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Abstract

The matrix inversion is an interesting topic in algebra mathematics. However, to determine an inverse matrix from a given
matrix is required many computation tools and time resource if the size of matrix is huge. In this paper, we have shown an inverse
closed form for an interesting matrix which has much applications in communication system. The matrix is called Relay-MISO
channel matrix which is channel matrix of the Relay-MISON channel. Base on this inverse closed form, the channel capacity
closed form of a this Relay-MISO channel can be determined as a function of the error rate parameter α.
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I. MATRIX CONSTRUCTION

In this paper, we will investigate the channel capacity for a class of channel named Relay-MISO (Relay - Multiple Input
Single Output). Relay-MISO channel can be constructed by the combination of a Relay channel and a Multiple Input Single
Output channel which is illustrated in Fig. 1.

In Relay-MISO channel, n users want to transmit data, for example, synchronization data to a same server via n relay base
station nodes. The up-link of these users using wireless links, i.e, the GSM network, which are easy to vulnerable due to the
transmission link attenuation by fog, rain, distance or shadow effect, etc. Each user can transmit bit “0” or “1” with the flip bit
probability or the error probability is α and 0 ≤ α ≤ 1. For a simplicity analysis, we suppose that n relay channels have the
same error probability α. Next, all of the relay base station nodes will relay the signal by a reliable channel such as optical
fiber network to a same server. At the receiver side, server is simple adding total received signal to achieve a single output
from multiple inputs signal.

We note that both the modulations and demodulations in the transmitter and receiver side of Relay-MISO channel are simple
amplitude modulation such as PAM coding. Thus, from n users which transmit only two states bit “0” or “1”, server will
receive and recognize total n + 1 levels, i.e, 0, 1, 2, . . . , n. Thus, the channel matrix of this Relay-MISO channel is a matrix
size (n+ 1)× (n+ 1) which all entries Aij can be constructed a follows:

Aij =

s=min(n+1−j,i−1)∑
s=max(i−j,0)

(
j − i+ s

n+ 1− i

)(
s

i− 1

)
αj−i+2s(1− α)n−(j−i+2s) (1)

These channel matrices have an inverse closed form for entries A−1
ij as follows. The closed form of both channel matrix

and inverse channel matrix are proven at the Appendix.

A−1
ij =

(−1)i+j

(1− 2α)n

s=min(0,i−j)∑
s=max(n−j+1,i)

(
n− i

j − i+ s

)(
s

i− 1

)
αj−i+2s(1− α)n−(j−i+2s) (2)

For example, the channel matrix of a Relay-MISO channel with n = 3 is given as follows:
(1− α)3 3(1− α)2α 3(1− α)α2 α3

α(1− α)2 2α2(1− α) + (1− α)3 2(1− α)2α+ α3 (1− α)α2

(1− α)α2 2(1− α)2α+ α3 2α2(1− α) + (1− α)3 α(1− α)2
α3 3(1− α)α2 3(1− α)2α (1− α)3


,

where 0 ≤ α ≤ 1. We note that this channel matrix is strictly diagonally dominant matrix for certain range of values of α,
specifically when α is close to 0 or α is close to 1. In the next part, the construction of channel matrix and inverse channel
matrix will be characterized.

II. FORMULA OF RELAY-MISO CHANNEL MATRIX

Proposition 1. For n relay channels system, the transition matrix A has size (n+ 1)× (n+ 1) and all entries Aij in row i
and column j will be established as follows:

Aij =

s=min(n+1−j,i−1)∑
s=max(i−j,0)

(
j − i+ s

n+ 1− i

)(
s

i− 1

)
αj−i+2s(1− α)n−(j−i+2s) (3)



Figure 1. Relay-MISO channel for the number of user is three.

Proof. From the Relay-MISO channel definition, each the relay channel has only two states “1” (good channel) and “0” (bad
channel) which is flipped at the probability α. Therefore, Aij is the probability from state has i− 1 “good” channels or i− 1
bit “1” transfer to state has j − 1 “good” channels or j − 1 bit “1”. Thus, suppose s is the number channels in i− 1 “good”
channels that is flipped to “bad” channels after the transmission time σ and 0 ≤ s ≤ i − 1. To maintaining j − 1 “good”
channels after the transmission time σ, the number of “bad” channels in n+ 1− i “bad” channels must be flipped to “good”
channels is:

(j − 1)− ((i− 1)− s) = j − i+ s

Therefore, the total number of channels are flipped their state after transmission time σ is:

s+ (j − i+ s) = j − i+ 2s

and the total number of channels that preserves their state after transmission time σ is n − (j − i + 2s) and 0 ≤ s ≤ i − 1.
Similarly, the number of “bad” channels in n + 1 − i “bad” channels must be flipped to “good” channels should be in
0 ≤ j − i+ s ≤ n+ 1− i. Thus: {

max s = min(n+ 1− j, i− 1)

min s = max(0, i− j)

Therefore, Aij can be determined by below form:

Anij =

s=min(n+1−j,i−1)∑
s=max(i−j,0)

(
j − i+ s

n+ 1− i

)(
s

i− 1

)
αj−i+2s(1− α)n−(j−i+2s)

III. FORMULA OF RELAY-MISO INVERSE CHANNEL MATRIX

Proposition 2. All the entries of the inverse channel matrix A−1 given in Proposition 1 can be determined via original
transition matrix A for ∀ α 6= 0.5 by:

A−1
ij =

(−1)i+j

(1− 2α)n
Aij

Proof. To simplify our notation, the “good” and “bad” channel are represented by bit “1” and “0”, respectively. Next, we will
use the definition to show that:

AA−1 = I



If matrix A∗ is constructed by A∗
ij = (−1)i+jAij , then we need to show that:

