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1. INTRODUCTION

In Nash’s 1954 paper [1] the author introduced an iterative scheme to approximate short embeddings of
n—dimensional Riemann manifolds in R?"+! by C! isometric embeddings'. One consequence of this result
was that any closed, orientable, Riemannian surface could be C' embedded into a ball in R? of arbitrary
radius R > 0 isometrically [5]. Expanding on the methods Nash employed in his paper Gromov introduce
the concept of the h-principle and convex integration in his 1986 treatise Partial Differential Relations [2].
Currently a suitable variant of the h—principle is being used to show nonuniqueness of weak solutions to the
equations of Fluid Equations.?

In this introduction we will give a flavor of Nash’s paper original paper, consider a related example, and

discuss the layout of the project.

1.1. Nash’s 1954 Paper. For this section we follow along with Nash’s original paper [1], and the modern
exposition of the paper given by [5] and [7]. As all math texts should, we begin with a definition.

Definition 1.1.1 (Short Map). Let (M, g) be a Riemannian manifold. We say an embedding u : M — R"

is short if for any tangent vector w
(u*e),; w'w! < gijwiw? (1.1.1)

where e is the Euclidean metric and u*e is the pullback of the metric.

Casually, the above definition says a embedding is short if the length of every curve v C M is shorter when
measured with the Euclidean metric in R™ on the embedding. Then by standard topology results we can
always (smoothly) embed the m dimensional Riemannian manifold M in an appropriately high dimensional
FEuclidean space. Dividing the embedding by an appropriate constant we can produce short maps. We also
say an embedding is isometric if the lengths of curves measured in the embedded space is the same as on the
manifold. This is equivalent to strict equality in (1.1.1). With these definitions in hand we can now state

Nash’s 1954 result.

Theorem 1.1.2 (Nash’s C! isometric embedding theorem, [5], 2.1.2). Let (M,g) be a smooth closed
m—dimensional Riemannian manifold and v : M — R™ a smooth C* embedding with n > m + 2. Then for

all € > 0 there is a C* isometric embedding u : M — R™ such that ||u — v||; . < €.

Remark 1.1.3 (Immersions). In the above definitions and theorem we can replace ‘embedding’ with ‘immer-
sion” where a immersion is a local embedding. Throughout this section we will restrict our attention to

embeddings.

1Olriginally R27*+2 but the dimension was decreased by Kuiper a year later.

2As a brief aside, during a speech at the Balzan Prize Gromov said: ‘... the presence of the h-principle would invalidate the

very idea of a physical law as it yields very limited global information effected by the infinitesimal data.’[6]



Remark 1.1.4. When applying the above theorem to the two sphere we can produce a family of C'' embeddings
that are distinct under the equivalence of rigid motions. This is vividly distinct from earlier work by Cohn

and Vossen.

Theorem 1.1.5 (Cohn-Vossen (1927), [7], pg.284). If (S2, g) has positive Gauss curvature and u € C?(S?,R3)

is an isometric immersion then u(S?) is determined up to a rigid motion.

As alluded to earlier the construction of the isometric embedding w is a iterative scheme that produces a
convergent sequence in the C'! norm. We will assume that the embedding is strictly short for our ease. The

main idea is as follows:

(1) Find a open covering of M where each open set is diffeomorphic to an m-ball and intersects a finite
number of other open sets in the covering.

(2) Define a partition of unity based off the open covers.

(3) Let di; = gij — (u"e)y;

(4) Using the localization of the partition of unity increase the metric in each neighborhood by %5”-.

(

5) Take limit of iterate scheme above to get isometric embedding.

Full details of the scheme can be found in (the highly readable) [1] and the modern treatment in [5].

1.2. A Basic Example. Now we consider an example found in [6] to show how Nash’s idea can be applied
to other situations. Our goal is to develop and iterative scheme that produces functions ue : [0,1] = R
with |uee| =" 1 given appropriate initial function. Let uo be the given function with |ug| < 1 and wuy, be the

function developed from wug after k iterates. Letting the auxiliary function

pi(@) =1 = uj(x),

the oscillatory term be

1 0<z (modl)< %
s(x) =
-1 <z (mod1)<1,
and {\;} a sequence to be deterimined later we define

upr1(x) = ug(z) + %pk(x)s()\kx).

Since s(z) only takes values of 1 or —1 we have that at each point

1 15,
Ukl = Uk + 5 §uk
or
1 15
Uk41 = Uk 5 + iuk

Then as the polynomial p(z) = z + § — 2% and ¢(z) = z — § + 2% have |p(z)| < 1 and |¢(z)| < 1 for |z] < 1

we see that if |ug| < 1 then |ug41| < 1. Thus for all k¥ € N we have

sup |ug ()] <1
x
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FIGURE 1. Iterative scheme from example applied to uy = 15

iterations with A, = 2.

by choice of ug. Next as ugy1 —up = %(1 — uk) s(Arz) if we have that up — us in LP then |uoo\ =< 1. Using

p = 2 we have

1 1 1 1 1
/0 g 1)? dx = /o |ug + 5(1 —up)s(M\px)|? dx = /0 (ui +up(l —up)s(A\px) + 1(1 - ui)2> dx.

Then as s(Apx) oscillates faster with A\, — oo by Riemann-Lebesgue lemma we can choose Ay large enough

1 1 1 1
/ |uk+1|2dX2/ \uk|2dx+7/ (1-
0 0 8Jo

< lull L2 <

$0
ui)? dx.

Clearly, ||uo|| ;1 < [Jua]| 2 < < 1land lim [|ug||. =1.
k—o0

1.3. Layout. Having seen a minor aspect of Nash’s work and how it can be applied outside of embeddings
we are ready to discuss the format of the paper and what it deals with. Briefly, in [6] the authors note
that the h-principle as constructed by Nash has a analog to the Fuler-Reynolds system (Definition 2.2.1)
where the (symmetric, trace free) matrix (d;;) plays the role of the Reynolds stress tensor, R. Thatis R is a
measure of how far a solution to Euler-Reynolds equations is from being a solution to the Euler equations.
More explicitly, the modifier of Reynolds appended to a system will refer to introduction of a forcing function
of the form
divR

to the system where R is a trace free matrix.

With the above definition we note if we can construct consecutive (weak) solutions to the Reynolds Stress

Tensor System with the norm of R decreasing to zero then passing through the limit we will hope to retain



a weak solution of the system. This idea is the guiding principle behind the organization of this paper with
regard to recent treatment of nonuniqueness of fluid dynamic equations by [3] and [4]. In each section dealing

with their respective works we will:

e Provide basic background information on the systems
e State inductive estimates we will use in convergence

e Build consecutive tuples

e Look at estimate associated with scheme convergence.

For the fourth item we will not attempt to provide all details due to the unenlightening nature of many
estimates, but instead look at some important or representative ones that were special to the paper. Specific
things not covered are the Reynolds stress tensor estimates due to the repetitive nature of calculations
coming from their function as an error absorbing term for the systems.

Additional to the main parts of the paper we have also provide an appendix that deals with:

(1) a technical detail in the estimates of [4],

(2) an overview of some basic properties of the Dirichlet kernel.



2. EULER EQUATIONS

The 3D incompressible Euler equations are

D
50+ Vp=0
b (2.0.1)
dive =0
where v is the fluid velocity, p is the scalar pressure, and
3
D 0 ) 0
== i = == .
Di" atH;” o, " (at T V) v
is the convective derivative where-within 7 denotes the j** component of v. Using the identity
div (v ®v) = div (v0") = (v- V)v + (divo)v
we will write (2.0.1) as
o .
sv+divie®v+Vp=0
ot (2.0.2)

dive = 0.
Now given a velocity field v we also wish to be able to establish the scalar pressure from the velocity field.

