total cementitious materials reduced the chloride diffusivity.

effect the same change [16]. Silica fume can make a significant contribution to early-age strength of concrete and affects the interfacial transition zone by making it dense, reducing pore size and its percentage in concrete. Silica fume increases the water demand of the concrete. The use of fly ash and slag counteracts the water demand created by the silica fume. The use of silica fume is particularly beneficial in achieving high early strengths and ultimate compressive strengths in precast, prestressed concrete beams. One pound of silica fume produces about the same amount of heat as a pound of portland cement, and yields much greater compressive strength. Use of silica fume often allows a reduction in the total amount of cementitious materials. The abrasion resistance of HPC incorporating silica fume is high. This makes silica-fume concrete pavement overlays subjected to heavy or abrasive traffic [17].

In summary, when used in concrete, silica fume increases durability, abrasion resistance and reduces bleeding [17]. It is much more reactive than portland cement, Class F fly ash, Class C fly ash, and slag cement, particularly at its early stages because of its higher silicon dioxide content and its very small particle size. However, as the particles are small, the water demand increases. So, silica fume should be used in combination with a water reducing admixture or a superplasticizer. Also, as bleed water is reduced due to adding silica fume, care should be taken to avoid plastic shrinkage cracks.

#### 2.3.3.3 Blast Furnace Slag

Ground granulated blast-furnace slag (GGBFS), also called slag, is made by rapidly quenching molten blast-furnace slag and grinding the resulting material into a fine powder. GGBFS is classified by ASTM C 989-05[18] according to its level of reactivity. Depending on the desired properties, the amount of GGBFS can be as high as 70 percent or more of the total cementitious materials content. The literature suggests that typical replacement of cement by slag is between 30-45% [4]. In addition, slag has cementitious properties which can be a major factor in increasing strength. Slag also reduces the water demand by 1 to 10%, which makes it possible to reduce the water-cement ratio (w/c) to a lower value [4]. The use of GGBFS lowers concrete permeability, thereby reducing the

rate of chloride ion diffusion. For alkali-silica reaction, GGBFS consumes some of the alkalis produced from the portland cement leaving them unavailable for reaction with the aggregates. Proper proportioning of slag cement can eliminate the need to use low alkali or sulfate-resistant portland cements. High early strength can be obtained when slag is used in conjunction with silica fume. This has been utilized in the columns of several office towers in Toronto having 70 and 85 MPa specified strengths.

In summary the performance of concrete, in terms of its placeability, physical properties, and its durability, can be enhanced by the use of slag-blended cements or through addition of ground granulated blast-furnace slag. Properly proportioned and cured slag concretes will control alkali–silica reactions, impart sulphate resistance, and greatly reduce chloride ion penetration and heat of hydration.

#### 2.3.4 Aggregates

Good aggregates should be selected to ensure proper consolidation of the concrete mix so as to prevent segregation when the mix is subjected to vibration. The compressive strength of very high strength concretes is highly dependent on the type of aggregate used. The best workability can be achieved when larger aggregates are used. However, smaller aggregates provide more bonding area between mortar and aggregate resulting in higher compressive strengths [19]. According to the Washington Department of Transportation (WSDOT), smaller coarse aggregates are being used in concrete to increase freeze-thaw resistance and achieve higher compressive strength [9]. In addition, according to Laplante et al, coarse aggregate is the most important factor affecting the concrete abrasion resistance [20]. For high strength concrete according to ACI 211.4R, fine aggregates with a fineness modulus in the range of 2.5 to 3.2 are preferable for high-strength concrete (for 70 MPa or greater). Also, they should be at least 25% siliceous to be abrasion resistant [9].

HPC has specific aggregate size, shape, surface texture, mineralogy, and cleanliness requirements [17]. According to Aitcin and Mehta [21], the mineralogy and the strength of the coarse aggregate control the ultimate strength of the concrete. Krauss and Rogalla

(1996) suggested that aggregates with a low modulus of elasticity, low coefficient of thermal expansion, and high thermal conductivity result in reduced shrinkage and thermal stresses [22]. Higher strengths can also sometimes be achieved through the use of crushed stone aggregate rather than the rounded-gravel aggregate [4]. In general, equidimensional, rough textured and harder aggregates are preferred to give high strength.

#### 2.3.5 Admixtures

Concrete admixtures are used to improve the behavior of concrete under a variety of conditions and are of two main types: chemical and mineral. As indicated previously, mineral admixtures make mixtures more economical, reduce permeability, increase strength, and influence other concrete properties. Fly ash, silica fume, slag and other cementitious materials are common types of mineral admixtures. Chemical admixtures reduce the cost of construction, modify properties of hardened concrete, and improve the quality of concrete during mixing, transporting, placement, and curing [4]. They fall into the following categories:

- Air entrainers
- High range water reducers (superplasticizers)
- Set retarders
- Set accelerators
- Specialty admixtures: which include corrosion inhibitors, shrinkage control, alkali-silica reactivity inhibitors, and coloring

According to Kerkhoff, air-entrainers give hardened mortars and concretes freeze-thaw resistance. Also, air entrainment improves workability and reduces bleeding [16]. Water reducers produce an increase in the workability of mortars and concretes at constant water-to-cement ratio. Set-retarders retard the initial rate of reactions between cement and water. The use of a plasticizer is mandatory in high strength concrete to ensure adequate workability while achieving a low water-to-cementitious materials ratio. Retarding admixtures may also be used for this purpose. The effectiveness of each admixture may vary depending on its concentration in the concrete and various other constituents of the concrete. It is also important to be sure that admixtures are compatible when used in
combination. According to De Almedia [23], silica fume should be used in concrete along with a superplasticizer to maintain the abrasion resistance. Without a superplasticizer, the mineral admixtures will require more water resulting in a decrease in abrasion resistance. In summary, the materials that have been used in HPC and their desired properties are listed in the Table 1 [4].

| Material                    | Desired property                   |
|-----------------------------|------------------------------------|
| Portland cement             | Cementing material/Durability      |
| Blended cement              | Cementing material/Durability/High |
|                             | strength                           |
| Fly ash/Slag/Silica Fume    | Cementing material/Durability/High |
|                             | strength                           |
| Calcined clay/Metakaolin    | Cementing material/Durability/High |
|                             | strength                           |
| Calcined shale              | Cementing material/Durability/High |
|                             | strength                           |
| Superplasticizers           | Flowability                        |
| High-range water reducers   | Reduced water to-cement ratio      |
| Hydration control admixture | Control setting                    |
| Retarders                   | Control setting                    |
| Accelerators                | Accelerate setting                 |
| Corrosion Inhibitors        | Control Steel corrosion            |
| Water reducers              | Reduce cement and water content    |
| Shrinkage reducers          | Reduce shrinkage                   |
| ASR inhibitors              | Control alkali-silica Activity     |
| Optimally graded aggregates | Improve workability                |
| Polymer/latex modifiers     | Durability                         |

Table 1: Materials Used in HPC Mixtures [4]

## 2.4 Mix Designs

Mixture proportions for HPC are influenced by many factors, including specified performance properties, locally available materials, local experience, personal preferences, and cost. The main goal is to produce concrete with high strength and low permeability. There is no standard mix to produce a high-strength concrete. Trial mixes are needed to obtain the optimum use of each locally available constituent material. WSDOT lists the following as general guidelines for developing HPC mix designs [9]

- 1. Include 5 to 6% air entrainment for freeze-thaw durability, to prevent chloride penetration, and to increase resistance to scaling.
- 2. Keep the w/c ratio below 0.35 to increase durability and strength.

- 3. Include fly ash or other mineral admixtures to improve freeze-thaw durability and resist chloride ion penetration.
- 4. Use Type III cement to improve early age compressive strength
- 5. Add superplasticizers to reduce w/c ratio to increase the strength for a given mix design.

## 2.4.1 Washington DOT study

WSDOT studied the performance characteristics of the five mix designs summarized in Table 2. Freeze-thaw durability, scaling resistance, abrasion resistance, chloride ion penetration, compressive strength, elasticity, shrinkage, and creep of the mixtures were evaluated according to the criteria shown in Table 3 [9].

| Characteristics            | Α                                                   |                                                      |                               | в                                                                            | C D                                                  |                               | E                                           |                                                       |                               |                                                                      |                                            |                                 |                                                                                                                                                   |                                                        |                                    |
|----------------------------|-----------------------------------------------------|------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------|----------------------------------------------------------------------|--------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------|
| Load                       | 4000 psi<br>Compre<br>Strength                      | i@28da<br>ssive                                      | ys                            | 650 psi<br>Strengt                                                           | i @Flex<br>:h                                        | ural                          | 650 ps<br>Flexura<br>Strengt                | si @14<br>al<br>th                                    | days                          | 4000 ps<br>Compres<br>Strength                                       | i @ 28<br>sive                             | 8 days                          | 650 ps<br>Flexural<br>Strength                                                                                                                    | i @3                                                   | days                               |
| Construction<br>Type       | Cas                                                 | t in plac                                            | e                             | Slipfo<br>Pa                                                                 | rm Con<br>ivemen                                     | crete<br>t                    | Slipfe<br>P                                 | orm Cor<br>avemen                                     | ncrete<br>it                  |                                                                      | -                                          |                                 | 3 day/night<br>paving                                                                                                                             |                                                        |                                    |
| Placement                  | Pour or                                             | Pump                                                 |                               | Dump<br>Chute                                                                | Truck                                                | and                           | Dump<br>Chute                               | Truck                                                 | and                           | -                                                                    |                                            |                                 | -                                                                                                                                                 |                                                        |                                    |
| Materials                  | Туре                                                | Weig<br>per<br>Cubi<br>Yard<br>(satu<br>, su<br>dry) | hts<br>c<br>rated<br>rface-   | Туре                                                                         | Weig<br>per<br>Cubi<br>Yard<br>(satu<br>, su<br>dry) | hts<br>c<br>rated<br>rface-   | Туре                                        | Weig<br>per<br>Cubi<br>Yard<br>(satu<br>surfa<br>dry) | hts<br>c<br>rated,<br>ce-     | Туре                                                                 | Weigl<br>Cubic<br>(satur<br>surfac<br>dry) | nts per<br>Yard<br>ated,<br>ce- | Туре                                                                                                                                              | Wei<br>per<br>Cub<br>Yar<br>(sat<br>d,<br>surf<br>dry) | ghts<br>bic<br>d<br>urate<br>čace- |
|                            |                                                     | lbs                                                  | Yie<br>ld,<br>ft <sup>3</sup> |                                                                              | lbs                                                  | Yie<br>ld,<br>ft <sup>3</sup> |                                             | lbs                                                   | Yiel<br>d,<br>ft <sup>3</sup> |                                                                      | lbs                                        | Yiel<br>d,<br>ft <sup>3</sup>   |                                                                                                                                                   | іb<br>s                                                | Yiel<br>d,<br>ft <sup>3</sup>      |
| Cement                     | Type<br>I-II                                        | 565                                                  | 2.8<br>7                      | Type<br>III                                                                  | 708                                                  | 3.6<br>0                      | Type<br>I-II                                | 452                                                   | 2.30                          | Туре I-<br>II                                                        | 611                                        | 3.10<br>8                       | Type<br>I-II<br>AST<br>M C<br>150<br>Ibs                                                                                                          | 65<br>8                                                | 3.35                               |
| Fly ash                    | Class<br>F                                          | 141                                                  | 1.0<br>0                      | -                                                                            | -                                                    | -                             | Class<br>F                                  | 113                                                   | 0.79                          | -                                                                    | -                                          | -                               | -                                                                                                                                                 | -                                                      | -                                  |
| Sand                       | Class<br>2                                          | 947                                                  | 5.8<br>8                      | R-<br>101<br>WS<br>DOT<br>Class<br>1                                         | 110<br>8                                             | 6.5<br>8                      | Coar<br>se<br>Sand<br>Fine<br>Sand          | 711<br>472                                            | 4.30<br>2.86                  | -                                                                    | 116<br>5                                   | 7.23                            | AST<br>M<br>C 33<br>lbs                                                                                                                           | 12<br>61                                               | 7.77                               |
| Aggregates                 | <sup>3</sup> /4"<br>(AAS<br>HTO<br># 67 /<br># 57 ) | 200 2                                                | 11.<br>88                     | R-<br>101<br>WS<br>DOT<br>Agg.<br>#5<br>R-<br>101<br>WS<br>DOT<br>Agg.<br>#4 | 117<br>0<br>780                                      | 6.8<br>7<br>4.5<br>8          | Agg.<br>1½2"<br>Agg.<br>¾"<br>Agg.<br>3/8"  | 689<br>117<br>7<br>98                                 | 4.09<br>7.01<br>0.58          | Agg.<br>3/4**                                                        | 184<br>3                                   | 10.9                            | Agg.3<br>/4 <sup>20</sup><br>AST<br>M C<br>33 #<br>67, lbs<br>Agg.<br>1 <sup>1</sup> / <sub>2</sub> <sup>20</sup><br>AST<br>M C<br>33 #<br>4, lbs | 10<br>16<br>83<br>8                                    | 5.96<br>4.92                       |
| Water                      | 250                                                 | 4.0                                                  | -                             |                                                                              | 251                                                  | 4.0<br>2                      | -                                           | 215                                                   | 3.45                          | -                                                                    | 270                                        | 4.32<br>7                       | -                                                                                                                                                 | 23                                                     | 3.70                               |
| Total Air, %               | 5.0+/-<br>1.5                                       | 1.3<br>5<br>Tot                                      | - 27.                         | Total                                                                        | 5.0<br>+/-<br>1.5<br>27.                             | 1.3<br>5                      | -                                           | 6.0<br>+/-<br>1.5<br>Tot                              | 1.62<br>27.0                  | -                                                                    | 5<br>Tota                                  | 27.0                            | -                                                                                                                                                 | 5.<br>5<br>To                                          | 27.0                               |
| Water<br>reducing<br>agent | WRA<br>POZZ<br>80,<br>ounce<br>s                    | al<br>35.<br>3                                       | -                             | 200<br>N<br>WR<br>A,<br>ounc<br>es                                           | 00<br>28.<br>32                                      | -                             | WR<br>DA<br>64/T<br>ype<br>A,<br>ounc<br>es | al<br>22.<br>60                                       | -                             | WRA<br>POZZ<br>82<br>meets<br>ASTM<br>C260,<br>ounces<br>per<br>vard | 1 5                                        | -                               | WRD<br>A-64<br>AST<br>M C<br>494<br>Type<br>A,<br>ounce<br>s                                                                                      | tal<br>29<br>.6<br>1                                   | -                                  |

## Table 2: Mix Designs Used for the WSDOT Study [2]

15

|                                 | Standard test | FHWA HPC performance grade      |                               |                  |              |  |  |  |  |
|---------------------------------|---------------|---------------------------------|-------------------------------|------------------|--------------|--|--|--|--|
| Performance                     |               |                                 |                               |                  |              |  |  |  |  |
| Characteristic <sup>2</sup>     | Method        | 1                               | 2                             | 3                | 4            |  |  |  |  |
| Freeze-thaw                     | AASHTO T 161  | 60%≤r<80%                       | 80%≤x                         |                  |              |  |  |  |  |
| durability <sup>4</sup>         | ASTM C 666    |                                 |                               |                  |              |  |  |  |  |
| (x=relative dynamic             | Proc. A       |                                 | 1                             |                  |              |  |  |  |  |
| modulus of elasticity           |               |                                 |                               |                  |              |  |  |  |  |
| after 300 cycles                |               |                                 |                               |                  |              |  |  |  |  |
| Scaling resistance <sup>5</sup> | ASTM C 672    | x=4,5                           | x=2,3                         | <i>x</i> =0,1    |              |  |  |  |  |
| (x=visual rating of             |               |                                 |                               |                  |              |  |  |  |  |
| the surface after 50            |               |                                 |                               |                  |              |  |  |  |  |
| cycles)                         |               |                                 |                               |                  |              |  |  |  |  |
| Abrasion resistance6            | ASTM C 944    | 2.0> <i>x</i> ≥1.0              | 1.0> x≥0.5                    | 0.5>x            |              |  |  |  |  |
| (x=avg. Depth of                |               |                                 |                               |                  |              |  |  |  |  |
| wear in mm)                     |               |                                 |                               |                  |              |  |  |  |  |
| Chloride penetration'           | AASHTO T 277  | 3000≥x>2000                     | 2000≥x>800                    | 800≥x            |              |  |  |  |  |
| (x=coulombs)                    | ASTM C 1202   |                                 |                               |                  |              |  |  |  |  |
| Strength                        | AASHTO T 2    | 41≤x<55 Mpa                     | 55≤x<69 MPa                   | 69≤x<97 MPa      | x≥97 MPa     |  |  |  |  |
| (x=compressive                  | ASTM C 39     | (6≤x<8 ksi)                     | (8≤x<10 ksi)                  | (10≤x<14 ksi)    | (x≥14 ksi)   |  |  |  |  |
| strength)                       |               | ,                               |                               |                  |              |  |  |  |  |
| Elasticity <sup>10</sup>        | ASTM C 469    | 28≤x<40 Gpa                     | 40≤r<50 Gpa                   | x≥50 Gpa         |              |  |  |  |  |
| (x=modulus of                   |               | $(\leq x < 6x10^6 \text{ psi})$ | $(6 \le x < 7.5 \times 10^6)$ | (x≥7.5x10° psi)  |              |  |  |  |  |
| elasticity)                     |               |                                 | psi)                          |                  |              |  |  |  |  |
| Shrinkage <sup>8</sup>          | ASTM C 157    | 800>x≥600                       | 600>x≥400                     | 400>x            |              |  |  |  |  |
| (x=microstrain)                 |               |                                 |                               |                  |              |  |  |  |  |
| Creep                           | ASTM C 512    | 75≥x>60/Mpa                     | 60≥x>45/MPa                   | 45≥x>30/MPa      | 30 MPa≥x     |  |  |  |  |
| (x=microstrain/pressu           |               | (0.52x>0.41/psi)                | (0.41≥x0.31/psi)              | (0.31≥x0.21/psi) | (0.21 psi≥x) |  |  |  |  |
| re unit)                        |               |                                 | · · /                         |                  |              |  |  |  |  |

Table 3: Evaluation Criteria for the WSDOT Study. Adapted from [9]

<sup>1</sup>This table does not represent a comprehensive list of all characteristics that good concrete should exhibit. It does list characteristics that can quantifiably be divided into different performance groups.

<sup>2</sup>All tests to be performed on concrete samples moist or submersion cured for 56 days. See Table 2 for additional information and exceptions.

<sup>3</sup>A given HPC mix design is specified by a grade for each desired performance characteristic. For example, a concrete may perform at Grade 4 in strength and elasticity, Grade 3 in shrinkage and scaling resistance, and Grade 2 in all other categories.

<sup>4</sup>Based on SHRP C/FR-91, p. 3.52.

<sup>5</sup>Based on SHRP S-360.

<sup>6</sup>Based on SHRP C/FR-91-103.

<sup>7</sup>Based on PCA Engineering Properties of Commercially Available High-Strength Concretes.

<sup>8</sup>Based on SHRP C/FR-91-103, p. 3.25.

<sup>9</sup>Based on SHRP C/FR-91-103, p. 3.30.

<sup>10</sup>Based on SHRP C/FR-91-103, p. 3.17.

#### Summary

The study concluded that the all of the mixes satisfied different HPC performance grades for freeze-thaw durability. Mix designs A through D met HPC performance grade 2 (Table 2) and the mix design E met HPC performance grade 1 (Table 2). Including 5 to 6% air entrainment and maintaining a w/c ratio of 0.35 was found to increase the freeze-thaw durability. Adding fly ash also increased freeze-thaw durability. Based on the

testing results, it was concluded that low chloride permeability could be achieved by using a low w/c ratio and including fly ash.

## 2.4.2 Montana study

A study was conducted in Montana to come up with the optimum HPC mix design for bridge decks using locally available raw materials. Fourteen mix designs were considered [22]. Table 4 summarizes the mix designs while Table 5 summarizes the percent of Portland cement that was replaced by the indicated supplementary cementitious materials.

| Material per cubic       | Mixture ID |      |      |      |      |      |      |      |                  |                  |                  |      |      |      |
|--------------------------|------------|------|------|------|------|------|------|------|------------------|------------------|------------------|------|------|------|
| yard                     | Α          | В    | С    | D    | E    | F    | G    | H    | J                | Κ                | L                | М    | Ν    | 0    |
| Cement or blend (lbs.)   | 562        | 684  | 526  | 526  | 526  | 720  | 649* | 649* | 575 <sup>†</sup> | 629 <sup>†</sup> | 654 <sup>‡</sup> | 685  | 526  | 526  |
| Water (lbs.)             | 266        | 266  | 266  | 266  | 266  | 252  | 252  | 252  | 252              | 252              | 252              | 252  | 252  | 252  |
| Fly Ash - Class C (lbs.) | 138        | 0    | 138  | 63   | 0    | 0    | 0    | 0    | 0                | 0                | 0                | 0    | 0    | 125  |
| Fly Ash - Class F (lbs.) | 0          | 0    | 0    | 0    | 54   | 0    | 0    | 0    | 54               | 0                | 0                | 0    | 0    | 0    |
| Silica Fume (lbs.)       | 0          | 25   | 25   | 25   | 25   | 0    | 38   | 0    | 28               | 38               | 20               | 25   | 35   | 35   |
| Slag (lbs.)              | 0          | 0    | 0    | 80   | 80   | 0    | 0    | 0    | 0                | 0                | 0                | 0    | 133  | 0    |
| HR Metakaolin (lbs.)     | 0          | 0    | 0    | 0    | 0    | 0    | 0    | 45   | 0                | 0                | 0                | 0    | 0    | 0    |
| Fine Aggregate (lbs.)    | 1284       | 1284 | 1284 | 1284 | 1284 | 1300 | 1300 | 1300 | 1300             | 1300             | 1300             | 1296 | 1296 | 1296 |
| Coarse Aggregate (lbs.)  | 1572       | 1572 | 1572 | 1572 | 1572 | 1593 | 1593 | 1593 | 1593             | 1593             | 1593             | 1573 | 1573 | 1573 |
| AEA (fl. oz./cwt.)       | 2.5        | 1.8  | 2.6  | 2.6  | 2.2  | 1.5  | 1.8  | 2.9  | 2.3              | 2.0              | 1.8              | 1.9  | 2.4  | 4.2  |
| MRWR (fl. oz./cwt.)      | 2.4        | 2.0  | 2.5  | 2.5  | 1.7  | 4.0  | 7.0  | 2.6  | 2.5              | 2.6              | 2.5              | 2.5  | 2.5  | 2.5  |
| HRWR (fl. oz./cwt.)      | 4.4        | 4.3  | 3.7  | 6.1  | 7.1  | 8.0  | 6.4  | 11.7 | 16.3             | 11.8             | 17.1             | 14.1 | 20.2 | 18.4 |

 Table 4: HPC Mix Designs used in the Montana Study [22]

\* = Class C fly ash blend, <sup>†</sup>=Slag blended cement, <sup>‡</sup>= Calcined clay blended cement

| Table 5: Percentage | Replacement of Cement with the Supplementary Cementitious Materials (S | SCM) |
|---------------------|------------------------------------------------------------------------|------|
|                     | Used in the Mix Designs for the Montana Study [22]                     |      |

| Material/Pi      | roperty                   | Mixture ID |      |      |      |      |      |      |      |      |      |      |      |      |      |
|------------------|---------------------------|------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|                  |                           | Α          | В    | С    | D    | E    | F    | G    | н    | J    | к    | L    | м    | N    | 0    |
|                  | Fly Ash (Class C) Blend   |            |      |      |      |      |      | 92.5 | 92.5 |      |      |      |      |      |      |
| of               | Slag Blend                |            |      |      |      |      |      |      |      | 84.5 | 92.5 |      |      |      |      |
| t H              | Calcined-Clay Blend       |            |      |      |      |      |      |      |      |      |      | 96   |      |      |      |
| me               | Fly Ash (Class C)         | 22         |      | 22   | 10   |      |      |      |      |      |      |      |      |      | 20   |
| ace              | Fly Ash (Class F)         |            |      |      |      | 10   |      |      |      | 10   |      |      |      |      |      |
| epl              | Slag                      |            |      |      | 12   | 12   |      |      |      |      |      |      |      | 20   |      |
| R                | Silica Fume               |            | 5    | 5    | 5    | 5    |      | 7.5  |      | 5.5  | 7.5  | 4    | 5    | 7    | 7    |
|                  | HR Metakaolin             |            |      |      |      |      |      |      | 7.5  |      |      |      |      |      |      |
| f                | Fly Ash - Class C         | 22         |      | 22   | 10   | Γ    |      | 18.6 | 18.6 | Ι    |      |      |      |      |      |
| t i i i          | Fly Ash - Class F         |            |      |      |      | 10   |      |      |      | 10   | 17.1 |      |      |      |      |
| Male             | Slag                      |            |      |      | 12   | 12   |      |      |      | 15.6 |      |      |      |      |      |
| SC<br>Iniv<br>SC | Silica Fume               |            | 5    | 5    | 5    | 5    |      | 7.5  |      | 5.5  | 7.5  | 4    |      |      |      |
| bla eq           | HR Metakaolin             |            |      |      |      |      |      |      | 7.5  |      |      |      |      |      |      |
| re               | Calcined Clay             |            |      |      |      |      |      |      |      |      |      | 19.8 |      |      |      |
| Basis w/cm       | (for cement-only mixture) | 0.37       | 0.37 | 0.37 | 0.37 | 0.37 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
| Aggregate S      | ource                     | YR         | YR   | YR   | YR   | YR   | YR   | YR   | YR   | YR   | YR   | YR   | WM   | WM   | WM   |

YR=Yellowstone River

WM = Western Montana

For the specific set of raw materials evaluated, the combinations of supplementary cementitious materials that produced the best results were 5% silica fume alone (Mixtures B and M), 7% silica fume and 20% slag (Mixture N), the slag-blended cement with 10% Class F fly ash and 5.5% silica fume (Mixture J), and the calcined clay-blend with 4% silica fume (Mixture L). The combination of the slag-blended cement, Class F fly ash, and silica fume also gave excellent performance across all tests, standing out particularly for low drying shrinkage, and would be expected to be the best option to mitigate alkalisilica reactivity.

## 2.4.3 Strategic Highway Research Program Study

A four year study was conducted by the researchers at North Carolina State University, University of Arkansas, and University of Michigan to evaluate the mechanical behavior of HPC. The goal of this study was to significantly improve the criteria for highway applications pertaining to HPC. The study was broken down into three categories of Very Early Strength Concrete (VES), High Early Strength Concrete (HES) and Very High Strength Concrete (VHS) [24].

The authors of the study defined various categories of HPC according to the criteria listed in Table 6. They also developed a matrix of potential applications for each of the categories of HPC as shown in Table 7.

| Category of HPC                                     | Minimum<br>Compressive Strength    | Maximum Water/<br>Cement Ratio | Minimum Frost<br>Durability Factor |
|-----------------------------------------------------|------------------------------------|--------------------------------|------------------------------------|
| Very early strength (VES)                           |                                    |                                |                                    |
| Option A<br>(with Type III cement)                  | 2,000 psi (14 MPa)<br>in 6 hours   | 0.40                           | 80%                                |
| Option B<br>(with PBC-XT cement)                    | 2,500 psi (17.5 MPa)<br>in 4 hours | 0.29                           | 80%                                |
| High early strength (HES)<br>(with Type III cement) | 5,000 psi (35 MPa)<br>in 24 hours  | 0.35                           | 80%                                |
| Very high strength (VHS)<br>(with Type I cement)    | 10,000 psi (70 MPa)<br>in 28 days  | 0.35                           | 80%                                |

Table 6: Criteria Used to Categorize the HPC Mixtures Used in the Strategic Highway ResearchProgram Study [24]

 Table 7: Potential Applications for the HPC Mixtures Used in the Strategic Highway Research

 Program Study [24]

| Potential                    |         | Туре    |     |     |
|------------------------------|---------|---------|-----|-----|
| Applications                 | VES (A) | VES (B) | HES | VHS |
| New pavement                 | x       |         | х   |     |
| Full-depth pavement patch    | х       | Х       | Х   |     |
| Pavement overlay             | х       | х       | Х   |     |
| New bridge deck              |         |         | Х   | х   |
| Full bridge deck replacement |         |         | Х   | Х   |
| Bridge deck overlay          | Х       | Х       | х   |     |
| Bridge girders               |         |         | Х   | Х   |
| Precast elements             |         | Х       | Х   | х   |
| Prestressed piles            |         | Х       | х   | Х   |
| Columns and piers            |         |         | х   | х   |

Twenty one HPC mixtures incorporating the aggregates listed in Table 8 were studied in detail. For each category of HPC (Table 6), four mixtures were developed and evaluated for compressive strength. Tables 9 through 13 provide the strength test results. Fly ash and silica fume were utilized in the very high strength (VHS) mixtures (Tables 12 and 13).

| Туре                    | Symbol | Source             |  |  |
|-------------------------|--------|--------------------|--|--|
| Marine marl             | ММ     | Castle Hayne, N.C. |  |  |
| Crushed granite         | CG     | Garner, N.C.       |  |  |
| Dense crushed limestone | DL     | West Fork, Ark.    |  |  |
| Washed rounded gravel   | RG     | Memphis, Tenn.     |  |  |
| Sand                    |        | Lillington, N.C.   |  |  |
| Sard                    |        | Memphis, Tenn.     |  |  |
| Sard                    |        | Van Buren, Ark.    |  |  |

 Table 8: Aggregate Sources Used in the Strategic Highway Research Program Study [24]

 Table 9: Mixture Proportions of VES (A) Concrete with Four Different Aggregate Types [24]

| Coarse aggregate type:<br>Source of sand:         | CG<br>Lillington | MM<br>Lillington | RG<br>Memphis | DL<br>Van Buren |
|---------------------------------------------------|------------------|------------------|---------------|-----------------|
| Cement (Type III), pcy                            | 870              | 870              | 870           | 870             |
| Coarse aggregate, pcy                             | 1,720            | 1,570            | 1,650         | 1,680           |
| Sand, pcy                                         | 820              | 800              | 760           | 920             |
| HRWR (melamine based), oz/cwt                     | 5.0              | 5.0              | 10            | 4.0             |
| Calcium nitrite (DCI), gcy                        | 6.0              | 6.0              | 6.0           | 6.0             |
| AEA, oz/cwt                                       | 3.0              | 2.5              | 4.0           | 2.5             |
| Water, pcy                                        | 350              | 350              | 350           | 340             |
| W/C                                               | 0.40             | 0.40             | 0.40          | 0.39            |
| Slump, in.                                        | 5                | 7                | 6             | 5.75            |
| Air, %                                            | 6.5              | 6.4              | 7.5           | 4.40            |
| Strength at 6 hr, psi (insulated)                 | 2,090            | 2,000            | 2,360         | 3,090           |
| Concrete temperature at placement, <sup>o</sup> F | 71               | 75               | 79            | 78              |

Note: 1 MPa = 145 psi

| Aggregate type:<br>Source of sand:                | CG<br>Lillington | MM<br>Lillington | RG<br>Memphis | DL<br>Van Buren |
|---------------------------------------------------|------------------|------------------|---------------|-----------------|
| Cement (Pyrament) ncy                             | 850              | 850              | 850           | 855             |
| Coarse aggregate, pcv                             | 1.510            | 1.500            | 1.510         | 1.680           |
| Sand, pcv                                         | 1,440            | 1,460            | 1,400         | 1,560           |
| HRWR (Melamine Based), oz/cwt                     | 0                | 0                | 0             | 0               |
| Calcium nitrite (DCI), gcy                        | 0                | 0                | 0             | 0               |
| AEA, oz/cwt                                       | 0                | 0                | 0             | 0               |
| Water, pcy                                        | 195              | 145              | 183           | 200             |
| W/C                                               | 0.:23            | 0.17             | 0.22          | 0.23            |
| Slump, in.                                        | €.5              | 4                | 3.5           | 7.0             |
| Air. %                                            | 6.0              | 7.0              | 3.7           | 7.6             |
| Strength at 4 hr. psi (insulated)                 | 2,510            | 2,270            | 3,060         | 2,890           |
| Concrete temperature at placement, <sup>o</sup> F | '72              | 72               | 75            | 77              |

#### Table 10: Mixture Proportions of VES (B) Concrete with Four Different Aggregate Types [24]

Note: 1 MPa = 145 psi

## Table 11: Mixture Proportions of HES Concrete with Four Different Aggregate Types [24]

| Aggregate type:<br>Source of sand:    | CG<br>Lillington | MM<br>Lillington | RG<br>Memphis | DL<br>Van Buren |
|---------------------------------------|------------------|------------------|---------------|-----------------|
| Cement (Type III), pcy                | 8.70             | 870              | 870           | 870             |
| Coarse aggregate, pcy                 | 1,7:20           | 1,570            | 1,650         | 1,680           |
| Sand, pcy                             | 960              | 980              | 900           | 1,030           |
| HRWR (Naph: halene Based), oz/cwt     | .26              | 26               | 26            | 16              |
| Calcium nitrite (DCI), gcy            | 4.0              | 4.0              | 4.0           | 4.0             |
| AEA, oz/cwt                           | 9                | 1.0              | 1.0           | 4.0             |
| Water, pcy                            | 280              | 280              | 300           | 300             |
| W/C                                   | 0.32             | 0.32             | 0.34          | 0.34            |
| Slump, in.                            | 1.0              | 6.75             | 7.0           | 3.5             |
| Air, %                                | 5.3              | 5.6              | 6.6           | 5.4             |
| Strength at 1 day, psi                | 5,410            | 5,610            | 5,690         | 5,300           |
| Concrete temperature at placement, oF | 30               | 73               | 84            | 78              |

Note: 1 MPa = 145 psi

| Aggregate type:<br>Source of sand:<br>Type of fly ash: | CG<br>Lillington<br>F | MM<br>Lillington<br>F | RG<br>Memphis<br>F | DL<br>Van Buren<br>C |
|--------------------------------------------------------|-----------------------|-----------------------|--------------------|----------------------|
| Cement (Type I), pcy                                   | 830                   | 830                   | 830                | 830                  |
| Fly ash, pcy                                           | 200                   | 200                   | 200                | 200                  |
| Coarse aggregate, pcy                                  | 1,720                 | 1,570                 | 1,650              | 1,680                |
| Sand, pcy                                              | 937                   | 900                   | 860                | 1,020                |
| HRWR (Naphthalene Based), oz/cwt                       | 26                    | 20                    | 20                 | 18                   |
| Retarder, oz/cwt                                       | 3.0                   | 3.0                   | 3.0                | 3.0                  |
| AEA, oz/cwt                                            | 3.5                   | 1.3                   | 1.2                | 2.5                  |
| Water, pcy                                             | 240                   | 240                   | 240                | 240                  |
| W/(C+FA)                                               | 0.23                  | 0.23                  | 0.23               | 0.23                 |
| Slump, in.                                             | 3.5                   | 10                    | 7.0                | 3.75                 |
| Air, %                                                 | 5.5                   | 8.0                   | 2.0                | 4.8                  |
| Strength at 28 days, psi                               | 12,200                | 7,620                 | 8,970              | 9,833                |
| Concrete temperature at placement, <sup>0</sup> F      | 80                    | 72                    | 69                 | 76                   |

#### Table 12: Mixture Proportions of VHS Concrete with Fly Ash [24]

Note: 1 MPa = 145 psi

W/(C+FA) = ratio of weight of water to combined weight of cement and fly ash

| Aggregate type:<br>Source of sand:                | CG<br>Lillington | MM<br>Lillington | RG<br>Memphis | DL<br>Van Buren |
|---------------------------------------------------|------------------|------------------|---------------|-----------------|
| Cement (Type I), pcy                              | 760              | 760              | 760           | 770             |
| Silica fume, pcy                                  | 3.5              | 35               | 35            | 35              |
| Coarse aggregate, pcy                             | 1,72)            | 1,570            | 1,650         | 1,680           |
| Sand, pcy                                         | 1,205            | 1,140            | 1,150         | 1,250           |
| HRWR (naphthalene based), oz/cwt                  | 1.4              | 12               | 14            | 17              |
| Retarder, oz/cwt                                  | 2.)              | 2.0              | 3.0           | 3.0             |
| AEA. oz/cwt                                       | 0.)              | 0.6              | 0.9           | 1.5             |
| Water, pcv                                        | 230              | 240              | 240           | 230             |
| W/(C+SF)                                          | 0.29             | 0.30             | 0.30          | 0.29            |
| Slump, in                                         | 2.75             | 4.25             | 3.0           | 2.75            |
| Air %                                             | 5.)              | 5.6              | 7.3           | 5.1             |
| Strength at 28 cavs, psi                          | 11,780           | 8,460            | 9,120         | 10,010          |
| Concrete temperature at placement, <sup>o</sup> F | 80               | 77               | 80            | 75              |

#### Table 13: Mixture Proportions of VHS Concrete with Silica Fume [24]

Note: 1 MPa = 145 psi

W/(C+SF) = ratio of weight of water to combined weight of cement and silica fume

Seven out of the 21 mixtures failed to reach the desired compressive within a time limit. However, 6 out of these 7 HPC mixtures contained the weaker aggregates, those being marine marl and rounded gravel. High quality aggregates, high quality cement, and air entraining agents were required to produce HPC.

### 2.4.4 Structural Engineering Research Center Study

A study was conducted by the members of Structural Engineering Research Centre at Chennai [25], to observe the properties of HPC when the cement was partially replaced by ground granulated blast furnace slag (GGBFS) versus a control mixture design. It was concluded from this study that the addition of GGBFS, as a partial replacement of cement, causes a reduction in the compressive strength at early ages but at the later ages HPCs with GGBFS had nearly the same strength as that of HPC without GGBFS. The use of GGBFS in HPCs to replace cement by 70% helped to reduce the cement content of HPCs from about 530 kg/m<sup>3</sup> to 160 kg/m<sup>3</sup>. Due to this replacement, there was no significant effect on the 28-day and 90-day compressive strengths and an improvement in the durability properties of the HPC was observed. Also, HPCs containing GGBFS displayed higher impermeability than the HPC without GGBFS and considerable imperviousness to chloride ions was obtained.

Four experimental mixture designs—HPC-20S, HPC-30S, HPC- 50S, and HPC- 70S were developed by replacing 20%, 30%, 50% and 70% of the mass of cement by GGBFS, respectively, for this study. Grade 53 portland cement, river sand and crushed granite aggregates were used in the concretes mixes. The mixture designs used for this study are shown in Table 14.

| Composition                        | Mix Desig | gnation |       |      |      |              |
|------------------------------------|-----------|---------|-------|------|------|--------------|
|                                    | HPC-0S    | HPC-    | HPC-  | HPC- | HPC- | Conventional |
|                                    |           | 20S     | 30S   | 50S  | 70S  | Concrete     |
| CRM %                              | 0         | 20      | 30    | 50   | 70   | -            |
| w/b                                | 0.3       | 0.3     | 0.3   | 0.3  | 0.3  | 0.5          |
| w/c                                | 0.3       | 0.375   | 0.429 | 0.6  | 1.0  | 0.5          |
| Cement, kg/m <sup>3</sup>          | 535       | 428     | 375   | 267  | 160  | 315          |
| GGBFS, kg/ $m^3$                   | 0         | 107     | 160   | 268  | 375  | -            |
| Total Aggregate, kg/m <sup>3</sup> | 1765      | 1765    | 1765  | 1765 | 1765 | 1840         |
| Water, l/m <sup>3</sup>            | 160       | 160     | 160   | 160  | 160  | 160          |
| Super plasticizer, $ml/m^3$        | 1235      | 1235    | 1235  | 1235 | 1235 | -            |

 Table 14: Mix Proportions of the HPCs [25]

CRM: Cement replacement material (by mass of cement of control mix HPC-0S) w/b: Water-binder ratio

## 2.5 Construction Practices

Use of supplementary cementitious materials and other admixtures in concrete mixtures necessitates special consideration with regard to construction practices. Several considerations identified in the literature include [26]:

- Flash set and temperature: Retarding admixtures can be added to combat the early setting problems in concrete. Since HPC has low water-to-cement ratios compared with normal weight concrete, the concrete placement temperature can be limited to 65 degrees Fahrenheit in some projects.
- **Finishability and slump**: HPC is typically placed at relatively high slumps, from 8 to 10 inches, because of the superplasticizer required for workability. HPC with silica fume can be sticky and can lead to tears and pulls during finishing. Screeding operations must begin as soon as possible after placement.
- Lack of bleed water: Superplasticizers must be added to distribute the limited water in HPC mixtures as they have low w/c ratios. Silica fume concrete, with its lack of bleed water and susceptibility to surface crusting from evaporation, should not be placed in high-wind and low-humidity conditions.
- Plastic shrinkage and mandatory curing: Curing is critical in HPC projects. Because autogenous shrinkage begins with cement hydration and even before the concrete begins to set, effective curing must start early. Curing specifications require that moisture loss be minimized by the use of evaporation retarders, continuous misting or fogging, and moist curing for 7 days. Curing must begin immediately after finishing, and continue for as long as possible to avoid plastic shrinkage cracking.
- Abrasion resistance: Abrasion of concrete occurs due to rubbing, scraping, skidding, or sliding of objects on its surface.

## 2.6 Abrasion Resistance Concrete

For many applications, abrasion resistance is one of the important characteristics of high performance concrete. The primary factors affecting the abrasion resistance of concrete are compressive strength, aggregate properties, finishing methods, use of toppings, and

curing [12]. Abrasion of concrete occurs due to rubbing, scraping, skidding or sliding of objects on its surface. Concrete mixtures that are subjected to abrasion must have concrete mixture designs that have high abrasion resistance [13]. Abrasion resistance is closely related to the compressive strength of concrete. Strong concrete has more resistance to abrasion than that of weak concrete [27]. It has been shown that by carefully selecting aggregates, it is possible to achieve the same abrasion resistance on high strength concrete (on the order of 100-120 MPa) as on granite [28]. Since compressive strength depends on water-to-cementing materials ratio and curing, a low water-to-cementing materials ratio and adequate curing are necessary for abrasion resistance. According to Liu [29], concrete of the lowest practical water-cement ratio and the hardest available aggregates should be used for new constructions or repair of hydraulic structures where abrasion is of major concern.

#### 2.6.1 Case Study I

Laplante, Aitcin and Vezina [20] studied 12 HPC mixtures summarized in Table 15 and concluded that coarse aggregate is the most important factor affecting concrete abrasion resistance (mixtures C3 and C4 performed exceedingly well) and inclusion of silica fume in the concrete mixture increased the abrasion resistance of concrete. Also, the abrasion resistance of the concrete was strongly influenced by the abrasion resistance of its constituent mortar and coarse aggregate. A very low water-to-cement ratio of about 0.30 can make the concrete as highly abrasion resistant as that of high performance rocks like trap rock and fine-grained granite. The abrasion resistance was established according to ASTM C779-82.

Table 15: Mix Proportions Used for Case Study I [20]A1, A2, A3 and A4 are air entrained concretes.B1, B2, B3 and B4 are non-air entrained concretes.C1, C2, C3 and C4 are non-air entrained concretes. T represents Type of material C represents composition of the materials.

| Materials            | 1  | 41   |   | A2   | 1  | 43   |   | A4   |     | B1   |     | B2   |     | B3   |     | B4   |     | C1   |     | C <b>2</b> |     | C3       |     | C4   |
|----------------------|----|------|---|------|----|------|---|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------------|-----|----------|-----|------|
|                      | T* | C**  | Т | С    | Т  | С    | Т | С    | Т   | С    | Т   | С    | Т   | С    | Т   | С    | Т   | С    | Т   | С          | Т   | С        | Т   | С    |
| Water                | -  | 170  | - | 170  | -  | 170  | - | 170  | -   | 135  | -   | 140  | -   | 145  | -   | 150  | -   | 140  | -   | 140        | -   | 140      | -   | 140  |
| (kg/m <sup>3</sup> ) |    |      |   |      |    |      |   |      |     |      |     |      |     |      |     |      |     |      |     |            |     |          |     |      |
| Cement               |    | 350  |   | 350  |    | 350  |   | 350  |     | 505  |     | 425  |     | 390  |     | 350  |     | 430  |     | 430        |     | 430      |     | 430  |
| (kg/m <sup>3</sup> ) |    |      |   |      |    |      |   |      |     |      |     |      |     |      |     |      |     |      |     |            |     |          |     |      |
| Cement Type          | I  |      | Ι |      | Ι  |      | Ι |      | III |            | III |          | III |      |
| Silica Fume          | -  | -    | - | -    | -  | 27   | - | 27   | -   | 40   | -   | 35   | -   | 31   | -   | 28   | -   | 35   | -   | 35         | -   | 35       | -   | 35   |
| $(kg/m^3)$           |    |      |   |      |    |      |   |      |     |      |     |      |     |      |     |      |     |      |     |            |     |          |     |      |
| Coarse               | GG | 1000 | L | 970  | GG | 1010 | L | 995  | G   | 1010 | G   | 1000 | G   | 1020 | G   | 1010 | L   | 1010 | DL  | 1015       | TR  | 990      | G   | 1000 |
| Aggregate***         |    |      |   |      |    |      |   |      |     |      |     |      |     |      |     |      |     |      |     |            |     |          |     |      |
| $(kg/m^3)$           |    |      |   |      |    |      |   |      |     |      |     |      |     |      |     |      |     |      |     |            |     |          |     |      |
| Fine                 | -  | 785  | - | 785  | -  | 775  | - | 785  | -   | 800  | -   | 860  | -   | 890  | -   | 900  | -   | 850  | -   | 860        | -   | 880      | -   | 860  |
| Aggregate            |    |      |   |      |    |      |   |      |     |      |     |      |     |      |     |      |     |      |     |            |     |          |     |      |
| $(kg/m^3)$           |    |      |   |      |    |      |   |      |     |      |     |      |     |      |     |      |     |      |     |            |     |          |     |      |
| Super                | -  | -    | - | -    | -  | 1.2  | - | 1.2  | -   | 15.4 | -   | 9    | -   | 7.2  | -   | 5    | -   | 10.6 | -   | 11         | -   | 12       | -   | 9    |
| plasticizer          |    |      |   |      |    |      |   |      |     |      |     |      |     |      |     |      |     |      |     |            |     |          |     |      |
| $(l/m^3)$            |    |      |   |      |    |      |   |      |     |      |     |      |     |      |     |      |     |      |     |            |     |          |     |      |
| Slump (mm)           | -  | 75   | - | 80   | -  | 80   | - | 90   | -   | 150  | -   | 185  | -   | 180  | -   | 95   | -   | 190  | -   | 190        | -   | 150      | -   | 185  |
| - · · ·              |    |      |   |      |    |      |   |      |     |      |     |      |     |      |     |      |     |      |     |            |     |          |     |      |
| Air content          | -  | 8.0  | - | 8.0  | -  | 6.4  | - | 6.4  | -   | 2.3  | -   | 2.2  | -   | 1.9  | -   | 2.1  | -   | 1.9  | -   | 1.5        | -   | Not      | -   | 2.2  |
| (%)                  |    |      |   |      |    |      |   |      |     |      |     |      |     |      |     |      |     |      |     |            |     | measured |     |      |
| W/C                  | -  | 0.48 | - | 0.48 | -  | 0.48 | - | 0.48 | -   | 0.27 | -   | 0.32 | -   | 0.36 | -   | 0.41 | -   | 0.32 | -   | 0.32       | -   | 0.32     | -   | 0.32 |

T = type

\*\*C = Content

\*\*\*GG = Granite gravel; L = limestone; G = granite; DL= dolomitic limestone; TR = trap rock

#### 2.6.2 Case Study II

In the UK, a study was conducted by Atis in which a control mixture was designed to have a 45 MPa target compressive strength [30]. The mixture design was based on the principle of minimizing the porosity. In the control mix, normal portland cement, sand, and gravel were proportioned at a ratio of 1:1.5:3 by mass, respectively. The water-to-cement ratio was 0.55 for better flow. Fly ash concrete mixtures were made for comparison reasons, using two cement substitute levels at 50% and 70% by mass. The mix proportions for 1m<sup>3</sup> were as shown in Table 16.

| Parameter                    |      | Mix  | ture Designa | ation |      |
|------------------------------|------|------|--------------|-------|------|
|                              | M0   | M1   | M2           | M3    | M4   |
| Cement( kg/m <sup>3</sup> )  | 400  | 120  | 120          | 200   | 200  |
| Fly ash( kg/m <sup>3</sup> ) | -    | 280  | 280          | 200   | 200  |
| Sand( kg/m <sup>3</sup> )    | 600  | 600  | 600          | 600   | 600  |
| Gravel( kg/m <sup>3</sup> )  | 1200 | 1200 | 1200         | 1200  | 1200 |
| Water( kg/m <sup>3</sup> )   | 220  | 112  | 116          | 132   | 120  |
| Optimal W/ (FA+C)            | -    | 0.29 | 0.29         | 0.30  | 0.30 |
| Actual W/(FA+C)              | 0.55 | 0.28 | 0.29         | 0.33  | 0.30 |
| Super plasticizer (L)        | -    | 5.6  | -            | 5.6   | -    |
| FA/(C+FA)(%)                 | 0    | 70   | 70           | 50    | 50   |

 Table 16: Mix Proportions for 1 m<sup>3</sup> of Concrete [30]

M1 and M2 were the concrete mixtures having 70% fly ash as cement replacement. M3 and M4 were the concrete mixtures having 50% fly ash replacement. Also M1 and M3 contain a super-plasticizer, and M2 and M4 were concrete mixtures having zero slump for application in roller compacted concrete. Generally, an increase in compressive strength and a decrease in porosity yielded a higher abrasion resistance. Additionally, a constant compressive strength and an increase in porosity yielded a decrease in abrasion resistance.

#### 2.6.3 Case Study III

Another study [12] observed the effect of fly ash on the abrasion resistance of concrete. Class C fly ash was used in the mix proportions which are summarized in Table 17. Concrete mixtures having 50% cement replacement with fly ash attained sufficient strength required for structural applications. All the concrete mixtures used in this study showed excellent abrasion resistance when tested in accordance with ASTM C-944.

|                                                | C-3<br>(reference | P4-7         | P4-8         |
|------------------------------------------------|-------------------|--------------|--------------|
| Mixture Number                                 | mixture           | (50% cement  | (70% cement  |
|                                                | containing        | replacement) | replacement) |
|                                                | no fly ash)       |              |              |
| Specified Design Strength                      | 41                | -            | -            |
| Cement $(kg/m^3)$                              | 375               | 180          | 110          |
| Fly Ash $(kg/m^3)$                             | 0                 | 226          | 316          |
| Water (kg/m <sup>3</sup> )                     | 135               | 136          | 155          |
| w/c ratio                                      | 0.36              | 0.33         | 0.36         |
| Sand (kg/m <sup>3</sup> )                      | 687               | 655          | 606          |
| 25-mm aggregates $(kg/m^3)$                    | 1182              | 1139         | 1145         |
| Slump (mm)                                     | 120               | 114          | 120          |
| Air Content (%)                                | 6.3               | 7.0          | 6.4          |
| Superplasticizer (l/m <sup>3</sup> )           | 2.9               | 2.7          | 2.6          |
| Air Entraining Admixture (ml/m <sup>3</sup> )  | 270               | 886          | 380          |
| Air Temperature (deg-Celsius)                  | 21.1              | -            | -            |
| Concrete Temperature (deg-Celsius)             | 23                | 26           | 25           |
| Fresh Concrete Density (kg/m <sup>3</sup> )    | 2393              | 2328         | 2365         |
| Hardened Concrete Density (kg/m <sup>3</sup> ) | 2486              | 2342         | 2326         |

Table 17: Mix Proportions Using ASTM Class C Fly Ash [12]

#### 2.6.4 Case Study IV

Holland and Gutschow studied the high strength concrete incorporating silica fume used for the repairs on the Kinzua Dam stilling basin and Los Angeles River projects [31]. The mix design for the Kinzua project is shown in Table 18. The researchers concluded that the concrete at the Kinzua Dam performed as intended. They could not come to any conclusion on the Los Angeles River project as it was too soon at the time of their study. However, they mentioned the following observations pertinent to the placement of the silica-fume concrete: (1) slump control can be very sensitive in hot weather because of the effective life of some high-range water-reducing admixtures; (2) Pozzolans enhance the workability of silica-fume concretes; (3) silica fume concrete is more plastic and cohesive than conventional concrete and less susceptible to aggregate segregation and bleeding; (4) plastic shrinkage appears more likely than with conventional concrete; and (5) the occurrence of reflection cracking was minimal.

| Constituent                        | Unit V                             | Weight                        |
|------------------------------------|------------------------------------|-------------------------------|
|                                    | lb/yd <sup>3</sup>                 | kg/m <sup>3</sup>             |
| Cement, Type I/II                  | 650                                | 386                           |
| Silica fume slurry                 | 263                                | 156                           |
| Water                              | 134                                | 80                            |
| Silica fume                        | 118                                | 70                            |
| Admixtures                         | 11                                 | 6                             |
| Coarse aggregate                   | 1637                               | 971                           |
| Fine aggregate                     | 1388                               | 824                           |
| Water                              | 85                                 | 40                            |
| Properties                         |                                    |                               |
| w/b ratio                          | 0.28                               |                               |
| Silica fume content by cement mass | 18%                                |                               |
| Average air content                | 3.2%                               |                               |
| Average slump                      | 250 mm                             |                               |
| Average unit weight                | 152.6 lb/ft <sup>3</sup> (2444 kg/ | <sup>(</sup> m <sup>3</sup> ) |

 Table 18: Mixture Proportions and Properties of Fresh Concrete Used for the Kinzua Dam Stilling

 Basin Repair [31]

## 2.6.5 Case Study V

Horszczaruk [32] examined nine types of high strength concrete. The abrasion resistance of HSC with regard to compression strength, modulus of elasticity, fiber material, and dimensions was studied. The mixes were made with portland cement (CEM I 42.5 R, CEM I 52.5 R) and blast furnace cement (CEM IIIA 42.5), and basalt aggregate with added superplasticizers and silica fume. A few of the mixes contained fibers and two of the mixtures were modified with latex. The mix designs are summarized in Table 19.

| Type of mix                       |       | Mixture Designations |           |           |           |       |           |       |        |  |  |
|-----------------------------------|-------|----------------------|-----------|-----------|-----------|-------|-----------|-------|--------|--|--|
|                                   | C1    | C2                   | C3        | C4        | C5        | C6    | <b>C7</b> | C8    | С9     |  |  |
| Type of cement                    | CEM I | CEM I                | CEM III/A | CEM III/A | CEM III/A | CEM I | CEM I     | CEM I | CEM I  |  |  |
|                                   | 52.5R | 42.5R                | 42.5N     | 42.5N     | 42.5N     | 52.5R | 52.5R     | 52.5R | 52.5 R |  |  |
| Cement $(kg/m^3)$                 | 470   | 470                  | 470       | 470       | 470       | 450   | 450       | 450   | 450    |  |  |
| Water $(l/m^3)$                   | 135   | 135                  | 135       | 135       | 135       | 135   | 135       | 22.5  | 22.5   |  |  |
| Latex $(l/m^3)$                   | -     | -                    | -         | -         | -         | -     | -         | 112.5 | -      |  |  |
| Silica fume (kg/m <sup>3</sup> )  | 47    | 47                   | 47        | 47        | 47        | 45    | 45        | 45    | 45     |  |  |
| w/cm ratio                        | 0.26  | 0.26                 | 0.26      | 0.26      | 0.26      | 0.27  | 0.27      | 0.27  | 0.27   |  |  |
| Superplasticizer (%               | 2     | 1                    | 1.5       | 1.5       | 1.5       | 1     | 1         | 1.5   | 2      |  |  |
| mass of cement)                   |       |                      |           |           |           |       |           |       |        |  |  |
| Sand $(kg/m^3)$                   | 1007  | 1007                 | 1007      | 1007      | 1007      | 630   | 630       | 630   | 630    |  |  |
| Maximum diameter                  | 8     | 8                    | 8         | 8         | 8         | 16    | 16        | 16    | 16     |  |  |
| of basalt (mm)                    |       |                      |           |           |           |       |           |       |        |  |  |
| Basalt $(kg/m^3)$                 | 1006  | 1006                 | 1006      | 1006      | 1006      | 1279  | 1279      | 1279  | 1279   |  |  |
| Steel fibers (kg/m <sup>3</sup> ) | -     | -                    | -         | 70*       | 70**      | 70*   | 70**      | 70**  | -      |  |  |
| PVC fibers (kg/m <sup>3</sup> )   | -     | -                    | _         | -         | _         | -     | -         | -     | 1.8    |  |  |

 Table 19: Mixture Proportioning [32]

\*Steel fibers ME30/50. \*\* Steel fibers ME50/1.00.

Out of the three HSC mixes (C3, C4 and C5) made with blast furnace cement, the C5 concrete showed the highest abrasive resistance. The 28-day compressive strength of C5 was 25% higher than the strength of the other two concretes. The abrasive resistance of HSC reinforced with fiber and latex additive were compared with that of the non-reinforced concrete C1. The latex additive did not increase the abrasion resistance of concrete. The HSC with added PVC fiber improved the abrasive resistance of concrete.

#### 2.6.6 Case Study VI

In a study by Fernandez and Malhotra [33], the abrasion resistance of concrete incorporating ground-granulated blast-furnace slag (GGBFS) obtained from a source in Ontario was studied. Nine air-entrained concrete mixtures involving 18 batches were prepared. Type I portland cement, GGBFS, lime stone, natural sand, and a sulphonated hydrocarbon-type air-entraining admixture was used for these mixtures. The mixture designs used for this study are summarized in Table 20. The strength development characteristics of the slag concrete showed that the GGBFS could be used satisfactorily as a partial replacement of the portland cement in concrete. However, the abrasion resistance of the concrete containing slag was inferior to that of the concrete made with portland cement alone.

| Mix    | Mixture | Water/    | % Slag as   |       | Quant  |      | Air  |     |                   |
|--------|---------|-----------|-------------|-------|--------|------|------|-----|-------------------|
| series | number  | (cement   | replacement |       |        |      |      |     | Entraining        |
|        |         | + slag)   | of cement   | Water | Cement | Slag | CA   | FA  | Admixture         |
|        |         | by weight |             |       |        | ~    |      |     | ml/m <sup>3</sup> |
| Ι      | 1       | 0.70      | 0           | 142   | 202    | -    | 1175 |     |                   |
|        | 2       | 0.70      | 25          | 138   | 148    | 50   | 1148 |     |                   |
|        | 3       | 0.70      | 50          | 141   | 100    | 100  | 1171 |     |                   |
| II     | 4       | 0.55      | 0           | 143   | 259    | -    | 1139 | 759 | 128               |
|        | 5       | 0.55      | 25          | 142   | 196    | 65   | 1119 |     |                   |
|        | 6       | 0.55      | 50          | 144   | 131    | 131  | 1121 |     |                   |
|        |         |           |             |       |        |      |      |     |                   |
| III    | 7       | 0.45      | 0           | 151   | 336    | -    | 1103 |     |                   |
|        | 8       | 0.45      | 25          | 149   | 248    | 82   | 1134 | 666 | 199               |
|        | 9       | 0.45      | 50          | 150   | 166    | 166  | 1137 | 667 | 222               |

 Table 20: Mixture Proportions for the GGBFS Study [33]

## 2.7 Implementation of HPC

Several State DOTs are becoming attracted to the benefits of using HPC. It has been used extensively in states such as Ohio, Nebraska, New Mexico, Maryland, and Texas. Georgia Department of Transportation (GDOT) viewed HPC as a concrete having significant applications providing longer spans and shallower beams for pre-stressed concrete beams for highway bridges in Georgia. The deck concrete was specified to have a compressive strength of 7,000 psi (50 MPa) at 56 days and a maximum chloride permeability of 2,000 coulombs at 56 days [34].

Fifteen HPC bridge decks have been placed in Minnesota since 1997. Few of them, though with a specified compressive strength of 4,300 psi (29.6 MPa) at 28 days, have faced the problem of cracking due to improper curing [35].

The need to potentially extend the service life of bridges and pavements, while reducing maintenance and replacement costs influenced Nebraska Department of Roads to adopt HPC in 1995, when they designed their first bridge incorporating HPC. Their project aimed at obtaining a specified concrete strength of 8,000 psi (55 MPa) at 56-days, while the required design strength was 4,000 psi (28 MPa) [36].

HPC bridge projects in other states, and the results of various HPC research projects, convinced the Texas Department of Transportation (TxDOT) to modify their specification and add supplementary cementitious materials (SCM) to make concrete more durable. Class S (HPC) concrete for the bridge deck specified by the TxDOT has a minimum compressive strength requirement of 4,000 psi (28 MPa) at 28 days and a maximum w/cm ratio of 0.44, and also a provision requiring replacement of 30% of the cement with Class F fly ash. In Lubbock District of Texas, HPC was recommended to replace two deteriorated concrete bridges because of the significant use of deicing chemicals related to the 70 annual freeze-thaw cycles [35].

Due to several stringent constraints, California Department of Transportation (Caltrans) opted for high performance precast concrete for pre-stressed, post-tensioned, spliced bulb-tee girders to be built across the Sacramento River in Northern California. They

used a concrete mix with water to cementitious materials ratio of 0.33 and a high-range water reducing admixture. The average 10-day and 35-day strengths were approximately 10,000 psi (69 MPa) and 11,000 psi (75 MPa), respectively; the highest compressive strength concrete used by Caltrans [38].

With more and more new projects coming, the trend has changed over the past decade. Not only states, but small counties also aim at decreasing the life-cycle costs associated with bridges. According to 'Bridge Views, June 2000', Prince George's County, Maryland aimed at making 12 bridges in the next three years would like to design more durable bridges with extended longevity and decreased long-term maintenance and repair costs at the expense of higher initial costs [39].

The purpose of building the Rio Puerco Bridge located on Old Route 66 west of Albuquerque in 2000 was to establish the viability of HPC in New Mexico. They used cement, silica fume, and Class F fly ash as cementitious materials. A 3-day steam curing period was done to achieve concrete strength of 7,500 psi and 10,340 psi (51.7 and 71.3MPa) at release and 56 days, respectively. Although there was a 10% increase in the overall construction cost of bridge, it was expected to be much cheaper in long run with respect to life cycle costs [40].

In 1997, the Ohio Department of Transportation installed their first HPC precast, prestressed concrete bridge as part of the Federal Highway Administration Showcase program. This bridge superstructure consisted of adjacent box girders. Availability of 10,000 psi (69 MPa) compressive strength HPC enabled the span of the Ohio B42-48 section [42 in. deep by 48 in. wide (1.07 m by 1.22 m)] to be extended to 116 ft (35.4 m). In Hamilton County, over 20 HPC bridges have been built in the last ten years. Their mix design must have a w/cm ratio less than 0.40, maximum slump of 6 in. (150 mm), minimum compressive strength of 4,500 psi (31 MPa) at 28 days, and 2 lb/y3 (1.2 kg/m3) of polypropylene fibers not less than 3/4 in. (19 mm) long to minimize plastic shrinkage cracking. It also requires 7% silica fume by weight of cement, either as a replacement or as an ad

dition [41].

# 2.8 Benefits of Pre-cast Bridge Deck Slab

Improving and developing HPC would not be a good solution until we go for pre-cast elements because HPC requires excellent quality control which is more difficult when cast in-situ. Charles in his report on 'Application of Precast Decks and other Elements to Bridge Structures' stated

Benefits of using precast elements in bridge construction include the high level of quality control that can be achieved in plant cast production compared to field cast operations and speed of construction afforded by the assembly of precast elements at the site rather than the time consuming on site forming and casting required in cast-in-place construction. [42].

Other benefits of pre-cast components according to Ralls. et al. are stated as follows: [43]

- Use of Pre-cast elements can significantly compress the construction project timeline and reduce traffic disruption.
- Fabricating the elements off-site, in a safe environment reduces the amount of time workers are exposed to these potentially dangerous situations.
- The use of prefabricated elements gives contractors more options and can often reduce the impact bridge construction has on its surroundings.
- Plant operations are often standardized therefore ensures quality control.
- Same elements can be used for different projects and this repeatability often results in large economic benefits as well.

All these benefits of pre-cast elements formed the basis to make a decision to develop HPC for pre-cast panels studied in this research.

# 2.9 Grand Summary

HPC has been successfully used in several projects. The characteristics of HPC depend on the characteristics of its constituent materials. Therefore, the mix design should be done carefully to achieve the desirable properties of HPC required for a specified project. In general, Portland cement (Type I or III) used with supplementary cementitious materials such as silica fume or fly ash, along with appropriate admixtures and superplasticizers, can provide a very good HPC mixture. The relative proportions of these can be determined by testing various trial mixes to achieve the required compressive strength. A cost-benefit analysis also needs to be done so as to finalize the choice of supplementary cementitious materials and other materials used to produce a good quality HPC mix. From the case studies, it can be concluded that concrete incorporating silica fume offers high abrasion resistance. This makes silica fume concrete particularly useful for spillways and stilling basins, and for concrete pavements or concrete pavement overlays subjected to heavy or abrasive traffic. Thus, HSC containing silica fume with a low water cement ratio and hard aggregates can offer high abrasion resistance. Pre-cast panels would have lower life cycle cost and require minimal repairs. Also, use of prefabricated, precast elements can significantly provide safer and better construction option apart from better quality control and.

## **3 EXPERIMENT DESIGN**

The whole project was divided in to four phases namely Phase I, Pilot Study, Phase II and Field Study. Phase I, pilot study and phase II, being purely experimental and limited to laboratory testing, are covered in this thesis while the field testing will be conducted at a future date to provide some input to develop models to predict the life cycle cost of the bridge deck slab. Based on the extensive literature review, factors affecting HPC and abrasion resistant concrete were identified (see Chapter 2). Curing of concrete also plays an important role in the durability characteristics of HPC concrete; therefore this factor was also studied in detail in pilot study.

## 3.1 Phase I

Preliminary tests were conducted to determine the optimum water-to-binder (w/b) ratio for all the concrete mixtures under investigation during phase I of the project. Findings from the literature review indicated that HPC mixtures are predominately manufactured with w/b ratios in the range of 0.20 to 0.45 [4]; hence, w/b ratios of 0.30, 0.35 and 0.40 were utilized to determine the optimum w/b ratio for phase I. Based on the results obtained from compressive strength and flexural strength tests, a w/b ratio of 0.3 was selected 3.1.4.2

Having selected the w/b ratio for the concrete mixtures, the primary factors that were investigated during phase I included: 1) combination of supplementary cementitious materials (i.e., silica fume plus slag versus silica fume plus fly ash); 2) coarse aggregate type (i.e., crushed versus natural aggregate); and 3) methods for curing the concrete mixtures. These factors (treatments) are discussed in more detail in the following sections.

## 3.1.1 Experimental Matrix

Table 21 below is a  $2 \times 2 \times 3$  (two by two by three) matrix summarizing the experiment design for phase I. It identifies the tests conducted on the hardened concrete mixtures as well as the number of specimens per test for each mixture investigated. Details of the tests are provided below in Section 3.2.1.

The first group in the matrix was the control mixture (ODOT Class 4350, 2002 Standard Specifications) [44] which was a normal-weight concrete consisting of natural aggregate (gravel) for the coarse aggregate fraction, cement, sand, and water, plus an air-entraining agent. The control mixture was divided into three different sub-categories, each pertaining to three different curing regimes, all of which are described in detail under Section 3.1.1.1.

The experimental mixtures (A, B, C, and D) contained, in addition to cement, sand, water and an air-entraining agent, different combinations of supplementary cementitious materials (SCMs), as described in detail in Section 3.1.1.1. Two of these contained natural aggregate (gravel), while the other two contained crushed rock, as the coarse aggregate fraction.

Table 21 indicates that the concrete mixtures were tested at differing periods; that is, freeze and thaw at 14 days, compressive strength at 28 and 90 days, and chloride ion penetration resistance and abrasion resistance at 90 days. At 14 days, the concrete has still not attained its maturity and is really susceptible to wetting and drying. Concrete samples subjected to very severe conditions during the freeze-thaw test conducted in the laboratory might be considered as a reasonable measure of field performance. Compressive strength test conducted at 28 days is a standard test. It is believed that if concrete attains characteristic strength at 28 days, then it has attained 90% of the total strength and has passed the compressive strength requirement. Compressive strength at 90 days was conducted to obtain a relationship between compressive strength, abrasion resistance, and chloride ion penetration resistance of the concrete. Three samples were tested for each test for each concrete mixture to obtain variance and standard error.

|       |                  |       |                                       |              | Chlarida Iara   |               |               |           |
|-------|------------------|-------|---------------------------------------|--------------|-----------------|---------------|---------------|-----------|
|       |                  |       |                                       | Commencesius | Chioride ion    |               | Freeze Theur  |           |
|       |                  |       |                                       | Compressive  | Penetration     | Abrasian      | Preeze-Thaw   |           |
|       |                  |       |                                       |              | ASTMC 1202      | ADIASION      |               | Subtotal  |
|       |                  |       | Curing Regime /                       |              | (ASTIVI C 1202; | (ASTMC 770)   |               | Number of |
|       | _                |       | Test Period                           | AA3HTO 1 22) | AA3HTO 1 277)   | (ASTIVIC 779) | AA3HTO T 101) | Specimens |
|       |                  |       | Water: 14-day                         |              |                 |               | 3             | 3         |
|       |                  | 0     | 28-day                                | 3            |                 |               |               | 3         |
|       |                  | 435   | 90-day                                | 3            | 3               | 3             |               | 9         |
|       | vel              | ass   | Steam : 14-day                        |              |                 |               | 3             | 3         |
|       | Gra              | C     | 28-uay                                | с<br>С       |                 |               |               | 3         |
|       |                  | DO    | 90-uay<br>Steam <sup>b</sup> : 14-day | э            | Э               | Э             |               | 3         |
|       |                  | ō     | Steam . 14-uay                        |              |                 |               | э             | э<br>2    |
|       |                  |       | 20-day<br>90-day                      | 3            | 3               | 3             |               | 5<br>Q    |
| _     |                  | -     | Water: 11-day                         |              |                 |               | 3             | 3         |
|       |                  |       | 28-day                                | 3            |                 |               |               | 3         |
|       |                  | ix ⊿  | 90-day                                | 3            | з               | з             |               | 9         |
|       | _                | IN    | Steam <sup>a</sup> · 14-day           |              |                 |               | 3             | 3         |
|       | ave              | inta  | 28-dav                                | 3            |                 |               |               | 3         |
|       | G                | ime   | 90-day                                | 3            | 3               | 3             |               | 9         |
| lag   |                  | per   | Steam <sup>b</sup> : 14-day           |              |                 |               | 3             | 3         |
| d S   |                  | Ex    | 28-day                                | 3            |                 |               |               | 3         |
| an    |                  |       | 90-day                                | 3            | 3               | 3             |               | 9         |
| ľ ľ   |                  |       | Water: 14-day                         |              |                 |               | 3             | 3         |
| a Fi  |                  | В     | 28-day                                | 3            |                 |               |               | 3         |
| Silic | ×                | Лiх   | 90-day                                | 3            | 3               | 3             |               | 9         |
| l°,   | Ro               | al N  | Steam <sup>a</sup> : 14-day           |              |                 |               | 3             | 3         |
|       | ber              | ent   | 28-day                                | 3            |                 |               |               | 3         |
|       | lus <sup>†</sup> | rim   | 90-day                                | 3            | 3               | 3             |               | 9         |
|       | Ū                | xpe   | Steam <sup>⁵</sup> : 14-day           |              |                 |               | 3             | 3         |
|       |                  | ш     | 28-day                                | 3            |                 |               |               | 3         |
|       |                  |       | 90-day                                | 3            | 3               | 3             |               | 9         |
|       |                  |       | Water: 14-day                         |              |                 |               | 3             | 3         |
|       |                  | J     | 28-day                                | 3            |                 |               |               | 3         |
|       |                  | Mix   | 90-day                                | 3            | 3               | 3             |               | 9         |
|       | <u>e</u>         | tal I | Steam <sup>ª</sup> : 14-day           |              |                 |               | 3             | 3         |
|       | jra∖             | ner   | 28-day                                | 3            |                 |               |               | 3         |
| sh    | <sup>o</sup>     | erin  | 90-day                                | 3            | 3               | 3             |               | 9         |
| γA    |                  | ∃xpe  | Steam <sup>°</sup> : 14-day           |              |                 |               | 3             | 3         |
| ЧE    |                  | ш     | 28-day                                | 3            |                 |               |               | 3         |
| an    |                  |       | 90-day                                | 3            | 3               | 3             |               | 9         |
| me    | 1                |       | Water: 14-day                         |              |                 |               | 3             | 3         |
| E     |                  | Δ     | 28-day                                | 3            |                 |               |               | 3         |
| ilic  | 승                | Мix   | 90-day                                | 3            | 3               | 3             |               | 9         |
| S     | Ro               | tal   | Steam <sup>a</sup> : 14-day           |              |                 |               | 3             | 3         |
|       | hed              | ieni  | 28-day                                | 3            |                 |               |               | 3         |
|       | rus              | erin  | 90-day                                | 3            | 3               | 3             |               | 9         |
|       |                  | xpe   | Steam <sup>¤</sup> : 14-day           |              |                 |               | 3             | 3         |
|       | 1                | ш     | 28-day                                | 3            |                 |               |               | 3         |
|       | 1                |       | 90-day                                | 3            | 3               | 3             |               | 9         |
| NC    | DTES             | 5:    |                                       |              |                 |               |               |           |

## Table 21: Phase I experimental matrix

<sup>a</sup>Steam cure + water cure to 14 days + ambient cure to 90 days

<sup>b</sup>Steam cure + ambient cure to 90 days

### 3.1.2 Treatments

Three different treatments were studied in phase I; namely; aggregates, supplementary cementitious material, and curing method. Each treatment is described in the following sections.

## 3.1.2.1 Aggregates

Oregon is a state with numerous rivers and naturally occurring gravels are found in abundance. The precast industry in Oregon uses river gravel as coarse aggregate in their precast slabs and members due to abundance and cheap availability of river gravel. But the literature review suggests that abrasion of the concrete is directly proportional to the hardness of the aggregate used in the mixture. It was found in the literature review that use of crushed aggregate like basalt increased the abrasion resistance of concrete several-fold [20]. Therefore in this research, it was decided to compare the abrasion resistance obtained by the use of crushed rock. It was reasoned that if the use of more costly crushed rock significantly increased the abrasion resistance of the concrete, it may be more economical from a life cycle standpoint to use crushed rock rather than river gravel. Hence, the two treatments regarding aggregate type included river gravel versus a crushed rock. They are identified in experiment matrix as Experimental Mixtures 'A' versus 'B' and 'C' versus 'D'.

## 3.1.2.2 Cementitious Materials

According to the literature review, silica fume reduces the permeability of concrete, thus improving the protection of steel imbedded in the concrete against corrosion. It also increases the early age compressive strength and abrasion resistance of the concrete apart from improving fresh properties like reduced bleeding. To satisfy the requirement of the early age strength (1 day) of pre-cast concrete, it was important to incorporate silica fume. Therefore, it became mandatory to include silica fume in the experimental mixtures. Silica fume content in phase I was set at 4%. In addition, fly ash and slag both play an important role in improving durability of HPC by reducing permeability and by increasing abrasion resistance and freeze-thaw resistance. Slag also helps in mitigating

the effect of alkali silica reactivity and sulfate attack. Slag has cementitious properties while fly ash is pozzalanic in nature. Nevertheless, there remains a need to study the effect of supplementary cementitious materials on the abrasion of concrete caused by use of studded tires. Class F fly ash is cheaper than slag. Therefore, efforts were taken in phase I of this research study to separately investigate the effects of combinations of silica fume and slag versus combinations of silica fume and fly ash. They are identified in the experiment matrix as Experimental Mixtures 'A' versus 'C' and 'B' versus 'D'.

## 3.1.2.3 Curing

Curing plays an important role in improving the durability of concrete structures by preventing the internal water of the concrete from evaporating and thus enhancing or aiding the hydration process of the cement in concrete. There are various ways of curing concrete structures, among which water curing is the most effective method. Since manufacturers of pre-cast concrete members (e.g., bridge girders) require high early strength for high production purposes, the manufacturers raise the concrete temperature through steam curing, thereby aiding the cement hydration process. Though by steam curing one can easily attain a compressive strength of nearly 4,500 psi at 1 day, ultimate strength is either the same or less than that obtained by water curing for 28 days.

Therefore in this research study, efforts were taken to compare between three different curing regimes: 1) water curing at  $23\pm2^{\circ}$ C ( $73\pm3^{\circ}$ F) for 28 days and beyond up to 90 days, as required, 2) steam curing A (steam curing followed by water curing for 14 days followed by ambient curing up to 28 days and beyond up to 90 days, as required), and 3) steam curing B (steam curing followed by ambient curing up to 90 days).

## 3.1.3 Response Variables

All the concrete mixtures were tested for four different properties of hardened concrete. These are categorized under primary and secondary response variables according to research interest.

## 3.1.3.1 Primary Response Variables

The main aim of the project was to develop a mixture design for HPC with improved abrasion resistance and chloride ion penetration resistance and thereby increasing the durability of the concrete. Therefore, abrasion resistance and chloride ion penetration resistance properties of the concrete mixtures were the primary investigation factors, or the primary response variables.

#### 3.1.3.1.1 Abrasion

According to American Concrete Institute 2009, abrasion resistance of concrete can be defined as "ability of a surface to resist being worn away by rubbing and friction" [45]. Abrasion, a mechanical property of concrete is basically a surface phenomenon. The paste at the surface of newly-placed concrete abrades away pretty quickly and exposes the aggregate, which further gets damaged due to impact and abrasion. Abrasion causes surface wear which aggravates various problems like chloride ion diffusivity and corrosion of embedded steel bars subsequently leading to failure of structures. Abrasion of different concrete structures takes place due to different factors such as abrasion of dam spillways due to water borne particles, abrasion of floors due to production operations and rubbing by foot, and abrasion of pavements and bridge deck slabs due to vehicular traffic, particularly by vehicles equipped with studded tires. Some of the factors that affect abrasion are w/c ratio, compressive strength, finishing technique, curing, types of aggregates, etc.

This research was mainly focused on abrasion of the concrete bridge deck slab caused by studded tire and aimed at improving it. When vehicles travel on bridges and highways, the tires of vehicles cause the wear of the concrete surface due to friction between the bridge surface and tire. Abrasion of concrete is more prominent in the late fall and winter months in areas that allow studded tires on vehicles. In order to reduce abrasion of concrete, efforts were taken to develop high performance concrete which is abrasion resistant.

#### 3.1.3.1.2 Chloride Ion Permeability

Permeability is a general word which refers to the amount of water or other substances (e.g., ions, gas, and liquids) that can penetrate a concrete. This research was mainly concerned with chloride ion permeability. Generally, chlorides are introduced into the deck slabs through deicing salts and sea water. Porous concrete allows water containing chloride ions to enter into the concrete and corrode the embedded steel reinforcement, thereby increasing the chance of concrete failure and, hence, considerably reducing the service life of the concrete structure. In other words, the higher the permeability of the concrete, the less durable it tends to be. Permeability of concrete is affected by the size and arrangement of pores, and the interfacial transition zone of concrete, paste quality, aggregate gradation. Permeability of concrete can be improved by the use supplementary cementitious materials like silica fume, fly ash and slag.

## 3.1.3.2 Secondary Response Variables

## 3.1.3.2.1 Freeze Thaw Resistance

Freeze-thaw resistance is defined as the ability of concrete to withstand cycles of freezing and thawing. When the concrete is exposed to alternate cycles of freezing and thawing, water inside the concrete pores alternatively expand and contract creating hydraulic pressures which ultimately leads to detorioration of concrete. Some of the factors that affect freeze-thaw are air entrainment, void spacing factor, aggregate durability, and properties of the paste. Freeze and thaw is a severe at high altitude exposed to alternate freezing and thawing. Freeze and thaw resistance of a concrete can be enhanced by use of air entrainment.

#### 3.1.3.2.2 Compressive strength

Compressive strength can be defined as, "The maximum resistance that a concrete specimen will sustain when loaded axially in compression in a testing machine at a specified rate" [45]. It is the basic and most important parameter for quality control of concrete. Historically, high strength was considered as a sign of better concrete. In today's world, higher strength concrete does not necessarily equate to a highly durable concrete. Still, some factors such as abrasion resistance and chloride ion permeability are

directly proportional to compressive strength. Compressive strength still plays an important role in practical applications where durability is a significant concern.

## 3.1.4 Mixture Designs

## 3.1.4.1 Overview

A total of five mixture designs were developed in accordance with ACI 211.1-91 – R 2002. [46] The first mixture design, named the 'Control Mix', was developed to meet the requirements of the ODOT 2002 Standard Specifications [44] and acted as the basis for comparison with the mixture designs for the experimental mixtures. These were developed in an attempt to exceed the performance of the Control Mix in terms of abrasion and chloride ion penetration resistance. The mixture designs are described in detail in the following two sections.

## 3.1.4.2 Mixture Designs for Control Mixture

The required criteria of minimum compressive and flexural strength, air content, cement content, water-to-cement ratio (w/c ratio), etc. for the Control Mix were set according to the ODOT 2002 Standard Specifications for an ODOT Class 4350 concrete mixture for bridge deck panels [44]. Several trials were required to determine the optimum w/c ratio that would provide the highest compressive strength and satisfy the requirement for flexure strength.

The final concrete mixture design for control mix was developed after several trials. The nominal maximum size of aggregate for the Control Mix was kept at 3/4 inch, slump was targeted at 4 inches, and the entrained air content for severe condition of exposure was determined to be 6%. Several trials were required to determine the optimum dose of air entraining agent to achieve 6% air content. Type I cement and sand with a fineness modulus of 3.0 were used in the mixture. Once the optimum dose of air entraining agent was determined, three mixtures with water-to-cement ratios of 0.30, 0.35, and 0.40 were cast, cured, and tested for fresh and hardened concrete properties. Tests conducted on the fresh concrete included determination of unit weight, air content, slump, density and the temperature of the concrete. Tests conducted on the hardened concrete included

determination of compressive strength and flexural strength. Based on the results obtained from the laboratory tests and the requirements of the ODOT specifications, the mixture design with a w/c ratio of 0.30 was selected for the final mixture design for the Control Mix. A summary of results is given in Table 22. A detail of the mixture design is given in appendix A. The details of the tests performed are presented in the appendix B.

| Materials            | Mixture | Mixture | Mixture |
|----------------------|---------|---------|---------|
|                      | Α       | В       | С       |
| w/c ratio            | 0.3     | 0.35    | 0.40    |
| Cement               | 900     | 771     | 675     |
| Coarse aggregate     | 1648    | 1648    | 1648    |
| Fine aggregate       | 970     | 1070    | 1145    |
| Water                | 270     | 270     | 270     |
| Compressive          | 5970    | 5240    | 3500    |
| Strength at 28 days, |         |         |         |
| Flexure Strength at  | 670     | 510     | 510     |
| 28 days, psi         |         |         |         |

 Table 22: Summary of flexural tests and compressive tests for Control mixture

## 3.1.4.3 Mixture Designs for Experimental Mixtures

The mixture design for experimental mixtures was selected on the basis of high compressive strength through an extensive literature review. The mixture design was similar to that used by the Morse Brothers, Inc. (now Knife River). The basic mixture design was same for all four experimental mixtures except that slight modifications were made to the base mixture design to account for different specific gravities of the two coarse aggregates used. A spreadsheet for mixture design is given in appendix A. All mixtures were comprised of 4% silica fume and 30% slag or fly ash for their respective mixture design. The ratio of the percentage of fine aggregate to coarse aggregate was kept at 40:60. 'Experiment mixture A' was similar to that used by Morse Brothers and contained 30% slag, natural sand, and river gravel. 'Experiment mixture B' constituted crushed rock instead of gravel along with 30% slag and natural sand. Similarly, 'Experiment mixtures C and D' contained 30% fly ash instead of slag, along with gravel

and crushed rock, respectively. A summary of all the mixture designs used in phase I of the research project is given in Table 23.

| Table 23: Sur                          | nmary o | f mixture de | esigns for p | hase I  |         |         |
|----------------------------------------|---------|--------------|--------------|---------|---------|---------|
| Mix Design                             | Units   | Control      | Exp A        | Exp B   | Exp C   | Exp D   |
| Max. size of aggregate used            | -       | 3/4 in.      | 3/4 in.      | 3/4 in. | 3/4 in. | 3/4 in. |
| Max. w/b ratio                         | -       | 0.30         | 0.30         | 0.30    | 0.30    | 0.30    |
| Total cementitious content             | lb      | 900          | 800          | 800     | 800     | 800     |
| Cement                                 | lb      | 900          | 528          | 528     | 528     | 528     |
| Fly ash                                | lb      | 0            | 0            | 0       | 240     | 240     |
| GGBFS (slag)                           | lb      | 0            | 240          | 240     | 0       | 0       |
| Micro silica (silica fume)             | lb      | 0            | 32           | 32      | 32      | 32      |
| Water                                  | lb      | 270          | 240          | 240     | 240     | 240     |
| 3/4-1/2 in.                            | lb      | 1,648        | 613          | 1,786   | 613     | 1,786   |
| 1/2 - 4# in.                           | lb      | ,            | 1,173        | ,       | 1,173   | ,       |
| Sand                                   | lb      | 929          | 1,048        | 1048    | 1,234   | 1,234   |
| Aggregate to binder ratio              | ratio   | 2.86         | 3.54         | 3.54    | 3.78    | 3.78    |
| Fine aggregate (%) to coarse aggregate | ratio   | 36:64        | 40:60        | 40:60   | 40:60   | 40:60   |
| ratio (%)                              |         |              |              |         |         |         |
| Fly ash/GGBFS as a percentage of total | %       | 0 %          | 30%          | 30%     | 30%     | 30%     |
| cementitious material                  |         |              |              |         |         |         |
| Micro silica as a percentage of total  | %       | 0%           | 4%           | 4%      | 4%      | 4%      |
| cementitious material                  |         |              |              |         |         |         |
| Air entraining agent dose (ml)         | ml      | 1,,037       | 149          | 325     | 108     | 325     |
| High-range water-reducer dose          | ml      | 0            | 1,359        | 1,561   | 1,350   | 1,561   |

Table 24 gives the details of nomenclature used for each individual mixture design used in phase I of the research study. The first group starting with a "C" indicated the Control Mixture followed by characters indicating the three different curing regimes. The mixture which underwent 'Water Curing' was abbreviated as 'CW'; the mixture that was subjected to 'Steam Curing A' was abbreviated as 'CSA'; and the mixture subjected to 'Steam Curing B' was abbreviated as 'CSB'. Similarly, 'Experimental mixture A' with 'Water Curing' was abbreviated as 'EASB', and with 'Steam Curing A' as 'EASA', and with 'Steam curing B' as 'EASB'; and 'Experimental mix B' with 'Water Curing' was abbreviated as 'EBW', with 'Steam Curing A' as 'EBSA', and with 'Steam curing B' as 'EBSB'. Finally, 'Experimental mix C' with 'Water Curing' was abbreviated as 'ECW', with 'Steam Curing A' as 'ECSA', and with 'steam curing B' as 'ECSB'; and 'Experimental mix D' with 'Water Curing' was abbreviated as 'EDW', with 'Steam curing A' as 'EDSA', and with 'Steam curing B' as 'EDSB'

#### Table 24: Nomenclature for mixture designs used for identification

| Mixture | Mixture Description                                                                        |
|---------|--------------------------------------------------------------------------------------------|
| ID      |                                                                                            |
| CW      | Control Mix - water curing                                                                 |
| CSA     | Control Mix - steam curing + water cure to 14 days + ambient cure to 90 days (Steam Curing |
| CSB     | Control Mix - steam curing + ambient cure to 90 days (Steam Curing B)                      |
| EAW     | Experimental Mix A - water curing                                                          |
| EASA    | Experimental Mix A - steam curing + water cure to 14 days + ambient cure to 90 days (Steam |
|         | Curing A)                                                                                  |
| EASB    | Experimental Mix A - steam curing + ambient cure to 90 days (Steam Curing B)               |
| EBW     | Experimental Mix B - water curing                                                          |
| EBSA    | Experimental Mix B - steam curing + water cure to 14 days + ambient cure to 90 days (Steam |
|         | Curing A)                                                                                  |
| EBSB    | Experimental Mix B - steam curing + ambient cure to 90 days (Steam Curing B)               |
| ECW     | Experimental Mix C - water curing                                                          |
| ECSA    | Experimental Mix C - steam curing + water cure to 14 days + ambient cure to 90 days (Steam |
|         | Curing A)                                                                                  |
| ECSB    | Experimental Mix C - steam curing + ambient cure to 90 days (Steam Curing B)               |
| EDW     | Experimental Mix D - water curing                                                          |
| EDSA    | Experimental Mix D - steam curing + water cure to 14 days + ambient cure to 90 days (Steam |
|         | Curing A)                                                                                  |
| EDSB    | Experimental Mix D - steam curing + ambient cure to 90 days (Steam Curing B)               |

## 3.2 Pilot Study

Based on the results obtained from phase I, it was found out that water curing for 28 days was the best method of curing (which was also evident from the literature review), while the steam curing followed by the ambient curing provided the worst results in terms of compressive strength, abrasion resistance, and chloride ion permeability (Section 5 for details). However, it is really impracticable to apply water curing in the precast industry because it will hamper the production process by reducing productivity and may result in more costly products. For these reasons, it became important to conduct a pilot study to establish the best rapid-curing method that would give similar results similar to 28-day water curing.

## 3.2.1 Experimental Matrix

Table 25 presents a summary of nine curing methods (i.e., nine different treatments) and the number of samples of each mixture that was tested for compressive strength at different intervals. As shown in the experimental matrix, each mixture was tested for compressive strength at 1-day, 3-day, 7-day, 14-day and 28-day to capture strength development over time. To reduce variability, a sufficient amount of the concrete was mixed to provide enough samples for up to three treatment conditions.

| Mixture<br>ID | Curing Method (Treatment)                        | Compressive Strength<br>(Response Variable) at |        |        |            |            |
|---------------|--------------------------------------------------|------------------------------------------------|--------|--------|------------|------------|
|               |                                                  | 1 day                                          | 3 days | 7 days | 14<br>days | 28<br>days |
| 1             | Water curing up to 28 days                       | 3                                              | 3      | 3      | 3          | 3          |
| 2             | 14 Days water curing + ambient curing            | x                                              | x      | x      | x          | 3          |
| 3             | 7 Days water curing + ambient curing             | X                                              | X      | X      | 3          | 3          |
| 4             | 14 Days water curing + curing compound + ambient | Х                                              | Х      | Х      | Х          | 3          |
| 5             | 7 Days water curing + curing compound + ambient  | Х                                              | Х      | Х      | 3          | 3          |
| 6             | 1 Day water curing + curing compound + ambient   | Х                                              | 3      | 3      | 3          | 3          |
| 7             | 3 Days water curing + curing compound + ambient  | X                                              | X      | 3      | 3          | 3          |
| 8             | 3 Days water curing + ambient curing             | X                                              | X      | 3      | 3          | 3          |
| 9             | 1 Day water curing + ambient curing              | Х                                              | 3      | 3      | 3          | 3          |
| 10            | Steam curing + ambient curing                    | 3                                              | 3      | 3      | 3          | 3          |
| 11            | Steam curing + curing compound + ambient curing  | 3                                              | 3      | 3      | 3          | 3          |

#### Table 25: Experimental matrix for the pilot study

## 3.2.2 Treatments

In the pilot study, curing method was the only treatment investigated. ODOT was interested in shortening the duration of field curing; therefore investigation was done for 14 days water curing, 7 days water curing and 3 days water curing to capture the optimal curing length to be followed at field. Since the pilot study was aimed at studying different curing types, 12 different treatments (in terms of 12 different curing methods) were applied to only one mixture composition. The details of the mixture composition are provided under section 3.2.4.