AnA
∗
n = B = (1− 2α)nI

Firstly, we note that both Aij and A∗
ij is only different by sign of the first index (−1)i+j . Therefore, Bij which is computed

by product of row i in matrix Aij and column j in matrix A∗
ij , can be computed by:

Bij =

k=n+1∑
k=1

AikA
∗
kj

Consider the entry Aik is the probability from state i − 1 “good” channels (i − 1 bit “1” and n − i + 1 bit “0”) to the
intermediate state has k − 1 “good” channels (with k − 1 bit “1” and n − k + 1 bit “0”). Moreover, if the sign is ignored,
then A∗

kj also is the probability going from intermediate state k − 1 to state j − 1, too. However, the state k − 1 includes
C
(

n
k−1

)
sub-states which have a same number of “good” and “bad” channels. For example with n = 2, state k = 2 includes

two sub-states that contains one “good” and one “bad” channels are “10” an “01”. Therefore, the total number of sub-states
while k runs from 1 to n is

∑k=n+1
k=1 C

(
n

k−1

)
= 2n sub-states. Let compute Bij by divided into two subsets:

Compute Bij for i=j: This means that Bii is the sum of the probability from state i − 1 bit “1” go to the intermediate
states has k− 1 bit “1” then come back to state has i− 1 bit “1”. In 2n sub-states, we can divide back to n+1 categories by
the number of different position between i and k.
• If all the bit in i and k are the same, then the probability is:

C

(
n

0

)
(1− α)n(1− α)n = C

(
n

0

)
(1− α)2n

• If all the bit in i and k different at only one position, then the probability is:

C

(
n

1

)
(1− α)2(n−1)(1− α)2

• If all the bit in i and k different at only two positions, then the probability is:

C

(
n

2

)
(1− α)2(n−2)(1− α)2×2

• If all the bit in i and k different at all positions, then the probability is:

C

(
n

n

)
(1− α)2n

Therefore, Bii can be determined by the probability of all n+ 1 categories such as:

Bii =

t=n∑
t=0

C

(
n

t

)
α2t(1− α)2n−2t = ((1− α)2 − α2)n = (1− 2α)n

Compute Bij for i 6= j: Let divide A∗
kj into two subsets: k + j is odd and A∗

kj < 0 or k + j is even and A∗
kj > 0,

respectively. Therefore, Bij =
∑k=n

k=1 AikA
∗
kj also is distributed into the positive or negative subsets. Next, we will show that

the positive subset in Bij equal the negative subset then Bij = 0 for i 6= j.
Indeed, suppose that state i with i− 1 bit “1” go to state intermediate k1 and then to back to state j with j − 1 bit “1” and

Bik1 is positive value. Next, we will show that existence a state k2 such that Bik2 is negative value and Bik1 = −Bik2 .
Let call s is the number of positions where state i and j have a same bit. Obviously that s ≤ n − 1 due to i 6= j. For

example if n = 4 and i = 1111 and j = 0001, we have s = 1 because i and j share a same bit “1” in the positions fourth.
Suppose that an arbitrary state k1 are picked, we will show how to chose the state k2 with Bik1 = −Bik2 . Consider the two
follows cases:
• If (n− s) is odd, k2 is constructed by maintain s position of k1 where i and j have same bit and flip bit in the n− s rest

positions.
• If (n − s) is even, k2 is constructed by maintain s + 1 position of k1 where s position are i and j have a same bit and

one position where i and j have a different bit, next n− s− 1 rest positions will be flipped. Note that since s ≤ n− 1 then
we are able to flip n− s− 1 rest positions.

We obviously can see that k1 and k2 satisfied the probability condition |Bik1
| = |Bik2

| due to the number of flipped bit
between i and k1 equals the number of flipped bit between k2 and j and the number of flipped bit between j and k1 equals
the number of flipped bit between k2 and i.



Next, we will prove that k1 and k2 make Bik1
and Bik2

in different positive and negative subsets. Indeed, consider the
number of bit “1” in k1 is b1, number of bit “1” in k2 is b2, number of bit “1” in s bit same of i and j is bs, respectively.
Therefore, the number of bit “1” of k1 in (n − s) rest positions is (k1 − ks), the number of bit “1” of k2 in (n − s) rest
positions is (k2 − ks).
• If (n− s) is odd. Since all bit in (n− s) rest positions of k1 is flipped to create k2, then total number of bit “1” in n− s

bit of k1 and k2 is (k1 − ks + k2 − ks = n− s) is odd. So, (k1 + k2) should be an odd number. That said (k1 − k2) is odd
or (k1 + j)− (k2 + j) is odd. Therefore, Bik1

and Bik2
bring the contradict sign.

• If (n− s) is even. Because, we fix one more position to create k2, then number of flipped bit (n− s− 1) is odd number.
If one more bit is fixed in k1 is “0”, we have a same result with case (n− s) is odd. If fixed bit is “1”, similarly in first case
(k1 − ks − 1) + (k2 − ks − 1) = n− s− 1 is odd number, therefore (k1 + k2) is odd number. That said (k1 − k2) is odd or
(k1 + j)− (k2 + j) is odd. Therefore, Bik1

and Bik2
bring the contradict sign.

Therefore, the state k2 always can be created from a random state k1 and Bik1
and Bik2

bring a contradict sign. That said
for i 6= j, Bij = 0. Therefore:

B = (1− 2α)nI

The Proposition 2, therefore, are proven.

IV. CONCLUSION

In this paper, our contributions are twofold: (1) establish a channel matrix closed form for Relay-MISO channel based on
the error probability α; (2) figure out the closed form for inverse channel matrix in Relay-MISO channel. This result can be
used to obtain a closed form or achieve a tight upper bound of Relay-MISO channel capacity.