With this in mind we apply the divergence operator to (2.0.1) and retrieve,

Q(d. )+23: div (v -2 +Ap=0
81; 1V v p v | v ax'v p =U.

J

9 , , ,
Then as div (vjaxv> = (ij) v+ v’ (dive) = Vol - v we have the elliptical equation
J

plz) = — N*Z (8iivj> (81@1‘) (z) (2.0.3)

where3 N = and * denotes convolution.

4|z
Finally as we are interested in weak solutions of the Euler equation on the torus (T?) we say that a pair

(v,p) is a weak solution to (2.0.1) if

1
//(atgo-v—l—Vgp:v@v—i—pdivcp)dxdt:0
o Jrs

for a test function ¢ that is perodic and space and has compact support contained in (0, 1) for time. Having

developed basic facts about the Euler Equations we will now focus on a specific class of steady solutions.

3Here we use the letter N to signify the Newtonian Potential in following with [8].



2.1. Beltrami Flows.

Definition 2.1.1 (Beltrami Flow, [8]). A steady 3D flow is called a Beltrami flow if the vorticity w = V x v

satisfies the condition
w(z) = A(z)v(z) (A(z) #0)

for all z. If A(x) is constant we call the flow a strong Beltrami Flow.

Now we would like to show that a Beltrami Flow solves the Euler equations. Before we undertake this we
recall that we can reformulate (2.0.1) in terms of its vorticity. Specifically, the vorticity formulation of the
Euler equations is

—w =w- Vv,
Dt

for more details please see Proposition 2.21, pg.78 in [8]. For a steady flow the prior equations reduces to
(v-Vw=(w- V).

With this in hand we are now ready to prove that a incompressible Beltrami Flow solves the steady 3D

Euler equations.

Proposition 2.1.2. Let v be a incompressible Beltrami flow, then v solves (2.0.1).

Proof. Using that w = Av we have
(v-Vw=(v-V)xv= (v -V)v+uv- (V).
Next as
divw =divV xv =0
we have
0=divw =diviv = (VA) - v+ A(dive) = (VA) - v

where the final equality follows from incompressibility of v. Coupling this with the first equation we infer
that
(v- Viw=(M-V)v=(w-V)v

as desired. Hence v solves the 3D steady Euler equations. (|

For the rest of this section we will restrict our attention to a specific class of (strong) Beltrami flows.

Proposition 2.1.3 (Beltrami Flows, [3], 3.1). Let A\g > 1 and let Ay, € R3 be such that
1

Ak'k:07 |Ak|:\/§?

A=Ay
for k € 72 with |k| = \o. Furthermore, let

k
Bk:Ak-i-imXAk.



Then for any choice of a, € C with ay = a—y the vector field

W(E) = Y apBre**

[k[=Xo

is divergence free and satisfies
, W
div(We W)=V 5

Furthermore,

1 1
][W®Wd§:5 > al? <Id—k|2k®k>

[k|=Xo

Proof. By hypothesis we see that a_;B_; = aiBg. Thus

W(¢) = Z aiBre'™t

[k|=Xo

_ 1 Betk€ BLet k€

= Z 5 apbre + ap Bre (2_1.1)
V‘C\:)\o

= Z Re (akBkeik'E)
‘k\:)\o

is a real valued vector field. By direct calculation we have that
div (&) = > div(axBre™ ) = Y api(k- Byp) et =0 (2.1.2)
[k]=Xo [k[=Xo
where the final equality follows from k, Ay, k x Ay being a orthogonal set. Thus W is divergence free as
desired.

Now using that W is divergence free we have that

W 2
divW®W:(W-V+V~W)W:(W~V)W:V%—W>< (VxW).
Then since
V x Bre™€ =ik x Bye**
and
ik X By = ik x Ak-i-lmXAk :|k“ Ak—‘rszAk :|k“Bk
we see
VX W =AW
and consequently
i

diviWeW =V 5

For the final part of the proposition we note that

WeoW = Z aray (B @ By) e+
[k|=[l|=Xo



which gives
, k k
WeW = Zaka—kBk®B—k: Z |ak| Ak®Ak+ WXA'IC (2] mXAk .
T3
[k|=Xo [k|=Xo

Using the fact that

k k k k
Id:®+2Ak®Ak+2< XAk> ® ( XAk)
k| k| k| k|

the result follow. O

Remark 2.1.4. Coupling Proposition 2.1.3 and 2.1.2 we see that the constructed W is a solution to (2.0.2)

2
with p = — WL

Examining the proof that W is a real vector field we note that if we let a;, = rpe’?* then we can express

, , k , k
Re (akBke’k'f) = rp A, Re (ez(k'f+9’“) —rkm x A Im (ez(k'f*'ek)) =1, Ay cos(k:f—&—@k)—rkm x Ay, sin(k-E+65,)
and rewrite (2.1.1) as
k .
W(¢) = Z T | Ak cos(k - &€+ 0r) — T X Apsin(k - €+ 6;) | . (2.1.3)
[k|=Xo0
Let us now consider a simple example. Let A\g = 1 then
{k € Z® | [k| = Ao} = {£e1, Lea, £es}. Setting
1
Ai,, = —e
+eq \/i 2
1
Ay, = —e 2.14
te; = 7563 (2.1.4)
1
Aie, = —e
tes \/i 1
and applying the proposition we recover
Bae, = o= (e ier X €2) = 7= (o2 £ ics)
er = —=(e2 L ieg X eg) = —= (ex L ie
+e, NG 2 1 X e 5 (€2 3
B —i(e +ie Xe)—i(e +ieq) (2.1.5)
+es NG 3 2 X e3 5 (€3 1 d.
B 1(6 +ie; X e3) 1(6 Fieg)
o = — = — ies) .
tes NG 1 1%Xe3 5 (€1 2
Next letting at.; = 1 for 1 < j <3 and applying (2.1.3) we have that
0 —sinés cosés cos &3 — sinés
1 1
W (§) = 7 cos& |+ 0 + | —siné&s =5 | woséi—sing (2.1.6)

—siné&; cos & 0 coséy —siné;



Remark 2.1.5 (ABC Beltrami Flows). Notice that the previous example is close to the celebrated Arnold-
Beltrami-Childres (ABC) flows with form

Asinés + Ccosés
v(§) = | Bsin& + Acosé&s
C'sinéy + Bcos &

These flows were shown to have a diverse dynamics for different (A4, B, C) ranging from helix particle tra-
jectories to ergodic flows. Indeed examining the construct in [8] we see that we are interested in using
eigenfunctions of the (2D) Laplacian and then extending to 3D euler equations through stream functions.

For the ABC construction the eigenfunctions chosen were

Yi(€) = a;sin (§ir2 mod 3)
in our example we choose
Yi(§) = a;sin (§i41 mod 3) -

Indeed, as we take different A we see that W will become a sum of ABC (or closely equivalent) flows expressed

in different basis.

The Beltrami flows developed in this section will form the basis of rest of the paper.

2.2. The Iteration Scheme. For the rest of this section we follow closely along with [3]. In subsequent
subsections we will suppress proofs of standard estimates and predominately focus on the thematic elements.

As such we start with a definition.