## 3.2.3 Response Variables

All of the samples prepared for the pilot study was tested for only one response variable; that is, compressive strength. Because compressive strength of the concrete is directly proportional to abrasion resistance, this test was identified as an indirect measure of
abrasion resistance. Hence, it was reasoned that compressive strength would be an adequate way to determine the best curing method to carry forward into phase II of the project.

#### 3.2.4 Mixture Designs

As alluded to earlier, only one mixture design was utilized for the pilot study. It incorporated 66% cement, 10% silica fume, and 24% slag for the cementitious ingredients, river gravel for the coarse aggregate and natural sand for the fine aggregate.

#### 3.3 Phase II

The principal objective of phase II was to improve upon the most promising mixture design developed in phase I. The results from phase I indicated that the HPC mixtures were more durable than the Control Mixture (Section 5). Due to a change in the ODOT Standard Specifications 2008 [47] for bridge deck mixtures, it became necessary to modify the direction of the research to include a new 'control mixture' which constituted an HPC mixture with 66% cement, 4% silica fume, and 30% fly ash. Use of crushed rock showed significant improvement in abrasion resistance and compressive strength, but barely satisfied the maximum chloride ion permeability requirement of 1000 coulombs set by the new (2008) specification. Locally available river gravel, instead of crushed rock, was used to develop a mixture that would satisfy the objectives of the research without the added expense of the crushed rock. Also, since the chloride ion penetration resistance requirement was so stringent, ODOT requested that the amount of silica fume be varied to observe its effect on chloride ion penetration resistance and abrasion resistance. This gave rise to phase II of the study.

#### 3.3.1 Experimental Matrix

Table 26 summarizes the experiment matrix for phase II of the study. Mixtures A, B, C, D, and E were the primary mixtures investigated. The tests conducted on the mixtures, along with the number of sample per test per mixture, is also shown in the experiment matrix. Two more experiment mixtures (S and T) with higher cement contents were also investigated to determine if it was possible to get a highly durable mixture with increased

cement content at low to moderate silica fume content. Mixture S was non-air entrained concrete while others were air entrained concrete

| Mixture<br>ID | Material Proportion |      |            |                |                           | Number of Specimens for |           |                        |                       |  |  |
|---------------|---------------------|------|------------|----------------|---------------------------|-------------------------|-----------|------------------------|-----------------------|--|--|
|               |                     |      |            |                | Co<br>S                   | mpress<br>strengt       | sive<br>h | Abrasion<br>Resistance | Chloride<br>Ion Perm. |  |  |
|               | Cement              | Slag | Fly<br>Ash | Silica<br>Fume | 1- 28- 56-<br>day day day |                         | 56-day    | 56-day                 |                       |  |  |
| Control       | 66%                 | -    | 30%        | 4%             | 3                         | 3                       | 3         | 3                      | 3                     |  |  |
| Mix A         | 66%                 | 27%  | -          | 7%             | 3                         | 3                       | 3         | 3                      | 3                     |  |  |
| Mix B         | 66%                 | 24%  | -          | 10%            | 3                         | 3                       | 3         | 3                      | 3                     |  |  |
| Mix C         | 66%                 | -    | 27%        | 7%             | 3                         | 3                       | 3         | 3                      | 3                     |  |  |
| Mix D         | 66%                 | -    | 24%        | 10%            | 3                         | 3                       | 3         | 3                      | 3                     |  |  |
| Mix E         | 66%                 | 30%  | -          | 4%             | 3                         | 3                       | 3         | 3                      | 3                     |  |  |
| Mix S         | 58%                 | 35%  | -          | 7%             | -                         | 3                       | 3         | 3                      | 3                     |  |  |
| Mix T         | 58%                 | 38%  | -          | 4%             | 3                         | 3                       | 3         | 3                      | 3                     |  |  |

Table 26: Phase II experimental matrix

### 3.3.2 Treatments

Only two independent treatments were investigated in phase II. The first treatment was level of silica fume used. Since the new control mixture already contained 4% silica fume, the other two levels included 7 and 10%. The second treatment was type of supplementary cementitious material, either fly ash or slag. The method of curing was based on the results obtained from the pilot study (Section 3.2). All the specimens were steam cured after initial set, de-molded and applied with a curing compound coating and were left in ambient environment for curing until tested.

### 3.3.2.1 Supplementary Cementitious Materials

Phase I aimed at comparing the effect of different supplementary cementitious materials, fly ash and silica fume versus slag and silica fume, on the abrasion resistance and durability of HPC. Phase II took it one step further by varying the proportions of the supplementary cementitious materials Section 3.1.1.1.2 provided a brief discussion regarding the use of these materials in concrete mixtures.

## 3.3.2.2 Levels of Silica fume

According to the literature review, an improvement in HPC durability through reduced permeability can be achieved with increased silica fume content. To investigate whether or not increased silica fume content significantly increases the durability of HPC, different percentages of silica fume were used in the mixtures. The base for comparison was 4% of silica fume. The other two percentage of silica fume were 7% and 10% as a replacement of cement. The intermediate quantity (i.e., 7%) was chosen since findings from the literature review suggested that this level of silica fume enhances the durability properties of concrete. But when the level of silica fume is increased beyond 7%, a very high amount of silica fume is required to attain the same properties. Therefore, a level of 10% was chosen as the maximum quantity to be used in the HPC.

## 3.3.3 Response Variables

## 3.3.3.1 Primary Response Variables

All the concrete mixtures developed in the phase II were tested for abrasion resistance and chloride ion permeability resistance as primary response variables. Section 3.1.2.1 provided an overview of these tests.

## 3.3.3.2 Secondary Response Variables

Since the worst mixture in phase I satisfied the freeze-thaw durability requirement of the ODOT Standard Specifications, it was reasoned that all of the concrete mixtures in phase II would be more durable and would easily satisfy the specified freeze-thaw requirements. Hence, ODOT recommended the elimination of freeze- thaw testing in phase II. However, compressive strength was retained as a secondary response variable. An overview of this test was provided in Section 3.1.2.2.

#### 3.3.4 Mixture Designs

#### 3.3.4.1 Overview

A new 'control mixture' was designed based on the new ODOT specification (ODOT 2008), details of which are provided in 3.3.4.2. Also, the mixture designs for the experimental mixtures were developed based on the different treatments identified in Section 3.3.2.

#### 3.3.4.2 Mix Designs for Control Mixture

Table 02001-1 in Section 02001.30 of the 2008 ODOT Standard Specifications [46] provides the details of HPC mixtures used for structural concrete deck slabs. It specifies a compressive strength of 4000 psi, a maximum w/c ratio of 0.40, and constituents and criteria as follows:

High performance concrete (HPC) mix designs shall either contain cementitious material with 66% portland cement, 30% Fly ash, and 4% Silica fume; or have trial batches performed to demonstrate that the alternate mix design provides a maximum of 1,000 coulombs at 90 days when tested according to AASTHO T 277.

Additional criteria indicate a maximum slump of 10 inch for pre-cast pre-stressed concrete, use of a high-range water-reducing admixture (Table 02001-3), an air content of 6% (+2%/-1%) for concrete exposed to severe condition, and a nominal maximum aggregate size of 3/4 inch (Table 02001-2). Details of the mixture design are given in Table 27.

#### 3.3.4.3 Mix Designs for Experimental Mixtures

A summary of the mixture designs for the experimental mixtures is given in Table 27. As indicated, the mixture designs have different levels of silica fume, and either slag or fly ash, also at different levels. Mixtures A, B and E contained slag while the control mixture and mixtures C and D contained fly ash. Mixtures B and D contained 10% silica fume and 24% slag or fly ash, respectively. Similarly, mixtures A and C contained 7% silica fume and 27% slag or fly ash, respectively. The control mixture and mixture E contained

4% silica fume and 30% slag or fly ash, respectively. Mixtures S and T contained higher cement contents relative to the other mixtures. Though the percentage of cement in mixtures S and T was less than that of the other mixtures (i.e., 58% instead of 66%); mixtures S and T had 7% and 4% silica fume, respectively. Also, mixture S did not contain an air entraining agent, whereas mixture T did to obtain 6% air. All mixtures, except mixtures S and T, were designed with a w/b ratio of 0.30; mixture S had a w/b ratio of 0.26, and mixture T had a w/b ratio of 0.27.

| Mix ID                          | Control | Mix A | Mix B | Mix C | Mix D | Mix E | Mix S | Mix T |
|---------------------------------|---------|-------|-------|-------|-------|-------|-------|-------|
| Cement-Type<br>III              | 541     | 541   | 541   | 541   | 541   | 541   | 604   | 604   |
| Fly Ash                         | 246     | 0     | 0     | 221   | 197   | 0     | 0     | 0     |
| Slag                            | 0       | 221   | 197   | 0     | 0     | 246   | 365   | 396   |
| Silica Fume                     | 33      | 57    | 82    | 57    | 82    | 33    | 74    | 42    |
| Water                           | 245     | 245   | 245   | 245   | 245   | 245   | 269   | 279   |
| Coarse<br>Aggregate-<br>3/4-1/2 | 661     | 661   | 661   | 661   | 661   | 661   | 620   | 624   |
| Sand                            | 928     | 957   | 950   | 925   | 921   | 963   | 1065  | 1062  |
| w/c ratio                       | 0.30    | 0.30  | 0.30  | 0.30  | 0.30  | 0.30  | 0.26  | 0.27  |

Table 27: Summary of mixture designs for phase II\*

\*Quantities in lb/ft3

### 4 MATERIALS AND METHODS

Once the mixture designs were developed, the required materials were procured from different sources. The materials were then mixed, cast, and tested as per set standards. This section provides brief descriptions of the materials and tests utilized for this study.

### 4.1 Materials Descriptions

Once the mixture designs were developed, the required materials were procured from different sources. The materials were then mixed, cast, and tested as per set standards. This section provides brief descriptions of the materials and tests utilized for this study.

#### 4.1.1 Aggregates

#### 4.1.1.1 Coarse Aggregate

The nominal maximum size of  $\frac{3}{4}$  inch was selected for aggregates in the experimental mixture design. Unwashed gravel with some crushed particles, obtained from Knife River in Corvallis pit, was used as the coarse rock for the control mixtures tested in phase I and in the pilot study. A fully crushed, hard basalt rock obtained from Knife River's quarry, Watters was also used as coarse aggregate in phase I. This aggregate was very dense, dark black in color, and angular in structure. Washed, rounded gravel with some crushed particles used for the experimental mixtures in all phases were divided into two gradation sizes, namely,  $\frac{3}{4}$  in. to  $\frac{1}{2}$  in. and  $\frac{1}{2}$  in. to #4. All coarse aggregates were densely graded between the  $\frac{3}{4}$  inch to #4 sizes.

### 4.1.1.2 Fine Aggregate

Unwashed sand was used for control mixture in phase I, while washed sand was used for all of the experimental mixtures in phase I, pilot study and phase II. The source of the sand was the Knife River Corvallis pit. The sand had fineness modulus of 3.0.

Physical analyses of both coarse and fine aggregates were done according to ASTM C-33 [47]. The results of these tests are shown in the Table 28.

|                        | Gravel<br>for | Gravel for<br>Experimental |       | Crushed<br>rock | Sand<br>for | Pre-stressed<br>sand |  |  |
|------------------------|---------------|----------------------------|-------|-----------------|-------------|----------------------|--|--|
|                        | Control       | mix                        | ture  |                 | Control     |                      |  |  |
|                        | mixture       | 2/4                        | 1/2   | 3/4             | mixture     |                      |  |  |
|                        | -             | 1/2                        | in _# | _1/2 in         | -           | -                    |  |  |
|                        |               | in.                        | 4     | - 172 111.      |             |                      |  |  |
| Specific gravity (SSD) | 2.6           | 2.58                       | 2.58  | 2.77            | 2.55        | 2.54                 |  |  |
| Specific gravity (Dry) | 2.5           | 2.52                       | 2.5   | 2.71            | 2.46        | 2.46                 |  |  |
| % water absorption     | 2.5           | 2.7                        | 3.02  | 2.0             | 3.8         | 3.42                 |  |  |
| Fineness Modulus       | -             | -                          | -     | -               | 3.0         | 3.0                  |  |  |
| % Passing              |               |                            |       |                 |             |                      |  |  |
|                        |               |                            |       |                 |             |                      |  |  |
| For coarse aggregate   |               |                            |       |                 |             |                      |  |  |
| 1 in.                  |               | 100.00%                    |       | 100             | -           | -                    |  |  |
| ³⁄₄ in.                |               | 88.36%                     |       | 96.7%           | -           | -                    |  |  |
| ½ in.                  |               | 15.54%                     |       | 66.4%           | -           | -                    |  |  |
| 3/8 in.                |               | 5.0                        | 3%    | 36.5%           | -           | -                    |  |  |
| #4                     |               | 0.62%                      |       | 1.2%            | -           | -                    |  |  |
|                        |               |                            |       |                 |             |                      |  |  |
| For fine aggregate     | -             |                            |       |                 | -           |                      |  |  |
| #4                     | -             |                            |       | -               | 96.54       | 96.54                |  |  |
| #8                     | -             |                            |       | -               | 77.41       | 77.41                |  |  |
| #16                    | -             |                            |       | -               | 63.07       | 63.07                |  |  |
| #30                    | -             |                            |       | -               | 49.91       | 49.91                |  |  |
| #40                    | -             | -                          | -     | -               | 36.38       | 36.38                |  |  |
| #50                    | -             |                            |       | -               | 18.25       | 18.25                |  |  |
| #100                   | -             | -                          | -     | -               | 2.6         | 2.6                  |  |  |
| #200                   | -             | -                          | -     | -               | 0.84        | 0.84                 |  |  |

 Table 28: Physical Properties of Coarse and Fine Aggregate

### 4.1.2 Cement

Cement used for the mixtures design in phase I was Type I cement. Tests certificates for Type I cement were not available. Cement used for pilot study and phase II was of Type III and met the requirements of ASTM C-150 [48]. The cement was supplied by Ash Grove Cement Company, Durkee, Oregon. Test results of physical and chemical analyses of cement are summarized in Table 29.

| Tests                                               | ASH GROVE type III cement |
|-----------------------------------------------------|---------------------------|
| Chemical Properties                                 |                           |
| Silicon dioxide (SiO <sub>2</sub> ), %              | 21                        |
| Aluminum oxide (A1 <sub>2</sub> 0 <sub>3</sub> ), % | 3.4                       |
| Ferric oxide ( $Fe_2O_3$ ) , %                      | 2.9                       |
| Calcium oxide (CaO), %                              | 63.1                      |
| Magnesium oxide (MgO), %                            | 1.7                       |
| Sulfur trioxide (SO <sub>3</sub> ), %               | 2.9                       |
| Loss on ignition, %                                 | 1.46                      |
| Sodium oxide (Na <sub>2</sub> 0), %                 | 0.21                      |
| Potassium oxide (K <sub>2</sub> 0), %               | 0.48                      |
| Total equivalent alkali content, %                  | 0.53                      |
| Tricalcium silicate, %                              | 62                        |
| Dicalcium silicate, %                               | 14                        |
| Tricalcium aluminate, %                             | 3                         |
| Tetracalcium aluminoferrite, %                      | 9                         |
| Insoluble residue, %                                | 0.48                      |
| Physical Properties                                 |                           |
| Fineness, m²/Kg                                     | 549                       |
| Specific Gravity                                    | 3.15                      |
| Autoclave expansion                                 | 0.00%                     |
| Time of setting, minutes                            |                           |
| Initial                                             | 93                        |
| Final                                               | 169                       |
| Compressive strength, psi                           |                           |
| 1 day                                               | 3318                      |
| 3 days                                              | 4826                      |
| 7 days                                              | 5943                      |

#### Table 29: Physical and chemical analyses of ASH GROVE type III cement

## 4.1.3 Slag

NewCem slag was used in the research project and was supplied by Lafarge North America Company from their Seattle Cement Plant. It met all the requirements of ASTM C 989 [18]. Detailed physical and chemical test results of the slag are given in the Table 30.

| Tests                     | NewCem Slag |  |
|---------------------------|-------------|--|
| Chemical Properties       |             |  |
| Sulfide sulfur (S), %     | 0.77        |  |
| Sulfate Ion (SO₃), %      | 2.72        |  |
| Physical Properties       |             |  |
| Fineness, m²/kg           | 421         |  |
| Specific Gravity          | 2.89        |  |
| Air Content, %            | 5.3         |  |
| Compressive strength, psi |             |  |
| 7 day                     | 4,300       |  |
| 28 days                   | 6,365       |  |
| Slag Activity Index       |             |  |
| 7 day                     | 94          |  |
| 28 days                   | 122         |  |

## 4.1.4 Fly ash

There are two types of fly ash, namely, Class F fly ash and Class C fly ash. Class F fly ash was used in this research study due to the abundant availability of this material in Oregon at the time the study began. This fly ash was supplied by CTL Thompson Materials Engineers, Inc. from their Centralia plant. It met the requirements of ASTM C618-05 [7]. Test results of physical and chemical analyses of fly ash are given in Table 31.

| Tests                                               | Class F fly ash |
|-----------------------------------------------------|-----------------|
| Chemical Properties                                 |                 |
| Chemical Properties                                 |                 |
| Silicon dioxide (SiO <sub>2</sub> ), %              | 55.3            |
| Aluminum oxide (Al <sub>2</sub> 0 <sub>3</sub> ), % | 16.7            |
| Ferric oxide (Fe <sub>2</sub> 0 <sub>3</sub> ) ' %  | 5.8             |
| Calcium oxide (CaO), %                              | 9.9             |
| Sulfur trioxide _SO <sub>3</sub> ), %               | 0.5             |
| Loss on ignition, %                                 | 0.1             |
| Sodium oxide (Na₂0),%                               | 1.86            |
| Potassium oxide (K <sub>2</sub> 0), %               | 0.9             |
| Total Silica, Aluminum, Iron, %                     | 77.8            |
| Physical Properties                                 |                 |
| Fineness, retained on #325 sieve, %                 | 22.4            |
| Specific Gravity                                    | 2.56            |
| Autoclave expansion, %                              | 0.05            |
| Moisture content, %                                 | 0               |
| Slag Activity Index                                 |                 |
| Ratio to control@ 7 day                             | 81.1            |
| Ratio to control@ 28 day                            | 89.6            |
| Water requirement, % of control                     | 92.6            |
| Drying shrinkage, increase @ 28 days, %             | 0               |

Table 31: Physical and Chemical Analyses of Class F Fly Ash

### 4.1.5 Silica Fume

Silica fume used in the research project was in the form of dry compacted powder. It was manufactured by Masters Builders and was given by Knife River. The specific gravity of the silica fume used was 2.2. Silica fume used in the project satisfied all the requirements of ASTM C 1240. [15]

#### 4.1.6 Admixtures:

Glenium 3400 NV was used as a high-range water-reducing admixture in the research study. Glenium 3400 NV admixture met the requirements of ASTM C 494/C 494M – 99. [49] As per material data sheet of Glenium 3400 NV, 8 to 12 fl Oz per 100 lbs of cement is required for HPC with a slump of around 10". Actual quantity of admixture required for each mixture design was based on trial and error. Benefits of Glenium 3400 NV are enumerated as follows: [50]

- Can be used in a wide variety of concrete mixtures as a Type A or Type F admixture
- Extremely high early strength development
- Improved finish ability and surface appearance
- May reduce/eliminate need for vibration and heat curing
- Improves overall production cost efficiencies
- Increases productivity

Air entraining agent used in this project was MBAE 90. It met the requirements of ASTM C 260 [51]. Typical dosage of MBAE 90 is 1/4 to 4 fl Oz per 100 lbs of cement [52]. Actual quantity was determined through trial and error.

## 4.1.7 Curing Compound

Curing compound used in this project was 1300 Clear which is a water-based, wax based concrete curing compound. It was supplied by W. R. Meadows. It was white in color. It satisfied all the requirements set by the ODOT [46]. Curing compound was applied as per manufacturer's data sheet.

## 4.2 Laboratory Concrete Mixing Method

Mixing of concrete in the laboratory was done in accordance with ASTM C 192 [53] during the phase I of study. Since, silica fume content in the pilot study and phase II was much higher, longer mixing times was required for homogeneous mixing of the silica fume. For this purpose, it was proposed to follow the mixing procedure recommended by the Silica Fume Association. Figure 1 provides a flow chart of the mixing process for the concrete with supplementary cementitious materials utilized in this study. Flow chart is based on the guidelines and recommendations from the Silica Fume Association. [54] All mixing was performed in a concrete mixer with a 2.5 cubic feet capacity.



Figure 1: Flow chart for mixing procedure [54]

# 4.3 Casting

All specimens were cast according to ASTM C 192 [53]. All concrete cylinders were cast in 4"x8" plastic molds while the slabs were cast in 12"x12"x3" steel molds. The

freeze and thaw beams were cast in 11"x3"x3" steel molds. Once the specimens were cast, they were cured according to the predetermined curing method.

## 4.4 Curing

The method of steam curing was investigated for use to simulate the curing method followed by the precast industry. In general, steam curing is used when it is essential to achieve high early strength. In a study of curing methods on concrete containing 10 percent silica fume, it was found that the steam curing gave the concrete higher early-age compressive strength compared to air curing and moist curing methods [55]. Additionally, it was found that the use of steam curing decreases the permeability of silica fume concrete as compared to the other methods [55]. Different phases of the research study adopted different curing methods, all of which are described in Section 3.

Water curing involved soaking of specimens in lime-saturated water at  $23\pm2^{\circ}C$  ( $73\pm3^{\circ}F$ ) for a specified duration of time [53]. Steam curing involved soaking the specimens at ambient temperature until initial setting, followed by increasing the temperature to  $140^{\circ}F$  in two hours, and again soaking the specimen at  $140^{\circ}F$  for up to 8 hours, followed by decreasing the temperature to ambient temperature in approximately two hours.

Figure 2 displays two production steam curing regimes and one laboratory curing regime. The production steam curing regimes were as carried out by Knife River (Harrisburg, Oregon) and Central Pre-Mixture (Spokane, Washington), whereas the laboratory curing regime was as described by Dr. Hooton [56]. Given that the production steam curing regimes and the laboratory curing regime were similar with regard to durations and temperature ramping rates, and that Knife River would be fabricating the bridge deck panels for the purposes of this project, the laboratory curing method which closely resembled that used by Knife River was used for the research.



Figure 2: Contractor and laboratory steam curing regimes

Another curing method involved application of curing compound. Curing compound was sprayed using a manual sprayer after the specimens were stripped out from the molds at a coverage rate of approximately 200 sq. ft. /gal [57].

## 4.5 Test Methods

### 4.5.1 Fresh Properties of Concrete

Several tests were conducted on the newly mixed concrete to determine the properties of the fresh concrete. This section briefly describes these tests.

### 4.5.1.1 Slump

Slump is the measure of workability of concrete. Workability is a measure of how easy or difficult it is to place, consolidate, and finish concrete. These tests were conducted in accordance with ASTM C 143 [58]

## 4.5.1.2 Density

The unit weight (density) of concrete varies with the density of the aggregate, the amount of entrapped or entrained air, water content, and the density and content of the cementitious materials. Unit weight of the freshly mixed concrete was determined using the procedure described in ASTM C138. [59]

### 4.5.1.3 Air content

Air content can have significant impact on the strength, with higher contents resulting in lower strengths. Therefore, careful measures were taken to ensure the mixtures were fabricated with the design entrained air contents. Air contents in the fresh concrete were determined using ASTM C138. [59]

## 4.5.1.4 Temperature

ASTM C1064/C1064M-08 [60] was used for determining the temperature of freshly mixed concrete in this study.

## 4.5.2 Hardened Properties of Concrete

Hardened properties of concrete were monitored very carefully and tests were conducted for primary and secondary variables of interest. This section briefly describes the tests conducted on the hardened concrete test specimens.

## 4.5.2.1 Abrasion Resistance

The abrasion resistance tests were conducted on square test specimens that were 12"x12" in plan and 3 inch thick as per ASTM C 779/C 779M – 00 [61] at 90-day and 56 day for phase I and II respectively. The revolving disk method was used with a minor modification to the disks. Quarter inch tungsten carbide studs with a Rockwell hardness of A92 were used to develop a more aggressive abrasive environment. There were three revolving disks; each equipped with 12 detachable tungsten carbide studs arranged in concentric circles on the disks (see Figure 3). These hard studs were sharpened and pointed at the bottom. A total of 36 studs were used. They were replaced by another set only after they got abraded or studs broke off while the test was running during the phase I of the study. During phase II, the studs were replaced after every third sample tested.



Figure 3: Revolving disks with studs

**Testing Procedure:** Three samples were tested per experimental mixture at 90-day in phase I and 56-day in phase II. Prior to start of actual experiments, the test specimens were preconditioned to remove the surface irregularities and the curing compound, if any, by running the abrasion testing machine for 5 minutes. Following this, measurements were made using a micrometer depth gage (figure 4) to an accuracy of 0.001 inch to establish the 'initial reading at zero minutes of abrasion'. Each test was run for 30 minutes after which the specimen surfaces were cleaned to remove all the dust and loose particles and measurements were taken again. In order to ensure that the micrometer bridge was placed at the same position every time while taking the readings, 24 holes were made on a flat aluminum plate at a diameter of 7.9 inch (200mm) as shown in figure 5.

Depth of wear was calculated by subtracting the initial reading from the reading taken at 30 minutes and slope or wear rate was obtained by dividing the depth of wear by the corresponding duration of wear. A concrete specimen showing the depth of wear after the test is given in figure 6. The same procedure was repeated again to get measurements at 60 minutes.



Figure 4: Measurement of depth of wear using micrometer



Figure 5: Arrangement of slots on aluminum plate



Figure 6: Abraded surface after test showing depth of abrasion

#### 4.5.3 Permeability

The rapid chloride permeability test (RCPT) was performed in accordance with ASTM C 1202-97 [62] at 90-day and 56-day for phase I and II respectively. The test specimens consisted of 2 inch thick slices obtained from a cylinder of 4 inch diameter and 8 inch height, typically used for compressive strength.

**Test Procedure**: Four samples were tested per mixture design. Test specimens were coated with a rapid setting epoxy sealant on side surfaces to ensure impermeability from the side surfaces. Pre-conditioning of samples was done by vacuum saturation of the specimens for 4 hours followed by a soaking period of 18 +/-2 hours as shown figure 7. Top and bottom surfaces of the specimen were connected to one cell filled with 300 ml of a 3% Sodium Chloride (NaCl) solution and another cell filled with a 0.3N Sodium Hydroxide (NaOH) solution. The positive terminal of the power supply was connected to the NaOH cell while the negative terminal was connected to the NaCl cell. A voltage of 60V was applied across the cells and the voltage across a shunt resistor was measured to obtain the current passing through the specimen using the Ohm's Law. Each test lasted

for 6 hours. A picture of chloride permeability specimen cell showing all the parts are shown in figure 8. An arrangement for the test setup is shown in figure 9.

Reading was taken every 30 minutes and based on trapezoidal rule; charge passed through the specimen was calculated using formula 1.

$$Q = 900 * (I_0 + 2I_{30} + 2I_{60} + \dots + 2I_{300} + 2I_{330} + I_{360})$$
(1)

Where:

Q = charge passed (coulombs),

 $I_0$  = current (amperes) immediately after voltage is applied, and

 $I_t$  = current (amperes) at t min after voltage is applied.



Figure 7: Setup for conditioning the specimen



### Figure 8: Chloride permeability specimen cell

Electrically conductive wire mesh



Figure 9: Setup for the rapid chloride penetration Test

#### 4.5.4 Strength

The compressive tests were conducted on 4"x8" cylinders in accordance with ASTM C 39/C 39M - 01 [63] at the specified times as described in Section 3.

**Test Procedure**: Three samples were tested for each experimental mixture design. The machine used for measuring compressive strength test had a capacity of 400,000 lb. Before strength testing, the diameter and length of specimens were measured, and then the density in air and the density in water were determined. The specimens were tested in moist condition one at a time by placing it on the device. The top and bottom of the specimen were aligned with the alignment mark. Neoprene pads were used in place of capping compound. Load was applied at a constant loading rate of 20 to 50 psi/second. Maximum load at which failure took place was recorded. Compressive strength (to nearest to 10 psi) was calculated by dividing the maximum load taken by the specimen during the test by the average cross-sectional area calculated using the measurement.

#### 4.5.5 Freeze-Thaw Resistance

Freeze and thaw tests were conducted on a prism of  $3^{\circ}x3^{\circ}x11^{\circ}$  at 14 days in accordance with ASTM C 666 – 97 [64], but with minor modifications.

**Test Procedure**: Prior to the testing, length, breadth, width and weight of the specimens were measured and the initial fundamental frequency at zero cycles of freeze and thaw were determined. The minor modification involved wrapping of the specimen in a felt having a thickness neither less than 1/32 in. (1 mm) nor more than 1/8 in. (3 mm). The specimens covered with felts were then immersed in cold water maintained at a temperature of  $4^{0}$ C. After immersion for 1 minute, specimens were taken out from the cold water to allow excess water to drain out, and then specimens were vacuum sealed in plastic vacuum bags and placed in the freeze and thaw chamber. The temperature of the chamber and core of concrete were recorded using a Lab View Program on a computer. One cycle of freeze and thaw cycle constituted lowering the core temperature of the concrete from  $40^{0}$ F to  $0^{0}$ F and again raising the temperature from  $0^{0}$ F to  $40^{0}$ F. The duration of one cycle of freeze and thaw was determined to be 3 hours and 56 minutes. Initially, samples were tested at intervals not exceeding 10 cycles and then those were

tested at intervals not exceeding 36 cycles up to 300 cycles. After each interval, samples were taken out, tested for transverse frequency, measured for weight, again wrapped as described earlier, vacuum sealed, and returned to the chamber for the next set of freeze and thaw cycles. The samples in the chamber were rotated in a particular set pattern so that each sample got equal exposures from all side. 10 to 15 shows the complete process of vacuum sealing of specimen. Figure 16 shows testing method for fundamental frequency.



Figure 10: Specimen wrapped in felt





Figure 11: Wrapped specimen submerged in water

Figure 12: Ready for vacuum seal process



Figure 13: Wet specimen inside vacuum seal bag



Figure 14: Vacuum seal process complete



Figure 15: Ready to be kept in freeze-thaw chamber



Figure 16: Fundamental transverse frequency measurement of sample using dynamic testing apparatus

### 5 EXPERIMENT TEST RESULTS

The tests results of all the phases of research are presented in this section. The test results were analyzed to determine if the desirable characteristics of HPC for the experimental (HPC) mixtures were significantly better than that of the control mixture, or not. The results for the compressive strength and the chloride-ion penetration were compared using the two-sample student t-tests. The research question for the chloride-ion penetration resistance test was to determine if the true mean charge passed through the control mixture was greater than that passed through the experimental mixtures and the research question for the compressive strength test was to determine if the true mean charge passed through the research question for the compressive strength test was to determine if the true mean charge passed through the research question for the compressive strength test was to determine if the true mean charge passed through the research question for the compressive strength test was to determine if the true mean compressive strength of the control mixture was greater than that of the experimental mixtures. The t-tests were designed accordingly so that the rejection of the null hypothesis would answer the research question with specified certainty level.

#### Hypothesis Testing for Compressive Strength

- a.  $\mu_E \mu_C =$  the difference between true mean compressive strengths of experimental mixtures ( $\mu_E$ ) and the control mixture ( $\mu_C$ ) as determined by ASTM C 39/C 39M -01.
- b. Null hypothesis,  $H_0$ :  $\mu_E \mu_C = 0$  (i.e., no difference in true mean compressive strengths).
- c. Alternate hypothesis,  $H_a$ :  $\mu_E \mu_C > 0$  (i.e., the true mean compressive strengths of experimental mixtures is significantly higher than that of the control mixture).
- Test statistic (t-test):

$$t = \frac{\overline{X}_E - \overline{X}_C - 0}{\sqrt{\frac{s_C^2}{n_C} + \frac{s_E^2}{n_E}}}$$

Where:

 $\overline{X}_{c}$  = mean compressive strength determined during testing for the control mixture  $\overline{X}_{E}$  = mean compressive strength determined during testing the experimental mixtures  $s_{c}^{2}$ ,  $s_{E}^{2}$  = estimate of the population variance

 $n_C$ ,  $n_E$  = sample sizes for the control and experimental mixtures, respectively

- d. Significance level: The significance level used in the research study was 5% or 0.05.
- e. Critical region: Reject the null hypothesis (H<sub>0</sub>) in favor of the alternate hypothesis (H<sub>a</sub>) if t > t critical
- f. Interpretation: if  $t > t_{critical}$ , then the sample data provided strong evidence to suggest that the mean compressive strengths of the experimental mixtures is significantly higher than that of the control mixture.

#### Hypothesis Testing for Chloride Ion Penetration Resistance

- a.  $\mu_{C} \mu_{E}$  = the difference between true mean charge passed (coulombs) during the test period through the control mixture ( $\mu_{C}$ ) and experimental mixtures ( $\mu_{E}$ ) as determined by ASTM C 1202-97.
- b. Null hypothesis,  $H_0$ :  $\mu_C \mu_E = 0$  (i.e., no difference in true mean charge passed).
- c. Alternate hypothesis,  $H_a$ :  $\mu_C \mu_E > 0$  (i.e., the true mean charge passed through the control mixture is greater than that passed through the experimental mixtures).

#### Test statistic (t-test):

$$t = \frac{\bar{X}_{C} - \bar{X}_{E} - 0}{\sqrt{\frac{s_{C}^{2}}{n_{C}} + \frac{s_{E}^{2}}{n_{E}}}}$$

Where:

 $\overline{X}_{C}$  = mean charge passed through the control mixture during testing

 $\overline{X}_E$  = the mean charge passed through the experimental mixtures during testing

 $s_C^2$ ,  $s_E^2$  = estimate of the population variance

 $n_C$ ,  $n_E$  = sample sizes for the control and experimental mixtures, respectively

- d. Significance level: The significance level used in the research study was 5% or 0.05.
- e. Critical region: Reject the null hypothesis (H<sub>0</sub>) in favor of the alternate hypothesis (H<sub>a</sub>) if t > t <sub>critical</sub>
- f. Interpretation: if  $t > t_{critical}$ , then the sample data provided strong evidence to suggest that the charge passed through the control mixture is greater than that

passed through the experimental mixtures (i.e., strongly suggesting that the experimental mixtures are more resistant to chloride ion penetration than the control mixture.

It should be noted that other response variables such as abrasion resistance and freezethaw resistance can be compared in similar fashion.

The results of the comparison have been presented in pictorial form in terms of bar chart and confidence interval at the confidence level of 95%.

Confidence Interval (CI) is defined as:

$$\overline{Y} \pm t_{(\alpha/2,N-1)} s / \sqrt{N}$$

Where:

 $\mathbf{\bar{Y}}$  is the sample mean,

*s* is the sample standard deviation,

*N* is the sample size,

 $\alpha$  is the desired significance level,

 $t_{(\alpha/2,N-1)}$  is the upper critical value of the t- distribution with N - 1 degrees of freedom. Note that the confidence coefficient is 1 -  $\alpha$  [64]

Using sample average and sample standard deviation, upper and lower 95% confidence levels were calculated and plotted in the bar graph centered along the mean of the sample.

#### Interpretation of 95% confidence interval



If the 95 % confidence interval for two mixtures overlaps, then it can be interpreted that there is no significant difference between the two mixtures; whereas if the 95% confidence intervals do not overlap, then it can be inferred that the two mixtures are significantly different from each other. Also, if the 95% confidence intervals do not

overlap and one (say, for mixture A) is higher than the other (say, mixture B), it can be interpreted that A is significantly higher than B.

For example: Figure 17 shows 95% confidence interval for the chloride ion penetration in terms of charge passed for concrete at 56-day. Since, 95% CI for mixture C and mixture Con overlaps; it is interpreted that the mixture C and the mixture Con are not significantly different from each other in terms of charge passed through the sample. In other words, it means we fail to reject the null hypothesis. Since, 95% CI for the mixture C and mixture A do not overlap and the CI for mixture C is strictly above that of mixture A, it can be interpreted that mixture C is significantly different from mixture A; and we can even say, there is strong evidence that mean charge passed through mixture C is significantly greater than that passed through mixture A, which in turn means that the mixture C at 95% confidence level. In this case, it represents that we reject the null hypothesis. Details of t-test results obtained from S-plus software is given in appendix F.



Figure 17: Example for interpretation of confidence interval

It should be noted that other response variables such as compressive strength and freezethaw resistance can be compared in the similar fashion.

#### **Multiple Sample Comparison**

Multiple sample comparisons for compressive strength and chloride ion penetration were conducted using ANOVA test for the entire mixture designs for all the phases of the study. The null hypothesis was that there is no difference between all the mixture designs being compared and the alternate hypothesis was that at least one of them is different. The ANOVA tests were conducted using Stat-Graphics software and the results for the compressive strength and the chloride ion penetration test are presented in the Appendix-G.

## 5.1 Phase I

During the phase I of the study, comparisons were made with regards to the types of supplementary cementitious materials (SCM), types of aggregates and the types of curing methods. The methods have been described in detail in the Section 3. The tests results and their analyses are presented in this section.

### 5.1.1 Fresh Properties of Concrete

The fresh properties of concrete mainly include slump, temperature, density and air content. In this research, focus was on developing an air entrained concrete that could sustain severe conditions of exposure. The air content had to be maintained at 6 +/- 2 %. Slump and temperature affect the hardened properties of concrete such as strength and abrasion. The slump also affects the placement method. Therefore, freshly mixed concrete for 15 mixture designs were tested for the above mentioned properties. A summary of test results for phase I is presented in Table 32. The results obtained were within the specified limit of ODOT's standard specification. Specified slump for the control mixture was 4" while for the experimental mixtures were around 10" [44].

| Mixture<br>Id | Mixture Description                                         | Slump<br>, in. | Temperat<br>ure, <sup>0</sup> C | Air<br>Content,<br>% |
|---------------|-------------------------------------------------------------|----------------|---------------------------------|----------------------|
| CW            | Control-Water Curing                                        | 4              | 25                              | 5                    |
| CSA           | Control- Steam Curing A                                     | 5              | 17                              | 7                    |
| CSB           | Control-Steam Curing B                                      | 6              | 16                              | 6                    |
| EAW           | Exp A-Water Curing (Slag + Gravel + Silica Fume)            | 9              | 18                              | 8                    |
| EASA          | Exp A-Steam Curing A (Slag + Gravel + Silica Fume)          | 10             | 17                              | 8                    |
| EASB          | Exp A-Steam Curing B (Slag + Gravel + Silica Fume)          | 10             | 18.5                            | 8                    |
| EBW           | Exp B-Water Curing (Slag + Crushed rock + Silica Fume)      | 9              | 16.5                            | 6                    |
| EBSA          | Exp B-Steam Curing A (Slag + Crushed rock + Silica Fume)    | 9              | 17                              | 8                    |
| EBSB          | Exp B-Steam Curing B (Slag + Crushed rock + Silica Fume)    | 9              | 18                              | 8                    |
| ECW           | Exp C-Water Curing (Fly ash + Gravel + Silica Fume)         | 10             | 17                              | 8                    |
| ECSA          | Exp C-Steam Curing A (Fly ash + Gravel + Silica Fume)       | 10             | 17.5                            | 7                    |
| ECSB          | Exp C-Steam Curing B (Fly ash + Gravel + Silica Fume)       | 10.5           | 17.5                            | 8                    |
| EDW           | Exp D-water Curing (Fly ash + Crushed Rock + Silica Fume)   | 10.5           | 10                              | 8                    |
| EDSA          | Exp D-Steam Curing A (Fly ash + Crushed Rock + Silica Fume) | 9.5            | 16                              | 8                    |
| EDSB          | Exp D-Steam Curing-B (Fly ash + Crushed Rock + Silica Fume) | 10.5           | 17.5                            | 8                    |

Table 32: Tests results for fresh properties of concrete in phase I

## 5.1.2 Hardened Concrete Properties

A summary of tests results of relevant hardened properties of concrete is given in Table 33. The summary is an average of three samples per mixture design for all the tests except for chloride ion test (average of four) and freeze and thaw test (which has only one sample). Details are presented in appendix C.

|            |                                                                | Abrasion test            |                           | RCPT test                     | Compressive strength |                    | Freeze and<br>Thaw test |
|------------|----------------------------------------------------------------|--------------------------|---------------------------|-------------------------------|----------------------|--------------------|-------------------------|
| Mixture Id | Mixture Description                                            | Wear<br>Depth,<br>inches | Wear<br>Rate,<br>in./hour | Charge<br>passed,<br>Coulombs | At 28<br>days, psi   | At 90<br>days, psi | Durability<br>Factor %  |
| CW         | Control-Water Curing                                           | 0.036                    | 0.072                     | 1709                          | 6520                 | 7650               | 91                      |
| CSA        | Control- Steam Curing A                                        | 0.072                    | 0.145                     | 4254                          | 3880                 | 3810               | 94                      |
| CSB        | Control-Steam Curing B                                         | 0.100                    | 0.200                     | 4419                          | 2980                 | 2790               | 96                      |
| EAW        | Exp A-Water Curing (Slag +<br>Gravel + Silica Fume)            | 0.062                    | 0.124                     | 1124                          | 7190                 | 8000               | 95                      |
| EASA       | Exp A-Steam Curing A (Slag +<br>Gravel + Silica Fume)          | 0.050                    | 0.100                     | 2112                          | 5880                 | 5360               | 95                      |
| EASB       | Exp A-Steam Curing B (Slag +<br>Gravel + Silica Fume)          | 0.072                    | 0.144                     | 1922                          | 4570                 | 4210               | 97                      |
| EBW        | Exp B-Water Curing (Slag +<br>Crushed rock + Silica Fume)      | 0.025                    | 0.051                     | 1048                          | 9450                 | 11010              | 93                      |
| EBSA       | Exp B-Steam Curing A (Slag +<br>Crushed rock + Silica Fume)    | 0.047                    | 0.094                     | 1984                          | 7820                 | 7510               | 95                      |
| EBSB       | Exp B-Steam Curing B (Slag +<br>Crushed rock + Silica Fume)    | 0.0382                   | 0.076                     | 2313                          | 6550                 | 6180               | 97                      |
| ECW        | Exp C-Water Curing (Fly ash +<br>Gravel + Silica Fume)         | 0.0773                   | 0.155                     | 956                           | 4450                 | 5300               | 90                      |
| ECSA       | Exp C-Steam Curing A (Fly ash +<br>Gravel + Silica Fume)       | 0.0729                   | 0.146                     | 3031                          | 3630                 | 3250               | 91                      |
| ECSB       | Exp C-Steam Curing B (Fly ash +<br>Gravel + Silica Fume)       | 0.1987                   | 0.397                     | 5638                          | 2200                 | 1750               | 94                      |
| EDW        | Exp D-water Curing (Fly ash +<br>Crushed Rock + Silica Fume)   | 0.0394                   | 0.079                     | 687                           | 6530                 | 8410               | 93                      |
| EDSA       | Exp D-Steam Curing A (Fly ash +<br>Crushed Rock + Silica Fume) | 0.0734                   | 0.147                     | 3567                          | 4320                 | 4200               | 94                      |
| EDSB       | Exp D-Steam Curing-B (Fly ash +<br>Crushed Rock + Silica Fume) | 0.0766                   | 0.153                     | 4246                          | 3020                 | 2990               | 95                      |

#### Table 33: Summary of tests results for hardened properties of concrete in phase I

#### 5.1.2.1 Abrasion Resistance

Figure 18 presents the bar graph of wear rate versus different mixtures design. From the graph, it can be inferred that the mixtures containing crushed rock, silica fume and slag (Exp-B) had significantly higher abrasion resistance than the control mixtures.



Figure 18: Abrasion in terms of wear rate at 30 minutes for Phase I

The mixture with slag and crushed rock with water curing (mixture EBW) had 29% higher abrasion resistance than the control mixture CW. Mixtures having slag and crushed rock and with steam curing A (mixture EBSA) had 34% higher abrasion resistance than the control mixture with steam curing A (mixture CSA) and mixtures having slag and crushed rock and with steam curing B (mixture EBSB) had 62% higher abrasion resistance than the control mixture with steam curing B (CSB). The possible reason behind this could be the combined effects of using slag and crushed rock used in this mixture design. Slag has higher CaO percentage than fly ash and thus might contribute to the paste property. Previous studies suggest that crushed and hard rock like basalt improves the abrasion resistance in comparison to river gravel [20]. The results reveal that the mixtures containing slag outperformed the mixtures containing fly ash. It

is evident from the bar graph that the slag mixtures containing either gravel or crushed rock (Exp A or Exp B) had higher abrasion resistance than that of fly ash. The effect of aggregates is not clearly evident from the graph; though it seems that mixtures which had crushed rock and were cured using either water curing regime or steam curing B regime (EBW, EDW, EBSB, and EDSB) had higher abrasion resistance than the mixtures containing gravel (EAW, ECW, EASB, and ECSB). There was no difference between the crushed rock and gravel mixtures cured using steam curing A regime (EASA, ECSA and EBSA, EBSB). So, there is inconclusive but suggestive evidence that the use of crushed rock increased the abrasion resistance of the concrete. Based on the overall performance, the mixture EBW seemed to be the best mixture having a better performance in terms of abrasion resistance.

#### 5.1.2.2 Permeability (Rapid Chloride-ion Penetration Test)

Permeability of concrete is measured in terms of coulombs of charge passed through the concrete. Charge passing through the concrete is also a measure of amount of chloride ion passing through the concrete. The less the charge passing through the concrete surface, the less permeable it is considered. From Figure 19, it appears that the mixtures CW, EAW, EBW, ECW, and EDW (all water cured) had significantly lower permeability than the other mixtures. Therefore, it can be concluded that there is a general trend of increase in permeability with the type of curing: lower for water curing and higher for steam curing A and steam curing B. The results also reveal that the water curing significantly reduced the permeability of the concrete. Possible reason for this could be that the water curing ensures proper hydration of the cementitious materials. Effect of fly ash, slag, gravel or crushed rock is not clearly evident from the results. The mixtures EDW and ECW have relatively lower chloride ion permeability than the mixtures EBW and EAW. This fact can be used to infer that fly ash mixtures decrease the permeability of the concrete, and thereby increase the durability of the concrete more than the slag mixtures only if they were water cured. All the experimental mixtures had better resistance to rapid chloride ion penetration than the control mixtures except for mixtures ESCB, EDSA and EDSB, possibly because of worst combination of treatments. There was suggestive but inconclusive evidence that experimental mixture designs have better chloride ion penetration resistance than the control mixture.



Figure 19: Average charge passed for different concrete mixtures in phase I

### 5.1.2.3 Compressive Strength

Figures 20 and 21 shows the average compressive strength of the mixtures following 28 and 90 days of curing respectively. Taken together, it can be seen that the compressive strength of different concrete mixtures varied from 2000 psi to 12000 psi. The compressive strength of slag mixtures is significantly higher than that of fly ash mixtures. The effect of type of coarse aggregate used is also evident from the graph. From both the graph, it is evident that the use of crushed rock increased the strength of the concrete manifolds both at 28 days and 90 days. Also, there was a clear trend in decrease in the compressive strength among the three curing regimes, with water curing providing the greatest strength followed by the steam curing A regime.

Though the difference in effect of steam curing regime A and the steam curing regime B on the compressive strength is insignificant; the effect of water curing is highly significant. By comparing compressive strengths at 28 and 90 days, it can be observed that the strength of the concrete increased by approximately 15% from 28 to 90 days under water curing, while steam curing A and B did not have a considerable effect on the rate of strength gain. Overall, the compressive strength of experimental mixtures (other than Exp C) was significantly higher than that of the control mixture.

Comparison of the individual mixtures illustrated that the mixture with slag and crushed rock (EBW, EBSA and EBSB) had a significantly higher strength than the control mixture (CW, CSA and CSB). Though there was suggestive, but inconclusive evidence that the mixture with slag and gravel that underwent water curing (EAW) had higher compressive strength than the water-cured control mixture (CW), the compressive strengths of the mixtures with slag and gravel that underwent steam curing A and B (EASA and EASB) were significantly higher than those of control mixture as well as the mixtures cured with either steam curing A or B (CSA and CSB). Mixture C (containing fly ash, silica fume and gravel) appeared to be worst mixture with very low compressive strength.



Figure 20: Average compressive strength at 28 days



Figure 21: Average compressive strength at 90 days

## 5.1.2.4 Freeze-Thaw Resistance

Figure 22 is a bar graph of the durability factors for the various mixture designs. From the figure, it can be seen that the steam curing B method resulted in greater durability for the concrete in comparison to the water curing and steam curing A methods.



#### Water Curing




#### Steam Curing A



Figure 24: Relative Dynamic Modulus for Steam Curing A



Steam Curing B

Figure 25: Relative Dynamic Modulus for Steam Curing B

Figures 23, 24, 25 present detail results of the freeze-thaw tests in terms of relative dynamic modulus versus number of cycles, with the last being 300 cycles. Since there was only one specimen per mixture design, the 95% confidence interval could not be established. From figure 23, it can be inferred that the mixtures with slag (EAW and EBW) performed better than all other mixtures (i.e., these mixtures were damaged less than the other mixtures). It can also be seen that the control mixture performed better, for the most part, than the mixtures with fly ash.

From figure 24 and 25, the slag mixture with steam curing A (EASA and EBSA) and with steam curing B (EASB and EBSB) outperformed other mixes. Therefore, it can be inferred that the slag mixtures were better than fly ash mixtures in terms of durability but the effect of aggregate type was not evident much. Unlike other tests, steam curing showed better results in term of durability test than water curing. The reason behind steam curing outperforming other curing method in terms of durability would be formation of small air voids in the concrete mixtures due to improper hydration which enhanced freeze thaw resistance.

Photographs of the specimens were taken following the freeze-thaw test. Examples of degradation are shown in figures 26-29. Though, there was not much decrease in the durability of control mixture, evidence of surface degradation was prominently visible. From figures 26 and 27 it can be seen that the control mixture suffered significant degradation with complete surface scaling leading to aggregate exposure (figure 27) and breaking of the concrete (figure 26). Some of the aggregates (gravel) were also susceptible to freeze-thaw. EASB, one of the best mixtures, was highly resistant to freeze-thaw as evidenced by lack of surface scaling (Figure 28).

Overall, all of the mixtures had durability factors greater than 90%. This suggests that all of the mixtures were highly resistant to freeze-thaw action.



Figure 26: Surface scaling clearly evident for edge during freeze and thaw cycle for control



Figure 27: Broken control mixture specimen



Figure 28: Surface scaling not evident in EASB



Figure 29: Surface scaling evident in ECW

## 5.2 Pilot Study

The primary purpose of conducting a pilot study was to identify and develop a curing regime which would provide high early strength and at the same time higher compressive strength comparable to that obtained when samples are water cured for 28 days. The findings from Phase I confirmed that the water curing is the best method of curing, but it would be quite difficult to carry out in the field due to the constraints of cost and construction issues. Therefore, it became imperative to search for an alternative technique which would emulate the water curing. Efforts were made to develop 12 curing methods combining different curing techniques and different curing periods. Twelve concrete mixtures were cast for the pilot study to study the effect of different curing types on the compressive strength of concrete. Results for compressive strength and fresh properties of concrete are in the following section.

## 5.2.1 Freshly-Mixture Concrete Properties

All 12 concrete mixtures had an identical mixture design (see Section 3.2.4). Air contents for some of the mixtures were different but within the specified limit set by the new (2008) ODOT specification. Slump of the concrete mixtures were within the acceptance limit. Temperature of the concrete varied according to the ambient temperature on the day of casting. A summary of fresh properties of concrete is given in Table 34.

| Mix ID | Slump, in. | Air content, % | Temperature, <sup>°</sup> F |  |
|--------|------------|----------------|-----------------------------|--|
| Mix 1  | 9          | 6.5            | 58                          |  |
| Mix 2  | 9          | 6.5            | 58                          |  |
| Mix 3  | 9          | 6.5            | 58                          |  |
| Mix 4  | 9          | 6.5            | 58                          |  |
| Mix 5  | 9.75       | 7.5            | 66                          |  |
| Mix 6  | 9.75       | 7.5            | 66                          |  |
| Mix 7  | 9.75       | 7.5            | 66                          |  |
| Mix 8  | 8.5        | 7.2            | 64                          |  |
| Mix 9  | 10         | 7.5            | 58                          |  |
| Mix 10 | 10         | 7.5            | 58                          |  |
| Mix 11 | 8.5        | 6.6            | 61                          |  |
| Mix 12 | 8.5        | 7.2            | 64                          |  |

## 5.2.2 Hardened Concrete Properties

Since the previous studies suggested that the abrasion resistance of concrete is directly proportional to its compressive strength, the pilot study focused on the compressive strength at various stages of curing. A summary of the average compressive strength at various stages of curing after 1 day, 3 days, 7 days, 14 days and 28 days for all mixtures are given in Table 35. Detailed results are presented in appendix D.

|          |                                                            | Test on hardened concrete |        |        |         |         |  |
|----------|------------------------------------------------------------|---------------------------|--------|--------|---------|---------|--|
| Mixture  |                                                            | Compressive strength, psi |        |        |         |         |  |
| ture Id. | Mixture ture Description                                   | 1 day                     | 3 days | 7 days | 14 days | 28 days |  |
| 1        | Water curing up to 28 days                                 | 4870                      | 8070   | 9800   | 10450   | 11260   |  |
| 2        | 14 Days water curing + ambient<br>curing                   | x                         | x      | x      | x       | 11690   |  |
| 3        | 7 Days water curing + ambient<br>curing                    | x                         | x      | x      | 10460   | 11190   |  |
| 4        | 14 Days water curing + curing<br>compound + ambient curing | x                         | x      | x      | x       | 11520   |  |
| 5        | 7 Days water curing + curing<br>compound + ambient curing  | x                         | x      | x      | 9170    | 10130   |  |
| 6        | 1 Days water curing + curing<br>compound + ambient curing  | x                         | 6750   | 7660   | 9340    | 9110    |  |
| 7        | 3 Days water curing + curing<br>compound + ambient curing  | x                         | x      | 8920   | 9350    | 9940    |  |
| 8        | 3 Days water curing + ambient<br>curing                    | x                         | x      | 9990   | 10220   | 11000   |  |
| 9        | 1 Days water curing + ambient<br>curing                    | x                         | 4420   | 5590   | 6410    | 6170    |  |
| 10       | Steam curing + ambient curing                              | 5390                      | 6570   | 7210   | 7160    | 6860    |  |
| 11       | Steam curing + curing compound<br>+ ambient curing         | 8870                      | 9810   | 10480  | 10550   | 10930   |  |

Table 35: Average compressive strength at different specified duration of curing for pilot study

#### 5.2.2.1 Comparison between Water Curing and Steam Curing

From figure 30, it can be interpreted that the mixture 10 (concrete specimen subjected to steam curing followed by ambient curing) had significantly lower compressive strength than both mixture 1 (concrete specimen subjected to water curing) and mixture 11 (concrete specimen subjected to steam curing followed by application of curing compound and left for ambient curing). Mixture 1 and mixture 11 had almost 60% higher compressive strength than mixture 10. Again, there was no significant difference in the compressive strengths of mixture 1 and mixture 11 at 28 days of curing. Application of curing compound to prevent evaporation of internal water from concrete greatly improved the compressive strength by increasing the strength gain by approximately 60% over the ambient cured sample. The possible reason behind this is that the application of curing compound makes an impervious layer over the concrete surface which prevents the internal water from evaporating and thus aiding the hydration process.



Figure 30: Comparison of compressive strength between steam and water curing with 95% CI

# 5.2.2.2 Comparison between Compressive Strengths at Day 1 and Day 28 of Water Curing

From figure 31, it is clearly evident that the gain in compressive strength of the concrete subjected to water curing was significantly higher (at a 95% confidence level) than that subjected to water curing for one day and then left in the ambient condition. It is also evident from the figure that the gain in compressive strength of the concrete subjected to water curing was significantly higher than that subjected to water curing for one day and then left in the ambient condition after applying the curing compound. The effect of curing compound is clearly evident from the graph; the samples which were cured in ambient temperature after applying curing compound had significantly higher curing compound.



Figure 31: Compressive strength for different curing types with 95% CI

# 5.2.2.3 Comparison between Compressive Strengths at Day 3 and Day 28 of Water Curing

Figure 32 shows that the curing compound does not have any effect on the strength gain process of concrete if the concrete sample is water cured for 3 days and then coated with curing compound. The samples which were water cured for 3 days followed by ambient curing had similar compressive strength compared to those subjected to normal water curing for 28 days.



Figure 32: Effect of different duration of water curing

## 5.2.2.4 Effect of Curing Compound

Figure 33 shows that the application of curing compound after 1 day of water curing followed by ambient curing increased the compressive strength by 47% compared to water curing followed by ambient curing without application of curing compound. The effect of application of curing compound on samples after three days of normal water curing was insignificant, which shows that the curing compound coating is effective in ensuring proper hydration of cement only when it is applied sooner (e.g., after 1 day of the water curing).



. Figure 33: Effect of curing compound for 1 day water curing



Figure 34: Effect of curing compound for steam curing

# 5.2.2.5 Effect of Length of Curing Period

Figure 35 shows how the gain in compressive strength takes place over time for different curing types. It can be interpreted that all the mixtures except 6 and 9 continued to gain strength up to at least 28 days. The rate of strength gain leveled off after 14 days for mixtures 6 and 9, both of which were cured in water for 1 day followed by application of curing and then left in ambient conditions.



Figure 35: Compressive strength gain over time

#### Note: Nomenclature shown in the graph pertains to:

- 1-Water Curing till 28 days
- **2**-14 Days water curing + ambient curing
- **3**-7 Days water curing + ambient curing
- **4-**14 Days water curing + curing compound + ambient curing
- **5-7** Days water curing + curing compound + ambient curing
- **6-**1Days water curing + curing compound + ambient curing
- **7**-3Days water curing + curing compound + ambient curing
- 8-3 Days water curing + ambient curing

## 5.3 Phase II

Phase II was undertaken to capitalize on the findings from phase I and the pilot study that showed the most promise in developing a highly abrasion resistant and durable concrete mixture. Also, there was not a very significant increase in the abrasion resistance with the use of crushed rock. Therefore, it was decided to develop a sustainable mixture design with locally available material. Efforts were made to investigate and develop a concrete mixture design using locally available gravel as aggregates and attain similar abrasion resistance and chloride ion permeability as that obtained by using crushed rock as aggregates. Results of all the tests conducted on the different concrete mixture designs are given in the following sections.

#### 5.3.1 Freshly-Mixed Concrete Properties

A summary of tests conducted on the freshly mixed concrete are given in Table 36. All the results were within the specified limits. Mixture S was designed for non air-entrained concrete, therefore the air content of the mixture was only 2%.

| Mixture ID | Temperature, <sup>0</sup> C | Slump, inch | Air, % |
|------------|-----------------------------|-------------|--------|
| Control    | 19                          | 8.5         | 7.5    |
| Mix A      | 19                          | 10          | 6.5    |
| Mix B      | 22                          | 8.5         | 7.5    |
| Mix C      | 15                          | 9.5         | 7.8    |
| Mix D      | 19                          | 10          | 6.9    |
| Mix E      | 18                          | 9.5         | 5      |
| Mix S      | 16                          | 10          | 2      |
| Mix T      | 26                          | 10          | 7      |

Table 36: Tests results for fresh properties of concrete for phase II

#### 5.3.2 Hardened Concrete Properties

A summary of all the tests results conducted on hardened properties of concrete are given in Table 37. Tests on hardened properties of concrete included compressive strength, abrasion resistance, and chloride-ion penetration resistance (as mentioned previously, freeze-thaw tests were not conducted during phase II due to the satisfactory performance of the HPC mixtures during phase I). Detailed analyses of all the tests are given in following sections. Details of tests results are presented in appendix E.

| Mixture ID | Compressive Strength, psi |         | Abrasion Wear Rate,<br>inch/hr |         | Chloride Ion<br>Charge Passed,<br>Coulombs |         |
|------------|---------------------------|---------|--------------------------------|---------|--------------------------------------------|---------|
|            | 1 day                     | 29 days | 56 dava                        | 56 days |                                            | 56 dava |
|            | 1 day                     | 28 days | 50 days                        | 30 min  | 60 min                                     | 50 days |
| Control    | 6610                      | 7860    | 7520                           | 0.1120  | 0.070                                      | 660     |
| Mix A      | 7680                      | 9540    | 9260                           | 0.1480  | 0.100                                      | 320     |
| Mix B      | 7700                      | 9700    | 9990                           | 0.1210  | 0.083                                      | 260     |
| Mix C      | 5230                      | 5760    | 5750                           | 0.2270  | 0.103                                      | 550     |
| Mix D      | 7270                      | 8820    | 9070                           | 0.1130  | 0.071                                      | 270     |
| Mix E      | 8200                      | 10680   | 10170                          | 0.0820  | 0.048                                      | 310     |
| Mix S      | -                         | 13600   | 13900                          | 0.0200  | 0.016                                      | 230     |
| Mix T      | 8870                      | 10440   | 11060                          | 0.0750  | 0.032                                      | 290     |

 Table 37: Summary of tests conducted on the hardened concrete mixtures in phase II (Average results of three samples)

## 5.3.2.1 Abrasion Resistance

As seen in Table 37, the average wear rate at 30 minutes of abrasion was much higher than the average wear rate at 60 minutes. A possible explanation for this difference could be that the abrasion of concrete is primarily a surface phenomenon. According to Mehta, hardened cement mortar paste does not possess a high resistance to attrition and the weak surface layer consists of very fine particles called laitance [66]. Though efforts were made to remove the laitance during the first five minutes of the abrasion test, the layer of fine particles might have been thicker than expected and, therefore, might not have been completely removed during the first 5 minutes of running the abrasion test. Once this top layer had been removed, the aggregate surfaces were exposed which were relatively harder and therefore abrasion rate was less in the second 30 minutes duration of the test.

Though the average wear rate after 60 minutes of abrasion was significantly lower than that after 30 minutes, both the graphs (Figures 36 and 37) show the same trend of wear rate for the different mixture designs. From Figures 36 and 37, it can be seen that mixtures E and S had significantly lower wear rates than the control mixture. One of the possible reasons behind this could be the lower air content and higher strength of the mixtures. Also, it appears that mixtures E and A, with the slag as supplementary cementitious material, had significantly lower wear rates than the control mixture and mixture C, in which the supplementary cementitious material was fly ash. This shows that the mixtures containing slag provided better abrasion resistance than those containing fly ash. This can be validated from the results obtained in phase I.

Though, mixtures B and D had different supplementary cementitious materials, but the same percentage of silica fume, they were not much different from each other in terms of wear rate. This possibly could be due to the high amount of silica fume (i.e., 10%) which played a major role in the strength gain and subsequently abrasion resistance, negating the effect of the other supplementary cementitious materials.

In looking at the charts, it appears that the mixtures with 7% silica fume (aside from Mixture S, of course) had lower abrasion resistance than the mixtures with 4% and 10% silica fume. Mixtures with 4% silica fume showed improved wear resistance relative to the control mixture and the mixture with 10% silica fume had about the same wear resistance as the control mixture. The mixtures with 7% actually resulted in a decrease in wear resistance relative to the control mixture to the control mixtures and those containing lower or higher percentages of silica fume. In general, reducing the fly ash or slag content with an associated increase in silica fume content actually reduced the wear resistance relative to the control mixture with fly ash, and for all silica fume contents, the mixtures with slag were about equal to or better than the mixtures with fly ash in terms of wear resistance. Although mixture S was clearly the best performer, it might be due to the 2% air content, but the added cement content probably contributed as well. The cement content of all the mixture except for mixture S and mixture T was 541 lb/yd<sup>3</sup>.



Figure 36: Average wear rate at 30 minutes for phase II



Figure 37: Average wear rate at 60 minutes

## 5.3.2.2 Permeability

Figure 38 presents the results of the chloride ion permeability tests in graphical format. From the figure, it can be seen that the charge passed by all of the samples were well below the threshold level of 1000 coulombs set by the ODOT standard specifications. In fact, most of the mixtures passed fewer than 350 coulombs of charge. Further, there was a general trend of decrease in permeability with an increase in silica fume content. Mixtures B and D, both having 10% silica fume, passed significantly fewer coulombs of charge passed (indicating lower permeability) than those containing lower percentages of silica fume. Mixtures A and C were not significantly different from the control mixture and mixture E (Figure 38).

This validates the statement given in the literature review that up to 6% silica fume enhances this property of concrete but requires much higher percentages above 6% to reap the same benefit. The addition of 7% silica fume did not improve chloride ion penetration resistance considerably. Mixtures A and E had lower permeability than the control mixture and mixture C. Therefore, it can be inferred that, similar to the findings from phase I, the inclusion of slag was more effective in suppressing chloride ion permeability than inclusion of fly ash. This could be because of better compatibility between slag, cement, and silica fume and a higher rate of hydration of the cementitious materials. Formation of C-S-H gel in ample quantity might have led to greater concrete density and, hence, lower permeability. Overall, all of the experimental mixtures were better than the control mixture in regards to improving impermeability.



Figure 38: Chloride ion permeability test at 56days

## 5.3.2.3 Strength

Due to industry requirements of high early age strength for releasing tension and demolding purposes, all of the specimens were tested for compressive strength at 1 day. Figure 39 presents these results graphically. From the figure, it can be seen that all of the mixtures had 1-day compressive strengths greater than 4000 psi and the experimental mixtures (except mixture C) had significantly higher compressive strengths than the control mixture. In addition, it can be seen that the experimental mixtures (again, with the exception of mixture C) had compressive strengths well in excess of 5000 psi, which is a minimum target 1-day strength for the purposes of de-molding structural concrete elements.



Figure 39: Average compressive strength at 1 day

Figures 40 and 41 present the compressive strengths of the mixtures following 28 and 56 days of curing, respectively. In comparing figure 38 (1-day strengths) with figure 39 (28-day strengths), in can be seen that, on average, there was approximately a 21% increase in the strength from 1 day to 28 days. The lowest increase was 10% for mixture C and the highest increase was 30% for mixture E. However, in comparing figure 40 with figure 41, it can be seen that there was hardly any increase in the compressive strength from 28 days to 56 days.

All of the experimental mixtures had significantly higher compressive strengths than the control mixture. Mixtures E, A, and B had significantly higher compressive strengths than the control mixture, and mixtures C and D. This showed that the concrete mixtures containing slag resulted in higher compressive strengths than those containing fly ash. This possibly could be due to the higher rate of hydration of slag and, subsequently, reduced porosity in the interfacial transition zone. Mixture D had a relatively higher compressive strength than the control mixture. Mixtures S and E had higher compressive strengths than all the other mixtures, probably because of the lower air content in mixtures S and E. According to Mehta, high strength concrete suffers a considerable strength loss with increasing amount of entrained air [66]. Also, mixture S had a higher cement content relative to all of the other mixtures (except mixture T), likely resulting in the very high strength.



Figure 40: Average compressive strength at 28 days for phase II



Figure 41: Average compressive strength at 56 days for phase II

Most of the failures took place along the aggregate phase. Type II and Type III failures were prevalent in all of the cylinders as illustrated in figure 42 and figure 43.



Type 2 Well-formed cone on one end, vertical cracks running through caps, no welldefined cone on other end

Type 3 Columnar vertical cracking through both ends, no wellformed cones





Figure 43: Type 3 failure

## 6 DISCUSSION OF RESULTS

The primary aim of this study was to investigate and develop at least one concrete mixture design which was significantly better, in terms of abrasion resistance and durability, than the bridge deck mixture presently being used by ODOT. Based on the analysis of the tests results from the different phases of the research study, a cumulative summary discussing the results and common findings of all the phases are described in this chapter.

## 6.1 Summary of Findings

#### 6.1.1 Types of SCM

From phase I of study, it was found that there was strong evidence to support that the use of slag as an SCM significantly increased the compressive strength and freeze-thaw resistance of the concrete. Slag also improved the abrasion resistance and resistance to chloride ion penetration of the concrete more than fly ash. This could possibly be because of the fact that slag is hydraulic in nature while fly ash is a pozzolanic. Slag being hydraulic in nature reacts in the presence of water and an activator (NaOH or CaOH) supplied by portland cement, hydrates and sets in a manner similar to portland cement, while class F fly ash (which is low in CaO) reacts with calcium hydroxide released by the hydration of portland cement to form compounds possessing cementing properties (a relatively slow process occurring later in the overall hydration process) [4]. For phase II of the study, it was evident that mixtures containing slag as a constituent material had significantly higher compressive strength, higher abrasion resistance, and lower permeability than the mixtures containing fly ash as a constituent material. Based on the overall results presented herein, it can be stated that mixtures containing slag were significantly better than mixtures containing fly ash with regard to enhancing durability of the concrete.

#### 6.1.2 Types of Aggregate

There was suggestive, but inconclusive, evidence that crushed rock increased the abrasion resistance, freeze-thaw resistance, and reduced the permeability of the concrete,

but there was strong evidence to support that it significantly improved compressive strength. Abrasion resistance is directly proportional to the compressive strength of the concrete [4]. Based on this theory, abrasion resistance should have been higher for concrete having higher compressive strength. Though concrete containing crushed rock had significantly higher compressive strength, its abrasion resistance was comparatively low relative to the mixtures with river gravel. Low abrasion resistance obtained may have been due to the testing techniques used during phase I and minor errors introduced during testing.

Wear rate in the first 30 minutes was significantly higher than that in the next 30 minutes. This clearly indicated that when the aggregate particles were exposed, the wear rate decreased. In other words, exposure of the aggregate improved the wear resistance of concrete.

#### 6.1.3 Curing Methods

Water curing method provides significantly improved compressive strength, abrasion resistance and resistance to chloride ion penetration but is not very effective in improving freeze-thaw resistance. Improved properties can be attributed to pore size reduction due to proper and continuous early stage hydration. It was confirmed from the phase I that water curing is the best method of curing and modification in steam curing method is required to provide the same level of durability as provided by the water curing. In order to expedite the production process at the pre-cast yard, to reduce the labor cost and at the same time to obtain a durable bridge deck slab, ODOT personals suggested to conduct a pilot study to investigate different curing methods and come up with a solution that would be the best alternative to the water curing. Some of the important findings of pilot study were:

- Steam curing accelerates the early strength gain which is a requirement for de-molding at the pre-cast yard.
- Effect of curing compound is only significant when water curing duration is short (one or two days). Samples cured in air after steam curing had the worst results. According to Andersson and Petersson, "concrete cured in water for 2 or 5 days had much lower penetration depth of water and air permeability than concrete cured with a membrane

curing compound cured under a plastic sheet, or cured in air." This validates the results obtained in the pilot study [67].

- Water curing period of 3 days or more in lime saturated water maintained at a temperature of 23+/-2<sup>o</sup>C gives compressive strength similar to that obtained by water curing samples for 28 days. Possible reason behind this could be related to maturity phenomenon of concrete. Zhang et.al stated that for a w/c ratio of 0.4 and less, approximate age required to produce maturity at which capillaries would become discontinuous is 3 days [68].
- Application of curing compound after steam curing allows continued gain in strength through 28 days. This would be due to the fact that curing compound forms a membrane coating on the surface which prevents loss of water from the surface of the concrete without the ingress of external water into the concrete [68].

From the results obtained in the pilot study, steam curing followed by application of curing compound on the concrete slab appeared to be the best alternative to normal water curing technique.

#### 6.1.4 Level of Silica Fume

With the moderate increase in the amount of silica fume (i.e., from 4 to 7%), there was no significant increase in the abrasion resistance or compressive strength of the concrete. But with a substantial increase in the percentage of silica fume used (i.e., from 4 to 10%), there was an increase in the abrasion resistance, compressive strength, and resistance to chloride ion penetration of the HPC. This is likely because the concrete became denser due to the higher volume of silica fume. Though the permeability of the control mixture was below the threshold value of 1000 coulombs specified by ODOT, the variance in the values of permeability was very high.

#### 6.1.5 Relation between Different Response Variables

Figure 44 depicts a linear regression (central line) with the charge passed in coulombs (chloride ion permeability) as the dependent variable and the compressive strength as an independent variable. The curved lines adjacent to the regression line indicate the 95% confidence interval about the regressed line while the outer lines represent prediction limit. As indicated, 61% of the variability in the charge passed is explained by the model.

It also indicates that permeability of the mixture is negatively correlated to the compressive strength. There is a strong evidence to support a statistically significant relationship between the two response variables of interest (p-value<0.01).



Charge passed = 5894.43 - 0.600816\* 28-Day Compressive Strength; R<sup>2</sup>=0.61

Figure 44: Relationship between compressive strength and permeability of the concrete

From the figure 44, it can be interpreted that the permeability of the concrete (charge coulombs passed) decreases as the compressive strength of the concrete increases. It means that the higher the compressive strength, the lower the permeability, hence the higher the durability of the concrete.

Figure 45 depicts linear regression with a wear rate as the dependent variable and compressive strength as an independent variable. 54% variability in the wear rate is explained by the model. Wear rate of the sample is negatively correlated to the compressive strength. There is a strong evidence to support statistically significant relationship between the two response variables of interest at 95% CI (p-value<0.01).



Wear rate = 0.267495 - 0.0000234097\* 56 day Compressive Strength; R<sup>2</sup>=0.54 Figure 45: Relationship between compressive strength and wear rate of the concrete

From figure 45, it can be seen that as the compressive strength of the concrete increases, the wear rate (expressed in inches/hour) decreases. It means that the higher the compressive strength, the better the abrasion resistance. This validates the statement that the abrasion resistance is directly proportional to the compressive strength of the concrete [4].

Figure 46 depicts a positive correlation between wear rate and permeability of the concrete (the lines are as explained previously). Therefore, with an increase in the permeability of the concrete, the abrasion (wear rate) of the concrete also increases. As indicated, 56% of the variability is explained by the model. Correlation coefficient of 0.75 indicates moderately strong relationship between the two variables.



Charge passed = 734.202 + 14375.9\*wear rate; R<sup>2</sup>=0.56;Correlation coefficient=0.75

#### Figure 46: Relationship between wear rate and permeability of the concrete

Figure 47 depicts a weak correlation between the permeability and the durability factor (freeze-thaw) as indicated by a correlation coefficient of only 0.25. There is no correlation between the compressive strength and the durability factor of the concrete (correlation coefficient equal to 0.06) (figure 48). Only 6% of the variability in the freeze-thaw resistance is explained by the model containing chloride ion permeability as the independent variable. This suggests that the freeze-thaw resistance of concrete tested in this study was not dependent on the compressive strength. The freeze-thaw or frost resistance of the concrete is more dependent on air content, w/c ratio, and degree of saturation. Higher strength of the concrete does not relate to higher frost resistance but higher air content can sometimes translate into lower strength [66]. Since, no significant relationship was established between compressive strength and durability factor, freeze-thaw resistance of the HPC could not be predicted by just knowing the compressive strength.



Durability Factor % = 93.0755 + 0.00033859\*Charge passed; R<sup>2</sup>=.06; Correlation coefficient=0.25

Figure 47: Relationship between durability factor and permeability of the concrete



Durability Factor % = 94.0889 - 0.0000168806\* Compressive Strength; R<sup>2</sup>=.02; Correlation coefficient=0.016

Figure 48: Relationship between compressive strength and durability factor

## 6.2 Selection of Best Mixture Design

In phase I of the research, mixture EBW (i.e., the mixture containing slag, silica fume, crushed rock, and cured in water) was identified as the best mixture. Mixture EBW had an average wear rate of 0.051 inches/hour which translates to very good abrasion resistance (relative to the other mixtures), but the charge passed was above 1000 coulombs. Though it had a very high wear resistance, it did not satisfy the requirements of chloride ion permeability set by the ODOT 2008 specifications [46].

## 6.2.1 Durability Comparison

In phase II of the research, a comparison was made to assess the relative durability characteristics of the mixtures more critically. A comparison of all of the mixtures used in phase II was prepared by plotting the abrasion resistance on one axis and the RCPT values on the other axis to identify and select the best possible mixture design as shown in Figure 47. The thick bars depict the wear rate of the concrete with associated scale on the left side Y-axis, while the thin bars depict charge passed in coulombs with associated scale on the right side Y-axis. The 95% CI for the wear rate is black in color, while that for the charge passed is blue in color.



Figure 49: Durability comparison of HPC

From figure 49, it can be seen that mixtures E, S, and T performed significantly better than the others in terms of resistance to chloride ion penetration and abrasion resistance. Comparing the best mixtures from phases I and II, it was found that the use of crushed rock significantly improved abrasion resistance.

Mixture S was the most durable HPC but it had no entrained air. There is a lot of debate going on regarding eliminating the air content from the HPC. According to Stefan, HPC with low water/binder ratio (w/b), however, can be very durable without air entraining, even after very severe freeze/thaw exposure in the presence of deicing salt. One key factor is that the water in the hardened cement paste of saturated HPC cannot freeze at winter temperatures [69]. Findings from the literature review suggested that the entrainment of air in the concrete is a complicated process and that it is quite difficult to maintain a consistent air content throughout the mixing, casting, and placing processes. According to Beatrix, certain high strength concretes do not need as much air as conventional strength concretes to be frost resistant due to the reduced porosity and less

freezable water within the high strength concrete. Beatrix, in his paper, suggested that two important requirements for a good air void system are spacing factor and specific surface [70]. But Hewlett in his book "LEA'S Chemistry of Cement and Concrete" stated that air entrainment is required if freeze-thaw damage has to be avoided even at a w/c ratio of 0.30. He also found that surface scaling cannot be prevented by air entrainment but a spacing factor of 200 microns provided the same protection [71]. Also, mixture S had higher cement content which could be one of the possible reasons for high durability.

Based on the overall results, mixture E, which had entrained air, provided the next best performance in terms of abrasion resistance and impermeability. Hence, mixtures E and S are proposed for the purposes of conducting the field study.

# 6.3 Validation of Abrasion Tests Results by Alaska ODOT.

Three samples each for all the concrete mixture designs investigated in phase II and one sample of the aggregate (river gravel) were sent to Alaska Department of Transportation & Public Facilities (Alaska DOT&PF) to conduct independent tests for abrasion resistance of the concrete and aggregate. The Prall test was conducted on concrete, while Nordic abrasion test was conducted on aggregate. The Prall test, generally conducted for the asphalt pavements, originated in the USA and is being used by the Swedish asphalt laboratories to predict pavement wear due to studded tires. The test method adopted by Alaska DOT&PF is described in the data sheet provided by the Alaska DOT&PF materials engineer as follows:

"The sample to be tested is placed into a small chamber. The chamber is then shaken up and down (950 rpm) together with a number of steel balls for 15 minutes. The steel balls wear the sample surface by bouncing between the chamber walls, ceiling and the test sample. Water is circulated continuously at 5°C, which rinses the worn pavement particles out of the chamber. The Prall value is defined as the volume loss of the material.

Interpretation of Prall test result is provided in the Table 38.

| Table 38: | Interpretation | from Prall | Test |
|-----------|----------------|------------|------|
|-----------|----------------|------------|------|

| Class | Prall-value, cm <sup>3</sup> | Wear resistance   |
|-------|------------------------------|-------------------|
| 1     | < 20                         | Very good         |
| 2     | 20-29                        | Good              |
| 3     | 30-39                        | Satisfactory      |
| 4     | 40 –50                       | Less satisfactory |
| 5     | > 50                         | Poor              |

Tests results obtained from Alaska DOT&PF were plotted on a bar chart with 95% CI as shown in figure 48. Both the Prall test conducted by Alaska DOT&PF and the abrasion test conducted by OSU showed that mixture S outperformed the other mixtures, the former indicating a Prall wear rate of 20 cm<sup>3</sup>. Also, as indicated in the figure, mixtures S, E, T, and Q outperformed the control mixture. The Prall tests conducted by the Alaska DOT&PF substantiate the results obtained at Oregon State University (OSU) and validate the claim that the mixtures E and S were the best mixture designs.



Figure 50: Prall test for abrasion of concrete

The Nordic abrasion test conducted by Alaska DOT&PF on the  $3/4"\times5/8"$  aggregate sample suggested that the aggregates play an important role in imparting studded tire wear resistance to the concrete. If the aggregates are hard and durable, then the pavement is also wear resistant. A Nordic Abrasion of 7.5 and less is considered to be good. The river gravel had a Nordic Abrasion of 13. It gives an insight to conduct tests using different type of aggregate to truly understand its effect on abrasion resistance of concrete.

## 7 CONCLUSIONS AND RECOMMENDATIONS

### 7.1 Conclusions

Results from phase I indicated that combination of slag and silica fume significantly improved the durability properties of HPC in comparison to control mixture. Between slag and fly ash, slag provided much better durability than the fly ash. The phase I laboratory study also established that the water curing was the best method of curing; steam curing deteriorated the durability characteristics of the concrete. Steam cured followed by water curing for 14 days was better than steam curing followed by ambient curing in terms of improving the properties of concrete in comparison. Unlike other tests, steam curing improved the freeze thaw resistance of HPC better than water curing. There was suggestive, but inconclusive evidence that the crushed rock increased the abrasion resistance, freeze-thaw resistance, and reduced the permeability of the concrete. The crushed rock did not seem to have an effect on the chloride ion permeability and freezethaw resistance but further investigation is required to ascertain this. Mixtures having crushed rock had highest compressive strength. Considering the fact that most of the compressive failures were along the aggregate phase, further research is required to study the true effect of aggregates on the durability characteristics of the concrete. The mixture containing slag crushed rock, silica fume and cured with water curing (i.e., mixture EBW) was found to be highly abrasion resistant, but failed to satisfy the requirements of chloride ion permeability threshold values.

The findings from the Phase I of the research confirmed that the water curing is the best method of curing, but it would be quite difficult to carry out in the field due to the constraints of cost and construction issues. The pilot study identified a curing regime which would provide high early strength and at the same time higher compressive strength comparable to that obtained when samples are water cured for 28 days. It was concluded from the pilot study that the steam curing followed by application of curing compound on the concrete slab was the best alternative to the water curing technique. This will increase the speed of production at the pre-cast yard, and also ensure high durability of the concrete.

The phase II of the research validated the result from phase I that slag indeed improved the properties of HPC better than fly ash. Increasing the proportion of silica fume in the mixture design improved the durability characteristics of the concrete but, beyond a certain percentage level, only a marginal improvement in the durability characteristic was realized. In this study, 4% of silica fume combined with slag produced the best result. From this study, it was concluded that mixture S and mixture E were the best in terms of performance characteristics. Mixture S was a non-air entrained concrete containing 58% cement (604 lb/cy), 35% slag (565 lb/cy), and 7% silica fume (74 lb/cy). Mixture E was air-entrained concrete containing 66% cement (541 lb/cy), 4% silica fume (33 lb/cy) and 30% slag (246 lb/cy).

Based on the two phases of the laboratory study, it was concluded that slag significantly improved the durability characteristics of the HPC and was better than fly ash in terms enhancing durability characteristics. Linear regression analyses revealed that permeability and abrasion resistance are inversely proportional to the compressive strength of the concrete. However, the regression analysis did not reveal any relationship between the compressive strength and the freeze-thaw resistance of the concrete. Further investigation is required to ascertain this fact.

## 7.2 Recommendations

This research effort revealed that the aggregate had a significant effect on the abrasion resistance characteristic of the concrete; hence, it would be worthwhile to conduct further studies using different aggregates types and from different sources. It is also recommended to investigate if smaller nominal maximum aggregate sizes than those used in this study would improve the durability characteristics of the concrete.

The abrasion of concrete is a surface phenomenon, so further investigation should be made to explore the possibilities of improving the surface properties of the concrete. Previous studies report that concrete made from calcium aluminate cement has improved abrasion resistance; hence, it would be beneficial to conduct further investigations using different combinations of SCMs together with calcium aluminate cement to study the combined effects on studded tire wear resistance.

Apart from investigating the abrasion resistance and resistance to chloride ion penetration properties of the concrete, other durability factors like alkali silica reactivity and sulphate attack should also be investigated for HPC mixtures. Further investigation is also recommended to study the durability and strength characteristics of HPC without air entrainment admixtures.

One of the limitations of the research study was that all the tests for different response variables were conducted on different samples in laboratory conditions which precluded the confounding effects of and the interaction between the different response variables. This approach does simplify the study, but might not represent the reality exactly. This makes it difficult to correlate between the laboratory results and the field results. Therefore, a field study is essential to validate laboratory results in real life situations. If a field study is not possible due to any constraints (e.g., cost, project availability, etc.), a laboratory study utilizing a simulated environment can give improved insights into the durability characteristics of the concrete, but it cannot substitute for a field study. A field study can also provide cost and performance data essential for conducting life cycle cost analyses. To this end, it is recommended that a field study be conducted to validate the findings of this research and to gather requisite information for conducting cost analyses.

\*\*\*

## 8 REFERENCES

- 1. Brunette, B. E., and James R. Lundy. "Use and Effects of Studded Tires on Oregon Pavements;" Transportation Research Record 1536: 64-72. (1996)
- 2. ACI 201.2R-08,"Guide to Durable Concrete; ACI; Farmington Hills: ACI, 2008.
- 3. Mehta, P.Kumar. "High-Performance, High-Volume Fly Ash Concrete for Sustainable Development." Concrete International: 3-14. (2004)
- 4. Steven H. Kosmatka., Beatrix Kerkhoff., and William C. Panarese."High-Performance Concrete." Design and Control of Concrete Mixtures, 14th ed., Portland Cement Association, Skokie, IL, 299-313.(2002)
- 5. Badie, Sameh S., "Full-Depth, Precast-Concrete Bridge Deck Panel Systems," TRB, No. NCHRP-12-65, (Washington, D.C.)
- Bell II, Charles M., French, Catherine E., Shield, Carol K., "Application of Precast Decks and other Elements to Bridge Structures," Minnesota Department of Transportation, Report No. MN/RC-2006-37, (Minneapolis, MN), September 2006.
- 7. Designation: C 618-05. "Standard Specification Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete." ASTM Standards
- 8. Committee E-701 Materials for Concrete Construction. "Cementitious materials for concrete." ACI Education Bulletin E3-01, Farmington Hills: ACI, (2001)
- Eyad Masad., and Lisa James. "Implementation of HPC in Washington State." Report WA-RD 530.1, Washington State Department of Transportation, Washington; (2001)
- Nasser, K.W., and Lai, P.S.H. "Resistance of Fly Ash Concrete to Freezing and Thawing." Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, ACI SP-132, American Concrete Institute, Detroit, MI, Vol. 1 ,205-226. (1992)
- 11. P. J. Tikalsky., P. M. Carrasquillo., and R. L. Carrasquillo.."Strength and Durability considerations affecting mix proportioning of concrete containing Flyash." American Concrete Institute Materials Journal, 85(6), 505-511. (1988)
- T. R. Naik, S. S. Singh, and M. M. Hossain.. "Abrasion Resistance of Concrete as Influenced by Inclusion of Fly Ash." Cement and Concrete Research, 24(2), 303-312. (1994)
- 13. Tarun R. Naik., Shiw S, Singh., and Bruce W. Ramme.." Effect of Source of Fly Ash on Abrasion Resistance of Concrete." Journal of Materials in Civil Engineering ,14(5), 417-426. (2002)
- 14. Rafat Siddique. "Performance characteristics of high volume class F fly ash concrete." Cement and Concrete Research, 34(3), 487-493. (2004).
- 15. Designation: C 1240-05. "Standard Specification for Silica Fume used in Cementitious Mixtures." ASTM Standards
- 16. Russell, H.G., "NCHRP Synthesis 333: Concrete Bridge Deck Performance," Transportation Research Board, (Washington, D.C.), (November 2004).
- 17. Terrence C. Holland. "Silica Fume User's Manual." Report FHWA-IF-05-016, Federal Highway Administration, Washington, D.C. (2005).
- 18. Designation: C 989-05. "Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars." ASTM Standards
- Mak, S. L., and Sanjayan, G. "Mix Proportions for Very High Strength Concretes", Second National Structural Engineering Conference, National Conference Publication - Institution of Engineers, Barton, Australia, 90(10), 127-130. (1990)
- 20. Laplante, P., Aitcin, P.C., Vezina, D., "Abrasion Resistance of Concrete," Vol. 3, No. 1, pp. 19-28, (New York, NY), (February 1991).
- 21. P C Aitcin., and P.K Mehta;"Effect of Coarse-aggregate characteristics on mechanical properties of High Strength Concrete." ACI Materials Journal, Vol.87, 103-7, (1990).
- John S. Lawler., Paul D. Krauss. "Development of High-Performance concrete mixtures for Durable Bridge Decks in Montana using locally available materials." Report FHWA/MT-05-005/8156-03, Montana Department of Transportation, Montana. (2005).
- 23. De Almeida, I. R. "Abrasion Resistance of High Strength Concrete with Chemical and Mineral Admixtures." Durability of Concrete, Proceedings of the Third International Conference, Nice, France; Ed. by V. M. Malhotra, American Concrete Institute, Detroit, MI, ACI SP-145, 1099-1113, (1994).
- Paul Zia., Michael L. Leming., Shuaib H. Ahmad., John J. Schemmel., and Robert P. Elliot"Production of high performance concrete." Report SHRP-C-362, Strategic Highway Research Program, Washington, D.C, (1993).
- 25. Rajamane., Anne Peter., J.K. Dattatreya., M. Neelamegam., and S. Gopalakrishnan. "Improvement in Properties of High Performance Concrete with Partial Replacement of Cement by Ground Granulated Blast Furnace Slag." IE Journal-CV, Vol. I, 38-42, (2001).
- 26. Susan C.MC craven. "High-performance concrete today: nothing routine: initially used in bridge decks, today's HPC applications are diverse—requiring demanding

performance from materials and construction - Statistical Data Included." Concrete Construction, (2002).

- 27. Cengiz Duran Atis. "High Volume Fly Ash Abrasion Resistant Concrete." Journal of Materials in Civil Engineering, 14(3), 274-277, (2002).
- 28. S. Holland. "High-Strength Concrete Used in Highway Pavements." Proceedings of the second International Symposium on High Strength Concrete, SP-121, American Concrete Institute, Farmington Hills, MI. 757-766, (1990).
- 29. Tony, C. Liu. "Abrasion Resistance of Concrete." American Concrete Institute,78(5), 341-350, (1981).
- Cengiz Duran Atis. "Abrasion Porosity- Strength Model for Fly Ash Concrete." Journal of Materials in Civil Engineering, 15(4), 408-410, (2003).
- Terence C. Holland., and Richard A. Gutschow. (). "Erosion Resistance with Silica- Fume Concrete." Concrete International.Design and construction, 9(1-6), 32-40
- Elzbieta Horszczaruk. "Abrasion resistance of high- strength concrete in hydraulic structures." Fifteenth International Conference on Wear of Materials, San Diego, CA, 62-69, (2005).
- Luiz Fernandez., and V. Mohan Malhotra. "Mechanical Properties, Abrasion Resistance, and Chloride Permeability of Concrete Incorporating Granulated Blast-Furnace Slag." Cement, concrete and aggregates, 12(2), 87-100, (1990).
- Liles Jr., Paul V., "HPC in Georgia," HPC Bridge Views, Vol. 1, No. 28, pp. 1-1, (Skokie, IL), (August 2003).
- 35. Kivisto, Paul, "High Performance Concrete Decks in Minnesota," HPC Bridge Views, Vol. 1, No. 28, pp. 2-2, (Skokie, IL), (August 2003).
- 36. Beacham, Michael W., "Implementing HPC Bridges in Nebraska," HPC Bridge Views, Vol. 1, No. 3, pp. 1-1, (Skokie, IL), (June 1999).
- Pruski, Kevin R., Cox, William R., Ralls, Mary Lou, "Evolution of HPC Specifications in Texas," HPC Bridge Views, Vol. 1, No. 30, pp. 3-3, (Skokie, IL), (December 2003).
- Alsamman, Basem H., Darnall, Mark A., "HPC for the Sacramento River Bridge," HPC Bridge Views, Vol. 1, No. 30, pp. 1-1, (Skokie, IL), (December 2003).
- 39. Binseel, Edward, "High Performance Concrete Bridges: Not Just For States Anymore," HPC Bridge Views, Vol. 1, No. 9, pp. 1-1, (Skokie, IL), (June 2000).

- 40. Peterson, Sherman, "HPC Comes to New Mexico," HPC Bridge Views, Vol. 1, No. 25, pp. 3-4, (Skokie, IL), (February 2003).
- 41. Mary, Stephen, Miller, Richard A., "County Bridges in Ohio," HPC Bridge Views, Vol. 1, No. 16, pp. 2-2, (Skokie, IL), (August 2001).
- 42. Bell II, Charles M., French, Catherine E., Shield, Carol K., "Application of Precast Decks and other Elements to Bridge Structures," Minnesota Department of Transportation, Report No. MN/RC-2006-37, (Minneapolis, MN), (September 2006).
- 43. Ralls, Mary Lou, Ronald D. Medlock and Sharon Slagle. "Prefabricated Bridge National Implementation Initiative"; Concrete Bridge Conference, (2002).
- 44. Standard Specification- Oregon Standard Specifications for Construction-2002, Volume 2, Technical specification, Salem, Oregon, (2002).
- 45. ACI Committee 211 Materials for Concrete Construction. (Reapproved 2002). "Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete." ACI Education Bulletin E3-01, (2002).
- 46. Standard Specification- Oregon Standard Specifications for Construction-2008, Volume 2, Technical specification, Salem, Oregon, (2008).
- 47. Designation: C 33. "Standard Specification for Concrete Aggregates." American Society for Testing Materials (ASTM Standards), 2001, ASTM- Vol.04-02, Concrete and Aggregate, (2001).
- 48. Designation: C 150. "Standard Specification for Portland Cement." American Society for Testing Materials (ASTM Standards), ASTM- Vol.04-02, (2001).
- 49. Designation: C 494/C 494M 99. "Standard Specification for Chemical Admixtures for Concrete "; American Society for Testing Materials (ASTM Standards), ASTM- Vol.04-02, (2001)
- 50. <u>BASF Glenium 3400 NV Data Sheet</u>. BASF. 11 June 2009 <http://www.basf-admixtures.com/SiteCollectionDocuments/Data%20Sheets/HRWR/Glenium%203 400%20NV\_DS%203.07.pdf>.
- Designation: C 260-00. "Standard Specification for Air-Entraining Admixtures for Concrete"; American Society for Testing Materials (ASTM Standards), ASTM- Vol.04-02, (2001)
- 52. MBAE 90 Data Sheet, 20<sup>th</sup> November 2009, http://www.basfadmixtures.com/SiteCollectionDocuments/Data%20Sheets/Air%20Entraining/M B\_AE\_90\_DS%203.07.pdf.

- 53. Designation: C 192/C 192M 00. "Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory "; American Society for Testing Materials (ASTM Standards), ASTM- Vol.04-02, (2001)
- 54. Holland, Terence C., "Silica Fume User's Manual," Federal Highway Administration, Report No. FHWA-IF-05-016, (Washington, D.C.), April 2005.
- Toutanji, Houssam A., and Ziad Bayasi. "Effect of Curing Procedures on Properties of Silica Fume Concrete." <u>Cement and Concrete Research</u> 29: 497-501, (1999).
- Hooton, R.D., Pun, P., Kojundic, T., and Fidjestol, P., "Influence of Silica Fume on Chloride Resistance of Concrete," Proceedings of the PCI/FHWA International Symposium on High Performance Concrete, pp 245-256, New Orleans, LA, (October 1997).
- 57. 1300 Clear Data Sheet; http://www.wrmeadows.com/wrm00031.htm;online
- Designation: C 143/C 143M 00. "Standard Test Method for Slump of Hydraulic-Cement Concrete"; American Society for Testing Materials (ASTM Standards), ASTM- Vol.04-02, (2001).
- 59. Designation: C 138/C 138M 01a. "Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete"; American Society for Testing Materials (ASTM Standards), ASTM- Vol.04-02,(2001).
- 60. Designation: C 1064/C 1064M 99. "Standard Test Method for Temperature of Freshly Mixed Portland Cement Concrete"; American Society for Testing Materials (ASTM Standards), ASTM- Vol.04-02, (2001).
- 61. Designation: C 779/C 779M 00. "Standard Test Method for Abrasion Resistance of Horizontal Concrete Surfaces"; American Society for Testing Materials (ASTM Standards), ASTM- Vol.04-02, (2001).
- 62. Designation: C 1202-97. "Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration"; American Society for Testing Materials (ASTM Standards), ASTM- Vol.04-02, (2001).
- 63. Designation: C 39/C 39M 01. "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens"; American Society for Testing Materials (ASTM Standards), ASTM- Vol.04-02, (2001).
- 64. Designation: C 666 97. "Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing"; American Society for Testing Materials (ASTM Standards), ASTM- Vol.04-02, (2001).

- 65. Confidence Limit for the Mean. (n.d.). Retrieved 11 15, 2009, from Engineering Statistics Handbook: http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm
- 66. Mehta, P. Kumar, and Paulo J.M. Monteiro. Concrete Microstructure, Properties and Materials. 3rd ed. New York: Mc Graw-Hill, (2006).
- 67. Andersson, C., and Petersson, P. E., "Influence of Curing Conditionson the Permeability and Durability of Concrete," Statens Provningsanstalt,Boras, Sweden, Technical Report No. 1987:07, 1987, 99 pp. (in Swedish)
- 68. Min-Hong Zhang et.al, Concrete Incorporating Supplementary Cementing Materials: Effect on Compressive Strength and Resistance to Chloride-Ion Penetration, ACI Materials Journal, V. 96, No. 2, (March-April 1999).
- 69. Stefan, Jacobsen. "Calculating liquid transport into high-performance concrete during wet freeze/thaw." Cement and Concrete Research 35 :213-19, (2005).
- 70. Beatrix, Kerkhoff. "Benefits Of Air Entrainment In Hpc." HPC Bridge Views Sept.-Oct. 2002. Print.
- 71. Hewlett, Peter C. LEA'S Chemistry of Cement and Concrete. 4th ed. Elsevier Ltd. Print.

# **9 APPENDICES**

# 9.1 Appendix A

Mixture Designs

# <u>Concrete Mix Design – Control Mixture (ODOT Class 5000 – 3/4 inch)</u>

# 1. Required Strength

- Specified strength: f'<sub>c</sub> = 5,000 psi
- New mix design standard deviation of strength unknown
- Required strength, f'<sub>cr</sub> (02001.43 option a):

 $\circ$  f'<sub>cr</sub> = f'<sub>c</sub> x 1.20 = <u>5,000 x 1.20 = 6,000 psi</u>

# 2. Select w/c Ratio:

- Historical records unavailable
- Trial batches based on Table 9-3 [4] and Morse Bros. Mix Design No. MB 031-50N17000
- Air-entrained: w/c = <u>0.30, 0.35, and 0.40</u>
- Check w/c limits based on exposure conditions: Tables 9-1 and 9-2

# 3. Air Content

- Maximum aggregate size for coarse aggregate = 3/4 in.
- Target slump = 4 in.
- Table 9-5 [4]
- Target air content: <u>5%</u>

# 4. Target Slump

• Morse Bros. mix design: <u>4 in.</u>

# 5. Water Content

- Maximum coarse aggregate size: <u>3/4 in.</u>
- Desired slump: <u>4 in.</u>
- Aggregate shape: <u>Crushed with some fractured faces</u>
- Table 9-5 [4]
- Water Content: <u>305 35 = 270 pounds per cubic yard</u>
- Note: Water content reduced by 35 lb for gravel with some crushed faces

# 6. Cement Content

- Based on the w/c ratio and the water content
- Minimums for:
  - o Severe freeze-thaw, deicer, and sulfate exposure
  - Placing concrete under water
  - o Flatwork
- Cement content:

- For w/c = 0.30: 900 pounds per cubic yard
- For w/c = 0.35: 771 pounds per cubic yard
- For w/c = 0.40: 675 pounds per cubic yard
- Minimum required for flatwork (Table 9-7): 540 lb/cy  $\rightarrow$  okay

#### 7. Bulk Volume of Coarse Aggregate

- Maximum coarse aggregate size: <u>3/4 in.</u>
- Fineness modulus of sand: <u>3.05</u>
- Dry rodded unit weight of coarse aggregate: <u>101.7 pcf</u>
- Table 9.4: <u>0.60 [4]</u>
- Weight of CA: <u>0.60 x 101.7 lb/ft<sup>3</sup> x 27 ft<sup>3</sup>/yd<sup>3</sup> = 1648 lb/yd<sup>3</sup></u>

#### 8. Admixture Requirements

• Air entraining agent: <u>WR Grace/Daravair-1000</u>

#### 9. Fine Aggregate Content:

- Volumes of other ingredient:
  - Water:  $270 \text{ lb} / (1 \text{ x} 62.4 \text{ lb/ft}^3) = 4.327 \text{ ft}^3$
  - Cement:
    - For w/c = 0.30:  $900 \text{ lb} / (3.15 \text{ x} 62.4 \text{ lb/ft}^3) = 4.579 \text{ ft}^3$
    - For w/c = 0.35:  $771 \text{ lb} / (3.15 \text{ x} 62.4 \text{ lb/ft}^3) = 3.922 \text{ ft}^3$
    - For w/c = 0.40:  $\overline{675 \text{ lb}} / (3.15 \text{ x} 62.4 \text{ lb/ft}^3) = 3.434 \text{ ft}^3$
  - Air:  $(5 / 100) \times 27 \text{ ft}^3$  = 1.35 ft<sup>3</sup>
  - Coarse Aggregate: <u>1,648 lb / (2.532 x 62.4 lb/ft<sup>3</sup>) = 10.430 ft<sup>3</sup></u>
  - Totals:
    - For w/c = 0.30: <u>20.686 ft<sup>3</sup></u>
    - For w/c = 0.35:  $\overline{20.029 \text{ ft}^3}$
    - For w/c = 0.40:  $19.541 \text{ ft}^3$

### • FA Content:

- For w/c = 0.30:  $6.413 \text{ ft}^3 \text{ x } 2.461 \text{ x } 62.4 \text{ lb/ft}^3 = 970 \text{ lb}$
- For w/c = 0.35:  $6.971 \text{ ft}^3 \times 2.461 \times 62.4 \text{ lb/ft}^3 = 1,070 \text{ lb}$
- For w/c = 0.40:  $7.459 \text{ ft}^3 \text{ x } 2.461 \text{ x } 62.4 \text{ lb/ft}^3 = 1,145 \text{ lb}$

### **10.** Adjustment for Moisture:

Aggregates are dry → <u>no adjustment necessary</u>

#### Appendix Table 1: Summary of batch weights for one cubic yard of concrete:

| Ingredient             | Batch We | eight for One Cubic Y | ard, lb |
|------------------------|----------|-----------------------|---------|
| w/c ratio →            | 0.30     | 0.35                  | 0.40    |
| Water (to be added)    | 270      | 270                   | 270     |
| Cement                 | 900      | 771                   | 675     |
| Coarse aggregate (dry) | 1,648    | 1,648                 | 1,648   |
| Fine aggregate (dry)   | 970      | 1,070                 | 1,145   |
| Total                  |          |                       |         |

Appendix Table 2: HPC mixture design spreadsheet

| Fractic                | 'n           | Proportion | Sp.Gr | W/A (%) | DRY           | Volume | Moisture<br>content | Adjustment for<br>Moisture | Batch Weight (Wet) |
|------------------------|--------------|------------|-------|---------|---------------|--------|---------------------|----------------------------|--------------------|
|                        |              |            | SSD   |         | lb/Cubic yard |        |                     | lb/cubic Yard              | lb/cubic Yard      |
| Cement                 |              | -          | 3.150 |         | 528.000       | 2.686  |                     |                            | 528.000            |
| Flyash                 |              |            | 2.520 |         | 0.000         | 0.000  |                     |                            | 0.000              |
| Slag                   |              |            | 2.890 |         | 240.000       | 1.331  |                     |                            | 240.000            |
| Microsilica            |              |            | 2.200 |         | 32.000        | 0.233  |                     |                            | 32.000             |
| Water                  |              | -          | 1.000 |         | 240.000       | 3.846  |                     | 131.731                    | 108.269            |
| Coarse Aggregate       | e-3/4-1/2    | 35.79%     | 2.510 | 2.42%   | 613.000       | 3.914  | 2.6%                | 1.103                      | 614.103            |
| Coarse Aggregate       | e-1/2-#4     | 64.21%     | 2.500 | 2.61%   | 1100.000      | 7.051  | 3.39%               | 8.580                      | 1108.580           |
| Sand                   |              |            | 2.460 | 3.50%   | 1012.000      | 6.593  | 15.56%              | 122.047                    | 1134.047           |
| W/c Ratio              |              | -          | -     | -       | 0.30          |        |                     |                            |                    |
| Extra water added      |              | -          | -     | -       | -             |        |                     |                            | -18.900            |
| Total water            |              | -          | 1     | -       | 221.1         |        |                     |                            | 89.369             |
| so modified w/c ratio  | þ            | -          | -     | -       | 0.276375      |        |                     |                            |                    |
| Air Entraining Dose,   | MBAE 90 (ml) | -          | -     | -       | 148.5         |        |                     |                            |                    |
| BASF?/ Glen.<br>3400NV | ml           |            |       |         | 1359.045      |        |                     |                            |                    |
|                        |              |            |       |         |               |        |                     |                            |                    |
| Air %                  |              | -          | -     | -       | -             | 1.35   |                     |                            |                    |
| Slump                  | inch.        | -          | -     | -       | -             |        |                     |                            |                    |
| Totals                 |              | -          | -     | -       | 3765.000      | 27.004 | -                   | -                          | 3765.000           |

# 9.2 APPENDIX B

Tests Results- Determining Optimum Water to Cement Ratio – Control Mixture

Compressive Strength

| No:             | rol Mix, w/c | ratio= 0.3      | 0                |                        |                               |                                     | ·                                    |                         | Date of Castin<br>Temperature of   | og:18 De                    | c 07  |                        |                     |                                                                         |
|-----------------|--------------|-----------------|------------------|------------------------|-------------------------------|-------------------------------------|--------------------------------------|-------------------------|------------------------------------|-----------------------------|-------|------------------------|---------------------|-------------------------------------------------------------------------|
| Testing<br>date | Dia ,(in.)   | Length<br>(in.) | Area ,<br>(in.2) | Weight in<br>air, (kg) | Weight in<br>water,<br>( kg ) | Density<br>in air ,<br>( Ib/ in.3 ) | Density in<br>water ,<br>(Ib/ in.3 ) | Max.<br>Load ,<br>(lbf) | Compressive<br>Strength ,<br>(psi) | Avg.<br>Strength<br>, (psi) | STDEV | Co.of<br>Variatio<br>n | Type of<br>Fracture | Remarks                                                                 |
|                 | 4            | 8               | 12.560           | 3.8455                 | 2.1736                        | 0.0844                              | 0.0477                               | 69900                   | 5565.286624                        |                             |       |                        | Shear               | -                                                                       |
|                 | 4.024        | 8               | 12.711           | 3.8612                 | 2.1859                        | 0.0837                              | 0.0474                               | 75200                   | 5916.055502                        |                             |       |                        | Shear               | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| 181- 51         | 4.039        | 8               | 12.806           | 3.9129                 | 2.2335                        | 0.0842                              | 0.0481                               | 80000                   | 6247.016081                        | 5066 9                      | 296 4 | 19                     | conical             | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| 80- 1           | 4.045        | 8               | 12.844           | 3.8606                 | 2.1892                        | 0.0828                              | 0.0470                               | 80000                   | 6228.497269                        | 5500.0                      | 200.4 | 4.0                    | Shear               | -                                                                       |
|                 | 4.024        | 8               | 12.711           | 3.8524                 | 2.1843                        | 0.0835                              | 0.0474                               | 72500                   | 5703.643935                        |                             |       |                        | Shear               | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
|                 | 4.024        | 8               | 12.711           | 3.9141                 | 2.229                         | 0.0849                              | 0.0483                               | 78050                   | 6140.267712                        |                             |       |                        | columnar            | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |

Appendix Table 3: Compressive strength for control mixture (w/c ratio=0.3)

#### Appendix Table 4: Compressive strength for control mixture (w/c ratio=0.35)

| Lab Identi     | fication | No:              |               |                      |                  |                        |                               |                                     |                                       |                         | Date of Casti                      | ng:20 De                    | ec 07    |                    |                     |                                                                         |
|----------------|----------|------------------|---------------|----------------------|------------------|------------------------|-------------------------------|-------------------------------------|---------------------------------------|-------------------------|------------------------------------|-----------------------------|----------|--------------------|---------------------|-------------------------------------------------------------------------|
| Concrete       | Grade:   | Cor              | ntrol Mix, w/ | c ratio= (           | ).35             |                        |                               |                                     |                                       |                         | Temperature                        | of water:                   | 62.40F   |                    |                     |                                                                         |
| Specim.<br>No. | Age      | Testin<br>g date | Dia ,(in.)    | Lengt<br>h (<br>in.) | Area ,<br>(in.2) | Weight in<br>air, (kg) | Weight<br>in water,<br>( kg ) | Density<br>in air ,<br>( lb/ in.3 ) | Density<br>in water ,<br>( lb/ in.3 ) | Max.<br>Load ,<br>(Ibf) | Compressive<br>Strength ,<br>(psi) | Avg.<br>Strength<br>, (psi) | Stdev    | Co.of<br>Variation | Type of<br>Fracture | Remarks                                                                 |
| C1             |          |                  | 4.033         | 8                    | 12.768           | 3.9418                 | 2.2662                        | 0.0851                              | 0.0489                                | 65950                   | 5165.218515                        |                             |          |                    | Shear               | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| C2             |          |                  | 4.036         | 8                    | 12.787           | 3.9529                 | 2.2762                        | 0.0852                              | 0.0491                                | 69300                   | 5419.525483                        |                             |          |                    | Shear               | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| C3             |          |                  | 4.021         | 8                    | 12.692           | 3.9114                 | 2.2353                        | 0.0849                              | 0.0485                                | 65300                   | 5144.881524                        |                             |          |                    | Shear               | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| C4             | 28       | ls1-∆1           | 4.032         | 8                    | 12.762           | 3.9101                 | 2.235                         | 0.0844                              | 0.0483                                | 60800                   | 4764.231713                        | 5344 EG                     | 207 2504 | 5 96053            | Shear               | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| C5             | 20       | 80- 1            | 4.027         | 8                    | 12.730           | 3.9066                 | 2.2343                        | 0.0846                              | 0.0484                                | 65500                   | 5145.272542                        | 5244.50                     | 307.3304 | 5.00052            | Shear               | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| C6             |          |                  | 4.022         | 8                    | 12.699           | 3.9296                 | 2.2567                        | 0.0853                              | 0.0490                                | 63800                   | 5024.199656                        |                             |          |                    | Shear               | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| C7             |          |                  | 4.03          | 8                    | 12.749           | 3.9178                 | 2.2445                        | 0.0847                              | 0.0485                                | 72400                   | 5678.829336                        |                             |          |                    | Columnar            | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| C8             |          |                  | 4.025         | 8                    | 12.717           | 3.9298                 | 2.2502                        | 0.0852                              | 0.0488                                | 71400                   | 5614.315128                        |                             |          |                    | Shear               | Pulling out of aggregate, Mortar Faliure, breaking of weathered rock    |

| Lab Ident<br>Concrete | fication<br>Grade: | No:              | ntrol Mix,    | w/c ratio=        | 0.40             |                        |                               |                                      |                                       |                         | Date of Cas                         | ting:21D<br>e of water:-    | ec 07<br>62.40F |                    |                     |                                                                         |
|-----------------------|--------------------|------------------|---------------|-------------------|------------------|------------------------|-------------------------------|--------------------------------------|---------------------------------------|-------------------------|-------------------------------------|-----------------------------|-----------------|--------------------|---------------------|-------------------------------------------------------------------------|
| Specim.<br>No.        | Age                | Testin<br>g date | Dia<br>,(in.) | Length<br>( in. ) | Area ,<br>(in.2) | Weight in<br>air, (kg) | Weight<br>in water,<br>( kg ) | Density<br>in air ,<br>(lb/in.3<br>) | Density in<br>water ,<br>( lb/ in.3 ) | Max.<br>Load ,<br>(Ibf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV           | Co.of<br>Variation | Type of<br>Fracture | Remarks                                                                 |
| C1                    |                    |                  | 4.022         | 8                 | 12.699           | 3.8304                 | 2.154                         | 0.0831                               | 0.0467                                | 55900                   | 4402.0809                           |                             |                 |                    | Columnar            | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| C2                    |                    |                  | 4.035         | 8                 | 12.781           | 3.7817                 | 2.1067                        | 0.0815                               | 0.0454                                | 37300                   | 2918.4489                           |                             |                 |                    | Shear               |                                                                         |
| C3                    |                    |                  | 4.042         | 8                 | 12.825           | 3.8309                 | 2.1544                        | 0.0823                               | 0.0463                                | 50950                   | 3972.6647                           |                             |                 |                    | Shear               | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| C4                    | 20                 | 18-La            | 4.03          | 8                 | 12.749           | 3.8186                 | 2.1379                        | 0.0825                               | 0.0462                                | 45450                   | 3564.9557                           | 2400 422                    | 502 7275        | 14 20455           | Shear               |                                                                         |
| C5                    | 20                 | 80- r            | 4.033         | 8                 | 12.768           | 3.7666                 | 2.0905                        | 0.0813                               | 0.0451                                | 40400                   | 3164.1369                           | J433.432                    | 505.1215        | 14.03400           | Shear               | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| C6                    |                    |                  | 4.024         | 8                 | 12.711           | 3.765                  | 2.0911                        | 0.0816                               | 0.0453                                | 43000                   | 3382.8509                           |                             |                 |                    | Shear               | Pulling out of large aggregate,<br>Mortar Faliure, breaking of          |
| C7                    |                    |                  | 4.05          | 8                 | 12.876           | 3.7566                 | 2.0838                        | 0.0804                               | 0.0446                                | 38500                   | 2990.0677                           |                             |                 |                    | Shear               |                                                                         |
| C8                    |                    |                  | 4.03          | 8                 | 12.749           | 3.7712                 | 2.0951                        | 0.0815                               | 0.0453                                | 45900                   | 3600.2523                           |                             |                 |                    | Shear               |                                                                         |

#### Appendix Table 5: Compressive strength for control mixture (w/c ratio=0.40)

# Flexure Strength

| Lab Iden<br>Concrete | tification<br>Grade:                                                                                              | No:<br>Control Mix | , w/c ratio=          | 0.30                    |                                                                           |                                                                      |                          |                                                                                                |                                        |                                     |                                       | Time of Te | sting: 9.00 am                                                                                 | Date of Casting:<br>Temperature of                                    | 18-Dec-07<br>Nater:55.9°F                               |                                |
|----------------------|-------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|-------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------|---------------------------------------|------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------|--------------------------------|
|                      | Average width of Average depth of<br>dist. between line<br>the sperimen to sperimen to the of fracture & the Max. |                    |                       |                         |                                                                           |                                                                      |                          |                                                                                                |                                        |                                     |                                       |            |                                                                                                | Rem                                                                   | arks                                                    |                                |
| Specim.<br>No.       | Age                                                                                                               | Testing date       | Weight in<br>Air (Kg) | Weight in<br>Water (Kg) | the specimen to<br>the nearest 0.05<br>in.( 1mm ) at the<br>fracture , b= | specimen to the<br>nearest 0.05 in.(<br>1mm ) at the<br>fracture, d= | Span length<br>(in.), L= | of fracture & the<br>nearest support<br>measured on the<br>tension surface of the<br>beam , a= | Max.<br>applied<br>load ( lbf)<br>, P= | Modulus of<br>Rupture ( psi )<br>R= | Avg.<br>, Modulus of<br>Rupture (psi) | Stdev      | Curing history and apparent<br>moisture condition of the<br>specimen at the time of<br>testing | lf specimen were<br>capped,ground or it<br>leather shims were<br>used | Whether sawed or<br>moulded &<br>defects in<br>specimen | Any other remark               |
| C1                   |                                                                                                                   |                    | 28.88                 | 16.273                  | 6                                                                         | 6                                                                    | 18                       | 8                                                                                              | 7460                                   | 621.666667                          |                                       |            | Moist                                                                                          | Leather shims                                                         | None                                                    | Two Days after testing<br>Date |
| C2                   | 28                                                                                                                | 15 Jan 08          | 28.84                 | 16.332                  | 6                                                                         | 6                                                                    | 18                       | 8                                                                                              | 8750                                   | 729.166667                          | 671.67                                | 54.14      | Moist                                                                                          | None                                                                  | None                                                    |                                |
| C3                   |                                                                                                                   |                    | 29.14                 | 16.582                  | 6                                                                         | 6                                                                    | 18                       | 8                                                                                              | 7970                                   | 664.166667                          |                                       |            | Moist                                                                                          | Leather shims                                                         | None                                                    | Two Days after testing<br>Date |

Appendix Table 6: Flexural strength for control mixture (w/c ratio=0.30)

Appendix Table 7: Flexural strength for control mixture (w/c ratio=0.35)

| Lab Ider<br>Concret | tification<br>e Grade: | No:<br>Control Mix | , w/c ratio= (        | ).35                    |                                                                                               |                                                                                          | 1                        | Aug diak kakusan lina                                                                                                    |                                        |                                     |                                       | Time of Te | sting: 4.00 pm                                                                                 | Date of Casting:<br>Temperature of V                                          | 20-Dec-07<br>Vater:55.9°F                                       |                                                                     |
|---------------------|------------------------|--------------------|-----------------------|-------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------|---------------------------------------|------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|
| Specim.<br>No.      | Age                    | Testing date       | Weight in<br>Air (Kg) | Weight in<br>Water (Kg) | Average width of<br>the specimen to<br>the nearest 0.05<br>in.( 1mm ) at the<br>fracture , b= | Average depth of<br>specimen to the<br>nearest 0.05 in.(<br>1mm ) at the<br>fracture, d= | Span length<br>(in.), L= | Avg. cust between line<br>of fracture & the<br>nearest support<br>measured on the<br>tension surface of the<br>beam , a= | Max.<br>applied<br>load ( lbf)<br>, P= | Modulus of<br>Rupture ( psi )<br>R= | Avg.<br>, Modulus of<br>Rupture (psi) |            | Curing history and apparent<br>moisture condition of the<br>specimen at the time of<br>testing | Rema<br>If specimen were<br>capped,ground or if<br>leather shims were<br>used | rrks<br>Whether sawed or<br>moulded &<br>defects in<br>specimen | Any other remark                                                    |
| C1                  |                        |                    | 29.48                 | 16.717                  | 6                                                                                             | 6                                                                                        | 18                       | 8.25                                                                                                                     | 6840                                   | 570.000                             |                                       |            | Moist                                                                                          | Leathershims                                                                  | None                                                            |                                                                     |
| C2                  | 28                     | 17 Jan 08          | 29.28                 | 16.71                   | 6                                                                                             | 6                                                                                        | 18                       | 5.5                                                                                                                      | 6460                                   | 493.472                             | 514.21                                | 48.84      | Moist                                                                                          | Leather shims                                                                 | None                                                            | DST BETWEEN FRACTURE LESS<br>Than Middle Thrd, so formula<br>2 USED |
| C3                  |                        |                    | 29.66                 | 16.826                  | 6                                                                                             | 6                                                                                        | 18                       | 8                                                                                                                        | 5750                                   | 479.167                             |                                       |            | Moist                                                                                          | Leather shims                                                                 | None                                                            |                                                                     |

| Lab Ideni<br>Concrete | ification<br>Grade:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No:<br>Control Mix | , w/c ratio= ( | ).40   |   |   |    |                  |      |         |          | Time of Te | sting: 12.00 Noon                                                                   | Date of Casting:<br>Temperature of                                   | 21-Dec-07<br>Nater:55.9°F                           |                  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|--------|---|---|----|------------------|------|---------|----------|------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|------------------|
| Specim.<br>No.        | Specime No. Age Testing date Weight in Nir (Kg) Weight in Air (Kg) Weight in Air (Kg) Weight in the specimen to the specimen to the the nearest 0.05 in the nearest 0. |                    |                |        |   |   |    |                  |      |         |          |            | Curing history and apparent<br>moisture condition of the<br>specimen at the time of | Rem<br>If specimen were<br>capped,ground or it<br>leather shims were | arks<br>Whether sawed or<br>moulded &<br>defects in | Any other remark |
| C1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 28.38          | 15.75  | 6 | 6 | 18 | beam , a=<br>8.5 | 5640 | 470.000 |          |            | Moist                                                                               | Leather shims                                                        | None                                                |                  |
| C2                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 lon 00          | 28.36          | 15.661 | 6 | 6 | 18 | 7.5              | 5930 | 494.167 | 540.04   | 54.14      | Moist                                                                               | Leather shims                                                        | None                                                |                  |
| C3                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 Jdl 00          | 28.34          | 15.663 | 6 | 6 | 18 | 7.5              | 7080 | 590.000 | - DIU.21 | 04.14      | Moist                                                                               | Leather shims                                                        | None                                                |                  |
| C4                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 28.34          | 15.679 | 6 | 6 | 18 | 7                | 5840 | 486.667 |          |            | Moist                                                                               | Leather shims                                                        | None                                                |                  |

## Appendix Table 8: Flexural strength for control mixture (w/c ratio=0.40)

# 9.3 APPENDIX C

Tests Results- Phase I

# Chloride Ion Test

#### Appendix Table 9: Control Mixture

| Date of Ca | sting        | 1-Ma                            | ar-08                         | Date of Te                          | sting                           | 12-Jun-08                     |                                     | Time of Te                      | sting                         | 12.20 pm                            |                                 |                               |                                     |
|------------|--------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
| Mix Id     | Control Mix  | _Water Cu                       | ring, CW                      | Mix Type                            |                                 | Control Mi                    | x                                   | Curing Per                      | iod                           | 103 days                            |                                 |                               |                                     |
|            |              |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Res        | istance      | Cell 1                          | 1.01                          | ohm                                 | Cell 2                          | 0.99                          | ohm                                 | Cell 3                          | 1.00 ohm                      |                                     | Cell 4                          | 1.01 ohm                      |                                     |
|            |              |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time       | Temperature  | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 12.20 pm   | 69.3         | 60                              | 0.0598                        | 0.059                               | 60                              | 0.0663                        | 0.067                               | 60                              | 0.0723                        | 0.0723                              | 60                              | 0.0718                        | 0.071                               |
| 12.50 pm   | 69.3         | 60                              | 0.0600                        | 0.059                               | 60                              | 0.0642                        | 0.065                               | 60                              | 0.0739                        | 0.0739                              | 60                              | 0.0685                        | 0.068                               |
| 1.20 pm    | 69.3         | 60                              | 0.0618                        | 0.061                               | 60                              | 0.0680                        | 0.069                               | 60                              | 0.0766                        | 0.0766                              | 60                              | 0.0704                        | 0.070                               |
| 1.50 pm    | 69.4         | 60                              | 0.0607                        | 0.060                               | 60                              | 0.0715                        | 0.072                               | 60                              | 0.0795                        | 0.0795                              | 60                              | 0.0740                        | 0.073                               |
| 2.20 pm    | 69.4         | 60                              | 0.0645                        | 0.064                               | 60                              | 0.0746                        | 0.075                               | 60                              | 0.0826                        | 0.0826                              | 60                              | 0.0771                        | 0.076                               |
| 2.50 pm    | 69.6         | 60                              | 0.0658                        | 0.065                               | 60                              | 0.0775                        | 0.078                               | 60                              | 0.0855                        | 0.0855                              | 60                              | 0.0829                        | 0.082                               |
| 3.20 pm    | 69.6         | 60                              | 0.0685                        | 0.068                               | 60                              | 0.0808                        | 0.082                               | 60                              | 0.0887                        | 0.0887                              | 60                              | 0.0844                        | 0.084                               |
| 3.50 pm    | 69.6         | 60                              | 0.0723                        | 0.072                               | 60                              | 0.0828                        | 0.084                               | 60                              | 0.0909                        | 0.0909                              | 60                              | 0.0852                        | 0.084                               |
| 4.20 pm    | 69.6         | 60                              | 0.0718                        | 0.071                               | 60                              | 0.0850                        | 0.086                               | 60                              | 0.0935                        | 0.0935                              | 60                              | 0.0881                        | 0.087                               |
| 4.50 pm    | 69.4         | 60                              | 0.0740                        | 0.073                               | 60                              | 0.0864                        | 0.087                               | 60                              | 0.0960                        | 0.0960                              | 60                              | 0.0907                        | 0.090                               |
| 5.20 pm    | 69.6         | 60                              | 0.0753                        | 0.075                               | 60                              | 0.0880                        | 0.089                               | 60                              | 0.0984                        | 0.0984                              | 60                              | 0.0928                        | 0.092                               |
| 5.50 pm    | 70.0         | 60                              | 0.0720                        | 0.071                               | 60                              | 0.0891                        | 0.090                               | 60                              | 0.1006                        | 0.1006                              | 60                              | 0.0936                        | 0.093                               |
| 6.20 pm    | 69.6         | 60                              | 0.0730                        | 0.072                               | 60                              | 0.0896                        | 0.091                               | 60                              | 0.1022                        | 0.1022                              | 60                              | 0.1004                        | 0.099                               |
| Total Cha  | arge Passed  | Q1=                             | 1449.089                      | Coulombs                            | Q2 =                            | 1719.727                      | Coulombs                            | Q2 =                            | 1896.21                       | Coulombs                            | Q2 =                            | 1771.129                      | Coulombs                            |
|            | Average Char | ge Passed,                      | Coulombs                      |                                     |                                 |                               |                                     |                                 | 1709.0                        |                                     |                                 |                               |                                     |

## Appendix Table 10: EAW

| Date of Ca | isting       | 24-M                            | ar-08                         | Date of Te                          | sting                           | 28-Jun-08                     |                                     | Time of Te                      | sting                         | 10.21am                             |                                 |                               |                                     |
|------------|--------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
| Mix Id     | Exp A_W      | ater Curing                     | I, EAW                        | Mix Type                            |                                 | Slag+Grav                     | el                                  | Curing Per                      | iod                           | 95 days                             |                                 |                               |                                     |
|            |              |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Res        | istance      | Cell 1                          | 1.01                          | ohm                                 | Cell 2                          | 0.99                          | ohm                                 | Cell 3                          | 1.00 ohm                      |                                     | Cell 4                          | 1.01 ohm                      |                                     |
|            |              |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time       | Temperature  | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 10.21 am   | 77.5         | 60                              | 0.0409                        | 0.040                               | 60                              | 0.0407                        | 0.041                               | 60                              | 0.0440                        | 0.044                               | 60                              | 0.0466                        | 0.046                               |
| 10.52 am   | 77.5         | 60                              | 0.0406                        | 0.040                               | 60                              | 0.0409                        | 0.041                               | 60                              | 0.0495                        | 0.0495                              | 60                              | 0.0472                        | 0.047                               |
| 11.21 am   | 77.5         | 60                              | 0.0451                        | 0.045                               | 60                              | 0.0430                        | 0.043                               | 60                              | 0.0525                        | 0.0525                              | 60                              | 0.0469                        | 0.046                               |
| 11.51 am   | 77.7         | 60                              | 0.0470                        | 0.047                               | 60                              | 0.0450                        | 0.045                               | 60                              | 0.055                         | 0.055                               | 60                              | 0.0461                        | 0.046                               |
| 12.21 pm   | 77.7         | 60                              | 0.0500                        | 0.050                               | 60                              | 0.0481                        | 0.049                               | 60                              | 0.0571                        | 0.0571                              | 60                              | 0.0492                        | 0.049                               |
| 12.51 pm   | 77.7         | 60                              | 0.0510                        | 0.050                               | 60                              | 0.0490                        | 0.049                               | 60                              | 0.0590                        | 0.059                               | 60                              | 0.0496                        | 0.049                               |
| 1.21 pm    | 77.7         | 60                              | 0.0520                        | 0.051                               | 60                              | 0.0492                        | 0.050                               | 60                              | 0.0611                        | 0.0611                              | 60                              | 0.0505                        | 0.050                               |
| 1.51 pm    | 78.1         | 60                              | 0.0530                        | 0.052                               | 60                              | 0.0510                        | 0.052                               | 60                              | 0.0620                        | 0.062                               | 60                              | 0.0512                        | 0.051                               |
| 2.21 pm    | 78.1         | 60                              | 0.0550                        | 0.054                               | 60                              | 0.0516                        | 0.052                               | 60                              | 0.0644                        | 0.0644                              | 60                              | 0.052                         | 0.051                               |
| 2.53 pm    | 78.3         | 60                              | 0.0522                        | 0.052                               | 60                              | 0.0517                        | 0.052                               | 60                              | 0.0647                        | 0.0647                              | 60                              | 0.0514                        | 0.051                               |
| 3.21 pm    | 78.3         | 60                              | 0.0532                        | 0.053                               | 60                              | 0.0526                        | 0.053                               | 60                              | 0.0653                        | 0.0653                              | 60                              | 0.0549                        | 0.054                               |
| 3.51 pm    | 78.3         | 60                              | 0.0552                        | 0.055                               | 60                              | 0.0533                        | 0.054                               | 60                              | 0.0662                        | 0.0662                              | 60                              | 0.0558                        | 0.055                               |
| 4.21 pm    | 78.3         | 60                              | 0.0541                        | 0.054                               | 60                              | 0.0547                        | 0.055                               | 60                              | 0.0665                        | 0.0665                              | 60                              | 0.0564                        | 0.056                               |
| Total Cha  | arge Passed  | Q1=                             | 1072.515                      | Coulombs                            | Q2 =                            | 1060.182                      | Coulombs                            | Q2 =                            | 1281.69                       | Coulombs                            | Q2 =                            | 1080.535                      | Coulombs                            |
|            | Average Char | ge Passed,                      | Coulombs                      |                                     |                                 |                               |                                     |                                 | 1123.73                       |                                     |                                 |                               |                                     |

| Appendix | Table | 11: | EASA |
|----------|-------|-----|------|
|----------|-------|-----|------|

| Date of Ca | sting        | 25-M                            | ar-08                         | Date of Te                          | sting                           | 29-Jun-08                     |                                     | Time of Te                      | sting                         | 12.20 pm                            |                                 |                               |                                     |
|------------|--------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
| Mix Id     | Exp A_Stea   | am Curing A                     | A, EASA                       | Mix Type                            |                                 | Slag+Grav                     | el                                  | Curing Per                      | iod                           | 95 days                             |                                 |                               |                                     |
|            |              |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Res        | istance      | Cell 1                          | 1.01                          | ohm                                 | Cell 2                          | 0.99                          | ohm                                 | Cell 3                          | 1.00 ohm                      |                                     | Cell 4                          | 1.01 ohm                      |                                     |
|            |              |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time       | Temperature  | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 7.33 am    | 79.5         | 60                              | 0.0719                        | 0.071                               | 60                              | 0.0721                        | 0.073                               | 60                              | 0.0882                        | 0.0882                              | 60                              | 0.0729                        | 0.072                               |
| 8.03 am    | 79.7         | 60                              | 0.0712                        | 0.070                               | 60                              | 0.0761                        | 0.077                               | 60                              | 0.0948                        | 0.0948                              | 60                              | 0.0686                        | 0.068                               |
| 8.33 am    | 79.9         | 60                              | 0.0795                        | 0.079                               | 60                              | 0.0779                        | 0.079                               | 60                              | 0.1023                        | 0.1023                              | 60                              | 0.0718                        | 0.071                               |
| 9.03 am    | 79.9         | 60                              | 0.0827                        | 0.082                               | 60                              | 0.0810                        | 0.082                               | 60                              | 0.109                         | 0.109                               | 60                              | 0.0751                        | 0.074                               |
| 9.33 pm    | 79.9         | 60                              | 0.0840                        | 0.083                               | 60                              | 0.0902                        | 0.091                               | 60                              | 0.1148                        | 0.1148                              | 60                              | 0.0807                        | 0.080                               |
| 10.03 pm   | 79.9         | 60                              | 0.0873                        | 0.086                               | 60                              | 0.0908                        | 0.092                               | 60                              | 0.1202                        | 0.1202                              | 60                              | 0.0819                        | 0.081                               |
| 10.33 am   | 79.9         | 60                              | 0.0932                        | 0.092                               | 60                              | 0.1005                        | 0.102                               | 60                              | 0.125                         | 0.125                               | 60                              | 0.0881                        | 0.087                               |
| 11.03 am   | 79.9         | 60                              | 0.0919                        | 0.091                               | 60                              | 0.1035                        | 0.105                               | 60                              | 0.1295                        | 0.1295                              | 60                              | 0.0915                        | 0.091                               |
| 11.33 am   | 79.9         | 60                              | 0.0980                        | 0.097                               | 60                              | 0.1060                        | 0.107                               | 60                              | 0.1332                        | 0.1332                              | 60                              | 0.0884                        | 0.088                               |
| 12.03 pm   | 79.9         | 60                              | 0.0979                        | 0.097                               | 60                              | 0.1045                        | 0.106                               | 60                              | 0.1366                        | 0.1366                              | 60                              | 0.0926                        | 0.092                               |
| 12.33 pm   | 79.9         | 60                              | 0.1028                        | 0.102                               | 60                              | 0.1027                        | 0.104                               | 60                              | 0.1395                        | 0.1395                              | 60                              | 0.0991                        | 0.098                               |
| 1.03 pm    | 79.7         | 60                              | 0.1019                        | 0.101                               | 60                              | 0.1115                        | 0.113                               | 60                              | 0.1418                        | 0.1418                              | 60                              | 0.1014                        | 0.100                               |
| 1.33 pm    | 79.9         | 60                              | 0.1039                        | 0.103                               | 60                              | 0.1073                        | 0.108                               | 60                              | 0.1438                        | 0.1438                              | 60                              | 0.1025                        | 0.101                               |
| Total Cha  | arge Passed  | Q1=                             | 1921.723                      | Coulombs                            | Q2 =                            | 2062.545                      | Coulombs                            | Q2 =                            | 2632.86                       | Coulombs                            | Q2 =                            | 1830.119                      | Coulombs                            |
|            | Average Char | ge Passed,                      | Coulombs                      |                                     |                                 |                               |                                     |                                 | 2111.81                       |                                     |                                 |                               |                                     |

## Appendix Table 12: EASB

| Date of Ca | isting       | 25-M                            | ar-08                         | Date of Te                          | sting                           | 29-Jun-08                     |                                     | Time of Te                      | sting                         | 2.37 pm                             |                                 |                               |                                     |
|------------|--------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
| Mix Id     | Exp A_Stea   | am Curing I                     | B, EASB                       | Міх Туре                            |                                 | Slag+Grav                     | el                                  | Curing Per                      | iod                           | 95 days                             |                                 |                               |                                     |
|            |              |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Res        | istance      | Cell 1                          | 1.01                          | ohm                                 | Cell 2                          | 0.99                          | ohm                                 | Cell 3                          | 1.00 ohm                      |                                     | Cell 4                          | 1.01 ohm                      |                                     |
|            |              |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time       | Temperature  | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 2.37 pm    | 80.2         | 60                              | 0.0631                        | 0.062                               | 60                              | 0.0744                        | 0.075                               | 60                              | 0.0716                        | 0.0716                              | 60                              | 0.0668                        | 0.066                               |
| 3.07 pm    | 80.4         | 60                              | 0.0601                        | 0.060                               | 60                              | 0.0720                        | 0.073                               | 60                              | 0.0823                        | 0.0823                              | 60                              | 0.0622                        | 0.062                               |
| 3.37 pm    | 80.4         | 60                              | 0.0701                        | 0.069                               | 60                              | 0.0774                        | 0.078                               | 60                              | 0.0895                        | 0.0895                              | 60                              | 0.0636                        | 0.063                               |
| 4.07 pm    | 80.4         | 60                              | 0.0744                        | 0.074                               | 60                              | 0.0817                        | 0.083                               | 60                              | 0.0958                        | 0.0958                              | 60                              | 0.0668                        | 0.066                               |
| 4.37 pm    | 80.4         | 60                              | 0.0785                        | 0.078                               | 60                              | 0.0830                        | 0.084                               | 60                              | 0.1016                        | 0.1016                              | 60                              | 0.0691                        | 0.068                               |
| 5.07 pm    | 80.4         | 60                              | 0.0824                        | 0.082                               | 60                              | 0.0942                        | 0.095                               | 60                              | 0.1068                        | 0.1068                              | 60                              | 0.072                         | 0.071                               |
| 5.37 pm    | 80.6         | 60                              | 0.0871                        | 0.086                               | 60                              | 0.0930                        | 0.094                               | 60                              | 0.1111                        | 0.1111                              | 60                              | 0.0764                        | 0.076                               |
| 6.07 pm    | 80.4         | 60                              | 0.0896                        | 0.089                               | 60                              | 0.0975                        | 0.098                               | 60                              | 0.1157                        | 0.1157                              | 60                              | 0.0771                        | 0.076                               |
| 6.37 pm    | 80.4         | 60                              | 0.0890                        | 0.088                               | 60                              | 0.0980                        | 0.099                               | 60                              | 0.1186                        | 0.1186                              | 60                              | 0.0802                        | 0.079                               |
| 7.07 pm    | 80.6         | 60                              | 0.0922                        | 0.091                               | 60                              | 0.0983                        | 0.099                               | 60                              | 0.1217                        | 0.1217                              | 60                              | 0.0819                        | 0.081                               |
| 7.37 pm    | 80.6         | 60                              | 0.0942                        | 0.093                               | 60                              | 0.1020                        | 0.103                               | 60                              | 0.1245                        | 0.1245                              | 60                              | 0.0831                        | 0.082                               |
| 8.07 pm    | 80.4         | 60                              | 0.0934                        | 0.092                               | 60                              | 0.1081                        | 0.109                               | 60                              | 0.1263                        | 0.1263                              | 60                              | 0.0895                        | 0.089                               |
| 8.37 pm    |              | 60                              | 0.0970                        | 0.096                               | 60                              | 0.1056                        | 0.107                               | 60                              | 0.128                         | 0.128                               | 60                              | 0.0851                        | 0.084                               |
| Total Cha  | arge Passed  | Q1=                             | 1766.228                      | Coulombs                            | Q2 =                            | 1991.273                      | Coulombs                            | Q2 =                            | 2328.66                       | Coulombs                            | Q2 =                            | 1600.129                      | Coulombs                            |
|            | Average Char | ge Passed,                      | Coulombs                      |                                     |                                 |                               |                                     |                                 | 1921.57                       |                                     |                                 |                               |                                     |

#### Appendix Table 13: EBW

| Date of Ca | sting        | 2-Ap                            | or-08                         | Date of Te                          | sting                           |                               | 8.02 am                             |                                 |                               |                                     |
|------------|--------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
| Mix Id     |              | EBW                             |                               | Міх Туре                            |                                 |                               | 95 days                             |                                 |                               |                                     |
|            |              |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Res        | stance       | Cell 1                          | 1.01                          | ohm                                 | Cell 2                          | 1.00 ohm                      |                                     | Cell 4                          | 1.01 ohm                      |                                     |
|            |              |                                 | Cell 1                        |                                     | Cell 2                          |                               |                                     |                                 | Cell 4                        |                                     |
| Time       | Temperature  | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 3.06 pm    | 79.5         | 60                              | 0.0465                        | 0.046                               | 60                              | 0.0468                        | 0.0468                              | 60                              | 0.0473                        | 0.047                               |
| 3.36 pm    | 78.8         | 60                              | 0.0414                        | 0.041                               | 60                              | 0.0511                        | 0.0511                              | 60                              | 0.0447                        | 0.044                               |
| 4.06 pm    | 79.5         | 60                              | 0.0407                        | 0.040                               | 60                              | 0.0515                        | 0.0515                              | 60                              | 0.0435                        | 0.043                               |
| 4.36 pm    | 79.3         | 60                              | 0.0426                        | 0.042                               | 60                              | 0.0507                        | 0.0507                              | 60                              | 0.0482                        | 0.048                               |
| 5.06 pm    | 79.5         | 60                              | 0.0452                        | 0.045                               | 60                              | 0.0485                        | 0.0485                              | 60                              | 0.0486                        | 0.048                               |
| 5.36 pm    | 79.3         | 60                              | 0.0448                        | 0.044                               | 60                              | 0.0496                        | 0.0496                              | 60                              | 0.0503                        | 0.050                               |
| 6.06 pm    | 79.9         | 60                              | 0.0464                        | 0.046                               | 60                              | 0.05                          | 0.05                                | 60                              | 0.0483                        | 0.048                               |
| 6.36 pm    | 79.9         | 60                              | 0.0479                        | 0.047                               | 60                              | 0.0509                        | 0.0509                              | 60                              | 0.0515                        | 0.051                               |
| 7.06 pm    | 79.9         | 60                              | 0.0479                        | 0.047                               | 60                              | 0.051                         | 0.051                               | 60                              | 0.0514                        | 0.051                               |
| 7.36 pm    | 79.5         | 60                              | 0.0493                        | 0.049                               | 60                              | 0.0517                        | 0.0517                              | 60                              | 0.0516                        | 0.051                               |
| 8.06 pm    | 79.7         | 60                              | 0.0488                        | 0.048                               | 60                              | 0.0517                        | 0.0517                              | 60                              | 0.0533                        | 0.053                               |
| 8.36 pm    | 79.5         | 60                              | 0.0490                        | 0.049                               | 60                              | 0.0517                        | 0.0517                              | 60                              | 0.0547                        | 0.054                               |
| 9.06 pm    | 80.8         | 60                              | 0.0498                        | 0.049                               | 60                              | 0.0518                        | 0.0518                              | 60                              | 0.0562                        | 0.056                               |
| Total Cha  | arge Passed  | Q1=                             | 984.0297                      | Coulombs                            | Q2 =                            | 1093.86                       | Coulombs                            | Q2 =                            | 1065.475                      | Coulombs                            |
|            | Average Char | ge Passed,                      | Coulombs                      |                                     |                                 |                               | 104                                 | 7.79                            |                               |                                     |

#### Appendix Table 14: EBSA

| Date of Ca | sting        |                                 |                               | Date of Te                          | sting                           | 6-Jul-08                      |                                     | Time of Te                      | sting                         | 2.02 pm                             |                                 |                               |                                     |
|------------|--------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
| Mix Id     |              | EBSA                            |                               | Mix Type                            |                                 |                               |                                     | Curing Per                      | iod                           | 95 days                             |                                 |                               |                                     |
|            |              |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Res        | istance      | Cell 1                          | 1.01                          | ohm                                 | Cell 2                          | 0.99                          | ohm                                 | Cell 3                          | 1.00 ohm                      |                                     | Cell 4                          | 1.01 ohm                      |                                     |
|            |              |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time       | Temperature  | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 2.02 pm    | 79.9         | 60                              | 0.0747                        | 0.074                               | 60                              | 0.0833                        | 0.084                               | 60                              | 0.0776                        | 0.0776                              | 60                              | 0.0846                        | 0.084                               |
| 2.32 pm    | 79.3         | 60                              | 0.0712                        | 0.070                               | 60                              | 0.0831                        | 0.084                               | 60                              | 0.0746                        | 0.0746                              | 60                              | 0.0774                        | 0.077                               |
| 3.02 pm    | 79.2         | 60                              | 0.0765                        | 0.076                               | 60                              | 0.0870                        | 0.088                               | 60                              | 0.0785                        | 0.0785                              | 60                              | 0.0856                        | 0.085                               |
| 3.32 pm    | 79.2         | 60                              | 0.0845                        | 0.084                               | 60                              | 0.0927                        | 0.094                               | 60                              | 0.082                         | 0.082                               | 60                              | 0.0882                        | 0.087                               |
| 4.02 pm    | 79.3         | 60                              | 0.0840                        | 0.083                               | 60                              | 0.0947                        | 0.096                               | 60                              | 0.0855                        | 0.0855                              | 60                              | 0.0901                        | 0.089                               |
| 4.32 pm    | 79.9         | 60                              | 0.0869                        | 0.086                               | 60                              | 0.1015                        | 0.103                               | 60                              | 0.0893                        | 0.0893                              | 60                              | 0.0933                        | 0.092                               |
| 5.02 pm    | 79.2         | 60                              | 0.0924                        | 0.091                               | 60                              | 0.1016                        | 0.103                               | 60                              | 0.0913                        | 0.0913                              | 60                              | 0.0989                        | 0.098                               |
| 5.32 pm    | 80.2         | 60                              | 0.0973                        | 0.096                               | 60                              | 0.1127                        | 0.114                               | 60                              | 0.0952                        | 0.0952                              | 60                              | 0.0996                        | 0.099                               |
| 6.02 pm    | 79.7         | 60                              | 0.0978                        | 0.097                               | 60                              | 0.1054                        | 0.106                               | 60                              | 0.0967                        | 0.0967                              | 60                              | 0.1044                        | 0.103                               |
| 6.32 pm    | 79.5         | 60                              | 0.1014                        | 0.100                               | 60                              | 0.1095                        | 0.111                               | 60                              | 0.1006                        | 0.1006                              | 60                              | 0.1054                        | 0.104                               |
| 7.02 pm    | 79.3         | 60                              | 0.1014                        | 0.100                               | 60                              | 0.1208                        | 0.122                               | 60                              | 0.1022                        | 0.1022                              | 60                              | 0.1044                        | 0.103                               |
| 7.32 pm    | 79.7         | 60                              | 0.0996                        | 0.099                               | 60                              | 0.1138                        | 0.115                               | 60                              | 0.1037                        | 0.1037                              | 60                              | 0.1109                        | 0.110                               |
| 8.02 pm    | 79.7         | 60                              | 0.1049                        | 0.104                               | 60                              | 0.1198                        | 0.121                               | 60                              | 0.105                         | 0.105                               | 60                              | 0.1088                        | 0.108                               |
| Total Cha  | arge Passed  | Q1=                             | 1929.743                      | Coulombs                            | Q2 =                            | 2226.091                      | Coulombs                            | Q2 =                            | 1963.62                       | Coulombs                            | Q2 =                            | 2058.238                      | Coulombs                            |
|            | Average Char | ge Passed,                      | Coulombs                      |                                     |                                 |                               |                                     |                                 | 1983.87                       |                                     |                                 |                               |                                     |

#### Appendix Table 15: EBSB

| Date of Ca | asting                         |                                 |                               | Date of Te                          | sting                           | 5-Jul-08                      |                                     | Time of Te                      | sting                         | 2.37 pm                             |                                 |                               |                                     |
|------------|--------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
| Mix Id     |                                | EBSB                            |                               | Mix Type                            |                                 |                               |                                     | Curing Per                      | iod                           | 95 days                             |                                 |                               |                                     |
|            |                                |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Res        | istance                        | Cell 1                          | 1.01                          | ohm                                 | Cell 2                          | 0.99                          | ohm                                 | Cell 3                          | 1.00 ohm                      |                                     | Cell 4                          | 1.01 ohm                      |                                     |
|            |                                |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time       | Temperature                    | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 2.37 pm    | 80.4                           | 60                              | 0.0863                        | 0.085                               | 60                              | 0.0995                        | 0.101                               | 60                              | 0.0895                        | 0.0895                              | 60                              | 0.0731                        | 0.072                               |
| 3.07 pm    | 80.6                           | 60                              | 0.0697                        | 0.069                               | 60                              | 0.0976                        | 0.099                               | 60                              | 0.0927                        | 0.0927                              | 60                              | 0.0668                        | 0.066                               |
| 3.37 pm    | 80.4                           | 60                              | 0.0870                        | 0.086                               | 60                              | 0.1121                        | 0.113                               | 60                              | 0.0973                        | 0.0973                              | 60                              | 0.071                         | 0.070                               |
| 4.07 pm    | 80.8                           | 60                              | 0.0890                        | 0.088                               | 60                              | 0.1132                        | 0.114                               | 60                              | 0.102                         | 0.102                               | 60                              | 0.0732                        | 0.072                               |
| 4.37 pm    | 80.6                           | 60                              | 0.0900                        | 0.089                               | 60                              | 0.1231                        | 0.124                               | 60                              | 0.1072                        | 0.1072                              | 60                              | 0.0793                        | 0.079                               |
| 5.07 pm    | 80.6                           | 60                              | 0.1014                        | 0.100                               | 60                              | 0.1308                        | 0.132                               | 60                              | 0.1119                        | 0.1119                              | 60                              | 0.082                         | 0.081                               |
| 5.37 pm    | 80.6                           | 60                              | 0.0977                        | 0.097                               | 60                              | 0.1388                        | 0.140                               | 60                              | 0.1153                        | 0.1153                              | 60                              | 0.0875                        | 0.087                               |
| 6.07 pm    | 80.6                           | 60                              | 0.1069                        | 0.106                               | 60                              | 0.1375                        | 0.139                               | 60                              | 0.1189                        | 0.1189                              | 60                              | 0.0906                        | 0.090                               |
| 6.37 pm    | 80.6                           | 60                              | 0.1128                        | 0.112                               | 60                              | 0.1462                        | 0.148                               | 60                              | 0.1224                        | 0.1224                              | 60                              | 0.0913                        | 0.090                               |
| 7.07 pm    | 80.8                           | 60                              | 0.1117                        | 0.111                               | 60                              | 0.1451                        | 0.147                               | 60                              | 0.1292                        | 0.1292                              | 60                              | 0.0933                        | 0.092                               |
| 7.37 pm    | 80.6                           | 60                              | 0.1177                        | 0.117                               | 60                              | 0.1468                        | 0.148                               | 60                              | 0.1284                        | 0.1284                              | 60                              | 0.0955                        | 0.095                               |
| 8.07 pm    | 80.6                           | 60                              | 0.1158                        | 0.115                               | 60                              | 0.1474                        | 0.149                               | 60                              | 0.1303                        | 0.1303                              | 60                              | 0.0974                        | 0.096                               |
| 8.37 pm    | 80.6                           | 60                              | 0.1185                        | 0.117                               | 60                              | 0.1464                        | 0.148                               | 60                              | 0.1325                        | 0.1325                              | 60                              | 0.1034                        | 0.102                               |
| Total Cha  | Total Charge Passed Q1= 2142.3 |                                 |                               |                                     | Q2 =                            | 2839.182                      | Coulombs                            | Q2 =                            | 2459.88                       | Coulombs                            | Q2 =                            | 1810.96                       | Coulombs                            |
|            | Average Char                   | ge Passed,                      | Coulombs                      |                                     |                                 |                               |                                     |                                 | 2313.09                       |                                     |                                 |                               |                                     |

# Appendix Table 16: ECW

| Date of Ca | asting                         |                                 |                               | Date of Te                          | sting                           | 30-Jun-08                     |                                     | Time of Te                      | sting                         | 11.27 am                            |                                 |                               |                                     |
|------------|--------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
| Mix Id     |                                | ECW                             |                               | Міх Туре                            |                                 | Flyash + C                    | Gravel                              | Curing Per                      | iod                           | 95 days                             |                                 |                               |                                     |
|            |                                |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Res        | istance                        | Cell 1                          | 1.01                          | ohm                                 | Cell 2                          | 0.99                          | ohm                                 | Cell 3                          | 1.00 ohm                      |                                     | Cell 4                          | 1.01 ohm                      |                                     |
|            |                                |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time       | Temperature                    | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 11.27 am   | 80.2                           | 60                              | 0.0377                        | 0.037                               | 60                              | 0.0386                        | 0.039                               | 60                              | 0.0385                        | 0.0385                              | 60                              | 0.0393                        | 0.039                               |
| 11.57 am   | 80.2                           | 60                              | 0.0361                        | 0.036                               | 60                              | 0.0368                        | 0.037                               | 60                              | 0.0425                        | 0.0425                              | 60                              | 0.039                         | 0.039                               |
| 12.27 pm   | 80.2                           | 60                              | 0.0372                        | 0.037                               | 60                              | 0.0400                        | 0.040                               | 60                              | 0.0448                        | 0.0448                              | 60                              | 0.0387                        | 0.038                               |
| 12.57 pm   | 80.4                           | 60                              | 0.0379                        | 0.038                               | 60                              | 0.0419                        | 0.042                               | 60                              | 0.0467                        | 0.0467                              | 60                              | 0.0395                        | 0.039                               |
| 1.27 pm    | 80.4                           | 60                              | 0.0382                        | 0.038                               | 60                              | 0.0419                        | 0.042                               | 60                              | 0.0485                        | 0.0485                              | 60                              | 0.0405                        | 0.040                               |
| 1.57 pm    | 80.4                           | 60                              | 0.0401                        | 0.040                               | 60                              | 0.0448                        | 0.045                               | 60                              | 0.0499                        | 0.0499                              | 60                              | 0.0429                        | 0.042                               |
| 2.27 pm    | 80.6                           | 60                              | 0.0409                        | 0.040                               | 60                              | 0.0434                        | 0.044                               | 60                              | 0.0512                        | 0.0512                              | 60                              | 0.0443                        | 0.044                               |
| 2.57 pm    | 80.4                           | 60                              | 0.0410                        | 0.041                               | 60                              | 0.0444                        | 0.045                               | 60                              | 0.0525                        | 0.0525                              | 60                              | 0.0452                        | 0.045                               |
| 3.27 pm    | 80.8                           | 60                              | 0.0430                        | 0.043                               | 60                              | 0.0446                        | 0.045                               | 60                              | 0.0535                        | 0.0535                              | 60                              | 0.046                         | 0.046                               |
| 3.57 pm    | 80.8                           | 60                              | 0.0439                        | 0.043                               | 60                              | 0.0459                        | 0.046                               | 60                              | 0.0544                        | 0.0544                              | 60                              | 0.0464                        | 0.046                               |
| 4.27 pm    | 81                             | 60                              | 0.0444                        | 0.044                               | 60                              | 0.0461                        | 0.047                               | 60                              | 0.055                         | 0.055                               | 60                              | 0.0459                        | 0.045                               |
| 4.57 pm    | 80.8                           | 60                              | 0.0451                        | 0.045                               | 60                              | 0.0474                        | 0.048                               | 60                              | 0.0557                        | 0.0557                              | 60                              | 0.0457                        | 0.045                               |
| 5.27 pm    |                                | 60                              | 0.0448                        | 0.044                               | 60                              | 0.0477                        | 0.048                               | 60                              | 0.0561                        | 0.0561                              | 60                              | 0.0471                        | 0.047                               |
| Total Cha  | Total Charge Passed Q1= 871.57 |                                 |                               |                                     | Q2 =                            | 946.0909                      | Coulombs                            | Q2 =                            | 1083.6                        | Coulombs                            | Q2 =                            | 921.9208                      | Coulombs                            |
|            | Average Char                   | ge Passed,                      | Coulombs                      |                                     |                                 | 955.80                        |                                     |                                 |                               |                                     |                                 |                               |                                     |

#### Appendix Table 17: ECSA

| Date of Ca | sting        |                                 |                               | Date of Te                          | sting                           | 2-Jul-08                      |                                     | Time of Te                      | sting                         | 8.01 am                             |                                 |                               |                                     |
|------------|--------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
| Mix Id     |              | ECSA                            |                               | Міх Туре                            |                                 | Flyash + G                    | Gravel                              | Curing Per                      | iod                           | 95 days                             |                                 |                               |                                     |
|            |              |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Res        | istance      | Cell 1                          | 1.01                          | ohm                                 | Cell 2                          | 0.99                          | ohm                                 | Cell 3                          | 1.00 ohm                      |                                     | Cell 4                          | 1.01 ohm                      |                                     |
|            |              |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time       | Temperature  | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 8.01 am    | 79.5         | 60                              | 0.0975                        | 0.097                               | 60                              | 0.0850                        | 0.086                               | 60                              | 0.0993                        | 0.0993                              | 60                              | 0.1089                        | 0.108                               |
| 8.31 am    | 79.7         | 60                              | 0.1022                        | 0.101                               | 60                              | 0.0854                        | 0.086                               | 60                              | 0.1201                        | 0.1201                              | 60                              | 0.0976                        | 0.097                               |
| 9.01 am    | 80.2         | 60                              | 0.1086                        | 0.108                               | 60                              | 0.0988                        | 0.100                               | 60                              | 0.1333                        | 0.1333                              | 60                              | 0.1099                        | 0.109                               |
| 9.31 am    | 79.9         | 60                              | 0.1240                        | 0.123                               | 60                              | 0.1120                        | 0.113                               | 60                              | 0.146                         | 0.146                               | 60                              | 0.1283                        | 0.127                               |
| 10.01 am   | 80.2         | 60                              | 0.1326                        | 0.131                               | 60                              | 0.1088                        | 0.110                               | 60                              | 0.1542                        | 0.1542                              | 60                              | 0.1366                        | 0.135                               |
| 10.31 am   | 79.9         | 60                              | 0.1447                        | 0.143                               | 60                              | 0.1163                        | 0.117                               | 60                              | 0.1631                        | 0.1631                              | 60                              | 0.1352                        | 0.134                               |
| 11.01 am   | 79.9         | 60                              | 0.1499                        | 0.148                               | 60                              | 0.1263                        | 0.128                               | 60                              | 0.1704                        | 0.1704                              | 60                              | 0.1505                        | 0.149                               |
| 11.31 am   | 79.9         | 60                              | 0.1563                        | 0.155                               | 60                              | 0.1256                        | 0.127                               | 60                              | 0.1771                        | 0.1771                              | 60                              | 0.1488                        | 0.147                               |
| 12.01 pm   | 79.9         | 60                              | 0.1590                        | 0.157                               | 60                              | 0.1309                        | 0.132                               | 60                              | 0.1819                        | 0.1819                              | 60                              | 0.1611                        | 0.160                               |
| 12.31 pm   | 80.2         | 60                              | 0.1675                        | 0.166                               | 60                              | 0.1334                        | 0.135                               | 60                              | 0.1849                        | 0.1849                              | 60                              | 0.1524                        | 0.151                               |
| 1.01 pm    | 80.4         | 60                              | 0.1674                        | 0.166                               | 60                              | 0.1305                        | 0.132                               | 60                              | 0.1871                        | 0.1871                              | 60                              | 0.1529                        | 0.151                               |
| 1.31 pm    | 80.4         | 60                              | 0.1685                        | 0.167                               | 60                              | 0.1386                        | 0.140                               | 60                              | 0.1893                        | 0.1893                              | 60                              | 0.166                         | 0.164                               |
| 2.01 am    | 80.4         | 60                              | 0.1655                        | 0.164                               | 60                              | 0.1291                        | 0.130                               | 60                              | 0.1889                        | 0.1889                              | 60                              | 0.168                         | 0.166                               |
| Total Cha  | arge Passed  | Q1=                             | 3051.446                      | Coulombs                            | Q2 =                            | 2570.273                      | Coulombs                            | Q2 =                            | 3512.7                        | Coulombs                            | Q2 =                            | 2990.05                       | Coulombs                            |
|            | Average Char | ge Passed,                      | Coulombs                      |                                     |                                 |                               |                                     |                                 | 3031.12                       |                                     |                                 |                               |                                     |

## Appendix Table 18: ECSB

| Date of Ca | sting                                   |                                 |                               | Date of Te                          | sting                           | 2-Jul-08                      |                                     | Time of Te                      | sting                         | 3.01 pm                             |                                 |                               |                                     |
|------------|-----------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
| Mix Id     |                                         | ECSB                            |                               | Mix Type                            |                                 |                               |                                     | Curing Per                      | iod                           | 95 days                             |                                 |                               |                                     |
|            |                                         |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Res        | istance                                 | Cell 1                          | 1.01                          | ohm                                 | Cell 2                          | 0.99                          | ohm                                 | Cell 3                          | 1.00 ohm                      |                                     | Cell 4                          | 1.01 ohm                      |                                     |
|            |                                         |                                 | Cell 1                        |                                     |                                 | Cell 2                        | -                                   |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time       | Temperature                             | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 3.01 pm    | 80.6                                    | 60                              | 0.1690                        | 0.167                               | 60                              | 0.1741                        | 0.176                               | 60                              | 0.1732                        | 0.1732                              | 60                              | 0.141                         | 0.140                               |
| 3.31 pm    | 80.6                                    | 60                              | 0.1878                        | 0.186                               | 60                              | 0.2056                        | 0.208                               | 60                              | 0.2244                        | 0.2244                              | 60                              | 0.1513                        | 0.150                               |
| 4.01 pm    | 80.8                                    | 60                              | 0.2233                        | 0.221                               | 60                              | 0.2352                        | 0.238                               | 60                              | 0.2544                        | 0.2544                              | 60                              | 0.1753                        | 0.174                               |
| 4.31 pm    | 80.8                                    | 60                              | 0.2560                        | 0.254                               | 60                              | 0.2553                        | 0.258                               | 60                              | 0.274                         | 0.274                               | 60                              | 0.1980                        | 0.196                               |
| 5.01 pm    | 80.8                                    | 60                              | 0.2807                        | 0.278                               | 60                              | 0.2460                        | 0.248                               | 60                              | 0.2984                        | 0.2984                              | 60                              | 0.2055                        | 0.203                               |
| 5.31 pm    | 81                                      | 60                              | 0.3032                        | 0.300                               | 60                              | 0.2653                        | 0.268                               | 60                              | 0.3152                        | 0.3152                              | 60                              | 0.212                         | 0.210                               |
| 6.01 pm    | 81                                      | 60                              | 0.3258                        | 0.323                               | 60                              | 0.2763                        | 0.279                               | 60                              | 0.3188                        | 0.3188                              | 60                              | 0.2421                        | 0.240                               |
| 6.31 pm    | 81                                      | 60                              | 0.3215                        | 0.318                               | 60                              | 0.2655                        | 0.268                               | 60                              | 0.3159                        | 0.3159                              | 60                              | 0.2295                        | 0.227                               |
| 7.01 pm    | 81                                      | 60                              | 0.3346                        | 0.331                               | 60                              | 0.2844                        | 0.287                               | 60                              | 0.3155                        | 0.3155                              | 60                              | 0.2351                        | 0.233                               |
| 7.31 pm    | 81                                      | 60                              | 0.3382                        | 0.335                               | 60                              | 0.2722                        | 0.275                               | 60                              | 0.3062                        | 0.3062                              | 60                              | 0.2363                        | 0.234                               |
| 8.01 pm    | 80.8                                    | 60                              | 0.3320                        | 0.329                               | 60                              | 0.2755                        | 0.278                               | 60                              | 0.2975                        | 0.2975                              | 60                              | 0.25                          | 0.248                               |
| 8.31 pm    | 80.8                                    | 60                              | 0.3243                        | 0.321                               | 60                              | 0.2720                        | 0.275                               | 60                              | 0.301                         | 0.301                               | 60                              | 0.2282                        | 0.226                               |
| 9.01 pm    | .01 pm 80.6 60 0.3292                   |                                 |                               |                                     | 60                              | 0.2793                        | 0.282                               | 60                              | 0.2976                        | 0.2976                              | 60                              | 0.2226                        | 0.220                               |
| Total Cha  | otal Charge Passed Q1= 6195.814 Coulomb |                                 |                               |                                     |                                 | 5600                          | Coulombs                            | Q2 =                            | 6222.06                       | Coulombs                            | Q2 =                            | 4535.822                      | Coulombs                            |
|            | Average Char                            | ge Passed,                      | Coulombs                      |                                     |                                 |                               |                                     |                                 | 5638.42                       |                                     |                                 |                               |                                     |

#### Appendix Table 19: EDW

| Date of Ca | sting                          | 2-Ap                            | or-08                         | Date of Te                          | sting                           | 7-Jul-08                      |                                     | Time of Te                      | sting                         | 8.02 am                             |                                 |                               |                                     |
|------------|--------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
| Mix Id     |                                | EDW                             |                               | Mix Type                            |                                 |                               |                                     | Curing Per                      | iod                           | 95 days                             |                                 |                               |                                     |
|            |                                |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Res        | istance                        | Cell 1                          | 1.01                          | ohm                                 | Cell 2                          | 0.99                          | ohm                                 | Cell 3                          | 1.00 ohm                      |                                     | Cell 4                          | 1.01 ohm                      |                                     |
|            |                                |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time       | Temperature                    | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 8.02 am    | 79.9                           | 60                              | 0.0243                        | 0.024                               | 60                              | 0.0278                        | 0.028                               | 60                              | 0.0315                        | 0.0315                              | 60                              | 0.0323                        | 0.032                               |
| 8.32 am    | 79.5                           | 60                              | 0.0255                        | 0.025                               | 60                              | 0.0280                        | 0.028                               | 60                              | 0.0334                        | 0.0334                              | 60                              | 0.0306                        | 0.030                               |
| 9.02 am    | 79.7                           | 60                              | 0.0238                        | 0.024                               | 60                              | 0.0282                        | 0.028                               | 60                              | 0.035                         | 0.035                               | 60                              | 0.0294                        | 0.029                               |
| 9.32 am    | 79.5                           | 60                              | 0.0245                        | 0.024                               | 60                              | 0.0283                        | 0.029                               | 60                              | 0.0361                        | 0.0361                              | 60                              | 0.0306                        | 0.030                               |
| 10.02 am   | 79.5                           | 60                              | 0.0245                        | 0.024                               | 60                              | 0.0300                        | 0.030                               | 60                              | 0.0371                        | 0.0371                              | 60                              | 0.0313                        | 0.031                               |
| 10.32 am   | 78.8                           | 60                              | 0.0251                        | 0.025                               | 60                              | 0.0291                        | 0.029                               | 60                              | 0.0381                        | 0.0381                              | 60                              | 0.0331                        | 0.033                               |
| 11.02 am   | 78.8                           | 60                              | 0.0267                        | 0.026                               | 60                              | 0.0303                        | 0.031                               | 60                              | 0.039                         | 0.039                               | 60                              | 0.0326                        | 0.032                               |
| 11.32 am   | 78.8                           | 60                              | 0.0270                        | 0.027                               | 60                              | 0.0309                        | 0.031                               | 60                              | 0.0396                        | 0.0396                              | 60                              | 0.0343                        | 0.034                               |
| 12.02 pm   | 79.3                           | 60                              | 0.0283                        | 0.028                               | 60                              | 0.0302                        | 0.031                               | 60                              | 0.0402                        | 0.0402                              | 60                              | 0.0337                        | 0.033                               |
| 12.32 pm   | 79.2                           | 60                              | 0.0269                        | 0.027                               | 60                              | 0.0305                        | 0.031                               | 60                              | 0.0407                        | 0.0407                              | 60                              | 0.0354                        | 0.035                               |
| 1.02 pm    | 79.2                           | 60                              | 0.0270                        | 0.027                               | 60                              | 0.0315                        | 0.032                               | 60                              | 0.0413                        | 0.0413                              | 60                              | 0.0355                        | 0.035                               |
| 1.32 pm    | 79.2                           | 60                              | 0.0282                        | 0.028                               | 60                              | 0.0328                        | 0.033                               | 60                              | 0.042                         | 0.042                               | 60                              | 0.0353                        | 0.035                               |
| 2.02pm     | 2pm 79.2 60 0.0293             |                                 |                               | 0.029                               | 60                              | 0.0320                        | 0.032                               | 60                              | 0.0422                        | 0.0422                              | 60                              | 0.0358                        | 0.035                               |
| Total Cha  | Total Charge Passed Q1= 560.13 |                                 |                               |                                     | Q2 =                            | 654                           | Coulombs                            | Q2 =                            | 826.83                        | Coulombs                            | Q2 =                            | 705.4752                      | Coulombs                            |
|            | Average Char                   | ge Passed,                      | Coulombs                      |                                     |                                 |                               |                                     |                                 | 686.61                        |                                     |                                 |                               |                                     |

# Appendix Table 20: EDSA

| -          |                                 |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
|------------|---------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
| Date of Ca | isting                          |                                 |                               | Date of Te                          | sting                           | 4-Jul-08                      |                                     | Time of Te                      | sting                         | 7.48 am                             |                                 |                               |                                     |
| Mix Id     |                                 | EDSA                            |                               | Mix Type                            |                                 |                               |                                     | Curing Per                      | iod                           | 95 days                             |                                 |                               |                                     |
|            |                                 |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Res        | istance                         | Cell 1                          | 1.01                          | ohm                                 | Cell 2                          | 0.99                          | ohm                                 | Cell 3                          | 1.00 ohm                      |                                     | Cell 4                          | 1.01 ohm                      |                                     |
|            |                                 |                                 | Cell 1                        |                                     | 1                               | Cell 2                        |                                     | 1                               | Cell 3                        |                                     | 1                               | Cell 4                        |                                     |
| Time       | Temperature                     | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 7.48 am    | 79.7                            | 60                              | 0.1111                        | 0.110                               | 60                              | 0.1202                        | 0.121                               | 60                              | 0.1229                        | 0.1229                              | 60                              | 0.1321                        | 0.131                               |
| 8.18 am    | 80.4                            | 60                              | 0.1137                        | 0.113                               | 60                              | 0.1292                        | 0.131                               | 60                              | 0.1488                        | 0.1488                              | 60                              | 0.1258                        | 0.125                               |
| 8.48 am    | 80.8                            | 60                              | 0.1188                        | 0.118                               | 60                              | 0.1462                        | 0.148                               | 60                              | 0.1646                        | 0.1646                              | 60                              | 0.14                          | 0.139                               |
| 9.18 am    | 80.6                            | 60                              | 0.1283                        | 0.127                               | 60                              | 0.1560                        | 0.158                               | 60                              | 0.1769                        | 0.1769                              | 60                              | 0.1518                        | 0.150                               |
| 9.48 am    | 80.6                            | 60                              | 0.1351                        | 0.134                               | 60                              | 0.1642                        | 0.166                               | 60                              | 0.1862                        | 0.1862                              | 60                              | 0.1597                        | 0.158                               |
| 10.18 am   | 80.4                            | 60                              | 0.1446                        | 0.143                               | 60                              | 0.1750                        | 0.177                               | 60                              | 0.1939                        | 0.1939                              | 60                              | 0.1652                        | 0.164                               |
| 10.48 am   | 80.6                            | 60                              | 0.1466                        | 0.145                               | 60                              | 0.1783                        | 0.180                               | 60                              | 0.2005                        | 0.2005                              | 60                              | 0.1689                        | 0.167                               |
| 11.18 am   | 80.8                            | 60                              | 0.1498                        | 0.148                               | 60                              | 0.1818                        | 0.184                               | 60                              | 0.2023                        | 0.2023                              | 60                              | 0.173                         | 0.171                               |
| 11.48 am   | 80.2                            | 60                              | 0.1592                        | 0.158                               | 60                              | 0.1946                        | 0.197                               | 60                              | 0.203                         | 0.203                               | 60                              | 0.182                         | 0.180                               |
| 12.18 pm   | 80.4                            | 60                              | 0.1562                        | 0.155                               | 60                              | 0.1841                        | 0.186                               | 60                              | 0.2023                        | 0.2023                              | 60                              | 0.1765                        | 0.175                               |
| 12.48 pm   | 80.6                            | 60                              | 0.1586                        | 0.157                               | 60                              | 0.1866                        | 0.188                               | 60                              | 0.2018                        | 0.2018                              | 60                              | 0.1783                        | 0.177                               |
| 1.18 pm    | 80.6                            | 60                              | 0.1569                        | 0.155                               | 60                              | 0.1870                        | 0.189                               | 60                              | 0.1995                        | 0.1995                              | 60                              | 0.18                          | 0.178                               |
| 1.48 pm    | 80.8                            | 60                              | 0.1588                        | 0.157                               | 60                              | 0.1860                        | 0.188                               | 60                              | 0.1971                        | 0.1971                              | 60                              | 0.1908                        | 0.189                               |
| Total Cha  | Total Charge Passed Q1= 3034.60 |                                 |                               |                                     | Q2 =                            | 3702                          | Coulombs                            | Q2 =                            | 4031.64                       | Coulombs                            | Q2 =                            | 3497.792                      | Coulombs                            |
|            | Average Char                    | ge Passed,                      | Coulombs                      |                                     |                                 |                               |                                     |                                 | 3566.51                       |                                     |                                 |                               |                                     |

#### Appendix Table 21: EDSB

| Date of Ca | sting            |                                 |                               | Date of Te                          | sting                           | 4-Jul-08                      |                                     | Time of Te                      | sting                         | 3.20 pm                             |                                 |                               |                                     |
|------------|------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
| Mix Id     |                  | EDSB                            |                               | Міх Туре                            |                                 |                               |                                     | Curing Per                      | iod                           | 95 days                             |                                 |                               |                                     |
|            |                  |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Res        | istance          | Cell 1                          | 1.01                          | ohm                                 | Cell 2                          | 0.99                          | ohm                                 | Cell 3                          | 1.00 ohm                      |                                     | Cell 4                          | 1.01 ohm                      |                                     |
|            |                  |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time       | Temperature      | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 3.20 pm    | 81               | 60                              | 0.1463                        | 0.145                               | 60                              | 0.1438                        | 0.145                               | 60                              | 0.1221                        | 0.1221                              | 60                              | 0.13                          | 0.129                               |
| 3.50 pm    | 81               | 60                              | 0.1500                        | 0.149                               | 60                              | 0.1580                        | 0.160                               | 60                              | 0.1449                        | 0.1449                              | 60                              | 0.1308                        | 0.130                               |
| 4.20 pm    | 81               | 60 0.1777   60 0.2037           |                               | 0.176                               | 60                              | 0.1710                        | 0.173                               | 60                              | 0.1641                        | 0.1641                              | 60                              | 0.1479                        | 0.146                               |
| 4.50 pm    | 80.8             | 60                              | 0.2037                        | 0.202                               | 60                              | 0.1935                        | 0.195                               | 60                              | 0.1852                        | 0.1852                              | 60                              | 0.1645                        | 0.163                               |
| 5.20 pm    | 80.8             | 60                              | 0.2170                        | 0.215                               | 60                              | 0.2040                        | 0.206                               | 60                              | 0.1914                        | 0.1914                              | 60                              | 0.1846                        | 0.183                               |
| 5.50 pm    | 80.6             | 60                              | 0.2334                        | 0.231                               | 60                              | 0.2115                        | 0.214                               | 60                              | 0.2033                        | 0.2033                              | 60                              | 0.1894                        | 0.188                               |
| 6.20 pm    | 81               | 60                              | 0.2482                        | 0.246                               | 60                              | 0.2245                        | 0.227                               | 60                              | 0.2102                        | 0.2102                              | 60                              | 0.1968                        | 0.195                               |
| 6.50 pm    | 80.6             | 60                              | 0.2450                        | 0.243                               | 60                              | 0.2307                        | 0.233                               | 60                              | 0.2144                        | 0.2144                              | 60                              | 0.2154                        | 0.213                               |
| 7.20 pm    | 80.6             | 60                              | 0.2418                        | 0.239                               | 60                              | 0.2174                        | 0.220                               | 60                              | 0.2145                        | 0.2145                              | 60                              | 0.204                         | 0.202                               |
| 7.50 pm    | 80.8             | 60                              | 0.2523                        | 0.250                               | 60                              | 0.2210                        | 0.223                               | 60                              | 0.2111                        | 0.2111                              | 60                              | 0.1846                        | 0.183                               |
| 8.20 pm    | 80.8             | 60                              | 0.2289                        | 0.227                               | 60                              | 0.2102                        | 0.212                               | 60                              | 0.2079                        | 0.2079                              | 60                              | 0.1808                        | 0.179                               |
| 8.50 pm    | 80.6             | 60                              | 0.2389                        | 0.237                               | 60                              | 0.2005                        | 0.203                               | 60                              | 0.2009                        | 0.2009                              | 60                              | 0.17                          | 0.168                               |
| 9.20 pm    | .20 pm 60 0.2221 |                                 |                               |                                     | 60                              | 0.2024                        | 0.204                               | 60                              | 0.1947                        | 0.1947                              | 60                              | 0.164                         | 0.162                               |
| Total Cha  | arge Passed      | Q1=                             | 4671.267                      | Coulombs                            | Q2 =                            | 4391.636                      | Coulombs                            | Q2 =                            | 4151.34                       | Coulombs                            | Q2 =                            | 3770.733                      | Coulombs                            |
|            | Average Char     | ge Passed,                      | Coulombs                      |                                     |                                 |                               |                                     |                                 | 4246.24                       |                                     |                                 |                               |                                     |

# Abrasion Test

#### Appendix Table 22: CW

| Date of | Casting | 29-N  | lar-08     | Date of      | Testing      | 29-Jun-08  | Time of | Testing |            |
|---------|---------|-------|------------|--------------|--------------|------------|---------|---------|------------|
| Mix     | k ID    | Contr | ol Mix     | Mix          | Туре         | None       | Curing  | Peroid  | 93 days    |
|         | Mix I   | d No. | CW-1       | Mix I        | d No.        | CW-2       | Mix I   | d No.   | CW-3       |
|         |         |       | We         | ear depth (i | in.) at time | e (min.)   |         |         |            |
| Pos.    | 0       | 30    | Difference | 0            | 30           | Difference | 0       | 30      | Difference |
| 1       | 0.104   | 0.152 | 0.048      | 0.093        | 0.128        | 0.04       | 0.107   | 0.153   | 0.05       |
| 2       | 0.104   | 0.152 | 0.048      | 0.094        | 0.128        | 0.03       | 0.115   | 0.153   | 0.04       |
| 3       | 0.106   | 0.152 | 0.046      | 0.088        | 0.128        | 0.04       | 0.108   | 0.153   | 0.05       |
| 4       | 0.105   | 0.152 | 0.047      | 0.086        | 0.128        | 0.04       | 0.108   | 0.153   | 0.05       |
| 5       | 0.106   | 0.152 | 0.046      | 0.087        | 0.128        | 0.04       | 0.114   | 0.153   | 0.04       |
| 6       | 0.106   | 0.152 | 0.046      | 0.080        | 0.128        | 0.05       | 0.112   | 0.153   | 0.04       |
| 7       | 0.105   | 0.152 | 0.047      | 0.081        | 0.128        | 0.05       | 0.110   | 0.153   | 0.04       |
| 8       | 0.109   | 0.152 | 0.043      | 0.089        | 0.128        | 0.04       | 0.107   | 0.153   | 0.05       |
| 9       | 0.108   | 0.152 | 0.044      | 0.093        | 0.138        | 0.05       | 0.108   | 0.153   | 0.05       |
| 10      | 0.110   | 0.152 | 0.042      | 0.085        | 0.138        | 0.05       | 0.104   | 0.153   | 0.05       |
| 11      | 0.102   | 0.152 | 0.050      | 0.077        | 0.138        | 0.06       | 0.095   | 0.153   | 0.06       |
| 12      | 0.095   | 0.152 | 0.057      | 0.088        | 0.138        | 0.05       | 0.098   | 0.153   | 0.06       |
| 13      | 0.093   | 0.152 | 0.059      | 0.079        | 0.138        | 0.06       | 0.090   | 0.153   | 0.06       |
| 14      | 0.095   | 0.152 | 0.057      | 0.083        | 0.138        | 0.06       | 0.087   | 0.153   | 0.07       |
| 15      | 0.089   | 0.152 | 0.063      | 0.082        | 0.138        | 0.06       | 0.088   | 0.153   | 0.07       |
| 16      | 0.087   | 0.152 | 0.065      | 0.086        | 0.138        | 0.05       | 0.088   | 0.153   | 0.07       |
| 17      | 0.084   | 0.152 | 0.068      | 0.093        | 0.138        | 0.05       | 0.091   | 0.153   | 0.06       |
| 18      | 0.084   | 0.152 | 0.068      | 0.098        | 0.138        | 0.04       | 0.093   | 0.153   | 0.06       |
| 19      | 0.087   | 0.152 | 0.065      | 0.095        | 0.138        | 0.04       | 0.088   | 0.153   | 0.07       |
| 20      | 0.087   | 0.152 | 0.065      | 0.092        | 0.138        | 0.05       | 0.083   | 0.153   | 0.07       |
| 21      | 0.091   | 0.152 | 0.061      | 0.088        | 0.138        | 0.05       | 0.082   | 0.153   | 0.07       |
| 22      | 0.100   | 0.152 | 0.052      | 0.094        | 0.138        | 0.04       | 0.083   | 0.153   | 0.07       |
| 23      | 0.108   | 0.152 | 0.044      | 0.096        | 0.138        | 0.04       | 0.094   | 0.153   | 0.06       |
| 24      | 0.106   | 0.152 | 0.046      | 0.089        | 0.138        | 0.05       | 0.103   | 0.153   | 0.05       |
| Average | 0.099   | 0.152 | 0.053      | 0.088        | 0.135        | 0.046      | 0.098   | 0.153   | 0.055      |