Definition 2.2.1 (Euler-Reynolds System). Assume v, p, R are smooth functions on T? x [0, 1] going to R3 R,
and Sg %3 the symmetric 3 x 3 trace free matrices, respectively. We say the triple solves the Euler-Reynolds
system if

Ay + div (v @ v) + Vp = div R
(2.2.1)

dive = 0.
Proposition 2.2.2 ([3], 2.2). Let e be a smooth positive function from [0,1] to R. Then there exists positive
constants n, M with the follow properties:

o

Let 6 <1 and (v,p, R) a solution to the Euler-Reynolds system such that

Zée(t) < e(t) — / w2(z, 1) dz < 256(15) (2.2.2)
. and
sup |R(z,t)| < né. (2.2.3)

Then there there exists a second triple (vi,p1,R1) such that the following hold

gée(t) <e(t) — / o1 |%(x,t) do < gée(t), (2.2.4)
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o 1
sup |R(x,t)| < 5176, (2.2.5)
x,t
sup |v; — v] < MV, (2.2.6)
x,t
and
sup |p1 — p| < Mé. (2.2.7)
x,t

By iteratively applying the Proposition 2.2.2 we see that given a original solution to the Euler-Reynolds
system satisfying the conditions then we can construct a sequence of triples (v, pn, Rn) that are Cauchy in
the sup norm with the property that Rn — 0, and vy, p, converge to continuous functions. That is to say

that the pair (veo, Poo) Will solve the euler equation with

e(t) = / [voo|? (2, 1) da.

Noting that the triple (0,0, 0) satisfy the hypothesis we have proven the following statement.

Theorem 2.2.3 ([3], 1.1). Let e(t) be a smooth positive function from [0,1] to R. Then there exists a pair

(v,p) that solves the Euler equations with the property
e(t) :/|v|2(x7t) dz.

The rest of this section will be dedicated to building the pair (vq, pl,lo%l) and showing they solve the
estimates above. In our construction v; will be the sum of v and a ‘modified’ Beltrami flow w = w, + w,
where w, is a highly oscillatory structure and w, is a corrector to make w, divergence free. p; will be the
former pressure plus the pressure of the ‘modified’ Beltrami flow and finally Ry will be a catch-all term

defined by inverting the divergence operator.

2.3. The Velocity Increment. First we let A\, u be large natural numbers with i € N. These parameters
will be choosen explicitly in later parts to aid in the convergence of the scheme. !

Recalling that the h-principle is a local property we now wish to extend its use to the total space. As such
we will build a partition of unity on the velocity space R3. Fix real numbers 73 < ry <rg < 1. Then choose

a smooth function ¢ € C°(B,,(0)) with the property that ¢ is identically 1 on B, (0). By construction we
also have that the Supp ¢ C (—1,1)3. Next for k € Z> we define the translates of ¢ by k,

pr(x) = p(x = k)

and the function

b= ¢

keZ3

We observe that 1) is smooth since each ¢, is smooth and for each z € R3, 0 < +(z) < 8 by support of .

Using these functions we define

Qp =

Pr
v
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and
j —i(k-L)r
Do) = 3 e
lECj
where Cj is a equivalence class of the quotient of Z3 by 2Z3. Using the fact that oy, ; have disjoint supports
for k,1 € C; we have
N2 N T
6] =0 o) = > abua) +2 Y ai(pw)ag(ue) = Y af(ue). (23.1)
lec; I£reC; lec;

Moreover by the definition of oy we see that Zj.:l ‘¢§fj )‘ = 1. Similarly appealing to the disjoint supports

of the ay’s we also deduce for all z € R® that

Do @, )| = |3 of™| D7) < cmpn (2:32)

leC;

nx

for a constant C'(m) dependent on m. By direct computation we also have that

Or ;Cj)(z,r) - Z (k1) al(u;z:)e_i(k'ﬁ)T _ (k . l~) oz[(ux)efi(k'%)T

1eC; H

where [ is the only element of C; with the support of a; containing px. Furthermore by the support of a;

we have |pz — I| < 1. Hence in a neighborhood around any fixed (z,7) we have the identity
0.6 +i(k-x) ) = ik - <w— L) @), (2.3.3)
Combining (2.3.2) and (2.3.3) we deduce
sup ‘D;” (8T¢,(€j) +i(k-x) ¢,(€j))) < C(m, |k))p™ . (2.3.4)

Lemma 2.3.1 (Geometric Lemma, [3], 3.2). For every N € N we can choose ro > 0 and \g > 1 such that

(i) There exists sets
Ajc{keZ? : |kl =N}
which disjoint for 1 < j < N and —A; = A;.
11) There exists smooth functions v(j) € C®(B,,(Id)) for 1 < j < N where ’y(j) = ’y(_j), and satisfy the
k 0 k k
identity that
(iii) for each R € B, (1d)
1 ) 2 k k
R=—- (R d-——® —|. 2.3.5

keA;

Having collected some basic estimates about the function qbgcj ) we will defined our oscillatory term. Ap-
plying the Geometric Lemma 2.3.1 with N = 8 we find Ag > 1, rp > 0, and pairwise disjoint sets A; with
their smooth functions %ij ) e C*(By,(Id)). Then setting

p(t) = 3(2177)3 <e(t) (1 - g) -/ lv)? () dx)
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and
R(z,t) = p(t)Id —R(z, t) (2.3.6)
we define the oscillatory component
8
iy R(x,t ; PN
wolz,t) = Vo) Y S 4 ( ( )> 9) (v, ), At) BieF (2.3.7)
= iex, o)

where By are defined as in Lemma 2.1.3.

We observe that w, is only well defined for % € B,,(Id) from construction of Vl(j ) in the geometric lemma.

Using hypothesis we see

1 o
t)=———(e(t)— *(z,t)dx —e(t) -
pl0) = 5y (€00 = [ 1Py ax )5 )
o
> t
Z e
0 in e(t) >0
———— min e .
12(27)3 tefo,1]
Then by construct we have
R R 12(2 12(2m)3
[ == = 2o = 2
p(t) p(t) | dminyepo, 1) min,eo, 1) e(t).
. mingepo,1y e(t) . . .
Thus fixing 0 < < W is sufficient to guarantee that (2.3.7) is well defined.
™
Next setting
0 ke Uiz A

ap —

VRO S5 (M) o e, M) ke Ui, A
we can also represent the oscillation term as
we(x,t) = Z ap Be™ () (2.3.8)
[k|=Xo
naturally leading to the characterization of w, as patched Beltrami Flows. We also see that the ‘patching’
process used to create w, means that w, is no longer a eigenfunction of the curl operator. The following

proposition characterize some aspects of w,.

Proposition 2.3.2 (Patched Beltrami Flows). The patched Beltrami Flow w, as defined in (2.3.7) satisfies
the following identities,

Vxwe= Y VapxBpe™ "+ 3" iday (k x By) e, (2.3.9)
[k[=Xo [k|=Xo
1 . k x Bk; iXk- 1 . k x Bk? Ak
=3V x > ia e S > iVax x e >, (2.3.10)
|k|=Xo |k|=o
and
wo @w, = Rz, t) + Y Up(x,t)e™ < (2.3.11)

1<k<2)\g
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1
where Uy, 1s smooth and Uik = 3 (tr Ug) k.