## Appendix Table 23: CSA

| Date of | Casting | 29-N              | 1ar-08             | Date of      | Testing      | 29-Jun-08  | Time of | Testing |            |
|---------|---------|-------------------|--------------------|--------------|--------------|------------|---------|---------|------------|
| Mix     | k ID    | Control M<br>Curi | 1ix, Steam<br>ng A | Mix          | Туре         | None       | Curing  | Peroid  | 93 days    |
|         | Mix I   | d No.             | CSA-1              | Mix I        | d No.        | CSA-2      | Mix I   | d No.   | CSA-3      |
|         |         |                   | We                 | ear depth (i | in.) at time | e (min.)   |         |         |            |
| Pos.    | 0       | 30                | Difference         | 0            | 30           | Difference | 0       | 30      | Difference |
| 1       | 0.126   | 0.200             | 0.074              | 0.135        | 0.202        | 0.07       | 0.107   | 0.186   | 0.08       |
| 2       | 0.129   | 0.199             | 0.070              | 0.128        | 0.199        | 0.07       | 0.103   | 0.191   | 0.09       |
| 3       | 0.129   | 0.189             | 0.060              | 0.111        | 0.187        | 0.08       | 0.104   | 0.183   | 0.08       |
| 4       | 0.122   | 0.194             | 0.072              | 0.104        | 0.195        | 0.09       | 0.107   | 0.185   | 0.08       |
| 5       | 0.125   | 0.094             | -0.031             | 0.104        | 0.186        | 0.08       | 0.108   | 0.181   | 0.07       |
| 6       | 0.117   | 0.185             | 0.068              | 0.108        | 0.183        | 0.08       | 0.108   | 0.174   | 0.07       |
| 7       | 0.109   | 0.198             | 0.089              | 0.107        | 0.187        | 0.08       | 0.105   | 0.176   | 0.07       |
| 8       | 0.109   | 0.178             | 0.069              | 0.110        | 0.188        | 0.08       | 0.109   | 0.174   | 0.07       |
| 9       | 0.106   | 0.198             | 0.092              | 0.111        | 0.194        | 0.08       | 0.113   | 0.170   | 0.06       |
| 10      | 0.113   | 0.179             | 0.066              | 0.121        | 0.199        | 0.08       | 0.113   | 0.159   | 0.05       |
| 11      | 0.109   | 0.177             | 0.068              | 0.115        | 0.207        | 0.09       | 0.119   | 0.169   | 0.05       |
| 12      | 0.110   | 0.186             | 0.076              | 0.119        | 0.212        | 0.09       | 0.102   | 0.164   | 0.06       |
| 13      | 0.107   | 0.181             | 0.074              | 0.134        | 0.216        | 0.08       | 0.105   | 0.163   | 0.06       |
| 14      | 0.106   | 0.188             | 0.082              | 0.141        | 0.222        | 0.08       | 0.107   | 0.160   | 0.05       |
| 15      | 0.104   | 0.180             | 0.076              | 0.144        | 0.220        | 0.08       | 0.111   | 0.174   | 0.06       |
| 16      | 0.107   | 0.172             | 0.065              | 0.138        | 0.231        | 0.09       | 0.112   | 0.178   | 0.07       |
| 17      | 0.111   | 0.182             | 0.071              | 0.130        | 0.226        | 0.10       | 0.107   | 0.177   | 0.07       |
| 18      | 0.113   | 0.180             | 0.067              | 0.128        | 0.223        | 0.10       | 0.102   | 0.166   | 0.06       |
| 19      | 0.115   | 0.182             | 0.067              | 0.133        | 0.220        | 0.09       | 0.101   | 0.177   | 0.08       |
| 20      | 0.110   | 0.190             | 0.080              | 0.127        | 0.219        | 0.09       | 0.114   | 0.186   | 0.07       |
| 21      | 0.123   | 0.179             | 0.056              | 0.131        | 0.219        | 0.09       | 0.115   | 0.194   | 0.08       |
| 22      | 0.118   | 0.184             | 0.066              | 0.133        | 0.213        | 0.08       | 0.109   | 0.187   | 0.08       |
| 23      | 0.118   | 0.190             | 0.072              | 0.134        | 0.216        | 0.08       | 0.106   | 0.177   | 0.07       |
| 24      | 0.137   | 0.181             | 0.044              | 0.141        | 0.209        | 0.07       | 0.111   | 0.181   | 0.07       |
| Average | 0.116   | 0.182             | 0.066              | 0.124        | 0.207        | 0.083      | 0.108   | 0.176   | 0.068      |

## Appendix Table 24: CSB

| Date of | Casting | 3/29              | /2008               | Date of     | Testing      | 6/29/2008  | Time of       | Testing |            |
|---------|---------|-------------------|---------------------|-------------|--------------|------------|---------------|---------|------------|
| Mix     | ( ID    | Control M<br>Curi | 1ix, Steam<br>ing B | Mix         | Mix Type     |            | Curing Peroid |         | 93 days    |
|         | Mix I   | d No.             | CSB-1               | Mix I       | d No.        | CSB-2      | Mix Id No.    |         | CSB-3      |
|         |         |                   | We                  | ar depth (i | in.) at time | e (min.)   |               |         |            |
| Pos.    | 0       | 30                | Difference          | 0           | 30           | Difference | 0             | 30      | Difference |
| 1       | 0.141   | 0.238             | 0.097               | 0.133       | 0.262        | 0.13       | 0.142         | 0.246   | 0.10       |
| 2       | 0.140   | 0.242             | 0.102               | 0.140       | 0.262        | 0.12       | 0.148         | 0.240   | 0.09       |
| 3       | 0.137   | 0.233             | 0.096               | 0.152       | 0.263        | 0.11       | 0.157         | 0.241   | 0.08       |
| 4       | 0.131   | 0.244             | 0.113               | 0.162       | 0.271        | 0.11       | 0.152         | 0.234   | 0.08       |
| 5       | 0.123   | 0.231             | 0.108               | 0.164       | 0.258        | 0.09       | 0.150         | 0.224   | 0.07       |
| 6       | 0.113   | 0.217             | 0.104               | 0.155       | 0.244        | 0.09       | 0.150         | 0.240   | 0.09       |
| 7       | 0.107   | 0.222             | 0.115               | 0.142       | 0.241        | 0.10       | 0.142         | 0.244   | 0.10       |
| 8       | 0.110   | 0.214             | 0.104               | 0.143       | 0.235        | 0.09       | 0.129         | 0.222   | 0.09       |
| 9       | 0.120   | 0.212             | 0.092               | 0.138       | 0.222        | 0.08       | 0.127         | 0.223   | 0.10       |
| 10      | 0.131   | 0.208             | 0.077               | 0.125       | 0.229        | 0.10       | 0.128         | 0.223   | 0.10       |
| 11      | 0.120   | 0.220             | 0.100               | 0.120       | 0.237        | 0.12       | 0.125         | 0.230   | 0.11       |
| 12      | 0.119   | 0.220             | 0.101               | 0.116       | 0.225        | 0.11       | 0.117         | 0.224   | 0.11       |
| 13      | 0.109   | 0.226             | 0.117               | 0.119       | 0.223        | 0.10       | 0.118         | 0.193   | 0.08       |
| 14      | 0.111   | 0.227             | 0.116               | 0.120       | 0.226        | 0.11       | 0.120         | 0.222   | 0.10       |
| 15      | 0.131   | 0.236             | 0.105               | 0.118       | 0.233        | 0.12       | 0.114         | 0.210   | 0.10       |
| 16      | 0.133   | 0.235             | 0.102               | 0.121       | 0.230        | 0.11       | 0.110         | 0.194   | 0.08       |
| 17      | 0.132   | 0.249             | 0.117               | 0.126       | 0.231        | 0.11       | 0.120         | 0.181   | 0.06       |
| 18      | 0.136   | 0.251             | 0.115               | 0.145       | 0.239        | 0.09       | 0.123         | 0.192   | 0.07       |
| 19      | 0.140   | 0.246             | 0.106               | 0.119       | 0.237        | 0.12       | 0.114         | 0.207   | 0.09       |
| 20      | 0.136   | 0.237             | 0.101               | 0.126       | 0.229        | 0.10       | 0.129         | 0.224   | 0.10       |
| 21      | 0.143   | 0.236             | 0.093               | 0.122       | 0.242        | 0.12       | 0.140         | 0.225   | 0.09       |
| 22      | 0.152   | 0.236             | 0.084               | 0.129       | 0.233        | 0.10       | 0.135         | 0.225   | 0.09       |
| 23      | 0.148   | 0.231             | 0.083               | 0.131       | 0.255        | 0.12       | 0.139         | 0.224   | 0.09       |
| 24      | 0.143   | 0.238             | 0.095               | 0.130       | 0.265        | 0.14       | 0.139         | 0.233   | 0.09       |
| Average | 0.129   | 0.231             | 0.102               | 0.133       | 0.241        | 0.108      | 0.132         | 0.222   | 0.090      |

## Appendix Table 25: EAW

| Date of | Casting | 24-N      | 1ar-08      | Date of     | Testing     | 22-Jun-08     | Time of       | Testing |            |
|---------|---------|-----------|-------------|-------------|-------------|---------------|---------------|---------|------------|
| Mix     | k ID    | Exp A, Wa | iter Curing | Mix Type    |             | Slag + Gravel | Curing Peroid |         | 91 days    |
|         | Mix     | d No.     | EAW-3       | Mix I       | d No.       | EAW-1         | Mix Id No.    |         | EAW-2      |
|         |         |           | Wea         | ar depth (i | n.) at time | (min.)        |               |         |            |
| Pos.    | 0       | 30        | Difference  | 0           | 30          | Difference    | 0             | 30      | Difference |
| 1       | 0.149   | 0.288     | 0.139       | 0.144       | 0.210       | 0.066         | 0.167         | 0.231   | 0.064      |
| 2       | 0.164   | 0.277     | 0.113       | 0.154       | 0.221       | 0.067         | 0.153         | 0.230   | 0.077      |
| 3       | 0.153   | 0.253     | 0.100       | 0.163       | 0.228       | 0.065         | 0.152         | 0.224   | 0.072      |
| 4       | 0.156   | 0.264     | 0.108       | 0.168       | 0.230       | 0.062         | 0.133         | 0.207   | 0.074      |
| 5       | 0.156   | 0.262     | 0.106       | 0.176       | 0.238       | 0.062         | 0.126         | 0.192   | 0.066      |
| 6       | 0.153   | 0.260     | 0.107       | 0.177       | 0.239       | 0.062         | 0.107         | 0.176   | 0.069      |
| 7       | 0.154   | 0.252     | 0.098       | 0.183       | 0.252       | 0.069         | 0.122         | 0.177   | 0.055      |
| 8       | 0.153   | 0.260     | 0.107       | 0.176       | 0.240       | 0.064         | 0.115         | 0.167   | 0.052      |
| 9       | 0.156   | 0.261     | 0.105       | 0.171       | 0.243       | 0.072         | 0.109         | 0.158   | 0.049      |
| 10      | 0.152   | 0.255     | 0.103       | 0.170       | 0.232       | 0.062         | 0.118         | 0.166   | 0.048      |
| 11      | 0.143   | 0.253     | 0.110       | 0.159       | 0.230       | 0.071         | 0.117         | 0.146   | 0.029      |
| 12      | 0.152   | 0.230     | 0.078       | 0.152       | 0.224       | 0.072         | 0.110         | 0.167   | 0.057      |
| 13      | 0.145   | 0.244     | 0.099       | 0.141       | 0.207       | 0.066         | 0.109         | 0.170   | 0.061      |
| 14      | 0.146   | 0.241     | 0.095       | 0.131       | 0.195       | 0.064         | 0.112         | 0.164   | 0.052      |
| 15      | 0.147   | 0.233     | 0.086       | 0.128       | 0.184       | 0.056         | 0.117         | 0.191   | 0.074      |
| 16      | 0.154   | 0.255     | 0.101       | 0.132       | 0.196       | 0.064         | 0.131         | 0.206   | 0.075      |
| 17      | 0.158   | 0.245     | 0.087       | 0.126       | 0.189       | 0.063         | 0.139         | 0.210   | 0.071      |
| 18      | 0.164   | 0.248     | 0.084       | 0.132       | 0.185       | 0.053         | 0.147         | 0.208   | 0.061      |
| 19      | 0.159   | 0.257     | 0.098       | 0.136       | 0.194       | 0.058         | 0.156         | 0.217   | 0.061      |
| 20      | 0.158   | 0.262     | 0.104       | 0.137       | 0.189       | 0.052         | 0.168         | 0.222   | 0.054      |
| 21      | 0.155   | 0.257     | 0.102       | 0.137       | 0.190       | 0.053         | 0.168         | 0.223   | 0.055      |
| 22      | 0.164   | 0.261     | 0.097       | 0.134       | 0.196       | 0.062         | 0.168         | 0.227   | 0.059      |
| 23      | 0.171   | 0.283     | 0.112       | 0.131       | 0.197       | 0.066         | 0.169         | 0.228   | 0.059      |
| 24      | 0.164   | 0.280     | 0.116       | 0.136       | 0.200       | 0.064         | 0.171         | 0.229   | 0.058      |
| Average | 0.155   | 0.258     | 0.102       | 0.150       | 0.213       | 0.063         | 0.137         | 0.197   | 0.061      |

#### Appendix Table 26: EASA

| Date of | Casting | 25-N       | 1ar-08         | Date of     | Testing     | 23-Jun-08     | Time of       | Testing |            |
|---------|---------|------------|----------------|-------------|-------------|---------------|---------------|---------|------------|
| Mix     | k ID    | Exp A, Ste | am Curing<br>A | Mix Type    |             | Slag + Gravel | Curing Peroid |         | 91 days    |
|         | Mix I   | d No.      | EASA-2         | Mix I       | d No.       | EASA-3        | Mix Id No.    |         | EASA-1     |
|         |         |            | Wea            | ar depth (i | n.) at time | (min.)        |               |         |            |
| Pos.    | 0       | 30         | Difference     | 0           | 30          | Difference    | 0             | 30      | Difference |
| 1       | 0.102   | 0.162      | 0.060          | 0.096       | 0.138       | 0.042         | 0.102         | 0.140   | 0.038      |
| 2       | 0.103   | 0.157      | 0.054          | 0.098       | 0.136       | 0.038         | 0.088         | 0.134   | 0.046      |
| 3       | 0.105   | 0.162      | 0.057          | 0.089       | 0.130       | 0.041         | 0.089         | 0.117   | 0.028      |
| 4       | 0.101   | 0.148      | 0.047          | 0.089       | 0.137       | 0.048         | 0.088         | 0.122   | 0.034      |
| 5       | 0.104   | 0.153      | 0.049          | 0.093       | 0.142       | 0.049         | 0.082         | 0.135   | 0.053      |
| 6       | 0.106   | 0.148      | 0.042          | 0.091       | 0.144       | 0.053         | 0.085         | 0.133   | 0.048      |
| 7       | 0.106   | 0.146      | 0.040          | 0.103       | 0.148       | 0.045         | 0.086         | 0.141   | 0.055      |
| 8       | 0.109   | 0.154      | 0.045          | 0.093       | 0.144       | 0.051         | 0.085         | 0.139   | 0.054      |
| 9       | 0.109   | 0.145      | 0.036          | 0.096       | 0.144       | 0.048         | 0.082         | 0.136   | 0.054      |
| 10      | 0.109   | 0.156      | 0.047          | 0.104       | 0.164       | 0.060         | 0.081         | 0.132   | 0.051      |
| 11      | 0.106   | 0.149      | 0.043          | 0.099       | 0.153       | 0.054         | 0.081         | 0.141   | 0.060      |
| 12      | 0.104   | 0.164      | 0.060          | 0.100       | 0.163       | 0.063         | 0.078         | 0.136   | 0.058      |
| 13      | 0.103   | 0.162      | 0.059          | 0.106       | 0.157       | 0.051         | 0.078         | 0.146   | 0.068      |
| 14      | 0.103   | 0.158      | 0.055          | 0.104       | 0.153       | 0.049         | 0.086         | 0.122   | 0.036      |
| 15      | 0.107   | 0.165      | 0.058          | 0.103       | 0.144       | 0.041         | 0.093         | 0.121   | 0.028      |
| 16      | 0.104   | 0.163      | 0.059          | 0.108       | 0.162       | 0.054         | 0.083         | 0.133   | 0.050      |
| 17      | 0.097   | 0.155      | 0.058          | 0.108       | 0.176       | 0.068         | 0.078         | 0.133   | 0.055      |
| 18      | 0.099   | 0.164      | 0.065          | 0.110       | 0.162       | 0.052         | 0.085         | 0.144   | 0.059      |
| 19      | 0.106   | 0.167      | 0.061          | 0.117       | 0.166       | 0.049         | 0.083         | 0.134   | 0.051      |
| 20      | 0.108   | 0.163      | 0.055          | 0.110       | 0.158       | 0.048         | 0.081         | 0.139   | 0.058      |
| 21      | 0.102   | 0.153      | 0.051          | 0.104       | 0.155       | 0.051         | 0.078         | 0.136   | 0.058      |
| 22      | 0.103   | 0.163      | 0.060          | 0.100       | 0.144       | 0.044         | 0.080         | 0.124   | 0.044      |
| 23      | 0.098   | 0.164      | 0.066          | 0.102       | 0.140       | 0.038         | 0.084         | 0.132   | 0.048      |
| 24      | 0.100   | 0.160      | 0.060          | 0.102       | 0.131       | 0.029         | 0.087         | 0.113   | 0.026      |
| Average | 0.104   | 0.158      | 0.054          | 0.101       | 0.150       | 0.049         | 0.084         | 0.133   | 0.048      |

## Appendix Table 27: EASB

| Date of Casting |       | 25-N       | lar-08         | Date of      | Testing     | 23-Jun-08  | Time of Testing |       |            |
|-----------------|-------|------------|----------------|--------------|-------------|------------|-----------------|-------|------------|
| Mix             | ( ID  | Exp A, Ste | am Curing<br>B | Mix          | Mix Type    |            | Curing Peroid   |       | 91 days    |
|                 | Mix I | d No.      | EASB-1         | Mix l        | d No.       | EASB-3     | Mix Id No.      |       | EASB-2     |
|                 |       |            | Wea            | ar depth (ii | n.) at time | (min.)     |                 |       |            |
| Pos.            | 0     | 30         | Difference     | 0            | 30          | Difference | 0               | 30    | Difference |
| 1               | 0.112 | 0.179      | 0.067          | 0.098        | 0.174       | 0.076      | 0.114           | 0.179 | 0.065      |
| 2               | 0.121 | 0.194      | 0.073          | 0.099        | 0.166       | 0.067      | 0.105           | 0.181 | 0.076      |
| 3               | 0.132 | 0.198      | 0.066          | 0.104        | 0.174       | 0.070      | 0.100           | 0.170 | 0.070      |
| 4               | 0.134 | 0.197      | 0.063          | 0.114        | 0.192       | 0.078      | 0.101           | 0.176 | 0.075      |
| 5               | 0.127 | 0.194      | 0.067          | 0.124        | 0.187       | 0.063      | 0.087           | 0.162 | 0.075      |
| 6               | 0.126 | 0.212      | 0.086          | 0.118        | 0.189       | 0.071      | 0.095           | 0.152 | 0.057      |
| 7               | 0.124 | 0.198      | 0.074          | 0.119        | 0.212       | 0.093      | 0.105           | 0.150 | 0.045      |
| 8               | 0.127 | 0.190      | 0.063          | 0.124        | 0.206       | 0.082      | 0.097           | 0.163 | 0.066      |
| 9               | 0.120 | 0.183      | 0.063          | 0.126        | 0.214       | 0.088      | 0.097           | 0.155 | 0.058      |
| 10              | 0.110 | 0.179      | 0.069          | 0.120        | 0.217       | 0.097      | 0.098           | 0.156 | 0.058      |
| 11              | 0.110 | 0.175      | 0.065          | 0.122        | 0.232       | 0.110      | 0.105           | 0.172 | 0.067      |
| 12              | 0.104 | 0.167      | 0.063          | 0.124        | 0.208       | 0.084      | 0.101           | 0.186 | 0.085      |
| 13              | 0.109 | 0.158      | 0.049          | 0.124        | 0.211       | 0.087      | 0.109           | 0.180 | 0.071      |
| 14              | 0.107 | 0.157      | 0.050          | 0.122        | 0.206       | 0.084      | 0.109           | 0.190 | 0.081      |
| 15              | 0.110 | 0.170      | 0.060          | 0.122        | 0.195       | 0.073      | 0.113           | 0.184 | 0.071      |
| 16              | 0.113 | 0.173      | 0.060          | 0.116        | 0.203       | 0.087      | 0.110           | 0.195 | 0.085      |
| 17              | 0.115 | 0.174      | 0.059          | 0.103        | 0.193       | 0.090      | 0.107           | 0.202 | 0.095      |
| 18              | 0.110 | 0.177      | 0.067          | 0.101        | 0.196       | 0.095      | 0.107           | 0.190 | 0.083      |
| 19              | 0.111 | 0.165      | 0.054          | 0.097        | 0.194       | 0.097      | 0.113           | 0.190 | 0.077      |
| 20              | 0.115 | 0.171      | 0.056          | 0.098        | 0.181       | 0.083      | 0.113           | 0.182 | 0.069      |
| 21              | 0.104 | 0.170      | 0.066          | 0.103        | 0.169       | 0.066      | 0.113           | 0.189 | 0.076      |
| 22              | 0.100 | 0.171      | 0.071          | 0.107        | 0.173       | 0.066      | 0.114           | 0.184 | 0.070      |
| 23              | 0.101 | 0.164      | 0.063          | 0.104        | 0.173       | 0.069      | 0.118           | 0.185 | 0.067      |
| 24              | 0.107 | 0.163      | 0.056          | 0.097        | 0.175       | 0.078      | 0.111           | 0.175 | 0.064      |
| Average         | 0.115 | 0.178      | 0.064          | 0.112        | 0.193       | 0.081      | 0.106           | 0.177 | 0.071      |

## Appendix Table 28: EBW

| Date of | Casting | 02-A                | pr-08      | Date of    | Testing                    | 3-Jul-08                  | Time of       | Testing |            |  |  |
|---------|---------|---------------------|------------|------------|----------------------------|---------------------------|---------------|---------|------------|--|--|
| Mix     | ( ID    | Exp-B, Water Curing |            | Міх Туре   |                            | Slag +<br>Crushed<br>rock | Curing Peroid |         | 93 days    |  |  |
|         | Mix I   | d No.               | EBW-1      | Mix Id No. |                            | EBW-2                     | Mix Id No.    |         | EBW-3      |  |  |
|         |         |                     | We         | ar depth ( | depth (in.) at time (min.) |                           |               |         |            |  |  |
| Pos.    | 0       | 30                  | Difference | 0          | 30                         | Difference                | 0             | 30      | Difference |  |  |
| 1       | 0.096   | 0.125               | 0.029      | 0.125      | 0.149                      | 0.02                      | 0.103         | 0.113   | 0.01       |  |  |
| 2       | 0.092   | 0.121               | 0.029      | 0.123      | 0.147                      | 0.02                      | 0.108         | 0.131   | 0.02       |  |  |
| 3       | 0.091   | 0.120               | 0.029      | 0.112      | 0.144                      | 0.03                      | 0.112         | 0.142   | 0.03       |  |  |
| 4       | 0.093   | 0.126               | 0.033      | 0.108      | 0.131                      | 0.02                      | 0.125         | 0.147   | 0.02       |  |  |
| 5       | 0.098   | 0.129               | 0.031      | 0.105      | 0.135                      | 0.03                      | 0.117         | 0.149   | 0.03       |  |  |
| 6       | 0.098   | 0.130               | 0.032      | 0.100      | 0.129                      | 0.03                      | 0.131         | 0.152   | 0.02       |  |  |
| 7       | 0.093   | 0.135               | 0.042      | 0.101      | 0.124                      | 0.02                      | 0.129         | 0.148   | 0.02       |  |  |
| 8       | 0.100   | 0.124               | 0.024      | 0.094      | 0.119                      | 0.03                      | 0.118         | 0.142   | 0.02       |  |  |
| 9       | 0.096   | 0.124               | 0.028      | 0.084      | 0.111                      | 0.03                      | 0.122         | 0.137   | 0.02       |  |  |
| 10      | 0.097   | 0.122               | 0.025      | 0.084      | 0.107                      | 0.02                      | 0.109         | 0.125   | 0.02       |  |  |
| 11      | 0.100   | 0.132               | 0.032      | 0.082      | 0.106                      | 0.02                      | 0.099         | 0.123   | 0.02       |  |  |
| 12      | 0.100   | 0.128               | 0.028      | 0.088      | 0.106                      | 0.02                      | 0.094         | 0.123   | 0.03       |  |  |
| 13      | 0.104   | 0.134               | 0.030      | 0.094      | 0.114                      | 0.02                      | 0.096         | 0.116   | 0.02       |  |  |
| 14      | 0.100   | 0.132               | 0.032      | 0.096      | 0.121                      | 0.03                      | 0.094         | 0.123   | 0.03       |  |  |
| 15      | 0.103   | 0.138               | 0.035      | 0.101      | 0.120                      | 0.02                      | 0.103         | 0.127   | 0.02       |  |  |
| 16      | 0.104   | 0.135               | 0.031      | 0.096      | 0.125                      | 0.03                      | 0.099         | 0.124   | 0.03       |  |  |
| 17      | 0.107   | 0.133               | 0.026      | 0.096      | 0.125                      | 0.03                      | 0.111         | 0.133   | 0.02       |  |  |
| 18      | 0.112   | 0.134               | 0.022      | 0.103      | 0.130                      | 0.03                      | 0.103         | 0.130   | 0.03       |  |  |
| 19      | 0.111   | 0.137               | 0.026      | 0.112      | 0.133                      | 0.02                      | 0.103         | 0.127   | 0.02       |  |  |
| 20      | 0.107   | 0.132               | 0.025      | 0.118      | 0.142                      | 0.02                      | 0.104         | 0.128   | 0.02       |  |  |
| 21      | 0.105   | 0.125               | 0.020      | 0.113      | 0.146                      | 0.03                      | 0.102         | 0.116   | 0.01       |  |  |
| 22      | 0.096   | 0.121               | 0.025      | 0.111      | 0.134                      | 0.02                      | 0.099         | 0.130   | 0.03       |  |  |
| 23      | 0.094   | 0.117               | 0.023      | 0.116      | 0.140                      | 0.02                      | 0.094         | 0.123   | 0.03       |  |  |
| 24      | 0.099   | 0.123               | 0.024      | 0.124      | 0.145                      | 0.02                      | 0.099         | 0.122   | 0.02       |  |  |
| Average | 0.100   | 0.128               | 0.028      | 0.104      | 0.128                      | 0.025                     | 0.107         | 0.130   | 0.023      |  |  |

#### Appendix Table 29: EBSA

| Date of | Casting | 31-N                     | 31-Mar-08  |            | Testing      | 1-Jul-08   | Time of       | Testing |            |
|---------|---------|--------------------------|------------|------------|--------------|------------|---------------|---------|------------|
| Mix     | ( ID    | Exp-B, Steam<br>Curing A |            | Mix        | Міх Туре     |            | Curing Peroid |         | 93 days    |
|         | Mix I   | d No.                    | EBSA-1     | Mix Id No. |              | EBSA-2     | Mix Id No.    |         | EBSA-3     |
|         |         |                          | We         | ar depth ( | in.) at time | e (min.)   |               |         |            |
| Pos.    | 0       | 30                       | Difference | 0          | 30           | Difference | 0             | 30      | Difference |
| 1       | 0.082   | 0.146                    | 0.064      | 0.111      | 0.160        | 0.05       | 0.112         | 0.154   | 0.04       |
| 2       | 0.093   | 0.158                    | 0.065      | 0.115      | 0.150        | 0.04       | 0.112         | 0.170   | 0.06       |
| 3       | 0.096   | 0.159                    | 0.063      | 0.101      | 0.149        | 0.05       | 0.120         | 0.171   | 0.05       |
| 4       | 0.100   | 0.161                    | 0.061      | 0.103      | 0.138        | 0.04       | 0.119         | 0.177   | 0.06       |
| 5       | 0.104   | 0.171                    | 0.067      | 0.095      | 0.136        | 0.04       | 0.124         | 0.157   | 0.03       |
| 6       | 0.104   | 0.168                    | 0.064      | 0.095      | 0.141        | 0.05       | 0.125         | 0.166   | 0.04       |
| 7       | 0.106   | 0.152                    | 0.046      | 0.087      | 0.139        | 0.05       | 0.121         | 0.163   | 0.04       |
| 8       | 0.103   | 0.164                    | 0.061      | 0.103      | 0.138        | 0.04       | 0.117         | 0.155   | 0.04       |
| 9       | 0.104   | 0.162                    | 0.058      | 0.093      | 0.144        | 0.05       | 0.113         | 0.151   | 0.04       |
| 10      | 0.105   | 0.158                    | 0.053      | 0.094      | 0.136        | 0.04       | 0.116         | 0.152   | 0.04       |
| 11      | 0.117   | 0.161                    | 0.044      | 0.095      | 0.132        | 0.04       | 0.116         | 0.149   | 0.03       |
| 12      | 0.115   | 0.173                    | 0.058      | 0.098      | 0.132        | 0.03       | 0.111         | 0.148   | 0.04       |
| 13      | 0.123   | 0.183                    | 0.060      | 0.093      | 0.134        | 0.04       | 0.110         | 0.148   | 0.04       |
| 14      | 0.130   | 0.174                    | 0.044      | 0.098      | 0.140        | 0.04       | 0.111         | 0.155   | 0.04       |
| 15      | 0.143   | 0.183                    | 0.040      | 0.106      | 0.144        | 0.04       | 0.118         | 0.158   | 0.04       |
| 16      | 0.132   | 0.182                    | 0.050      | 0.113      | 0.156        | 0.04       | 0.121         | 0.162   | 0.04       |
| 17      | 0.127   | 0.176                    | 0.049      | 0.122      | 0.161        | 0.04       | 0.124         | 0.164   | 0.04       |
| 18      | 0.115   | 0.162                    | 0.047      | 0.124      | 0.164        | 0.04       | 0.127         | 0.165   | 0.04       |
| 19      | 0.107   | 0.158                    | 0.051      | 0.125      | 0.156        | 0.03       | 0.126         | 0.160   | 0.03       |
| 20      | 0.108   | 0.157                    | 0.049      | 0.125      | 0.172        | 0.05       | 0.123         | 0.169   | 0.05       |
| 21      | 0.108   | 0.156                    | 0.048      | 0.122      | 0.180        | 0.06       | 0.125         | 0.170   | 0.05       |
| 22      | 0.098   | 0.155                    | 0.057      | 0.119      | 0.165        | 0.05       | 0.109         | 0.169   | 0.06       |
| 23      | 0.091   | 0.158                    | 0.067      | 0.123      | 0.168        | 0.05       | 0.107         | 0.153   | 0.05       |
| 24      | 0.090   | 0.160                    | 0.070      | 0.120      | 0.167        | 0.05       | 0.105         | 0.165   | 0.06       |
| Average | 0.108   | 0.164                    | 0.056      | 0.108      | 0.150        | 0.043      | 0.117         | 0.160   | 0.043      |

## Appendix Table 30: EBSB

| Date of | Casting | 31-N                     | 1ar-08     | Date of    | Testing                      | 1-Jul-08                  | Time of       | Testing |            |  |  |  |
|---------|---------|--------------------------|------------|------------|------------------------------|---------------------------|---------------|---------|------------|--|--|--|
| Mix     | ( ID    | Exp-B, Steam<br>Curing B |            | Міх Туре   |                              | Slag +<br>Crushed<br>rock | Curing Peroid |         | 93 days    |  |  |  |
|         | Mix I   | d No.                    | EBSB-1     | Mix Id No. |                              | EBSB-2                    | Mix Id No.    |         | EBSB-3     |  |  |  |
|         |         |                          | We         | ar depth ( | r depth (in.) at time (min.) |                           |               |         |            |  |  |  |
| Pos.    | 0       | 30                       | Difference | 0          | 30                           | Difference                | 0             | 30      | Difference |  |  |  |
| 1       | 0.100   | 0.136                    | 0.036      | 0.094      | 0.149                        | 0.06                      | 0.099         | 0.151   | 0.05       |  |  |  |
| 2       | 0.094   | 0.133                    | 0.039      | 0.105      | 0.143                        | 0.04                      | 0.104         | 0.133   | 0.03       |  |  |  |
| 3       | 0.088   | 0.132                    | 0.044      | 0.094      | 0.138                        | 0.04                      | 0.108         | 0.158   | 0.05       |  |  |  |
| 4       | 0.093   | 0.143                    | 0.050      | 0.101      | 0.138                        | 0.04                      | 0.124         | 0.165   | 0.04       |  |  |  |
| 5       | 0.090   | 0.139                    | 0.049      | 0.108      | 0.141                        | 0.03                      | 0.109         | 0.164   | 0.06       |  |  |  |
| 6       | 0.102   | 0.143                    | 0.041      | 0.104      | 0.141                        | 0.04                      | 0.112         | 0.148   | 0.04       |  |  |  |
| 7       | 0.113   | 0.155                    | 0.042      | 0.108      | 0.135                        | 0.03                      | 0.110         | 0.150   | 0.04       |  |  |  |
| 8       | 0.118   | 0.152                    | 0.034      | 0.102      | 0.128                        | 0.03                      | 0.102         | 0.135   | 0.03       |  |  |  |
| 9       | 0.122   | 0.162                    | 0.040      | 0.111      | 0.130                        | 0.02                      | 0.093         | 0.135   | 0.04       |  |  |  |
| 10      | 0.133   | 0.166                    | 0.033      | 0.108      | 0.137                        | 0.03                      | 0.098         | 0.135   | 0.04       |  |  |  |
| 11      | 0.137   | 0.160                    | 0.023      | 0.116      | 0.137                        | 0.02                      | 0.101         | 0.123   | 0.02       |  |  |  |
| 12      | 0.142   | 0.158                    | 0.016      | 0.115      | 0.138                        | 0.02                      | 0.095         | 0.140   | 0.05       |  |  |  |
| 13      | 0.140   | 0.160                    | 0.020      | 0.119      | 0.138                        | 0.02                      | 0.101         | 0.132   | 0.03       |  |  |  |
| 14      | 0.122   | 0.160                    | 0.038      | 0.112      | 0.141                        | 0.03                      | 0.100         | 0.138   | 0.04       |  |  |  |
| 15      | 0.124   | 0.164                    | 0.040      | 0.107      | 0.142                        | 0.04                      | 0.105         | 0.134   | 0.03       |  |  |  |
| 16      | 0.112   | 0.168                    | 0.056      | 0.103      | 0.135                        | 0.03                      | 0.102         | 0.130   | 0.03       |  |  |  |
| 17      | 0.113   | 0.148                    | 0.035      | 0.095      | 0.143                        | 0.05                      | 0.096         | 0.130   | 0.03       |  |  |  |
| 18      | 0.110   | 0.159                    | 0.049      | 0.092      | 0.133                        | 0.04                      | 0.102         | 0.135   | 0.03       |  |  |  |
| 19      | 0.110   | 0.143                    | 0.033      | 0.094      | 0.131                        | 0.04                      | 0.103         | 0.139   | 0.04       |  |  |  |
| 20      | 0.113   | 0.165                    | 0.052      | 0.103      | 0.144                        | 0.04                      | 0.098         | 0.138   | 0.04       |  |  |  |
| 21      | 0.116   | 0.158                    | 0.042      | 0.102      | 0.154                        | 0.05                      | 0.101         | 0.141   | 0.04       |  |  |  |
| 22      | 0.103   | 0.154                    | 0.051      | 0.108      | 0.154                        | 0.05                      | 0.098         | 0.144   | 0.05       |  |  |  |
| 23      | 0.093   | 0.145                    | 0.052      | 0.100      | 0.143                        | 0.04                      | 0.102         | 0.138   | 0.04       |  |  |  |
| 24      | 0.098   | 0.140                    | 0.042      | 0.090      | 0.133                        | 0.04                      | 0.088         | 0.154   | 0.07       |  |  |  |
| Average | 0.112   | 0.152                    | 0.040      | 0.104      | 0.139                        | 0.036                     | 0.102         | 0.141   | 0.039      |  |  |  |

#### Appendix Table 31: ECW

| Date of | Casting | 26-N                | 1ar-08     | Date of     | Testing     | 24-Jun-08  | Time of       | Testing |            |
|---------|---------|---------------------|------------|-------------|-------------|------------|---------------|---------|------------|
| Mix     | k ID    | Exp C, Water Curing |            | Mix         | Міх Туре    |            | Curing Peroid |         | 91 days    |
|         | Mix I   | d No.               | ECW-3      | Mix I       | d No.       | ECW-2      | Mix Id No.    |         | ECW-1      |
|         |         |                     | Wea        | ar depth (i | n.) at time | (min.)     |               |         |            |
| Pos.    | 0       | 30                  | Difference | 0           | 30          | Difference | 0             | 30      | Difference |
| 1       | 0.135   | 0.213               | 0.078      | 0.141       | 0.222       | 0.081      | 0.130         | 0.201   | 0.071      |
| 2       | 0.137   | 0.215               | 0.078      | 0.140       | 0.222       | 0.082      | 0.129         | 0.207   | 0.078      |
| 3       | 0.136   | 0.222               | 0.086      | 0.131       | 0.217       | 0.086      | 0.121         | 0.198   | 0.077      |
| 4       | 0.128   | 0.226               | 0.098      | 0.139       | 0.213       | 0.074      | 0.114         | 0.204   | 0.090      |
| 5       | 0.125   | 0.202               | 0.077      | 0.123       | 0.207       | 0.084      | 0.114         | 0.193   | 0.079      |
| 6       | 0.124   | 0.205               | 0.081      | 0.116       | 0.206       | 0.090      | 0.119         | 0.194   | 0.075      |
| 7       | 0.119   | 0.213               | 0.094      | 0.115       | 0.207       | 0.092      | 0.108         | 0.196   | 0.088      |
| 8       | 0.101   | 0.200               | 0.099      | 0.117       | 0.203       | 0.086      | 0.111         | 0.189   | 0.078      |
| 9       | 0.120   | 0.205               | 0.085      | 0.115       | 0.194       | 0.079      | 0.112         | 0.191   | 0.079      |
| 10      | 0.128   | 0.200               | 0.072      | 0.116       | 0.184       | 0.068      | 0.120         | 0.195   | 0.075      |
| 11      | 0.132   | 0.203               | 0.071      | 0.119       | 0.182       | 0.063      | 0.126         | 0.197   | 0.071      |
| 12      | 0.118   | 0.188               | 0.070      | 0.119       | 0.195       | 0.076      | 0.119         | 0.206   | 0.087      |
| 13      | 0.126   | 0.207               | 0.081      | 0.128       | 0.193       | 0.065      | 0.121         | 0.203   | 0.082      |
| 14      | 0.121   | 0.208               | 0.087      | 0.128       | 0.210       | 0.082      | 0.122         | 0.204   | 0.082      |
| 15      | 0.126   | 0.202               | 0.076      | 0.143       | 0.218       | 0.075      | 0.123         | 0.216   | 0.093      |
| 16      | 0.133   | 0.206               | 0.073      | 0.145       | 0.218       | 0.073      | 0.122         | 0.226   | 0.104      |
| 17      | 0.126   | 0.199               | 0.073      | 0.140       | 0.211       | 0.071      | 0.136         | 0.205   | 0.069      |
| 18      | 0.133   | 0.199               | 0.066      | 0.143       | 0.221       | 0.078      | 0.128         | 0.207   | 0.079      |
| 19      | 0.126   | 0.183               | 0.057      | 0.151       | 0.221       | 0.070      | 0.140         | 0.204   | 0.064      |
| 20      | 0.131   | 0.196               | 0.065      | 0.137       | 0.201       | 0.064      | 0.142         | 0.211   | 0.069      |
| 21      | 0.125   | 0.201               | 0.076      | 0.149       | 0.220       | 0.071      | 0.140         | 0.202   | 0.062      |
| 22      | 0.110   | 0.201               | 0.091      | 0.154       | 0.214       | 0.060      | 0.133         | 0.193   | 0.060      |
| 23      | 0.128   | 0.209               | 0.081      | 0.155       | 0.219       | 0.064      | 0.124         | 0.241   | 0.117      |
| 24      | 0.130   | 0.186               | 0.056      | 0.149       | 0.206       | 0.057      | 0.130         | 0.203   | 0.073      |
| Average | 0.126   | 0.204               | 0.078      | 0.134       | 0.209       | 0.075      | 0.124         | 0.204   | 0.079      |

## Appendix Table 32: ECSA

| Date of | Casting | 3/28       | /2008          | Date of     | Testing     | 6/26/2008  | Time of       | Testing |            |
|---------|---------|------------|----------------|-------------|-------------|------------|---------------|---------|------------|
| Mix     | k ID    | Exp C, Ste | am Curing<br>A | Mix         | Міх Туре    |            | Curing Peroid |         | 91 days    |
|         | Mix I   | d No.      | ECSA-1         | Mix I       | d No.       | ECSA-2     | Mix Id No.    |         | ECSA-3     |
|         |         |            | Wea            | ar depth (i | n.) at time | (min.)     |               |         |            |
| Pos.    | 0       | 30         | Difference     | 0           | 30          | Difference | 0             | 30      | Difference |
| 1       | 0.107   | 0.200      | 0.093          | 0.120       | 0.188       | 0.068      | 0.128         | 0.199   | 0.071      |
| 2       | 0.103   | 0.201      | 0.098          | 0.111       | 0.191       | 0.080      | 0.125         | 0.203   | 0.078      |
| 3       | 0.105   | 0.203      | 0.098          | 0.102       | 0.173       | 0.071      | 0.129         | 0.213   | 0.084      |
| 4       | 0.101   | 0.182      | 0.081          | 0.097       | 0.179       | 0.082      | 0.130         | 0.204   | 0.074      |
| 5       | 0.093   | 0.195      | 0.102          | 0.097       | 0.187       | 0.090      | 0.128         | 0.195   | 0.067      |
| 6       | 0.096   | 0.193      | 0.097          | 0.096       | 0.186       | 0.090      | 0.125         | 0.205   | 0.080      |
| 7       | 0.094   | 0.196      | 0.102          | 0.098       | 0.164       | 0.066      | 0.114         | 0.204   | 0.090      |
| 8       | 0.092   | 0.195      | 0.103          | 0.102       | 0.170       | 0.068      | 0.108         | 0.167   | 0.059      |
| 9       | 0.096   | 0.176      | 0.080          | 0.098       | 0.145       | 0.047      | 0.103         | 0.169   | 0.066      |
| 10      | 0.093   | 0.161      | 0.068          | 0.091       | 0.154       | 0.063      | 0.101         | 0.168   | 0.067      |
| 11      | 0.093   | 0.155      | 0.062          | 0.097       | 0.152       | 0.055      | 0.100         | 0.190   | 0.090      |
| 12      | 0.093   | 0.162      | 0.069          | 0.092       | 0.156       | 0.064      | 0.106         | 0.169   | 0.063      |
| 13      | 0.094   | 0.150      | 0.056          | 0.092       | 0.165       | 0.073      | 0.107         | 0.194   | 0.087      |
| 14      | 0.094   | 0.165      | 0.071          | 0.101       | 0.151       | 0.050      | 0.107         | 0.180   | 0.073      |
| 15      | 0.092   | 0.155      | 0.063          | 0.095       | 0.177       | 0.082      | 0.109         | 0.181   | 0.072      |
| 16      | 0.101   | 0.161      | 0.060          | 0.100       | 0.158       | 0.058      | 0.116         | 0.194   | 0.078      |
| 17      | 0.101   | 0.167      | 0.066          | 0.107       | 0.179       | 0.072      | 0.116         | 0.188   | 0.072      |
| 18      | 0.104   | 0.177      | 0.073          | 0.111       | 0.181       | 0.070      | 0.119         | 0.188   | 0.069      |
| 19      | 0.119   | 0.168      | 0.049          | 0.114       | 0.193       | 0.079      | 0.128         | 0.199   | 0.071      |
| 20      | 0.127   | 0.198      | 0.071          | 0.114       | 0.182       | 0.068      | 0.128         | 0.184   | 0.056      |
| 21      | 0.130   | 0.197      | 0.067          | 0.116       | 0.196       | 0.080      | 0.134         | 0.190   | 0.056      |
| 22      | 0.127   | 0.206      | 0.079          | 0.118       | 0.178       | 0.060      | 0.128         | 0.189   | 0.061      |
| 23      | 0.126   | 0.206      | 0.080          | 0.121       | 0.191       | 0.070      | 0.130         | 0.195   | 0.065      |
| 24      | 0.113   | 0.196      | 0.083          | 0.118       | 0.189       | 0.071      | 0.139         | 0.192   | 0.053      |
| Average | 0.104   | 0.182      | 0.078          | 0.105       | 0.174       | 0.070      | 0.119         | 0.190   | 0.071      |

## Appendix Table 33: ECSB

| Date of | Casting | 3/28       | /2008                    | Date of     | Testing     | 6/26/2008  | Time of Testing |        |            |
|---------|---------|------------|--------------------------|-------------|-------------|------------|-----------------|--------|------------|
| Mix     | k ID    | Exp C, Ste | Exp C, Steam Curing<br>B |             | Mix Type    |            | Curing Peroid   |        | 91 days    |
|         | Mix I   | d No.      | ECSB-1                   | Mix I       | d No.       | ECSB-2     | Mix Id No.      |        | ECSB-3     |
|         |         |            | Wea                      | ar depth (i | n.) at time | (min.)     |                 |        |            |
| Pos.    | 0       | 30         | Difference               | 0.000       | 30          | Difference | 0.000           | 30.000 | Difference |
| 1       | 0.122   | 0.360      | 0.238                    | 0.113       | 0.30        | 0.19       | 0.121           | 0.219  | 0.10       |
| 2       | 0.111   | 0.351      | 0.240                    | 0.119       | 0.30        | 0.19       | 0.124           | 0.323  | 0.20       |
| 3       | 0.112   | 0.345      | 0.233                    | 0.122       | 0.29        | 0.16       | 0.126           | 0.339  | 0.21       |
| 4       | 0.105   | 0.351      | 0.246                    | 0.125       | 0.27        | 0.14       | 0.120           | 0.333  | 0.21       |
| 5       | 0.102   | 0.340      | 0.238                    | 0.139       | 0.28        | 0.14       | 0.130           | 0.340  | 0.21       |
| 6       | 0.103   | 0.340      | 0.237                    | 0.151       | 0.28        | 0.13       | 0.119           | 0.316  | 0.20       |
| 7       | 0.098   | 0.339      | 0.241                    | 0.157       | 0.27        | 0.11       | 0.117           | 0.298  | 0.18       |
| 8       | 0.101   | 0.343      | 0.242                    | 0.146       | 0.30        | 0.16       | 0.112           | 0.306  | 0.19       |
| 9       | 0.101   | 0.365      | 0.264                    | 0.150       | 0.31        | 0.16       | 0.118           | 0.314  | 0.20       |
| 10      | 0.097   | 0.313      | 0.216                    | 0.143       | 0.32        | 0.18       | 0.117           | 0.306  | 0.19       |
| 11      | 0.106   | 0.317      | 0.211                    | 0.139       | 0.34        | 0.20       | 0.111           | 0.306  | 0.20       |
| 12      | 0.107   | 0.329      | 0.222                    | 0.144       | 0.35        | 0.20       | 0.119           | 0.291  | 0.17       |
| 13      | 0.112   | 0.337      | 0.225                    | 0.151       | 0.36        | 0.21       | 0.124           | 0.301  | 0.18       |
| 14      | 0.104   | 0.340      | 0.236                    | 0.147       | 0.38        | 0.23       | 0.125           | 0.276  | 0.15       |
| 15      | 0.104   | 0.331      | 0.227                    | 0.154       | 0.40        | 0.24       | 0.130           | 0.326  | 0.20       |
| 16      | 0.108   | 0.321      | 0.213                    | 0.155       | 0.39        | 0.23       | 0.144           | 0.320  | 0.18       |
| 17      | 0.104   | 0.314      | 0.210                    | 0.148       | 0.37        | 0.22       | 0.143           | 0.297  | 0.15       |
| 18      | 0.109   | 0.305      | 0.196                    | 0.149       | 0.39        | 0.24       | 0.142           | 0.325  | 0.18       |
| 19      | 0.114   | 0.293      | 0.179                    | 0.141       | 0.37        | 0.23       | 0.146           | 0.326  | 0.18       |
| 20      | 0.116   | 0.308      | 0.192                    | 0.128       | 0.33        | 0.20       | 0.139           | 0.324  | 0.19       |
| 21      | 0.115   | 0.316      | 0.201                    | 0.117       | 0.32        | 0.21       | 0.134           | 0.321  | 0.19       |
| 22      | 0.114   | 0.330      | 0.216                    | 0.115       | 0.31        | 0.20       | 0.123           | 0.292  | 0.17       |
| 23      | 0.124   | 0.336      | 0.212                    | 0.117       | 0.31        | 0.20       | 0.123           | 0.306  | 0.18       |
| 24      | 0.118   | 0.354      | 0.236                    | 0.121       | 0.31        | 0.19       | 0.122           | 0.300  | 0.18       |
| Average | 0.109   | 0.332      | 0.224                    | 0.137       | 0.326       | 0.189      | 0.126           | 0.309  | 0.182      |

## Appendix Table 34: EDW

| Date of | Casting | 02-A                   | pr-08      | Date of    | Testing                    | 3-Jul-08   | Time of       | Testing |            |  |  |
|---------|---------|------------------------|------------|------------|----------------------------|------------|---------------|---------|------------|--|--|
| Mix     | ( ID    | Exp-D, Water<br>Curing |            | Mix        | Міх Туре                   |            | Curing Peroid |         | 93 days    |  |  |
|         | Mix I   | d No.                  | EDW-1      | Mix Id No. |                            | EDW-2      | Mix Id No.    |         | EDW-3      |  |  |
|         |         |                        | We         | ar depth ( | depth (in.) at time (min.) |            |               |         |            |  |  |
| Pos.    | 0       | 30                     | Difference | 0          | 30                         | Difference | 0             | 30      | Difference |  |  |
| 1       | 0.108   | 0.144                  | 0.036      | 0.113      | 0.142                      | 0.03       | 0.103         | 0.146   | 0.04       |  |  |
| 2       | 0.105   | 0.146                  | 0.041      | 0.113      | 0.141                      | 0.03       | 0.104         | 0.146   | 0.04       |  |  |
| 3       | 0.100   | 0.139                  | 0.039      | 0.112      | 0.139                      | 0.03       | 0.107         | 0.142   | 0.04       |  |  |
| 4       | 0.087   | 0.132                  | 0.045      | 0.105      | 0.141                      | 0.04       | 0.105         | 0.132   | 0.03       |  |  |
| 5       | 0.091   | 0.132                  | 0.041      | 0.110      | 0.144                      | 0.03       | 0.115         | 0.132   | 0.02       |  |  |
| 6       | 0.083   | 0.126                  | 0.043      | 0.111      | 0.149                      | 0.04       | 0.131         | 0.126   | (0.01)     |  |  |
| 7       | 0.092   | 0.140                  | 0.048      | 0.111      | 0.146                      | 0.04       | 0.111         | 0.140   | 0.03       |  |  |
| 8       | 0.099   | 0.131                  | 0.032      | 0.107      | 0.140                      | 0.03       | 0.108         | 0.131   | 0.02       |  |  |
| 9       | 0.107   | 0.147                  | 0.040      | 0.107      | 0.133                      | 0.03       | 0.107         | 0.147   | 0.04       |  |  |
| 10      | 0.109   | 0.147                  | 0.038      | 0.105      | 0.132                      | 0.03       | 0.109         | 0.147   | 0.04       |  |  |
| 11      | 0.110   | 0.142                  | 0.032      | 0.102      | 0.129                      | 0.03       | 0.100         | 0.142   | 0.04       |  |  |
| 12      | 0.108   | 0.146                  | 0.038      | 0.103      | 0.135                      | 0.03       | 0.094         | 0.146   | 0.05       |  |  |
| 13      | 0.108   | 0.151                  | 0.043      | 0.106      | 0.133                      | 0.03       | 0.095         | 0.151   | 0.06       |  |  |
| 14      | 0.107   | 0.148                  | 0.041      | 0.103      | 0.131                      | 0.03       | 0.094         | 0.148   | 0.05       |  |  |
| 15      | 0.110   | 0.154                  | 0.044      | 0.106      | 0.134                      | 0.03       | 0.103         | 0.154   | 0.05       |  |  |
| 16      | 0.108   | 0.161                  | 0.053      | 0.102      | 0.136                      | 0.03       | 0.100         | 0.161   | 0.06       |  |  |
| 17      | 0.112   | 0.162                  | 0.050      | 0.106      | 0.137                      | 0.03       | 0.111         | 0.162   | 0.05       |  |  |
| 18      | 0.111   | 0.158                  | 0.047      | 0.105      | 0.151                      | 0.05       | 0.103         | 0.158   | 0.06       |  |  |
| 19      | 0.114   | 0.162                  | 0.048      | 0.106      | 0.156                      | 0.05       | 0.103         | 0.162   | 0.06       |  |  |
| 20      | 0.103   | 0.160                  | 0.057      | 0.109      | 0.161                      | 0.05       | 0.104         | 0.160   | 0.06       |  |  |
| 21      | 0.098   | 0.148                  | 0.050      | 0.118      | 0.165                      | 0.05       | 0.103         | 0.148   | 0.05       |  |  |
| 22      | 0.110   | 0.156                  | 0.046      | 0.112      | 0.164                      | 0.05       | 0.099         | 0.156   | 0.06       |  |  |
| 23      | 0.112   | 0.152                  | 0.040      | 0.101      | 0.145                      | 0.04       | 0.094         | 0.152   | 0.06       |  |  |
| 24      | 0.096   | 0.144                  | 0.048      | 0.102      | 0.141                      | 0.04       | 0.099         | 0.144   | 0.05       |  |  |
| Average | 0.104   | 0.147                  | 0.043      | 0.107      | 0.143                      | 0.035      | 0.104         | 0.147   | 0.043      |  |  |
## Appendix Table 35: EDSA

| Date of | Casting | 30-N           | 1ar-08        | Date of    | Testing      | 30-Jun-08              | Time of | Testing |            |
|---------|---------|----------------|---------------|------------|--------------|------------------------|---------|---------|------------|
| Mix     | ( ID    | Exp-D,<br>Curi | Steam<br>ng A | Mix        | Туре         | FA+<br>Crushed<br>Rock | Curing  | Peroid  | 93 days    |
|         | Mix I   | d No.          | EDSA-1        | Mix I      | d No.        | EDSA-2                 | Mix I   | d No.   | EDSA-3     |
|         |         | V              |               | ar depth ( | in.) at time | e (min.)               |         |         |            |
| Pos.    | 0       | 30             | Difference    | 0          | 30           | Difference             | 0       | 30      | Difference |
| 1       | 0.107   | 0.179          | 0.072         | 0.115      | 0.205        | 0.09                   | 0.111   | 0.185   | 0.07       |
| 2       | 0.105   | 0.175          | 0.070         | 0.112      | 0.211        | 0.10                   | 0.114   | 0.207   | 0.09       |
| 3       | 0.107   | 0.182          | 0.075         | 0.107      | 0.197        | 0.09                   | 0.114   | 0.211   | 0.10       |
| 4       | 0.099   | 0.178          | 0.079         | 0.109      | 0.215        | 0.11                   | 0.109   | 0.199   | 0.09       |
| 5       | 0.106   | 0.186          | 0.080         | 0.113      | 0.174        | 0.06                   | 0.119   | 0.203   | 0.08       |
| 6       | 0.097   | 0.182          | 0.085         | 0.122      | 0.192        | 0.07                   | 0.131   | 0.225   | 0.09       |
| 7       | 0.099   | 0.203          | 0.104         | 0.116      | 0.207        | 0.09                   | 0.118   | 0.233   | 0.12       |
| 8       | 0.122   | 0.202          | 0.080         | 0.117      | 0.178        | 0.06                   | 0.137   | 0.245   | 0.11       |
| 9       | 0.099   | 0.186          | 0.087         | 0.116      | 0.178        | 0.06                   | 0.116   | 0.215   | 0.10       |
| 10      | 0.104   | 0.160          | 0.056         | 0.118      | 0.172        | 0.05                   | 0.109   | 0.200   | 0.09       |
| 11      | 0.111   | 0.179          | 0.068         | 0.114      | 0.178        | 0.06                   | 0.107   | 0.217   | 0.11       |
| 12      | 0.111   | 0.180          | 0.069         | 0.113      | 0.168        | 0.06                   | 0.112   | 0.179   | 0.07       |
| 13      | 0.111   | 0.158          | 0.047         | 0.113      | 0.157        | 0.04                   | 0.115   | 0.201   | 0.09       |
| 14      | 0.110   | 0.167          | 0.057         | 0.104      | 0.164        | 0.06                   | 0.125   | 0.201   | 0.08       |
| 15      | 0.111   | 0.174          | 0.063         | 0.097      | 0.162        | 0.07                   | 0.130   | 0.184   | 0.05       |
| 16      | 0.118   | 0.167          | 0.049         | 0.096      | 0.162        | 0.07                   | 0.136   | 0.204   | 0.07       |
| 17      | 0.116   | 0.174          | 0.058         | 0.096      | 0.157        | 0.06                   | 0.129   | 0.203   | 0.07       |
| 18      | 0.117   | 0.178          | 0.061         | 0.099      | 0.172        | 0.07                   | 0.119   | 0.198   | 0.08       |
| 19      | 0.118   | 0.163          | 0.045         | 0.100      | 0.178        | 0.08                   | 0.122   | 0.173   | 0.05       |
| 20      | 0.110   | 0.174          | 0.064         | 0.099      | 0.184        | 0.09                   | 0.113   | 0.176   | 0.06       |
| 21      | 0.114   | 0.161          | 0.047         | 0.106      | 0.182        | 0.08                   | 0.114   | 0.171   | 0.06       |
| 22      | 0.114   | 0.174          | 0.060         | 0.110      | 0.199        | 0.09                   | 0.109   | 0.155   | 0.05       |
| 23      | 0.109   | 0.172          | 0.063         | 0.108      | 0.195        | 0.09                   | 0.109   | 0.166   | 0.06       |
| 24      | 0.106   | 0.165          | 0.059         | 0.108      | 0.197        | 0.09                   | 0.108   | 0.185   | 0.08       |
| Average | 0.109   | 0.176          | 0.067         | 0.109      | 0.183        | 0.074                  | 0.118   | 0.197   | 0.080      |

## Appendix Table 36: EDSB

| Date of | Casting | 30-N           | 1ar-08        | Date of    | Testing      | 30-Jun-08              | Time of | Testing |            |
|---------|---------|----------------|---------------|------------|--------------|------------------------|---------|---------|------------|
| Miz     | ( ID    | Exp-D,<br>Curi | Steam<br>ng B | Mix        | Туре         | FA+<br>Crushed<br>Rock | Curing  | Peroid  | 93 days    |
|         | Mix I   | d No.          | EDSB-2        | Mix I      | d No.        | EDSB-1                 | Mix I   | d No.   | EDSB-3     |
|         |         |                | We            | ar depth ( | in.) at time | e (min.)               |         |         |            |
| Pos.    | 0       | 30             | Difference    | 0          | 30           | Difference             | 0       | 30      | Difference |
| 1       | 0.108   | 0.169          | 0.169 0.061   |            | 0.188        | 0.08                   | 0.147   | 0.197   | 0.05       |
| 2       | 0.109   | 0.187          | 0.078         | 0.110      | 0.188        | 0.08                   | 0.141   | 0.218   | 0.08       |
| 3       | 0.100   | 0.175          | 0.075         | 0.110      | 0.195        | 0.09                   | 0.141   | 0.195   | 0.05       |
| 4       | 0.109   | 0.187          | 0.078         | 0.108      | 0.187        | 0.08                   | 0.142   | 0.207   | 0.07       |
| 5       | 0.110   | 0.196          | 0.086         | 0.105      | 0.189        | 0.08                   | 0.135   | 0.204   | 0.07       |
| 6       | 0.105   | 0.185          | 0.080         | 0.105      | 0.203        | 0.10                   | 0.130   | 0.189   | 0.06       |
| 7       | 0.098   | 0.183          | 0.085         | 0.097      | 0.172        | 0.08                   | 0.111   | 0.211   | 0.10       |
| 8       | 0.105   | 0.182          | 0.077         | 0.090      | 0.189        | 0.10                   | 0.107   | 0.156   | 0.05       |
| 9       | 0.100   | 0.172          | 0.072         | 0.087      | 0.173        | 0.09                   | 0.102   | 0.172   | 0.07       |
| 10      | 0.095   | 0.182          | 0.087         | 0.097      | 0.179        | 0.08                   | 0.108   | 0.181   | 0.07       |
| 11      | 0.099   | 0.155          | 0.056         | 0.097      | 0.164        | 0.07                   | 0.107   | 0.193   | 0.09       |
| 12      | 0.095   | 0.175          | 0.080         | 0.108      | 0.181        | 0.07                   | 0.100   | 0.206   | 0.11       |
| 13      | 0.094   | 0.181          | 0.087         | 0.107      | 0.175        | 0.07                   | 0.108   | 0.215   | 0.11       |
| 14      | 0.098   | 0.177          | 0.079         | 0.105      | 0.180        | 0.08                   | 0.105   | 0.205   | 0.10       |
| 15      | 0.096   | 0.191          | 0.095         | 0.111      | 0.170        | 0.06                   | 0.107   | 0.197   | 0.09       |
| 16      | 0.091   | 0.189          | 0.098         | 0.123      | 0.185        | 0.06                   | 0.118   | 0.201   | 0.08       |
| 17      | 0.094   | 0.177          | 0.083         | 0.119      | 0.188        | 0.07                   | 0.120   | 0.203   | 0.08       |
| 18      | 0.097   | 0.180          | 0.083         | 0.126      | 0.197        | 0.07                   | 0.120   | 0.215   | 0.10       |
| 19      | 0.100   | 0.171          | 0.071         | 0.125      | 0.208        | 0.08                   | 0.127   | 0.204   | 0.08       |
| 20      | 0.100   | 0.178          | 0.078         | 0.123      | 0.205        | 0.08                   | 0.133   | 0.213   | 0.08       |
| 21      | 0.106   | 0.181          | 0.075         | 0.123      | 0.186        | 0.06                   | 0.147   | 0.209   | 0.06       |
| 22      | 0.108   | 0.203          | 0.095         | 0.121      | 0.188        | 0.07                   | 0.148   | 0.201   | 0.05       |
| 23      | 0.112   | 0.183          | 0.071         | 0.115      | 0.183        | 0.07                   | 0.142   | 0.199   | 0.06       |
| 24      | 0.114   | 0.183          | 0.069         | 0.114      | 0.178        | 0.06                   | 0.153   | 0.210   | 0.06       |
| Average | 0.102   | 0.181          | 0.079         | 0.110      | 0.185        | 0.076                  | 0.125   | 0.200   | 0.075      |

# Freeze-Thaw Tests

Appendix Table 37: CW

| Oregon State University               |                                                                                                                                                                                                                                                                                                                               |                                  |                                              |                                                            |                                 |                  |                        |                                |    |  |  |  |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------|------------------------------------------------------------|---------------------------------|------------------|------------------------|--------------------------------|----|--|--|--|--|
|                                       |                                                                                                                                                                                                                                                                                                                               | Res                              | sistance                                     | of Concr                                                   | ete to Rapid                    | Freezing a       | nd Thawing.            |                                |    |  |  |  |  |
|                                       | ASTM C 66                                                                                                                                                                                                                                                                                                                     | 6 - Standa                       | ard Test N                                   | lethod for                                                 | r Resistance o                  | of Concrete      | to Rapid Freezing and  | Thawing.                       |    |  |  |  |  |
|                                       | ASTM C 215- 5                                                                                                                                                                                                                                                                                                                 | Standard                         | Test Meth                                    | od for Fu                                                  | ndamental Tra                   | ansverse Lo      | projuginal and Torsion | nal Resonan                    | nt |  |  |  |  |
| Lab Ide<br>Concre<br>Length<br>Breadt | .ab Identification No: CW   Date of Casting:   9-Apr-08     Concrete Mix Type:   Curing Period:34 days   9-Apr-08     .ength of Specimen,   0.280   Radius of Gyration, K:   0.0789     Breadth of Specimen,   0.0774   0.078976   Correction Factor, T:   1.470     C=0.9464 L <sup>3</sup> T/bt <sup>3</sup> :   877.741748 |                                  |                                              |                                                            |                                 |                  |                        |                                |    |  |  |  |  |
| Serial                                | Date                                                                                                                                                                                                                                                                                                                          | Weight<br>of<br>specime<br>n, Kg | Number<br>of<br>Freeze &<br>Thaw<br>cycle, C | Cumulati<br>ve<br>number<br>of freeze<br>and thaw<br>cycle | Fundamental<br>Frequency,<br>Hz | Dynar            | nic Modulus, Gpa       | Relative<br>Dynamic<br>Modulus |    |  |  |  |  |
| 1                                     | 13-May-08                                                                                                                                                                                                                                                                                                                     | 3.566                            | 0                                            | 0                                                          | 2788                            | E <sub>0</sub>   | 24.33                  | 100                            |    |  |  |  |  |
| 2                                     | 14-May-08                                                                                                                                                                                                                                                                                                                     | 3.566                            | 6                                            | 6                                                          | 2748                            | E <sub>6</sub>   | 23.64                  | 97.15                          |    |  |  |  |  |
| 3                                     | 15-May-08                                                                                                                                                                                                                                                                                                                     | 3.566                            | 5                                            | 11                                                         | 2728                            | E <sub>11</sub>  | 23.29                  | 95.74                          |    |  |  |  |  |
| 4                                     | 16-May-08                                                                                                                                                                                                                                                                                                                     | 3.566                            | 5                                            | 16                                                         | 2725                            | E <sub>16</sub>  | 23.24                  | 95.53                          |    |  |  |  |  |
| 5                                     | 17-May-08                                                                                                                                                                                                                                                                                                                     | 3.566                            | 5                                            | 21                                                         | 2722                            | E <sub>21</sub>  | 23.19                  | 95.32                          |    |  |  |  |  |
| 6                                     | 19-May-08                                                                                                                                                                                                                                                                                                                     | 3.566                            | 11                                           | 32                                                         | 2721                            | E <sub>32</sub>  | 23.17                  | 95.25                          |    |  |  |  |  |
| 7                                     | 22-May-08                                                                                                                                                                                                                                                                                                                     | 3.566                            | 18                                           | 50                                                         | 2712                            | E <sub>50</sub>  | 23.02                  | 94.62                          |    |  |  |  |  |
| 8                                     | 26-May-08                                                                                                                                                                                                                                                                                                                     | 3.566                            | 23                                           | 73                                                         | 2720                            | E <sub>73</sub>  | 23.16                  | 95.18                          |    |  |  |  |  |
| 9                                     | 1-Jun-08                                                                                                                                                                                                                                                                                                                      | 3.566                            | 33                                           | 106                                                        | 2720                            | E <sub>106</sub> | 23.16                  | 95.18                          |    |  |  |  |  |
| 10                                    | 7-Jun-08                                                                                                                                                                                                                                                                                                                      | 3.566                            | 30                                           | 136                                                        | 2716                            | E <sub>136</sub> | 23.09                  | 94.90                          |    |  |  |  |  |
| 11                                    | 12-Jun-08                                                                                                                                                                                                                                                                                                                     | 3.566                            | 32                                           | 168                                                        | 2704                            | E <sub>168</sub> | 22.89                  | 94.06                          |    |  |  |  |  |
| 12                                    | 18-Jun-08                                                                                                                                                                                                                                                                                                                     | 3.566                            | 34                                           | 202                                                        | 2699                            | E <sub>202</sub> | 22.80                  | 93.72                          |    |  |  |  |  |
| 13                                    | 24-Jun-08                                                                                                                                                                                                                                                                                                                     | 3.566                            | 35                                           | 237                                                        | 2686                            | E <sub>237</sub> | 22.58                  | 92.82                          |    |  |  |  |  |
| 14                                    | 29-Jun-08                                                                                                                                                                                                                                                                                                                     | 3.566                            | 31                                           | 268                                                        | 2675                            | E <sub>268</sub> | 22.40                  | 92.06                          |    |  |  |  |  |
| 15                                    | 5-Jul-08                                                                                                                                                                                                                                                                                                                      | 3.566                            | 33                                           | 301                                                        | 2665                            | E <sub>301</sub> | 22.23                  | 91.37                          |    |  |  |  |  |

## Appendix Table 38: CSA

| Lab Ident  | ification No: CSA 2 |            |                           |                                              |                                                            |                                     |                  | Date of Casting:                           | / 29-Mar-08                    |  |
|------------|---------------------|------------|---------------------------|----------------------------------------------|------------------------------------------------------------|-------------------------------------|------------------|--------------------------------------------|--------------------------------|--|
| Concrete   | Mix Type: Co        | ontrol Mix | , Steam Curing A          |                                              |                                                            |                                     |                  | Curing Period:days                         |                                |  |
| Length of  | Specimen, in., 1    | 11.064     | 0.280                     |                                              |                                                            |                                     |                  | Radius of Gyration, K:                     | 0.0794                         |  |
| Breadth o  | f Specimen, in.:    | 3.062      | 0.0780                    | 0.079388                                     |                                                            |                                     | -                | Correction Factor, T:                      | 1.474                          |  |
| Width of   | specimen, in. :     | 3.02       | 0.0770                    | 1.47388                                      |                                                            |                                     |                  | C=0.9464 L <sup>3</sup> T/bt <sup>3:</sup> | 859.89                         |  |
| Serial No. | Date                |            | Weight of<br>specimen, Kg | Number<br>of<br>Freeze &<br>Thaw<br>cycle, C | Cumulati<br>ve<br>number<br>of freeze<br>and thaw<br>cycle | Fundament<br>al<br>Frequency,<br>Hz |                  | Dynamic Modulus, Gpa                       | Relative<br>Dynamic<br>Modulus |  |
| 1          | 13-May-08           |            | 3.7224                    | 0                                            | 0                                                          | 2968                                | E <sub>0</sub>   | 28.20                                      | 100                            |  |
| 2          | 14-May-08           |            | 3.7224                    | 6                                            | 6                                                          | 2937                                | E <sub>6</sub>   | 27.61                                      | 97.92196                       |  |
| 3          | 15-May-08           |            | 3.7224                    | 5                                            | 11                                                         | 2924                                | E <sub>11</sub>  | 27.37                                      | 97.05702                       |  |
| 4          | 16-May-08           |            | 3.7224                    | 5                                            | 16                                                         | 2915                                | E <sub>16</sub>  | 27.20                                      | 96.46046                       |  |
| 5          | 17-May-08           |            | 3.7224                    | 5                                            | 21                                                         | 2900                                | E <sub>21</sub>  | 26.92                                      | 95.47028                       |  |
| 6          | 19-May-08           |            | 3.7224                    | 11                                           | 32                                                         | 2897                                | E <sub>32</sub>  | 26.86                                      | 95.27286                       |  |
| 7          | 22-May-08           |            | 3.7224                    | 18                                           | 50                                                         | 2896                                | E <sub>50</sub>  | 26.85                                      | 95.2071                        |  |
| 8          | 26-May-08           |            | 3.7224                    | 23                                           | 73                                                         | 2909                                | E <sub>73</sub>  | 27.09                                      | 96.06378                       |  |
| 9          | 1-Jun-08            |            | 3.7224                    | 33                                           | 106                                                        | 2905                                | E <sub>106</sub> | 27.01                                      | 95.79977                       |  |
| 10         | 7-Jun-08            |            | 3.7224                    | 30                                           | 136                                                        | 2895                                | E <sub>136</sub> | 26.83                                      | 95.14136                       |  |
| 11         | 12-Jun-08           |            | 3.7224                    | 32                                           | 168                                                        | 2876                                | E <sub>168</sub> | 26.48                                      | 93.89662                       |  |
| 12         | 18-Jun-08           |            | 3.7224                    | 34                                           | 202                                                        | 2875                                | E <sub>202</sub> | 26.46                                      | 93.83134                       |  |
| 13         | 24-Jun-08           |            | 3.7224                    | 35                                           | 237                                                        | 2870                                | E <sub>237</sub> | 26.37                                      | 93.50525                       |  |
| 14         | 29-Jun-08           |            | 3.7224                    | 31                                           | 268                                                        | 2870                                | E <sub>268</sub> | 26.37                                      | 93.50525                       |  |
| 15         | 5-Jul-08            |            | 3.7224                    | 33                                           | 301                                                        | 2870                                | E <sub>301</sub> | 26.37                                      | 93.51                          |  |

# Appendix Table 39: CSB

| Lab Ident | ification No: CSB | 2          |                          |                                              |                                                            |                 |                   |                  | Date of C | asting:                           | / 29-Mar-08                    |  |
|-----------|-------------------|------------|--------------------------|----------------------------------------------|------------------------------------------------------------|-----------------|-------------------|------------------|-----------|-----------------------------------|--------------------------------|--|
| Concrete  | Mix Type:         | Control Mi | x, Steam Curing I        | 3                                            |                                                            |                 |                   |                  | Curing Pe | eriod:days                        |                                |  |
| Length of | Specimen, in.,    | 11.052     | 0.281                    |                                              |                                                            |                 |                   |                  | Radius of | Gyration, K:                      | 0.0781                         |  |
| Breadth o | f Specimen, in.:  | 3.075      | 0.0780                   | 0.078078                                     |                                                            |                 |                   |                  | Correctio | n Factor, T:                      | 1.461                          |  |
| Width of  | specimen, in. :   | 3          | 0.0760                   | 1.460781                                     |                                                            |                 |                   |                  | C=0.9464  | L <sup>3</sup> T/bt <sup>3:</sup> | 895.87                         |  |
|           |                   |            |                          |                                              |                                                            |                 |                   |                  |           |                                   |                                |  |
| Serial No | Date              |            | Weight of<br>specimen, K | Number<br>of<br>Freeze 8<br>Thaw<br>cycle, C | Cumulati<br>ve<br>number<br>of freeze<br>and thaw<br>cycle | Funda<br>Freque | mental<br>ncy, Hz |                  | Dynamic N | lodulus, Gpa                      | Relative<br>Dynamic<br>Modulus |  |
| 1         | 13-May-0          | 08         | 3.77                     | 0                                            | 0                                                          | 30              | 03                | E <sub>0</sub>   | 30.46     |                                   | 100                            |  |
| 2         | 14-May-0          | 08         | 3.77                     | 6                                            | 6                                                          | 29              | 55                | E <sub>6</sub>   | 29.49     |                                   | 96.82875                       |  |
| 3         | 15-May-0          | 08         | 3.77                     | 5                                            | 11                                                         | 29              | 53                | E <sub>11</sub>  | 29.45     |                                   | 96.69772                       |  |
| 4         | 16-May-0          | 08         | 3.77                     | 5                                            | 16                                                         | 29              | 46                | E <sub>16</sub>  | 29.31     |                                   | 96.23982                       |  |
| 5         | 17-May-0          | 08         | 3.77                     | 5                                            | 21                                                         | 29              | 35                | E <sub>21</sub>  | 29.09     |                                   | 95.52247                       |  |
| 6         | 19-May-0          | 08         | 3.77                     | 11                                           | 32                                                         | 29              | 35                | E <sub>32</sub>  | 29.09     |                                   | 95.52247                       |  |
| 7         | 22-May-0          | 08         | 3.77                     | 18                                           | 50                                                         | 29              | 32                | E <sub>50</sub>  | 29.03     |                                   | 95.32729                       |  |
| 8         | 26-May-0          | 08         | 3.77                     | 23                                           | 73                                                         | 29              | 68                | E <sub>73</sub>  | 29.75     |                                   | 97.68258                       |  |
| 9         | 1-Jun-0           | 8          | 3.77                     | 33                                           | 106                                                        | 29              | 63                | E <sub>106</sub> | 29.65     |                                   | 97.35374                       |  |
| 10        | 7-Jun-0           | 8          | 3.77                     | 30                                           | 136                                                        | 29              | 50                | E <sub>136</sub> | 29.39     |                                   | 96.50135                       |  |
| 11        | 12-Jun-0          | )8         | 3.77                     | 32                                           | 168                                                        | 29              | 50                | E <sub>168</sub> | 29.39     |                                   | 96.50135                       |  |
| 12        | 18-Jun-0          | )8         | 3.77                     | 34                                           | 202                                                        | 29              | 49                | E <sub>202</sub> | 29.37     |                                   | 96.43593                       |  |
| 13        | 24-Jun-0          | )8         | 3.77                     | 35                                           | 237                                                        | 29              | 47                | E <sub>237</sub> | 29.33     |                                   | 96.30517                       |  |
| 14        | 29-Jun-0          | )8         | 3.77                     | 31                                           | 268                                                        | 29              | 41                | E <sub>268</sub> | 29.21     |                                   | 95.91342                       |  |
| 15        | 5-Jul-08          | В          | 3.77                     | 33                                           | 301                                                        | 29              | 38                | E <sub>301</sub> | 29.15     |                                   | 95.72                          |  |

#### Appendix Table 40: EAW

| Lab Ident<br>Concrete<br>Length of<br>Breadth o<br>Width of | ification No: EAW<br>Mix Type:<br>Specimen, in.,<br>of Specimen, in.:<br>f specimen, in. : | 2 1<br>Exp A- Wa<br>11.034<br>3.034<br>3.011 | ater Curing<br>0.280<br>0.0771<br>0.0765 | 0.07887<br>1.468725                          | l                                                          |                              | I                | Date of Casting:<br>Curing Period:days<br>Radius of Gyration, K:<br>Correction Factor, T:<br>C=0.9464 L <sup>3</sup> T/bt <sup>3:</sup> | / 24-Mar-08<br>0.0789<br>1.469<br>884.00 |  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| Serial No.                                                  | . Date                                                                                     |                                              | Weight of<br>specimen, Kg                | Number<br>of<br>Freeze &<br>Thaw<br>cycle, C | Cumulati<br>ve<br>number<br>of freeze<br>and thaw<br>cycle | Fundamental<br>Frequency, Hz |                  | Dynamic Modulus, Gpa                                                                                                                    | Relative<br>Dynamic<br>Modulus           |  |
| 1                                                           | 13-May-0                                                                                   | )8                                           | 3.78                                     | 0                                            | 0                                                          | 3148                         | E <sub>0</sub>   | 33.11                                                                                                                                   | 100                                      |  |
| 2                                                           | 14-May-0                                                                                   | )8                                           | 3.78                                     | 6                                            | 6                                                          | 3114                         | E <sub>6</sub>   | 32.40                                                                                                                                   | 97.85156                                 |  |
| 3                                                           | 15-May-0                                                                                   | )8                                           | 3.78                                     | 5                                            | 11                                                         | 3109                         | E <sub>11</sub>  | 32.30                                                                                                                                   | 97.53758                                 |  |
| 4                                                           | 16-May-0                                                                                   | 8                                            | 3.78                                     | 5                                            | 16                                                         | 3078                         | E <sub>16</sub>  | 31.66                                                                                                                                   | 95.60218                                 |  |
| 5                                                           | 17-May-0                                                                                   | 8                                            | 3.78                                     | 5                                            | 21                                                         | 3074                         | E <sub>21</sub>  | 31.58                                                                                                                                   | 95.35386                                 |  |
| 6                                                           | 19-May-0                                                                                   | 8                                            | 3.78                                     | 11                                           | 32                                                         | 3073                         | E <sub>32</sub>  | 31.55                                                                                                                                   | 95.29183                                 |  |
| 7                                                           | 22-May-0                                                                                   | 8                                            | 3.78                                     | 18                                           | 50                                                         | 3073                         | E <sub>50</sub>  | 31.55                                                                                                                                   | 95.29183                                 |  |
| 8                                                           | 26-May-0                                                                                   | 8                                            | 3.78                                     | 23                                           | 73                                                         | 3103                         | E <sub>73</sub>  | 32.17                                                                                                                                   | 97.16148                                 |  |
| 9                                                           | 1-Jun-08                                                                                   | 8                                            | 3.78                                     | 33                                           | 106                                                        | 3094                         | E <sub>106</sub> | 31.99                                                                                                                                   | 96.59868                                 |  |
| 10                                                          | 7-Jun-08                                                                                   | В                                            | 3.78                                     | 30                                           | 136                                                        | 3090                         | E <sub>136</sub> | 31.91                                                                                                                                   | 96.34907                                 |  |
| 11                                                          | 12-Jun-0                                                                                   | 8                                            | 3.78                                     | 32                                           | 168                                                        | 3084                         | E <sub>168</sub> | 31.78                                                                                                                                   | 95.97526                                 |  |
| 12                                                          | 18-Jun-0                                                                                   | 8                                            | 3.78                                     | 34                                           | 202                                                        | 3082                         | E <sub>202</sub> | 31.74                                                                                                                                   | 95.85082                                 |  |
| 13                                                          | 24-Jun-0                                                                                   | 8                                            | 3.78                                     | 35                                           | 237                                                        | 3078                         | E <sub>237</sub> | 31.66                                                                                                                                   | 95.60218                                 |  |
| 14                                                          | 29-Jun-0                                                                                   | 8                                            | 3.78                                     | 31                                           | 268                                                        | 3063                         | E <sub>268</sub> | 31.35                                                                                                                                   | 94.67265                                 |  |
| 15                                                          | 5-Jul-08                                                                                   | 3                                            | 3.78                                     | 33                                           | 301                                                        | 3061                         | E <sub>301</sub> | 31.31                                                                                                                                   | 94.55                                    |  |

## Appendix Table 41: EASA

| Lab Ident<br>Concrete<br>Length of<br>Breadth o<br>Width of | ification No: EASA<br>Mix Type: E<br>f Specimen, in.,<br>of Specimen, in.:<br>f specimen, in. : | 1<br>Exp A- Ste<br>11.008<br>3.092<br>3.042 | eam Curing A<br>0.2800<br>0.0785<br>0.0770 | 0.07939<br>1.47388                           | l                                                          |                              | I                | Date of Casting:<br>Curing Period:days<br>Radius of Gyration, K:<br>Correction Factor, T:<br>C=0.9464 L <sup>3</sup> T/bt <sup>3:</sup> | / 25-Mar-08<br>0.0794<br>1.474<br>854.42 |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| Serial No.                                                  | . Date                                                                                          |                                             | Weight of<br>specimen, Kg                  | Number<br>of<br>Freeze &<br>Thaw<br>cycle, C | Cumulati<br>ve<br>number<br>of freeze<br>and thaw<br>cycle | Fundamental<br>Frequency, Hz |                  | Dynamic Modulus, Gpa                                                                                                                    | Relative<br>Dynamic<br>Modulus           |  |
| 1                                                           | 13-May-08                                                                                       | 3                                           | 3.72                                       | 0                                            | 0                                                          | 3168                         | E0               | 31.90                                                                                                                                   | 100                                      |  |
| 2                                                           | 14-May-08                                                                                       | 3                                           | 3.72                                       | 6                                            | 6                                                          | 3138                         | E <sub>6</sub>   | 31.30                                                                                                                                   | 98.11503                                 |  |
| 3                                                           | 15-May-08                                                                                       | 3                                           | 3.72                                       | 5                                            | 11                                                         | 3120                         | E <sub>11</sub>  | 30.94                                                                                                                                   | 96.99265                                 |  |
| 4                                                           | 16-May-08                                                                                       | 3                                           | 3.72                                       | 5                                            | 16                                                         | 3096                         | E <sub>16</sub>  | 30.47                                                                                                                                   | 95.5062                                  |  |
| 5                                                           | 17-May-08                                                                                       | 3                                           | 3.72                                       | 5                                            | 21                                                         | 3085                         | E <sub>21</sub>  | 30.25                                                                                                                                   | 94.82874                                 |  |
| 6                                                           | 19-May-08                                                                                       | 3                                           | 3.72                                       | 11                                           | 32                                                         | 3084                         | E <sub>32</sub>  | 30.23                                                                                                                                   | 94.76728                                 |  |
| 7                                                           | 22-May-08                                                                                       | 3                                           | 3.72                                       | 18                                           | 50                                                         | 3082                         | E <sub>50</sub>  | 30.19                                                                                                                                   | 94.6444                                  |  |
| 8                                                           | 26-May-08                                                                                       | 3                                           | 3.72                                       | 23                                           | 73                                                         | 3099                         | E <sub>73</sub>  | 30.52                                                                                                                                   | 95.69138                                 |  |
| 9                                                           | 1-Jun-08                                                                                        |                                             | 3.72                                       | 33                                           | 106                                                        | 3097                         | E <sub>106</sub> | 30.49                                                                                                                                   | 95.5679                                  |  |
| 10                                                          | 7-Jun-08                                                                                        |                                             | 3.72                                       | 30                                           | 136                                                        | 3095                         | E <sub>136</sub> | 30.45                                                                                                                                   | 95.44451                                 |  |
| 11                                                          | 12-Jun-08                                                                                       | 3                                           | 3.72                                       | 32                                           | 168                                                        | 3092                         | E <sub>168</sub> | 30.39                                                                                                                                   | 95.25957                                 |  |
| 12                                                          | 18-Jun-08                                                                                       |                                             | 3.72                                       | 34                                           | 202                                                        | 3092                         | E <sub>202</sub> | 30.39                                                                                                                                   | 95.25957                                 |  |
| 13                                                          | 24-Jun-08                                                                                       |                                             | 3.72                                       | 35                                           | 237                                                        | 3088                         | E <sub>237</sub> | 30.31                                                                                                                                   | 95.01326                                 |  |
| 14                                                          | 29-Jun-08                                                                                       |                                             | 3.72                                       | 31                                           | 268                                                        | 3085                         | E <sub>268</sub> | 30.25                                                                                                                                   | 94.82874                                 |  |
| 15                                                          | 5-Jul-08                                                                                        |                                             | 3.72                                       | 33                                           | 301                                                        | 3082                         | E <sub>301</sub> | 30.19                                                                                                                                   | 94.64                                    |  |

#### Appendix Table 42: EASB

| Lab Ident<br>Concrete<br>Length of<br>Breadth o<br>Width of | ification No: EASB 3<br>Mix Type: Exp A- Ste<br>Specimen, in., 11.047<br>f Specimen, in.: 3.068<br>specimen, in.: 3.005 | eam Curing B<br>0.2810<br>0.0779<br>0.0760 | 0.07808<br>1.460781                          |                                                            |                              | I                | Date of Casting:<br>Curing Period:days<br>Radius of Gyration, K:<br>Correction Factor, T:<br>C=0.9464 L <sup>3</sup> T/bt <sup>3:</sup> | / 25-Mar-08<br>0.0781<br>1.461<br>897.02 |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| Serial No                                                   | Date                                                                                                                    | Weight of<br>specimen, Kg                  | Number<br>of<br>Freeze &<br>Thaw<br>cycle, C | Cumulati<br>ve<br>number<br>of freeze<br>and thaw<br>cycle | Fundamental<br>Frequency, Hz |                  | Dynamic Modulus, Gpa                                                                                                                    | Relative<br>Dynamic<br>Modulus           |  |
| 1                                                           | 13-May-08                                                                                                               | 3.65                                       | 0                                            | 0                                                          | 3027                         | E <sub>0</sub>   | 30.00                                                                                                                                   | 100                                      |  |
| 2                                                           | 14-May-08                                                                                                               | 3.65                                       | 6                                            | 6                                                          | 3003                         | E <sub>6</sub>   | 29.53                                                                                                                                   | 98.42056                                 |  |
| 3                                                           | 15-May-08                                                                                                               | 3.65                                       | 5                                            | 11                                                         | 2994                         | E <sub>11</sub>  | 29.35                                                                                                                                   | 97.83151                                 |  |
| 4                                                           | 16-May-08                                                                                                               | 3.65                                       | 5                                            | 16                                                         | 2987                         | E <sub>16</sub>  | 29.21                                                                                                                                   | 97.37458                                 |  |
| 5                                                           | 17-May-08                                                                                                               | 3.65                                       | 5                                            | 21                                                         | 2984                         | E <sub>21</sub>  | 29.15                                                                                                                                   | 97.17908                                 |  |
| 6                                                           | 19-May-08                                                                                                               | 3.65                                       | 11                                           | 32                                                         | 2984                         | E <sub>32</sub>  | 29.15                                                                                                                                   | 97.17908                                 |  |
| 7                                                           | 22-May-08                                                                                                               | 3.65                                       | 18                                           | 50                                                         | 2982                         | E <sub>50</sub>  | 29.11                                                                                                                                   | 97.04886                                 |  |
| 8                                                           | 26-May-08                                                                                                               | 3.65                                       | 23                                           | 73                                                         | 3008                         | E <sub>73</sub>  | 29.62                                                                                                                                   | 98.74857                                 |  |
| 9                                                           | 1-Jun-08                                                                                                                | 3.65                                       | 33                                           | 106                                                        | 2997                         | E <sub>106</sub> | 29.41                                                                                                                                   | 98.02766                                 |  |
| 10                                                          | 7-Jun-08                                                                                                                | 3.65                                       | 30                                           | 136                                                        | 2990                         | E <sub>136</sub> | 29.27                                                                                                                                   | 97.57028                                 |  |
| 11                                                          | 12-Jun-08                                                                                                               | 3.65                                       | 32                                           | 168                                                        | 2989                         | E <sub>168</sub> | 29.25                                                                                                                                   | 97.50502                                 |  |
| 12                                                          | 18-Jun-08                                                                                                               | 3.65                                       | 34                                           | 202                                                        | 2988                         | E <sub>202</sub> | 29.23                                                                                                                                   | 97.43979                                 |  |
| 13                                                          | 24-Jun-08                                                                                                               | 3.65                                       | 35                                           | 237                                                        | 2985                         | E <sub>237</sub> | 29.17                                                                                                                                   | 97.24423                                 |  |
| 14                                                          | 29-Jun-08                                                                                                               | 3.65                                       | 31                                           | 268                                                        | 2983                         | E <sub>268</sub> | 29.13                                                                                                                                   | 97.11396                                 |  |
| 15                                                          | 5-Jul-08                                                                                                                | 3.65                                       | 33                                           | 301                                                        | 2983                         | E <sub>301</sub> | 29.13                                                                                                                                   | 97.11                                    |  |

# Appendix Table 43: EBW

| Lab Identi<br>Concrete<br>Length of<br>Breadth o<br>Width of | ification No: EBW 1<br>Mix Type: Exp B-Wa<br>Specimen, in., 11.1<br>f Specimen, in.: 3.092<br>specimen, in.: 3.022 | ater Curing<br>0.2820<br>0.0785<br>0.0770 | 0.07882<br>1.46825                           |                                                            |                                  |                  | Date of Casting:<br>Curing Period:days<br>Radius of Gyration, K:<br>Correction Factor, T:<br>C=0.9464 L <sup>3</sup> T/bt <sup>3:</sup> | / 2-Apr-08<br>0.0788<br>1.468<br>869.52 |  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|------------------------------------------------------------|----------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|
| Serial No.                                                   | Date                                                                                                               | Weight of<br>specimen, Kg                 | Number<br>of<br>Freeze &<br>Thaw<br>cycle, C | Cumulati<br>ve<br>number<br>of freeze<br>and thaw<br>cycle | Fundamenta<br>I Frequency,<br>Hz |                  | Dynamic Modulus, Gpa                                                                                                                    | Relative<br>Dynamic<br>Modulus          |  |
| 1                                                            | 13-May-08                                                                                                          | 3.92                                      | 0                                            | 0                                                          | 3273                             | E <sub>0</sub>   | 36.51                                                                                                                                   | 100                                     |  |
| 2                                                            | 14-May-08                                                                                                          | 3.92                                      | 6                                            | 6                                                          | 3236                             | E <sub>6</sub>   | 35.69                                                                                                                                   | 97.75186                                |  |
| 3                                                            | 15-May-08                                                                                                          | 3.92                                      | 5                                            | 11                                                         | 3219                             | E <sub>11</sub>  | 35.32                                                                                                                                   | 96.7275                                 |  |
| 4                                                            | 16-May-08                                                                                                          | 3.92                                      | 5                                            | 16                                                         | 3195                             | E <sub>16</sub>  | 34.79                                                                                                                                   | 95.29052                                |  |
| 5                                                            | 17-May-08                                                                                                          | 3.92                                      | 5                                            | 21                                                         | 3190                             | E <sub>21</sub>  | 34.69                                                                                                                                   | 94.99251                                |  |
| 6                                                            | 19-May-08                                                                                                          | 3.92                                      | 11                                           | 32                                                         | 3188                             | E <sub>32</sub>  | 34.64                                                                                                                                   | 94.87343                                |  |
| 7                                                            | 22-May-08                                                                                                          | 3.92                                      | 18                                           | 50                                                         | 3187                             | E <sub>50</sub>  | 34.62                                                                                                                                   | 94.81392                                |  |
| 8                                                            | 26-May-08                                                                                                          | 3.92                                      | 23                                           | 73                                                         | 3205                             | E <sub>73</sub>  | 35.01                                                                                                                                   | 95.88796                                |  |
| 9                                                            | 1-Jun-08                                                                                                           | 3.92                                      | 33                                           | 106                                                        | 3200                             | E <sub>106</sub> | 34.90                                                                                                                                   | 95.58901                                |  |
| 10                                                           | 7-Jun-08                                                                                                           | 3.92                                      | 30                                           | 136                                                        | 3195                             | E <sub>136</sub> | 34.79                                                                                                                                   | 95.29052                                |  |
| 11                                                           | 12-Jun-08                                                                                                          | 3.92                                      | 32                                           | 168                                                        | 3193                             | E <sub>168</sub> | 34.75                                                                                                                                   | 95.17126                                |  |
| 12                                                           | 18-Jun-08                                                                                                          | 3.92                                      | 34                                           | 202                                                        | 3186                             | E <sub>202</sub> | 34.60                                                                                                                                   | 94.75443                                |  |
| 13                                                           | 24-Jun-08                                                                                                          | 3.92                                      | 35                                           | 237                                                        | 3178                             | E <sub>237</sub> | 34.43                                                                                                                                   | 94.27918                                |  |
| 14                                                           | 29-Jun-08                                                                                                          | 3.92                                      | 31                                           | 268                                                        | 3163                             | E <sub>268</sub> | 34.10                                                                                                                                   | 93.39129                                |  |
| 15                                                           | 5-Jul-08                                                                                                           | 3.92                                      | 33                                           | 301                                                        | 3161                             | E <sub>301</sub> | 34.06                                                                                                                                   | 93.27                                   |  |