Proof. First we will compute the curl of w,. Specifically, we recall the vector identities
U x (fv) = (V) x v+ [ (V x V)

and
V(fg)=(Vfg+ f(Vg)

for f,g € C'(R3,R) and constant vector v € R®. Then by direct computation

V xw, =V X E ay BT
[k|=Xo

= Y ((Var) + ax(ik)) x Bre™™
|El=)o

= Z Vak X Bkei/\kw + Z z')\ak (k X Bk) 6i>\k‘$
[k|=Xo [k|=Xo

as claimed. Inspecting (2.3.9) we also deduce (2.3.10). To see this we let W = > _5, ayBreF* . Hence
w, satisfies the equation
V x 0, = Z Vay x Bpe™F + Z iA\ag (k: X Bk) LR
[kl=Xo [kl=Xo

Rearranging we have

Z apk x BreF?® = V X Wg —I— Z Vay x BpeFe,

A
[kl=Xo |k| Ao
Next using that {k, A, k X Ag} is an orthogonal basis and setting By, = I |B" we have the identity
k x Bk
k % =-B
R ’

and consequently

1 . kX Bk i\pa 1 ) kX Bk ixka
= XV X Z iak e e Y Z iVag X 2 e
[k]=Xo [k]=Xo

as desired.

For (2.3.11) we appeal to the strong similarity of w, to the Beltrami flows. In particular set

Wsm&) = VoY 3 o0 (

J=1kel;

>¢k (0(y,s),7) Bee™ = > ai(y, s, 7)Bre™ . (2.3.12)

[k|=Xo0
Then W is a Beltrami flow holding y, s, 7 fixed, that is W satisfies (2.1.3). Next by direct assessment
WeoW = Z ara_,Br @ B_j + Z ara; By, ® Bjel ¢

Ikl=20 Ik|=|t=20
L=k (2.3.13)

=Up+ Y, Upe™*
1<[k[<2X0
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Where

Up = E apag By @ By
K+ =F

and Uy = 0 if k € Z3 can not be decomposed as k = k' + 1" where k', I’ € Z* with |k'| = |I'| = A¢. Then

using Proposition 2.1.3 we see

%sz@W&

(o)

55 (0 () bl (- o )
SER (0 0) (Frz0) (o)
s zon i3 (¢ () (e )

Finally, again appealing to Proposition 2.1.3, we have
. 1 2
div(WeW) = §V\W| .

Assessing the right hand side we have

|VV|2 =W -W = Z ak/al(Bk/ . Bl)ei(k/+l)'§ = Z tr Ukeih6
[k |=[l]=Xo [k|<2X0
which gives
1 2 1 ikt
§V|W| = Z itrUkke :
1<k|<2X0
Investigating the left hand side,
dviweW =Y divUpe™* = Y Uke*t.
1<[k|<2X0 I<[k|<2X0
Comparing frequencies we obtain the desired result. (Il
Examining (2.3.7) we see that w, is not divergence free. To maintain the divergence free condition of

the solution we introduce a corrector term w.. We now introduce the Leray Projection of a vector onto its

divergence free compont of zero mean to define w,.
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Definition 2.3.3 (Leray Projection). Let v be a C1(T3,R?) smooth function. We define

Qv:qu—&-][ v

T3

where ¢ is the unique solution of
A¢p =divo

in T3 with zero average. Then the Leray projection of v onto divergence free fields of zero averageis P = I—Q.

Now we take w, to be the difference of the Leray projection of w, and w,. That is

We = Pw, — W, (2.3.14)
Then we define the field increment as
W= W, + We. (2.3.15)
and the new vector field as
v = v+ w. (2.3.16)

2.4. The Reynolds Stress and Pressure. In keeping with the strong connection between w, and Beltrami

flows we define
pr=p- %Iwol2~ (2.4.1)
Then to define By we recall that we need to satisfy the equality
div }031 = 0wy + divv; ® v1 + Vps.

As such we introduce a new operator that acts as a right inverse of the divergence operator
Definition 2.4.1. Let v be a smooth vector field on the torus. We define the operator R by

Ru — i (VPu+ (vPu)") + Z (Vu+ (va)T) - % (divu)1d (2.4.2)
where u € C* (T,RR?) is the unique solution of

Auzv—][v

with zero mean.

Proposition 2.4.2 (R =div™*', [3], 4.3). For any v € C® (T3,R3) we have the following properties

(i) Ro(x) is a symmetric trace-free matriz for each x € T3.

(i) divRv =v — ][U.
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Proof. We see the Ru(z) is symmetric by construct. Next using the linearity of the trace operator and that

tr VP = div’P = 0 we have
trRu(x) = Ztr (Vu) + tr (Vu)" — gdivu =2 gdivu— gdivu =0

as claimed by (i).
Next for (ii) using that div(VyT) = V(dive)) for vector valued function 1 we have

1 3 1
divRv = ~APu+ —Au+ = V(divu).
4 4 4
Recalling that Pu=u — f u — V¢ and that AV = VA we see
APu = Au—VAp = Au— V(divu)
and consequently
divszAu:v—][U.
Thus R acts as the right inverse of the divergence operator on mean-free vector fields. (Il
Using the fact that
div(vy ® v1 + p1 Id) = div(v; ® v1) + Vpy
we have that div(v; ® v1) + Vp; is mean free. Similarly 9,0 = div(v ® v + pId —R) is mean free. Finally
using that w; = Pw, is mean free we get 0;v1 = 0yv + Jyw; is mean free and thus
div (R (Orv1 +v1 @ v1 + Vp1)) = Orv1 + v1 @ v1 + Vpy. (2.4.3)
Hence we take Ry = R (Opv; +v1 ® v1 + Vp1) and have that the trio (Ul,pl,él) is a solution to Euler-

Reynolds system.

2.5. Estimates. In this section we will give a sketch that shows the new triple satisfy the inductive estimates.

First though we gather some standard Schauder estimates from [3].

Proposition 2.5.1 ([3], 5.1). For any « € (0,1) and any m € N there exists constants C(a,m) with the
following properties. If ¢, : T3> — R are the unique solutions of

Ap=f Ay =div F
fo=0 fo=0
then
Bllnrora < Cmya) [|fll1a
and

1l g1qa < Clmy @) ||l 4 -

More over we have the estimates

19010 < Clms ) [[0]] 10
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1POll s < Clm,a) [|]]

m+ta

IRV|[141 40 < Clm, @) [[o]]

m-ta

IR(div A)[,,1.0 < C(m, @) [|A]|

m4a

IRQ(div A)[,, 4o < C(m, ) [|A]]

m+ao *
Proposition 2.5.2 ([3], 5.2). Let k € Z3\ {0} and A\ > 1 be fized.
(i) For any a € C*°(T?) and m € N we have

/ a(x)e”‘k'“’dx < —[a]m.
T3 Am

(ii) Let ¢y € C°°(T3) be the solution of

N e e
T3
with f ¢ = 0. Then for any a € (0,1) and m € N we have the estimate

Cla,m Cla,m
196l < S8 g, 4 Sm)

\l—a pe—— [a]m

w [a]m+a~

Corollary 2.5.3 ([3], 5.3). Let k € Z\ {0} be fized and X\ > 1. For a smooth vectorfield a(x) € C*° (T3, R3)
let F(z) := a(z)e*. Then we have

R, < T8 o, 4 SOy, COgy

With the above estimates we are now ready to start estimating the various terms in the scheme. In the

following section the constant C' will remain independent of A and p but can depend on things such as

e,v }02, Ao, @, and §. Finally we will often make use of the inequality

1<pu<A

First we develop some estimates on the coeflicient functions of ay.