#### Appendix Table 44: EBSA

| Lab Ident  | ification No: EBS | A 1        |                           |                                              |                                                            |                              |                  | Date of Casting:                           | / 31-Mar-08                    |  |
|------------|-------------------|------------|---------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------|------------------|--------------------------------------------|--------------------------------|--|
| Concrete   | Mix Type:         | Exp B- Ste | am Curing A               |                                              |                                                            |                              |                  | Curing Period:days                         |                                |  |
| Length of  | Specimen, in.,    | 11.0275    | 0.2800                    |                                              | 1                                                          |                              |                  | Radius of Gyration, K:                     | 0.0794                         |  |
| Breadth o  | of Specimen, in.: | 3.083      | 0.0780                    | 0.07939                                      |                                                            |                              |                  | Correction Factor, T:                      | 1.474                          |  |
| Width of   | specimen, in. :   | 3.023      | 0.0770                    | 1.47388                                      |                                                            |                              |                  | C=0.9464 L <sup>3</sup> T/bt <sup>3:</sup> | 859.89                         |  |
| Serial No. | . Date            |            | Weight of<br>specimen, Kg | Number<br>of<br>Freeze &<br>Thaw<br>cycle, C | Cumulati<br>ve<br>number<br>of freeze<br>and thaw<br>cycle | Fundamental<br>Frequency, Hz |                  | Dynamic Modulus, Gpa                       | Relative<br>Dynamic<br>Modulus |  |
| 1          | 13-May-0          | )8         | 3.79                      | 0                                            | 0                                                          | 3133                         | E <sub>0</sub>   | 31.99                                      | 100                            |  |
| 2          | 14-May-0          | )8         | 3.79                      | 6                                            | 6                                                          | 3085                         | E <sub>6</sub>   | 31.02                                      | 96.95932                       |  |
| 3          | 15-May-0          | 8          | 3.79                      | 5                                            | 11                                                         | 3075                         | E <sub>11</sub>  | 30.82                                      | 96.33175                       |  |
| 4          | 16-May-0          | 8          | 3.79                      | 5                                            | 16                                                         | 3056                         | E <sub>16</sub>  | 30.44                                      | 95.14499                       |  |
| 5          | 17-May-0          | 8          | 3.79                      | 5                                            | 21                                                         | 3054                         | E <sub>21</sub>  | 30.40                                      | 95.02049                       |  |
| 6          | 19-May-0          | 8          | 3.79                      | 11                                           | 32                                                         | 3052                         | E <sub>32</sub>  | 30.36                                      | 94.89608                       |  |
| 7          | 22-May-0          | 8          | 3.79                      | 18                                           | 50                                                         | 3051                         | E <sub>50</sub>  | 30.34                                      | 94.8339                        |  |
| 8          | 26-May-0          | 8          | 3.79                      | 23                                           | 73                                                         | 3075                         | E <sub>73</sub>  | 30.82                                      | 96.33175                       |  |
| 9          | 1-Jun-0           | В          | 3.79                      | 33                                           | 106                                                        | 3067                         | E <sub>106</sub> | 30.66                                      | 95.83116                       |  |
| 10         | 7-Jun-0           | В          | 3.79                      | 30                                           | 136                                                        | 3056                         | E <sub>136</sub> | 30.44                                      | 95.14499                       |  |
| 11         | 12-Jun-0          | 8          | 3.79                      | 32                                           | 168                                                        | 3055                         | E168             | 30.42                                      | 95.08273                       |  |
| 12         | 18-Jun-0          | 8          | 3.79                      | 34                                           | 202                                                        | 3055                         | E <sub>202</sub> | 30.42                                      | 95.08273                       |  |
| 13         | 24-Jun-0          | 8          | 3.79                      | 35                                           | 237                                                        | 3054                         | E <sub>237</sub> | 30.40                                      | 95.02049                       |  |
| 14         | 29-Jun-0          | 8          | 3.79                      | 31                                           | 268                                                        | 3052                         | E268             | 30.36                                      | 94.89608                       |  |
| 15         | 5-Jul-08          | 3          | 3.79                      | 33                                           | 301                                                        | 3052                         | E <sub>301</sub> | 30.36                                      | 94.90                          |  |

# Appendix Table 45: EBSB

| Lab Identi<br>Concrete<br>Length of<br>Breadth o<br>Width of | ification No: EBSB 3<br>Mix Type: Exp B- Ste<br>Specimen, in., 11.029<br>of Specimen, in.: 3.085<br>specimen, in.: 3.014 | eam Curing B<br>0.2800<br>0.0784<br>0.0770 | 0.07939<br>1.47388                           |                                                            |                              | I                | Date of Casting:<br>Curing Period:days<br>Radius of Gyration, K:<br>Correction Factor, T:<br>C=0.9464 L <sup>3</sup> T/bt <sup>3:</sup> | 0.0794<br>1.474<br>855.51      |  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|
| Serial No.                                                   | Date                                                                                                                     | Weight of<br>specimen, Kg                  | Number<br>of<br>Freeze &<br>Thaw<br>cycle, C | Cumulati<br>ve<br>number<br>of freeze<br>and thaw<br>cycle | Fundamental<br>Frequency, Hz |                  | Dynamic Modulus, Gpa                                                                                                                    | Relative<br>Dynamic<br>Modulus |  |
| 1                                                            | 13-May-08                                                                                                                | 3.82                                       | 0                                            | 0                                                          | 3126                         | E <sub>0</sub>   | 31.93                                                                                                                                   | 100                            |  |
| 2                                                            | 14-May-08                                                                                                                | 3.82                                       | 6                                            | 6                                                          | 3095                         | E <sub>6</sub>   | 31.30                                                                                                                                   | 98.02647                       |  |
| 3                                                            | 15-May-08                                                                                                                | 3.82                                       | 5                                            | 11                                                         | 3092                         | E <sub>11</sub>  | 31.24                                                                                                                                   | 97.83653                       |  |
| 4                                                            | 16-May-08                                                                                                                | 3.82                                       | 5                                            | 16                                                         | 3073                         | E <sub>16</sub>  | 30.86                                                                                                                                   | 96.63783                       |  |
| 5                                                            | 17-May-08                                                                                                                | 3.82                                       | 5                                            | 21                                                         | 3065                         | E <sub>21</sub>  | 30.70                                                                                                                                   | 96.13533                       |  |
| 6                                                            | 19-May-08                                                                                                                | 3.82                                       | 11                                           | 32                                                         | 3064                         | E <sub>32</sub>  | 30.68                                                                                                                                   | 96.07261                       |  |
| 7                                                            | 22-May-08                                                                                                                | 3.82                                       | 18                                           | 50                                                         | 3062                         | E <sub>50</sub>  | 30.64                                                                                                                                   | 95.94723                       |  |
| 8                                                            | 26-May-08                                                                                                                | 3.82                                       | 23                                           | 73                                                         | 3095                         | E <sub>73</sub>  | 31.30                                                                                                                                   | 98.02647                       |  |
| 9                                                            | 1-Jun-08                                                                                                                 | 3.82                                       | 33                                           | 106                                                        | 3094                         | E <sub>106</sub> | 31.28                                                                                                                                   | 97.96313                       |  |
| 10                                                           | 7-Jun-08                                                                                                                 | 3.82                                       | 30                                           | 136                                                        | 3094                         | E <sub>136</sub> | 31.28                                                                                                                                   | 97.96313                       |  |
| 11                                                           | 12-Jun-08                                                                                                                | 3.82                                       | 32                                           | 168                                                        | 3095                         | E <sub>168</sub> | 31.30                                                                                                                                   | 98.02647                       |  |
| 12                                                           | 18-Jun-08                                                                                                                | 3.82                                       | 34                                           | 202                                                        | 3090                         | E <sub>202</sub> | 31.20                                                                                                                                   | 97.71                          |  |
| 13                                                           | 24-Jun-08                                                                                                                | 3.82                                       | 35                                           | 237                                                        | 3088                         | E <sub>237</sub> | 31.16                                                                                                                                   | 97.58356                       |  |
| 14                                                           | 29-Jun-08                                                                                                                | 3.82                                       | 31                                           | 268                                                        | 3084                         | E <sub>268</sub> | 31.08                                                                                                                                   | 97.33091                       |  |

## Appendix Table 46: ECW

| Lab Ident<br>Concrete<br>Length of<br>Breadth o<br>Width of | ification No: ECW 3<br>Mix Type: Exp C - W<br>Specimen, in., 11.035<br>of Specimen, in.: 3.041<br>fspecimen, in. 3.013 | later Curing<br>0.2800<br>0.0770<br>0.0765 | 0.07887<br>1.468725                          |                                                            |                              | I                | Date of Casting:<br>Curing Period:days<br>Radius of Gyration, K:<br>Correction Factor, T:<br>C=0.9464 L <sup>3</sup> T/bt <sup>3:</sup> | / 26-Mar-08<br>0.0789<br>1.469<br>885.14 |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| Serial No.                                                  | Date                                                                                                                   | Weight of<br>specimen, Kg                  | Number<br>of<br>Freeze &<br>Thaw<br>cycle, C | Cumulati<br>ve<br>number<br>of freeze<br>and thaw<br>cycle | Fundamental<br>Frequency, Hz |                  | Dynamic Modulus, Gpa                                                                                                                    | Relative<br>Dynamic<br>Modulus           |  |
| 1                                                           | 13-May-08                                                                                                              | 3.62                                       | 0                                            | 0                                                          | 2978                         | E <sub>0</sub>   | 28.42                                                                                                                                   | 100                                      |  |
| 2                                                           | 14-May-08                                                                                                              | 3.62                                       | 6                                            | 6                                                          | 2926                         | E <sub>6</sub>   | 27.43                                                                                                                                   | 97                                       |  |
| 3                                                           | 15-May-08                                                                                                              | 3.62                                       | 5                                            | 11                                                         | 2913                         | E <sub>11</sub>  | 27.19                                                                                                                                   | 96                                       |  |
| 4                                                           | 16-May-08                                                                                                              | 3.62                                       | 5                                            | 16                                                         | 2903                         | E <sub>16</sub>  | 27.00                                                                                                                                   | 95                                       |  |
| 5                                                           | 17-May-08                                                                                                              | 3.62                                       | 5                                            | 21                                                         | 2900                         | E <sub>21</sub>  | 26.95                                                                                                                                   | 95                                       |  |
| 6                                                           | 19-May-08                                                                                                              | 3.62                                       | 11                                           | 32                                                         | 2900                         | E <sub>32</sub>  | 26.95                                                                                                                                   | 95                                       |  |
| 7                                                           | 22-May-08                                                                                                              | 3.62                                       | 18                                           | 50                                                         | 2897                         | E <sub>50</sub>  | 26.89                                                                                                                                   | 95                                       |  |
| 8                                                           | 26-May-08                                                                                                              | 3.62                                       | 23                                           | 73                                                         | 2915                         | E <sub>73</sub>  | 27.23                                                                                                                                   | 96                                       |  |
| 9                                                           | 1-Jun-08                                                                                                               | 3.62                                       | 33                                           | 106                                                        | 2890                         | E <sub>106</sub> | 26.76                                                                                                                                   | 94                                       |  |
| 10                                                          | 7-Jun-08                                                                                                               | 3.62                                       | 30                                           | 136                                                        | 2867                         | E <sub>136</sub> | 26.34                                                                                                                                   | 93                                       |  |
| 11                                                          | 12-Jun-08                                                                                                              | 3.62                                       | 32                                           | 168                                                        | 2862                         | E <sub>168</sub> | 26.25                                                                                                                                   | 92                                       |  |
| 12                                                          | 18-Jun-08                                                                                                              | 3.62                                       | 34                                           | 202                                                        | 2854                         | E <sub>202</sub> | 26.10                                                                                                                                   | 92                                       |  |
| 13                                                          | 24-Jun-08                                                                                                              | 3.62                                       | 35                                           | 237                                                        | 2850                         | E <sub>237</sub> | 26.03                                                                                                                                   | 92                                       |  |
| 14                                                          | 29-Jun-08                                                                                                              | 3.62                                       | 31                                           | 268                                                        | 2835                         | E <sub>268</sub> | 25.75                                                                                                                                   | 91                                       |  |
| 15                                                          | 5-Jul-08                                                                                                               | 3.62                                       | 33                                           | 301                                                        | 2828                         | E <sub>301</sub> | 25.63                                                                                                                                   | 90                                       |  |

## Appendix Table 47: ECSA

| Lab Identi | ification No: ECSA | A 1        |                           |                                              |                                                            |                              |                  | Date of Casting:                           | 28-Mar-08                      |   |
|------------|--------------------|------------|---------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------|------------------|--------------------------------------------|--------------------------------|---|
| Concrete   | Mix Type:          | Exp C- Ste | eam Curing A              |                                              |                                                            |                              | -                | Curing Period:days                         | _                              |   |
| Length of  | Specimen, in.,     | 11.061     | 0.2810                    |                                              |                                                            |                              |                  | Radius of Gyration, K:                     | 0.0784                         |   |
| Breadth o  | of Specimen, in.:  | 3.068      | 0.0780                    | 0.07839                                      |                                                            |                              |                  | Correction Factor, T:                      | 1.464                          |   |
| Width of   | fspecimen, in. :   | 3.003      | 0.0763                    | 1.463863                                     |                                                            |                              |                  | C=0.9464 L <sup>3</sup> T/bt <sup>3:</sup> | 887.21                         |   |
| Serial No. | Date               |            | Weight of<br>specimen, Kg | Number<br>of<br>Freeze &<br>Thaw<br>cycle, C | Cumulati<br>ve<br>number<br>of freeze<br>and thaw<br>cvcle | Fundamental<br>Frequency, Hz |                  | Dynamic Modulus, Gpa                       | Relative<br>Dynamic<br>Modulus |   |
| 1          | 13-May-0           | 8          | 3.65                      | 0                                            | 0                                                          | 2984                         | E.               | 28.83                                      | 100                            |   |
| 2          | 14-May-0           | 8          | 3.65                      | 6                                            | 6                                                          | 2930                         | E.               | 27.80                                      | 96                             |   |
| 3          | 15-May-0           | 8          | 3.65                      | 5                                            | 11                                                         | 2923                         | E.               | 27.67                                      | 96                             |   |
| 4          | 16-May-0           | 8          | 3.65                      | 5                                            | 16                                                         | 2906                         | E.a              | 27.35                                      | 95                             |   |
|            | 17-May-0           | 8          | 3 65                      | 5                                            | 21                                                         | 2882                         | E-16             | 26.90                                      | 93                             |   |
| 6          | 19-May-0           | 8          | 3.65                      | 11                                           | 32                                                         | 2881                         | E-21             | 26.88                                      | 93                             |   |
| 7          | 22-May-0           | 8          | 3.65                      | 18                                           | 50                                                         | 2881                         | E-32             | 26.88                                      | 93                             |   |
| 8          | 26-May-0           | 8          | 3.65                      | 23                                           | 73                                                         | 2906                         | E-50             | 27 35                                      | 95                             |   |
| 0          | 1- lun-08          | 2          | 3.65                      | 33                                           | 106                                                        | 2900                         | E-73             | 27.23                                      | 94                             |   |
| 10         | 7- Jun-08          | 2          | 3.65                      | 20                                           | 136                                                        | 2897                         | ⊏106<br>⊑        | 27.18                                      | 04                             |   |
| 11         | 12 Jun 0           | ,<br>o     | 3.65                      | 20                                           | 100                                                        | 2007                         | L-136            | 26.97                                      | 34                             |   |
| 10         | 12-Jun-0           | 0<br>0     | 3.65                      | 24                                           | 202                                                        | 2000                         | ⊏168             | 26.90                                      | 34                             |   |
| 12         | 18-Jun-0           | 0          | 3.05                      | 34                                           | 202                                                        | 2077                         | ⊏202             | 20.00                                      | 93                             |   |
| 13         | 24-Jun-0           | 0          | 3.05                      | 30                                           | 231                                                        | 2000                         | ⊑237             | 20.30                                      | 31                             |   |
| 14         | 29-JUN-0           | 0          | 3.05                      | 57                                           | 208                                                        | 2040                         | E <sub>268</sub> | 20.27                                      | 91                             |   |
| 15         | j 5-Jul-08         |            | 3.65                      | 33                                           | 301                                                        | 2842                         | E <sub>301</sub> | 26.16                                      | 91                             | i |

#### Appendix Table 48: ECSB

| Lab Ident<br>Concrete<br>Length of<br>Breadth o<br>Width of | ification No: ECS<br>Mix Type:<br>Specimen, in.,<br>f Specimen, in.:<br>specimen, in. : | B 2<br>Exp C- Ste<br>11.045<br>3.083<br>3.013 | eam Curing B<br>0.2810<br>0.0780<br>0.0765 | 0.07859<br>1.465918                          | I                                                          |                              | ]                | Date of Casting:<br>Curing Period:days<br>Radius of Gyration, K:<br>Correction Factor, T:<br>C=0.9464 L <sup>3</sup> T/bt <sup>3:</sup> | / 28-Mar-08<br>0.0786<br>1.466<br>881.50 |  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| Serial No.                                                  | Date                                                                                    |                                               | Weight of<br>specimen, Kg                  | Number<br>of<br>Freeze &<br>Thaw<br>cycle, C | Cumulati<br>ve<br>number<br>of freeze<br>and thaw<br>cycle | Fundamental<br>Frequency, Hz |                  | Dynamic Modulus, Gpa                                                                                                                    | Relative<br>Dynamic<br>Modulus           |  |
| 1                                                           | 13-May-0                                                                                | 8                                             | 3.65                                       | 0                                            | 0                                                          | 2930                         | E <sub>0</sub>   | 27.62                                                                                                                                   | 100                                      |  |
| 2                                                           | 14-May-0                                                                                | )8                                            | 3.65                                       | 6                                            | 6                                                          | 2886                         | E <sub>6</sub>   | 26.80                                                                                                                                   | 97.01914                                 |  |
| 3                                                           | 15-May-0                                                                                | )8                                            | 3.65                                       | 5                                            | 11                                                         | 2862                         | E <sub>11</sub>  | 26.35                                                                                                                                   | 95.41222                                 |  |
| 4                                                           | 16-May-0                                                                                | )8                                            | 3.65                                       | 5                                            | 16                                                         | 2850                         | E <sub>16</sub>  | 26.13                                                                                                                                   | 94.6138                                  |  |
| 5                                                           | 17-May-0                                                                                | 8                                             | 3.65                                       | 5                                            | 21                                                         | 2848                         | E <sub>21</sub>  | 26.10                                                                                                                                   | 94.48105                                 |  |
| 6                                                           | 19-May-0                                                                                | 8                                             | 3.65                                       | 11                                           | 32                                                         | 2848                         | E <sub>32</sub>  | 26.10                                                                                                                                   | 94.48105                                 |  |
| 7                                                           | 22-May-0                                                                                | 8                                             | 3.65                                       | 18                                           | 50                                                         | 2846                         | E <sub>50</sub>  | 26.06                                                                                                                                   | 94.3484                                  |  |
| 8                                                           | 26-May-0                                                                                | 8                                             | 3.65                                       | 23                                           | 73                                                         | 2868                         | E <sub>73</sub>  | 26.47                                                                                                                                   | 95.81269                                 |  |
| 9                                                           | 1-Jun-0                                                                                 | 8                                             | 3.65                                       | 33                                           | 106                                                        | 2862                         | E <sub>106</sub> | 26.35                                                                                                                                   | 95.41222                                 |  |
| 10                                                          | 7-Jun-0                                                                                 | В                                             | 3.65                                       | 30                                           | 136                                                        | 2856                         | E <sub>136</sub> | 26.24                                                                                                                                   | 95.01259                                 |  |
| 11                                                          | 12-Jun-0                                                                                | 8                                             | 3.65                                       | 32                                           | 168                                                        | 2850                         | E <sub>168</sub> | 26.13                                                                                                                                   | 94.6138                                  |  |
| 12                                                          | 18-Jun-0                                                                                | 8                                             | 3.65                                       | 34                                           | 202                                                        | 2849                         | E <sub>202</sub> | 26.12                                                                                                                                   | 94.54741                                 |  |
| 13                                                          | 24-Jun-0                                                                                | 8                                             | 3.65                                       | 35                                           | 237                                                        | 2842                         | E <sub>237</sub> | 25.99                                                                                                                                   | 94.08338                                 |  |
| 14                                                          | 29-Jun-0                                                                                | 8                                             | 3.65                                       | 31                                           | 268                                                        | 2839                         | E <sub>268</sub> | 25.93                                                                                                                                   | 93.88486                                 |  |
| 15                                                          | 5-Jul-08                                                                                | }                                             | 3.65                                       | 33                                           | 301                                                        | 2836                         | E <sub>301</sub> | 25.88                                                                                                                                   | 93.69                                    |  |

# Appendix Table 49: EDW

| Lab Identi<br>Concrete<br>Length of<br>Breadth o<br>Width of | ification No: EDW<br>Mix Type:<br>Specimen, in.,<br>f Specimen, in.:<br>specimen, in. : | 1<br>Exp D- Wa<br>11.074<br>3.11<br>3.01 | ater Curing<br>0.2810<br>0.0791<br>0.0765 | 0.07859<br>1.465918                          |                                                            |                              |                  | Date of Casting:<br>Curing Period:days<br>Radius of Gyration, K:<br>Correction Factor, T:<br>C=0.9464 L <sup>3</sup> T/bt <sup>3:</sup> | 2-Apr-08<br>0.0786<br>1.466<br>869.25 |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| Serial No.                                                   | Date                                                                                    |                                          | Weight of<br>specimen, Kg                 | Number<br>of<br>Freeze &<br>Thaw<br>cycle, C | Cumulati<br>ve<br>number<br>of freeze<br>and thaw<br>cycle | Fundamental<br>Frequency, Hz |                  | Dynamic Modulus, Gpa                                                                                                                    | Relative<br>Dynamic<br>Modulus        |  |
| 1                                                            | 13-May-0                                                                                | 8                                        | 3.88                                      | 0                                            | 0                                                          | 3157                         | E <sub>0</sub>   | 33.61                                                                                                                                   | 100                                   |  |
| 2                                                            | 14-May-0                                                                                | 8                                        | 3.88                                      | 6                                            | 6                                                          | 3100                         | E <sub>6</sub>   | 32.41                                                                                                                                   | 96.42158                              |  |
| 3                                                            | 15-May-0                                                                                | 8                                        | 3.88                                      | 5                                            | 11                                                         | 3080                         | E <sub>11</sub>  | 31.99                                                                                                                                   | 95.18144                              |  |
| 4                                                            | 16-May-0                                                                                | 8                                        | 3.88                                      | 5                                            | 16                                                         | 3074                         | E <sub>16</sub>  | 31.87                                                                                                                                   | 94.81096                              |  |
| 5                                                            | 17-May-0                                                                                | 8                                        | 3.88                                      | 5                                            | 21                                                         | 3062                         | E <sub>21</sub>  | 31.62                                                                                                                                   | 94.07218                              |  |
| 6                                                            | 19-May-0                                                                                | 8                                        | 3.88                                      | 11                                           | 32                                                         | 3052                         | E <sub>32</sub>  | 31.42                                                                                                                                   | 93.45873                              |  |
| 7                                                            | 22-May-0                                                                                | 8                                        | 3.88                                      | 18                                           | 50                                                         | 3050                         | E <sub>50</sub>  | 31.37                                                                                                                                   | 93.33629                              |  |
| 8                                                            | 26-May-0                                                                                | 8                                        | 3.88                                      | 23                                           | 73                                                         | 3059                         | E <sub>73</sub>  | 31.56                                                                                                                                   | 93.88794                              |  |
| 9                                                            | 1-Jun-08                                                                                |                                          | 3.88                                      | 33                                           | 106                                                        | 3053                         | E <sub>106</sub> | 31.44                                                                                                                                   | 93.51999                              |  |
| 10                                                           | 7-Jun-08                                                                                |                                          | 3.88                                      | 30                                           | 136                                                        | 3042                         | E <sub>136</sub> | 31.21                                                                                                                                   | 92.8473                               |  |
| 11                                                           | 12-Jun-0                                                                                | 8                                        | 3.88                                      | 32                                           | 168                                                        | 3042                         | E <sub>168</sub> | 31.21                                                                                                                                   | 92.8473                               |  |
| 12                                                           | 18-Jun-0                                                                                | 8                                        | 3.88                                      | 34                                           | 202                                                        | 3041                         | E <sub>202</sub> | 31.19                                                                                                                                   | 92.78626                              |  |
| 13                                                           | 24-Jun-0                                                                                | 8                                        | 3.88                                      | 35                                           | 237                                                        | 3039                         | E <sub>237</sub> | 31.15                                                                                                                                   | 92.66425                              |  |
| 14                                                           | 29-Jun-0                                                                                | 8                                        | 3.88                                      | 31                                           | 268                                                        | 3038                         | E <sub>268</sub> | 31.13                                                                                                                                   | 92.60328                              |  |
| 15                                                           | 5-Jul-08                                                                                |                                          | 3.88                                      | 33                                           | 301                                                        | 3037                         | E <sub>301</sub> | 31.11                                                                                                                                   | 92.54                                 |  |

## Appendix Table 50: EDSA

| Lab Ident  | ification No: EDS/ | A 2        |                           |                                              |                                                            |                              |                  | Date of Casting:                           | / 30-Mar-08                    |  |
|------------|--------------------|------------|---------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------|------------------|--------------------------------------------|--------------------------------|--|
| Concrete   | Mix Type:          | Exp D- Ste | eam Curing A              |                                              |                                                            |                              | -                | Curing Period:days                         | _                              |  |
| Length of  | Specimen, in.,     | 11.024     | 0.2800                    |                                              |                                                            |                              |                  | Radius of Gyration, K:                     | 0.0788                         |  |
| Breadth o  | of Specimen, in.:  | 3.06       | 0.0776                    | 0.07877                                      |                                                            |                              |                  | Correction Factor, T:                      | 1.468                          |  |
| Width of   | fspecimen, in. :   | 3.009      | 0.0764                    | 1.467694                                     |                                                            |                              |                  | C=0.9464 L <sup>3</sup> T/bt <sup>3:</sup> | 881.14                         |  |
| Serial No. | . Date             |            | Weight of<br>specimen, Kg | Number<br>of<br>Freeze &<br>Thaw<br>cycle, C | Cumulati<br>ve<br>number<br>of freeze<br>and thaw<br>cycle | Fundamental<br>Frequency, Hz |                  | Dynamic Modulus, Gpa                       | Relative<br>Dynamic<br>Modulus |  |
| 1          | 13-May-0           | 8          | 3.73                      | 0                                            | 0                                                          | 2970                         | E <sub>0</sub>   | 28.99                                      | 100                            |  |
| 2          | 14-May-0           | 8          | 3.73                      | 6                                            | 6                                                          | 2926                         | E <sub>6</sub>   | 28.14                                      | 97                             |  |
| 3          | 15-May-0           | 8          | 3.73                      | 5                                            | 11                                                         | 2915                         | E <sub>11</sub>  | 27.93                                      | 96                             |  |
| 4          | 16-May-0           | 8          | 3.73                      | 5                                            | 16                                                         | 2897                         | E <sub>16</sub>  | 27.58                                      | 95                             |  |
| 5          | 17-May-0           | 8          | 3.73                      | 5                                            | 21                                                         | 2892                         | E <sub>21</sub>  | 27.49                                      | 95                             |  |
| 6          | 19-May-0           | 8          | 3.73                      | 11                                           | 32                                                         | 2882                         | E <sub>32</sub>  | 27.30                                      | 94                             |  |
| 7          | 22-May-0           | 8          | 3.73                      | 18                                           | 50                                                         | 2882                         | E <sub>50</sub>  | 27.30                                      | 94                             |  |
| 8          | 26-May-0           | 8          | 3.73                      | 23                                           | 73                                                         | 2902                         | E <sub>73</sub>  | 27.68                                      | 95                             |  |
| 9          | 1-Jun-08           | 3          | 3.73                      | 33                                           | 106                                                        | 2896                         | E <sub>106</sub> | 27.56                                      | 95                             |  |
| 10         | 7-Jun-08           | 3          | 3.73                      | 30                                           | 136                                                        | 2889                         | E <sub>136</sub> | 27.43                                      | 95                             |  |
| 11         | 12-Jun-0           | 8          | 3.73                      | 32                                           | 168                                                        | 2884                         | E <sub>168</sub> | 27.34                                      | 94                             |  |
| 12         | 18-Jun-0           | 8          | 3.73                      | 34                                           | 202                                                        | 2876                         | E <sub>202</sub> | 27.18                                      | 94                             |  |
| 13         | 24-Jun-0           | 8          | 3.73                      | 35                                           | 237                                                        | 2876                         | E <sub>237</sub> | 27.18                                      | 94                             |  |
| 14         | 29-Jun-0           | 8          | 3.73                      | 31                                           | 268                                                        | 2872                         | E <sub>268</sub> | 27.11                                      | 94                             |  |
| 15         | 5-Jul-08           |            | 3.73                      | 33                                           | 301                                                        | 2872                         | E <sub>301</sub> | 27.11                                      | 94                             |  |

## Appendix Table 51: EDSB

| tification No: EDS | В 3                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date of Casting:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | / 30-Mar-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mix Type:          | Exp D- Ste                                                                                                                                                                                                                                                             | eam Curing B                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Curing Period:days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| f Specimen, in.,   | 11.043                                                                                                                                                                                                                                                                 | 0.2800                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Radius of Gyration, K:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| of Specimen, in.:  | 3.087                                                                                                                                                                                                                                                                  | 0.0784                                                                                                                                                                                                                                                                                                                                    | 0.07918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Correction Factor, T:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| fspecimen, in. :   | 3.025                                                                                                                                                                                                                                                                  | 0.0768                                                                                                                                                                                                                                                                                                                                    | 1.471818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C=0.9464 L <sup>3</sup> T/bt <sup>3:</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 861.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| . Date             |                                                                                                                                                                                                                                                                        | Weight of<br>specimen, Kg                                                                                                                                                                                                                                                                                                                 | Number<br>of<br>Freeze &<br>Thaw<br>cycle, C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cumulati<br>ve<br>number<br>of freeze<br>and thaw<br>cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fundamental<br>Frequency, Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dynamic Modulus, Gpa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Relative<br>Dynamic<br>Modulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13-May-0           | )8                                                                                                                                                                                                                                                                     | 3.72                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14-May-0           | )8                                                                                                                                                                                                                                                                     | 3.72                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97.329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15-May-0           | )8                                                                                                                                                                                                                                                                     | 3.72                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E <sub>11</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96.60082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16-May-0           | )8                                                                                                                                                                                                                                                                     | 3.72                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95.34948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 17-May-0           | )8                                                                                                                                                                                                                                                                     | 3.72                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E <sub>21</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95.28385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19-May-0           | )8                                                                                                                                                                                                                                                                     | 3.72                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E <sub>32</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95.08708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22-May-0           | )8                                                                                                                                                                                                                                                                     | 3.72                                                                                                                                                                                                                                                                                                                                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E <sub>50</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95.02154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 26-May-0           | )8                                                                                                                                                                                                                                                                     | 3.72                                                                                                                                                                                                                                                                                                                                      | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E <sub>73</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96.60082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1-Jun-0            | 8                                                                                                                                                                                                                                                                      | 3.72                                                                                                                                                                                                                                                                                                                                      | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E <sub>106</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96.27073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7-Jun-0            | 8                                                                                                                                                                                                                                                                      | 3.72                                                                                                                                                                                                                                                                                                                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E <sub>136</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96.20478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12-Jun-0           | 8                                                                                                                                                                                                                                                                      | 3.72                                                                                                                                                                                                                                                                                                                                      | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E <sub>168</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96.13885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 18-Jun-0           | 8                                                                                                                                                                                                                                                                      | 3.72                                                                                                                                                                                                                                                                                                                                      | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96.00706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24-Jun-0           | 8                                                                                                                                                                                                                                                                      | 3.72                                                                                                                                                                                                                                                                                                                                      | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E <sub>237</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95.87536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 29-Jun-0           | 8                                                                                                                                                                                                                                                                      | 3.72                                                                                                                                                                                                                                                                                                                                      | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94.89052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5-Jul-08           | 3                                                                                                                                                                                                                                                                      | 3.72                                                                                                                                                                                                                                                                                                                                      | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E <sub>301</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | ification No: EDS<br>Mix Type:<br>Specimen, in.;<br>f Specimen, in. :<br>specimen, in. :<br>Date<br>13-May-4<br>14-May-4<br>15-May-4<br>15-May-4<br>16-May-4<br>17-May-4<br>26-May-4<br>1-Jun-0<br>7-Jun-0<br>12-Jun-0<br>18-Jun-0<br>24-Jun-0<br>29-Jun-0<br>5-Jul-06 | ification No: EDSB 3<br>Mix Type: Exp D- Sta<br>Specimen, in., 11.043<br>f Specimen, in.: 3.087<br>specimen, in.: 3.025<br>Date<br>Date<br>13-May-08<br>14-May-08<br>15-May-08<br>16-May-08<br>16-May-08<br>19-May-08<br>22-May-08<br>22-May-08<br>22-May-08<br>19-Jun-08<br>12-Jun-08<br>18-Jun-08<br>24-Jun-08<br>29-Jun-08<br>5-Jul-08 | Image: System of the | Mix Type:     Exp D- Steam Curing B       Specimen, in.,     11.043     0.2800       f Specimen, in.:     3.087     0.0784     0.07918       specimen, in.:     3.087     0.0784     0.07918       specimen, in.:     3.025     0.0768     1.471818       Date     Weight of<br>specimen, Kg     Number<br>of<br>Freeze &<br>Thaw<br>cycle, C       13-May-08     3.72     0       14-May-08     3.72     6       15-May-08     3.72     5       16-May-08     3.72     5       17-May-08     3.72     11       22-May-08     3.72     18       26-May-08     3.72     33       7-Jun-08     3.72     30       12-Jun-08     3.72     32       18-Jun-08     3.72     34       24-Jun-08     3.72     31       5-Jul-08     3.72     31 | Mix Type: Exp D- Steam Curing B     Specimen, in.,   11.043   0.2800     f Specimen, in.:   3.087   0.0784   0.07918     specimen, in.:   3.087   0.0784   0.07918     specimen, in.:   3.025   0.0768   1.471818     Date   Weight of specimen, Kg   Number of Freeze & Thaw cycle, C   Cumulati ve number of freeze and thaw cycle, C     13-May-08   3.72   0   0     14-May-08   3.72   5   11     16-May-08   3.72   5   16     17-May-08   3.72   5   16     17-May-08   3.72   5   16     17-May-08   3.72   5   16     17-May-08   3.72   11   32     22-May-08   3.72   18   50     26-May-08   3.72   33   106     7-Jun-08   3.72   32   168     12-Jun-08   3.72   32   168     13-May-08   3.72   35   237     24-Jun-08   3.72   35   237     24-Jun-08 <td>Mix Type: Exp D- Steam Curing B     Specimen, in.,   11.043   0.2800     f Specimen, in.:   3.087   0.0784   0.07918     specimen, in.:   3.025   0.0768   1.471818     Date   Weight of specimen, Kg   Number of freeze that the specimen, Kg   Cumulati ve number of freeze that the specimen, Kg   Fundamental frequency, Hz     13-May-08   3.72   0   0   2975     14-May-08   3.72   6   6   2935     15-May-08   3.72   5   11   2924     16-May-08   3.72   5   16   2905     17-May-08   3.72   11   32   2901     19-May-08   3.72   11   32   2901     12-May-08   3.72   3   106   2919     17-May-08   3.72   33   106   2919     12-May-08   3.72   33   106   2919     17-May-08   3.72   34   202   2915     14-May-08   3.72   36   237   2913     25-May-08   3.72   35</td> <td>Interview of the system of th</td> <td>Date of Casting:<br/>Curing Period:days     Mix Type:   Exp D- Steam Curing B     Specimen, in.,   11.043   0.2800     f Specimen, in.:   3.087   0.0784   0.07918     specimen, in.:   3.025   0.0768   1.471818     Date   Weight of<br/>specimen, Kg   Number<br/>of<br/>Freeze &amp;<br/>Thaw<br/>cycle, C   Fundamental<br/>ve<br/>number<br/>of freeze &amp;<br/>and thaw<br/>cycle   Fundamental<br/>Frequency, Hz   Dynamic Modulus, Gpa     13-May-08   3.72   0   0   2975   E<sub>0</sub>   28.35     14-May-08   3.72   6   6   2935   E<sub>5</sub>   27.59     15-May-08   3.72   5   16   29024   E<sub>41</sub>   27.03     17-May-08   3.72   5   16   2904   E<sub>21</sub>   27.01     19-May-08   3.72   5   16   2904   E<sub>22</sub>   26.96     22-May-08   3.72   11   32   2901   E<sub>52</sub>   26.94     26-May-08   3.72   13   106   2919   E<sub>168</sub>   27.27     1-Jun-08   3.72   33   106   2919   E<sub>168</sub>   27.27<td>Instruction No: EDSB 3   Date of Casting:   7   30-Mar-08     Specimen, in., 11.043   0.2800   0.0784   0.07918   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0793   0.0793   0.0793   0.0793</td></td> | Mix Type: Exp D- Steam Curing B     Specimen, in.,   11.043   0.2800     f Specimen, in.:   3.087   0.0784   0.07918     specimen, in.:   3.025   0.0768   1.471818     Date   Weight of specimen, Kg   Number of freeze that the specimen, Kg   Cumulati ve number of freeze that the specimen, Kg   Fundamental frequency, Hz     13-May-08   3.72   0   0   2975     14-May-08   3.72   6   6   2935     15-May-08   3.72   5   11   2924     16-May-08   3.72   5   16   2905     17-May-08   3.72   11   32   2901     19-May-08   3.72   11   32   2901     12-May-08   3.72   3   106   2919     17-May-08   3.72   33   106   2919     12-May-08   3.72   33   106   2919     17-May-08   3.72   34   202   2915     14-May-08   3.72   36   237   2913     25-May-08   3.72   35 | Interview of the system of th | Date of Casting:<br>Curing Period:days     Mix Type:   Exp D- Steam Curing B     Specimen, in.,   11.043   0.2800     f Specimen, in.:   3.087   0.0784   0.07918     specimen, in.:   3.025   0.0768   1.471818     Date   Weight of<br>specimen, Kg   Number<br>of<br>Freeze &<br>Thaw<br>cycle, C   Fundamental<br>ve<br>number<br>of freeze &<br>and thaw<br>cycle   Fundamental<br>Frequency, Hz   Dynamic Modulus, Gpa     13-May-08   3.72   0   0   2975   E <sub>0</sub> 28.35     14-May-08   3.72   6   6   2935   E <sub>5</sub> 27.59     15-May-08   3.72   5   16   29024   E <sub>41</sub> 27.03     17-May-08   3.72   5   16   2904   E <sub>21</sub> 27.01     19-May-08   3.72   5   16   2904   E <sub>22</sub> 26.96     22-May-08   3.72   11   32   2901   E <sub>52</sub> 26.94     26-May-08   3.72   13   106   2919   E <sub>168</sub> 27.27     1-Jun-08   3.72   33   106   2919   E <sub>168</sub> 27.27 <td>Instruction No: EDSB 3   Date of Casting:   7   30-Mar-08     Specimen, in., 11.043   0.2800   0.0784   0.07918   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0793   0.0793   0.0793   0.0793</td> | Instruction No: EDSB 3   Date of Casting:   7   30-Mar-08     Specimen, in., 11.043   0.2800   0.0784   0.07918   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0792   0.0793   0.0793   0.0793   0.0793 |

# 9.4 APPENDIX D

Compressive Strength, Pilot Study

#### Appendix Table 52: Mix 1

| Lab Ident<br>Concrete | ification<br>Grade: | No:<br>Pila      | . Mix 1_ V    | Vater Curin<br>Vix 1 | g for 28 Day            | Date of Cas                         | ting:                       | 23 Nov 2    | 008                |                   |                     |                                                                         |
|-----------------------|---------------------|------------------|---------------|----------------------|-------------------------|-------------------------------------|-----------------------------|-------------|--------------------|-------------------|---------------------|-------------------------------------------------------------------------|
|                       |                     |                  |               |                      |                         |                                     |                             |             |                    |                   |                     |                                                                         |
| Specim.<br>No.        | Age                 | Testin<br>g date | Dia<br>,(in.) | Area ,<br>(in.2)     | Max.<br>Load ,<br>(lbf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV       | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture | Remarks                                                                 |
| A                     |                     | 145              | 4.014         | 12.648               | 60800                   | 4807.0561                           |                             |             |                    |                   | Columnar            | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| в                     | 1                   | 1ov 0            | 4.018         | 12.673               | 60000                   | 4734.3649                           | 4871.694                    | 178.645     | 3.666999           | 206.2814          | Shear               |                                                                         |
| с                     |                     | ~~~~             | 4.018         | 12.673               | 64300                   | 5073.6611                           |                             |             |                    |                   | Shear               | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| D                     |                     | 8                | 4.005         | 12.591               | 97500                   | 7743.3683                           |                             |             |                    |                   | Shear               | Aggregate Failure                                                       |
| E                     | 3                   | 1ov Q            | 4.015         | 12.654               | 105500                  | 8337.0365                           | 8065.788                    | 300.124     | 3.72095            | 346.5533          | Shear               |                                                                         |
| F                     |                     | 6                | 4.001         | 12.566               | 102000                  | 8116.9601                           |                             |             |                    |                   |                     | Columnar Failure                                                        |
| o                     |                     | 8                | 4.017         | 12.667               | 123000                  | 9710.2809                           |                             |             |                    |                   |                     | Columnar Failure                                                        |
| G                     | 7                   | Mov 0            | 4.023         | 12.705               | 123000                  | 9681.3382                           | 9801.039                    | 182.8358    | 1.865474           | 211.1206          | Shear               |                                                                         |
| N                     |                     | 6                | 4.012         | 12.635               | 126500                  | 10011.497                           |                             |             |                    |                   | Shear               |                                                                         |
| м                     |                     | 26               | 4.021         | 12.692               | 126500                  | 9966.7307                           |                             |             |                    |                   | Columnar            | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| J                     | 14                  | 0 ce             | 4.028         | 12.736               | 138500                  | 10874.297                           | 10450.52                    | 456.7502    | 4.370597           | 527.4098          | Shear               |                                                                         |
| I                     |                     |                  | 4.03          | 12.749               | 134000                  | 10510.54                            |                             | 2 456.7502  |                    |                   | Crushed             | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| к                     |                     | 315              | 4.0138        | 12.647               | 143320                  | 11332.499                           |                             | 34 219.1401 |                    |                   | Shear               |                                                                         |
| L                     | 28                  | 0 ce [           | 4.0143        | 12.650               | 144610                  | 11431.653                           | 11258.84                    |             | 1.946384           | 253.0412          | Crushed             | Sample was cured for 27 effective days and 1 day cured outside water    |
| Extra                 |                     | 3                | 4.0263        | 12.726               | 140140                  | 11012.355                           |                             |             |                    |                   | Shear               |                                                                         |

## Appendix Table 53: Mix 2

| Lab Identi     | ification<br>Grade <sup>.</sup> | No:<br>Pilo      | . Mix 2_ 1    | 4 days wati<br>1ix 2 | er curing + a           | Date of Casi                        | ting:                       | 23 Nov 2 | 008                |                   |                     |                                                                         |  |  |  |
|----------------|---------------------------------|------------------|---------------|----------------------|-------------------------|-------------------------------------|-----------------------------|----------|--------------------|-------------------|---------------------|-------------------------------------------------------------------------|--|--|--|
|                |                                 |                  |               |                      |                         |                                     |                             |          |                    |                   |                     |                                                                         |  |  |  |
| Specim.<br>No. | Age                             | Testin<br>g date | Dia<br>,(in.) | Area ,<br>(in.2)     | Max.<br>Load ,<br>(lbf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV    | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture | Remarks                                                                 |  |  |  |
| A              |                                 |                  | 4.0158        | 12.659               | 148630                  | 11740.664                           |                             |          |                    |                   | Shear               | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |  |  |  |
| В              | 28                              | о- с<br>е<br>С   | 4.0176        | 12.671               | 157150                  | 12402.684                           | 11689.54                    | 740.0264 | 6.33067            | 854.5089          | crushed failure     | Crushing of aggregate and brusting of sample                            |  |  |  |
| C              |                                 | 8                | 4.0138        | 12.647               | 138170                  | 10925.282                           |                             |          |                    |                   | Shear               |                                                                         |  |  |  |

#### Appendix Table 54: Mix 3

| Lab Identi     | ification | No:              | . Mix 3_ 7    | day water        | curing + Am             | Date of Cas                         | ting:                       | 23 Nov 2 | 008                |                   |                     |                       |
|----------------|-----------|------------------|---------------|------------------|-------------------------|-------------------------------------|-----------------------------|----------|--------------------|-------------------|---------------------|-----------------------|
| Concrete       | Grade:    | Pilo             | t Study_N     | /lix 3           |                         |                                     |                             |          |                    |                   |                     |                       |
| Specim.<br>No. | Age       | Testin<br>g date | Dia<br>,(in.) | Area ,<br>(in.2) | Max.<br>Load ,<br>(Ibf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV    | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture | Remarks               |
| F              |           | ŢĆ               | 4.01          | 12.623           | 121500                  | 9625.3798                           |                             |          |                    |                   | Crushed             |                       |
| Е              | 14        | 80 ce [          | 4.015         | 12.654           | 143500                  | 11339.95                            | 10456.86                    | 858.4497 | 8.209443           | 991.2524          | Shear               |                       |
| D              |           |                  | 4.02          | 12.686           | 132000                  | 10405.242                           |                             |          |                    |                   | Shear               |                       |
| A              |           | 12               | 4             | 12.560           | 132610                  | 10558.121                           |                             |          |                    |                   | Crushed             |                       |
| В              | 28        | 30- ce E         | 4.005         | 12.591           | 147350                  | 11702.414                           | 11187.5                     | 580.6708 | 5.190353           | 670.5008          | Crushed             | Breaking of aggregate |
| с              |           | 3                | 4.007         | 12.604           | 142450                  | 11301.969                           |                             |          |                    |                   | Crushed             |                       |

## Appendix Table 55: Mix 4

| Lab Ident<br>Concrete | ification<br>Grade: | No:<br>Pilo      | Mix 4_        | 14 days W<br>⁄lix 4 | ater Curing + curing compound + ambient<br>curing upto 28 Days | Date of Cas                         | ting:                       | 23 Nov 2 | 008                |                                                                         |                     |                                                                         |
|-----------------------|---------------------|------------------|---------------|---------------------|----------------------------------------------------------------|-------------------------------------|-----------------------------|----------|--------------------|-------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------|
| Specim.<br>No.        | Age                 | Testin<br>g date | Dia<br>,(in.) | Area ,<br>(in.2)    | Max. Load , (lbf)                                              | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV    | Co.of<br>Variation | Standard<br>Error                                                       | Type of<br>Fracture | Remarks                                                                 |
| с                     |                     | 12               | 4.0113        | 12.631              | 145790                                                         | 11542.179                           |                             |          |                    |                                                                         | Columnar            | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| A                     | 28                  | 30-C6 E          | 4.009         | 12.617              | 144670                                                         | 11466.654                           | 11521.43                    | 47.90087 | 0.415755           | 55.31116                                                                | Crushed             | Brusting of aggregate                                                   |
| в                     |                     | 4.016 12.661     | 146300        | 11555.461           |                                                                |                                     |                             |          | Shear              | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |                     |                                                                         |

## Appendix Table 56: Mix 5

| Concrete       | Grade: | Pilo             | t Study_N     | /lix 5          |                  |                        |                               |                                                |                                                   |                         |                                     |                             |          |                    |                   |                     |
|----------------|--------|------------------|---------------|-----------------|------------------|------------------------|-------------------------------|------------------------------------------------|---------------------------------------------------|-------------------------|-------------------------------------|-----------------------------|----------|--------------------|-------------------|---------------------|
| Specim.<br>No. | Age    | Testin<br>g date | Dia<br>,(in.) | Length<br>(in.) | Area ,<br>(in.2) | Weight in<br>air, (kg) | Weight<br>in water,<br>( kg ) | Density in<br>air, (<br>Ib/ ft. <sup>3</sup> ) | Density in<br>water ,<br>( lb/ ft. <sup>3</sup> ) | Max.<br>Load ,<br>(lbf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV    | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture |
| с              |        | 25               | 4.016         | 8.034           | 12.661           | 3.791                  | 2.132                         | 141.9852                                       | 79.8503                                           | 117250                  | 9260.9553                           |                             |          |                    |                   | Crushed             |
| F              | 14     | 5-Dec-           | 4.01          | 8.01            | 12.623           | 3.765                  | 2.114                         | 141.8574                                       | 79.6512                                           | 111370                  | 8822.8687                           | 9165.986                    | 306.86   | 3.347813           | 354.3314          | Shear               |
| в              |        | 80               | 4.015         | 8.0135          | 12.654           | 3.767                  | 2.114                         | 141.5177                                       | 79.4182                                           | 119130                  | 9414.1342                           |                             |          |                    |                   | Shear               |
| A              |        | 8                | 4.014         | 8.025           | 12.648           | 3.792                  | 2.131                         | 142.3236                                       | 79.9820                                           | 130180                  | 10292.476                           |                             |          |                    |                   | Shear               |
| D              | 28     | -Jan-0           | 4.015         | 8.066           | 12.654           | 3.818                  | 2.155                         | 142.5001                                       | 80.4315                                           | 122400                  | 9672.5428                           | 10125.6                     | 396.8629 | 3.919403           | 458.2578          | Crushed             |
| E              |        | 9                | 4.023         | 8.015           | 12.705           | 3.752                  | 2.099                         | 140.3679                                       | 78.5267                                           | 132280                  | 10411.768                           |                             |          |                    |                   | Shear               |

#### Appendix Table 57: Mix 6

| Lab Identi     | ification | No:              | Mix 6_ 1<br>Comp | 1Day water<br>pound + arr | curing + Curing      | Date of Cas                         | ting:                       | 11 Dec 2 | 008                |                   |                     |                                                                         |
|----------------|-----------|------------------|------------------|---------------------------|----------------------|-------------------------------------|-----------------------------|----------|--------------------|-------------------|---------------------|-------------------------------------------------------------------------|
| Concrete       | Grade:    | Pilo             | t Study_N        | ∕lix 6                    |                      | -                                   |                             |          |                    |                   |                     |                                                                         |
| Specim.<br>No. | Age       | Testin<br>g date | Dia<br>,(in.)    | Area ,<br>(in.2)          | Max. Load ,<br>(Ibf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV    | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture | Remarks                                                                 |
| I              |           | 14               | 4.01             | 12.623                    | 89500                | 7090                                |                             |          |                    |                   | Columnar            | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| к              | 3         | -Dec-(           | 4.01             | 12.623                    | 81000                | 6417                                | 6754                        | 476.1519 | 7.050332           | 673.3805          | Shear               |                                                                         |
| L              |           | 80               | 4.015            | 12.654                    | 2000                 | 158                                 |                             |          |                    |                   | Shear               | Breaking of Machine, wrong results                                      |
| A              |           | 18               | 4.01             | 12.623                    | 90750                | 7189                                |                             |          |                    |                   | Shear               | Aggregate Failure                                                       |
| с              | 7         | 3-Dec-(          | 4.16             | 13.585                    | 104730               | 7709                                | 7663                        | 451.7875 | 5.895982           | 521.6793          | Shear               |                                                                         |
| в              |           | 80               | 4.01             | 12.623                    | 102110               | 8089                                |                             |          |                    |                   |                     | Columnar Failure                                                        |
| E              |           | 25               | 4.01             | 12.623                    | 119870               | 9496.2492                           |                             |          |                    |                   |                     | Columnar Failure                                                        |
| F              | 14        | 5-Dec-           | 4.014            | 12.648                    | 118720               | 9386.4094                           | 9343.231                    | 178.5674 | 1.911195           | 206.1919          | Shear               |                                                                         |
| D              |           | 80               | 4.015            | 12.654                    | 115750               | 9147.033                            |                             |          |                    |                   | Shear               |                                                                         |
| J              |           |                  | 4.014            | 12.648                    | 109790               | 8680                                |                             |          |                    |                   | Crushed             |                                                                         |
| G              | 28        | 8-Jan-(          | 4.006            | 12.598                    | 114850               | 9117                                | 9109                        | 425.0142 | 4.665801           | 601.0609          | Shear               | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| н              |           | 90               | 4.015            | 12.654                    | 120600               | 9530                                |                             |          |                    |                   | Columnar            |                                                                         |

#### Appendix Table 58: Mix 7

| Lab Identi<br>Concrete | fication<br>Grade: | No:<br>Pilo      | .Mix 7_ 3     | 3 Day wate<br>Mix 7 | er curing +      | Curing Com             | pound + an                  | nbient Curing                                   |                                                   |                         | Date of Casi                        | ting:                       | 11 Dec 2 | 008                |                   |                     |                                                                         |
|------------------------|--------------------|------------------|---------------|---------------------|------------------|------------------------|-----------------------------|-------------------------------------------------|---------------------------------------------------|-------------------------|-------------------------------------|-----------------------------|----------|--------------------|-------------------|---------------------|-------------------------------------------------------------------------|
| Specim.<br>No.         | Age                | Testin<br>g date | Dia<br>,(in.) | Length<br>(in.)     | Area ,<br>(in.2) | Weight in<br>air, (kg) | Weight<br>in water,<br>(kg) | Density in<br>air , (<br>lb/ ft. <sup>3</sup> ) | Density in<br>water ,<br>( lb/ ft. <sup>3</sup> ) | Max.<br>Load ,<br>(Ibf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV    | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture | Remarks                                                                 |
| A                      |                    | 184              | 4.007         | 8.023               | 12.604           | 3.798                  | 2.144                       | 143.0830                                        | 80.7714                                           | 112540                  | 8929                                |                             |          |                    |                   | Columnar            | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| В                      | 7                  | 80- c e D        | 4.008         | 8.06                | 12.610           | 3.803                  | 2.138                       | 142.5425                                        | 80.1356                                           | 112390                  | 8913                                | 8921                        | 11.56122 | 0.129599           | 16.35004          | Shear               |                                                                         |
| с                      |                    | a                | 4.011         | 8.05                | 12.629           | 3.796                  | 2.136                       | 142.2438                                        | 80.0403                                           | 108120                  | 8561                                |                             |          |                    |                   | Shear               | Breaking of Machine, wrong results                                      |
| F                      |                    | 52               | 4.01          | 8.02                | 12.623           | 3.773                  | 2.12                        | 141.9816                                        | 79.7776                                           | 120920                  | 9579                                |                             |          |                    |                   | Shear               | Aggregate Failure                                                       |
| E                      | 14                 | 0-ceD            | 4.0165        | 8.0375              | 12.664           | 3.768                  | 2.102                       | 141.0272                                        | 78.6728                                           | 114750                  | 9061                                | 9346                        | 262.866  | 2.812622           | 303.5315          | Shear               |                                                                         |
| D                      |                    | 8                | 4.009         | 8.065               | 12.617           | 3.717                  | 2.056                       | 139.1632                                        | 76.9759                                           | 118560                  | 9397                                |                             |          |                    |                   |                     | Columnar Failure                                                        |
| Т                      |                    | 8                | 4.011         | 8.0425              | 12.629           | 3.809                  | 2.142                       | 142.8641                                        | 80.3399                                           | 126190                  | 9992                                |                             |          |                    |                   | Crushed             | Breaking of aggregate                                                   |
| J                      | 28                 | leu Je           | 4.017         | 8.0375              | 12.667           | 3.776                  | 2.114                       | 141.2914                                        | 79.1022                                           | 129390                  | 10215                               | 9943                        | 299.0797 | 3.007914           | 345.3475          | Crushed             | Breaking of aggregate                                                   |
| н                      |                    |                  | 4.018         | 8.026               | 12.673           | 3.745                  | 2.088                       | 140.2624                                        | 78.2024                                           | 121950                  | 9623                                |                             |          |                    |                   | Crushed             | Breaking of aggregate                                                   |

#### Appendix Table 59: Mix 8

| Lab Ident      | ification | No:              | . Mix 8_ 3    | 3 Day wate       | r curing + ar           | Date of Cas                         | ting:                       | 17 Dec 2 | 008                |                   |                     |                                                                         |
|----------------|-----------|------------------|---------------|------------------|-------------------------|-------------------------------------|-----------------------------|----------|--------------------|-------------------|---------------------|-------------------------------------------------------------------------|
| Concrete       | Grade:    | Pilo             | ot Study_N    | ∕lix8            |                         | -                                   |                             |          |                    |                   |                     |                                                                         |
| Specim.<br>No. | Age       | Testin<br>g date | Dia<br>,(in.) | Area ,<br>(in.2) | Max.<br>Load ,<br>(lbf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV    | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture | Remarks                                                                 |
| A              |           | 24               | 4.0123        | 12.637           | 130160                  | 10300                               |                             |          |                    |                   | Columnar            | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| D              | 7         | -Dec-(           | 4.0135        | 12.645           | 122380                  | 9678                                | 9989                        | 439.4137 | 4.399017           | 621.4248          | Shear               |                                                                         |
| F              |           | 80               | 4.01          | 12.623           | 127850                  | 10128                               |                             |          |                    |                   | Shear               |                                                                         |
| н              |           | 31               | 4.009         | 12.617           | 126870                  | 10056                               |                             |          |                    |                   | Shear               | Aggregate Failure                                                       |
| в              | 14        | I-Dec-           | 4.025         | 12.717           | 129930                  | 10217                               | 10221                       | 167.0644 | 1.634558           | 192.9094          | Shear               |                                                                         |
| с              |           | 80               | 4.01          | 12.623           | 131150                  | 10390                               |                             |          |                    |                   | Crushed             |                                                                         |
| G              |           | -                | 4.0063        | 12.600           | 139990                  | 11111                               |                             |          |                    |                   | Shear               | Breaking of aggregate                                                   |
| I              | 28        | 4-Jan-(          | 4.01          | 12.623           | 146670                  | 11619                               | 11004                       | 674.2905 | 6.127416           | 778.6036          | Crushed             | Breaking of aggregate                                                   |
| E              |           | 90               | 4.015         | 12.654           | 130130                  | 10283                               |                             |          |                    |                   | Shear               | Breaking of aggregate                                                   |

#### Appendix Table 60: Mix 9

| Lab Identi<br>Concrete | fication<br>Grade: | No:<br>Pilo      | Mix9_ 1<br>t Study_N | Day Wate<br>Nix 9 | er Curing +                                               | ambient Cu             | ring                        |                                                 |                                                   |                         | Date of Cast                        | ting:                       | 12 Dec 2 | 008                |                   |                                                                         |                                                                         |
|------------------------|--------------------|------------------|----------------------|-------------------|-----------------------------------------------------------|------------------------|-----------------------------|-------------------------------------------------|---------------------------------------------------|-------------------------|-------------------------------------|-----------------------------|----------|--------------------|-------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Specim.<br>No.         | Age                | Testin<br>g date | Dia<br>,(in.)        | Length<br>(in.)   | Area ,<br>(in.2)                                          | Weight in<br>air, (kg) | Weight<br>in water,<br>(kg) | Density in<br>air , (<br>Ib/ ft. <sup>3</sup> ) | Density in<br>water ,<br>( lb/ ft. <sup>3</sup> ) | Max.<br>Load ,<br>(Ibf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV    | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture                                                     | Remarks                                                                 |
| к                      |                    | - 2 1            | 4.01                 | 8.025             | 12.623                                                    | 3.542                  | 1.885                       | 133.2058                                        | 70.8902                                           | 1000                    | 79.221233                           |                             |          |                    |                   | Crushed                                                                 | Problem in Machine, Wrong Results,<br>Pointer not moving up             |
| J                      | 3                  | 0.ceD            | 4.015                | 8.03              | 12.654                                                    | 3.563                  | 1.915                       | 133.5788                                        | 71.7944                                           | 47290                   | 3737.047                            | 4423.196                    | 970.3609 | 21.938             | 1372.298          | Shear                                                                   | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| L                      |                    | 3                | 4.017                | 8.027             | 8.027 12.667 3.582 1.924 134.2076 72.0869 64720 5109.3445 |                        |                             |                                                 |                                                   |                         |                                     |                             |          |                    | Shear             | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |                                                                         |
| D                      |                    | 91               | 4.005                | 8.035             | 12.591                                                    | 3.522                  | 1.9                         | 132.6193                                        | 71.5437                                           | 69250                   | 5499.777                            |                             |          |                    |                   | Shear                                                                   | Aggregate Failure                                                       |
| E                      | 7                  | 30 ce D          | 4.009                | 8.024             | 12.617                                                    | 3.544                  | 1.886                       | 133.3641                                        | 70.9720                                           | 71760                   | 5687.7521                           | 5590.846                    | 94.12344 | 1.683528           | 108.6844          | Shear                                                                   |                                                                         |
| A                      |                    | ~                | 4.016                | 8.03              | 12.661                                                    | 3.57                   | 1.914                       | 133.7746                                        | 71.7212                                           | 70710                   | 5585.0076                           |                             |          |                    |                   | Shear                                                                   |                                                                         |
| G                      |                    | 65               | 4.015                | 8.03              | 12.654                                                    | 3.498                  | 1.844                       | 131.1419                                        | 69.1326                                           | 81090                   | 6408.0596                           |                             |          |                    |                   | Shear                                                                   | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| н                      | 14                 | 30-ce [          | 4.014                | 8.054             | 12.648                                                    | 3.578                  | 1.922                       | 133.8081                                        | 71.8779                                           | 77470                   | 6125.0433                           | 6411.388                    | 288.0235 | 4.492373           | 332.5808          | Shear                                                                   |                                                                         |
| F                      |                    | 3                | 4.016                | 8.0275            | 12.661                                                    | 3.572                  | 1.915                       | 133.8912                                        | 71.7810                                           | 84840                   | 6701.0614                           |                             |          |                    |                   | Crushed                                                                 |                                                                         |
| В                      |                    | e -              | 4.012                | 8.021             | 12.635                                                    | 3.351                  | 1.883                       | 125.9599                                        | 70.7796                                           | 80150                   | 6343                                |                             |          |                    |                   | Shear                                                                   | Presence of unhydrated cement in<br>form of white patch                 |
| c                      | 28                 | 90-nal           | 4.016                | 8.04              | 12.661                                                    | 3.563                  | 1.908                       | 133.3462                                        | 71.4074                                           | 76530                   | 6045                                | 6172                        | 153.9657 | 2.4945             | 217.7404          | Shear                                                                   | Presence of unhydrated cement in<br>form of white patch                 |
| Т                      |                    |                  | 4.011                | 8.035             | 12.629                                                    | 3.546                  | 1.895                       | 133.1239                                        | 71.1421                                           | 77400                   | 6129                                |                             |          |                    |                   | Shear                                                                   | Presence of unhydrated cement in<br>form of white patch                 |

# Appendix Table 61: Mix 10

| Lab Identi<br>Concrete | ification<br>Grade: | <b>No:</b><br>Pilo | Mix 1<br>a<br>t Study_N | 0_ Steam<br>ambient Cu<br>/lix 10 | Curing +<br>ring        | Date of Cas                         | ting:                       | 12 Dec 2 | 008                |                   |                     |                                                                         |
|------------------------|---------------------|--------------------|-------------------------|-----------------------------------|-------------------------|-------------------------------------|-----------------------------|----------|--------------------|-------------------|---------------------|-------------------------------------------------------------------------|
| Specim.<br>No.         | Age                 | Testin<br>g date   | Dia<br>,(in.)           | Area ,<br>(in.2)                  | Max.<br>Load ,<br>(lbf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV    | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture | Remarks                                                                 |
| N                      |                     | 931                | 4.16                    | 13.585                            | 70000                   | 5153                                |                             |          |                    |                   | Columnar            | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| м                      | 1                   | 0ceE               | 4.02                    | 12.686                            | 68500                   | 5400                                | 5387.726                    | 229.1971 | 4.25406            | 264.654           | Shear               |                                                                         |
| 0                      |                     |                    | 4.015                   | 12.654                            | 71000                   | 5611                                |                             |          |                    |                   | Shear               | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| J                      |                     | 190                | 4.017                   | 12.667                            | 83460                   | 6589                                |                             |          |                    |                   | Shear               | Aggregate Failure                                                       |
| к                      | 3                   | 00 CG E            | 4.018                   | 12.673                            | 84920                   | 6701                                | 6574                        | 134.6822 | 2.048706           | 155.5176          | Shear               |                                                                         |
| L                      |                     |                    | 4.015                   | 12.654                            | 81400                   | 6433                                |                             |          |                    |                   |                     | Columnar Failure                                                        |
| o                      |                     | 103                | 4.015                   | 12.654                            | 88600                   | 7001.5302                           |                             |          |                    |                   | Columnar<br>Failure | Crushing of aggregate                                                   |
| G                      | 7                   | 10V 00             | 4.02                    | 12.686                            | 92300                   | 7275.7864                           | 7210.643                    | 185.3368 | 2.570323           | 214.0085          | Shear               |                                                                         |
| N                      |                     |                    | 4.02                    | 12.686                            | 93300                   | 7354.6139                           |                             |          |                    |                   | Shear               |                                                                         |
| D                      |                     | 965                | 4.0125                  | 12.639                            | 94260                   | 7458                                |                             |          |                    |                   | Columnar            | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| н                      | 14                  | 00 C6 [            | 4.015                   | 12.654                            | 90690                   | 7167                                | 7159.691                    | 301.9606 | 4.217509           | 348.6741          | Shear               |                                                                         |
| Т                      |                     |                    | 4.016                   | 12.661                            | 86780                   | 6854                                |                             |          |                    |                   | Shear               | Presence of unhydrated cement in<br>form of white patch                 |
| G                      |                     | t a                | 4.007                   | 12.604                            | 88140                   | 6993                                |                             |          |                    | ]                 | Shear               | Aggregate Failure                                                       |
| F                      | 28                  | 0 na               | 4.017                   | 12.667                            | 87870                   | 6937                                | 6858                        | 187.8803 | 2.739691           | 216.9454          | Shear               |                                                                         |
| E                      |                     | Û                  | 4.012                   | 12.635                            | 83940                   | 6643                                |                             |          |                    |                   |                     | Columnar Failure                                                        |

#### Appendix Table 62: Mix 11

| Lab Identi<br>Concrete | ification<br>Grade: | <b>No:</b><br>Pilo | Mix 1<br>Curing<br>t Study_N | 1_ Steam<br>compound<br>Curing<br>/lix 11 | Curing +<br>+ ambient   | Date of Cas                         | ting:                       | 17 Dec 2 | 008                |                   |                     |                                                                         |
|------------------------|---------------------|--------------------|------------------------------|-------------------------------------------|-------------------------|-------------------------------------|-----------------------------|----------|--------------------|-------------------|---------------------|-------------------------------------------------------------------------|
| Specim.<br>No.         | Age                 | Testin<br>g date   | Dia<br>,(in.)                | Area ,<br>(in.2)                          | Max.<br>Load ,<br>(Ibf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV    | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture | Remarks                                                                 |
| м                      |                     | 181                | 4.019                        | 12.680                                    | 118250                  | 9326                                |                             |          |                    |                   | Columnar            | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| N                      | 1                   | 1900E              | 4.015                        | 12.654                                    | 113710                  | 8986                                | 8867.442                    | 527.8024 | 5.952138           | 609.4537          | Shear               |                                                                         |
| o                      |                     |                    | 4.01                         | 12.623                                    | 104650                  | 8291                                |                             |          |                    |                   | Shear               | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| I.                     |                     | 005                | 4.0113                       | 12.631                                    | 127660                  | 10107                               |                             |          |                    |                   | Shear               | Aggregate Failure                                                       |
| н                      | 3                   | 30 CG [            | 4.007                        | 12.604                                    | 117030                  | 9285                                | 9808                        | 454.611  | 4.634934           | 524.9396          | Shear               |                                                                         |
| G                      |                     | ~                  | 4.0148                       | 12.653                                    | 126950                  | 10033                               |                             |          |                    |                   |                     | Columnar Failure                                                        |
| к                      |                     | 145                | 4.01                         | 12.623                                    | 133220                  | 10553.853                           |                             |          |                    |                   | Columnar<br>Failure | Crushing of aggregate                                                   |
| с                      | 7                   | 1ov 00             | 4.001                        | 12.566                                    | 131060                  | 10429.498                           | 10479.27                    | 65.78475 | 0.627761           | 75.96169          | Shear               | Broken edge                                                             |
| D                      |                     |                    | 4.0125                       | 12.639                                    | 132130                  | 10454.462                           |                             |          |                    |                   | Shear               |                                                                         |
| Α                      |                     | 3                  | 4.01                         | 12.623                                    | 129900                  | 10291                               |                             |          |                    |                   | Columnar            | Pulling out of aggregate, Mortar                                        |
| в                      | 14                  | ce B1              | 4.009                        | 12.617                                    | 136360                  | 10808                               | 10549.07                    | 258.5802 | 2.451214           | 298.5827          | Shear               |                                                                         |
| J                      |                     | 80                 | 4.013                        | 12.642                                    | 133350                  | 10548                               |                             |          |                    |                   | Shear               | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| L                      |                     | 47                 | 4.0112                       | 12.630                                    | 136870                  | 10837                               |                             |          |                    |                   | Shear               | Aggregate Failure                                                       |
| E                      | 28                  | 0 naJ              | 4.0095                       | 12.620                                    | 133170                  | 10553                               | 10934                       | 439.153  | 4.016234           | 507.0902          | Shear               |                                                                         |
| F                      |                     | Ö                  | 4.0026                       | 12.576                                    | 143550                  | 11414                               |                             |          |                    |                   |                     | Columnar Failure                                                        |

# 9.5 Appendix E

Tests Results - Phase II

# Chloride Ion Test

#### Appendix Table 63: Control Mix

| Mix Id            | Cor                             | ntrol                         | Mix Type                            |                                 |                               |                                     | Curing Per                      | iod                           | 56 days                             |                                 |                               |                                     |
|-------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
|                   |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Resistance        | Cell 1                          | 0.98                          | ohm                                 | Cell 2                          | 0.98                          | ohm                                 | Cell 3                          | 1                             | ohm                                 | Cell 4                          | 0.99                          | ohm                                 |
|                   |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time              | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 12.34 pm          | 60                              | 0.0300                        | 0.031                               | 60                              | 0.0372                        | 0.038                               | 60                              | 0.0188                        | 0.01877                             | 60                              | 0.01892                       | 0.019                               |
| 1.04 pm           | 60                              | 0.0310                        | 0.032                               | 60                              | 0.0391                        | 0.040                               | 60                              | 0.01906                       | 0.01906                             | 60                              | 0.01866                       | 0.019                               |
| 1.34 pm           | 60                              | 0.0321                        | 0.033                               | 60                              | 0.0395                        | 0.040                               | 60                              | 0.0193                        | 0.0193                              | 60                              | 0.01903                       | 0.019                               |
| 2.04 pm           | 60                              | 0.0331                        | 0.034                               | 60                              | 0.0404                        | 0.041                               | 60                              | 0.01956                       | 0.01956                             | 60                              | 0.0187                        | 0.019                               |
| 2.34 pm           | 60                              | 0.0341                        | 0.035                               | 60                              | 0.0422                        | 0.043                               | 60                              | 0.01992                       | 0.01992                             | 60                              | 0.01905                       | 0.019                               |
| 3.04 pm           | 60                              | 0.0352                        | 0.036                               | 60                              | 0.0435                        | 0.044                               | 60                              | 0.0202                        | 0.02024                             | 60                              | 0.01958                       | 0.020                               |
| 3.34 pm           | 60                              | 0.0361                        | 0.037                               | 60                              | 0.0437                        | 0.045                               | 60                              | 0.02029                       | 0.02029                             | 60                              | 0.02005                       | 0.020                               |
| 4.04 pm           | 60                              | 0.0368                        | 0.038                               | 60                              | 0.0444                        | 0.045                               | 60                              | 0.0212                        | 0.02116                             | 60                              | 0.02046                       | 0.021                               |
| 4.34 pm           | 60                              | 0.0362                        | 0.037                               | 60                              | 0.0463                        | 0.047                               | 60                              | 0.02133                       | 0.02133                             | 60                              | 0.02192                       | 0.022                               |
| 5.04 pm           | 60                              | 0.0377                        | 0.038                               | 60                              | 0.0473                        | 0.048                               | 60                              | 0.0220                        | 0.0220                              | 60                              | 0.02242                       | 0.023                               |
| 5.34 pm           | 60                              | 0.0386                        | 0.039                               | 60                              | 0.0461                        | 0.047                               | 60                              | 0.02204                       | 0.02204                             | 60                              | 0.02288                       | 0.023                               |
| 6.04 pm           | 60                              | 0.0392                        | 0.040                               | 60                              | 0.0470                        | 0.048                               | 60                              | 0.02215                       | 0.02215                             | 60                              | 0.02325                       | 0.023                               |
| 6.34 pm           | 60                              | 0.0393                        | 0.040                               | 60                              | 0.0475                        | 0.048                               | 60                              | 0.0224                        | 0.0224                              | 60                              | 0.02354                       | 0.024                               |
| otal Charge Passe | Q1=                             | 780.1531                      | Coulombs                            | Q2 =                            | 958.3806                      | Coulombs                            | Q2 =                            | 445.725                       | Coulombs                            | Q2 =                            | 449.4727                      | Coulombs                            |
| Average C         | harge Pass                      | ed, Coulor                    | nbs                                 |                                 |                               |                                     |                                 | 658.43                        |                                     |                                 |                               |                                     |

## Appendix Table 64: Mix A

| Mix Id    |              | А                               |                               | Міх Туре                            |                                 |                               |                                     | Curing Per                      | iod                           | 56 days                             |                                 |                               |                                     |
|-----------|--------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
|           |              |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Res       | istance      | Cell 1                          | 0.98                          | ohm                                 | Cell 2                          | 0.97                          | ohm                                 | Cell 3                          | 0.98                          | ohm                                 | Cell 4                          | 0.97                          | ohm                                 |
|           |              |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time      | Temperature  | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 3.20 pm   |              | 60                              | 0.0141                        | 0.014                               | 60                              | 0.0131                        | 0.014                               | 60                              | 0.0125                        | 0.0128                              | 60                              | 0.0128                        | 0.013                               |
| 3.50 pm   |              | 60                              | 0.0144                        | 0.015                               | 60                              | 0.0138                        | 0.014                               | 60                              | 0.0129                        | 0.0132                              | 60                              | 0.0131                        | 0.014                               |
| 4.20 pm   |              | 60                              | 0.0147                        | 0.015                               | 60                              | 0.0142                        | 0.015                               | 60                              | 0.0131                        | 0.0134                              | 60                              | 0.0135                        | 0.014                               |
| 4.50 pm   |              | 60                              | 0.0145                        | 0.015                               | 60                              | 0.0143                        | 0.015                               | 60                              | 0.013                         | 0.0133                              | 60                              | 0.0137                        | 0.014                               |
| 5.20 pm   |              | 60                              | 0.0144                        | 0.015                               | 60                              | 0.0142                        | 0.015                               | 60                              | 0.0128                        | 0.0131                              | 60                              | 0.0138                        | 0.014                               |
| 5.50 pm   |              | 60                              | 0.0145                        | 0.015                               | 60                              | 0.0144                        | 0.015                               | 60                              | 0.0134                        | 0.0137                              | 60                              | 0.014                         | 0.014                               |
| 6.20 pm   |              | 60                              | 0.0149                        | 0.015                               | 60                              | 0.0146                        | 0.015                               | 60                              | 0.0136                        | 0.0139                              | 60                              | 0.0141                        | 0.015                               |
| 6.50 pm   |              | 60                              | 0.0155                        | 0.016                               | 60                              | 0.0151                        | 0.016                               | 60                              | 0.0138                        | 0.0141                              | 60                              | 0.0145                        | 0.015                               |
| 7.20 pm   |              | 60                              | 0.0155                        | 0.016                               | 60                              | 0.0150                        | 0.015                               | 60                              | 0.0144                        | 0.0147                              | 60                              | 0.0145                        | 0.015                               |
| 7.50 pm   |              | 60                              | 0.0159                        | 0.016                               | 60                              | 0.0155                        | 0.016                               | 60                              | 0.0141                        | 0.0144                              | 60                              | 0.0147                        | 0.015                               |
| 8.20 pm   |              | 60                              | 0.0162                        | 0.017                               | 60                              | 0.0153                        | 0.016                               | 60                              | 0.0144                        | 0.0147                              | 60                              | 0.0151                        | 0.016                               |
| 8.50 pm   |              | 60                              | 0.0161                        | 0.016                               | 60                              | 0.0153                        | 0.016                               | 60                              | 0.0146                        | 0.0149                              | 60                              | 0.015                         | 0.015                               |
| 9.20 pm   |              | 60                              | 0.0164                        | 0.017                               | 60                              | 0.0159                        | 0.016                               | 60                              | 0.0144                        | 0.0147                              | 60                              | 0.0152                        | 0.016                               |
| Total Cha | arge Passed  | Q1=                             | 334.0837                      | Coulombs                            | Q2 =                            | 326.9691                      | Coulombs                            | Q2 =                            | 300.398                       | Coulombs                            | Q2 =                            | 315.4639                      | Coulombs                            |
|           | Average Char | ge Passed,                      | Coulombs                      |                                     |                                 |                               |                                     |                                 | 319.23                        |                                     |                                 |                               |                                     |

# Appendix Table 65: Mix B

| Mix Id- B  | Curing Per                      | iod                           | 56 days                             |                                 |                               |                                     |
|------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
|            |                                 |                               |                                     |                                 |                               |                                     |
| Resistance | Cell 3                          | 0.97                          | ohm                                 | Cell 4                          | 0.99                          | ohm                                 |
|            |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time       | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 2.37 pm    | 60                              | 0.0107                        | 0.011031                            | 60                              | 0.0105                        | 0.01061                             |
| 3.07 pm    | 60                              | 0.0112                        | 0.011546                            | 60                              | 0.0111                        | 0.01121                             |
| 3.37 pm    | 60                              | 0.0111                        | 0.011443                            | 60                              | 0.0112                        | 0.01131                             |
| 4.07 pm    | 60                              | 0.0112                        | 0.011546                            | 60                              | 0.0112                        | 0.01131                             |
| 4.37 pm    | 60                              | 0.0111                        | 0.011443                            | 60                              | 0.0111                        | 0.01121                             |
| 5.07 pm    | 60                              | 0.0113                        | 0.011649                            | 60                              | 0.0114                        | 0.01152                             |
| 5.37 pm    | 60                              | 0.0116                        | 0.011959                            | 60                              | 0.0116                        | 0.01172                             |
| 6.07 pm    | 60                              | 0.0116                        | 0.011959                            | 60                              | 0.0117                        | 0.01182                             |
| 6.37 pm    | 60                              | 0.0121                        | 0.012474                            | 60                              | 0.012                         | 0.01212                             |
| 7.07 pm    | 60                              | 0.0121                        | 0.012474                            | 60                              | 0.0121                        | 0.01222                             |
| 7.37 pm    | 60                              | 0.0125                        | 0.012887                            | 60                              | 0.0123                        | 0.01242                             |
| 8.07 pm    | 60                              | 0.0125                        | 0.012887                            | 60                              | 0.0126                        | 0.01273                             |
| 8.37 pm    | 60                              | 0.0129                        | 0.013299                            | 60                              | 0.0126                        | 0.01273                             |
| Charge Pa  | Q2 =                            | 259.9794                      | Coulombs                            | Q2 =                            | 254.2727                      | Coulombs                            |

## Appendix Table 66: Mix C

| Mix Id          |                                 |                               | Міх Туре                            |                                 |                               |                                     | Curing Per                      | iod                           | 56 days                             |                                 |                               |                                     |
|-----------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
|                 |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Resistance      | Cell 1                          | 0.96                          | ohm                                 | Cell 2                          | 0.96                          | ohm                                 | Cell 3                          | 0.96                          | ohm                                 | Cell 4                          | 0.97                          | ohm                                 |
|                 |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time            | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 12.40 pm        | 60                              | 0.0212                        | 0.022                               | 60                              | 0.0268                        | 0.028                               | 60                              | 0.0185                        | 0.019271                            | 60                              | 0.02121                       | 0.022                               |
| 1.10 pm         | 60                              | 0.0215                        | 0.022                               | 60                              | 0.0290                        | 0.030                               | 60                              | 0.0193                        | 0.020104                            | 60                              | 0.02148                       | 0.022                               |
| 1.40 pm         | 60                              | 0.0216                        | 0.022                               | 60                              | 0.0305                        | 0.032                               | 60                              | 0.01942                       | 0.020229                            | 60                              | 0.02121                       | 0.022                               |
| 2.10 pm         | 60                              | 0.0220                        | 0.023                               | 60                              | 0.0320                        | 0.033                               | 60                              | 0.01955                       | 0.020365                            | 60                              | 0.0215                        | 0.022                               |
| 2.40 pm         | 60                              | 0.0218                        | 0.023                               | 60                              | 0.0319                        | 0.033                               | 60                              | 0.01984                       | 0.020667                            | 60                              | 0.02203                       | 0.023                               |
| 3.10 pm         | 60                              | 0.0224                        | 0.023                               | 60                              | 0.0311                        | 0.032                               | 60                              | 0.0200                        | 0.020823                            | 60                              | 0.02287                       | 0.024                               |
| 3.40 pm         | 60                              | 0.0233                        | 0.024                               | 60                              | 0.0323                        | 0.034                               | 60                              | 0.02054                       | 0.021396                            | 60                              | 0.02279                       | 0.023                               |
| 4.10 pm         | 60                              | 0.0231                        | 0.024                               | 60                              | 0.0323                        | 0.034                               | 60                              | 0.0208                        | 0.021635                            | 60                              | 0.02266                       | 0.023                               |
| 4.40 pm         | 60                              | 0.0240                        | 0.025                               | 60                              | 0.0330                        | 0.034                               | 60                              | 0.02133                       | 0.022219                            | 60                              | 0.02304                       | 0.024                               |
| 5.10 pm         | 60                              | 0.0241                        | 0.025                               | 60                              | 0.0340                        | 0.035                               | 60                              | 0.0212                        | 0.022073                            | 60                              | 0.0232                        | 0.024                               |
| 5.40 pm         | 60                              | 0.0248                        | 0.026                               | 60                              | 0.0344                        | 0.036                               | 60                              | 0.02154                       | 0.022438                            | 60                              | 0.02364                       | 0.024                               |
| 6.10 pm         | 60                              | 0.0257                        | 0.027                               | 60                              | 0.0343                        | 0.036                               | 60                              | 0.02182                       | 0.022729                            | 60                              | 0.02375                       | 0.024                               |
| 6.40 pm         | 60                              | 0.0256                        | 0.027                               | 60                              | 0.0360                        | 0.038                               | 60                              | 0.02182                       | 0.022729                            | 60                              | 0.02393                       | 0.025                               |
| tal Charge Pass | Q1=                             | 520.6125                      | Coulombs                            | Q2 =                            | 723.9188                      | Coulombs                            | Q2 =                            | 460.2188                      | Coulombs                            | Q2 =                            | 502.3299                      | Coulombs                            |
| Average (       | Charge Pas                      | sed, Coulo                    | mbs                                 |                                 |                               |                                     |                                 | 551.77                        |                                     |                                 |                               |                                     |

#### Appendix Table 67: Mix D

| Mix Id              | [                               | )                             | Міх Туре                            |                                 |                               |                                     | Curing Per                      | iod                           | 56 days                             |                                 |                               |                                     |
|---------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
|                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Resistance          | Cell 1                          | 0.96                          | ohm                                 | Cell 2                          | 0.94                          | ohm                                 | Cell 3                          | 0.95                          | ohm                                 | Cell 4                          | 1.01                          | ohm                                 |
|                     |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time                | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 1.40 pm             | 60                              | 0.0118                        | 0.012                               | 60                              | 0.0103                        | 0.011                               | 60                              | 0.0119                        | 0.012547                            | 60                              | 0.01107                       | 0.011                               |
| 2.10 pm             | 60                              | 0.0119                        | 0.012                               | 60                              | 0.0105                        | 0.011                               | 60                              | 0.01227                       | 0.012916                            | 60                              | 0.0113                        | 0.011                               |
| 2.40 pm             | 60                              | 0.0121                        | 0.013                               | 60                              | 0.0106                        | 0.011                               | 60                              | 0.01231                       | 0.012958                            | 60                              | 0.01143                       | 0.011                               |
| 3.10 pm             | 60                              | 0.0120                        | 0.012                               | 60                              | 0.0107                        | 0.011                               | 60                              | 0.0123                        | 0.012947                            | 60                              | 0.0115                        | 0.011                               |
| 3.40 pm             | 60                              | 0.0119                        | 0.012                               | 60                              | 0.0106                        | 0.011                               | 60                              | 0.01224                       | 0.012884                            | 60                              | 0.01173                       | 0.012                               |
| 4.10 pm             | 60                              | 0.0119                        | 0.012                               | 60                              | 0.0105                        | 0.011                               | 60                              | 0.0126                        | 0.013232                            | 60                              | 0.01185                       | 0.012                               |
| 4.40 pm             | 60                              | 0.0124                        | 0.013                               | 60                              | 0.0104                        | 0.011                               | 60                              | 0.01272                       | 0.013389                            | 60                              | 0.012                         | 0.012                               |
| 5.10 pm             | 60                              | 0.0124                        | 0.013                               | 60                              | 0.0105                        | 0.011                               | 60                              | 0.0129                        | 0.013568                            | 60                              | 0.01234                       | 0.012                               |
| 5.40 pm             | 60                              | 0.0129                        | 0.013                               | 60                              | 0.0105                        | 0.011                               | 60                              | 0.01308                       | 0.013768                            | 60                              | 0.01248                       | 0.012                               |
| 6.10 pm             | 60                              | 0.0127                        | 0.013                               | 60                              | 0.0106                        | 0.011                               | 60                              | 0.0133                        | 0.013968                            | 60                              | 0.0126                        | 0.012                               |
| 6.40 pm             | 60                              | 0.0127                        | 0.013                               | 60                              | 0.0107                        | 0.011                               | 60                              | 0.01347                       | 0.014179                            | 60                              | 0.01304                       | 0.013                               |
| 7.10 pm             | 60                              | 0.0131                        | 0.014                               | 60                              | 0.0109                        | 0.012                               | 60                              | 0.01376                       | 0.014484                            | 60                              | 0.013                         | 0.013                               |
| 7.40 pm             | 60                              | 0.0132                        | 0.014                               | 60                              | 0.0109                        | 0.012                               | 60                              | 0.0139                        | 0.014632                            | 60                              | 0.01282                       | 0.013                               |
| Total Charge Passed | Q1=                             | 278.0719                      | Coulombs                            | Q2 =                            | 243.45                        | Coulombs                            | Q2 =                            | 291.3916                      | Coulombs                            | Q2 =                            | 258.7099                      | Coulombs                            |
| Average Cha         | rge Passec                      | , Coulombs                    | 6                                   |                                 |                               |                                     |                                 | 267.9                         |                                     |                                 |                               |                                     |