Proposition 2.5.4 ([3], 6.1). Let a, € C°°(T? x [0,1] x R) be given by (2.3.12). Then for any r > 0 the
following estimates hold

||ak('7577—)”7« < O/"LT
|0sar (-5, 7)||, < Cu™*t
(8ray, +i(k - v)ar) (-, s,7)]], < Cu"

HaTak('v S, T)Hr < CFLT'
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Proof. Recall that (2.3.2) and (2.3.4) give

sup | Dy o (v, 7)| < Cp

and

sup [ D7 (9:0 + ik - v)sf) | < Cpm .

v, T

respectively. We only need to keep track of the p and X for these estimates as the constant can absorb the
other dimensional factors and parameters. Hence we only need to see how often the derivative applies to ¢y

with respect to v and we can use the above estimates. Thus we obtain
||ak('7 S, T)Hr S C:ur

||asa’/€('7 5, T)Hr < CMT+1

directly. Similarly we also have

10-a +i(k - v)ak) (-, 5, 7))l < Cp" .
Then using triangle inequality we have

10rak (-, 5,7, < 11(0rax +i(k - v)ag)(, 5, 7)), + =ik - v)ag) (5,7, < C (0"~ +p7) < O
completing the proposition. O
Corollary 2.5.5 ([3], 6.1). The functions Uy, defined in (2.3.13) satisfy the bounds
NUk( 8,7, < Cp”
10Uk (-, 5,7, < Cpm*?
10-U +i(k - 0)Ug) (5, ))|l, < Cp" ™

||8‘I’Uk('7 577—)Hr < CMT'
Proof. Note each Uy, is a finite sum of agay and apply the preceding proposition. O

Lemma 2.5.6 (Estimate on Corrector, [3], 6.2).

y2
)\1704

[|lwel|, < C (2.5.1)

Proof. By the characterization of the patched Beltrami flow and equation (2.3.10) we have the following

identy for the corrector,

1 ~ kX Bk ik
w, = —XQ kz:)\ iVag X 2 e
=Xo

Then apply the derivatives to the coefficent function we have

kx By
Z iVag x X kez)\k-z < C‘ulJra < C,U)\a

L2
[E[=Ao 1K o
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coupled with the Schuader estimates we recover

W
)\l—a

|lwell < C

as desired. O

Lemma 2.5.7 (Energy Estimate, [3], 6.3).

"

<O

(2.5.2)

e(t)(1 - %5) —/TS o2 dx

Proof. First we see that by applying the trace operator to (2.3.11) we have

\W|2 —trRy = Z Cr

1<k<2Xo

where each ¢, (as sum of ayay) satisfies
llew( s, 7], < O

Applying Proposition 2.5.2 with m = 1 we have

(W |? = tr Ry dx
’]I‘S

I
<z
_C’/\

where we also used [a]; < ||a||;. Similarly since C' can depend on v we also get from Proposition 2.5.2 with

v - w, dx
’]1‘3

12 = 02 = Jwo|* = |v1]? — [v + wo|?* + 2v - w,

m=1

I
<C-.
=3

Next we observe that

=(v1+v+w,) (11 —v—w,) +2v-w,
= (v1 + v+ w,) - we + 20w,

= (20 4+ 2w, + we) - We + 20 - W,
:2v~wc—|—2wo-wc+|wc|2—|—2v-wo.

Then using the boundedness of w, and that |w.| < ||w,||, we have

2 2 2 < H H < I3
/Ts |v1] ] [w,| dx_C(Alia —&—)\) <C

Next by definition of R in (2.3.6) we have
By =3p= — (e®)(1-26)— [ |o2d
rRy =3p=—3 —=0) — x|.
L= o \© 2 o
Rearranging and adding zero (twice) we obtain
1 5
e(t)(1 - 16) —/ 1 [2dx = (27)° tr By —/ o2 — [wol? — 0|2 + o] dx.
2 T3 T3

Factoring tr ]:’,1 into the integral and using triangle inequality with the above estimates the result follows. [
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The rest of the proof deals with bookchecking the Reynolds Stress tensor by diving it up into easier to

estimate parts and then using the Schauder estimates liberally. Ultimately we recover the estimate

|7

<C ()\afﬁ + )\a+2571 + >\2a+ﬁ71)

when we set ;1 = A\?. Then taking o < 8 and a 4 283 < 1 with a large enough A we can assure the validity of
the inductive estimates. From this we can construct a sequence that converges to a (weak) solution to the

Euler equations with energy profile e(t).
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3. NAVIER-STOKES
The 3D incompressible Navier-Stokes equations are

Ly Vp=rvAv
bt (3.0.1)

divv=20
where v, p, and v are the velocity field, scalar pressure, and fluid viscosity as before. Similar to before we

we say a pair (v,p) is a weak solution to Navier-Stokes if

/ /v~(6t<p+(v-V)<p+uA<p)dx dt=0
R+ JT3

for all test functions ¢ with compact support in space and time, T2 x (0, 00). For the rest of this section we

will take v = 1.

o

3.1. Iteration Scheme. First we say that a triple (v, p, R) solves the Navier-Stokes-Reynolds (NSR) equa-
tions if

Ay + div(v @ v) + Vp = Av + div R
(3.1.1)

diveo = 0.

One of the main goals of [4] is to construct a weak solution to the Navier-Stokes equations that has
arbitrary (nonnegative) energy profile e(t). Towards this end [4] follows in the foot steps of [3] in creating a
iterative scheme that produces a sequence of NSR solutions (vq,pq, Rq) with a limit of a weak Naiver-Stokes
solution.

We define the following quantities

Ag=a
bg = NI\ 2P
with parameters a >> 1, b € 16N, 8 € (0,1) to be defined later and a sufficiently small eg. Then the

following inductive estimates are used in the construction®:

||vq||c;’t < )\3, (3.1.2)

HRQHLI < ARGy, (3.1.3)
> 10

HRlH <Al (3.1.4)

Additionally for the energy profile we have for all time that

0 <e(t) - /W [vg]? dx < 0441 (3.1.5)

and if
e(t) — /T vg|? dx < 5{!0*01 (3.1.6)
4Here, we use HR‘ e HR) P to denote the LP norm in space and sup norm in time. In general we will take norms

to be applied to the spacial component and a suprememum in time unless otherwise noted.
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then vy(-,t) = 0 and Ry(-,t) = 0.

3.2. Intermittent Beltrami Waves. Recall proposition 2.1.3 on the properties of the strong Beltrami flows

used to construct the weak Euler-Reynolds sequence. Then using & = I—Zl we have the following corollary.
Corollary 3.2.1 ([4], 3.2). Given £ € S2NQ?, let Ay € SN Q3 be such that
Ag-£=0, [Agl = 1, Ay = Ae.

Define

1
V2
Then for any finite subset A C QNS? with A = —A, A € Q with AA C Z3, and a¢ € C with ag = a(—g) the

vector field

Bgz (A€+i€XA§).

W(z) = Z agei’\g'”’
geA
is real valued and divergence free. More over W (z) also satisfies the following properties

1
diviW @ W) = —§V|W\2

and

1
WoW == la*(Id—£®¢).
- 2 &

Proof. We note that AA is composed of finitely many elements and hence finitely many frequency shells.

Applying the proposition to each shell we recover that W is real valued, divergence free and
1
diviW e W) = —§V|W|2.
For the final part we note that if k — [ # 0 then
][ ei(kfl)-x =0
T3
along with that {£, A¢,& x A¢} is an orthonormal basis. O

Similarly we have the following counter part of the geometric lemma 2.3.1 from the Euler Equations.