#### Appendix Table 68: Mix E

| Mix Id     | E                               | E                             | Mix Type                            |                                 |                               |                                     | Curing Per                      | iod                           | 56 days                             |                                 | Cell 4     0.97 ohm       Cell 4       Voltage across shunt, V       across sinding, V     Shui shunt, V       60     0.01068     0.01       60     0.01122     0.01       60     0.01122     0.01       60     0.0113     0.01       60     0.0113     0.01       60     0.0113     0.01       60     0.01137     0.01       60     0.01169     0.01       60     0.01178     0.01 |                                     |  |
|------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|
|            |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                     |                                     |  |
| Resistance | Cell 1                          | 0.98                          | ohm                                 | Cell 2                          | 0.97                          | ohm                                 | Cell 3                          | 0.98                          | ohm                                 | Cell 4                          | 0.97                                                                                                                                                                                                                                                                                                                                                                                | ohm                                 |  |
|            |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                                                                                                                                                                                                                                                                                                                                                                              |                                     |  |
| Time       | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V                                                                                                                                                                                                                                                                                                                                                       | Current<br>through<br>Shunt,<br>amp |  |
| 1.05 pm    | 60                              | 0.0144                        | 0.015                               | 60                              | 0.0119                        | 0.012                               | 60                              | 0.0137                        | 0.013959                            | 60                              | 0.01068                                                                                                                                                                                                                                                                                                                                                                             | 0.011                               |  |
| 1.35 pm    | 60                              | 0.0151                        | 0.015                               | 60                              | 0.0124                        | 0.013                               | 60                              | 0.01428                       | 0.014571                            | 60                              | 0.011096                                                                                                                                                                                                                                                                                                                                                                            | 0.011                               |  |
| 2.05 pm    | 60                              | 0.0154                        | 0.016                               | 60                              | 0.0128                        | 0.013                               | 60                              | 0.01457                       | 0.014867                            | 60                              | 0.01122                                                                                                                                                                                                                                                                                                                                                                             | 0.012                               |  |
| 2.35 pm    | 60                              | 0.0152                        | 0.016                               | 60                              | 0.0130                        | 0.013                               | 60                              | 0.01459                       | 0.014888                            | 60                              | 0.0113                                                                                                                                                                                                                                                                                                                                                                              | 0.012                               |  |
| 3.05 pm    | 60                              | 0.0155                        | 0.016                               | 60                              | 0.0133                        | 0.014                               | 60                              | 0.01458                       | 0.014878                            | 60                              | 0.0114                                                                                                                                                                                                                                                                                                                                                                              | 0.012                               |  |
| 3.35 pm    | 60                              | 0.0157                        | 0.016                               | 60                              | 0.0134                        | 0.014                               | 60                              | 0.0148                        | 0.015061                            | 60                              | 0.01137                                                                                                                                                                                                                                                                                                                                                                             | 0.012                               |  |
| 4.05 pm    | 60                              | 0.0162                        | 0.017                               | 60                              | 0.0136                        | 0.014                               | 60                              | 0.01505                       | 0.015357                            | 60                              | 0.01169                                                                                                                                                                                                                                                                                                                                                                             | 0.012                               |  |
| 4.35 pm    | 60                              | 0.0160                        | 0.016                               | 60                              | 0.0138                        | 0.014                               | 60                              | 0.0154                        | 0.015673                            | 60                              | 0.01178                                                                                                                                                                                                                                                                                                                                                                             | 0.012                               |  |
| 5.05 pm    | 60                              | 0.0164                        | 0.017                               | 60                              | 0.0139                        | 0.014                               | 60                              | 0.01567                       | 0.01599                             | 60                              | 0.01168                                                                                                                                                                                                                                                                                                                                                                             | 0.012                               |  |
| 5.35 pm    | 60                              | 0.0168                        | 0.017                               | 60                              | 0.0142                        | 0.015                               | 60                              | 0.0158                        | 0.016071                            | 60                              | 0.01156                                                                                                                                                                                                                                                                                                                                                                             | 0.012                               |  |
| 6.05 pm    | 60                              | 0.0173                        | 0.018                               | 60                              | 0.0142                        | 0.015                               | 60                              | 0.01595                       | 0.016276                            | 60                              | 0.01166                                                                                                                                                                                                                                                                                                                                                                             | 0.012                               |  |
| 6.35 pm    | 60                              | 0.0170                        | 0.017                               | 60                              | 0.0143                        | 0.015                               | 60                              | 0.01623                       | 0.016561                            | 60                              | 0.01161                                                                                                                                                                                                                                                                                                                                                                             | 0.012                               |  |
| 7.05 pm    | 60                              | 0.0171                        | 0.017                               | 60                              | 0.0143                        | 0.015                               | 60                              | 0.01623                       | 0.016561                            | 60                              | 0.01175                                                                                                                                                                                                                                                                                                                                                                             | 0.012                               |  |
| Charge Pa  | Q1=                             | 353.5255                      | Coulombs                            | Q2 =                            | 300.5072                      | Coulombs                            | Q2 =                            | 333.8173                      | Coulombs                            | Q2 =                            | 255.3421                                                                                                                                                                                                                                                                                                                                                                            | Coulombs                            |  |
| Averag     | e Charge P                      | assed, Co                     | ulombs                              |                                 |                               |                                     |                                 | 310.80                        |                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                     |                                     |  |

#### Appendix Table 69: Mix S

| Mix Id              | S                               | 6                             | Міх Туре                            |                                 |                               |                                     | Curing Per                      | iod                           | 56                                  |                                 |                               |                                     |
|---------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|
|                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |
| Resistance          | Cell 1                          | 0.99                          | ohm                                 | Cell 2                          | 1.1                           | ohm                                 | Cell 3                          | 0.98                          | ohm                                 | Cell 4                          | 0.98                          | ohm                                 |
|                     |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                        |                                     |
| Time                | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp |
| 12.51 pm            | 60                              | 0.0120                        | 0.012                               | 60                              | 0.0127                        | 0.012                               | 60                              | 0.0095                        | 0.0097                              | 60                              | 0.01028                       | 0.010                               |
| 1.21 pm             | 60                              | 0.0121                        | 0.012                               | 60                              | 0.0128                        | 0.012                               | 60                              | 0.00936                       | 0.0096                              | 60                              | 0.0101                        | 0.010                               |
| 1.51 pm             | 60                              | 0.0120                        | 0.012                               | 60                              | 0.0128                        | 0.012                               | 60                              | 0.00929                       | 0.0095                              | 60                              | 0.00994                       | 0.010                               |
| 2.21 pm             | 60                              | 0.0122                        | 0.012                               | 60                              | 0.0126                        | 0.011                               | 60                              | 0.00915                       | 0.0093                              | 60                              | 0.0097                        | 0.010                               |
| 2.51 pm             | 60                              | 0.0122                        | 0.012                               | 60                              | 0.0125                        | 0.011                               | 60                              | 0.00907                       | 0.0093                              | 60                              | 0.00937                       | 0.010                               |
| 3.21 pm             | 60                              | 0.0119                        | 0.012                               | 60                              | 0.0123                        | 0.011                               | 60                              | 0.0090                        | 0.0092                              | 60                              | 0.00953                       | 0.010                               |
| 3.51 pm             | 60                              | 0.0120                        | 0.012                               | 60                              | 0.0122                        | 0.011                               | 60                              | 0.00895                       | 0.0091                              | 60                              | 0.00942                       | 0.010                               |
| 4.21 pm             | 60                              | 0.0119                        | 0.012                               | 60                              | 0.0119                        | 0.011                               | 60                              | 0.0088                        | 0.0090                              | 60                              | 0.00932                       | 0.010                               |
| 4.51 pm             | 60                              | 0.0119                        | 0.012                               | 60                              | 0.0116                        | 0.011                               | 60                              | 0.00882                       | 0.0090                              | 60                              | 0.00941                       | 0.010                               |
| 5.21 pm             | 60                              | 0.0118                        | 0.012                               | 60                              | 0.0118                        | 0.011                               | 60                              | 0.0088                        | 0.0090                              | 60                              | 0.0094                        | 0.010                               |
| 5.51 pm             | 60                              | 0.0116                        | 0.012                               | 60                              | 0.0116                        | 0.011                               | 60                              | 0.00866                       | 0.0088                              | 60                              | 0.00914                       | 0.009                               |
| 6.21 pm             | 60                              | 0.0116                        | 0.012                               | 60                              | 0.0116                        | 0.011                               | 60                              | 0.00875                       | 0.0089                              | 60                              | 0.00914                       | 0.009                               |
| 6.51 pm             | 60                              | 0.0117                        | 0.012                               | 60                              | 0.0113                        | 0.010                               | 60                              | 0.00867                       | 0.0088                              | 60                              | 0.00934                       | 0.010                               |
| Total Charge Passed | Q1=                             | 260.0364                      | Coulombs                            | Q2 =                            | 238.23                        | Coulombs                            | Q2 =                            | 197.9816                      | Coulombs                            | Q2 =                            | 209.8837                      | Coulombs                            |
| Average Cha         | rge Passed                      | , Coulombs                    | 5                                   |                                 |                               |                                     |                                 | 226.53                        |                                     |                                 |                               |                                     |

#### Appendix Table 70: Mix T

| Mix Id          |                                 | Г                             | Міх Туре                            | _                               |                               |                                     | Curing Per                      | iod                           | 56                                  |                                 | I     Ohm       Cell 4     Curr       /oltage<br>across<br>nding, V     Voltage<br>across<br>shunt, V     Curr<br>thro.<br>Shu<br>arr       60     0.01294     0.0       60     0.01322     0.0       60     0.01324     0.0       60     0.01324     0.0       60     0.01324     0.0       60     0.01324     0.0       60     0.01378     0.0       60     0.01355     0.0       60     0.01403     0.0       60     0.01417     0.0       60     0.01431     0.0       60     0.01433     0.0       60     0.01435     0.0 |                                     |  |
|-----------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|
|                 |                                 |                               |                                     |                                 |                               |                                     |                                 |                               |                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |
| Resistance      | Cell 1                          | 0.99                          | ohm                                 | Cell 2                          | 1.1                           | ohm                                 | Cell 3                          | 1                             | ohm                                 | Cell 4                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ohm                                 |  |
|                 |                                 | Cell 1                        |                                     |                                 | Cell 2                        |                                     |                                 | Cell 3                        |                                     |                                 | Cell 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |  |
| Time            | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V | Current<br>through<br>Shunt,<br>amp | Voltage<br>across<br>binding, V | Voltage<br>across<br>shunt, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Current<br>through<br>Shunt,<br>amp |  |
| 12.51 pm        | 60                              | 0.0124                        | 0.012                               | 60                              | 0.0151                        | 0.014                               | 60                              | 0.0135                        | 0.0135                              | 60                              | 0.01294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.013                               |  |
| 1.21 pm         | 60                              | 0.0125                        | 0.013                               | 60                              | 0.0157                        | 0.014                               | 60                              | 0.01387                       | 0.0139                              | 60                              | 0.01322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.013                               |  |
| 1.51 pm         | 60                              | 0.0122                        | 0.012                               | 60                              | 0.0160                        | 0.015                               | 60                              | 0.01394                       | 0.0139                              | 60                              | 0.01291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.013                               |  |
| 2.21 pm         | 60                              | 0.0121                        | 0.012                               | 60                              | 0.0159                        | 0.014                               | 60                              | 0.01382                       | 0.0138                              | 60                              | 0.0130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.013                               |  |
| 2.51 pm         | 60                              | 0.0120                        | 0.012                               | 60                              | 0.0158                        | 0.014                               | 60                              | 0.01377                       | 0.0138                              | 60                              | 0.01324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.013                               |  |
| 3.21 pm         | 60                              | 0.0119                        | 0.012                               | 60                              | 0.0155                        | 0.014                               | 60                              | 0.0135                        | 0.0135                              | 60                              | 0.01378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.014                               |  |
| 3.51 pm         | 60                              | 0.0118                        | 0.012                               | 60                              | 0.0156                        | 0.014                               | 60                              | 0.01337                       | 0.0134                              | 60                              | 0.01355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.014                               |  |
| 4.21 pm         | 60                              | 0.0117                        | 0.012                               | 60                              | 0.0156                        | 0.014                               | 60                              | 0.0136                        | 0.0136                              | 60                              | 0.01361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.014                               |  |
| 4.51 pm         | 60                              | 0.0116                        | 0.012                               | 60                              | 0.0155                        | 0.014                               | 60                              | 0.01377                       | 0.0138                              | 60                              | 0.01403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.014                               |  |
| 5.21 pm         | 60                              | 0.0115                        | 0.012                               | 60                              | 0.0155                        | 0.014                               | 60                              | 0.0136                        | 0.0136                              | 60                              | 0.01417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.014                               |  |
| 5.51 pm         | 60                              | 0.0116                        | 0.012                               | 60                              | 0.0157                        | 0.014                               | 60                              | 0.01336                       | 0.0134                              | 60                              | 0.0143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.014                               |  |
| 6.21 pm         | 60                              | 0.0115                        | 0.012                               | 60                              | 0.0158                        | 0.014                               | 60                              | 0.01368                       | 0.0137                              | 60                              | 0.01431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.014                               |  |
| 6.51 pm         | 60                              | 0.0116                        | 0.012                               | 60                              | 0.0156                        | 0.014                               | 60                              | 0.01343                       | 0.0134                              | 60                              | 0.01439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.014                               |  |
| tal Charge Pass | Q1=                             | 258.5091                      | Coulombs                            | Q2 =                            | 307.3745                      | Coulombs                            | Q2 =                            | 294.714                       | Coulombs                            | Q2 =                            | 294.885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coulombs                            |  |
| Average (       | Charge Pas                      | sed, Coulo                    | mbs                                 |                                 |                               |                                     |                                 | 288.87                        |                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |

# Compressive Strength Tests

## Appendix Table 71: Control Mixture

| Lab Identi<br>Concrete | ification<br>Grade:                                                                        | <b>No:</b> Phase II_M | Mix Con<br>ix Con | Control ( F<br>+ MC 4% | ily ash 30%<br>5)       | Date of Cas                         | ting:                       | 05/7/09  |                    |                   |                     |                   |  |  |  |
|------------------------|--------------------------------------------------------------------------------------------|-----------------------|-------------------|------------------------|-------------------------|-------------------------------------|-----------------------------|----------|--------------------|-------------------|---------------------|-------------------|--|--|--|
| Specim.<br>No.         | Age                                                                                        | Testing date          | Dia<br>,(in.)     | Area ,<br>(in.2)       | Max.<br>Load ,<br>(lbf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV    | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture | Remarks           |  |  |  |
| 3                      | 3 9 4.01 12.623 82950 6571   8 2 9 4 12.560 83635 6659 6609 44.94152 0.679994 51.894 Shear |                       |                   |                        |                         |                                     |                             |          |                    |                   |                     |                   |  |  |  |
| 8                      | 2                                                                                          | -May-0                | 4                 | 12.560                 | 83635                   | 6659                                | 6609                        | 44.94152 | 0.679994           | 51.894            | Shear               |                   |  |  |  |
| 11                     |                                                                                            | 9                     | 4.02              | 12.686                 | 83690                   | 6597                                |                             |          |                    |                   |                     |                   |  |  |  |
| 1                      |                                                                                            | л                     | 4.01              | 12.623                 | 100080                  | 7928.461                            |                             |          |                    |                   | Shear               | Aggregate Failure |  |  |  |
| 2                      | 28                                                                                         | -Jun-0                | 4.015             | 12.654                 | 93520                   | 7390.3285                           | 7859.57                     | 438.8704 | 5.583898           | 506.7639          | Shear               |                   |  |  |  |
| 4                      |                                                                                            | Ō                     | 4.008             | 12.610                 | 104160                  | 8259.9209                           |                             |          |                    |                   |                     | Columnar Failure  |  |  |  |
| 5                      |                                                                                            | ()                    | 4.012             | 12.635                 | 96790                   | 7660.1802                           |                             |          |                    |                   | columnar            | Columnar Failure  |  |  |  |
| 9                      | 56                                                                                         | 3-Jul-0               | 4.015             | 12.654                 | 92630                   | 7319.9971                           | 7515.92                     | 175.8777 | 2.340069           | 203.0861          | Shear               |                   |  |  |  |
| 10                     |                                                                                            | 9                     | 4.012             | 12.635                 | 95620                   | 7567.5837                           |                             |          |                    |                   | Shear               |                   |  |  |  |

#### Appendix Table 72: Mix A

| Lab Identi     | ification | No:              | Mix A (S      | lag 27% Si       | lica Fume 7             | Date of Cas                         | ting:                       | 04/18/09. |                    |                   |                     |                                                                         |
|----------------|-----------|------------------|---------------|------------------|-------------------------|-------------------------------------|-----------------------------|-----------|--------------------|-------------------|---------------------|-------------------------------------------------------------------------|
| Concrete       | Grade:    | Pha              | se II_Mix     | A                |                         |                                     |                             |           |                    |                   |                     |                                                                         |
| Specim.<br>No. | Age       | Testin<br>g date | Dia<br>,(in.) | Area ,<br>(in.2) | Max.<br>Load ,<br>(lbf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV     | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture | Remarks                                                                 |
| 1              |           | 19               | 4.01          | 12.623           | 91110                   | 7218                                |                             |           |                    |                   | Columnar            | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| 2              | 1         | 9-Apr-C          | 4.008         | 12.610           | 98380                   | 7802                                | 7684                        | 419.719   | 5.462351           | 484.6498          | Shear               |                                                                         |
| 3              |           | 9                | 4.012         | 12.635           | 101490                  | 8032                                |                             |           |                    |                   |                     |                                                                         |
| 4              |           | 10               | 4.01          | 12.623           | 123500                  | 9784                                |                             |           |                    |                   | Shear               | Aggregate Failure                                                       |
| 5              | 28        | 5-May-           | 4.012         | 12.635           | 122060                  | 9660                                | 9540.226                    | 320.7989  | 3.362592           | 370.4266          |                     | Columnar Failure                                                        |
| 6              |           | 60               | 4             | 12.560           | 115260                  | 9177                                |                             |           |                    |                   | Shear               |                                                                         |
| 7              |           |                  | 4.015         | 12.654           | 118430                  | 9358.8174                           |                             |           |                    |                   |                     | Columnar Failure                                                        |
| 8              | 56        | 3-Jun-(          | 4             | 12.560           | 120910                  | 9626.5924                           | 9259.108                    | 426.1786  | 4.602804           | 492.1086          | Shear               |                                                                         |
| 9              |           | 90               | 4.012         | 12.635           | 111090                  | 8791.9146                           |                             |           |                    |                   | Shear               |                                                                         |

#### Appendix Table 73: Mix B

| Lab Identi<br>Concrete | fication<br>Grade: | <b>No:</b> Phase II_M | . Mix B (S<br>ix B | lag 24% Si       | ilica Fume 10          | 0%)                     | Date of Cast                        | ting:                       | 04/17/09. |                    |                   |                     |                                                                         |
|------------------------|--------------------|-----------------------|--------------------|------------------|------------------------|-------------------------|-------------------------------------|-----------------------------|-----------|--------------------|-------------------|---------------------|-------------------------------------------------------------------------|
| Specim.<br>No.         | Age                | Testing date          | Dia<br>,(in.)      | Area ,<br>(in.2) | Weight in<br>air, (kg) | Max.<br>Load ,<br>(lbf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV     | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture | Remarks                                                                 |
| 1                      |                    | 18                    | 4.015              | 12.654           | 3663                   | 94640                   | 7479                                |                             |           |                    |                   | Columnar            | Pulling out of aggregate, Mortar<br>Faliure, breaking of weathered rock |
| 4                      | 1                  | 18-Apr-09             | 4.01               | 12.623           | 3747                   | 99400                   | 7875                                | 7695                        | 200.2913  | 2.603007           | 231.2764          | Shear               |                                                                         |
| 6                      |                    | 0                     | 4.01               | 12.623           | 3708                   | 97580                   | 7730                                |                             |           |                    |                   |                     |                                                                         |
| 7                      |                    | <del></del>           | 4.075              | 13.035           | 3.652                  | 119609                  | 9176                                |                             |           |                    |                   | Shear               |                                                                         |
| 8                      | 28                 | 5-May-(               | 4.012              | 12.635           | 3.64                   | 128940                  | 10205                               | 9702.889                    | 514.9274  | 5.30695            | 594.587           | Shear               | Aggregate Failure                                                       |
| 9                      |                    | 09                    | 4.01               | 12.623           | 3.645                  | 122800                  | 9728                                |                             |           |                    |                   |                     | Aggregate Failure                                                       |
| 0                      |                    | -                     | 4.005              | 12.591           | 3.68                   | 122550                  | 9732.8184                           |                             |           |                    |                   |                     |                                                                         |
| G                      | 56                 | 12-Jun-6              | 4.015              | 12.654           | 3.697                  | 123200                  | 9735.7621                           | 9895.43                     | 279.1065  | 2.820559           | 322.2844          | Shear               |                                                                         |
| N                      |                    | 90                    | 4.022              | 12.699           | 3.72                   | 129750                  | 10217.71                            |                             |           |                    |                   | Shear               |                                                                         |

## Appendix Table 74: Mix C

| Lab Identi<br>Concrete | fication<br>Grade: | <b>No:</b> Phase II_M | . Mix C(F<br>ix C | ly ash 27%       | • + MC 7%)              | Date of Cast                        | ing:                        | 04/25/09. |                    |                   |                     |
|------------------------|--------------------|-----------------------|-------------------|------------------|-------------------------|-------------------------------------|-----------------------------|-----------|--------------------|-------------------|---------------------|
| Specim.<br>No.         | Age                | Testing date          | Dia<br>,(in.)     | Area ,<br>(in.2) | Max.<br>Load ,<br>(lbf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV     | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture |
| 1                      |                    | 26                    | 4.02              | 12.686           | 66830                   | 5268                                |                             |           |                    |                   | Columnar            |
| 8                      | 2                  | 26-Apr-09             | 4.01              | 12.623           | 65000                   | 5149                                | 5226                        | 66.23087  | 1.267406           | 76.47682          | Shear               |
| 5                      |                    | Ō                     | 4.025             | 12.717           | 66890                   | 5260                                |                             |           |                    |                   |                     |
| D                      |                    | 23                    | 4.02              | 12.686           | 69670                   | 5492                                |                             |           |                    |                   | Shear               |
| 7                      | 28                 | -May-(                | 4.013             | 12.642           | 72700                   | 5751                                | 5755.302                    | 265.6762  | 4.616198           | 306.7764          | Shear               |
| 2                      |                    | 90                    | 4.015             | 12.654           | 76220                   | 6023                                |                             |           |                    |                   |                     |
| 12                     |                    | 20                    | 4.013             | 12.642           | 70350                   | 5565                                |                             |           |                    |                   |                     |
| 10                     | 56                 | )-unr-C               | 4.019             | 12.680           | 73200                   | 5773                                | 5753.718                    | 179.9485  | 3.127516           | 207.7866          | Shear               |
| 3                      |                    | 90                    | 4.013             | 12.642           | 74880                   | 5923                                |                             |           |                    |                   | Shear               |

#### Appendix Table 75: Mix D

| Lab Identi     | fication | No:          | . Mix D       |                  |                         | Date of Cas                         | ting:                       | 04/24/09. |                    |                   |                     |
|----------------|----------|--------------|---------------|------------------|-------------------------|-------------------------------------|-----------------------------|-----------|--------------------|-------------------|---------------------|
| Concrete       | Grade:   | Phase II_M   | ix D          |                  |                         |                                     |                             |           |                    |                   |                     |
| Specim.<br>No. | Age      | Testing date | Dia<br>,(in.) | Area ,<br>(in.2) | Max.<br>Load ,<br>(lbf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV     | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture |
| 3              |          | 25           | 4             | 12.560           | 91870                   | 7314                                |                             |           |                    |                   | Columnar            |
| 4              | 1        | 25-Apr-09    | 4.01          | 12.623           | 89330                   | 7077                                | 7265                        | 169.519   | 2.333217           | 195.7437          | Shear               |
| 11             |          | 9            | 4.02          | 12.686           | 93940                   | 7405                                |                             |           |                    |                   | Columnar            |
| 2              |          | 22           | 4             | 12.560           | 116160                  | 9248                                |                             |           |                    |                   | Shear               |
| 6              | 28       | 2-May-I      | 4.01          | 12.623           | 107420                  | 8510                                | 8823.164                    | 381.7642  | 4.32684            | 440.8233          | Columnar            |
| 9              |          | 00           | 4.008         | 12.610           | 109850                  | 8711                                |                             |           |                    |                   | Columnar            |
| 0              |          | 12           | 4             | 12.560           | 113720                  | 9054.1401                           |                             |           |                    |                   | Shear               |
| G              | 56       | -Jun-6       | 4.014         | 12.648           | 116420                  | 9204.5636                           | 9065.481                    | 133.7731  | 1.475631           | 154.4678          | Shear               |
| N              |          | 90           | 4.01          | 12.623           | 112820                  | 8937.7395                           |                             |           |                    |                   | Columnar            |

## Appendix Table 76: Mix E

| Lab Identi<br>Concrete | fication<br>Grade: | <b>No:</b> Phase II_M | . Mix E<br>ix E |                  |                         | Date of Cast | ing:     | 04/21/09. |                    |                   |                     |
|------------------------|--------------------|-----------------------|-----------------|------------------|-------------------------|--------------|----------|-----------|--------------------|-------------------|---------------------|
| Specim.<br>No.         | Age                | Testing date          | Dia<br>,(in.)   | Area ,<br>(in.2) | Max.<br>Load ,<br>(lbf) |              |          | STDEV     | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture |
| 11                     |                    | 122                   | 4.02            | 12.686           | 103200                  | 8135         |          |           |                    |                   | Columnar            |
| 5                      | 1                  | 90r pA22              | 4.015           | 12.654           | 103850                  | 8207         | 8204     | 67.55545  | 0.823456           | 78.00632          | Shear               |
| 9                      |                    |                       | 4.014           | 12.648           | 104600                  | 8270         |          |           |                    |                   |                     |
| 2                      |                    | Nev                   | 4.018           | 12.673           | 134340                  | 10600.243    |          |           |                    |                   | Shear               |
| 7                      | 28                 | 0 ya N                | 4.008           | 12.610           | 130670                  | 10362.172    | 10683.16 | 369.4957  | 3.458674           | 426.6569          | Shear               |
| 10                     |                    | õ                     | 4.015           | 12.654           | 140300                  | 11087.073    |          |           |                    |                   |                     |
| 8                      |                    | 61                    | 4               | 12.560           | 127700                  | 10167.197    |          |           |                    |                   |                     |
| 6                      | 56                 | turi Q                | 4.015           | 12.654           | 132450                  | 10466.734    | 10165.61 | 301.9165  | 2.969978           | 348.6231          | Shear               |
| 1                      |                    | 2                     | 4.02            | 12.686           | 125120                  | 9862.9078    |          |           |                    |                   | Shear               |

#### Appendix Table 77: Mix S

| Lab Identi<br>Concrete | ification<br>Grade: | No:Phase I_M | Mix T<br>ix T |                 |                  |                        |                               |                                               |                                                   |                         | Date of Cas                         | ting:                       | 05/21/09. |                    |                   |                     |
|------------------------|---------------------|--------------|---------------|-----------------|------------------|------------------------|-------------------------------|-----------------------------------------------|---------------------------------------------------|-------------------------|-------------------------------------|-----------------------------|-----------|--------------------|-------------------|---------------------|
| Specim.<br>No.         | Age                 | Testing date | Dia<br>,(in.) | Length<br>(in.) | Area ,<br>(in.2) | Weight in<br>air, (kg) | Weight<br>in water,<br>( kg ) | Density in<br>air, (<br>lb/ft. <sup>3</sup> ) | Density in<br>water ,<br>( lb/ ft. <sup>3</sup> ) | Max.<br>Load ,<br>(lbf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV     | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture |
| 2                      |                     | 71           | 4.01          | 8.05            | 12.623           | 3.9                    |                               | 146.2138                                      | 0.0000                                            | 169500                  | 13427.999                           |                             |           |                    |                   | Shear               |
| 3                      | 28                  | - u - n - h  | 4.009         | 8.061           | 12.617           | 3.892                  |                               | 145.7875                                      | 0.0000                                            | 172150                  | 13644.74                            | 13595.79                    | 149.4508  | 1.099244           | 172.5709          | Shear               |
| 4                      |                     | 10           | 4.015         | 8.025           | 12.654           | 3.912                  |                               | 146.7544                                      | 0.0000                                            | 173550                  | 13714.623                           |                             |           |                    |                   |                     |
| 1                      |                     | 6 1          | 4.01          | 7.95            | 12.623           | 4.06                   |                               | 154.1269                                      | 0.0000                                            | 174730                  | 13842.326                           |                             |           |                    |                   |                     |
| 5                      | 56                  | -Lu 1-0 6    | 4.009         | 8.025           | 12.617           | 4.09                   |                               | 153.8915                                      | 0.0000                                            | 176610                  | 13998.243                           | 13898.67                    | 86.48258  | 0.622236           | 99.86148          | Shear               |
| 6                      |                     | Ŭ            | 4.012         | 8.02            | 12.635           | 4.056                  |                               | 152.4790                                      | 0.0000                                            | 175070                  | 13855.437                           |                             |           |                    |                   | Shear               |

#### Appendix Table 78: Mix T

| Lab Identi     | fication | No:          | . Mix T       |                  |                         | Date of Cas                         | ting:                       | 05/21/09. |                    |                   |                     |
|----------------|----------|--------------|---------------|------------------|-------------------------|-------------------------------------|-----------------------------|-----------|--------------------|-------------------|---------------------|
| Concrete       | Grade:   |              | IX I          |                  |                         |                                     |                             |           |                    |                   |                     |
| Specim.<br>No. | Age      | Testing date | Dia<br>,(in.) | Area ,<br>(in.2) | Max.<br>Load ,<br>(lbf) | Compressi<br>ve Strength<br>, (psi) | Avg.<br>Strength ,<br>(psi) | STDEV     | Co.of<br>Variation | Standard<br>Error | Type of<br>Fracture |
| 10             |          | 22           | 4.015         | 12.654           | 118660                  | 9377                                |                             |           |                    |                   | Columnar            |
| 8              | 1        | 22-May-09    | 4.01          | 12.623           | 108790                  | 8618                                | 8868                        | 440.9927  | 4.972959           | 509.2146          | Shear               |
|                |          | 00           | 4.02          | 12.686           | 109200                  | 8608                                |                             |           |                    |                   |                     |
| D              |          |              | 4.001         | 12.566           | 134100                  | 10671.415                           |                             |           |                    |                   | Shear               |
| E              | 28       | 3-Jun-(      | 4.012         | 12.635           | 129950                  | 10284.538                           | 10436.56                    | 206.3111  | 1.976811           | 238.2275          | Shear               |
| F              |          | 90           | 4.015         | 12.654           | 131020                  | 10353.73                            |                             |           |                    |                   |                     |
| 1              |          | -            | 4.015         | 12.654           | 145380                  | 11488.515                           |                             |           |                    |                   |                     |
| 4              | 56       | -1nr-9       | 4.008         | 12.610           | 139180                  | 11037.018                           | 11055.22                    | 424.4868  | 3.839695           | 490.1551          | Shear               |
| 9              |          | 99           | 4             | 12.560           | 133640                  | 10640.127                           |                             |           |                    |                   | Shear               |

# Abrasion Resistance Test

#### Appendix Table 79: Control-C1

| Mix        | ID     | ı     | Vix P, Control 1 |        |                  | Mix Type :     | MC- 4 %    |        |       |         | Curing Peroid |
|------------|--------|-------|------------------|--------|------------------|----------------|------------|--------|-------|---------|---------------|
| Mix Id No. | Weight | 34.9  | Ib               | Weight | 34.45            | lb             | 0.450      | Weight | 34.3  | Ib      | 0.15          |
|            |        |       |                  | We     | ar depth (in.) a | at time (min.) |            |        |       |         |               |
| Pos.       |        | 0 min |                  |        | 30 min           |                |            |        |       | 60 Min  |               |
|            | R1     | R2    | Average          | R1     | R2               | Average        | Difference | R1     | R2    | Average | Difference    |
| 1          | 0.126  | 0.128 | 0.127            | 0.216  | 0.214            | 0.215          | 0.088      | 0.269  | 0.269 | 0.269   | 0.054         |
| 2          | 0.123  | 0.123 | 0.123            | 0.211  | 0.207            | 0.209          | 0.086      | 0.268  | 0.268 | 0.268   | 0.059         |
| 3          | 0.115  | 0.115 | 0.115            | 0.207  | 0.207            | 0.207          | 0.092      | 0.256  | 0.256 | 0.256   | 0.049         |
| 4          | 0.111  | 0.110 | 0.111            | 0.190  | 0.190            | 0.190          | 0.080      | 0.241  | 0.243 | 0.242   | 0.052         |
| 5          | 0.116  | 0.117 | 0.117            | 0.188  | 0.186            | 0.187          | 0.071      | 0.233  | 0.234 | 0.234   | 0.047         |
| 6          | 0.114  | 0.114 | 0.114            | 0.181  | 0.180            | 0.181          | 0.067      | 0.219  | 0.219 | 0.219   | 0.039         |
| 7          | 0.106  | 0.107 | 0.107            | 0.180  | 0.179            | 0.180          | 0.073      | 0.221  | 0.222 | 0.222   | 0.042         |
| 8          | 0.102  | 0.102 | 0.102            | 0.177  | 0.177            | 0.177          | 0.075      | 0.223  | 0.228 | 0.226   | 0.049         |
| 9          | 0.096  | 0.096 | 0.096            | 0.169  | 0.170            | 0.170          | 0.074      | 0.210  | 0.213 | 0.212   | 0.042         |
| 10         | 0.092  | 0.093 | 0.093            | 0.168  | 0.167            | 0.168          | 0.075      | 0.210  | 0.211 | 0.211   | 0.043         |
| 11         | 0.095  | 0.102 | 0.099            | 0.165  | 0.166            | 0.166          | 0.067      | 0.212  | 0.213 | 0.213   | 0.047         |
| 12         | 0.095  | 0.098 | 0.097            | 0.175  | 0.176            | 0.176          | 0.079      | 0.225  | 0.227 | 0.226   | 0.051         |
| 13         | 0.095  | 0.096 | 0.096            | 0.175  | 0.176            | 0.176          | 0.080      | 0.221  | 0.222 | 0.222   | 0.046         |
| 14         | 0.100  | 0.100 | 0.100            | 0.179  | 0.179            | 0.179          | 0.079      | 0.219  | 0.221 | 0.220   | 0.041         |
| 15         | 0.103  | 0.102 | 0.103            | 0.178  | 0.177            | 0.178          | 0.075      | 0.223  | 0.224 | 0.224   | 0.046         |
| 16         | 0.102  | 0.103 | 0.103            | 0.180  | 0.181            | 0.181          | 0.078      | 0.216  | 0.217 | 0.217   | 0.036         |
| 17         | 0.103  | 0.105 | 0.104            | 0.171  | 0.174            | 0.173          | 0.069      | 0.214  | 0.214 | 0.214   | 0.042         |
| 18         | 0.107  | 0.106 | 0.107            | 0.182  | 0.183            | 0.183          | 0.076      | 0.220  | 0.221 | 0.221   | 0.038         |
| 19         | 0.113  | 0.113 | 0.113            | 0.198  | 0.199            | 0.199          | 0.086      | 0.242  | 0.242 | 0.242   | 0.044         |
| 20         | 0.140  | 0.140 | 0.140            | 0.217  | 0.216            | 0.217          | 0.077      | 0.259  | 0.258 | 0.259   | 0.042         |
| 21         | 0.163  | 0.164 | 0.164            | 0.222  | 0.223            | 0.223          | 0.059      | 0.264  | 0.264 | 0.264   | 0.042         |
| 22         | 0.162  | 0.159 | 0.161            | 0.223  | 0.224            | 0.224          | 0.063      | 0.266  | 0.265 | 0.266   | 0.042         |
| 23         | 0.157  | 0.158 | 0.158            | 0.229  | 0.229            | 0.229          | 0.072      | 0.275  | 0.274 | 0.275   | 0.046         |
| 24         | 0.134  | 0.153 | 0.144            | 0.225  | 0.225            | 0.225          | 0.082      | 0.276  | 0.276 | 0.276   | 0.051         |
| Average    | 0.115  | 0.117 | 0.116            | 0.192  | 0.192            | 0.192          | 0.076      | 0.237  | 0.238 | 0.237   | 0.045         |

## Appendix Table 80: Control- C2

| Mi>        | ( ID   | r     | Vix P, Control 2 |        |                  | Mix Type :     | MC-4%      |        |       |         | Curing Peroid |
|------------|--------|-------|------------------|--------|------------------|----------------|------------|--------|-------|---------|---------------|
| Mix Id No. | Weight | 35.95 | Ib               | Weight | 35.7             | lb             | 0.250      | Weight | 35.6  | lb      | 0.1           |
|            |        |       |                  | We     | ar depth (in.) a | at time (min.) |            |        |       |         |               |
| Pos.       |        | 0 min |                  |        | 30 min           |                |            |        |       | 60 Min  |               |
|            | R1     | R2    | Average          | R1     | R2               | Average        | Difference | R1     | R2    | Average | Difference    |
| 1          | 0.115  | 0.115 | 0.115            | 0.179  | 0.178            | 0.179          | 0.064      | 0.219  | 0.221 | 0.220   | 0.042         |
| 2          | 0.116  | 0.117 | 0.117            | 0.164  | 0.164            | 0.164          | 0.048      | 0.202  | 0.203 | 0.203   | 0.039         |
| 3          | 0.113  | 0.115 | 0.114            | 0.168  | 0.168            | 0.168          | 0.054      | 0.206  | 0.206 | 0.206   | 0.038         |
| 4          | 0.117  | 0.119 | 0.118            | 0.175  | 0.175            | 0.175          | 0.057      | 0.207  | 0.206 | 0.207   | 0.032         |
| 5          | 0.121  | 0.122 | 0.122            | 0.171  | 0.177            | 0.174          | 0.053      | 0.198  | 0.198 | 0.198   | 0.024         |
| 6          | 0.117  | 0.117 | 0.117            | 0.168  | 0.168            | 0.168          | 0.051      | 0.196  | 0.196 | 0.196   | 0.028         |
| 7          | 0.111  | 0.105 | 0.108            | 0.163  | 0.163            | 0.163          | 0.055      | 0.186  | 0.186 | 0.186   | 0.023         |
| 8          | 0.106  | 0.105 | 0.106            | 0.152  | 0.156            | 0.154          | 0.049      | 0.184  | 0.184 | 0.184   | 0.030         |
| 9          | 0.112  | 0.107 | 0.110            | 0.152  | 0.152            | 0.152          | 0.043      | 0.182  | 0.180 | 0.181   | 0.029         |
| 10         | 0.113  | 0.119 | 0.116            | 0.151  | 0.154            | 0.153          | 0.037      | 0.178  | 0.179 | 0.179   | 0.026         |
| 11         | 0.104  | 0.107 | 0.106            | 0.156  | 0.159            | 0.158          | 0.052      | 0.182  | 0.185 | 0.184   | 0.026         |
| 12         | 0.113  | 0.116 | 0.115            | 0.155  | 0.153            | 0.154          | 0.040      | 0.184  | 0.184 | 0.184   | 0.030         |
| 13         | 0.103  | 0.108 | 0.106            | 0.153  | 0.153            | 0.153          | 0.048      | 0.192  | 0.191 | 0.192   | 0.039         |
| 14         | 0.102  | 0.103 | 0.103            | 0.165  | 0.165            | 0.165          | 0.063      | 0.197  | 0.198 | 0.198   | 0.033         |
| 15         | 0.103  | 0.098 | 0.101            | 0.167  | 0.168            | 0.168          | 0.067      | 0.206  | 0.206 | 0.206   | 0.039         |
| 16         | 0.119  | 0.119 | 0.119            | 0.179  | 0.179            | 0.179          | 0.060      | 0.214  | 0.216 | 0.215   | 0.036         |
| 17         | 0.133  | 0.135 | 0.134            | 0.188  | 0.188            | 0.188          | 0.054      | 0.226  | 0.227 | 0.227   | 0.039         |
| 18         | 0.152  | 0.152 | 0.152            | 0.202  | 0.204            | 0.203          | 0.051      | 0.240  | 0.242 | 0.241   | 0.038         |
| 19         | 0.185  | 0.185 | 0.185            | 0.214  | 0.214            | 0.214          | 0.029      | 0.244  | 0.247 | 0.246   | 0.032         |
| 20         | 0.153  | 0.154 | 0.154            | 0.208  | 0.209            | 0.209          | 0.055      | 0.241  | 0.243 | 0.242   | 0.034         |
| 21         | 0.136  | 0.136 | 0.136            | 0.194  | 0.196            | 0.195          | 0.059      | 0.235  | 0.236 | 0.236   | 0.041         |
| 22         | 0.129  | 0.133 | 0.131            | 0.188  | 0.190            | 0.189          | 0.058      | 0.230  | 0.231 | 0.231   | 0.042         |
| 23         | 0.115  | 0.115 | 0.115            | 0.178  | 0.178            | 0.178          | 0.063      | 0.223  | 0.225 | 0.224   | 0.046         |
| 24         | 0.111  | 0.112 | 0.112            | 0.183  | 0.184            | 0.184          | 0.072      | 0.227  | 0.229 | 0.228   | 0.045         |
| Average    | 0.121  | 0.121 | 0.121            | 0.174  | 0.175            | 0.174          | 0.053      | 0.208  | 0.209 | 0.209   | 0.034         |

#### Appendix Table 81: Control- C3

| Mi>        | ID     | r     | Vix P, Control 3 |        |                  | Mix Type :     | MC- 4 %    |        |       |         | Curing Peroid |
|------------|--------|-------|------------------|--------|------------------|----------------|------------|--------|-------|---------|---------------|
| Mix Id No. | Weight | 35.7  | Ib               | Weight | 35.5             | lb             | 0.200      | Weight | 35.4  | lb      | 0.1           |
|            |        |       |                  | We     | ar depth (in.) a | at time (min.) |            |        |       |         | -             |
| Pos.       |        | 0 min |                  |        | 30 min           |                |            |        |       | 60 Min  |               |
|            | R1     | R2    | Average          | R1     | R2               | Average        | Difference | R1     | R2    | Average | Difference    |
| 1          | 0.134  | 0.137 | 0.136            | 0.173  | 0.176            | 0.175          | 0.039      | 0.196  | 0.200 | 0.198   | 0.024         |
| 2          | 0.135  | 0.139 | 0.137            | 0.167  | 0.169            | 0.168          | 0.031      | 0.192  | 0.203 | 0.198   | 0.030         |
| 3          | 0.136  | 0.140 | 0.138            | 0.169  | 0.171            | 0.170          | 0.032      | 0.199  | 0.214 | 0.207   | 0.037         |
| 4          | 0.142  | 0.146 | 0.144            | 0.171  | 0.174            | 0.173          | 0.029      | 0.198  | 0.200 | 0.199   | 0.027         |
| 5          | 0.117  | 0.121 | 0.119            | 0.164  | 0.166            | 0.165          | 0.046      | 0.185  | 0.194 | 0.190   | 0.025         |
| 6          | 0.098  | 0.105 | 0.102            | 0.152  | 0.157            | 0.155          | 0.053      | 0.175  | 0.176 | 0.176   | 0.021         |
| 7          | 0.091  | 0.093 | 0.092            | 0.145  | 0.151            | 0.148          | 0.056      | 0.171  | 0.171 | 0.171   | 0.023         |
| 8          | 0.087  | 0.089 | 0.088            | 0.137  | 0.140            | 0.139          | 0.051      | 0.168  | 0.164 | 0.166   | 0.028         |
| 9          | 0.095  | 0.102 | 0.099            | 0.137  | 0.140            | 0.139          | 0.040      | 0.164  | 0.160 | 0.162   | 0.024         |
| 10         | 0.091  | 0.097 | 0.094            | 0.144  | 0.144            | 0.144          | 0.050      | 0.176  | 0.174 | 0.175   | 0.031         |
| 11         | 0.100  | 0.097 | 0.099            | 0.135  | 0.136            | 0.136          | 0.037      | 0.162  | 0.161 | 0.162   | 0.026         |
| 12         | 0.103  | 0.101 | 0.102            | 0.137  | 0.142            | 0.140          | 0.038      | 0.162  | 0.160 | 0.161   | 0.022         |
| 13         | 0.112  | 0.112 | 0.112            | 0.131  | 0.140            | 0.136          | 0.024      | 0.157  | 0.154 | 0.156   | 0.020         |
| 14         | 0.114  | 0.113 | 0.114            | 0.131  | 0.144            | 0.138          | 0.024      | 0.161  | 0.159 | 0.160   | 0.023         |
| 15         | 0.100  | 0.102 | 0.101            | 0.136  | 0.150            | 0.143          | 0.042      | 0.165  | 0.161 | 0.163   | 0.020         |
| 16         | 0.096  | 0.118 | 0.107            | 0.136  | 0.151            | 0.144          | 0.037      | 0.165  | 0.164 | 0.165   | 0.021         |
| 17         | 0.098  | 0.124 | 0.111            | 0.140  | 0.152            | 0.146          | 0.035      | 0.178  | 0.175 | 0.177   | 0.031         |
| 18         | 0.100  | 0.117 | 0.109            | 0.140  | 0.145            | 0.143          | 0.034      | 0.171  | 0.169 | 0.170   | 0.028         |
| 19         | 0.097  | 0.112 | 0.105            | 0.145  | 0.149            | 0.147          | 0.043      | 0.172  | 0.171 | 0.172   | 0.025         |
| 20         | 0.111  | 0.121 | 0.116            | 0.151  | 0.154            | 0.153          | 0.037      | 0.180  | 0.182 | 0.181   | 0.029         |
| 21         | 0.118  | 0.124 | 0.121            | 0.154  | 0.158            | 0.156          | 0.035      | 0.181  | 0.181 | 0.181   | 0.025         |
| 22         | 0.125  | 0.126 | 0.126            | 0.163  | 0.163            | 0.163          | 0.038      | 0.189  | 0.189 | 0.189   | 0.026         |
| 23         | 0.126  | 0.123 | 0.125            | 0.164  | 0.165            | 0.165          | 0.040      | 0.200  | 0.195 | 0.198   | 0.033         |
| 24         | 0.124  | 0.127 | 0.126            | 0.166  | 0.165            | 0.166          | 0.040      | 0.194  | 0.196 | 0.195   | 0.030         |
| Average    | 0.110  | 0.116 | 0.113            | 0.150  | 0.154            | 0.152          | 0.039      | 0.178  | 0.178 | 0.178   | 0.026         |

#### Appendix Table 82: Mixture A1

| Mi>        | ID     |       | Mix A 1 |        |                  | Mix T          | ype :      |        |       |         | Curing Peroid - 56 day |
|------------|--------|-------|---------|--------|------------------|----------------|------------|--------|-------|---------|------------------------|
| Mix Id No. | Weight | 36.75 | lb      | Weight | 36.3             | lb             | 0.450      | Weight | 35.6  | lb      | 0.7                    |
|            |        | •     |         | We     | ar depth (in.) a | at time (min.) |            |        |       |         | •                      |
| Pos.       |        | 0 min |         |        | 30 min           |                |            |        |       | 60 Min  |                        |
|            | R1     | R2    | Average | R1     | R2               | Average        | Difference | R1     | R2    | Average | Difference             |
| 1          | 0.125  | 0.123 | 0.124   | 0.259  | 0.260            | 0.260          | 0.136      | 0.324  | 0.324 | 0.324   | 0.065                  |
| 2          | 0.136  | 0.136 | 0.136   | 0.235  | 0.235            | 0.235          | 0.099      | 0.309  | 0.309 | 0.309   | 0.074                  |
| 3          | 0.121  | 0.121 | 0.121   | 0.243  | 0.245            | 0.244          | 0.123      | 0.307  | 0.306 | 0.307   | 0.063                  |
| 4          | 0.108  | 0.108 | 0.108   | 0.238  | 0.240            | 0.239          | 0.131      | 0.304  | 0.302 | 0.303   | 0.064                  |
| 5          | 0.106  | 0.107 | 0.107   | 0.228  | 0.231            | 0.230          | 0.123      | 0.304  | 0.304 | 0.304   | 0.075                  |
| 6          | 0.105  | 0.105 | 0.105   | 0.220  | 0.222            | 0.221          | 0.116      | 0.288  | 0.288 | 0.288   | 0.067                  |
| 7          | 0.097  | 0.107 | 0.102   | 0.213  | 0.215            | 0.214          | 0.112      | 0.272  | 0.271 | 0.272   | 0.058                  |
| 8          | 0.099  | 0.100 | 0.100   | 0.212  | 0.215            | 0.214          | 0.114      | 0.278  | 0.279 | 0.279   | 0.065                  |
| 9          | 0.104  | 0.103 | 0.104   | 0.205  | 0.208            | 0.207          | 0.103      | 0.281  | 0.269 | 0.275   | 0.069                  |
| 10         | 0.106  | 0.105 | 0.106   | 0.210  | 0.213            | 0.212          | 0.106      | 0.277  | 0.270 | 0.274   | 0.062                  |
| 11         | 0.113  | 0.124 | 0.119   | 0.220  | 0.223            | 0.222          | 0.103      | 0.281  | 0.287 | 0.284   | 0.063                  |
| 12         | 0.117  | 0.119 | 0.118   | 0.203  | 0.212            | 0.208          | 0.090      | 0.293  | 0.279 | 0.286   | 0.079                  |
| 13         | 0.127  | 0.130 | 0.129   | 0.232  | 0.235            | 0.234          | 0.105      | 0.281  | 0.300 | 0.291   | 0.057                  |
| 14         | 0.120  | 0.121 | 0.121   | 0.233  | 0.229            | 0.231          | 0.111      | 0.297  | 0.306 | 0.302   | 0.071                  |
| 15         | 0.118  | 0.118 | 0.118   | 0.245  | 0.239            | 0.242          | 0.124      | 0.314  | 0.310 | 0.312   | 0.070                  |
| 16         | 0.121  | 0.122 | 0,122   | 0.243  | 0.241            | 0.242          | 0.121      | 0.303  | 0.297 | 0.300   | 0.058                  |
| 17         | 0.127  | 0.128 | 0.128   | 0.250  | 0.249            | 0.250          | 0.122      | 0.305  | 0.305 | 0.305   | 0.056                  |
| 18         | 0.134  | 0.133 | 0.134   | 0.254  | 0.243            | 0.249          | 0.115      | 0.317  | 0.316 | 0.317   | 0.068                  |
| 19         | 0.135  | 0.135 | 0,135   | 0.260  | 0.261            | 0.261          | 0.126      | 0.334  | 0.328 | 0.331   | 0.071                  |
| 20         | 0.140  | 0.141 | 0.141   | 0.271  | 0.267            | 0.269          | 0.129      | 0.330  | 0.330 | 0.330   | 0.061                  |
| 21         | 0.138  | 0.138 | 0.138   | 0.270  | 0.268            | 0.269          | 0.131      | 0.339  | 0.305 | 0.322   | 0.053                  |
| 22         | 0.135  | 0.136 | 0.136   | 0.274  | 0.274            | 0.274          | 0.139      | 0.336  | 0.336 | 0.336   | 0.062                  |
| 23         | 0.139  | 0.140 | 0.140   | 0.246  | 0.246            | 0.246          | 0.107      | 0.318  | 0.318 | 0.318   | 0.072                  |
| 24         | 0.136  | 0.138 | 0.137   | 0.262  | 0.263            | 0.263          | 0.126      | 0.332  | 0.332 | 0.332   | 0.070                  |
| Average    | 0.121  | 0.122 | 0.122   | 0.195  | 0.239            | 0.239          | 0.117      | 0.305  | 0.303 | 0.304   | 0.065                  |

## Appendix Table 83: Mixture A2

| Mix        | Mix ID Mix A 2 |       |         |        |                  | Mix Ty         | /pe :      |        |       |         | Curing Peroid - 56 day |
|------------|----------------|-------|---------|--------|------------------|----------------|------------|--------|-------|---------|------------------------|
| Mix Id No. | Weight         | 37.6  | lb      | Weight | 37.3             | lb             | 0.300      | Weight | 37.2  | lb      | 0.1                    |
|            |                |       |         | We     | ar depth (in.) a | at time (min.) |            |        |       |         |                        |
| Pos.       |                | 0 min |         |        | 30 min           |                |            |        |       | 60 Min  |                        |
|            | R1             | R2    | Average | R1     | R2               | Average        | Difference | R1     | R2    | Average | Difference             |
| 1          | 0.082          | 0.083 | 0.083   | 0.152  | 0.151            | 0.152          | 0.069      | 0.185  | 0.187 | 0.186   | 0.035                  |
| 2          | 0.080          | 0.081 | 0.081   | 0.148  | 0.147            | 0.148          | 0.067      | 0.192  | 0.191 | 0.192   | 0.044                  |
| 3          | 0.086          | 0.087 | 0.087   | 0.155  | 0.152            | 0.154          | 0.067      | 0.196  | 0.193 | 0.195   | 0.041                  |
| 4          | 0.089          | 0.089 | 0.089   | 0.164  | 0.162            | 0.163          | 0.074      | 0.208  | 0.208 | 0.208   | 0.045                  |
| 5          | 0.090          | 0.099 | 0.095   | 0.169  | 0.169            | 0.169          | 0.075      | 0.209  | 0.209 | 0.209   | 0.040                  |
| 6          | 0.098          | 0.097 | 0.098   | 0.165  | 0.167            | 0.166          | 0.069      | 0.214  | 0.213 | 0.214   | 0.048                  |
| 7          | 0.110          | 0.111 | 0.111   | 0.175  | 0.178            | 0.177          | 0.066      | 0.228  | 0.227 | 0.228   | 0.051                  |
| 8          | 0.111          | 0.111 | 0.111   | 0.173  | 0.177            | 0.175          | 0.064      | 0.232  | 0.264 | 0.248   | 0.073                  |
| 9          | 0.109          | 0.108 | 0.109   | 0.182  | 0.185            | 0.184          | 0.075      | 0.234  | 0.236 | 0.235   | 0.052                  |
| 10         | 0.115          | 0.115 | 0.115   | 0.184  | 0.187            | 0.186          | 0.071      | 0.234  | 0.234 | 0.234   | 0.049                  |
| 11         | 0.127          | 0.124 | 0.126   | 0.185  | 0.187            | 0.186          | 0.061      | 0.238  | 0.242 | 0.240   | 0.054                  |
| 12         | 0.123          | 0.122 | 0.123   | 0.185  | 0.185            | 0.185          | 0.063      | 0.235  | 0.235 | 0.235   | 0.050                  |
| 13         | 0.119          | 0.120 | 0.120   | 0.184  | 0.180            | 0.182          | 0.063      | 0.232  | 0.232 | 0.232   | 0.050                  |
| 14         | 0.121          | 0.126 | 0.124   | 0.178  | 0.181            | 0.180          | 0.056      | 0.218  | 0.218 | 0.218   | 0.039                  |
| 15         | 0.138          | 0.138 | 0.138   | 0.182  | 0.184            | 0.183          | 0.045      | 0.219  | 0.215 | 0.217   | 0.034                  |
| 16         | 0.136          | 0.133 | 0.135   | 0.178  | 0.178            | 0.178          | 0.044      | 0.225  | 0.221 | 0.223   | 0.045                  |
| 17         | 0.127          | 0.127 | 0.127   | 0.187  | 0.186            | 0.187          | 0.060      | 0.232  | 0.226 | 0.229   | 0.043                  |
| 18         | 0.120          | 0.124 | 0.122   | 0.176  | 0.176            | 0.176          | 0.054      | 0.220  | 0.217 | 0.219   | 0.043                  |
| 19         | 0.113          | 0.114 | 0.114   | 0.173  | 0.172            | 0.173          | 0.059      | 0.224  | 0.221 | 0.223   | 0.050                  |
| 20         | 0.107          | 0.111 | 0.109   | 0.167  | 0.166            | 0.167          | 0.058      | 0.215  | 0.213 | 0.214   | 0.048                  |
| 21         | 0.103          | 0.104 | 0.104   | 0.161  | 0.161            | 0.161          | 0.058      | 0.206  | 0.206 | 0.206   | 0.045                  |
| 22         | 0.100          | 0.101 | 0.101   | 0.161  | 0.161            | 0.161          | 0.061      | 0.198  | 0.199 | 0.199   | 0.038                  |
| 23         | 0.097          | 0.100 | 0.099   | 0.154  | 0.151            | 0.153          | 0.054      | 0.199  | 0.197 | 0.198   | 0.046                  |
| 24         | 0.089          | 0.088 | 0.089   | 0.142  | 0.142            | 0.142          | 0.054      | 0.192  | 0.191 | 0.192   | 0.050                  |
| Average    | 0.108          | 0.109 | 0.108   | 0.195  | 0.170            | 0.170          | 0.062      | 0.216  | 0.216 | 0.216   | 0.046                  |

#### Appendix Table 84: Mixture A3

| Mix        | ID     |       | Mix A 3 |        |                | Mix Ty         | /pe :      |        |       |         | Curing Peroid - 56 day |
|------------|--------|-------|---------|--------|----------------|----------------|------------|--------|-------|---------|------------------------|
| Mix Id No. | Weight | 36.85 | lb      | Weight | 36.7           | lb             | 0.150      | Weight | 36.55 | lb      | 0.15                   |
|            | I      |       | ļ       | We     | ar depth (in.) | at time (min.) |            |        |       |         |                        |
| Pos.       |        | 0 min |         |        | 30 min         |                |            |        |       | 60 Min  |                        |
|            | R1     | R2    | Average | R1     | R2             | Average        | Difference | R1     | R2    | Average | Difference             |
| 1          | 0.091  | 0.091 | 0.091   | 0.136  | 0.137          | 0.137          | 0.046      | 0.175  | 0.176 | 0.176   | 0.039                  |
| 2          | 0.081  | 0.082 | 0.082   | 0.136  | 0.136          | 0.136          | 0.055      | 0.179  | 0.180 | 0.180   | 0.044                  |
| 3          | 0.089  | 0.087 | 0.088   | 0.132  | 0.133          | 0.133          | 0.045      | 0.171  | 0.172 | 0.172   | 0.039                  |
| 4          | 0.091  | 0.091 | 0.091   | 0.146  | 0.147          | 0.147          | 0.056      | 0.187  | 0.187 | 0.187   | 0.041                  |
| 5          | 0.109  | 0.112 | 0.111   | 0.151  | 0.153          | 0.152          | 0.042      | 0.196  | 0.197 | 0.197   | 0.045                  |
| 6          | 0.120  | 0.120 | 0.120   | 0.164  | 0.160          | 0.162          | 0.042      | 0.202  | 0.203 | 0.203   | 0.041                  |
| 7          | 0.113  | 0.116 | 0.115   | 0.160  | 0.162          | 0.161          | 0.047      | 0.199  | 0.199 | 0.199   | 0.038                  |
| 8          | 0.110  | 0.111 | 0.111   | 0.155  | 0.159          | 0.157          | 0.047      | 0.197  | 0.199 | 0.198   | 0.041                  |
| 9          | 0.109  | 0.111 | 0.110   | 0.155  | 0.154          | 0.155          | 0.045      | 0.198  | 0.196 | 0.197   | 0.043                  |
| 10         | 0.106  | 0.110 | 0.108   | 0.156  | 0.157          | 0.157          | 0.049      | 0.197  | 0.197 | 0.197   | 0.041                  |
| 11         | 0.114  | 0.112 | 0.113   | 0.156  | 0.153          | 0.155          | 0.042      | 0.192  | 0.192 | 0.192   | 0.038                  |
| 12         | 0.117  | 0.120 | 0.119   | 0.155  | 0.154          | 0.155          | 0.036      | 0.194  | 0.198 | 0.196   | 0.042                  |
| 13         | 0.121  | 0.119 | 0.120   | 0.150  | 0.152          | 0.151          | 0.031      | 0.179  | 0.185 | 0.182   | 0.031                  |
| 14         | 0.115  | 0.117 | 0.116   | 0.150  | 0.152          | 0.151          | 0.035      | 0.180  | 0.181 | 0.181   | 0.030                  |
| 15         | 0.105  | 0.106 | 0.106   | 0.145  | 0.147          | 0.146          | 0.041      | 0.177  | 0.177 | 0.177   | 0.031                  |
| 16         | 0.103  | 0.102 | 0.103   | 0.140  | 0.142          | 0.141          | 0.039      | 0.177  | 0.176 | 0.177   | 0.036                  |
| 17         | 0.097  | 0.099 | 0.098   | 0.140  | 0.137          | 0.139          | 0.041      | 0.168  | 0.163 | 0.166   | 0.027                  |
| 18         | 0.109  | 0.107 | 0.108   | 0.143  | 0.147          | 0.145          | 0.037      | 0.182  | 0.173 | 0.178   | 0.033                  |
| 19         | 0.101  | 0.105 | 0.103   | 0.143  | 0.142          | 0.143          | 0.040      | 0.175  | 0.172 | 0.174   | 0.031                  |
| 20         | 0.090  | 0.098 | 0.094   | 0.135  | 0.135          | 0.135          | 0.041      | 0.176  | 0.175 | 0.176   | 0.041                  |
| 21         | 0.093  | 0.097 | 0.095   | 0.135  | 0.136          | 0.136          | 0.041      | 0.179  | 0.177 | 0.178   | 0.043                  |
| 22         | 0.094  | 0.095 | 0.095   | 0.140  | 0.140          | 0.140          | 0.046      | 0.181  | 0.182 | 0.182   | 0.042                  |
| 23         | 0.093  | 0.099 | 0.096   | 0.141  | 0.142          | 0.142          | 0.046      | 0.186  | 0.187 | 0.187   | 0.045                  |
| 24         | 0.094  | 0.098 | 0.096   | 0.138  | 0.138          | 0.138          | 0.042      | 0.182  | 0.184 | 0.183   | 0.045                  |
| Average    | 0.103  | 0.104 | 0.104   | 0.195  | 0.146          | 0.146          | 0.043      | 0.185  | 0.185 | 0.185   | 0.038                  |

#### Appendix Table 85: Mixture B1

| Mix        | ID     |       | Mix B 1 |        |                  | Mix T          | ype :      |        |       |         | Curing Peroid - 57 day |
|------------|--------|-------|---------|--------|------------------|----------------|------------|--------|-------|---------|------------------------|
| Mix Id No. | Weight | 35.45 | lb      | Weight | 35.25            | lb             | 0.200      | Weight | 35.15 | lb      | 0.1                    |
|            |        |       |         | We     | ar depth (in.) a | at time (min.) |            |        |       |         |                        |
| Pos.       |        | 0 min |         |        | 30 min           |                |            |        |       | 60 Min  |                        |
|            | R1     | R2    | Average | R1     | R2               | Average        | Difference | R1     | R2    | Average | Difference             |
| 1          | 0.113  | 0.116 | 0.115   | 0.157  | 0.158            | 0.158          | 0.043      | 0.186  | 0.186 | 0.186   | 0.029                  |
| 2          | 0.120  | 0.121 | 0.121   | 0.166  | 0.166            | 0.166          | 0.046      | 0.187  | 0.189 | 0.188   | 0.022                  |
| 3          | 0.126  | 0.125 | 0.126   | 0.170  | 0.170            | 0.170          | 0.045      | 0.209  | 0.207 | 0.208   | 0.038                  |
| 4          | 0.133  | 0.126 | 0.130   | 0.180  | 0.181            | 0.181          | 0.051      | 0.199  | 0.198 | 0.199   | 0.018                  |
| 5          | 0.117  | 0.115 | 0.116   | 0.182  | 0.182            | 0.182          | 0.066      | 0.211  | 0.210 | 0.211   | 0.029                  |
| 6          | 0.116  | 0.116 | 0.116   | 0.163  | 0.166            | 0.165          | 0.049      | 0.205  | 0.204 | 0.205   | 0.040                  |
| 7          | 0.124  | 0.125 | 0.125   | 0.166  | 0.168            | 0.167          | 0.043      | 0.195  | 0.195 | 0.195   | 0.028                  |
| 8          | 0.111  | 0.110 | 0.111   | 0.170  | 0.171            | 0.171          | 0.060      | 0.206  | 0.202 | 0.204   | 0.034                  |
| 9          | 0.105  | 0.110 | 0.108   | 0.165  | 0.164            | 0.165          | 0.057      | 0.208  | 0.208 | 0.208   | 0.044                  |
| 10         | 0.127  | 0.124 | 0.126   | 0.167  | 0.168            | 0.168          | 0.042      | 0.221  | 0.219 | 0.220   | 0.053                  |
| 11         | 0.108  | 0.108 | 0.108   | 0.160  | 0.159            | 0.160          | 0.052      | 0.195  | 0.197 | 0.196   | 0.037                  |
| 12         | 0.101  | 0.104 | 0.103   | 0.152  | 0.152            | 0.152          | 0.050      | 0.178  | 0.179 | 0.179   | 0.027                  |
| 13         | 0.107  | 0.109 | 0.108   | 0.153  | 0.152            | 0.153          | 0.045      | 0.181  | 0.185 | 0.183   | 0.031                  |
| 14         | 0.099  | 0.100 | 0.100   | 0.150  | 0.151            | 0.151          | 0.051      | 0.178  | 0.174 | 0.176   | 0.026                  |
| 15         | 0.097  | 0.097 | 0.097   | 0.158  | 0.158            | 0.158          | 0.061      | 0.187  | 0.186 | 0.187   | 0.029                  |
| 16         | 0.110  | 0.110 | 0.110   | 0.161  | 0.162            | 0.162          | 0.052      | 0.191  | 0.188 | 0.190   | 0.028                  |
| 17         | 0.110  | 0.114 | 0.112   | 0.153  | 0.156            | 0.155          | 0.043      | 0.182  | 0.180 | 0.181   | 0.027                  |
| 18         | 0.107  | 0.108 | 0.108   | 0.152  | 0.151            | 0.152          | 0.044      | 0.188  | 0.191 | 0.190   | 0.038                  |
| 19         | 0.107  | 0.107 | 0.107   | 0.158  | 0.157            | 0.158          | 0.051      | 0.189  | 0.185 | 0.187   | 0.030                  |
| 20         | 0.112  | 0.113 | 0.113   | 0.159  | 0.160            | 0.160          | 0.047      | 0.185  | 0.185 | 0.185   | 0.026                  |
| 21         | 0.125  | 0.126 | 0.126   | 0.153  | 0.153            | 0.153          | 0.028      | 0.177  | 0.176 | 0.177   | 0.024                  |
| 22         | 0.122  | 0.127 | 0.125   | 0.154  | 0.155            | 0.155          | 0.030      | 0.180  | 0.177 | 0.179   | 0.024                  |
| 23         | 0.132  | 0.128 | 0.130   | 0.166  | 0.168            | 0.167          | 0.037      | 0.180  | 0.180 | 0.180   | 0.013                  |
| 24         | 0.116  | 0.116 | 0.116   | 0.154  | 0.154            | 0.154          | 0.038      | 0.178  | 0.176 | 0.177   | 0.023                  |
| Average    | 0.114  | 0.115 | 0.115   | 0.195  | 0.162            | 0.161          | 0.047      | 0.192  | 0.191 | 0.191   | 0.030                  |

#### Appendix Table 86: Mixture B2

| Mi>        | ID     |       | Mix B 2 |        |                | Mix T          | /pe :      |        |       |         | Curing Peroid - 57 day |
|------------|--------|-------|---------|--------|----------------|----------------|------------|--------|-------|---------|------------------------|
| Mix Id No. | Weight | 35.4  | lb      | Weight | 35.15          | lb             | 0.250      | Weight | 35    | lb      | 0.15                   |
|            |        |       | •       | We     | ar depth (in.) | at time (min.) | •          |        |       |         |                        |
| Pos.       |        | 0 min |         |        | 30 min         |                |            |        |       | 60 Min  |                        |
|            | R1     | R2    | Average | R1     | R2             | Average        | Difference | R1     | R2    | Average | Difference             |
| 1          | 0.133  | 0.132 | 0.133   | 0.171  | 0.172          | 0.172          | 0.039      | 0.203  | 0.204 | 0.204   | 0.032                  |
| 2          | 0.126  | 0.125 | 0.126   | 0.178  | 0.179          | 0.179          | 0.053      | 0.218  | 0.218 | 0.218   | 0.040                  |
| 3          | 0.132  | 0.132 | 0.132   | 0.173  | 0.173          | 0.173          | 0.041      | 0.210  | 0.209 | 0.210   | 0.037                  |
| 4          | 0.123  | 0.124 | 0.124   | 0.177  | 0.179          | 0.178          | 0.055      | 0.219  | 0.217 | 0.218   | 0.040                  |
| 5          | 0.123  | 0.125 | 0.124   | 0.184  | 0.184          | 0.184          | 0.060      | 0.236  | 0.234 | 0.235   | 0.051                  |
| 6          | 0.123  | 0.121 | 0.122   | 0.181  | 0.179          | 0.180          | 0.058      | 0.228  | 0.228 | 0.228   | 0.048                  |
| 7          | 0.138  | 0.137 | 0.138   | 0.186  | 0.189          | 0.188          | 0.050      | 0.221  | 0.222 | 0.222   | 0.034                  |
| 8          | 0.131  | 0.131 | 0.131   | 0.183  | 0.186          | 0.185          | 0.054      | 0.228  | 0.227 | 0.228   | 0.043                  |
| 9          | 0.143  | 0.139 | 0.141   | 0.191  | 0.192          | 0.192          | 0.051      | 0.234  | 0.230 | 0.232   | 0.041                  |
| 10         | 0.143  | 0.141 | 0.142   | 0.185  | 0.188          | 0.187          | 0.045      | 0.223  | 0.219 | 0.221   | 0.035                  |
| 11         | 0.144  | 0.142 | 0.143   | 0.185  | 0.186          | 0.186          | 0.043      | 0.220  | 0.221 | 0.221   | 0.035                  |
| 12         | 0.159  | 0.155 | 0.157   | 0.170  | 0.171          | 0.171          | 0.014      | 0.205  | 0.203 | 0.204   | 0.034                  |
| 13         | 0.145  | 0.141 | 0.143   | 0.171  | 0.172          | 0.172          | 0.029      | 0.211  | 0.210 | 0.211   | 0.039                  |
| 14         | 0.156  | 0.153 | 0.155   | 0.176  | 0.176          | 0.176          | 0.022      | 0.205  | 0.206 | 0.206   | 0.030                  |
| 15         | 0.157  | 0.149 | 0.153   | 0.170  | 0.159          | 0.165          | 0.012      | 0.215  | 0.214 | 0.215   | 0.050                  |
| 16         | 0.158  | 0.159 | 0.159   | 0.169  | 0.161          | 0.165          | 0.007      | 0.211  | 0.212 | 0.212   | 0.047                  |
| 17         | 0.162  | 0.165 | 0.164   | 0.180  | 0.176          | 0.178          | 0.015      | 0.212  | 0.215 | 0.214   | 0.036                  |
| 18         | 0.160  | 0.160 | 0.160   | 0.175  | 0.174          | 0.175          | 0.015      | 0.207  | 0.207 | 0.207   | 0.033                  |
| 19         | 0.148  | 0.147 | 0.148   | 0.163  | 0.163          | 0.163          | 0.016      | 0.201  | 0.200 | 0.201   | 0.038                  |
| 20         | 0.160  | 0.160 | 0.160   | 0.174  | 0.174          | 0.174          | 0.014      | 0.207  | 0.206 | 0.207   | 0.033                  |
| 21         | 0.152  | 0.156 | 0.154   | 0.169  | 0.171          | 0.170          | 0.016      | 0.214  | 0.212 | 0.213   | 0.043                  |
| 22         | 0.159  | 0.158 | 0.159   | 0.169  | 0.168          | 0.169          | 0.010      | 0.220  | 0.223 | 0.222   | 0.053                  |
| 23         | 0.164  | 0.165 | 0.165   | 0.174  | 0.168          | 0.171          | 0.006      | 0.208  | 0.210 | 0.209   | 0.038                  |
| 24         | 0.138  | 0.139 | 0.139   | 0.167  | 0.171          | 0.169          | 0.031      | 0.201  | 0.203 | 0.202   | 0.033                  |
| Average    | 0.145  | 0.144 | 0.144   | 0.195  | 0.175          | 0.176          | 0.031      | 0.215  | 0.215 | 0.215   | 0.039                  |

#### Appendix Table 87: Mixture B3

| Mix ID     |        |       | Mix B 3 |                  |                |            |        |         | Curing Peroid - 57 day |
|------------|--------|-------|---------|------------------|----------------|------------|--------|---------|------------------------|
| Mix Id No. | Weight | 36.4  | lb      | Weight           | lb             | 0.400      | Weight | lb      | 0.25                   |
|            |        |       |         | /ear depth (in.) | at time (min.) |            |        |         |                        |
| Pos.       |        | 0 min |         | 30               | min            |            |        | 60 N    | ⁄lin                   |
|            | R1     | R2    | Average | R1               | Average        | Difference | R1     | Average | Difference             |
| 1          | 0.147  | 0.147 | 0.147   | 0.232            | 0.232          | 0.085      | 0.295  | 0.295   | 0.063                  |
| 2          | 0.143  | 0.143 | 0.143   | 0.242            | 0.242          | 0.099      | 0.288  | 0.288   | 0.046                  |
| 3          | 0.137  | 0.137 | 0.137   | 0.250            | 0.250          | 0.113      | 0.290  | 0.290   | 0.040                  |
| 4          | 0.138  | 0.138 | 0.138   | 0.218            | 0.218          | 0.080      | 0.273  | 0.273   | 0.055                  |
| 5          | 0.138  | 0.138 | 0.138   | 0.234            | 0.234          | 0.096      | 0.291  | 0.291   | 0.057                  |
| 6          | 0.120  | 0.120 | 0.120   | 0.232            | 0.232          | 0.112      | 0.293  | 0.293   | 0.061                  |
| 7          | 0.130  | 0.130 | 0.130   | 0.240            | 0.240          | 0.110      | 0.291  | 0.291   | 0.051                  |
| 8          | 0.122  | 0.122 | 0.122   | 0.233            | 0.233          | 0.111      | 0.288  | 0.288   | 0.055                  |
| 9          | 0.123  | 0.123 | 0.123   | 0.244            | 0.244          | 0.121      | 0.298  | 0.298   | 0.054                  |
| 10         | 0.129  | 0.129 | 0.129   | 0.217            | 0.217          | 0.088      | 0.290  | 0.290   | 0.073                  |
| 11         | 0.134  | 0.134 | 0.134   | 0.237            | 0.237          | 0.103      | 0.285  | 0.285   | 0.048                  |
| 12         | 0.127  | 0.127 | 0.127   | 0.237            | 0.237          | 0.110      | 0.294  | 0.294   | 0.057                  |
| 13         | 0.145  | 0.145 | 0.145   | 0.235            | 0.235          | 0.090      | 0.294  | 0.294   | 0.059                  |
| 14         | 0.132  | 0.132 | 0.132   | 0.242            | 0.242          | 0.110      | 0.308  | 0.308   | 0.066                  |
| 15         | 0.134  | 0.134 | 0.134   | 0.243            | 0.243          | 0.109      | 0.301  | 0.301   | 0.058                  |
| 16         | 0.156  | 0.156 | 0.156   | 0.249            | 0.249          | 0.093      | 0.302  | 0.302   | 0.053                  |
| 17         | 0.153  | 0.153 | 0.153   | 0.247            | 0.247          | 0.094      | 0.299  | 0.299   | 0.052                  |
| 18         | 0.160  | 0.160 | 0.160   | 0.264            | 0.264          | 0.104      | 0.308  | 0.308   | 0.044                  |
| 19         | 0.157  | 0.157 | 0.157   | 0.261            | 0.261          | 0.104      | 0.323  | 0.323   | 0.062                  |
| 20         | 0.162  | 0.162 | 0.162   | 0.255            | 0.255          | 0.093      | 0.309  | 0.309   | 0.054                  |
| 21         | 0.152  | 0.152 | 0.152   | 0.260            | 0.260          | 0.108      | 0.320  | 0.320   | 0.060                  |
| 22         | 0.153  | 0.153 | 0.153   | 0.264            | 0.264          | 0.111      | 0.317  | 0.317   | 0.053                  |
| 23         | 0.141  | 0.141 | 0.141   | 0.261            | 0.261          | 0.120      | 0.313  | 0.313   | 0.052                  |
| 24         | 0.141  | 0.141 | 0.141   | 0.254            | 0.254          | 0.113      | 0.321  | 0.321   | 0.067                  |
| Average    | 0.141  | 0.141 | 0.141   | 0.195            | 0.244          | 0.103      | 0.300  | 0.300   | 0.056                  |

## Appendix Table 88: Mixture C1

| Mix        | Mix ID |       |         |        |                | Mix Type       | : MC-7 %   |        |       |         | Curing Peroid - 56 day |
|------------|--------|-------|---------|--------|----------------|----------------|------------|--------|-------|---------|------------------------|
| Mix Id No. | Weight | 33.15 | lb      | Weight | 32.6           | lb             | 0.550      | Weight | 32.45 | lb      | 0.15                   |
|            |        |       |         | We     | ar depth (in.) | at time (min.) |            |        |       |         |                        |
| Pos.       |        | 0 min |         |        | 30 min         |                |            |        |       | 60 Min  |                        |
|            | R1     | R2    | Average | R1     | R2             | Average        | Difference | R1     | R2    | Average | Difference             |
| 1          | 0.150  | 0.152 | 0.151   | 0.292  | 0.287          | 0.290          | 0.139      | 0.319  | 0.319 | 0.319   | 0.030                  |
| 2          | 0.143  | 0.141 | 0.142   | 0.271  | 0.271          | 0.271          | 0.129      | 0.299  | 0.300 | 0.300   | 0.029                  |
| 3          | 0.135  | 0.136 | 0.136   | 0.260  | 0.260          | 0.260          | 0.125      | 0.300  | 0.305 | 0.303   | 0.043                  |
| 4          | 0.131  | 0.132 | 0.132   | 0.264  | 0.264          | 0.264          | 0.133      | 0.297  | 0.298 | 0.298   | 0.034                  |
| 5          | 0.120  | 0.120 | 0.120   | 0.256  | 0.253          | 0.255          | 0.135      | 0.300  | 0.300 | 0.300   | 0.046                  |
| 6          | 0.121  | 0.121 | 0.121   | 0.246  | 0.247          | 0.247          | 0.126      | 0.295  | 0.295 | 0.295   | 0.049                  |
| 7          | 0.119  | 0.120 | 0.120   | 0.249  | 0.249          | 0.249          | 0.130      | 0.304  | 0.304 | 0.304   | 0.055                  |
| 8          | 0.121  | 0.122 | 0.122   | 0.255  | 0.256          | 0.256          | 0.134      | 0.310  | 0.313 | 0.312   | 0.056                  |
| 9          | 0.132  | 0.131 | 0.132   | 0.266  | 0.268          | 0.267          | 0.136      | 0.308  | 0.308 | 0.308   | 0.041                  |
| 10         | 0.130  | 0.132 | 0.131   | 0.268  | 0.264          | 0.266          | 0.135      | 0.310  | 0.310 | 0.310   | 0.044                  |
| 11         | 0.138  | 0.135 | 0.137   | 0.291  | 0.287          | 0.289          | 0.153      | 0.326  | 0.325 | 0.326   | 0.037                  |
| 12         | 0.150  | 0.150 | 0.150   | 0.288  | 0.282          | 0.285          | 0.135      | 0.338  | 0.332 | 0.335   | 0.050                  |
| 13         | 0.150  | 0.150 | 0.150   | 0.294  | 0.295          | 0.295          | 0.145      | 0.332  | 0.341 | 0.337   | 0.042                  |
| 14         | 0.173  | 0.174 | 0.174   | 0.301  | 0.304          | 0.303          | 0.129      | 0.349  | 0.350 | 0.350   | 0.047                  |
| 15         | 0.165  | 0.165 | 0.165   | 0.309  | 0.309          | 0.309          | 0.144      | 0.347  | 0.353 | 0.350   | 0.041                  |
| 16         | 0.156  | 0.159 | 0.158   | 0.275  | 0.274          | 0.275          | 0.117      | 0.309  | 0.309 | 0.309   | 0.035                  |
| 17         | 0.157  | 0.155 | 0.156   | 0.283  | 0.285          | 0.284          | 0.128      | 0.311  | 0.315 | 0.313   | 0.029                  |
| 18         | 0.191  | 0.191 | 0.191   | 0.307  | 0.310          | 0.309          | 0.118      | 0.333  | 0.339 | 0.336   | 0.028                  |
| 19         | 0.197  | 0.199 | 0.198   | 0.325  | 0.325          | 0.325          | 0.127      | 0.366  | 0.366 | 0.366   | 0.041                  |
| 20         | 0.208  | 0.208 | 0.208   | 0.315  | 0.321          | 0.318          | 0.110      | 0.360  | 0.360 | 0.360   | 0.042                  |
| 21         | 0.200  | 0.198 | 0.199   | 0.323  | 0.323          | 0.323          | 0.124      | 0.364  | 0.365 | 0.365   | 0.042                  |
| 22         | 0.193  | 0.190 | 0.192   | 0.313  | 0.312          | 0.313          | 0.121      | 0.352  | 0.358 | 0.355   | 0.043                  |
| 23         | 0.177  | 0.176 | 0.177   | 0.309  | 0.312          | 0.311          | 0.134      | 0.355  | 0.360 | 0.358   | 0.047                  |
| 24         | 0.170  | 0.169 | 0.170   | 0.301  | 0.303          | 0.302          | 0.133      | 0.334  | 0.336 | 0.335   | 0.033                  |
| Average    | 0.155  | 0.155 | 0.155   | 0.195  | 0.286          | 0.286          | 0.131      | 0.326  | 0.328 | 0.327   | 0.041                  |

#### Appendix Table 89: Mixture C2

| Mi>        | ID     |       | Mix C -2 |        |                | Mix Type :     |            |        |       |         | Curing Peroid - 56 day |
|------------|--------|-------|----------|--------|----------------|----------------|------------|--------|-------|---------|------------------------|
| Mix Id No. | Weight | 33.5  | lb       | Weight | 33.1           | lb             | 0.400      | Weight | 32.9  | lb      | 0.2                    |
|            |        |       |          | We     | ar depth (in.) | at time (min.) |            |        | ļ     |         |                        |
| Pos.       |        | 0 min |          |        | 30 min         |                |            |        |       | 60 Min  |                        |
|            | R1     | R2    | Average  | R1     | R2             | Average        | Difference | R1     | R2    | Average | Difference             |
| 1          | 0.106  | 0.108 | 0.107    | 0.204  | 0.204          | 0.204          | 0.097      | 0.262  | 0.262 | 0.262   | 0.058                  |
| 2          | 0.112  | 0.110 | 0.111    | 0.216  | 0.216          | 0.216          | 0.105      | 0.273  | 0.273 | 0.273   | 0.057                  |
| 3          | 0.112  | 0.113 | 0.113    | 0.216  | 0.216          | 0.216          | 0.104      | 0.282  | 0.281 | 0.282   | 0.066                  |
| 4          | 0.116  | 0.119 | 0.118    | 0.213  | 0.214          | 0.214          | 0.096      | 0.277  | 0.268 | 0.273   | 0.059                  |
| 5          | 0.128  | 0.131 | 0.130    | 0.199  | 0.202          | 0.201          | 0.071      | 0.259  | 0.260 | 0.260   | 0.059                  |
| 6          | 0.115  | 0.116 | 0.116    | 0.208  | 0.209          | 0.209          | 0.093      | 0.273  | 0.272 | 0.273   | 0.064                  |
| 7          | 0.108  | 0.107 | 0.108    | 0.211  | 0.212          | 0.212          | 0.104      | 0.267  | 0.266 | 0.267   | 0.055                  |
| 8          | 0.113  | 0.114 | 0.114    | 0.210  | 0.211          | 0.211          | 0.097      | 0.258  | 0.267 | 0.263   | 0.052                  |
| 9          | 0.102  | 0.099 | 0.101    | 0.202  | 0.203          | 0.203          | 0.102      | 0.262  | 0.266 | 0.264   | 0.062                  |
| 10         | 0.106  | 0.109 | 0.108    | 0.199  | 0.197          | 0.198          | 0.091      | 0.254  | 0.265 | 0.260   | 0.062                  |
| 11         | 0.106  | 0.105 | 0.106    | 0.216  | 0.214          | 0.215          | 0.110      | 0.265  | 0.268 | 0.267   | 0.052                  |
| 12         | 0.104  | 0.102 | 0.103    | 0.210  | 0.207          | 0.209          | 0.106      | 0.262  | 0.266 | 0.264   | 0.056                  |
| 13         | 0.105  | 0.101 | 0.103    | 0.202  | 0.199          | 0.201          | 0.098      | 0.256  | 0.257 | 0.257   | 0.056                  |
| 14         | 0.100  | 0.103 | 0,102    | 0.207  | 0.205          | 0.206          | 0.105      | 0.266  | 0.266 | 0.266   | 0.060                  |
| 15         | 0.108  | 0.107 | 0.108    | 0.199  | 0.196          | 0.198          | 0.090      | 0.251  | 0.251 | 0.251   | 0.054                  |
| 16         | 0.109  | 0.106 | 0.108    | 0.214  | 0.209          | 0.212          | 0.104      | 0.256  | 0.258 | 0.257   | 0.046                  |
| 17         | 0.114  | 0.116 | 0.115    | 0.221  | 0.215          | 0.218          | 0.103      | 0.274  | 0.279 | 0.277   | 0.059                  |
| 18         | 0.134  | 0.133 | 0,134    | 0.227  | 0.229          | 0.228          | 0.095      | 0.274  | 0.275 | 0.275   | 0.047                  |
| 19         | 0.133  | 0.135 | 0.134    | 0.232  | 0.230          | 0.231          | 0.097      | 0.298  | 0.300 | 0.299   | 0.068                  |
| 20         | 0.136  | 0.139 | 0.138    | 0.228  | 0.226          | 0.227          | 0.090      | 0.289  | 0.290 | 0.290   | 0.063                  |
| 21         | 0.131  | 0.128 | 0.130    | 0.220  | 0.220          | 0.220          | 0.091      | 0.273  | 0.273 | 0.273   | 0.053                  |
| 22         | 0.127  | 0.128 | 0.128    | 0.210  | 0.210          | 0.210          | 0.083      | 0.260  | 0.260 | 0.260   | 0.050                  |
| 23         | 0.120  | 0.125 | 0.123    | 0.205  | 0.205          | 0.205          | 0.083      | 0.269  | 0.268 | 0.269   | 0.064                  |
| 24         | 0.110  | 0.108 | 0.109    | 0.195  | 0.194          | 0.195          | 0.086      | 0.249  | 0.247 | 0.248   | 0.054                  |
| Average    | 0.115  | 0.115 | 0.115    | 0.195  | 0.210          | 0.211          | 0.096      | 0.267  | 0.268 | 0.268   | 0.057                  |

## Appendix Table 90: Mixture C3

| Mi>        | Mix ID |       |         |        |                  | Mix T          | ype :      |        |       |         | Curing Peroid - 56 day |
|------------|--------|-------|---------|--------|------------------|----------------|------------|--------|-------|---------|------------------------|
| Mix Id No. | Weight | 33.6  | lb      | Weight | 33.15            | lb             | 0.450      | Weight | 32.85 | lb      | 0.3                    |
|            |        |       |         | We     | ar depth (in.) a | at time (min.) |            |        |       |         | •                      |
| Pos.       |        | 0 min |         |        | 30 min           |                |            |        |       | 60 Min  |                        |
|            | R1     | R2    | Average | R1     | R2               | Average        | Difference | R1     | R2    | Average | Difference             |
| 1          | 0.118  | 0.121 | 0.120   | 0.212  | 0.213            | 0.213          | 0.093      | 0.275  | 0.277 | 0.276   | 0.064                  |
| 2          | 0.110  | 0.112 | 0.111   | 0.218  | 0.221            | 0.220          | 0.109      | 0.277  | 0.274 | 0.276   | 0.056                  |
| 3          | 0.107  | 0.107 | 0.107   | 0.205  | 0.207            | 0.206          | 0.099      | 0.267  | 0.268 | 0.268   | 0.062                  |
| 4          | 0.102  | 0.103 | 0.103   | 0.209  | 0.209            | 0.209          | 0.107      | 0.271  | 0.271 | 0.271   | 0.062                  |
| 5          | 0.105  | 0.108 | 0.107   | 0.217  | 0.218            | 0.218          | 0.111      | 0.271  | 0.271 | 0.271   | 0.054                  |
| 6          | 0.102  | 0.100 | 0.101   | 0.194  | 0.195            | 0.195          | 0.094      | 0.263  | 0.262 | 0.263   | 0.068                  |
| 7          | 0.108  | 0.112 | 0.110   | 0.220  | 0.222            | 0.221          | 0.111      | 0.282  | 0.287 | 0.285   | 0.064                  |
| 8          | 0.111  | 0.114 | 0.113   | 0.222  | 0.223            | 0.223          | 0.110      | 0.280  | 0.281 | 0.281   | 0.058                  |
| 9          | 0.108  | 0.115 | 0.112   | 0.225  | 0.225            | 0.225          | 0.114      | 0.288  | 0.292 | 0.290   | 0.065                  |
| 10         | 0.117  | 0.118 | 0.118   | 0.230  | 0.228            | 0.229          | 0.112      | 0.296  | 0.298 | 0.297   | 0.068                  |
| 11         | 0.121  | 0.122 | 0.122   | 0.250  | 0.255            | 0.253          | 0.131      | 0.300  | 0.308 | 0.304   | 0.052                  |
| 12         | 0.120  | 0.121 | 0.121   | 0.231  | 0.227            | 0.229          | 0.109      | 0.292  | 0.291 | 0.292   | 0.063                  |
| 13         | 0.123  | 0.121 | 0.122   | 0.236  | 0.236            | 0.236          | 0.114      | 0.286  | 0.288 | 0.287   | 0.051                  |
| 14         | 0.119  | 0.120 | 0.120   | 0.252  | 0.252            | 0.252          | 0.133      | 0.313  | 0.309 | 0.311   | 0.059                  |
| 15         | 0.121  | 0.119 | 0.120   | 0.253  | 0.254            | 0.254          | 0.134      | 0.300  | 0.304 | 0.302   | 0.049                  |
| 16         | 0.117  | 0.115 | 0.116   | 0.252  | 0.258            | 0.255          | 0.139      | 0.292  | 0.297 | 0.295   | 0.040                  |
| 17         | 0.123  | 0.125 | 0.124   | 0.258  | 0.260            | 0.259          | 0.135      | 0.295  | 0.296 | 0.296   | 0.037                  |
| 18         | 0.125  | 0.123 | 0.124   | 0.258  | 0.258            | 0.258          | 0.134      | 0.312  | 0.312 | 0.312   | 0.054                  |
| 19         | 0.126  | 0.125 | 0.126   | 0.244  | 0.241            | 0.243          | 0.117      | 0.301  | 0.299 | 0.300   | 0.058                  |
| 20         | 0.132  | 0.129 | 0.131   | 0.247  | 0.249            | 0.248          | 0.118      | 0.307  | 0.304 | 0.306   | 0.058                  |
| 21         | 0.133  | 0.137 | 0.135   | 0.233  | 0.233            | 0.233          | 0.098      | 0.294  | 0.294 | 0.294   | 0.061                  |
| 22         | 0.136  | 0.135 | 0.136   | 0.245  | 0.248            | 0.247          | 0.111      | 0.311  | 0.310 | 0.311   | 0.064                  |
| 23         | 0.124  | 0.120 | 0.122   | 0.239  | 0.241            | 0.240          | 0.118      | 0.298  | 0.297 | 0.298   | 0.058                  |
| 24         | 0.120  | 0.118 | 0.119   | 0.232  | 0.232            | 0.232          | 0.113      | 0.285  | 0.286 | 0.286   | 0.054                  |
| Average    | 0.118  | 0.118 | 0.118   | 0.195  | 0.234            | 0.233          | 0.115      | 0.290  | 0.291 | 0.290   | 0.057                  |