Corollary 3.2.2 ([4], 3.3). For every N € N there is € > 0, and X > 1 with the following properties.
(i) There exist finite disjoint subsets Aj C S2NQ? for j € {1,...,N} with A\A; C Z> and —A\; = A;.
(i) For each & € Aj we have a smooth positive function
1) € €= (B.(1d))

with

(iti) For all R € B.(Id) we have the identity

R= % 3 (7§j)(R))2 (Id—£®€). (3.2.1)

§EA;
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Proof. Based on proposition 2.3.1 the only thing that needs to be shown is that there exists A with AA; C Z3.
This follows given that |A;| < oo for each j. O

Remark 3.2.3. Given the above the finite nature of the sets constructed we can find universal constants Ny

and cp with the properties that
1
{5,14576 X Ag} C NiZS
A
and if £ # £’ then
€ =& > ea

for all £ € UA;.

Next we recall that the Dirichlet kernel is defined as

Z ¢ = W (x)
E=—r
and for p > 1 grows like

o' r <Dy < Ot

where the constants are independent of r as shown in Lemma B.2. We extend this construction to R™ by

letting
O ={2€Z" : ||z|]|o <7}
and
DM () = ———— et
2
(27‘ +1) ceqt™
Clearly we have that
1
X2 n 1
: i=1 (27" + )2
Tn
and by Fubini with B.13,
‘Dﬁ” = (2n)" (3.2.2)
and
HDﬁ”) L, SCmyriy, (3.2.3)
P
Next we define
NpE -z + put
ey (z,t) = D" | Ao | NpAe - (3.2.4)

NA§XA§°1’
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where £ € Aj and Aj is one of the equivalence class of A; under the identification x ~ —2. Then for
Ee A\ )\j' we set 1)¢) = 1(—¢). The parameters A, o, 7, and p will be chosen later. For now we will assume

that o << 1, r >> 1,
cA
- 10]\]}\7

(3.2.5)

A is a multiple of N, Ao € N, and p € (A, A?).
Then as {NA&, Ny Ag, Na& X A¢} C Z3 for all £ we have that 7 (x,t) is 2w Ao periodic in every coordinate
by 27 periodicity of Dﬁg). Similarly it also inherits the equality

]{rif Neey(z,t)dx =1 (3.2.6)
and the bound
lImell, < Clrss
from the multidimensional Dirichlet kernel. With this in hand we define the intermittent Beltrami wave
Wi as
W) (z,t) = nee (, t)Beyet . (3.2.7)

An analogue ot Corollary 3.2.1 for intermittent Beltrami flows is given next.

Proposition 3.2.4 ([4], 3.4). Let W ¢) be defined as before and Aj,e,véj) be as in Corollary 3.2.2. Then if
ag € C are constants chosen such that ag = a(_¢), the vector field
v=2 2 aWe
J e

is real valued. More over, for each R € B.(Id) the identities

. 2
Z (’yg(])(R)) ][ Wi @We_ggdx=R (3.2.8)
§eh; B
and
W (r ’ B:®B_¢=R 3.2.9
> (w'(R) Bew B¢ = (32.9)
EEA;
hold.

Proof. We see that v is real valued as

DD acWig =3 > (acWie +acWig)

7 Eeh i geAt
=33 (a@ne(x,t)Bee” + g ne(,t) Bee ¢ ")
J geAf
- Z Z neey(w,t)2Re (agBe) cos (§ - ) .
I geAf

Then for (3.2.8) we note that

Wiey ® W(_gy = 1e)l(—e)B(e) © B(—¢) = 11{¢yBe ® Be
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which when coupled with (3.2.6) gives
W(g) & W(_g) dx =B ® E
T3

Hence

. 2 . 2 _
> (%WR)) ]fr Wy @Wgdx= Y (véj)(R)) Be @ Be
§eA; EEA;

=Y (W®) (B Be+ Beone)
g

. 2
= > (W(R)) 2Re (Be@ Bg).
tenf

By definition of B¢ direct computation shows

1 1
Re (Be © B_g)) = 5 (Ae ® A¢ + (€ x Ag) @ (€ x Ag)) = 5 (A —£ ®¢).
Consequently,
, 2 , 2
> (W) 2Re(BewBo) = > (WW(R) 2Re(la-¢@¢) =R
geny geAf
where the last equality follows from Corollary 3.2.2. Thus (3.2.8) and (3.2.9) hold. O

One of the key difference between Corollary 3.2.2 and Proposition 3.2.4 is that the intermittent Beltrami
flow is not divergence free or a eigenfunction of the curl. Recalling the Bernstein inequality we will be able

to bound these quantities.

Lemma 3.2.5 (Bernstein Inequality). Suppose that f € L* + L? and f is supported in B,(0). Then for any
a and p € [1,00) we have that
1D fllp» < O£l o (3.2.10)

Proposition 3.2.6 ([4], 3.5). Let W ¢ be defined as before. Then the bounds

VN0 ||, < CON, K, p) (o)™ (o) r2 75, (3.2.11)
and
VN 0E W g)|[,, < CN, K, p)AY (Aopur) 7375 (3:2.12)
hold.
Proof. Let

W(g)(m) = BgeMg‘x
for the Beltrami wave component of W). Then we see W is supported in the closed ball of radius A in

the frequency domain. Similarly 7 is supported in the closed ball of radius 2Aor Ny < A. Hence W has
frequency support in the By (0). These supports give that

VW[ < CON[Wie]|,, -
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and
Vel L < C@)Aar|ne |, -

Similarly treating the time domain in terms of frequencies we have that the support of 7)), and by implication
We), is contained in Beroaun, (0) for ¢ > 1. Hence
[0 ||, < Clo)rodu [l

and
[0:W ||, < CloIron|[We]|-
Finally the inequality
Wyl < Inge)l

in conjunction with (3.2.3) and induction give

o lw

HvNatKW(E)HLp < C(N,K,p) ()\UT)N ()\U/M‘)K p3-

and

wjw

s e

HVN@KW(&)HLP < C(N, K,p))\N (/\cr,m‘)Kr
as desired. O

Using this we can quantify how far the the intermittent Beltrami flows fail from being divergence free and

eigenfunctions of curl. We summarize this result in the follow Corollary for the L? norm.

Corollary 3.2.7 ([4]). For W) defined as above we have that
||divWg)||,. < Chor (3.2.13)

and

|V X Wiey = AW (g || . < Chor (3.2.14)

Proof. Direct computation gives
divnW =n(divW)+Vn-W =Vn-W
and
VxnW=(Vn)xW4+n(VxW)=VnxW4+ \nW.
Rearranging and using Corollary 3.2.7 we have

||divWie) || 2 = |[Vie) - Well 1= < |[Vig ] 12 < Chor

and

IV % Wiey = AW (g)|| 2 = || Vinge) x We|| o < || Ve |[5 < CAor

which complete the proof. O
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Consequently of W) not being a eigenfunction of the curl we lose the Beltrami identity relating divergence

of the tensor to the gradient. Namely,
. 1 2
div (Wg ® Wg) = V§|W§| .
As such we state the following proposition.

Proposition 3.2.8 ([4]). Let W(¢) and W (¢ be intermittent Beltrami waves. Then

div (W) @ Wy + W) @ Wie)) = (Weey - V) (o)) Wee) + (Wio) - V) (meynee))) Wee)

+neneV (W - W)

(3.2.15)

and for ( = =€,
div (We) © W(_g) + W(_e) ® Wig) = Vi — ((€- V) 1)) € = Vit — %3”7?5)5- (3.2.16)
Proof. Direct computation gives
div(Wie) @ Wy + W) @ W) = (We @ We + We @ We)V(nieyney) + neeynie) (div(We @ We + We @ We)).
Then using the fact div(We @ W¢) = (We - V)We + (V- We)We = (We - V)W and the identity
(u-Vv+ (v-Viu=V(u-v)—ux (Vxv)—vx(Vxu)

we see

diviWe @ We + We @ We) = V(We - We) — We(V X We) — We(V x W)
= V(Wg X WC) — )\W§ X WC — )‘WC X Wg
=V(We - W)
for the final equality we used the antisymmetry of the cross product. Similarly one shows that

(We @ We +We @ We)V(neyne) = (We - V) (neynie))) We + (We - V) (neynie))) We

Combining these last two identities gives the first equality of the proposition directly. Then letting ¢ = —¢
we have Wy - W_¢ =150 V (Wg . W(_g)) = 0. That is,

div(We) @ W—g) + W) @ W(g)) = ((W(—a V) (77(2@)) We + ((Ws V) (”?&))) Wi-g)-
Next using that Wie = Bigei“‘g'“’ with Byg = % (Ae £ x Ag) we have
(Weo - 9) (n)) We + (e 9) (ny)) Weee) = ((Ae - Vm)) Ace) + (€ x Ae - V) € x Agey.
Finally as {&, A¢, & x A¢} form a orthonormal basis we have the identity
z= (- 2)6+ (Ag - 2) A + ((§ X Ag) - 7)€ x Ag

which gives

div(Wie) @ W(_g) + W(_g) @ W(e)) = Vi) — ((f : V)WQ&)) 3



Then as

Oy = (& - Ve
we have

6t77(25) = p(§- V)U(Qg)

completing the proof.

3.3. The Velocity Increment. Now we will build the tools to define the velocity increment

_ e (D) (c) (t)
Wqt1 = Vg1 — V1 1= Weiy + Wo iy + Wolq-

Here we have:

. wflﬁ-)l is the principal part that adds the majority of the energy at a given iteration,

. wgil is the incompressibility corrector that makes wq41 divergence free, and
()

® Wy
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(3.3.1)

is the temporal corrector that is used to cancel out slow frequency terms upon differentiation.

Next we introduce the C° mollifiers ¢ and ¢ with compact support of radius 1 on R? (space) and R

(time) respectively. Further we define ¢y(x) = €¢ (%) and @y(x) = €¢ (%) to be the mollifications at length

¢. Now we will smooth the velocity field v, and éq. That is we let

Ve = (Vg *o 1) *¢ Qo
and
Ry = (éq *g ¢>e) *¢ Oy

We have the identity

(V@) %5 1) % o =V Qv — (Ve @V — (VR V) 55 @) %, ©)

where a®b=a ® b — %a - b1d denotes the traceless component of a ® b. Using the fact
div(jv[?1d) = V]v|?
we see the pair (v, éz) satisfies the Navier-Stokes-Reynolds equation
Byvy + div(ve ® ve) + Vpy = Avg + div (éz + Rcom) :

diveo, =0

with )
pe = (pq gz D) *¢ g — §(|W|2 - (|Uq|2 *z 1) * Pr)

Rcom — ('UZQO@U@) - ((Uqévq)*w>¢ *t .

(3.3.2)

(3.3.3)

v ® v — (Ve@Vg — ((VRV) 4 e) *¢ 1) — % (lve]* = ((J0]?) #4 ¢e) %4 ¢) 1d

(3.3.4)

(3.3.5)

(3.3.6)

Having smoothed the vector field and Reynolds stress we now will define a family of stress cutoff functions

which will have the same role as the partition of unity in the coefficients of the Euler paper. Here our stress
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cutoff functions will depend on the Reynolds stress which leads to the term stress cutoff function. Towards

this end let xo and X be bump functions on the intervals [0, 4] and [%, 4] respectively with

1= %) +x° (i (- 1)) +§j>22 (%)

for all x > 1. Then we introduce the stress component and define

=

~ j?z z,t
X(0)(2,t) = Xo 100)\;%5)“ ; (3.3.7)
q
1
1 Rz, 1) ’
~ 74 5
X(l)(%t) =X Z m -1 (3.3.8)
and,
|1 Ry(z,1)
gt =x [ 5 (14| e 3
X (@ 8) =X | 4 T00x: 6,13 (3.3.9)

for ¢ > 2. Here we have used that |A| denotes the Euclidean norm of a matrix and eg is a small constant to

be chosen later.

Remark 3.3.1. Tt is important to note that x (i) is shifted right to allow us to achieve a desired estimate on

J X%o) dx. By shifting x(;) we have that

o e o —1 e
Supp ZX(Z) - {37 : R@ Z (\/§)1005q+1)\1 R} C {.’L‘ : R@ Z 2 ‘T?" (5q+1>\1 R}.

i>1

Thus with Chebyshev we have

|’H‘3“ R%H |1r3|H1%q (31.4) |T3
» -1 —€ 1 T
/ > xfydx < ‘{x PR 22T 0gia R}’ S ——e S o < %
T3 i>1 2)\q 5q+1 2>\q 5l1+1
Consequently,
2 3 2 3 |T3| |T3‘
dx = [T%) = | 3 xydx > T8 = = = ——. 3.3.10
/]r3 Xoy & ] /]I‘S ~ Xy 4X = T 2 2 ( )

With the stress functions on hand we are ready to define the coefficients of the intermittent Beltrami flow

that will be the principal component in the velocity iterate. For ¢ > 1 let

Ry
ag) = VPiX @) Ve) (Id—p,> (3.3.11)

?



30

. R
and for 7 > 1 where p; = A 704147 and ¢ € N is taken so —[ is close enough to the Id to apply (3.2.1).

pi
Now to motivate the definition of py we consider the (formal) calculation

Z/ age)Wie) dX—Z > / W) - W dx

i>1 EeA () i>1 &,(EA )

= Z Z / W(@ W(_¢)) dx+ (mixed terms)
121 §€EA ()

- Z Z / W) ® W(_g)) dx+ (mixed terms)
i>1 £€EA ()

= Z Z / (][ Wy ® W(§)> dx+ (mixed terms)
T3

121 §€EA ()

+ (mean zero symmetric)

3 R,
2
= /11‘3 P& X (i) tT Z V) (Id _Pi> fm Wy @ W_g) | dx+ (error)
i>1

§EAG)
Ry
= Z p(,)x(l Id—— dx + (error)
i>1
=3 Z p(i / X%i) dx + (error)
i>1

with the set Ay = A moa 2) Where the set Ay and A(;) are defined by taking N = 2 in the Geometric

Lemma, mixed terms are sum of £ — { # 0, and the mean zero symmetric are of the form

> / ae) <W<5> @ Wi_g) — ][ Wi ®W<a>> :

Now in the calculation above we expect the error terms to be negligible ® due to the high frequencies of
Wey ® W(_¢) compared to the ag)a) with § # ¢, similar with the mean zero symmetric terms. This is
similar to the Riemann-Lebesgue lemma. Then as we want the principal component to encode the energy

difference of the current iterate and the energy profile we wish to design pg so that

e(t) — /|vq| deZ/ aeyWe dX~3Zp/ XGy dx.