#### Appendix Table 91: Mixture D1

| Mi>        | ID     |       | Mix D-1 |        |                  | Mix Ty         | rpe :      |        |       |         | Curing Peroid - 56 day |
|------------|--------|-------|---------|--------|------------------|----------------|------------|--------|-------|---------|------------------------|
| Mix Id No. | Weight | 36.55 | Ib      | Weight | 36.4             | lb             | 0.150      | Weight | 36.3  | lb      | 0.1                    |
|            |        |       |         | We     | ar depth (in.) a | at time (min.) | •          |        |       | •       |                        |
| Pos.       |        | 0 min |         |        | 30 min           |                |            |        |       | 60 Min  |                        |
|            | R1     | R2    | Average | R1     | R2               | Average        | Difference | R1     | R2    | Average | Difference             |
| 1          | 0.103  | 0.107 | 0.105   | 0.141  | 0.141            | 0.141          | 0.036      | 0.173  | 0.173 | 0.173   | 0.032                  |
| 2          | 0.096  | 0.097 | 0.097   | 0.133  | 0.133            | 0.133          | 0.037      | 0.157  | 0.157 | 0.157   | 0.024                  |
| 3          | 0.091  | 0.093 | 0.092   | 0.132  | 0.129            | 0.131          | 0.039      | 0.151  | 0.155 | 0.153   | 0.023                  |
| 4          | 0.085  | 0.087 | 0.086   | 0.126  | 0.121            | 0.124          | 0.038      | 0.148  | 0.150 | 0.149   | 0.026                  |
| 5          | 0.086  | 0.085 | 0.086   | 0.121  | 0.119            | 0.120          | 0.035      | 0.140  | 0.140 | 0.140   | 0.020                  |
| 6          | 0.083  | 0.084 | 0.084   | 0.115  | 0.116            | 0.116          | 0.032      | 0.135  | 0.137 | 0.136   | 0.021                  |
| 7          | 0.082  | 0.088 | 0.085   | 0.118  | 0.122            | 0.120          | 0.035      | 0.144  | 0.145 | 0.145   | 0.025                  |
| 8          | 0.087  | 0.088 | 0.088   | 0.123  | 0.125            | 0.124          | 0.037      | 0.147  | 0.148 | 0.148   | 0.024                  |
| 9          | 0.099  | 0.100 | 0.100   | 0.127  | 0.125            | 0.126          | 0.027      | 0.148  | 0.147 | 0.148   | 0.022                  |
| 10         | 0.102  | 0.103 | 0.103   | 0.131  | 0.129            | 0.130          | 0.028      | 0.149  | 0.150 | 0.150   | 0.020                  |
| 11         | 0.109  | 0.110 | 0.110   | 0.141  | 0.145            | 0.143          | 0.034      | 0.159  | 0.160 | 0.160   | 0.017                  |
| 12         | 0.117  | 0.119 | 0.118   | 0.151  | 0.151            | 0.151          | 0.033      | 0.179  | 0.181 | 0.180   | 0.029                  |
| 13         | 0.123  | 0.124 | 0.124   | 0.158  | 0.158            | 0.158          | 0.035      | 0.180  | 0.182 | 0.181   | 0.023                  |
| 14         | 0.120  | 0.120 | 0.120   | 0.161  | 0.157            | 0.159          | 0.039      | 0.175  | 0.175 | 0.175   | 0.016                  |
| 15         | 0.118  | 0.117 | 0.118   | 0.154  | 0.154            | 0.154          | 0.037      | 0.186  | 0.189 | 0.188   | 0.034                  |
| 16         | 0.098  | 0.099 | 0.099   | 0.160  | 0.158            | 0.159          | 0.061      | 0.195  | 0.196 | 0.196   | 0.037                  |
| 17         | 0.120  | 0.115 | 0.118   | 0.158  | 0.156            | 0.157          | 0.040      | 0.203  | 0.205 | 0.204   | 0.047                  |
| 18         | 0.118  | 0.118 | 0.118   | 0.160  | 0.160            | 0.160          | 0.042      | 0.201  | 0.211 | 0.206   | 0.046                  |
| 19         | 0.113  | 0.113 | 0.113   | 0.170  | 0.172            | 0.171          | 0.058      | 0.193  | 0.194 | 0.194   | 0.023                  |
| 20         | 0.124  | 0.129 | 0.127   | 0.160  | 0.163            | 0.162          | 0.035      | 0.187  | 0.187 | 0.187   | 0.026                  |
| 21         | 0.123  | 0.119 | 0.121   | 0.164  | 0.160            | 0.162          | 0.041      | 0.186  | 0.186 | 0.186   | 0.024                  |
| 22         | 0.112  | 0.113 | 0.113   | 0.155  | 0.153            | 0.154          | 0.042      | 0.176  | 0.177 | 0.177   | 0.023                  |
| 23         | 0.112  | 0.116 | 0.114   | 0.147  | 0.150            | 0.149          | 0.035      | 0.170  | 0.170 | 0.170   | 0.022                  |
| 24         | 0.109  | 0.110 | 0.110   | 0.158  | 0.157            | 0.158          | 0.048      | 0.176  | 0.176 | 0.176   | 0.019                  |
| Average    | 0.105  | 0.106 | 0.106   | 0.195  | 0.144            | 0.144          | 0.038      | 0.169  | 0.000 | 0.170   | 0.026                  |

# Appendix Table 92: Mixture D2

| Mi>        | ( ID   |       | Mix D 2 |        |                  | Mix Type :     | MC- 4 %    |        |       | Curing Peroid-56 |            |
|------------|--------|-------|---------|--------|------------------|----------------|------------|--------|-------|------------------|------------|
| Mix Id No. | Weight | 36.45 | lb      | Weight | 36.3             | lb             | 0.150      | Weight | 36.1  | lb               | 0.200      |
|            |        |       |         | We     | ar depth (in.) a | at time (min.) | •          |        |       |                  | •          |
| Pos.       |        | 0 min |         |        | 30 min           |                |            |        |       | 60 Min           |            |
|            | R1     | R2    | Average | R1     | R2               | Average        | Difference | R1     | R2    | Average          | Difference |
| 1          | 0.104  | 0.104 | 0.104   | 0.150  | 0.150            | 0.150          | 0.046      | 0.169  | 0.170 | 0.170            | 0.020      |
| 2          | 0.096  | 0.096 | 0.096   | 0.147  | 0.147            | 0.147          | 0.051      | 0.174  | 0.175 | 0.175            | 0.028      |
| 3          | 0.090  | 0.090 | 0.090   | 0.147  | 0.147            | 0.147          | 0.057      | 0.176  | 0.177 | 0.177            | 0.030      |
| 4          | 0.094  | 0.094 | 0.094   | 0.145  | 0.139            | 0.142          | 0.048      | 0.186  | 0.187 | 0.187            | 0.045      |
| 5          | 0.095  | 0.095 | 0.095   | 0.143  | 0.142            | 0.143          | 0.048      | 0.190  | 0.189 | 0.190            | 0.047      |
| 6          | 0.090  | 0.090 | 0.090   | 0.140  | 0.137            | 0.139          | 0.049      | 0.183  | 0.188 | 0.186            | 0.047      |
| 7          | 0.096  | 0.096 | 0.096   | 0.137  | 0.136            | 0.137          | 0.041      | 0.162  | 0.162 | 0.162            | 0.026      |
| 8          | 0.090  | 0.091 | 0.091   | 0.133  | 0.133            | 0.133          | 0.043      | 0.193  | 0.181 | 0.187            | 0.054      |
| 9          | 0.085  | 0.084 | 0.085   | 0.137  | 0.138            | 0.138          | 0.053      | 0.207  | 0.199 | 0.203            | 0.066      |
| 10         | 0.087  | 0.087 | 0.087   | 0.146  | 0.143            | 0.145          | 0.058      | 0.188  | 0.189 | 0.189            | 0.044      |
| 11         | 0.098  | 0.099 | 0.099   | 0.149  | 0.147            | 0.148          | 0.050      | 0.187  | 0.194 | 0.191            | 0.043      |
| 12         | 0.104  | 0.105 | 0.105   | 0.154  | 0.153            | 0.154          | 0.049      | 0.222  | 0.226 | 0.224            | 0.071      |
| 13         | 0.107  | 0.106 | 0.107   | 0.160  | 0.159            | 0.160          | 0.053      | 0.218  | 0.219 | 0.219            | 0.059      |
| 14         | 0.111  | 0.113 | 0.112   | 0.173  | 0.174            | 0.174          | 0.062      | 0.222  | 0.224 | 0.223            | 0.050      |
| 15         | 0.109  | 0.109 | 0.109   | 0.168  | 0.169            | 0.169          | 0.060      | 0.223  | 0.223 | 0.223            | 0.055      |
| 16         | 0.109  | 0.111 | 0.110   | 0.160  | 0.163            | 0.162          | 0.052      | 0.202  | 0.207 | 0.205            | 0.043      |
| 17         | 0.111  | 0.111 | 0.111   | 0.171  | 0.168            | 0.170          | 0.059      | 0.214  | 0.206 | 0.210            | 0.041      |
| 18         | 0.107  | 0.107 | 0.107   | 0.174  | 0.175            | 0.175          | 0.068      | 0.201  | 0.198 | 0.200            | 0.025      |
| 19         | 0.114  | 0.115 | 0.115   | 0.168  | 0.170            | 0.169          | 0.055      | 0.195  | 0.193 | 0.194            | 0.025      |
| 20         | 0.115  | 0.114 | 0.115   | 0.167  | 0.165            | 0.166          | 0.052      | 0.190  | 0.191 | 0.191            | 0.025      |
| 21         | 0.114  | 0.114 | 0.114   | 0.164  | 0.164            | 0.164          | 0.050      | 0.177  | 0.177 | 0.177            | 0.013      |
| 22         | 0.116  | 0.113 | 0.115   | 0.165  | 0.164            | 0.165          | 0.050      | 0.176  | 0.175 | 0.176            | 0.011      |
| 23         | 0.108  | 0.109 | 0.109   | 0.155  | 0.155            | 0.155          | 0.047      | 0.166  | 0.165 | 0.166            | 0.011      |
| 24         | 0.110  | 0.109 | 0.110   | 0.154  | 0.150            | 0.152          | 0.043      | 0.163  | 0.164 | 0.164            | 0.012      |
| Average    | 0.103  | 0.103 | 0.103   | 0.154  | 0.154            | 0.154          | 0.052      | 0.191  | 0.191 | 0.191            | 0.037      |

#### Appendix Table 93: Mixture D3

| Mi>        | ID     |       | Mix D 3 |        |                | Mix Type       | : MC- 4 %  |        |       |         | Curing Peroid-56 |
|------------|--------|-------|---------|--------|----------------|----------------|------------|--------|-------|---------|------------------|
| Mix Id No. | Weight | 35.9  | lb      | Weight | 35.6           | lb             | 0.300      | Weight | 35.4  | lb      | 0.200            |
|            |        |       |         | We     | ar depth (in.) | at time (min.) |            |        |       |         |                  |
| Pos.       |        | 0 min |         |        | 30 min         |                |            |        |       | 60 Min  |                  |
|            | R1     | R2    | Average | R1     | R2             | Average        | Difference | R1     | R2    | Average | Difference       |
| 1          | 0.097  | 0.097 | 0.097   | 0.174  | 0.174          | 0.174          | 0.077      | 0.222  | 0.219 | 0.221   | 0.047            |
| 2          | 0.094  | 0.095 | 0.095   | 0.172  | 0.173          | 0.173          | 0.078      | 0.222  | 0.220 | 0.221   | 0.049            |
| 3          | 0.095  | 0.097 | 0.096   | 0.174  | 0.175          | 0.175          | 0.079      | 0.221  | 0.224 | 0.223   | 0.048            |
| 4          | 0.101  | 0.100 | 0.101   | 0.172  | 0.173          | 0.173          | 0.072      | 0.215  | 0.218 | 0.217   | 0.044            |
| 5          | 0.086  | 0.088 | 0.087   | 0.178  | 0.176          | 0.177          | 0.090      | 0.218  | 0.219 | 0.219   | 0.042            |
| 6          | 0.103  | 0.104 | 0.104   | 0.187  | 0.185          | 0.186          | 0.083      | 0.225  | 0.217 | 0.221   | 0.035            |
| 7          | 0.102  | 0.107 | 0.105   | 0.186  | 0.187          | 0.187          | 0.082      | 0.225  | 0.217 | 0.221   | 0.035            |
| 8          | 0.101  | 0.103 | 0.102   | 0.194  | 0.194          | 0.194          | 0.092      | 0.231  | 0.224 | 0.228   | 0.034            |
| 9          | 0.102  | 0.103 | 0.103   | 0.197  | 0.201          | 0.199          | 0.097      | 0.236  | 0.228 | 0.232   | 0.033            |
| 10         | 0.112  | 0.109 | 0.111   | 0.199  | 0.200          | 0.200          | 0.089      | 0.235  | 0.230 | 0.233   | 0.033            |
| 11         | 0.111  | 0.113 | 0.112   | 0.199  | 0.199          | 0.199          | 0.087      | 0.238  | 0.238 | 0.238   | 0.039            |
| 12         | 0.122  | 0.022 | 0.072   | 0.199  | 0.198          | 0.199          | 0.127      | 0.237  | 0.230 | 0.234   | 0.035            |
| 13         | 0.132  | 0.133 | 0.133   | 0.188  | 0.189          | 0.189          | 0.056      | 0.226  | 0.228 | 0.227   | 0.039            |
| 14         | 0.126  | 0.127 | 0.127   | 0.195  | 0.195          | 0.195          | 0.069      | 0.238  | 0.244 | 0.241   | 0.046            |
| 15         | 0.121  | 0.124 | 0.123   | 0.194  | 0.195          | 0.195          | 0.072      | 0.271  | 0.238 | 0.255   | 0.060            |
| 16         | 0.120  | 0.120 | 0.120   | 0.199  | 0.200          | 0.200          | 0.080      | 0.279  | 0.247 | 0.263   | 0.064            |
| 17         | 0.125  | 0.124 | 0.125   | 0.196  | 0.197          | 0.197          | 0.072      | 0.224  | 0.250 | 0.237   | 0.041            |
| 18         | 0.118  | 0.119 | 0.119   | 0.193  | 0.194          | 0.194          | 0.075      | 0.244  | 0.246 | 0.245   | 0.052            |
| 19         | 0.116  | 0.117 | 0.117   | 0.193  | 0.191          | 0.192          | 0.076      | 0.237  | 0.238 | 0.238   | 0.046            |
| 20         | 0.112  | 0.112 | 0.112   | 0.178  | 0.177          | 0.178          | 0.066      | 0.231  | 0.232 | 0.232   | 0.054            |
| 21         | 0.110  | 0.111 | 0.111   | 0.184  | 0.184          | 0.184          | 0.074      | 0.233  | 0.234 | 0.234   | 0.050            |
| 22         | 0.107  | 0.108 | 0.108   | 0.175  | 0.176          | 0.176          | 0.068      | 0.222  | 0.223 | 0.223   | 0.047            |
| 23         | 0.107  | 0.106 | 0.107   | 0.166  | 0.166          | 0.166          | 0.060      | 0.205  | 0.206 | 0.206   | 0.040            |
| 24         | 0.096  | 0.096 | 0.096   | 0.186  | 0.186          | 0.186          | 0.090      | 0.219  | 0.218 | 0.219   | 0.033            |
| Average    | 0.109  | 0.106 | 0.107   | 0.186  | 0.187          | 0.187          | 0.079      | 0.231  | 0.229 | 0.230   | 0.043            |

## Appendix Table 94: Mixture E1

| Mix        | ID     |       | Mix E 1 |        |                | Mix Ty         | /pe :      |        |       | Curing Peroid - 56 day |            |
|------------|--------|-------|---------|--------|----------------|----------------|------------|--------|-------|------------------------|------------|
| Mix Id No. | Weight | 36.95 | lb      | Weight | 36.9           | lb             | 0.050      | Weight | 36.8  | lb                     | 0.1        |
|            | 1      |       |         | We     | ar depth (in.) | at time (min.) |            |        |       |                        |            |
| Pos.       |        | 0 min |         |        | 30 min         |                |            |        |       | 60 Min                 |            |
|            | R1     | R2    | Average | R1     | R2             | Average        | Difference | R1     | R2    | Average                | Difference |
| 1          | 0.140  | 0.141 | 0.141   | 0.162  | 0.162          | 0.162          | 0.022      | 0.176  | 0.175 | 0.176                  | 0.014      |
| 2          | 0.130  | 0.131 | 0.131   | 0.161  | 0.162          | 0.162          | 0.031      | 0.179  | 0.179 | 0.179                  | 0.018      |
| 3          | 0.119  | 0.119 | 0.119   | 0.150  | 0.149          | 0.150          | 0.031      | 0.166  | 0.166 | 0.166                  | 0.017      |
| 4          | 0.096  | 0.094 | 0.095   | 0.125  | 0.126          | 0.126          | 0.031      | 0.147  | 0.149 | 0.148                  | 0.023      |
| 5          | 0.105  | 0.104 | 0.105   | 0.135  | 0.134          | 0.135          | 0.030      | 0.151  | 0.153 | 0.152                  | 0.018      |
| 6          | 0.085  | 0.087 | 0.086   | 0.114  | 0.113          | 0.114          | 0.028      | 0.132  | 0.132 | 0.132                  | 0.019      |
| 7          | 0.087  | 0.084 | 0.086   | 0.128  | 0.122          | 0.125          | 0.040      | 0.137  | 0.138 | 0.138                  | 0.013      |
| 8          | 0.107  | 0.107 | 0.107   | 0.121  | 0.119          | 0.120          | 0.013      | 0.134  | 0.134 | 0.134                  | 0.014      |
| 9          | 0.091  | 0.091 | 0.091   | 0.114  | 0.114          | 0.114          | 0.023      | 0.130  | 0.129 | 0.130                  | 0.016      |
| 10         | 0.098  | 0.098 | 0.098   | 0.125  | 0.122          | 0.124          | 0.026      | 0.136  | 0.135 | 0.136                  | 0.012      |
| 11         | 0.118  | 0.119 | 0.119   | 0.132  | 0.130          | 0.131          | 0.013      | 0.138  | 0.139 | 0.139                  | 0.008      |
| 12         | 0.118  | 0.120 | 0.119   | 0.142  | 0.140          | 0.141          | 0.022      | 0.152  | 0.154 | 0.153                  | 0.012      |
| 13         | 0.122  | 0.123 | 0.123   | 0.143  | 0.141          | 0.142          | 0.020      | 0.152  | 0.151 | 0.152                  | 0.010      |
| 14         | 0.116  | 0.111 | 0.114   | 0.145  | 0.142          | 0.144          | 0.030      | 0.159  | 0.162 | 0.161                  | 0.017      |
| 15         | 0.101  | 0.105 | 0.103   | 0.137  | 0.135          | 0.136          | 0.033      | 0.152  | 0.154 | 0.153                  | 0.017      |
| 16         | 0.093  | 0.094 | 0.094   | 0.130  | 0.130          | 0.130          | 0.037      | 0.150  | 0.151 | 0.151                  | 0.021      |
| 17         | 0.099  | 0.099 | 0.099   | 0.132  | 0.133          | 0.133          | 0.034      | 0.152  | 0.151 | 0.152                  | 0.019      |
| 18         | 0.096  | 0.096 | 0.096   | 0.128  | 0.129          | 0.129          | 0.033      | 0.151  | 0.150 | 0.151                  | 0.022      |
| 19         | 0.104  | 0.104 | 0.104   | 0.137  | 0.138          | 0.138          | 0.034      | 0.159  | 0.159 | 0.159                  | 0.022      |
| 20         | 0.103  | 0.106 | 0.105   | 0.139  | 0.138          | 0.139          | 0.034      | 0.165  | 0.165 | 0.165                  | 0.027      |
| 21         | 0.117  | 0.117 | 0.117   | 0.157  | 0.157          | 0.157          | 0.040      | 0.173  | 0.174 | 0.174                  | 0.017      |
| 22         | 0.124  | 0.124 | 0.124   | 0.155  | 0.155          | 0.155          | 0.031      | 0.172  | 0.173 | 0.173                  | 0.018      |
| 23         | 0.134  | 0.134 | 0.134   | 0.156  | 0.156          | 0.156          | 0.022      | 0.174  | 0.175 | 0.175                  | 0.019      |
| 24         | 0.135  | 0.136 | 0.136   | 0.161  | 0.161          | 0.161          | 0.026      | 0.177  | 0.178 | 0.178                  | 0.017      |
| Average    | 0.110  | 0.110 | 0.110   | 0.195  | 0.138          | 0.138          | 0.028      | 0.155  | 0.155 | 0.155                  | 0.017      |

#### Appendix Table 95: Mixture E2

| Mix ID     |        |       | Mix E 2 |        | Mix Type :     |                              |            |        |       |         | Curing Peroid - 56 day |  |
|------------|--------|-------|---------|--------|----------------|------------------------------|------------|--------|-------|---------|------------------------|--|
| Mix Id No. | Weight | 37.5  | lb      | Weight | 37.25          | lb                           | 0.250      | Weight | 37.1  | lb      | 0.15                   |  |
|            |        |       |         | We     | ar depth (in.) | r depth (in.) at time (min.) |            |        |       |         |                        |  |
| Pos.       |        | 0 min |         |        | 30 min         |                              |            | 60 Min |       |         |                        |  |
|            | R1     | R2    | Average | R1     | R2             | Average                      | Difference | R1     | R2    | Average | Difference             |  |
| 1          | 0.097  | 0.096 | 0.097   | 0.161  | 0.161          | 0.161                        | 0.065      | 0.201  | 0.197 | 0.199   | 0.038                  |  |
| 2          | 0.113  | 0.114 | 0.114   | 0.176  | 0.176          | 0.176                        | 0.063      | 0.217  | 0.213 | 0.215   | 0.039                  |  |
| 3          | 0.131  | 0.133 | 0.132   | 0.193  | 0.193          | 0.193                        | 0.061      | 0.233  | 0.229 | 0.231   | 0.038                  |  |
| 4          | 0.149  | 0.149 | 0.149   | 0.203  | 0.203          | 0.203                        | 0.054      | 0.240  | 0.236 | 0.238   | 0.035                  |  |
| 5          | 0.157  | 0.160 | 0.159   | 0.219  | 0.215          | 0.217                        | 0.059      | 0.248  | 0.245 | 0.247   | 0.030                  |  |
| 6          | 0.163  | 0.163 | 0.163   | 0.228  | 0.228          | 0.228                        | 0.065      | 0.260  | 0.260 | 0.260   | 0.032                  |  |
| 7          | 0.162  | 0.165 | 0.164   | 0.227  | 0.228          | 0.228                        | 0.064      | 0.259  | 0.260 | 0.260   | 0.032                  |  |
| 8          | 0.163  | 0.163 | 0.163   | 0.220  | 0.222          | 0.221                        | 0.058      | 0.253  | 0.253 | 0.253   | 0.032                  |  |
| 9          | 0.139  | 0.140 | 0.140   | 0.211  | 0.213          | 0.212                        | 0.073      | 0.244  | 0.245 | 0.245   | 0.033                  |  |
| 10         | 0.120  | 0.121 | 0.121   | 0.192  | 0.191          | 0.192                        | 0.071      | 0.224  | 0.223 | 0.224   | 0.032                  |  |
| 11         | 0.107  | 0.106 | 0.107   | 0.180  | 0.179          | 0.180                        | 0.073      | 0.218  | 0.215 | 0.217   | 0.037                  |  |
| 12         | 0.106  | 0.106 | 0.106   | 0.181  | 0.182          | 0.182                        | 0.076      | 0.214  | 0.210 | 0.212   | 0.031                  |  |
| 13         | 0.118  | 0.116 | 0.117   | 0.187  | 0.187          | 0.187                        | 0.070      | 0.209  | 0.211 | 0.210   | 0.023                  |  |
| 14         | 0.129  | 0.128 | 0.129   | 0.193  | 0.194          | 0.194                        | 0.065      | 0.207  | 0.209 | 0.208   | 0.015                  |  |
| 15         | 0.137  | 0.136 | 0.137   | 0.192  | 0.188          | 0.190                        | 0.054      | 0.203  | 0.206 | 0.205   | 0.015                  |  |
| 16         | 0.133  | 0.137 | 0.135   | 0.184  | 0.184          | 0.184                        | 0.049      | 0.198  | 0.200 | 0.199   | 0.015                  |  |
| 17         | 0.129  | 0.129 | 0.129   | 0.182  | 0.183          | 0.183                        | 0.054      | 0.199  | 0.199 | 0.199   | 0.017                  |  |
| 18         | 0.112  | 0.113 | 0.113   | 0.175  | 0.172          | 0.174                        | 0.061      | 0.195  | 0.196 | 0.196   | 0.022                  |  |
| 19         | 0.101  | 0.102 | 0.102   | 0.163  | 0.163          | 0.163                        | 0.062      | 0.186  | 0.187 | 0.187   | 0.024                  |  |
| 20         | 0.104  | 0.104 | 0.104   | 0.168  | 0.168          | 0.168                        | 0.064      | 0.198  | 0.199 | 0.199   | 0.031                  |  |
| 21         | 0.108  | 0.108 | 0.108   | 0.167  | 0.166          | 0.167                        | 0.059      | 0.198  | 0.199 | 0.199   | 0.032                  |  |
| 22         | 0.109  | 0.105 | 0.107   | 0.175  | 0.175          | 0.175                        | 0.068      | 0.204  | 0.207 | 0.206   | 0.031                  |  |
| 23         | 0.108  | 0.108 | 0.108   | 0.166  | 0.166          | 0.166                        | 0.058      | 0.189  | 0.191 | 0.190   | 0.024                  |  |
| 24         | 0.097  | 0.099 | 0.098   | 0.160  | 0.160          | 0.160                        | 0.062      | 0.197  | 0.197 | 0.197   | 0.037                  |  |
| Average    | 0.125  | 0.125 | 0.125   | 0.195  | 0.187          | 0.188                        | 0.063      | 0.216  | 0.216 | 0.216   | 0.029                  |  |

# Appendix Table 96: Mixture E3

| Mix ID     |        | Mix E 3 |         |        | Mix Type :                      |         |            |              |       |         | Curing Peroid - 56 day |  |
|------------|--------|---------|---------|--------|---------------------------------|---------|------------|--------------|-------|---------|------------------------|--|
| Mix Id No. | Weight | 37.55   | lb      | Weight | 37.45 lb                        |         | 0.100      | 0.100 Weight |       | lb      | 0.1                    |  |
|            |        |         |         | We     | Wear depth (in.) at time (min.) |         |            |              |       |         |                        |  |
| Pos.       |        | 0 min   |         |        | 30 min                          |         |            | 60 Min       |       |         |                        |  |
|            | R1     | R2      | Average | R1     | R2                              | Average | Difference | R1           | R2    | Average | Difference             |  |
| 1          | 0.146  | 0.151   | 0.149   | 0.172  | 0.171                           | 0.172   | 0.023      | 0.224        | 0.223 | 0.224   | 0.052                  |  |
| 2          | 0.151  | 0.163   | 0.157   | 0.198  | 0.187                           | 0.193   | 0.036      | 0.231        | 0.231 | 0.231   | 0.039                  |  |
| 3          | 0.152  | 0.154   | 0.153   | 0.200  | 0.202                           | 0.201   | 0.048      | 0.231        | 0.233 | 0.232   | 0.031                  |  |
| 4          | 0.145  | 0.154   | 0.150   | 0.196  | 0.194                           | 0.195   | 0.046      | 0.225        | 0.224 | 0.225   | 0.030                  |  |
| 5          | 0.135  | 0.136   | 0.136   | 0.191  | 0.191                           | 0.191   | 0.056      | 0.213        | 0.210 | 0.212   | 0.021                  |  |
| 6          | 0.138  | 0.136   | 0.137   | 0.191  | 0.190                           | 0.191   | 0.054      | 0.216        | 0.212 | 0.214   | 0.024                  |  |
| 7          | 0.142  | 0.147   | 0.145   | 0.179  | 0.181                           | 0.180   | 0.036      | 0.200        | 0.197 | 0.199   | 0.019                  |  |
| 8          | 0.143  | 0.139   | 0.141   | 0.175  | 0.176                           | 0.176   | 0.035      | 0.190        | 0.190 | 0.190   | 0.015                  |  |
| 9          | 0.120  | 0.119   | 0.120   | 0.163  | 0.159                           | 0.161   | 0.042      | 0.176        | 0.174 | 0.175   | 0.014                  |  |
| 10         | 0.111  | 0.109   | 0.110   | 0.146  | 0.144                           | 0.145   | 0.035      | 0.165        | 0.165 | 0.165   | 0.020                  |  |
| 11         | 0.107  | 0.100   | 0.104   | 0.131  | 0.130                           | 0.131   | 0.027      | 0.151        | 0.152 | 0.152   | 0.021                  |  |
| 12         | 0.104  | 0.093   | 0.099   | 0.126  | 0.122                           | 0.124   | 0.026      | 0.143        | 0.143 | 0.143   | 0.019                  |  |
| 13         | 0.090  | 0.083   | 0.087   | 0.116  | 0.116                           | 0.116   | 0.030      | 0.136        | 0.134 | 0.135   | 0.019                  |  |
| 14         | 0.089  | 0.084   | 0.087   | 0.113  | 0.113                           | 0.113   | 0.027      | 0.136        | 0.133 | 0.135   | 0.022                  |  |
| 15         | 0.092  | 0.086   | 0.089   | 0.116  | 0.119                           | 0.118   | 0.029      | 0.133        | 0.133 | 0.133   | 0.016                  |  |
| 16         | 0.098  | 0.094   | 0.096   | 0.121  | 0.123                           | 0.122   | 0.026      | 0.145        | 0.141 | 0.143   | 0.021                  |  |
| 17         | 0.098  | 0.096   | 0.097   | 0.123  | 0.125                           | 0.124   | 0.027      | 0.147        | 0.143 | 0.145   | 0.021                  |  |
| 18         | 0.090  | 0.087   | 0.089   | 0.120  | 0.121                           | 0.121   | 0.032      | 0.140        | 0.142 | 0.141   | 0.021                  |  |
| 19         | 0.109  | 0.112   | 0.111   | 0.127  | 0.127                           | 0.127   | 0.017      | 0.146        | 0.146 | 0.146   | 0.019                  |  |
| 20         | 0.093  | 0.098   | 0.096   | 0.132  | 0.137                           | 0.135   | 0.039      | 0.152        | 0.155 | 0.154   | 0.019                  |  |
| 21         | 0.113  | 0.110   | 0.112   | 0.143  | 0.138                           | 0.141   | 0.029      | 0.173        | 0.173 | 0.173   | 0.033                  |  |
| 22         | 0.140  | 0.123   | 0.132   | 0.152  | 0.145                           | 0.149   | 0.017      | 0.187        | 0.184 | 0.186   | 0.037                  |  |
| 23         | 0.136  | 0.130   | 0.133   | 0.156  | 0.160                           | 0.158   | 0.025      | 0.199        | 0.198 | 0.199   | 0.041                  |  |
| 24         | 0.136  | 0.142   | 0.139   | 0.164  | 0.163                           | 0.164   | 0.025      | 0.212        | 0.214 | 0.213   | 0.050                  |  |
| Average    | 0.120  | 0.119   | 0.119   | 0.195  | 0.151                           | 0.152   | 0.033      | 0.178        | 0.177 | 0.178   | 0.026                  |  |

# Appendix Table 97: Mixture S1

| Mix ID     |        | Mix S 1 |         |        | Mix Type :                      |         |            |        |       |         | Curing Peroid- 56 day |
|------------|--------|---------|---------|--------|---------------------------------|---------|------------|--------|-------|---------|-----------------------|
| Mix Id No. | Weight | 39.05   | lb      | Weight | 39                              | lb      | 0.050      | Weight | 38.9  | lb      | 0.100                 |
|            |        |         |         | We     | Wear depth (in.) at time (min.) |         |            |        |       |         |                       |
| Pos.       |        | 0 min   |         | 30 min |                                 |         |            | 60 Min |       |         |                       |
|            | R1     | R2      | Average | R1     | R2                              | Average | Difference | R1     | R2    | Average | Difference            |
| 1          | 0.064  | 0.064   | 0.064   | 0.067  | 0.068                           | 0.068   | 0.004      | 0.075  | 0.074 | 0.075   | 0.007                 |
| 2          | 0.065  | 0.065   | 0.065   | 0.069  | 0.070                           | 0.070   | 0.005      | 0.077  | 0.078 | 0.078   | 0.008                 |
| 3          | 0.061  | 0.063   | 0.062   | 0.064  | 0.065                           | 0.065   | 0.003      | 0.076  | 0.076 | 0.076   | 0.012                 |
| 4          | 0.062  | 0.063   | 0.063   | 0.069  | 0.071                           | 0.070   | 0.008      | 0.076  | 0.076 | 0.076   | 0.006                 |
| 5          | 0.064  | 0.063   | 0.064   | 0.068  | 0.067                           | 0.068   | 0.004      | 0.077  | 0.077 | 0.077   | 0.009                 |
| 6          | 0.067  | 0.065   | 0.066   | 0.069  | 0.069                           | 0.069   | 0.003      | 0.079  | 0.081 | 0.080   | 0.011                 |
| 7          | 0.064  | 0.064   | 0.064   | 0.077  | 0.077                           | 0.077   | 0.013      | 0.079  | 0.078 | 0.079   | 0.002                 |
| 8          | 0.071  | 0.074   | 0.073   | 0.078  | 0.077                           | 0.078   | 0.005      | 0.078  | 0.081 | 0.080   | 0.002                 |
| 9          | 0.070  | 0.070   | 0.070   | 0.077  | 0.075                           | 0.076   | 0.006      | 0.080  | 0.080 | 0.080   | 0.004                 |
| 10         | 0.068  | 0.067   | 0.068   | 0.074  | 0.072                           | 0.073   | 0.005      | 0.076  | 0.077 | 0.077   | 0.004                 |
| 11         | 0.064  | 0.063   | 0.064   | 0.071  | 0.070                           | 0.071   | 0.007      | 0.076  | 0.075 | 0.076   | 0.005                 |
| 12         | 0.062  | 0.062   | 0.062   | 0.068  | 0.069                           | 0.069   | 0.007      | 0.071  | 0.072 | 0.072   | 0.003                 |
| 13         | 0.063  | 0.063   | 0.063   | 0.069  | 0.068                           | 0.069   | 0.006      | 0.071  | 0.073 | 0.072   | 0.003                 |
| 14         | 0.062  | 0.062   | 0.062   | 0.067  | 0.066                           | 0.067   | 0.005      | 0.072  | 0.073 | 0.073   | 0.006                 |
| 15         | 0.062  | 0.062   | 0.062   | 0.066  | 0.065                           | 0.066   | 0.004      | 0.070  | 0.072 | 0.071   | 0.006                 |
| 16         | 0.061  | 0.061   | 0.061   | 0.066  | 0.065                           | 0.066   | 0.005      | 0.071  | 0.073 | 0.072   | 0.006                 |
| 17         | 0.061  | 0.061   | 0.061   | 0.065  | 0.066                           | 0.066   | 0.005      | 0.072  | 0.072 | 0.072   | 0.006                 |
| 18         | 0.062  | 0.062   | 0.062   | 0.066  | 0.068                           | 0.067   | 0.005      | 0.074  | 0.073 | 0.074   | 0.006                 |
| 19         | 0.066  | 0.066   | 0.066   | 0.070  | 0.066                           | 0.068   | 0.002      | 0.077  | 0.077 | 0.077   | 0.009                 |
| 20         | 0.063  | 0.063   | 0.063   | 0.066  | 0.069                           | 0.068   | 0.005      | 0.074  | 0.074 | 0.074   | 0.007                 |
| 21         | 0.064  | 0.064   | 0.064   | 0.068  | 0.069                           | 0.069   | 0.005      | 0.078  | 0.078 | 0.078   | 0.009                 |
| 22         | 0.066  | 0.066   | 0.066   | 0.070  | 0.068                           | 0.069   | 0.003      | 0.075  | 0.075 | 0.075   | 0.006                 |
| 23         | 0.063  | 0.062   | 0.063   | 0.066  | 0.066                           | 0.066   | 0.004      | 0.074  | 0.075 | 0.075   | 0.008                 |
| 24         | 0.062  | 0.062   | 0.062   | 0.066  | 0.067                           | 0.067   | 0.005      | 0.074  | 0.075 | 0.075   | 0.008                 |
| Average    | 0.064  | 0.064   | 0.064   | 0.069  | 0.069                           | 0.069   | 0.005      | 0.075  | 0.076 | 0.075   | 0.006                 |

## Appendix Table 98: Mixtures S2

| Mix ID     |                                 | Mix S2  |         |        |         | /pe :   |            |              | Curing Peroid- 56 day |         |            |  |  |
|------------|---------------------------------|---------|---------|--------|---------|---------|------------|--------------|-----------------------|---------|------------|--|--|
| Mix Id No. | Weight                          | 38 9 lb |         | Weight | 38.8 lb |         | 0.100      | 0.100 Weight |                       | lb      | 0.050      |  |  |
|            | Wear depth (in.) at time (min.) |         |         |        |         |         |            |              |                       |         |            |  |  |
| Pos.       |                                 | 0 min   |         |        | 30 min  |         |            | 60 Min       |                       |         |            |  |  |
|            | R1                              | R2      | Average | R1     | R2      | Average | Difference | R1           | R2                    | Average | Difference |  |  |
| 1          | 0.066                           | 0.061   | 0.064   | 0.072  | 0.073   | 0.073   | 0.009      | 0.079        | 0.079                 | 0.079   | 0.007      |  |  |
| 2          | 0.066                           | 0.064   | 0.065   | 0.077  | 0.079   | 0.078   | 0.013      | 0.085        | 0.084                 | 0.085   | 0.007      |  |  |
| 3          | 0.069                           | 0.067   | 0.068   | 0.082  | 0.084   | 0.083   | 0.015      | 0.094        | 0.089                 | 0.092   | 0.008      |  |  |
| 4          | 0.075                           | 0.071   | 0.073   | 0.088  | 0.088   | 0.088   | 0.015      | 0.091        | 0.092                 | 0.092   | 0.004      |  |  |
| 5          | 0.080                           | 0.079   | 0.080   | 0.085  | 0.088   | 0.087   | 0.007      | 0.097        | 0.096                 | 0.097   | 0.010      |  |  |
| 6          | 0.080                           | 0.080   | 0.080   | 0.084  | 0.089   | 0.087   | 0.006      | 0.100        | 0.098                 | 0.099   | 0.013      |  |  |
| 7          | 0.082                           | 0.080   | 0.081   | 0.092  | 0.091   | 0.092   | 0.011      | 0.097        | 0.098                 | 0.098   | 0.006      |  |  |
| 8          | 0.083                           | 0.081   | 0.082   | 0.090  | 0.089   | 0.090   | 0.007      | 0.100        | 0.098                 | 0.099   | 0.010      |  |  |
| 9          | 0.075                           | 0.071   | 0.073   | 0.084  | 0.081   | 0.083   | 0.010      | 0.088        | 0.089                 | 0.089   | 0.006      |  |  |
| 10         | 0.069                           | 0.067   | 0.068   | 0.080  | 0.079   | 0.080   | 0.012      | 0.086        | 0.086                 | 0.086   | 0.006      |  |  |
| 11         | 0.060                           | 0.060   | 0.060   | 0.073  | 0.072   | 0.073   | 0.013      | 0.079        | 0.080                 | 0.080   | 0.007      |  |  |
| 12         | 0.061                           | 0.060   | 0.061   | 0.070  | 0.072   | 0.071   | 0.011      | 0.076        | 0.078                 | 0.077   | 0.006      |  |  |
| 13         | 0.062                           | 0.061   | 0.062   | 0.071  | 0.070   | 0.071   | 0.009      | 0.077        | 0.078                 | 0.078   | 0.007      |  |  |
| 14         | 0.063                           | 0.063   | 0.063   | 0.073  | 0.072   | 0.073   | 0.009      | 0.081        | 0.079                 | 0.080   | 0.008      |  |  |
| 15         | 0.067                           | 0.066   | 0.067   | 0.076  | 0.075   | 0.076   | 0.009      | 0.082        | 0.081                 | 0.082   | 0.006      |  |  |
| 16         | 0.071                           | 0.071   | 0.071   | 0.080  | 0.081   | 0.081   | 0.010      | 0.087        | 0.087                 | 0.087   | 0.006      |  |  |
| 17         | 0.076                           | 0.076   | 0.076   | 0.080  | 0.081   | 0.081   | 0.005      | 0.087        | 0.087                 | 0.087   | 0.006      |  |  |
| 18         | 0.072                           | 0.073   | 0.073   | 0.081  | 0.080   | 0.081   | 0.008      | 0.085        | 0.084                 | 0.085   | 0.004      |  |  |
| 19         | 0.075                           | 0.074   | 0.075   | 0.079  | 0.081   | 0.080   | 0.006      | 0.085        | 0.085                 | 0.085   | 0.005      |  |  |
| 20         | 0.074                           | 0.073   | 0.074   | 0.076  | 0.077   | 0.077   | 0.003      | 0.082        | 0.080                 | 0.081   | 0.005      |  |  |
| 21         | 0.073                           | 0.072   | 0.073   | 0.074  | 0.076   | 0.075   | 0.003      | 0.081        | 0.080                 | 0.081   | 0.006      |  |  |
| 22         | 0.068                           | 0.068   | 0.068   | 0.069  | 0.070   | 0.070   | 0.002      | 0.077        | 0.077                 | 0.077   | 0.007      |  |  |
| 23         | 0.063                           | 0.062   | 0.063   | 0.067  | 0.068   | 0.068   | 0.005      | 0.076        | 0.076                 | 0.076   | 0.008      |  |  |
| 24         | 0.062                           | 0.062   | 0.062   | 0.067  | 0.067   | 0.067   | 0.005      | 0.075        | 0.075                 | 0.075   | 0.008      |  |  |
| Average    | 0.071                           | 0.069   | 0.070   | 0.078  | 0.078   | 0.078   | 0.008      | 0.085        | 0.085                 | 0.085   | 0.007      |  |  |

#### Appendix Table 99: Mixture T1

| Mix ID     |        | Mix T 1    |         |        | Міх Туре :         |                              |              |        |          |         | Curing Peroid- 56 day |
|------------|--------|------------|---------|--------|--------------------|------------------------------|--------------|--------|----------|---------|-----------------------|
| Mix Id No. | Weight | 36.15 lb W |         | Weight | 35.9 <sub>lb</sub> |                              | 0.250 Weight |        | 35.75 lb |         | 0.150                 |
|            |        |            |         | We     | ar depth (in.) a   | r depth (in.) at time (min.) |              |        |          |         |                       |
| Pos.       |        | 0 min      |         |        | 30 min             |                              |              | 60 Min |          |         |                       |
|            | R1     | R2         | Average | R1     | R2                 | Average                      | Difference   | R1     | R2       | Average | Difference            |
| 1          | 0.092  | 0.086      | 0.089   | 0.128  | 0.128              | 0.128                        | 0.039        | 0.159  | 0.155    | 0.157   | 0.029                 |
| 2          | 0.091  | 0.084      | 0.088   | 0.131  | 0.134              | 0.133                        | 0.045        | 0.153  | 0.150    | 0.152   | 0.019                 |
| 3          | 0.100  | 0.094      | 0.097   | 0.129  | 0.130              | 0.130                        | 0.033        | 0.154  | 0.152    | 0.153   | 0.024                 |
| 4          | 0.082  | 0.083      | 0.083   | 0.136  | 0.138              | 0.137                        | 0.055        | 0.165  | 0.162    | 0.164   | 0.027                 |
| 5          | 0.079  | 0.083      | 0.081   | 0.144  | 0.146              | 0.145                        | 0.064        | 0.171  | 0.169    | 0.170   | 0.025                 |
| 6          | 0.081  | 0.085      | 0.083   | 0.149  | 0.148              | 0.149                        | 0.066        | 0.169  | 0.179    | 0.174   | 0.026                 |
| 7          | 0.088  | 0.089      | 0.089   | 0.148  | 0.149              | 0.149                        | 0.060        | 0.179  | 0.175    | 0.177   | 0.029                 |
| 8          | 0.089  | 0.089      | 0.089   | 0.143  | 0.143              | 0.143                        | 0.054        | 0.175  | 0.172    | 0.174   | 0.031                 |
| 9          | 0.082  | 0.083      | 0.083   | 0.138  | 0.137              | 0.138                        | 0.055        | 0.171  | 0.172    | 0.172   | 0.034                 |
| 10         | 0.083  | 0.084      | 0.084   | 0.136  | 0.136              | 0.136                        | 0.053        | 0.171  | 0.164    | 0.168   | 0.032                 |
| 11         | 0.079  | 0.077      | 0.078   | 0.139  | 0.139              | 0.139                        | 0.061        | 0.162  | 0.162    | 0.162   | 0.023                 |
| 12         | 0.073  | 0.073      | 0.073   | 0.137  | 0.138              | 0.138                        | 0.065        | 0.164  | 0.167    | 0.166   | 0.028                 |
| 13         | 0.077  | 0.077      | 0.077   | 0.133  | 0.134              | 0.134                        | 0.057        | 0.156  | 0.155    | 0.156   | 0.022                 |
| 14         | 0.073  | 0.072      | 0.073   | 0.124  | 0.131              | 0.128                        | 0.055        | 0.156  | 0.156    | 0.156   | 0.029                 |
| 15         | 0.081  | 0.081      | 0.081   | 0.137  | 0.136              | 0.137                        | 0.056        | 0.163  | 0.162    | 0.163   | 0.026                 |
| 16         | 0.086  | 0.086      | 0.086   | 0.145  | 0.139              | 0.142                        | 0.056        | 0.162  | 0.164    | 0.163   | 0.021                 |
| 17         | 0.087  | 0.086      | 0.087   | 0.143  | 0.143              | 0.143                        | 0.057        | 0.167  | 0.169    | 0.168   | 0.025                 |
| 18         | 0.086  | 0.088      | 0.087   | 0.148  | 0.145              | 0.147                        | 0.060        | 0.168  | 0.166    | 0.167   | 0.021                 |
| 19         | 0.084  | 0.084      | 0.084   | 0.140  | 0.131              | 0.136                        | 0.052        | 0.159  | 0.160    | 0.160   | 0.024                 |
| 20         | 0.084  | 0.084      | 0.084   | 0.147  | 0.139              | 0.143                        | 0.059        | 0.157  | 0.158    | 0.158   | 0.015                 |
| 21         | 0.084  | 0.081      | 0.083   | 0.142  | 0.133              | 0.138                        | 0.055        | 0.155  | 0.156    | 0.156   | 0.018                 |
| 22         | 0.086  | 0.087      | 0.087   | 0.137  | 0.129              | 0.133                        | 0.047        | 0.151  | 0.153    | 0.152   | 0.019                 |
| 23         | 0.078  | 0.079      | 0.079   | 0.141  | 0.131              | 0.136                        | 0.058        | 0.152  | 0.154    | 0.153   | 0.017                 |
| 24         | 0.086  | 0.086      | 0.086   | 0.134  | 0.127              | 0.131                        | 0.045        | 0.148  | 0.150    | 0.149   | 0.019                 |
| Average    | 0.084  | 0.083      | 0.084   | 0.139  | 0.137              | 0.138                        | 0.054        | 0.162  | 0.162    | 0.162   | 0.024                 |

# Appendix Table 100: Mixture T2

| Mix ID     |        | Mix T 2 |         |        | Mix Type :       |                |              |       |          |         | Curing Peroid- 56 day |
|------------|--------|---------|---------|--------|------------------|----------------|--------------|-------|----------|---------|-----------------------|
| Mix Id No. | Weight | 36.15   | Ib      | Weight | 35.95            | lb             | 0.200 Weight |       | 35.85 lb |         | 0.100                 |
|            |        | •       |         | We     | ar depth (in.) a | at time (min.) |              |       |          |         | -                     |
| Pos.       |        | 0 min   |         |        | 30 min           |                | 60 Min       |       |          |         |                       |
|            | R1     | R2      | Average | R1     | R2               | Average        | Difference   | R1    | R2       | Average | Difference            |
| 1          | 0.071  | 0.069   | 0.070   | 0.113  | 0.110            | 0.112          | 0.042        | 0.123 | 0.123    | 0.123   | 0.012                 |
| 2          | 0.068  | 0.068   | 0.068   | 0.113  | 0.109            | 0.111          | 0.043        | 0.119 | 0.118    | 0.119   | 0.007                 |
| 3          | 0.068  | 0.068   | 0.068   | 0.112  | 0.108            | 0.110          | 0.042        | 0.119 | 0.119    | 0.119   | 0.009                 |
| 4          | 0.069  | 0.065   | 0.067   | 0.100  | 0.096            | 0.098          | 0.031        | 0.113 | 0.113    | 0.113   | 0.015                 |
| 5          | 0.062  | 0.062   | 0.062   | 0.107  | 0.099            | 0.103          | 0.041        | 0.112 | 0.113    | 0.113   | 0.009                 |
| 6          | 0.062  | 0.059   | 0.061   | 0.096  | 0.095            | 0.096          | 0.035        | 0.114 | 0.116    | 0.115   | 0.020                 |
| 7          | 0.066  | 0.065   | 0.066   | 0.089  | 0.091            | 0.090          | 0.025        | 0.114 | 0.112    | 0.113   | 0.023                 |
| 8          | 0.064  | 0.064   | 0.064   | 0.094  | 0.094            | 0.094          | 0.030        | 0.116 | 0.117    | 0.117   | 0.023                 |
| 9          | 0.065  | 0.065   | 0.065   | 0.092  | 0.089            | 0.091          | 0.026        | 0.112 | 0.112    | 0.112   | 0.022                 |
| 10         | 0.063  | 0.063   | 0.063   | 0.095  | 0.093            | 0.094          | 0.031        | 0.111 | 0.111    | 0.111   | 0.017                 |
| 11         | 0.064  | 0.066   | 0.065   | 0.099  | 0.092            | 0.096          | 0.031        | 0.114 | 0.115    | 0.115   | 0.019                 |
| 12         | 0.063  | 0.064   | 0.064   | 0.091  | 0.089            | 0.090          | 0.027        | 0.112 | 0.112    | 0.112   | 0.022                 |
| 13         | 0.067  | 0.067   | 0.067   | 0.096  | 0.096            | 0.096          | 0.029        | 0.113 | 0.113    | 0.113   | 0.017                 |
| 14         | 0.066  | 0.066   | 0.066   | 0.099  | 0.099            | 0.099          | 0.033        | 0.116 | 0.116    | 0.116   | 0.017                 |
| 15         | 0.070  | 0.070   | 0.070   | 0.102  | 0.102            | 0.102          | 0.032        | 0.122 | 0.122    | 0.122   | 0.020                 |
| 16         | 0.070  | 0.069   | 0.070   | 0.106  | 0.105            | 0.106          | 0.036        | 0.120 | 0.120    | 0.120   | 0.015                 |
| 17         | 0.070  | 0.069   | 0.070   | 0.112  | 0.113            | 0.113          | 0.043        | 0.121 | 0.121    | 0.121   | 0.008                 |
| 18         | 0.069  | 0.068   | 0.069   | 0.112  | 0.111            | 0.112          | 0.043        | 0.124 | 0.123    | 0.124   | 0.012                 |
| 19         | 0.073  | 0.072   | 0.073   | 0.110  | 0.110            | 0.110          | 0.038        | 0.123 | 0.122    | 0.123   | 0.013                 |
| 20         | 0.074  | 0.073   | 0.074   | 0.114  | 0.114            | 0.114          | 0.041        | 0.127 | 0.127    | 0.127   | 0.013                 |
| 21         | 0.074  | 0.075   | 0.075   | 0.114  | 0.114            | 0.114          | 0.040        | 0.127 | 0.127    | 0.127   | 0.013                 |
| 22         | 0.074  | 0.074   | 0.074   | 0.112  | 0.112            | 0.112          | 0.038        | 0.131 | 0.130    | 0.131   | 0.019                 |
| 23         | 0.069  | 0.068   | 0.069   | 0.112  | 0.112            | 0.112          | 0.044        | 0.132 | 0.132    | 0.132   | 0.020                 |
| 24         | 0.069  | 0.067   | 0.068   | 0.111  | 0.111            | 0.111          | 0.043        | 0.131 | 0.130    | 0.131   | 0.020                 |
| Average    | 0.068  | 0.067   | 0.068   | 0.104  | 0.103            | 0.103          | 0.036        | 0.119 | 0.119    | 0.119   | 0.016                 |
# 9.6 Appendix F

S-Plus Data Output- t-test

### Compressive

### Strength

Pooled-Variance Two-Sample t-Test data: x: A in data , and y: Con in data t = 5.3548, df = 4, pvalue = 0.0029alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1011.561 NA sample estimates: mean of x mean of y 9540.226 7859.57 Pooled-Variance Two-Sample t-Test data: x: B in data , and y: Con in data t = 4.7189, df = 4, pvalue = 0.0046 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 1010.572 NA sample estimates: mean of x mean of y 9702.889 7859.57 Pooled-Variance Two-Sample t-Test data: x: C in data , and y: Con in data t = -7.1044, df = 4, p-value = 0.999 alternative hypothesis: difference in means is

greater than 0

sample estimates:

interval:

-2735.706

95 percent confidence

NA

Pooled-Variance Two-Sample t-Test data: x: D in data , and y: Con in data t = 2.8693, df = 4, pvalue = 0.0228alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 247.6497 NA sample estimates: mean of x mean of y 8823.164 7859.57 Pooled-Variance Two-Sample t-Test data: x: E in data , and y: Con in data t = 8.5246, df = 4, pvalue = 0.0005 alternative

mean of x mean of y
5755.302 7859.57

hypothesis: difference in means is greater than 0 95 percent confidence interval: 2117.467 NA sample estimates: mean of x mean of y 10683.16 7859.57

Pooled-Variance Two-Sample t-Test data: x: S in data , and y: Con in data t = 21.4301, df = 4, p-value = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 5165.584 NA sample estimates: mean of x mean of y 13595.79 7859.57

Pooled-Variance Two-Sample t-Test

data: x: T in data , and y: Con in data t = 9.2041, df = 4, pvalue = 0.0004alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1980.11 NA sample estimates: mean of x mean of y 10436.56 7859.57 Pooled-Variance Two-Sample t-Test data: x: B in data , and y: A in data t = 0.4644, df = 4, pvalue = 0.3333alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -584.0544 NA sample estimates: mean of x mean of y 9702.889 9540.226 Pooled-Variance Two-Sample t-Test data: x: C in data , and y: A in data t = -15.7389, df = 4, p-value = 1 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -4297.596 NA sample estimates: mean of x mean of y 5755.302 9540.226 Pooled-Variance Two-Sample t-Test data: x: E in data ,

and y: A in data t = 4.0456, df = 4, pvalue = 0.0078

alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 540.6642 NA sample estimates: mean of x mean of y 10683.16 9540.226 Pooled-Variance Two-Sample t-Test data: x: S in data , and y: A in data t = 19.8485, df = 4, p-value = 0 alternative hypothesis: difference in means is not equal to 0 95 percent confidence interval: 3488.261 4622.861 sample estimates: mean of x mean of y 13595.79 9540.226 Pooled-Variance Two-Sample t-Test data: x: T in data , and y: A in data t = 4.0704, df = 4, pvalue = 0.0152alternative hypothesis: difference in means is not equal to 0 95 percent confidence interval: 284.9361 1507.7332 sample estimates: mean of x mean of y 10436.56 9540.226 Pooled-Variance Two-Sample t-Test data: x: C in data , and y: B in data t = -11.8003, df = 4, p-value = 0.0003 alternative hypothesis: difference in means is not equal to O

interval: -4876.395 -3018.778 sample estimates: mean of x mean of y 5755.302 9702.889 Pooled-Variance Two-Sample t-Test data: x: D in data , and y: B in data t = -2.3771, df = 4, p-value = 0.0762 alternative hypothesis: difference in means is not equal to O 95 percent confidence interval: -1907.2523 147.8027 sample estimates: mean of x mean of y 8823.164 9702.889 Pooled-Variance Two-Sample t-Test data: x: E in data , and y: B in data t = 2.679, df = 4, pvalue = 0.0553 alternative hypothesis: difference in means is not equal to 0 95 percent confidence interval: -35.66393 1996.21182 sample estimates: mean of x mean of y 10683.16 9702.889 Pooled-Variance Two-Sample t-Test data: x: S in data , and y: B in data t = 12.5755, df = 4, p-value = 0.0002 alternative hypothesis: difference in means is not equal to 0 95 percent confidence interval:

95 percent confidence

sample estimates: mean of x mean of y 13595.79 9702.889 Pooled-Variance Two-Sample t-Test data: x: T in data , and y: B in data t = 2.2908, df = 4, pvalue = 0.0838alternative hypothesis: difference in means is not equal to 0 95 percent confidence interval: -155.534 1622.878 sample estimates: mean of x mean of y 10436.56 9702.889 Pooled-Variance Two-Sample t-Test data: x: D in data , and y: C in data t = 11.4246, df = 4, p-value = 0.0003alternative hypothesis: difference in means is not equal to O 95 percent confidence interval: 2322.299 3813.425 sample estimates: mean of x mean of y 8823.164 5755.302 Pooled-Variance Two-Sample t-Test data: x: E in data , and y: C in data t = 18.755, df = 4, pvalue = 0alternative hypothesis: difference in means is not equal to 0 95 percent confidence interval: 4198.353 5657.369 sample estimates: mean of x mean of y 10683.16 5755.302

3033.416 4752.380

```
Pooled-Variance t = 20.1632, df = 4,
Two-Sample t-Test
data: x: S in data ,
and y: C in data
t = 44.5503, df = 4,
p-value = 0
alternative
hypothesis:
difference in means is
not equal to 0
95 percent confidence
interval:
 7351.853 8329.117
sample estimates:
mean of x mean of y
 13595.79 5755.302
      Pooled-Variance
Two-Sample t-Test
data: x: T in data ,
and y: C in data
t = 24.1046, df = 4,
p-value = 0
alternative
hypothesis:
difference in means is sample estimates:
not equal to 0
95 percent confidence
interval:
4142.056 5220.462
sample estimates:
mean of x mean of y
 10436.56 5755.302
     Pooled-Variance
Two-Sample t-Test
data: x: E in data ,
and y: D in data
t = 6.0637, df = 4, p-
value = 0.0037
alternative
hypothesis:
difference in means is
not equal to 0
95 percent confidence
interval:
1008.348 2711.650
sample estimates:
mean of x mean of y
 10683.16 8823.164
      Pooled-Variance
Two-Sample t-Test
data: x: S in data ,
and y: D in data
```

```
p-value = 0
  alternative
hypothesis:
difference in means is
not equal to 0
  95 percent confidence mean of x mean of y
  interval:
   4115.441 5429.805
 sample estimates:
  mean of x mean of y
    13595.79 8823.164
        Pooled-Variance
  Two-Sample t-Test
   data: x: T in data ,
   and y: D in data
   t = 6.4397, df = 4, p-
   value = 0.003
   alternative
  hypothesis:
   difference in means is
not equal to 0
95 percent confidence
   interval:
   917.7914 2309.0025
  mean of x mean of y
   10436.56 8823.164
```

Pooled-Variance Two-Sample t-Test

data: x: S in data , and y: E in data t = 12.6571, df = 4, p-value = 0.0002 alternative hypothesis: difference in means is not equal to 0 95 percent confidence interval: 2273.715 3551.534 sample estimates: mean of x mean of y 13595.79 10683.16

#### Pooled-Variance Two-Sample t-Test

data: x: E in data , and y: T in data t = 1.0093, df = 4, pvalue = 0.3699 alternative hypothesis:

```
difference in means is
  not equal to 0
   95 percent confidence
  interval:
   -431.7669 924.9705
 sample estimates:
    10683.16 10436.56
         Pooled-Variance
 Two-Sample t-Test
   data: x: T in data ,
  and y: S in data
   t = -21.4793, df = 4,
  p-value = 0
  alternative
  hypothesis:
 difference in means is
 not equal to O
  95 percent confidence
  interval:
   -3567.593 -2750.860
   sample estimates:
  mean of x mean of y
```

10436.56 13595.79

# Chloride Test Phase

## Ι

Pooled-Variance Two-Sample t-Test data: x: CW in data.analysis.chloride .test.st.I , and y: CSA in data.analysis.chloride .test.st.I t = -16.4308, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: NA -2845.66 sample estimates: mean of x mean of y 1709.039 4253.75

Pooled-Variance Two-Sample t-Test

data: x: CW in 1709.039 2111.812 data.analysis.chloride .test.st.I , and y: CSB in data.analysis.chloride .test.st.I t = -10.9124, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -3192.232 NA sample estimates: mean of x mean of y 1709.039 4418.75 Pooled-Variance Two-Sample t-Test x: CW in data: data.analysis.chloride .test.st.I , and y: EAW in data.analysis.chloride .test.st.I t = 5.4178, df = 6, pvalue = 0.0008 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: sample estimates: mean of x mean of y 1709.039 1123.73 Pooled-Variance Two-Sample t-Test data: x: CW in data.analysis.chloride .test.st.I , and y: in EASA data.analysis.chloride .test.st.I t = -1.9812, df = 6, p-value = 0.9526 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -797.825 NA sample estimates: mean of x mean of y

Pooled-Variance Two-Sample t-Test data: x: CW in data.analysis.chloride .test.st.I , and y: EASB in data.analysis.chloride .test.st.I t = -1.1574, df = 6, p-value = 0.8545 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -569.3478 NA sample estimates: mean of x mean of y 1709.039 1921.572 Pooled-Variance Two-Sample t-Test data: x: CW in data.analysis.chloride .test.st.I , and y: EBW in data.analysis.chloride .test.st.I t = 6.7831, df = 6, pvalue = 0.0003 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 469.8857 NA sample estimates: mean of x mean of y 1709.039 1050.5 Pooled-Variance Two-Sample t-Test data: x: CW in data.analysis.chloride .test.st.I , and y: EBSA in data.analysis.chloride .test.st.I t = -2.9037, df = 6, p-value = 0.9864 alternative hypothesis:

difference in means is greater than 0 95 percent confidence interval: -559.1175 NA sample estimates: mean of x mean of y 1709.039 2044 Pooled-Variance Two-Sample t-Test data: x: CW in data.analysis.chloride .test.st.I , and y: EBSB in data.analysis.chloride .test.st.I t = -2.5224, df = 6, p-value = 0.9774 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -1068.344 NA sample estimates: mean of x mean of y 1709.039 2312.5 Pooled-Variance Two-Sample t-Test data: x: CW in data.analysis.chloride .test.st.I , and y: ECW in data.analysis.chloride .test.st.I t = 7.2088, df = 6, pvalue = 0.0002alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 550.4949 NA sample estimates: mean of x mean of y 1709.039 955.3936 Pooled-Variance Two-Sample t-Test data: x: CW in data.analysis.chloride .test.st.I , and y:

ECSA

in

data.analysis.chloride .test.st.I t = -6.1595, df = 6, p-value = 0.9996 alternative hypothesis: difference in means is greater than O 95 percent confidence NA interval: -1738.68 sample estimates: mean of x mean of y 1709.039 3030.75 Pooled-Variance Two-Sample t-Test data: x: CW in data.analysis.chloride .test.st.I , and y: ECSB in data.analysis.chloride .test.st.I t = -9.6884, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -4717.284 NA sample estimates: mean of x mean of y 1709.039 5638.25 Pooled-Variance Two-Sample t-Test data: x: CW in data.analysis.chloride .test.st.I , and y: EDW in data.analysis.chloride .test.st.I t = 9.355, df = 6, pvalue = 0 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 810.3405 NA sample estimates: mean of x mean of y 1709.039 686.25

Pooled-Variance Two-Sample t-Test data: x: CW in data.analysis.chloride .test.st.I , and y: EDSA in data.analysis.chloride .test.st.I t = -8.1104, df = 6, p-value = 0.9999 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -2301.875 NA sample estimates: mean of x mean of y 1709.039 3566 Pooled-Variance Two-Sample t-Test data: x: CW in data.analysis.chloride .test.st.I , and y: EDSB in data.analysis.chloride .test.st.I t = -11.916, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: interval: -2950.38 NA sample estimates: mean of x mean of y 1709.039 4245.75 Pooled-Variance Two-Sample t-Test data: x: CSA in data.analysis.chloride .test.st.I , and y: CSB in data.analysis.chloride .test.st.I t = -0.6333, df = 6, p-value = 0.725 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval:

-671.2856 NA sample estimates: mean of x mean of y 4253.75 4418.75 Pooled-Variance Two-Sample t-Test data: x: CSA in data.analysis.chloride .test.st.I , and y: EAW in data.analysis.chloride .test.st.I t = 23.3984, df = 6, p-value = 0 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 2870.079 NA sample estimates: mean of x mean of y 4253.75 1123.73 Pooled-Variance Two-Sample t-Test data: x: CSA in data.analysis.chloride .test.st.I , and y: EASA in data.analysis.chloride .test.st.I t = 9.8222, df = 6, pvalue = 0alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 1718.187 NA sample estimates: mean of x mean of y 4253.75 2111.812 Pooled-Variance Two-Sample t-Test data: x: CSA in data.analysis.chloride .test.st.I , and y: EASB in data.analysis.chloride .test.st.I t = 11.6695, df = 6,p-value = 0

alternative hypothesis: difference in means is greater than O 95 percent confidence interval: NA 1943.828 sample estimates: mean of x mean of y 4253.75 1921.572 Pooled-Variance Two-Sample t-Test data: x: CSA in data.analysis.chloride .test.st.I , and y: EBW in data.analysis.chloride .test.st.I t = 25.6065, df = 6,p-value = 0 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 2960.167 NA sample estimates: mean of x mean of y 4253.75 1050.5 Pooled-Variance Two-Sample t-Test x: CSA in data: data.analysis.chloride .test.st.I , and y: in EBSA data.analysis.chloride .test.st.I t = 15.8121, df = 6, p-value = 0alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: NA 1938.189 sample estimates: mean of x mean of y 4253.75 2044 Pooled-Variance Two-Sample t-Test x: CSA in data: data.analysis.chloride

.test.st.I , and y: EBSB in data.analysis.chloride Two-Sample t-Test .test.st.I t = 7.7062, df = 6, pvalue = 0.0001 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1451.745 NA sample estimates: mean of x mean of y 4253.75 2312.5 Pooled-Variance Two-Sample t-Test data: x: CSA in data.analysis.chloride .test.st.I , and y: ECW in ECW in data.analysis.chloride .test.st.I t = 25.1841, df = 6,p-value = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 3043.859 NA sample estimates: mean of x mean of y 4253.75 955.3936 Pooled-Variance Two-Sample t-Test data: x: CSA in data.analysis.chloride .test.st.I , and y: in ECSA data.analysis.chloride .test.st.I t = 5.3494, df = 6, pvalue = 0.0009 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 778.7451 NA sample estimates: mean of x mean of y 4253.75 3030.75 greater than 0

Pooled-Variance x: CSA in data: data.analysis.chloride .test.st.I , and y: ECSB in data.analysis.chloride .test.st.I t = -3.351, df = 6, pvalue = 0.9923 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -2187.343 NA sample estimates: mean of x mean of y 4253.75 5638.25 Pooled-Variance Two-Sample t-Test data: x: CSA in data.analysis.chloride .test.st.I , and y: EDW in data.analysis.chloride .test.st.I t = 26.4612, df = 6,p-value = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 3305.52 NA sample estimates: mean of x mean of y 4253.75 686.25 Pooled-Variance Two-Sample t-Test data: x: CSA in data.analysis.chloride .test.st.I , and y: EDSA in data.analysis.chloride .test.st.I t = 2.8399, df = 6, pvalue = 0.0148alternative hypothesis: difference in means is

95 percent confidence interval: 217.1677 NA sample estimates: mean of x mean of y 4253.75 3566 Pooled-Variance Two-Sample t-Test x: CSA in data: data.analysis.chloride .test.st.I , and y: EDSB in data.analysis.chloride .test.st.I t = 0.0352, df = 6, pvalue = 0.4865 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -433.1588 NA sample estimates: mean of x mean of y 4253.75 4245.75 Pooled-Variance Two-Sample t-Test data: x: CSB in data.analysis.chloride .test.st.I , and y: EAW in data.analysis.chloride .test.st.I t = 13.9779, df = 6, p-value = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence NA interval: 2836.953 sample estimates: mean of x mean of y 4418.75 1123.73 Pooled-Variance Two-Sample t-Test data: x: CSB in data.analysis.chloride .test.st.I , and y: EASA in data.analysis.chloride .test.st.I

t = 7.9021, df = 6, pvalue = 0.0001 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 1739.646 NA sample estimates: mean of x mean of y 4418.75 2111.812 Pooled-Variance Two-Sample t-Test data: x: CSB in data.analysis.chloride .test.st.I , and y: EASB in data.analysis.chloride .test.st.I t = 8.9635, df = 6, pvalue = 0.0001 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 1955.817 NA sample estimates: mean of x mean of y 4418.75 1921.572 Pooled-Variance Two-Sample t-Test x: CSB in data: data.analysis.chloride .test.st.I , and y: EBW in data.analysis.chloride .test.st.I t = 14.5864, df = 6,p-value = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 2919.535 NA sample estimates: mean of x mean of y 4418.75 1050.5 Pooled-Variance

Two-Sample t-Test

data: x: CSB in data.analysis.chloride .test.st.I , and y: EBSA in data.analysis.chloride .test.st.I t = 9.9289, df = 6, pvalue = 0alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1909.991 NΑ sample estimates: mean of x mean of y 4418.75 2044 Pooled-Variance Two-Sample t-Test data: x: CSB in data.analysis.chloride .test.st.I , and y: EBSB in data.analysis.chloride .test.st.I t = 6.6232, df = 6, pvalue = 0.0003alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1488.293 NA sample estimates: mean of x mean of y 4418.75 2312.5 Pooled-Variance Two-Sample t-Test data: x: CSB in data.analysis.chloride .test.st.I , and y: ECW in data.analysis.chloride .test.st.I t = 14.791, df = 6, pvalue = 0alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 3008.357 NA sample estimates: mean of x mean of y

4418.75 955.3936 Pooled-Variance Two-Sample t-Test data: x: CSB in data.analysis.chloride .test.st.I , and y: ECSA in data.analysis.chloride .test.st.I t = 4.6281, df = 6, pvalue = 0.0018 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 805.2323 NA sample estimates: mean of x mean of y 4418.75 3030.75 Pooled-Variance Two-Sample t-Test data: x: CSB in data.analysis.chloride .test.st.I , and y: ECSB in data.analysis.chloride .test.st.I t = -2.6715, df = 6, p-value = 0.9815 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -2106.525 NA sample estimates: mean of x mean of y 4418.75 5638.25 Pooled-Variance Two-Sample t-Test data: x: CSB in data.analysis.chloride .test.st.I , and y: EDW in data.analysis.chloride .test.st.T t = 15.7938, df = 6, p-value = 0 alternative hypothesis:

difference in means is data.analysis.chloride greater than O 95 percent confidence interval: 3273.273 NA sample estimates: mean of x mean of y 4418.75 686.25 Pooled-Variance Two-Sample t-Test data: x: CSB in data.analysis.chloride .test.st.I , and y: EDSA in data.analysis.chloride .test.st.I t = 2.7476, df = 6, pvalue = 0.0167 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 249.6717 NA sample estimates: mean of x mean of y 4418.75 3566 Pooled-Variance Two-Sample t-Test data: x: CSB in data.analysis.chloride .test.st.I , and y: EDSB in data.analysis.chloride .test.st.I t = 0.5792, df = 6, pvalue = 0.2918 alternative difference in means is greater than O 95 percent confidence interval: -407.4109 NA sample estimates: mean of x mean of y 4418.75 4245.75 Pooled-Variance Two-Sample t-Test data: x: EAW in data.analysis.chloride .test.st.I , and y: EASA in

.test.st.I t = -5.2635, df = 6, p-value = 0.9991 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -1352.862 NA sample estimates: mean of x mean of y 1123.73 2111.812 Pooled-Variance Two-Sample t-Test data: x: EAW in data.analysis.chloride .test.st.I , and y: EASB in data.analysis.chloride .test.st.I t = -4.8002, df = 6, p-value = 0.9985 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -1120.821 NA sample estimates: mean of x mean of y 1123.73 1921.572 Pooled-Variance Two-Sample t-Test data: x: EAW in data.analysis.chloride .test.st.I , and y: EBW in data.analysis.chloride .test.st.I t = 1.2683, df = 6, pvalue = 0.1258alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -38.96984 NA sample estimates: mean of x mean of y 1123.73 1050.5

Pooled-Variance Two-Sample t-Test data: x: EAW in data.analysis.chloride .test.st.I , and y: in EBSA data.analysis.chloride .test.st.I t = -10.8339, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -1085.33 NA sample estimates: mean of x mean of y 1123.73 2044 Pooled-Variance Two-Sample t-Test x: EAW in data: data.analysis.chloride .test.st.I , and y: EBSB in data.analysis.chloride .test.st.I t = -5.2566, df = 6, p-value = 0.999 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -1628.218 NA interval: sample estimates: mean of x mean of y 1123.73 2312.5 Pooled-Variance Two-Sample t-Test data: x: EAW in data.analysis.chloride .test.st.I , and y: ECW in data.analysis.chloride .test.st.I t = 2.4201, df = 6, pvalue = 0.0259 alternative hypothesis: difference in means is greater than O 95 percent confidence interval:

33.17418 NA sample estimates: mean of x mean of y 1123.73 955.3936 Pooled-Variance Two-Sample t-Test x: EAW in data: data.analysis.chloride .test.st.I , and y: ECSA in data.analysis.chloride .test.st.I t = -9.5407, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -2295.429 NA sample estimates: mean of x mean of y 1123.73 3030.75 Pooled-Variance Two-Sample t-Test data: x: EAW in data.analysis.chloride .test.st.I , and y: ECSB in data.analysis.chloride .test.st.I t = -11.3437, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -5287.861 NA sample estimates: mean of x mean of y 1123.73 5638.25 Pooled-Variance Two-Sample t-Test data: x: EAW in data.analysis.chloride .test.st.I , and y: EDW in data.analysis.chloride .test.st.I t = 5.7141, df = 6, pvalue = 0.0006

hypothesis: difference in means is greater than O 95 percent confidence interval: 288.7082 NA sample estimates: mean of x mean of y 1123.73 686.25 Pooled-Variance Two-Sample t-Test data: x: EAW in data.analysis.chloride .test.st.I , and y: EDSA in data.analysis.chloride .test.st.I t = -11.3463, df = 6,p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -2860.537 NA sample estimates: mean of x mean of y 1123.73 3566 Pooled-Variance Two-Sample t-Test data: x: EAW in data.analysis.chloride .test.st.I , and y: EDSB in data.analysis.chloride .test.st.I t = -15.7631, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -3506.884 NA sample estimates: mean of x mean of y 1123.73 4245.75 Pooled-Variance Two-Sample t-Test data: x: EASA in data.analysis.chloride

alternative

EASB in Pooled-Variance data.analysis.chloride Two-Sample t-Test .test.st.I , and y: .test.st.I t = 0.7948, df = 6, pvalue = 0.2285 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -274.8535 NA sample estimates: mean of x mean of y 2111.812 1921.572 Pooled-Variance Two-Sample t-Test data: x: EASA in data.analysis.chloride .test.st.I , and y: EBW in Pooled-Variance data.analysis.chloride Two-Sample t-Test .test.st.I t = 0.0420, tvalue = 0.0006 alternative difference in means is data.analysis.chloride greater than 0 95 percent confidence t = 6.2261, df = 6, pinterval: 708.3458 NA sample estimates: mean of x mean of y 2111.812 1050.5 Pooled-Variance Two-Sample t-Test data: x: EASA in data.analysis.chloride .test.st.I , and y: EBSA in Pooled-Variance data.analysis.chloride Two-Sample t-Test .test.st.I t = 0.3531, df = 6, pvalue = 0.368 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -305.3384 NA interval: sample estimates:hypothesis:mean of x mean of ydifference in means is2111.8122044greater than 0

data: x: EASA in mean of x mean of y data.analysis.chloride .test.st.I , and y: EBSB in data.analysis.chloride .test.st.I t = -0.706, df = 6, pvalue = 0.7467 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -753.0564 NA sample estimates: mean of x mean of y 2111.812 2312.5 Pooled-Variance t = 5.8428, df = 6, p- data: x: EASA in mean of x mean of y data.analysis.chloride .test.st.I , and y: ECW in .test.st.I value = 0.0004 value - ... alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 795.4957 NA sample estimates: mean of x mean of y 2111.812 955.3936 Pooled-Variance data: x: EASA in data.analysis.chloride .test.st.I , and y: ECSA in data.analysis.chloride .test.st.I t = -3.4829, df = 6, p-value = 0.9935 alternative alternative hypothesis:

95 percent confidence interval: -1431.635 NA sample estimates: 2111.812 3030.75 Pooled-Variance Two-Sample t-Test data: x: EASA in data.analysis.chloride .test.st.I , and y: ECSB in data.analysis.chloride .test.st.I t = -8.1321, df = 6, p-value = 0.9999 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -4369.085 NA sample estimates: 2111.812 5638.25 Pooled-Variance Two-Sample t-Test data: x: EASA in LADA in Laca.analysis.chloride .test.st.I , and y: EDW data data.analysis.chloride .test.st.I t = 7.5638, df = 6, pvalue = 0.0001 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 1059.325 NA sample estimates: mean of x mean of y 2111.812 686.25 Pooled-Variance Two-Sample t-Test data: x: EASA in data.analysis.chloride .test.st.I , and y: EDSA in data.analysis.chloride .test.st.I

t = -5.2752, df = 6, p-value = 0.9991 alternative hypothesis: greater than O interval: -1989.859 NA NA sample estimates: mean of x mean of y 2111.812 3566 Pooled-Variance Two-Sample t-Test data: x: EASA in data.analysis.chloride .test.st.I , and y: EDSB in Pooled-Variance data.analysis.chloride Two-Sample t-Test .test.st.I p-value = 0.9999 alternative greater than 0 95 percent confidence interval: -2643.955 NA sample estimates: mean of x mean of y 2111.812 4245.75 Pooled-Variance Two-Sample t-Test data: x: EASB in data.analysis.chloride .test.st.I , and y: y. in EBW data.analysis.chloride .test.st.I t = 5.4677, df = 6, pvalue = 0.0008 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 561.4995 NA interval: sample estimates: mean of x mean of y 1921.572 1050.5 Pooled-Variance Two-Sample t-Test

data.analysis.chloride .test.st.I , and y: EBSA in difference in means is data.analysis.chloride Two-Sample t-Test greater than 0 test st T .test.st.I 95 percent confidence t = -0.7157, df = 6, p-value = 0.7495 alternative 

 arternacius

 hypothesis:
 ECSA

 difference in means is
 data.analysis.chloride

 .test.st.I

 95 percent confidence interval: -454.8301 NA sample estimates: mean of x mean of y 1921.572 2044 Pooled-Variance t = -8.1304, df = 6, data: x: EASB in data.analysis.chloride .test.st.I , and y: hypothesis:EBSBinPooled-Variationdifference in means isdata.analysis.chlorideTwo-Sample t-Test .test.st.I t = -1.445, df = 6, p- data: x: EASB in value = 0.9007 alternative hypothesis: difference in means is data.analysis.chloride greater than O 95 percent confidence interval: -916.6281 NA sample estimates: mean of x mean of y 1921.572 2312.5 Pooled-Variance Two-Sample t-Test data: x: EASB in data.analysis.chloride .test.st.I , and y: ECW in data.analysis.chloride .test.st.I t = 5.8926, df = 6, pvalue = 0.0005 alternative hypothesis: difference in means is greater than O 95 percent confidence t = 7.3946, df = 6, pinterval: 647.564 NA sample estimates: mean of x mean of y

data: x: EASB in 1921.572 955.3936 Pooled-Variance data: x: EASB in data.analysis.chloride .test.st.I , and y: t = -4.4546, df = 6, p-value = 0.9978 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -1593.025 NA sample estimates: mean of x mean of y 1921.572 3030.75 Pooled-Variance data.analysis.chloride .test.st.I , and y: ECSB in .test.st.I t = -8.7498, df = 6, p-value = 0.9999 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -4542.089 NA sample estimates: mean of x mean of y 1921.572 5638.25 Pooled-Variance Two-Sample t-Test data: x: EASB in data.analysis.chloride .test.st.I , and y: EDW in data.analysis.chloride .test.st.I value = 0.0002

alternative

hypothesis:

difference in means is greater than 0 95 percent confidence interval: 910.7001 NA sample estimates: mean of x mean of y 1921.572 686.25 Pooled-Variance Two-Sample t-Test data: x: EASB in data.analysis.chloride .test.st.I , and y: EDSA in data.analysis.chloride .test.st.I t = -6.2886, df = 6, p-value = 0.9996 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: interval: -2152.556 NA sample estimates: mean of x mean of y 1921.572 3566 Pooled-Variance Two-Sample t-Test data: x: EASB in data.analysis.chloride .test.st.I , and y: EDSB in data.analysis.chloride .test.st.I t = -9.3893, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: NA -2805.184 sample estimates: mean of x mean of y 1921.572 4245.75 Pooled-Variance Two-Sample t-Test x: EBW in data: data.analysis.chloride .test.st.I , and y:

EBSA

in

data.analysis.chloride .test.st.I t = -14.0931, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence -1130.485 interval: NA sample estimates: mean of x mean of y 1050.5 2044 Pooled-Variance Two-Sample t-Test data: x: EBW in data.analysis.chloride .test.st.I , and y: EBSB in data.analysis.chloride .test.st.I t = -5.7071, df = 6, p-value = 0.9994 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -1691.691 NA sample estimates: mean of x mean of y 1050.5 2312.5 Pooled-Variance Two-Sample t-Test data: x: EBW in data.analysis.chloride .test.st.I , and y: ECW in data.analysis.chloride .test.st.I t = 1.8679, df = 6, pvalue = 0.0555 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -3.832478 NA sample estimates: mean of x mean of y 1050.5 955.3936

Pooled-Variance Two-Sample t-Test data: x: EBW in data.analysis.chloride .test.st.I , and y: ECSA in data.analysis.chloride .test.st.I t = -10.1978, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -2357.586 NA sample estimates: mean of x mean of y 1050.5 3030.75 Pooled-Variance Two-Sample t-Test data: x: EBW in data.analysis.chloride .test.st.I , and y: ECSB in data.analysis.chloride .test.st.I t = -11.6103, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -5355.589 NA sample estimates: mean of x mean of y 1050.5 5638.25 Pooled-Variance Two-Sample t-Test data: x: EBW in data.analysis.chloride .test.st.I , and y: EDW in data.analysis.chloride .test.st.I t = 6.0575, df = 6, pvalue = 0.0005 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval:

247.4034 NA sample estimates: mean of x mean of y 1050.5 686.25 Pooled-Variance Two-Sample t-Test x: EBW in data: data.analysis.chloride .test.st.I , and y: EDSA in data.analysis.chloride .test.st.I t = -11.9804, df = 6, p-value = 1alternative hypothesis: difference in means is greater than O 95 percent confidence NA interval: -2923.504 sample estimates: mean of x mean of y 1050.5 3566 Pooled-Variance Two-Sample t-Test x: EBW in data: data.analysis.chloride .test.st.I , and y: EDSB in data.analysis.chloride .test.st.I t = -16.6154, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: NA -3568.935 sample estimates: mean of x mean of y 1050.5 4245.75 Pooled-Variance Two-Sample t-Test data: x: EBSA in data.analysis.chloride .test.st.I , and y: EBSB in data.analysis.chloride .test.st.I t = -1.1687, df = 6, p-value = 0.8566

alternative difference in means is greater than O 95 percent confidence interval: -714.9197 NA sample estimates: mean of x mean of y 2044 2312.5 Pooled-Variance Two-Sample t-Test data: x: EBSA in data.analysis.chloride .test.st.I , and y: ECW in data.analysis.chloride .test.st.I t = 13.5297, df = 6, p-value = 0 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 932.2577 NA sample estimates: mean of x mean of y 2044 955.3936 Pooled-Variance Two-Sample t-Test data: x: EBSA in data.analysis.chloride .test.st.I , and y: ECSA in data.analysis.chloride .test.st.I t = -4.8386, df = 6, p-value = 0.9986 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: NA -1383.03 sample estimates: mean of x mean of y 2044 3030.75 Pooled-Variance Two-Sample t-Test data: x: EBSA in

.test.st.I , and y: ECSB in data.analysis.chloride .test.st.I t = -8.985, df = 6, pvalue = 0.9999 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -4371.574 NA sample estimates: mean of x mean of y 2044 5638.25 Pooled-Variance Two-Sample t-Test data: x: EBSA in data.analysis.chloride .test.st.I , and y: EDW in data.analysis.chloride .test.st.I t = 15.6808, df = 6, p-value = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1189.497 NA sample estimates: mean of x mean of y 2044 686.25 Pooled-Variance Two-Sample t-Test data: x: EBSA in data.analysis.chloride .test.st.I , and y: EDSA in data.analysis.chloride .test.st.I t = -6.9493, df = 6, p-value = 0.9998alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -1947.586 NA sample estimates: mean of x mean of y 2044 3566

data.analysis.chloride

Pooled-Variance Two-Sample t-Test data: x: EBSA in data.analysis.chloride .test.st.I , and y: EDSB in data.analysis.chloride .test.st.I t = -10.8919, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -2594.556 NA sample estimates: mean of x mean of y 2044 4245.75 Pooled-Variance Two-Sample t-Test data: x: EBSB in data.analysis.chloride .test.st.I , and y: ECW in data.analysis.chloride .test.st.I t = 6.0449, df = 6, pvalue = 0.0005 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 920.8559 NA sample estimates: mean of x mean of y 2312.5 955.3936 Pooled-Variance Two-Sample t-Test x: EBSB in data: data.analysis.chloride .test.st.I , and y: ECSA in data.analysis.chloride .test.st.I t = -2.4561, df = 6, p-value = 0.9753 alternative hypothesis: difference in means is greater than O

95 percent confidence t = -4.135, df = 6, pinterval: -1286.5 NA sample estimates: mean of x mean of y 2312.5 3030.75 Pooled-Variance Two-Sample t-Test data: x: EBSB in data.analysis.chloride .test.st.I , and y: ECSB in data.analysis.chloride .test.st.I t = -7.3642, df = 6, p-value = 0.9998 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -4203.305 NA sample estimates: mean of x mean of y 2312.5 5638.25 Pooled-Variance Two-Sample t-Test data: x: EBSB in data.analysis.chloride .test.st.I , and y: EDW in data.analysis.chloride .test.st.I t = 7.1713, df = 6, pvalue = 0.0002 vaiue alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 1185.593 NA sample estimates: mean of x mean of y 2312.5 686.25 Pooled-Variance Two-Sample t-Test data: x: EBSB in data.analysis.chloride .test.st.I , and y: EDSA in data.analysis.chloride .test.st.I

value = 0.9969 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -1842.561 NA sample estimates: mean of x mean of y 2312.5 3566 Pooled-Variance Two-Sample t-Test data: x: EBSB in data.analysis.chloride .test.st.I , and y: EDSB in data.analysis.chloride .test.st.I t = -6.6392, df = 6, p-value = 0.9997alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -2499.083 NA sample estimates: mean of x mean of y 2312.5 4245.75 Pooled-Variance Two-Sample t-Test data: x: ECW in data.analysis.chloride .test.st.I , and y: ECSA in data.analysis.chloride .test.st.I t = -10.4805, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -2460.145 NA sample estimates: mean of x mean of y 955.3936 3030.75 Pooled-Variance

Two-Sample t-Test

data: x: ECW in 955.3936 3566 data.analysis.chloride .test.st.I , and y: ECSB in data.analysis.chloride .test.st.I t = -11.7943, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -5454.386 NA sample estimates: mean of x mean of y 955.3936 5638.25 Pooled-Variance Two-Sample t-Test data: x: ECW in data.analysis.chloride .test.st.I , and y: EDW in data.analysis.chloride .test.st.I t = 3.7614, df = 6, pvalue = 0.0047 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 130.0998 NA sample estimates: mean of x mean of y 955.3936 686.25 Pooled-Variance Two-Sample t-Test data: x: ECW in data.analysis.chloride .test.st.I , and y: in EDSA data.analysis.chloride .test.st.I t = -12.2266, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -3025.513 NA sample estimates: mean of x mean of y

Pooled-Variance Two-Sample t-Test data: x: ECW in data.analysis.chloride .test.st.I , and y: EDSB in data.analysis.chloride .test.st.I t = -16.7723, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -3671.566 NA sample estimates: mean of x mean of y 955.3936 4245.75 Pooled-Variance Two-Sample t-Test data: x: ECSA in data.analysis.chloride .test.st.I , and y: ECSB in data.analysis.chloride .test.st.I t = -5.939, df = 6, pvalue = 0.9995 alternative difference in means is greater than O 95 percent confidence interval: -3460.642 NA sample estimates: mean of x mean of y 3030.75 5638.25 Pooled-Variance Two-Sample t-Test data: x: ECSA in data.analysis.chloride .test.st.I , and y: EDW in data.analysis.chloride .test.st.I t = 11.6882, df = 6, p-value = 0 alternative hypothesis:

difference in means is greater than 0 95 percent confidence interval: 1954.723 NA sample estimates: mean of x mean of y 3030.75 686.25 Pooled-Variance Two-Sample t-Test data: x: ECSA in data.analysis.chloride .test.st.I , and y: EDSA in data.analysis.chloride .test.st.I t = -1.8841, df = 6, p-value = 0.9457 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -1087.283 NA sample estimates: mean of x mean of y 3030.75 3566 Pooled-Variance Two-Sample t-Test data: x: ECSA in data.analysis.chloride .test.st.I , and y: EDSB in data.analysis.chloride .test.st.I t = -4.4785, df = 6, p-value = 0.9979 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: NA -1742.176 sample estimates: mean of x mean of y 3030.75 4245.75 Pooled-Variance Two-Sample t-Test data: x: ECSB in data.analysis.chloride .test.st.I , and y: EDW in

data.analysis.chloride .test.st.I t = 12.4319, df = 6, p-value = 0 alternative hypothesis: difference in means is greater than O 95 percent confidence NA interval: 4177.971 sample estimates: mean of x mean of y 5638.25 686.25 Pooled-Variance Two-Sample t-Test data: x: ECSB in data.analysis.chloride .test.st.I , and y: EDSA in data.analysis.chloride .test.st.I t = 4.6437, df = 6, pvalue = 0.0018 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1205.108 NA sample estimates: mean of x mean of y 5638.25 3566 Pooled-Variance Two-Sample t-Test data: x: ECSB in data.analysis.chloride .test.st.I , and y: EDSB in data.analysis.chloride .test.st.I t = 3.1777, df = 6, pvalue = 0.0096 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 540.9665 NA sample estimates: mean of x mean of y 5638.25 4245.75

Pooled-Variance Two-Sample t-Test data: x: EDW in data.analysis.chloride .test.st.I , and y: EDSA in data.analysis.chloride .test.st.I t = -13.3382, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: interval: -3299.288 NA sample estimates: mean of x mean of y 686.25 3566 Pooled-Variance Two-Sample t-Test x: EDW in data: data.analysis.chloride .test.st.I , and y: EDSB in data.analysis.chloride .test.st.I t = -17.9077, df = 6, p-value = 1 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -3945.745 NA sample estimates: mean of x mean of y 686.25 4245.75 Pooled-Variance Two-Sample t-Test data: x: EDSA in data.analysis.chloride .test.st.I , and y: EDSB in data.analysis.chloride .test.st.I t = -2.4036, df = 6, p-value = 0.9735 alternative hypothesis: difference in means is greater than O 95 percent confidence interval:

-1229.295 NA sample estimates: mean of x mean of y 3566 4245.75

## Chloride ion Test Phase II

Pooled-Variance Two-Sample t-Test

data: x: Con in data.analysis.chloride .test.st.II. , and y: А in data.analysis.chloride .test.st.II. t = 2.6641, df = 6, pvalue = 0.0187 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 91.80603 NA sample estimates: mean of x mean of y 658 318.75

Pooled-Variance Two-Sample t-Test

data: x: Con in data.analysis.chloride .test.st.II. , and y: В in data.analysis.chloride .test.st.II. t = 2.1028, df = 4, pvalue = 0.0517alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -5.540443 NA sample estimates: mean of x mean of y 658 257

Pooled-Variance Two-Sample t-Test

```
x: Con in
data:
data.analysis.chloride
.test.st.II. , and y:
С
             in
data.analysis.chloride
.test.st.II.
t = 0.7626, df = 6, p-
value = 0.2373
alternative
hypothesis:
difference in means is
greater than O
95 percent confidence
interval:
-165.2725 NA
sample estimates:
mean of x mean of y
    658 551.25
     Pooled-Variance
Two-Sample t-Test
data: x: Con in
data.analysis.chloride
.test.st.II. , and y:
D
             in
data.analysis.chloride
.test.st.II.
t = 3.0611, df = 6, p-
value = 0.0111
alternative
hypothesis:
difference in means is
greater than O
95 percent confidence
interval:
142.6099 NA
sample estimates:
mean of x mean of y
     658 267.5
    Pooled-Variance
Two-Sample t-Test
data: x: Con in
data.analysis.chloride
.test.st.II. , and y:
E
             in
data.analysis.chloride
.test.st.II.
t = 2.6838, df = 6, p-
value = 0.0182
alternative
hypothesis:
difference in means is
greater than O
95 percent confidence
interval:
95.55166 NA
sample estimates:
```

mean of x mean of y 658 311.75 Pooled-Variance Two-Sample t-Test data: x: Con in data.analysis.chloride .test.st.II. , and y: S in data.analysis.chloride .test.st.II. t = 3.3771, df = 6, pvalue = 0.0075 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 183.4273 NA sample estimates: mean of x mean of y 658 226 Pooled-Variance Two-Sample t-Test data: x: Con in data.analysis.chloride .test.st.II. , and y: Т in data.analysis.chloride .test.st.II. t = 2.8965, df = 6, pvalue = 0.0137 value alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 121.615 NA sample estimates: mean of x mean of y 658 288.5 Pooled-Variance Two-Sample t-Test data: x: A in data.analysis.chloride .test.st.II. , and y: B in data.analysis.chloride .test.st.II. t = 5.5145, df = 4, pvalue = 0.0026 alternative hypothesis:

difference in means is greater than 0 95 percent confidence interval: 37.87802 NA sample estimates: mean of x mean of y 318.75 257 Pooled-Variance Two-Sample t-Test data: x: A in data.analysis.chloride .test.st.II. , and y: С in data.analysis.chloride .test.st.II. t = -3.9357, df = 6, p-value = 0.9962 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -347.2923 NA sample estimates: mean of x mean of y 318.75 551.25 Pooled-Variance Two-Sample t-Test data: x: A in data.analysis.chloride .test.st.II. , and y: D in data.analysis.chloride .test.st.II. t = 3.9661, df = 6, pvalue = 0.0037alternative hypothesis: difference in means is greater than O 95 percent confidence interval: sample estimates: mean of x mean of y 318.75 267.5 Pooled-Variance Two-Sample t-Test data: x: A in data.analysis.chloride .test.st.II. , and y: E in

data.analysis.chloride .test.st.II. t = 0.3018, df = 6, pvalue = 0.3865 alternative hypothesis: difference in means is greater than O 95 percent confidence 95 per interval: sample estimates: mean of x mean of y 318.75 311.75 Pooled-Variance Two-Sample t-Test data: x: A in data.analysis.chloride .test.st.II. , and y: S in data.analysis.chloride .test.st.II. t = 5.7886, df = 6, pvalue = 0.0006 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 61.61487 NA sample estimates: mean of x mean of y 318.75 226 Pooled-Variance Two-Sample t-Test data: x: A in data.analysis.chloride .test.st.II. , and y: Т in data.analysis.chloride .test.st.II. t = 2.3456, df = 6, pvalue = 0.0287 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 5.190319 NA sample estimates: mean of x mean of y 318.75 288.5

Pooled-Variance Two-Sample t-Test data: x: C in data.analysis.chloride .test.st.II. , and y: D in data.analysis.chloride .test.st.II. t = 4.7635, df = 6, pvalue = 0.0016 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 167.9992 NA sample estimates: mean of x mean of y 551.25 267.5 Pooled-Variance Two-Sample t-Test data: x: C in data.analysis.chloride .test.st.II. , and y: Ε in data.analysis.chloride .test.st.II. t = 3.8257, df = 6, pvalue = 0.0044 vaiue alternative hypothesis: difference in means is greater than O 95 percent confidence interval: interval: 117.8512 NA sample estimates: mean of x mean of y 551.25 311.75 Pooled-Variance Two-Sample t-Test data: x: C in data.analysis.chloride .test.st.II. , and y: S in data.analysis.chloride .test.st.II. t = 5.3924, df = 6, pvalue = 0.0008 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval:

208.0445 NA sample estimates: mean of x mean of y 551.25 226 Pooled-Variance Two-Sample t-Test data: x: C in data.analysis.chloride .test.st.II. , and y: т in data.analysis.chloride .test.st.II. t = 4.4114, df = 6, pvalue = 0.0023alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 147.0101 NA sample estimates: mean of x mean of y 551.25 288.5 Pooled-Variance Two-Sample t-Test data: x: D in data.analysis.chloride .test.st.II. , and y: E in data.analysis.chloride .test.st.II. t = -1.8121, df = 6, p-value = 0.94alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -91.70151 NA sample estimates: mean of x mean of y 267.5 311.75 Pooled-Variance Two-Sample t-Test data: x: D in data.analysis.chloride .test.st.II. , and y: S in data.analysis.chloride .test.st.II. t = 2.3373, df = 6, pvalue = 0.029

alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 6.998288 NA sample estimates: mean of x mean of y 267.5 226 Pooled-Variance Two-Sample t-Test x: D in data: data.analysis.chloride .test.st.II. , and y: Т in data.analysis.chloride .test.st.II. t = -1.4005, df = 6, p-value = 0.8946 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -50.13691 NA sample estimates: mean of x mean of y 267.5 288.5 Pooled-Variance Two-Sample t-Test x: E in data: data.analysis.chloride .test.st.II. , and y: S in data.analysis.chloride .test.st.II. t = 3.2738, df = 6, pvalue = 0.0085alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 34.85268 NA sample estimates: mean of x mean of y 311.75 226 Pooled-Variance Two-Sample t-Test

data: x: E in data.analysis.chloride .test.st.II. , and y: Т in data.analysis.chloride .test.st.II. t = 0.9526, df = 6, pvalue = 0.1888 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -24.17498 NA sample estimates: mean of x mean of y 311.75 288.5

Pooled-Variance Two-Sample t-Test

data: x: S in data.analysis.chloride .test.st.II. , and y: T in data.analysis.chloride .test.st.II.

Compressive Strength Test – Phase I

Pooled-Variance Two-Sample t-Test

data: x: CW in Compressive.Strength.2 8.day.phase.I , and y: CSA in Compressive.Strength.2 8.day.phase.I t = 13.9513, df = 4, p-value = 0.0001 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 2237.189 NA sample estimates: mean of x mean of y 6517.303 3876.598

Pooled-Variance Two-Sample t-Test

x: CW in data: Compressive.Strength.2 8.day.phase.I , and y: CSB in Compressive.Strength.2 8.day.phase.I t = 23.0359, df = 4, p-value = 0alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 3213.049 NA sample estimates: mean of x mean of y 6517.303 2976.579

Pooled-Variance Two-Sample t-Test

x: CW in data: Compressive.Strength.2 8.day.phase.I , and y: EAW in Compressive.Strength.2 8.day.phase.I t = -2.1289, df = 4, p-value = 0.9498 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -1353.144 NA sample estimates: mean of x mean of y 6517.303 7193.406

Pooled-Variance Two-Sample t-Test x: CW in data: Compressive.Strength.2 8.day.phase.I , and y: EASA in Compressive.Strength.2 8.day.phase.I t = 2.9836, df = 4, pvalue = 0.0203alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 181.9377 NA sample estimates: mean of x mean of y 6517.303 5880.002 Pooled-Variance Two-Sample t-Test x: CW in data: Compressive.Strength.2 8.day.phase.I , and y: EASB in Compressive.Strength.2 8.day.phase.I t = 11.5018, df = 4, p-value = 0.0002 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: NA 1585.727 sample estimates: mean of x mean of y 6517.303 4570.79 Pooled-Variance Two-Sample t-Test data: x: CW in Compressive.Strength.2 8.day.phase.I , and y: EBW in Compressive.Strength.2 8.day.phase.I t = -17.1404, df = 4, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval:

-3299.995 NA sample estimates: mean of x mean of y 6517.303 9452.261 Pooled-Variance Two-Sample t-Test x: CW in data: Compressive.Strength.2 8.day.phase.I , and y: EBSA in Compressive.Strength.2 8.day.phase.I t = -9.3682, df = 4, p-value = 0.9996 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -1595.623 NA sample estimates: mean of x mean of y 6517.303 7817.133 Pooled-Variance Two-Sample t-Test data: x: CW in Compressive.Strength.2 8.day.phase.I , and y: EBSB in Compressive.Strength.2 8.day.phase.I t = -0.1882, df = 4, p-value = 0.5701 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -436.3451 NA sample estimates: mean of x mean of y 6517.303 6552.702 Pooled-Variance Two-Sample t-Test data: x: CW in Compressive.Strength.2 8.day.phase.I , and y: ECW in Compressive.Strength.2 8.day.phase.I t = 7.4247, df = 4, pvalue = 0.0009

hypothesis: difference in means is greater than 0 95 percent confidence interval: 1477.425 NA sample estimates: mean of x mean of y 6517.303 4444.803 Pooled-Variance Two-Sample t-Test data: x: CW in Compressive.Strength.2 8.day.phase.I , and y: ECSA in Compressive.Strength.2 8.day.phase.I t = 15.3614, df = 4, p-value = 0.0001 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 2484.83 NA sample estimates: mean of x mean of y 6517.303 3632.061 Pooled-Variance Two-Sample t-Test data: x: CW in Compressive.Strength.2 8.day.phase.I , and y: ECSB in Compressive.Strength.2 8.day.phase.I t = 12.3712, df = 4, p-value = 0.0001 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 3576.222 NA sample estimates: mean of x mean of y 6517.303 2196.503 Pooled-Variance Two-Sample t-Test data: x: CW in Compressive.Strength.2

alternative

8.day.phase.I , and y: EDW in Compressive.Strength.2 8.day.phase.I t = -0.0437, df = 4, p-value = 0.5164 alternative hypothesis: difference in means is greater than O 95 percent confidence -380.2708 interval: sample estimates: mean of x mean of y 6517.303 6524.941 Pooled-Variance Two-Sample t-Test data: x: CW in Compressive.Strength.2 8.day.phase.I , and y: EDSA in Compressive.Strength.2 8.day.phase.I t = 17.169, df = 4, pvalue = 0alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: NA 1924.884 sample estimates: mean of x mean of y 6517.303 4319.525 Pooled-Variance Two-Sample t-Test data: x: CW in Compressive.Strength.2 8.day.phase.I , and y: EDSB in Compressive.Strength.2 8.day.phase.I t = 21.0516, df = 4, p-value = 0 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 3144.771 NA sample estimates: mean of x mean of y 6517.303 3018.184

Pooled-Variance Two-Sample t-Test data: x: CSA in Compressive.Strength.2 8.day.phase.I , and y: CSB in Compressive.Strength.2 8.day.phase.I t = 5.3076, df = 4, pvalue = 0.003 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 538.5156 NA sample estimates: mean of x mean of y 3876.598 2976.579 Pooled-Variance Two-Sample t-Test data: x: CSA in Compressive.Strength.2 8.day.phase.I , and y: EAW in Compressive.Strength.2 8.day.phase.I t = -10.188, df = 4, p-value = 0.9997 alternative hypothesis: difference in means is greater than O 95 percent confidence -4010.853 interval: NA sample estimates: mean of x mean of y 3876.598 7193.406 Pooled-Variance Two-Sample t-Test data: x: CSA in Compressive.Strength.2 8.day.phase.I , and y: EASA in Compressive.Strength.2 8.day.phase.I t = -8.8926, df = 4, p-value = 0.9996 alternative hypothesis: difference in means is greater than O

95 percent confidence interval: -2483.685 NA sample estimates: mean of x mean of y 3876.598 5880.002 Pooled-Variance Two-Sample t-Test data: x: CSA in Compressive.Strength.2 8.day.phase.I , and y: EASB in Compressive.Strength.2 8.day.phase.I t = -3.7775, df = 4, p-value = 0.9903alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -1085.958 NA sample estimates: mean of x mean of y 3876.598 4570.79 Pooled-Variance Two-Sample t-Test data: x: CSA in Compressive.Strength.2 8.day.phase.I , and y: EBW in Compressive.Strength.2 8.day.phase.I t = -30.0403, df = 4, p-value = 1 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -5971.348 NA sample estimates: mean of x mean of y 3876.598 9452.261 Pooled-Variance Two-Sample t-Test data: x: CSA in Compressive.Strength.2 8.day.phase.I , and y: EBSA in Compressive.Strength.2 8.day.phase.I

t = -25.2364, df = 4, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -4273.413 NA sample estimates: mean of x mean of y 3876.598 7817.133 Pooled-Variance Two-Sample t-Test data: x: CSA in Compressive.Strength.2 8.day.phase.I , and y: EBSB in Compressive.Strength.2 8.day.phase.I t = -13.2974, df = 4, p-value = 0.9999 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -3105.14 NA sample estimates: mean of x mean of y 3876.598 6552.702 Pooled-Variance Two-Sample t-Test x: CSA in data: Compressive.Strength.2 8.day.phase.I , and y: ECW in Compressive.Strength.2 8.day.phase.I t = -1.9717, df = 4, p-value = 0.94alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -1182.557 NA sample estimates: mean of x mean of y 3876.598 4444.803 Pooled-Variance Two-Sample t-Test

data: x: CSA in Compressive.Strength.2 8.day.phase.I , and y: in ECSA Compressive.Strength.2 8.day.phase.I t = 1.2165, df = 4, pvalue = 0.1453 alternative hypothesis: difference in means is greater than 0 95 percent confidence -183.9999 ···· interval: NA sample estimates: mean of x mean of y 3876.598 3632.061 Pooled-Variance Two-Sample t-Test data: x: CSA in Compressive.Strength.2 8.day.phase.I , and y: ECSB in Compressive.Strength.2 8.day.phase.I t = 4.7123, df = 4, pvalue = 0.0046 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 920.0228 NA sample estimates: mean of x mean of y 3876.598 2196.503 Pooled-Variance Two-Sample t-Test data: x: CSA in Compressive.Strength.2 8.day.phase.I , and y: EDW in Compressive.Strength.2 8.dav.phase.I t = -14.0199, df = 4, p-value = 0.9999alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -3051.045 NA sample estimates: mean of x mean of y

Pooled-Variance Two-Sample t-Test data: x: CSA in Compressive.Strength.2 8.day.phase.I , and y: EDSA in Compressive.Strength.2 8.day.phase.I t = -3.0196, df = 4, p-value = 0.9804alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -755.6328 NA sample estimates: mean of x mean of y 3876.598 4319.525 Pooled-Variance Two-Sample t-Test data: x: CSA in Compressive.Strength.2 8.day.phase.I , and y: EDSB in Compressive.Strength.2 8.day.phase.I t = 4.7429, df = 4, pvalue = 0.0045alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 472.5685 NΑ sample estimates: mean of x mean of y 3876.598 3018.184 Pooled-Variance Two-Sample t-Test x: CSB in data: Compressive.Strength.2 8.day.phase.I , and y: EAW in Compressive.Strength.2 8.day.phase.I t = -13.7694, df = 4, p-value = 0.9999alternative

hypothesis:

3876.598 6524.941

difference in means is greater than O 95 percent confidence interval: NA -4869.7 sample estimates: mean of x mean of y 2976.579 7193.406 Pooled-Variance Two-Sample t-Test data: x: CSB in Compressive.Strength.2 8.day.phase.I , and y: EASA in Compressive.Strength.2 8.day.phase.I t = -14.787, df = 4, p-value = 0.9999 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -3322.009 NA sample estimates: mean of x mean of y 2976.579 5880.002 Pooled-Variance Two-Sample t-Test x: CSB in data: Compressive.Strength.2 8.day.phase.I , and y: EASB in Compressive.Strength.2 8.day.phase.I t = -10.8551, df = 4, p-value = 0.9998 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: NA -1907.3 sample estimates: mean of x mean of y 2976.579 4570.79 Pooled-Variance Two-Sample t-Test data: x: CSB in Compressive.Strength.2 8.day.phase.I , and y:

EBW

in

Compressive.Strength.2 8.day.phase.I t = -43.4152, df = 4, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -6793.662 NA sample estimates: mean of x mean of y 2976.579 9452.261 Pooled-Variance Two-Sample t-Test data: x: CSB in Compressive.Strength.2 8.day.phase.I , and y: EBSA in Compressive.Strength.2 8.day.phase.I t = -43.8614, df = 4, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -5075.825 NA sample estimates: mean of x mean of y 2976.579 7817.133 Pooled-Variance Two-Sample t-Test data: x: CSB in Compressive.Strength.2 8.day.phase.I , and y: EBSB in Compressive.Strength.2 8.day.phase.I t = -21.2579, df = 4, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -3934.754 NA sample estimates: mean of x mean of y 2976.579 6552.702

Pooled-Variance Two-Sample t-Test data: x: CSB in Compressive.Strength.2 8.day.phase.I , and y: ECW in Compressive.Strength.2 8.day.phase.I t = -5.5162, df = 4, p-value = 0.9974alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: NA -2035.65 sample estimates: mean of x mean of y 2976.579 4444.803 Pooled-Variance Two-Sample t-Test data: x: CSB in Compressive.Strength.2 8.day.phase.I , and y: ECSA in Compressive.Strength.2 8.day.phase.I t = -3.9029, df = 4, p-value = 0.9913 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -1013.516 NA sample estimates: mean of x mean of y 2976.579 3632.061 Pooled-Variance Two-Sample t-Test data: x: CSB in Compressive.Strength.2 8.day.phase.I , and y: ECSB in Compressive.Strength.2 8.day.phase.I t = 2.3012, df = 4, pvalue = 0.0414alternative hypothesis: difference in means is greater than 0 95 percent confidence interval:

57.40454 NA sample estimates: mean of x mean of y 2976.579 2196.503 Pooled-Variance Two-Sample t-Test x: CSB in data: Compressive.Strength.2 8.day.phase.I , and y: EDW in Compressive.Strength.2 8.day.phase.I t = -23.1565, df = 4, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: NA -3875.033 sample estimates: mean of x mean of y 2976.579 6524.941 Pooled-Variance Two-Sample t-Test x: CSB in data: Compressive.Strength.2 8.day.phase.I , and y: EDSA in Compressive.Strength.2 8.day.phase.I t = -13.9152, df = 4, p-value = 0.9999 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -1548.688 NA sample estimates: mean of x mean of y 2976.579 4319.525 Pooled-Variance Two-Sample t-Test data: x: CSB in Compressive.Strength.2 8.day.phase.I , and y: EDSB in Compressive.Strength.2 8.day.phase.I t = -0.2902, df = 4, p-value = 0.607

alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -347.2544 NA sample estimates: mean of x mean of y 2976.579 3018.184 Pooled-Variance Two-Sample t-Test data: x: EAW in Compressive.Strength.2 8.day.phase.I , and y: EASA in Compressive.Strength.2 8.day.phase.I t = 3.8598, df = 4, pvalue = 0.0091 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 587.9893 NA sample estimates: mean of x mean of y 7193.406 5880.002 Pooled-Variance Two-Sample t-Test x: EAW in data: Compressive.Strength.2 8.day.phase.I , and y: EASB in Compressive.Strength.2 8.day.phase.I t = 8.3435, df = 4, pvalue = 0.0006 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 1952.514 NA sample estimates: mean of x mean of y 7193.406 4570.79 Pooled-Variance Two-Sample t-Test data: x: EAW in

Compressive.Strength.2

8.day.phase.I , and y: EBW in Compressive.Strength.2 8.day.phase.I t = -7.1617, df = 4, p-value = 0.999 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -2931.256 NA sample estimates: mean of x mean of y 7193.406 9452.261 Pooled-Variance Two-Sample t-Test data: x: EAW in Compressive.Strength.2 8.day.phase.I , and y: EBSA in Compressive.Strength.2 8.day.phase.I t = -2.0859, df = 4, p-value = 0.9473alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -1261.194 NA sample estimates: mean of x mean of y 7193.406 7817.133 Pooled-Variance Two-Sample t-Test data: x: EAW in Compressive.Strength.2 8.day.phase.I , and y: EBSB in Compressive.Strength.2 8.day.phase.I t = 1.9722, df = 4, pvalue = 0.0599alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -51.84839 sample estimates: mean of x mean of y

7193.406 6552.702

Pooled-Variance Two-Sample t-Test x: EAW in data: Compressive.Strength.2 8.day.phase.I , and y: ECW in Compressive.Strength.2 8.day.phase.I t = 7.1427, df = 4, pvalue = 0.001 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1928.246 NA sample estimates: mean of x mean of y 7193.406 4444.803 Pooled-Variance Two-Sample t-Test data: x: EAW in Compressive.Strength.2 8.day.phase.I , and y: ECSA in Compressive.Strength.2 8.day.phase.I t = 10.9676, df = 4, p-value = 0.0002 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 2869.102 NA sample estimates: mean of x mean of y 7193.406 3632.061 Pooled-Variance Two-Sample t-Test data: x: EAW in Compressive.Strength.2 8.day.phase.I , and y: ECSB in Compressive.Strength.2 8.day.phase.I t = 11.3994, df = 4, p-value = 0.0002alternative hypothesis: difference in means is greater than O

95 percent confidence t = 13.3516, df = 4, interval: 4062.416 NA sample estimates: mean of x mean of y 7193.406 2196.503 Pooled-Variance Two-Sample t-Test x: EAW in data: Compressive.Strength.2 8.day.phase.I , and y: EDW in Compressive.Strength.2 8.day.phase.I t = 2.1064, df = 4, pvalue = 0.0515 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -8.089511 NA sample estimates: mean of x mean of y 7193.406 6524.941 Pooled-Variance Two-Sample t-Test data: x: EAW in Compressive.Strength.2 8.day.phase.I , and y: EDSA in Compressive.Strength.2 8.day.phase.I t = 9.7688, df = 4, pvalue = 0.0003 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 2246.711 NA sample estimates: mean of x mean of y 7193.406 4319.525 Pooled-Variance Two-Sample t-Test data: x: EAW in Compressive.Strength.2 8.day.phase.I , and y: EDSB in Compressive.Strength.2 8.day.phase.I

p-value = 0.0001 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 3508.563 NA sample estimates: mean of x mean of y 7193.406 3018.184 Pooled-Variance Two-Sample t-Test data: x: EASA in Compressive.Strength.2 8.day.phase.I , and y: EASB in Compressive.Strength.2 8.day.phase.I t = 6.2722, df = 4, pvalue = 0.0016alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 864.2278 NA sample estimates: mean of x mean of y 5880.002 4570.79 Pooled-Variance Two-Sample t-Test data: x: EASA in Compressive.Strength.2 8.day.phase.I , and y: EASB in Compressive.Strength.2 8.day.phase.I t = 6.2722, df = 4, pvalue = 0.0016alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 864.2278 NA sample estimates: mean of x mean of y 5880.002 4570.79 Pooled-Variance

Two-Sample t-Test

data: x: EASA in Compressive.Strength.2 8.day.phase.I , and y: EBW in Compressive.Strength.2 8.day.phase.I t = -16.9823, df = 4, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence -4020.698 ···· interval: NA sample estimates: mean of x mean of y 5880.002 9452.261 Pooled-Variance Two-Sample t-Test data: x: EASA in Compressive.Strength.2 8.day.phase.I , and y: EBSA in Compressive.Strength.2 8.day.phase.I t = -10.4779, df = 4, p-value = 0.9998 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: NA sample estimates: mean of x mean of y 5880.002 7817.133 Pooled-Variance Two-Sample t-Test data: x: EASA in Compressive.Strength.2 8.day.phase.I , and y: EBSB in Compressive.Strength.2 8.day.phase.I t = -2.9994, df = 4, p-value = 0.98alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -1150.824 NA sample estimates: mean of x mean of y

5880.002 6552.702 Pooled-Variance Two-Sample t-Test data: x: EASA in Compressive.Strength.2 8.day.phase.I , and y: ECW in Compressive.Strength.2 8.day.phase.I t = 4.7101, df = 4, pvalue = 0.0046alternative hypothesis: difference in means is greater than O 95 percent confidence interval: sample estimates: mean of x mean of y 5880.002 4444.803 Pooled-Variance Two-Sample t-Test data: x: EASA in Compressive.Strength.2 8.day.phase.I , and y: ECSA in Compressive.Strength.2 8.day.phase.I t = 10.0325, df = 4, p-value = 0.0003 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 1770.265 NA sample estimates: mean of x mean of y 5880.002 3632.061 Pooled-Variance Two-Sample t-Test x: EASA in data: Compressive.Strength.2 8.day.phase.I , and y: ECSB in Compressive.Strength.2 8.day.phase.I t = 9.9549, df = 4, pvalue = 0.0003 alternative hypothesis:

difference in means is greater than 0 95 percent confidence interval: 2894.677 NA sample estimates: mean of x mean of y 5880.002 2196.503 Pooled-Variance Two-Sample t-Test data: x: EASA in Compressive.Strength.2 8.day.phase.I , and y: EDW in Compressive.Strength.2 8.day.phase.I t = -3.0242, df = 4, p-value = 0.9805 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -1099.582 NA sample estimates: mean of x mean of y 5880.002 6524.941 Pooled-Variance Two-Sample t-Test data: x: EASA in Compressive.Strength.2 8.day.phase.I , and y: in EDSA Compressive.Strength.2 8.day.phase.I t = 8.8183, df = 4, pvalue = 0.0005alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1183.23 NA sample estimates: mean of x mean of y 5880.002 4319.525 Pooled-Variance Two-Sample t-Test data: x: EASA in Compressive.Strength.2 8.day.phase.I , and y: EDSB in

Compressive.Strength.2 8.day.phase.I t = 13.8727, df = 4, p-value = 0.0001 alternative hypothesis: difference in means is greater than O 95 percent confidence NA interval: 2422.037 sample estimates: mean of x mean of y 5880.002 3018.184 Pooled-Variance Two-Sample t-Test data: x: EASB in Compressive.Strength.2 8.day.phase.I , and y: EDSB in Compressive.Strength.2 8.day.phase.I t = 9.7092, df = 4, pvalue = 0.0003 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1211.699 NA sample estimates: mean of x mean of y 4570.79 3018.184 Pooled-Variance Two-Sample t-Test data: x: EASB in Compressive.Strength.2 8.day.phase.I , and y: EBW in Compressive.Strength.2 8.day.phase.I t = -29.5637, df = 4, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -5233.475 NA sample estimates: mean of x mean of y 4570.79 9452.261

Pooled-Variance Two-Sample t-Test data: x: EASB in Compressive.Strength.2 8.day.phase.I , and y: EBSA in Compressive.Strength.2 8.day.phase.I t = -24.7566, df = 4, p-value = 1 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -3525.893 NA sample estimates: mean of x mean of y 4570.79 7817.133 Pooled-Variance Two-Sample t-Test data: x: EASB in Compressive.Strength.2 8.day.phase.I , and y: EBSB in Compressive.Strength.2 8.day.phase.I t = -10.8582, df = 4, p-value = 0.9998 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: interval: -2371.03 NA sample estimates: mean of x mean of y 4570.79 6552.702 Pooled-Variance Two-Sample t-Test data: x: EASB in Compressive.Strength.2 8.day.phase.I , and y: ECW in Compressive.Strength.2 8.day.phase.I t = 0.4574, df = 4, pvalue = 0.3356 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval:

-461.1832 NA sample estimates: mean of x mean of y 4570.79 4444.803 Pooled-Variance Two-Sample t-Test data: x: EASB in Compressive.Strength.2 8.day.phase.I , and y: ECSA in Compressive.Strength.2 8.day.phase.I t = 5.1503, df = 4, pvalue = 0.0034alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 550.1617 NA sample estimates: mean of x mean of y 4570.79 3632.061 Pooled-Variance Two-Sample t-Test data: x: EASB in Compressive.Strength.2 8.day.phase.I , and y: ECSB in Compressive.Strength.2 8.day.phase.I t = 6.856, df = 4, pvalue = 0.0012alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1636.012 NA sample estimates: mean of x mean of y 4570.79 2196.503 Pooled-Variance Two-Sample t-Test data: x: EASB in Compressive.Strength.2 8.day.phase.I , and y: EDW in Compressive.Strength.2 8.day.phase.I t = -11.5761, df = 4,p-value = 0.9998

alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -2314.026 NA sample estimates: mean of x mean of y 4570.79 6524.941 Pooled-Variance Two-Sample t-Test data: x: EASB in Compressive.Strength.2 8.day.phase.I , and y: EDSA in Compressive.Strength.2 8.day.phase.I t = 2.099, df = 4, pvalue = 0.0519 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -3.932345 NA sample estimates: mean of x mean of y 4570.79 4319.525 Pooled-Variance Two-Sample t-Test data: x: EASB in Compressive.Strength.2 8.day.phase.I , and y: EDSB in Compressive.Strength.2 8.day.phase.I t = 9.7092, df = 4, pvalue = 0.0003 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: NA 1211.699 sample estimates: mean of x mean of y 4570.79 3018.184 Pooled-Variance Two-Sample t-Test x: EBW in data: Compressive.Strength.2

8.day.phase.I , and y: EBSA in Compressive.Strength.2 8.day.phase.I t = 12.2303, df = 4, p-value = 0.0001 alternative hypothesis: difference in means is greater than O 95 percent confidence 1350.112 ···· interval: sample estimates: mean of x mean of y 9452.261 7817.133 Pooled-Variance Two-Sample t-Test data: x: EBW in Compressive.Strength.2 8.day.phase.I , and y: EBSB in Compressive.Strength.2 8.day.phase.I t = 15.7263, df = 4,p-value = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 2506.497 NA sample estimates: mean of x mean of y 9452.261 6552.702 Pooled-Variance Two-Sample t-Test data: x: EBW in Compressive.Strength.2 8.day.phase.I , and y: ECW in Compressive.Strength.2 8.day.phase.I t = 18.0998, df = 4, p-value = 0alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 4417.666 NA sample estimates: mean of x mean of y 9452.261 4444.803

Pooled-Variance Two-Sample t-Test x: EBW in data: Compressive.Strength.2 8.day.phase.I , and y: ECSA in Compressive.Strength.2 8.day.phase.I  $t = 3\overline{1.6107}, df = 4,$ p-value = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 5427.682 NA sample estimates: mean of x mean of y 9452.261 3632.061 Pooled-Variance Two-Sample t-Test x: EBW in data: Compressive.Strength.2 8.day.phase.I , and y: ECSB in Compressive.Strength.2 8.day.phase.I t = 20.8927, df = 4, p-value = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 6515.396 NA sample estimates: mean of x mean of y 9452.261 2196.503 Pooled-Variance Two-Sample t-Test data: x: EBW in Compressive.Strength.2 8.day.phase.I , and y: EDW in Compressive.Strength.2 8.day.phase.I t = 17.138, df = 4, pvalue = 0 alternative hypothesis: difference in means is greater than O

95 percent confidence interval: 2563.183 NA sample estimates: mean of x mean of y 9452.261 6524.941 Pooled-Variance Two-Sample t-Test data: x: EBW in Compressive.Strength.2 8.day.phase.I , and y: EDSA in Compressive.Strength.2 8.day.phase.I t = 41.8963, df = 4, p-value = 0 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 4871.563 NA sample estimates: mean of x mean of y 9452.261 4319.525 Pooled-Variance Two-Sample t-Test data: x: EBW in Compressive.Strength.2 8.day.phase.I , and y: EDSB in Compressive.Strength.2 8.day.phase.I t = 39.7115, df = 4,p-value = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 6088.674 NA sample estimates: mean of x mean of y 9452.261 3018.184 Pooled-Variance Two-Sample t-Test data: x: EBSA in Compressive.Strength.2 8.day.phase.I , and y: EBSB in Compressive.Strength.2 8.day.phase.I

t = 8.1744, df = 4, pvalue = 0.0006 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 934.6737 NA sample estimates: mean of x mean of y 7817.133 6552.702 Pooled-Variance Two-Sample t-Test data: x: EBSA in Compressive.Strength.2 8.day.phase.I , and y: in ECW Compressive.Strength.2 8.day.phase.I t = 13.0802, df = 4, p-value = 0.0001 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 2822.697 NA sample estimates: mean of x mean of y 7817.133 4444.803 Pooled-Variance Two-Sample t-Test data: x: EBSA in Compressive.Strength.2 8.day.phase.I , and y: ECSA in Compressive.Strength.2 8.day.phase.I t = 27.1094, df = 4, p-value = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: NA 3855.964 sample estimates: mean of x mean of y 7817.133 3632.061 Pooled-Variance

Two-Sample t-Test

data: x: EBSA in Compressive.Strength.2 8.day.phase.I , and y: ECSB in Compressive.Strength.2 8.day.phase.I t = 16.9054, df = 4,p-value = 0alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 4911.844 NΑ sample estimates: mean of x mean of y 7817.133 2196.503 Pooled-Variance Two-Sample t-Test data: x: EBSA in Compressive.Strength.2 8.day.phase.I , and y: EDW in Compressive.Strength.2 8.day.phase.I t = 9.3482, df = 4, pvalue = 0.0004alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 997.5102 NA sample estimates: mean of x mean of y 7817.133 6524.941 Pooled-Variance Two-Sample t-Test data: x: EBSA in Compressive.Strength.2 8.day.phase.I , and y: EDSA in Compressive.Strength.2 8.day.phase.I t = 49.7609, df = 4, p-value = 0alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 3347.764 NA sample estimates: mean of x mean of y

7817.133 4319.525 Pooled-Variance Two-Sample t-Test data: x: EBSA in Compressive.Strength.2 8.day.phase.I , and y: EDSB in Compressive.Strength.2 8.day.phase.I t = 37.7247, df = 4, p-value = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 4527.757 NA sample estimates: mean of x mean of y 7817.133 3018.184 Pooled-Variance Two-Sample t-Test data: x: EBSB in Compressive.Strength.2 8.day.phase.I , and y: ECW in Compressive.Strength.2 8.day.phase.I t = 7.3347, df = 4, pvalue = 0.0009 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 1495.232 NA sample estimates: mean of x mean of y 6552.702 4444.803 Pooled-Variance Two-Sample t-Test data: x: EBSB in Compressive.Strength.2 8.day.phase.I , and y: ECSA in Compressive.Strength.2 8.day.phase.I t = 14.6118, df = 4, p-value = 0.0001 alternative hypothesis:

difference in means is greater than O 95 percent confidence interval: 2494.524 NA sample estimates: mean of x mean of y 6552.702 3632.061 Pooled-Variance Two-Sample t-Test data: x: EBSB in Compressive.Strength.2 8.day.phase.I , and y: ECSB in Compressive.Strength.2 8.day.phase.I t = 12.2402, df = 4, p-value = 0.0001 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 3597.488 NA sample estimates: mean of x mean of y 6552.702 2196.503 Pooled-Variance Two-Sample t-Test data: x: EBSB in Compressive.Strength.2 8.day.phase.I , and y: EDW in Compressive.Strength.2 8.day.phase.I t = 0.1479, df = 4, pvalue = 0.4448 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: sample estimates: mean of x mean of y 6552.702 6524.941 Pooled-Variance Two-Sample t-Test data: x: EBSB in Compressive.Strength.2 8.day.phase.I , and y: EDSA in

Compressive.Strength.2 8.day.phase.I t = 15.3881, df = 4,p-value = 0.0001 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1923.795 NA sample estimates: mean of x mean of y 6552.702 4319.525 Pooled-Variance Two-Sample t-Test data: x: EBSB in Compressive.Strength.2 8.day.phase.I , and y: EDSB in Compressive.Strength.2 8.day.phase.I t = 19.6657, df = 4,p-value = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 3151.361 NA sample estimates: mean of x mean of y 6552.702 3018.184 Pooled-Variance Two-Sample t-Test data: x: ECW in Compressive.Strength.2 8.day.phase.I , and y: ECSA in Compressive.Strength.2 8.day.phase.I t = 2.8296, df = 4, pvalue = 0.0237alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 200.4248 NA sample estimates: mean of x mean of y 4444.803 3632.061

Pooled-Variance Two-Sample t-Test data: x: ECW in Compressive.Strength.2 8.day.phase.I , and y: ECSB in Compressive.Strength.2 8.day.phase.I t = 5.4657, df = 4, pvalue = 0.0027alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1371.375 NA sample estimates: mean of x mean of y 4444.803 2196.503 Pooled-Variance Two-Sample t-Test data: x: ECW in Compressive.Strength.2 8.day.phase.I , and y: EDW in Compressive.Strength.2 8.day.phase.I t = -7.459, df = 4, pvalue = 0.9991 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: interval: -2674.661 NA sample estimates: mean of x mean of y 4444.803 6524.941 Pooled-Variance Two-Sample t-Test data: x: ECW in Compressive.Strength.2 8.day.phase.I , and y: EDSA in Compressive.Strength.2 8.day.phase.I t = 0.4967, df = 4, pvalue = 0.3227 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval:

-412.3775 NA sample estimates: mean of x mean of y 4444.803 4319.525 Pooled-Variance Two-Sample t-Test x: ECW in data: Compressive.Strength.2 8.day.phase.I , and y: EDSB in Compressive.Strength.2 8.day.phase.I t = 5.2146, df = 4, pvalue = 0.0032 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 843.382 NA sample estimates: mean of x mean of y 4444.803 3018.184 Pooled-Variance Two-Sample t-Test data: x: ECSA in Compressive.Strength.2 8.day.phase.I , and y: EDW in Compressive.Strength.2 8.day.phase.I t = -15.4337, df = 4, p-value = 0.9999 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -3292.472 NA sample estimates: mean of x mean of y 3632.061 6524.941 Pooled-Variance Two-Sample t-Test data: x: ECSA in Compressive.Strength.2 8.day.phase.I , and y: EDSA in Compressive.Strength.2 8.day.phase.I t = -4.7477, df = 4, p-value = 0.9955

hypothesis: difference in means is greater than 0 95 percent confidence interval: -996.1542 NA sample estimates: mean of x mean of y 3632.061 4319.525 Pooled-Variance Two-Sample t-Test data: x: ECSA in Compressive.Strength.2 8.day.phase.I , and y: EDSB in Compressive.Strength.2 8.day.phase.I t = 3.4205, df = 4, pvalue = 0.0134alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 231.2787 NA sample estimates: mean of x mean of y 3632.061 3018.184 Pooled-Variance Two-Sample t-Test data: x: ECSB in Compressive.Strength.2 8.day.phase.I , and y: EDW in Compressive.Strength.2 8.day.phase.I t = -12.4004, df = 4, p-value = 0.9999 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -5072.573 sample estimates: mean of x mean of y 2196.503 6524.941 Pooled-Variance Two-Sample t-Test data: x: ECSB in Compressive.Strength.2

alternative

8.day.phase.I , and y: EDSA in Compressive.Strength.2 8.day.phase.I t = -6.4699, df = 4, p-value = 0.9985 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -2822.56 NA sample estimates: mean of x mean of y 2196.503 4319.525 Pooled-Variance Two-Sample t-Test x: ECSB in data: Compressive.Strength.2 8.day.phase.I , and y: EDSB in Compressive.Strength.2 8.day.phase.I t = -2.3828, df = 4, p-value = 0.9621 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -1556.831 NA sample estimates: mean of x mean of y 2196.503 3018.184 Pooled-Variance Two-Sample t-Test x: EDW in data: Compressive.Strength.2 8.day.phase.I , and y: EDSA in Compressive.Strength.2 8.day.phase.I t = 17.3051, df = 4, p-value = 0alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 1933.727 NA sample estimates: mean of x mean of y

6524.941 4319.525

Pooled-Variance Two-Sample t-Test data: x: EDW in Compressive.Strength.2 8.day.phase.I , and y: EDSB in Compressive.Strength.2 8.day.phase.I t = 21.1528, df = 4, p-value = 0 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 3153.335 NA sample estimates: mean of x mean of y 6524.941 3018.184 Pooled-Variance Two-Sample t-Test data: x: EDSA in Compressive.Strength.2 8.day.phase.I , and y: EDSB in Compressive.Strength.2 8.day.phase.I t = 11.2769, df = 4, p-value = 0.0002 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 1055.328 NA sample estimates: mean of x mean of y 4319.525 3018.184

## Compressive Strength Pilot Study

Pooled-Variance Two-Sample t-Test

data: x: C1 in compressive.strength.. pilot.Study , and y: C5 in

compressive.strength.. pilot.Study t = 4.3296, df = 4, pvalue = 0.0062alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 575.2515 NA sample estimates: mean of x mean of y 11258.84 10125.6 Pooled-Variance Two-Sample t-Test x: C1 in data: compressive.strength.. pilot.Study , and y: С6 in compressive.strength.. pilot.Study t = 7.7865, df = 4, pvalue = 0.0007 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1561.14 NA sample estimates: mean of x mean of y 11258.84 9109.137 Pooled-Variance

Two-Sample t-Test

x: C1 in data: compressive.strength.. pilot.Study , and y: C7 in compressive.strength.. pilot.Study t = 6.1465, df = 4, pvalue = 0.0018alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 859.3884 NA sample estimates: mean of x mean of y 11258.84 9943.094

Pooled-Variance Two-Sample t-Test x: Cl in data: compressive.strength.. pilot.Study , and y: С9 in compressive.strength.. pilot.Study t = 32.8963, df = 4, p-value = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 4756.99 NA sample estimates: mean of x mean of y 11258.84 6172.206 Pooled-Variance Two-Sample t-Test x: Cl in data: compressive.strength.. pilot.Study , and y: C10 in compressive.strength.. pilot.Study t = 26.4086, df = 4,p-value = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: NA 4045.836 sample estimates: mean of x mean of y 11258.84 6857.717 Pooled-Variance Two-Sample t-Test data: x: C2 in compressive.strength.. pilot.Study , and y: C4 in compressive.strength.. pilot.Study t = 0.3926, df = 4, pvalue = 0.3573 alternative hypothesis: difference in means is greater than O 95 percent confidence interval:

-744.6351 NA sample estimates: mean of x mean of y 11689.54 11521.43 Pooled-Variance Two-Sample t-Test x: C2 in data: compressive.strength.. pilot.Study , and y: C5 in compressive.strength.. pilot.Study t = 3.2259, df = 4, pvalue = 0.0161 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: NA 530.3945 sample estimates: mean of x mean of y 11689.54 10125.6 Pooled-Variance Two-Sample t-Test data: x: C2 in compressive.strength.. pilot.Study , and y: C6 in compressive.strength.. pilot.Study t = 5.2372, df = 4, pvalue = 0.0032 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1530.034 NA sample estimates: mean of x mean of y 11689.54 9109.137 Pooled-Variance Two-Sample t-Test x: C2 in data: compressive.strength.. pilot.Study , and y: С7 in compressive.strength.. pilot.Study t = 3.7898, df = 4, pvalue = 0.0096

alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 764.0343 NA sample estimates: mean of x mean of y 11689.54 9943.094 Pooled-Variance Two-Sample t-Test

x: C2 in data: compressive.strength.. pilot.Study , and y: С9 in compressive.strength.. pilot.Study t = 12.6427, df = 4, p-value = 0.0001alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 4586.991 NA sample estimates: mean of x mean of y 11689.54 6172.200

#### Two-Sample t-Test data: x: C2 in compressive.strength.. pilot.Study , and y: C10 in compressive.strength.. pilot.Study t = 10.9613, df = 4, p-value = 0.0002alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 3892.089 NA sample estimates: mean of x mean of y 11689.54 6857.717

Pooled-Variance

Pooled-Variance Two-Sample t-Test

x: C2 in data: compressive.strength.. pilot.Study , and y: C11 in compressive.strength.. pilot.Study t = 1.5199, df = 4, pvalue = 0.1016 alternative hypothesis: difference in means is greater than O 95 percent confidence -304.0516 interval: NA sample estimates: mean of x mean of y 11689.54 10934.45 Pooled-Variance Two-Sample t-Test data: x: C3 in compressive.strength.. pilot.Study , and y: C4 in compressive.strength.. pilot.Study t = -0.9927, df = 4, p-value = 0.8115 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -1051.06 NA sample estimates: mean of x mean of y 11187.5 11521.43 Pooled-Variance Two-Sample t-Test data: x: C3 in compressive.strength.. pilot.Study , and y: С5 in compressive.strength.. pilot.Study t = 2.6151, df = 4, pvalue = 0.0296alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 196.2265 NA sample estimates: mean of x mean of y

11187.5 10125.6 Pooled-Variance Two-Sample t-Test data: x: C3 in compressive.strength.. pilot.Study , and y: C6 in compressive.strength.. pilot.Study t = 5.0026, df = 4, pvalue = 0.0037alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1192.672 NA sample estimates: mean of x mean of y 11187.5 9109.137 Pooled-Variance Two-Sample t-Test data: x: C3 in compressive.strength.. pilot.Study , and y: С7 in compressive.strength.. pilot.Study t = 3.2999, df = 4, pvalue = 0.015 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 440.4747 NA sample estimates: mean of x mean of y 11187.5 9943.094 Pooled-Variance Two-Sample t-Test x: C3 in data: compressive.strength.. pilot.Study , and y: С9 in compressive.strength.. pilot.Studv t = 14.4602, df = 4, p-value = 0.0001alternative hypothesis:

difference in means is greater than 0 95 percent confidence interval: 4275.896 NA sample estimates: mean of x mean of y 11187.5 6172.206 Pooled-Variance Two-Sample t-Test data: x: C3 in compressive.strength.. pilot.Study , and y: C10 in compressive.strength.. pilot.Study t = 12.2879, df = 4, p-value = 0.0001 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 3578.602 NA sample estimates: mean of x mean of y 11187.5 6857.717 Pooled-Variance Two-Sample t-Test data: x: C3 in compressive.strength.. pilot.Study , and y: C11 in compressive.strength.. pilot.Study t = 0.602, df = 4, pvalue = 0.2898alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: -643.0273 NΑ sample estimates: mean of x mean of y 11187.5 10934.45 Pooled-Variance Two-Sample t-Test data: x: C4 in compressive.strength.. pilot.Study , and y: C.5 in

compressive.strength.. pilot.Study t = 6.048, df = 4, pvalue = 0.0019 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: nterval: 903.8226 NA sample estimates: mean of x mean of y 11521.43 10125.6 Pooled-Variance Two-Sample t-Test x: C4 in data: compressive.strength.. pilot.Study , and y: C6 in compressive.strength.. pilot.Study t = 9.7689, df = 4, pvalue = 0.0003 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1885.866 NA sample estimates: mean of x mean of y 11521.43 9109.137 Pooled-Variance Two-Sample t-Test data: x: C4 in compressive.strength.. pilot.Study , and y: C7 in compressive.strength.. pilot.Study t = 9.0255, df = 4, pvalue = 0.0004 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 1205.532 NA sample estimates: mean of x mean of v 11521.43 9943.094

Pooled-Variance Two-Sample t-Test data: x: C4 in compressive.strength.. pilot.Study , and y: С8 in compressive.strength.. pilot.Study t = 1.142, df = 3, pvalue = 0.1682 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -604.6826 NA sample estimates: mean of x mean of y 11521.43 10951.39 Pooled-Variance Two-Sample t-Test data: x: C4 in compressive.strength.. pilot.Study , and y: C9 in compressive.strength.. pilot.Study t = 57.46, df = 4, pvalue = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 5150.761 NA sample estimates: mean of x mean of y 11521.43 6172.206 Pooled-Variance Two-Sample t-Test data: x: C4 in compressive.strength.. pilot.Study , and y: C10 in compressive.strength.. pilot.Study t = 41.6616, df = 4, p-value = 0 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval:

4425.07 NA sample estimates: mean of x mean of y 11521.43 6857.717 Pooled-Variance Two-Sample t-Test data: x: C4 in compressive.strength.. pilot.Study , and y: C11 in compressive.strength.. pilot.Study t = 2.3015, df = 4, pvalue = 0.0414alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 43.25817 NA sample estimates: mean of x mean of y 11521.43 10934.45 Pooled-Variance Two-Sample t-Test data: x: C5 in compressive.strength.. pilot.Study , and y: C6 in compressive.strength.. pilot.Study t = 3.0276, df = 4, pvalue = 0.0194alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 300.7409 NA sample estimates: mean of x mean of y 10125.6 9109.137 Pooled-Variance Two-Sample t-Test data: x: C5 in compressive.strength.. pilot.Study , and y: С7 in compressive.strength.. pilot.Study t = 0.6361, df = 4, pvalue = 0.2796
alternative hypothesis: difference in means is greater than O 95 percent confidence interval: -429.1425 NA sample estimates: mean of x mean of y 10125.6 9943.094 Pooled-Variance Two-Sample t-Test x: C5 in data: compressive.strength.. pilot.Study , and y: С9 in compressive.strength.. pilot.Study t = 16.0859, df = 4, p-value = 0 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 3429.45 NA sample estimates: mean of x mean of y 10125.6 6172.206 Pooled-Variance Two-Sample t-Test x: C5 in data: compressive.strength.. pilot.Study , and y: C10 in compressive.strength.. pilot.Study t = 12.8906, df = 4, p-value = 0.0001 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 2727.438 NA sample estimates: mean of x mean of y 10125.6 6857.717

Pooled-Variance Two-Sample t-Test

data: x: C6 in compressive.strength.. pilot.Study , and y: С7 in compressive.strength.. pilot.Study t = -0.7794, df = 4, p-value = 0.9751 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: NA -1473.613 sample estimates: mean of x mean of y 9109.137 9943.094 Pooled-Variance Two-Sample t-Test data: x: C6 in compressive.strength.. pilot.Study , and y: С9 in compressive.strength.. pilot.Study t = 11.2532, df = 4, p-value = 0.0002 alternative hypothesis: difference in means is greater than O 95 percent confidence interval: 2380.547 NA sample estimates: mean of x mean of y 9109.137 6172.206

Pooled-Variance Two-Sample t-Test

data: x: C6 in compressive.strength.. pilot.Study , and y: C10 in compressive.strength.. pilot.Study t = 8.3918, df = 4, pvalue = 0.0006 alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 1679.47 NA sample estimates:

mean of x mean of y 9109.137 6857.717 Pooled-Variance Two-Sample t-Test x: C7 in data: compressive.strength.. pilot.Study , and y: С9 in compressive.strength.. pilot.Study t = 19.4164, df = 4,p-value = 0alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 3356.859 NA sample estimates: mean of x mean of y 9943.094 6172.206 Pooled-Variance Two-Sample t-Test data: x: C7 in compressive.strength.. pilot.Study , and y: C10 in compressive.strength.. pilot.Study t = 15.1305, df = 4, p-value = 0.0001alternative hypothesis: difference in means is greater than 0 95 percent confidence interval: 2650.655 NA sample estimates: mean of x mean of y 9943.094 6857.717 Pooled-Variance Two-Sample t-Test x: C9 in data: compressive.strength.. pilot.Study , and y: C11 in compressive.strength.. pilot.Study

t = -17.7248, df = 4,

p-value = 0.0001

# 9.7 Appendix G

Stat Graphics Test Results- Multiple Sample comparison

### **Compressive Strength Tests – Phase II**

### Multiple-Sample Comparison

#### **Summary Statistics**

|       | Count | Average | Standard deviation | Coeff. of variation | Minimum | Maximum | Range   | Stnd. skewness |
|-------|-------|---------|--------------------|---------------------|---------|---------|---------|----------------|
| E     | 3     | 10683.2 | 369.496            | 3.45867%            | 10362.2 | 11087.1 | 724.901 | 0.678117       |
| Т     | 3     | 10436.6 | 206.311            | 1.97681%            | 10284.5 | 10671.4 | 386.877 | 1.0716         |
| В     | 3     | 9702.89 | 514.927            | 5.30695%            | 9175.7  | 10204.6 | 1028.91 | -0.157058      |
| Α     | 3     | 9540.23 | 320.799            | 3.36259%            | 9176.75 | 9783.82 | 607.071 | -1.02302       |
| С     | 3     | 5755.3  | 265.676            | 4.6162%             | 5491.92 | 6023.21 | 531.294 | 0.0541959      |
| Con   | 3     | 7859.57 | 438.87             | 5.5839%             | 7390.33 | 8259.92 | 869.592 | -0.487178      |
| D     | 3     | 8823.16 | 381.764            | 4.32684%            | 8509.94 | 9248.41 | 738.463 | 0.853317       |
| S     | 3     | 13595.8 | 149.451            | 1.09924%            | 13428.0 | 13714.6 | 286.624 | -0.930435      |
| Total | 24    | 9549.58 | 2193.86            | 22.9733%            | 5491.92 | 13714.6 | 8222.7  | 0.210525       |

#### **Multiple Range Tests**

| Method: 9 | <b>95.0</b> i | percent | LSD |
|-----------|---------------|---------|-----|
|-----------|---------------|---------|-----|

|     | Count | Mean    | Homogeneous Groups |
|-----|-------|---------|--------------------|
| С   | 3     | 5755.3  | Х                  |
| Con | 3     | 7859.57 | Х                  |
| D   | 3     | 8823.16 | Х                  |
| А   | 3     | 9540.23 | Х                  |
| В   | 3     | 9702.89 | Х                  |
| Т   | 3     | 10436.6 | Х                  |
| E   | 3     | 10683.2 | Х                  |
| S   | 3     | 13595.8 | Х                  |

| Contrast | Sig. | Difference | +/- Limits |
|----------|------|------------|------------|
| E - T    |      | 246.602    | 605.327    |
| Е-В      | *    | 980.274    | 605.327    |
| E - A    | *    | 1142.94    | 605.327    |
| E - C    | *    | 4927.86    | 605.327    |
| E - Con  | *    | 2823.59    | 605.327    |
| E - D    | *    | 1860.0     | 605.327    |
| E - S    | *    | -2912.62   | 605.327    |
| Т-В      | *    | 733.672    | 605.327    |
| Т - А    | *    | 896.335    | 605.327    |
| T - C    | *    | 4681.26    | 605.327    |
| T - Con  | *    | 2576.99    | 605.327    |
| T - D    | *    | 1613.4     | 605.327    |
| T - S    | *    | -3159.23   | 605.327    |
| B - A    |      | 162.663    | 605.327    |

| B - C   | * | 3947.59  | 605.327 |
|---------|---|----------|---------|
| B - Con | * | 1843.32  | 605.327 |
| B - D   | * | 879.725  | 605.327 |
| B - S   | * | -3892.9  | 605.327 |
| A - C   | * | 3784.92  | 605.327 |
| A - Con | * | 1680.66  | 605.327 |
| A - D   | * | 717.062  | 605.327 |
| A - S   | * | -4055.56 | 605.327 |
| C - Con | * | -2104.27 | 605.327 |
| C - D   | * | -3067.86 | 605.327 |
| C - S   | * | -7840.49 | 605.327 |
| Con - D | * | -963.594 | 605.327 |
| Con - S | * | -5736.22 | 605.327 |
| D - S   | * | -4772.62 | 605.327 |

\* denotes a statistically significant difference.

#### The StatAdvisor

This table applies a multiple comparison procedure to determine which means are significantly different from which others. The bottom half of the output shows the estimated difference between each pair of means. An asterisk has been placed next to 26 pairs, indicating that these pairs show statistically significant differences at the 95.0% confidence level. At the top of the page, 6

homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure. With this method, there is a 5.0% risk of calling each pair of means significantly different when the actual difference equals 0.

#### Variance Check

|          | Test     | P-Value  |
|----------|----------|----------|
| Levene's | 0.380298 | 0.900565 |

#### The StatAdvisor

The statistic displayed in this table tests the null hypothesis that the standard deviations within each of the 8 columns are the same. Of particular interest is the P-value. Since the the P-value is greater than or equal to 0.05, there is not a statistically significant difference amongst the standard deviations at the 95.0% confidence level.



#### Scatterplot by Sample





\*\*\*\*\*

### **Chloride Ion Penetration test- Phase I**

#### **Summary Statistics**

|       | Count | Average | Standard deviation | Coeff. of variation | Minimum | Maximum | Range   | Stnd. skewness |
|-------|-------|---------|--------------------|---------------------|---------|---------|---------|----------------|
| CSA   | 4     | 4253.75 | 245.803            | 5.77849%            | 4042.0  | 4532.0  | 490.0   | 0.231304       |
| CSB   | 4     | 4418.75 | 459.473            | 10.3983%            | 3940.0  | 5043.0  | 1103.0  | 0.740261       |
| CW    | 4     | 1709.04 | 188.482            | 11.0285%            | 1449.09 | 1896.21 | 447.121 | -0.875367      |
| EASA  | 4     | 2111.81 | 360.279            | 17.0602%            | 1830.12 | 2632.86 | 802.741 | 1.30505        |
| EASB  | 4     | 1921.57 | 315.191            | 16.4028%            | 1600.13 | 2328.66 | 728.531 | 0.536096       |
| EAW   | 4     | 1123.73 | 105.639            | 9.40071%            | 1060.18 | 1281.69 | 221.508 | 1.6021         |
| EBSA  | 4     | 2044.0  | 133.049            | 6.50924%            | 1929.0  | 2226.0  | 297.0   | 0.919609       |
| EBSB  | 4     | 2312.5  | 439.788            | 19.0179%            | 1810.0  | 2839.0  | 1029.0  | 0.11039        |
| EBW   | 3     | 1047.33 | 56.6068            | 5.40485%            | 984.0   | 1093.0  | 109.0   | -0.896349      |
| ECSA  | 4     | 3030.75 | 385.557            | 12.7215%            | 2570.0  | 3512.0  | 942.0   | 0.12903        |
| ECSB  | 4     | 5638.25 | 788.913            | 13.9922%            | 4536.0  | 6222.0  | 1686.0  | -1.07284       |
| ECW   | 4     | 955.394 | 90.5175            | 9.47436%            | 871.574 | 1083.0  | 211.426 | 1.06237        |
| EDSA  | 4     | 3566.0  | 417.335            | 11.7032%            | 3034.0  | 4031.0  | 997.0   | -0.35824       |
| EDSB  | 4     | 4245.75 | 381.773            | 8.99187%            | 3770.0  | 4671.0  | 901.0   | -0.27944       |
| EDW   | 4     | 686.25  | 110.846            | 16.1525%            | 560.0   | 826.0   | 266.0   | 0.275798       |
| Total | 59    | 2630.72 | 1502.41            | 57.1103%            | 560.0   | 6222.0  | 5662.0  | 1.83343        |

#### ANOVA Table

| Source         | Sum of Squares | Df | Mean Square | F-Ratio | P-Value |
|----------------|----------------|----|-------------|---------|---------|
| Between groups | 1.25303E8      | 14 | 8.95023E6   | 70.12   | 0.0000  |
| Within groups  | 5.61617E6      | 44 | 127640.     |         |         |
| Total (Corr.)  | 1.30919E8      | 58 |             |         |         |

#### The StatAdvisor

The ANOVA table decomposes the variance of the data into two components: a between-group component and a within-group component. The F-ratio, which in this case equals 70.1208, is a ratio of the between-group estimate to the within-group estimate. Since the P-value of the F-test is less than 0.05, there is a statistically significant difference between the means of the 15 variables at the 95.0% confidence level. To determine which means are significantly different from which others, select Multiple Range Tests from the list of Tabular Options.

#### **Multiple Range Tests**

| Method: | 95.0 perc | ent LSD |                    |
|---------|-----------|---------|--------------------|
|         | Count     | Mean    | Homogeneous Groups |
| EDW     | 4         | 686.25  | Х                  |
| ECW     | 4         | 955.394 | Х                  |
| EBW     | 3         | 1047.33 | Х                  |
| EAW     | 4         | 1123.73 | Х                  |
| CW      | 4         | 1709.04 | Х                  |
| EASB    | 4         | 1921.57 | XX                 |
| EBSA    | 4         | 2044.0  | XX                 |
| EASA    | 4         | 2111.81 | XX                 |
| EBSB    | 4         | 2312.5  | Х                  |
| ECSA    | 4         | 3030.75 | Х                  |
| EDSA    | 4         | 3566.0  | Х                  |
| EDSB    | 4         | 4245.75 | Х                  |
| CSA     | 4         | 4253.75 | Х                  |
| CSB     | 4         | 4418.75 | Х                  |
| ECSB    | 4         | 5638 25 | Х                  |

| Contrast    | Sig. | Difference        | +/- Limits |
|-------------|------|-------------------|------------|
| CSA - CSB   |      | -165.0            | 509.136    |
| CSA - CW    | *    | 2544.71           | 509.136    |
| CSA - EASA  | *    | 2141 94           | 509 136    |
| CSA - EASB  | *    | 2332.18           | 509.136    |
| CSA - FAW   | *    | 3130.02           | 509.136    |
| CSA - EBSA  | *    | 2209 75           | 509.136    |
| CSA - EBSB  | *    | 1941.25           | 509.136    |
| CSA - EBW   | *    | 3206.42           | 549.93     |
| CSA = ECSA  | *    | 1223.0            | 509 136    |
| CSA ECSR    | *    | 1225.0            | 509.136    |
| CSA - ECSB  | *    | 3208.36           | 509.130    |
| CSA EDSA    | *    | 5278.50<br>687.75 | 509.136    |
| CSA EDSA    | -    | 80                | 509.130    |
| CSA EDW     | *    | 0.0               | 509.130    |
| CSA - EDW   | *    | 3307.3            | 509.136    |
| CSB - CW    | *    | 2709.71           | 509.136    |
| CSB - EASA  |      | 2306.94           | 509.136    |
| CSB - EASB  | *    | 2497.18           | 509.136    |
| CSB - EAW   | *    | 3295.02           | 509.136    |
| CSB - EBSA  | *    | 2374.75           | 509.136    |
| CSB - EBSB  | *    | 2106.25           | 509.136    |
| CSB - EBW   | *    | 3371.42           | 549.93     |
| CSB - ECSA  | *    | 1388.0            | 509.136    |
| CSB - ECSB  | *    | -1219.5           | 509.136    |
| CSB - ECW   | *    | 3463.36           | 509.136    |
| CSB - EDSA  | *    | 852.75            | 509.136    |
| CSB - EDSB  |      | 173.0             | 509.136    |
| CSB - EDW   | *    | 3732.5            | 509.136    |
| CW - EASA   |      | -402.773          | 509.136    |
| CW - EASB   |      | -212.534          | 509.136    |
| CW - EAW    | *    | 585.308           | 509.136    |
| CW - EBSA   |      | -334.961          | 509.136    |
| CW - EBSB   | *    | -603.461          | 509.136    |
| CW - EBW    | *    | 661.705           | 549.93     |
| CW - ECSA   | *    | -1321.71          | 509.136    |
| CW - ECSB   | *    | -3929.21          | 509.136    |
| CW - ECW    | *    | 753.645           | 509.136    |
| CW - EDSA   | *    | -1856.96          | 509.136    |
| CW - EDSB   | *    | -2536.71          | 509.136    |
| CW - EDW    | *    | 1022.79           | 509.136    |
| EASA - EASB |      | 190.239           | 509.136    |
| EASA - EAW  | *    | 988.081           | 509.136    |
| EASA - EBSA |      | 67.8118           | 509.136    |
| EASA - EBSB |      | -200.688          | 509.136    |
| EASA - EBW  | *    | 1064.48           | 549.93     |
| EASA - ECSA | *    | -918 938          | 509 136    |
| EASA - ECSB | *    | -3526 44          | 509 136    |
| EASA - ECW  | *    | 1156.42           | 509.136    |
| EASA - EDSA | *    | -1454 19          | 509 136    |
| EASA - FDSR | *    | -2133.94          | 509 136    |
| FASA - FDW  | *    | 1425 56           | 509 136    |
| FASE - FAW  | *    | 797 842           | 509.136    |
| FASE - FRSA |      | -122 428          | 509 136    |
| EASE - EBSA |      | -122.720          | 509.136    |
| EASE EDW    | *    | 874 220           | 5/0 02     |
| EASD - EDW  | *    | 0/4.237           | 500 126    |
| EASD - EUSA | L .  | -1109.18          | 209.130    |

| EASB - ECSB | * | -3716.68 | 509.136 |
|-------------|---|----------|---------|
| EASB - ECW  | * | 966.179  | 509.136 |
| EASB - EDSA | * | -1644.43 | 509.136 |
| EASB - EDSB | * | -2324.18 | 509.136 |
| EASB - EDW  | * | 1235.32  | 509.136 |
| EAW - EBSA  | * | -920.27  | 509.136 |
| EAW - EBSB  | * | -1188.77 | 509.136 |
| EAW - EBW   |   | 76.397   | 549.93  |
| EAW - ECSA  | * | -1907.02 | 509.136 |
| EAW - ECSB  | * | -4514.52 | 509.136 |
| EAW - ECW   |   | 168.337  | 509.136 |
| EAW - EDSA  | * | -2442.27 | 509.136 |
| EAW - EDSB  | * | -3122.02 | 509.136 |
| EAW - EDW   |   | 437.48   | 509.136 |
| EBSA - EBSB |   | -268.5   | 509.136 |
| EBSA - EBW  | * | 996.667  | 549.93  |
| EBSA - ECSA | * | -986.75  | 509.136 |
| EBSA - ECSB | * | -3594.25 | 509.136 |
| EBSA - ECW  | * | 1088.61  | 509.136 |
| EBSA - EDSA | * | -1522.0  | 509.136 |
| EBSA - EDSB | * | -2201.75 | 509.136 |
| EBSA - EDW  | * | 1357.75  | 509.136 |
| EBSB - EBW  | * | 1265.17  | 549.93  |
| EBSB - ECSA | * | -718.25  | 509.136 |
| EBSB - ECSB | * | -3325.75 | 509.136 |
| EBSB - ECW  | * | 1357.11  | 509.136 |
| EBSB - EDSA | * | -1253.5  | 509.136 |
| EBSB - EDSB | * | -1933.25 | 509.136 |
| EBSB - EDW  | * | 1626.25  | 509.136 |
| EBW - ECSA  | * | -1983.42 | 549.93  |
| EBW - ECSB  | * | -4590.92 | 549.93  |
| EBW - ECW   |   | 91.9398  | 549.93  |
| EBW - EDSA  | * | -2518.67 | 549.93  |
| EBW - EDSB  | * | -3198.42 | 549.93  |
| EBW - EDW   |   | 361.083  | 549.93  |
| ECSA - ECSB | * | -2607.5  | 509.136 |
| ECSA - ECW  | * | 2075.36  | 509.136 |
| ECSA - EDSA | * | -535.25  | 509.136 |
| ECSA - EDSB | * | -1215.0  | 509.136 |
| ECSA - EDW  | * | 2344.5   | 509.136 |
| ECSB - ECW  | * | 4682.86  | 509.136 |
| ECSB - EDSA | * | 2072.25  | 509.136 |
| ECSB - EDSB | * | 1392.5   | 509.136 |
| ECSB - EDW  | * | 4952.0   | 509.136 |
| ECW - EDSA  | * | -2610.61 | 509.136 |
| ECW - EDSB  | * | -3290.36 | 509.136 |
| ECW - EDW   |   | 269.144  | 509.136 |
| EDSA - EDSB | * | -679.75  | 509.136 |
| EDSA - EDW  | * | 2879.75  | 509.136 |
| EDSB - EDW  | * | 3559.5   | 509 136 |
|             |   | 5557.5   | 507.150 |

\* denotes a statistically significant difference.

#### The StatAdvisor

This table applies a multiple comparison procedure to determine which means are significantly different from which others. The bottom half of the output shows the estimated difference between each pair of means. An asterisk has been placed next to 87 pairs, indicating that these pairs show statistically significant differences at the 95.0% confidence level. At the top of the page, 7 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure. With this method, there is a 5.0% risk of calling each pair of means significantly different when the actual difference equals 0.



\*\*\*\*\*\*\*\*

### **Chloride Ion Penetration test- Phase II**

| Sum   | Summary Statistics |         |           |                     |         |         |       |                |                |  |  |
|-------|--------------------|---------|-----------|---------------------|---------|---------|-------|----------------|----------------|--|--|
|       | Count              | Average | Standard  | Coeff. of variation | Minimum | Maximum | Range | Stnd. skewness | Stnd. kurtosis |  |  |
|       |                    |         | deviation |                     |         |         |       |                |                |  |  |
| Е     | 4                  | 311.75  | 43.9801   | 14.1075%            | 255.0   | 353.0   | 98.0  | -0.601256      | -0.478144      |  |  |
| Т     | 4                  | 288.5   | 21.1739   | 7.3393%             | 258.0   | 307.0   | 49.0  | -1.23856       | 1.15864        |  |  |
| А     | 4                  | 318.75  | 14.7281   | 4.62058%            | 300.0   | 334.0   | 34.0  | -0.462907      | -0.286955      |  |  |
| С     | 4                  | 551.25  | 117.227   | 21.2657%            | 460.0   | 723.0   | 263.0 | 1.40445        | 1.30761        |  |  |
| Con   | 4                  | 658.0   | 254.253   | 38.6403%            | 445.0   | 958.0   | 513.0 | 0.331939       | -1.50992       |  |  |
| D     | 4                  | 267.5   | 21.2368   | 7.93898%            | 243.0   | 291.0   | 48.0  | -0.0811571     | -0.924567      |  |  |
| S     | 4                  | 226.0   | 28.4605   | 12.5931%            | 197.0   | 260.0   | 63.0  | 0.276971       | -1.05641       |  |  |
| Total | 28                 | 374.536 | 181.043   | 48.3379%            | 197.0   | 958.0   | 761.0 | 4.19231        | 3.89927        |  |  |

#### **Summary Statistics**

#### **ANOVA Table**

| Source         | Sum of Squares | Df | Mean Square | F-Ratio | P-Value |
|----------------|----------------|----|-------------|---------|---------|
| Between groups | 638223.        | 6  | 106370.     | 9.05    | 0.0001  |
| Within groups  | 246742.        | 21 | 11749.6     |         |         |
| Total (Corr.)  | 884965.        | 27 |             |         |         |

#### The StatAdvisor

The ANOVA table decomposes the variance of the data into two components: a between-group component and a within-group component. The F-ratio, which in this case equals 9.05309, is a ratio of the between-group estimate to the within-group estimate. Since the P-value of the F-test is less than 0.05, there is a statistically significant difference between the means of the 7 variables at the 95.0% confidence level. To determine which means are significantly different from which others, select Multiple Range Tests from the list of Tabular Options.

#### **Multiple Range Tests**

Method: 95.0 percent LSD

|     | Count | Mean   | Homogeneous Groups |
|-----|-------|--------|--------------------|
| S   | 4     | 226.0  | Х                  |
| D   | 4     | 267.5  | Х                  |
| Т   | 4     | 288.5  | Х                  |
| E   | 4     | 311.75 | Х                  |
| А   | 4     | 318.75 | Х                  |
| С   | 4     | 551.25 | Х                  |
| Con | 4     | 658.0  | Х                  |

| Contrast | Sig. | Difference | +/- Limits |
|----------|------|------------|------------|
| Е-Т      |      | 23.25      | 159.397    |
| E - A    |      | -7.0       | 159.397    |
| E - C    | *    | -239.5     | 159.397    |
| E - Con  | *    | -346.25    | 159.397    |
| E - D    |      | 44.25      | 159.397    |
| E - S    |      | 85.75      | 159.397    |
| T - A    |      | -30.25     | 159.397    |
| T - C    | *    | -262.75    | 159.397    |
| T - Con  | *    | -369.5     | 159.397    |
| T - D    |      | 21.0       | 159.397    |

| T - S   |   | 62.5    | 159.397 |
|---------|---|---------|---------|
| A - C   | * | -232.5  | 159.397 |
| A - Con | * | -339.25 | 159.397 |
| A - D   |   | 51.25   | 159.397 |
| A - S   |   | 92.75   | 159.397 |
| C - Con |   | -106.75 | 159.397 |
| C - D   | * | 283.75  | 159.397 |
| C - S   | * | 325.25  | 159.397 |
| Con - D | * | 390.5   | 159.397 |
| Con - S | * | 432.0   | 159.397 |
| D - S   |   | 41.5    | 159.397 |

\* denotes a statistically significant difference.

#### The StatAdvisor

This table applies a multiple comparison procedure to determine which means are significantly different from which others. The bottom half of the output shows the estimated difference between each pair of means. An asterisk has been placed next to 10 pairs, indicating that these pairs show statistically significant differences at the 95.0% confidence level. At the top of the page, 2 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure. With this method, there is a 5.0% risk of calling each pair of means significantly different when the actual difference equals 0.



Means and 95.0 Percent LSD Intervals



#### \*\*\*\*\*

## **Compressive Strength test- Phase I**

| Summar | Statistics |         |                    |                     |         |         |         |                |  |
|--------|------------|---------|--------------------|---------------------|---------|---------|---------|----------------|--|
|        | Count      | Average | Standard deviation | Coeff. of variation | Minimum | Maximum | Range   | Stnd. skewness |  |
| CSA    | 3          | 3876.6  | 247.861            | 6.39378%            | 3612.34 | 4103.92 | 491.578 | -0.463588      |  |
| CSB    | 3          | 2976.58 | 157.574            | 5.29378%            | 2806.4  | 3117.43 | 311.026 | -0.571727      |  |
| CW     | 3          | 6517.3  | 214.583            | 3.29251%            | 6329.62 | 6751.24 | 421.619 | 0.654108       |  |
| EASA   | 3          | 5880.0  | 301.38             | 5.12551%            | 5533.46 | 6080.87 | 547.409 | -1.1787        |  |

### **Summary Statistics**

| EASB  | 3  | 4570.79 | 199.692 | 4.36887% | 4374.36 | 4773.59 | 399.232 | 0.10128    |
|-------|----|---------|---------|----------|---------|---------|---------|------------|
| EAW   | 3  | 7193.41 | 506.491 | 7.04104% | 6679.28 | 7691.9  | 1012.62 | -0.0980901 |
| EBSA  | 3  | 7817.13 | 108.207 | 1.38423% | 7710.71 | 7927.04 | 216.329 | 0.10241    |
| EBSB  | 3  | 6552.7  | 245.092 | 3.74033% | 6277.72 | 6748.15 | 470.43  | -0.923845  |
| EBW   | 3  | 9452.26 | 204.729 | 2.16592% | 9313.24 | 9687.36 | 374.122 | 1.16437    |
| ECSA  | 3  | 3632.06 | 244.516 | 6.73215% | 3351.73 | 3801.38 | 449.648 | -1.14685   |
| ECSB  | 3  | 2196.5  | 565.606 | 25.7503% | 1823.18 | 2847.26 | 1024.07 | 1.18527    |
| ECW   | 3  | 4444.8  | 433.249 | 9.74732% | 4097.29 | 4930.22 | 832.927 | 0.910208   |
| EDSA  | 3  | 4319.52 | 55.7908 | 1.2916%  | 4256.69 | 4363.25 | 106.559 | -0.962074  |
| EDSB  | 3  | 3018.18 | 191.933 | 6.35921% | 2883.61 | 3237.97 | 354.355 | 1.13427    |
| EDW   | 3  | 6524.94 | 213.571 | 3.27315% | 6310.05 | 6737.16 | 427.118 | -0.0397661 |
| Total | 45 | 5264.85 | 2025.27 | 38.4677% | 1823.18 | 9687.36 | 7864.17 | 0.97808    |

#### **ANOVA** Table

| Source         | Sum of Squares | Df | Mean Square | F-Ratio | P-Value |
|----------------|----------------|----|-------------|---------|---------|
| Between groups | 1.77903E8      | 14 | 1.27073E7   | 148.20  | 0.0000  |
| Within groups  | 2.57242E6      | 30 | 85747.3     |         |         |
| Total (Corr.)  | 1.80475E8      | 44 |             |         |         |

#### The StatAdvisor

The ANOVA table decomposes the variance of the data into two components: a between-group component and a within-group component. The F-ratio, which in this case equals 148.195, is a ratio of the between-group estimate to the within-group estimate. Since the P-value of the F-test is less than 0.05, there is a statistically significant difference between the means of the 15 variables at the 95.0% confidence level. To determine which means are significantly different from which others, select Multiple Range Tests from the list of Tabular Options.

#### **Multiple Range Tests**

Method: 95.0 percent LSD

|      | Count | Mean    | Homogeneous Groups |
|------|-------|---------|--------------------|
| ECSB | 3     | 2196.5  | Х                  |
| CSB  | 3     | 2976.58 | Х                  |
| EDSB | 3     | 3018.18 | Х                  |
| ECSA | 3     | 3632.06 | Х                  |
| CSA  | 3     | 3876.6  | XX                 |
| EDSA | 3     | 4319.52 | XX                 |
| ECW  | 3     | 4444.8  | Х                  |
| EASB | 3     | 4570.79 | Х                  |
| EASA | 3     | 5880.0  | Х                  |
| CW   | 3     | 6517.3  | Х                  |
| EDW  | 3     | 6524.94 | Х                  |
| EBSB | 3     | 6552.7  | Х                  |
| EAW  | 3     | 7193.41 | Х                  |
| EBSA | 3     | 7817.13 | Х                  |
| EBW  | 3     | 9452.26 | Х                  |

| Contrast   | Sig. | Difference | +/- Limits |
|------------|------|------------|------------|
| CSA - CSB  | *    | 900.018    | 488.291    |
| CSA - CW   | *    | -2640.71   | 488.291    |
| CSA - EASA | *    | -2003.4    | 488.291    |
| CSA - EASB | *    | -694.192   | 488.291    |
| CSA - EAW  | *    | -3316.81   | 488.291    |
| CSA - EBSA | *    | -3940.54   | 488.291    |
| CSA - EBSB | *    | -2676.1    | 488.291    |
| CSA - EBW  | *    | -5575.66   | 488.291    |

| CSA - ECSA |   | 244.537  | 488.291 |
|------------|---|----------|---------|
| CSA - ECSB | * | 1680.09  | 488.291 |
| CSA - ECW  | * | -568.205 | 488.291 |
| CSA - EDSA |   | -442.927 | 488.291 |
| CSA - EDSB | * | 858.414  | 488.291 |
| CSA - EDW  | * | -2648.34 | 488.291 |
| CSB - CW   | * | -3540.72 | 488.291 |
| CSB - EASA | * | -2903.42 | 488.291 |
| CSB - EASB | * | -1594.21 | 488.291 |

| CSB - EAW   | * | -4216.83 | 488.291 |
|-------------|---|----------|---------|
| CSB - EBSA  | * | -4840.55 | 488.291 |
| CSB - EBSB  | * | -3576.12 | 488.291 |
| CSB - EBW   | * | -6475.68 | 488.291 |
| CSB - ECSA  | * | -655.481 | 488.291 |
| CSB - ECSB  | * | 780.076  | 488.291 |
| CSB - ECW   | * | -1468.22 | 488.291 |
| CSB - EDSA  | * | -1342.95 | 488.291 |
| CSB - EDSB  |   | -41.6047 | 488.291 |
| CSB - EDW   | * | -3548.36 | 488.291 |
| CW - EASA   | * | 637.301  | 488.291 |
| CW - EASB   | * | 1946.51  | 488.291 |
| CW - EAW    | * | -676.104 | 488.291 |
| CW - EBSA   | * | -1299.83 | 488.291 |
| CW - EBSB   |   | -35.3992 | 488.291 |
| CW - EBW    | * | -2934.96 | 488.291 |
| CW - ECSA   | * | 2885.24  | 488.291 |
| CW - ECSB   | * | 4320.8   | 488.291 |
| CW - ECW    | * | 2072.5   | 488.291 |
| CW - EDSA   | * | 2197.78  | 488.291 |
| CW - EDSB   | * | 3499.12  | 488.291 |
| CW - EDW    |   | -7.63778 | 488.291 |
| EASA - EASB | * | 1309.21  | 488.291 |
| EASA - EAW  | * | -1313.4  | 488.291 |
| EASA - EBSA | * | -1937.13 | 488.291 |
| EASA - EBSB | * | -672.7   | 488.291 |
| EASA - EBW  | * | -3572.26 | 488.291 |
| EASA - ECSA | * | 2247.94  | 488.291 |
| EASA - ECSB | * | 3683.5   | 488.291 |
| EASA - ECW  | * | 1435.2   | 488.291 |
| EASA - EDSA | * | 1560.48  | 488.291 |
| EASA - EDSB | * | 2861.82  | 488.291 |
| EASA - EDW  | * | -644.939 | 488.291 |
| EASB - EAW  | * | -2622.62 | 488.291 |
| EASB - EBSA | * | -3246.34 | 488.291 |
| EASB - EBSB | * | -1981.91 | 488.291 |
| EASB - EBW  | * | -4881.47 | 488.291 |
| EASB - ECSA | * | 938.729  | 488.291 |
| EASB - ECSB | * | 2374.29  | 488.291 |
| EASB - ECW  |   | 125.987  | 488.291 |
| EASB - EDSA |   | 251.265  | 488.291 |
| EASB - EDSB | * | 1552.61  | 488.291 |
| EASB - EDW  | * | -1954.15 | 488.291 |
| EAW - EBSA  | * | -623.726 | 488.291 |
| EAW - EBSB  | * | 640.704  | 488.291 |
| EAW - EBW   | * | -2258.85 | 488.291 |

| EAW - ECSA  | * | 3561.35  | 488.291 |
|-------------|---|----------|---------|
| EAW - ECSB  | * | 4996.9   | 488.291 |
| EAW - ECW   | * | 2748.6   | 488.291 |
| EAW - EDSA  | * | 2873.88  | 488.291 |
| EAW - EDSB  | * | 4175.22  | 488.291 |
| EAW - EDW   | * | 668.466  | 488.291 |
| EBSA - EBSB | * | 1264.43  | 488.291 |
| EBSA - EBW  | * | -1635.13 | 488.291 |
| EBSA - ECSA | * | 4185.07  | 488.291 |
| EBSA - ECSB | * | 5620.63  | 488.291 |
| EBSA - ECW  | * | 3372.33  | 488.291 |
| EBSA - EDSA | * | 3497.61  | 488.291 |
| EBSA - EDSB | * | 4798.95  | 488.291 |
| EBSA - EDW  | * | 1292.19  | 488.291 |
| EBSB - EBW  | * | -2899.56 | 488.291 |
| EBSB - ECSA | * | 2920.64  | 488.291 |
| EBSB - ECSB | * | 4356.2   | 488.291 |
| EBSB - ECW  | * | 2107.9   | 488.291 |
| EBSB - EDSA | * | 2233.18  | 488.291 |
| EBSB - EDSB | * | 3534.52  | 488.291 |
| EBSB - EDW  |   | 27.7615  | 488.291 |
| EBW - ECSA  | * | 5820.2   | 488.291 |
| EBW - ECSB  | * | 7255.76  | 488.291 |
| EBW - ECW   | * | 5007.46  | 488.291 |
| EBW - EDSA  | * | 5132.74  | 488.291 |
| EBW - EDSB  | * | 6434.08  | 488.291 |
| EBW - EDW   | * | 2927.32  | 488.291 |
| ECSA - ECSB | * | 1435.56  | 488.291 |
| ECSA - ECW  | * | -812.742 | 488.291 |
| ECSA - EDSA | * | -687.464 | 488.291 |
| ECSA - EDSB | * | 613.877  | 488.291 |
| ECSA - EDW  | * | -2892.88 | 488.291 |
| ECSB - ECW  | * | -2248.3  | 488.291 |
| ECSB - EDSA | * | -2123.02 | 488.291 |
| ECSB - EDSB | * | -821.681 | 488.291 |
| ECSB - EDW  | * | -4328.44 | 488.291 |
| ECW - EDSA  |   | 125.278  | 488.291 |
| ECW - EDSB  | * | 1426.62  | 488.291 |
| ECW - EDW   | * | -2080.14 | 488.291 |
| EDSA - EDSB | * | 1301.34  | 488.291 |
| EDSA - EDW  | * | -2205.42 | 488.291 |
| EDSB - EDW  | * | -3506.76 | 488.291 |

\* denotes a statistically significant difference.

#### The StatAdvisor

This table applies a multiple comparison procedure to determine which means are significantly different from which others. The bottom half of the output shows the estimated difference between each pair of means. An asterisk has been placed next to 96 pairs, indicating that these pairs show statistically significant differences at the 95.0% confidence level. At the top of the page, 10 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure. With this method, there is a 5.0% risk of calling each pair of means significantly different when the actual difference equals 0.





| <b>Compressive Strength Test-Pilot stu</b> | dy |
|--------------------------------------------|----|
|--------------------------------------------|----|

| Summary | Summary Statistics |         |                    |                     |         |         |         |                |  |
|---------|--------------------|---------|--------------------|---------------------|---------|---------|---------|----------------|--|
|         | Count              | Average | Standard deviation | Coeff. of variation | Minimum | Maximum | Range   | Stnd. skewness |  |
| Col_1   | 3                  | 11258.8 | 219.14             | 1.94638%            | 11012.4 | 11431.7 | 419.298 | -0.948754      |  |
| Col_10  | 3                  | 6857.72 | 187.88             | 2.73969%            | 6643.2  | 6993.02 | 349.817 | -1.10309       |  |
| Col_11  | 3                  | 10934.4 | 439.153            | 4.01623%            | 10552.5 | 11414.3 | 861.774 | 0.674252       |  |
| Col_2   | 3                  | 11689.5 | 740.026            | 6.33067%            | 10925.3 | 12402.7 | 1477.4  | -0.218763      |  |
| Col_3   | 3                  | 11187.5 | 580.671            | 5.19035%            | 10558.1 | 11702.4 | 1144.29 | -0.602889      |  |

| Col_4 | 3  | 11521.4 | 47.9009 | 0.415755% | 11466.7 | 11555.5 | 88.8065 | -1.11966   |
|-------|----|---------|---------|-----------|---------|---------|---------|------------|
| Col_5 | 3  | 10125.6 | 396.863 | 3.9194%   | 9672.54 | 10411.8 | 739.225 | -1.10143   |
| Col_6 | 3  | 9109.14 | 425.014 | 4.6658%   | 8680.37 | 9530.3  | 849.926 | -0.0568873 |
| Col_7 | 3  | 9943.09 | 299.08  | 3.00791%  | 9622.6  | 10214.7 | 592.145 | -0.505855  |
| Col_9 | 3  | 6172.21 | 153.966 | 2.4945%   | 6044.7  | 6343.25 | 298.554 | 0.827866   |
| Total | 30 | 9879.95 | 1911.17 | 19.3439%  | 6044.7  | 12402.7 | 6357.98 | -2.12626   |

#### **ANOVA Table**

| Source         | Sum of Squares | Df | Mean Square | F-Ratio | P-Value |
|----------------|----------------|----|-------------|---------|---------|
| Between groups | 1.02695E8      | 9  | 1.14106E7   | 70.67   | 0.0000  |
| Within groups  | 3.22916E6      | 20 | 161458.     |         |         |
| Total (Corr.)  | 1.05925E8      | 29 |             |         |         |

#### The StatAdvisor

The ANOVA table decomposes the variance of the data into two components: a between-group component and a within-group component. The F-ratio, which in this case equals 70.6723, is a ratio of the between-group estimate to the within-group estimate. Since the P-value of the F-test is less than 0.05, there is a statistically significant difference between the means of the 10 variables at the 95.0% confidence level. To determine which means are significantly different from which others, select Multiple Range Tests from the list of Tabular Options.

#### **Multiple Range Tests**

| Method: | 95.0         | percent | LSD |
|---------|--------------|---------|-----|
|         | <i>~~</i> .~ |         |     |

|        | Count | Mean    | Homogeneous Groups |
|--------|-------|---------|--------------------|
| Col_9  | 3     | 6172.21 | Х                  |
| Col_10 | 3     | 6857.72 | Х                  |
| Col_6  | 3     | 9109.14 | Х                  |
| Col_7  | 3     | 9943.09 | Х                  |
| Col_5  | 3     | 10125.6 | Х                  |
| Col_11 | 3     | 10934.4 | Х                  |
| Col_3  | 3     | 11187.5 | XX                 |
| Col_1  | 3     | 11258.8 | XX                 |
| Col_4  | 3     | 11521.4 | XX                 |
| Col 2  | 3     | 11689.5 | Х                  |

| Contrast        | Sig. | Difference | +/- Limits |
|-----------------|------|------------|------------|
| Col_1 - Col_10  | *    | 4401.12    | 684.371    |
| Col_1 - Col_11  |      | 324.388    | 684.371    |
| Col_1 - Col_2   |      | -430.708   | 684.371    |
| Col_1 - Col_3   |      | 71.3342    | 684.371    |
| Col_1 - Col_4   |      | -262.596   | 684.371    |
| Col_1 - Col_5   | *    | 1133.24    | 684.371    |
| Col_1 - Col_6   | *    | 2149.7     | 684.371    |
| Col_1 - Col_7   | *    | 1315.74    | 684.371    |
| Col_1 - Col_9   | *    | 5086.63    | 684.371    |
| Col_10 - Col_11 | *    | -4076.73   | 684.371    |
| Col_10 - Col_2  | *    | -4831.83   | 684.371    |
| Col_10 - Col_3  | *    | -4329.78   | 684.371    |
| Col_10 - Col_4  | *    | -4663.71   | 684.371    |
| Col_10 - Col_5  | *    | -3267.88   | 684.371    |
| Col_10 - Col_6  | *    | -2251.42   | 684.371    |
| Col_10 - Col_7  | *    | -3085.38   | 684.371    |
| Col_10 - Col_9  | *    | 685.511    | 684.371    |
| Col_11 - Col_2  | *    | -755.095   | 684.371    |
| Col_11 - Col_3  |      | -253.053   | 684.371    |

| Col_11 - Col_4 |   | -586.983 | 684.371 |
|----------------|---|----------|---------|
| Col_11 - Col_5 | * | 808.852  | 684.371 |
| Col_11 - Col_6 | * | 1825.31  | 684.371 |
| Col_11 - Col_7 | * | 991.354  | 684.371 |
| Col_11 - Col_9 | * | 4762.24  | 684.371 |
| Col_2 - Col_3  |   | 502.042  | 684.371 |
| Col_2 - Col_4  |   | 168.112  | 684.371 |
| Col_2 - Col_5  | * | 1563.95  | 684.371 |
| Col_2 - Col_6  | * | 2580.41  | 684.371 |
| Col_2 - Col_7  | * | 1746.45  | 684.371 |
| Col_2 - Col_9  | * | 5517.34  | 684.371 |
| Col_3 - Col_4  |   | -333.93  | 684.371 |
| Col_3 - Col_5  | * | 1061.91  | 684.371 |
| Col_3 - Col_6  | * | 2078.36  | 684.371 |
| Col_3 - Col_7  | * | 1244.41  | 684.371 |
| Col_3 - Col_9  | * | 5015.3   | 684.371 |
| Col_4 - Col_5  | * | 1395.84  | 684.371 |
| Col_4 - Col_6  | * | 2412.29  | 684.371 |
| Col_4 - Col_7  | * | 1578.34  | 684.371 |
| Col 4 - Col 9  | * | 5349.23  | 684.371 |

\* denotes a statistically significant difference.

#### The StatAdvisor

This table applies a multiple comparison procedure to determine which means are significantly different from which others. The bottom half of the output shows the estimated difference between each pair of means. An asterisk has been placed next to 35 pairs, indicating that these pairs show statistically significant differences at the 95.0% confidence level. At the top of the page, 6 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure. With this method, there is a 5.0% risk of calling each pair of means significantly different when the actual difference equals 0.



Means and 95.0 Percent LSD Intervals