>0 EEA( 0) >0

Rearranging we see that we want

: / /
N ——— v,]°dx —3 dx
P(0) 3 oo |vg]? ZP() Xto)

i>1

5Indeed7 they less then CK%.
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Since we need to be able to correct the energy on future iterates as we drive the Reynolds stress norm down

we let

1 6q+2
p(t) = max m e(t) — /|vq| dx — SZp /X(z dx — 5 , 0. (3.3.12)

i>1

Then to ensure that ,/p(gy is sufficiently smooth we let

po) = (VB * 0)”. (3.3.13)

With pgy we let (3.3.11) be defined for i > 0 and define the principal component as

wii = DY anWe. (3.3.14)

120 €Ay

We note that w[(fjr)l is not divergence free so we introduce a corrector term. Inspecting the proof of Corollary

3.2.7 we deduce

VX ( §+1) = wfh + 0DV (agme) x Wee-

’L>O A(l)

Hence choosing

wily =32V (agme) x Wee (3.3.15)
120 Agy

we have

div (wf +wi) = 0.

To finish the definition we need to define the temporal corrector. To motivate the definition we note that

if we expand
: (
dlv(wl(f_?l ® wqﬁ_)l)
we will end up with mixed terms and symmetric terms. The mixed terms we will expect to be controllable

due to frequency differences. For the symmertic terms we will have things of the form
: 2
div (afe) (Wie) ® W_g) + W_g) W)
Expanding the divergence we recover a term of the form
2 .
ailey div (Wie) ® W_g) + W(_g) @ W(e))

which by proposition 3.2.16 is
1
2 2 2
ae) (V% - Mat%ﬁ) :

Rewriting again we see that we have a component ([4] , eqn 5.13) equal to

_iaﬂ’ (a%s)”?@f)
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which has too slow of a frequency to provide a good estimate with the iteration scheme. As such the
temporal corrector is designed to convert this term into a gradient to be put in with the pressure. Recalling
the definition of the Leray Projector we see Q = I — P is a gradient. Thus if
wil, = Z > P (“(5)”(5)5) (3.3.16)
i E€AW)

then we have

ZDEDIDY at (atgme) = Z Q (drayniet) (3.3.17)

7 EA(Z) 2 geAU)

which is a gradient. Having defined all the components of the iterate we will now clean up some technical
details of the construction. Specifically we will (i) show the the indexing variable i can be taken as finite
and (ii) that a(g) is well defined.

For the finiteness of ¢ we recall the inductive estimate (3.1.4),
: 10
i =

Coupling this with the fact that
Supp( (7,)) (41 1 4’L+1)

we see that we want to show that there exists 7,,,, such that

1
2

14 Re_(x, t) < gimas
100X, " 0g+1
for all (z,t). Noting § << 1 and A\, >> 1 we see
%
Re(, t Re(, t
1+ R@_(I7 ) < \/§ R@_(I7 ) )
1007, “F0q41 1007, 6,41

Then estimating Ry from above we have

[Rel < ||Re|| < ||Re|| . <16l pa ol
oo ct

q’ ot

where last inequality follows from Young’s inequality. Then using the inductive estimate we have that

» ’ )\ER AL
m R@Ex,t) <C q <N
100Ag 041 q+1 Og+1
hence if we may choose
imae =min (i >0:4°72 > \1to 1) (3.3.18)

then we see x(;) = 0 for all j > i,4, which lets the formal computation above precede with out stronger
tools.

Now for the well definedness of a(gy we first note that we have the estimate ([4])




which by the definition of p gives

1 Sqr1 Ogro 84t (33.10) 5.,
P Z 3 2 - 2 3 D) Z 312
BT s X% dx \ 200 2 L500/ T3] fro X3y, 750|T3|
Thus,
Og+1
> _ Y+l
o = T50/T3)2

Finally on the support of x(g) we have [Ry| < 400\, “?d,41 so

R
Po

L (Supp x(0))

This gives us that () argument is in the domain.
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< (3)10°T?PA; " <e. (3.3.19)

Remark 3.3.2. To achieve the above equation we need to take a >> 1 very large. In fact the upper bound

presented above is a few magnitudes higher then in [4].

3.4. The Reynolds Stress and Pressure. Having defined the velocity increment we now wish to construct

(p) (e)

a pressure and stress tensor for vg41 = vy +w, oy +w, + w™), so that (3.1.1) is satisfied. As such we write

q+1

Opvgt1 + div (Vg1 ® Vg41) — Avgyr = Qw1 + div (Wep1 @ Wet1) — Awgr
+ div (wg1 ®@ Ve + Ve @ Wyt1)
+ Opvg + div (ve ® vg) — Avy
= 8t(wf1’_?1 + wfﬁﬁl) + div (wg41 @ Ve + v @ Wyt1) — Awgt
+div (<w§21 + i) ® was +wifh © (Wi, + wr(ztil))
+ div(wéi)l ® w((ﬁ»)l) + @wfﬁl + div (]D%g + Rcom> — Vpe

— 8,5(10((11)1 + wéizl) + div (wg1 @ ve + v @ Wgt1) — Awgi1

. t t
+div ((wffjl + ) @ wepr +wlh @ (wld)) + wéjl))
+ div (w,(ﬁgl ® wé’;)l + }ng) + 8tw((;21
+ div (Reom) — V.

Motivated by the above decomposition we define
Rlinear =R (at (wt(zi)l + wt(ljzl) + div (wq+1 ® vy + vy & U/q+1) - Aqurl)

and

Reorrector = R (div ((wéﬁl + w(gt_il) ® Wqt1 + w(gi)l ® (w((16421 + wﬁl))) )
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For the third line we expand the divergence and use that W) ® W(_¢) is mean free for £ # ¢ we have that

div (wfﬁr)l ® wt(1p+)1 + ]D%g) = Z Z div (a(g)a(oW(g) & W(C)) + div ]D%g
v §,CEN)

=> > div <a<s>a<c> (W@) @ W) — ]fr Wi ®@W dX))

v §,CEAG)
+ div (Z p(i)x%i) Id>
=> > div (%)fl(c) (W@) @W) — ]fr . W @W dX)) +V <Z p(i)X%i))

1 &,CEA )

where for the second equality we have used that for £ + # 0

][ Wi @ Wy dx =0
T3

and

(3.3.11) 9 9 Ry (3.2.8) o o
> agacg ][ WeeWeg = pixty D o <Id—p> , Wo®W—g dx =" X (P(z‘) Id —Re)~
£€A(i) T EEA(i) ¢ T

Here we set P, =V X% | Next by the fact that
_ POX()

div(fuw) =(u@w)Vf+ fdiv(uQv)

we see a generic term in the sum of divergences is
(W@) O W) - ][ Wy @ W) dX> V (a@ac) + aga) div (W@) @W) - ][ Wy @ W) dX)

Set Ty = ZZ ((W(f) QW — ][W(f) Q@ W dx) \% (a(g)a(c))> . For the second term let us consider
[
the case of £ + ( # 0 and £ + ¢ = 0 individually. First for the case £ + ( # 0 we note that

age)a(g) div (W@) W) - ][ Wiey ® W) dX) = ageyai) div (Wi @ W) -
Next combining conjugate terms and using Proposition 3.2.8 to expand the divergence we compute
aga) div (Wi @ Wie) + W) ® Wig)) = agya) (W) - V) (o)) Wie
+((Wio) - 9) (meymo)) Wee) + meme ¥ (Wi - Wie))) -
Then using the fact that
[Wie) -V (emo)] W + [Weey - V (nieymio))] Wiey = (Wiey @ Wie) + Wie) @ Wie)) V (ieymie))
and since W ¢) = n(¢)W(¢) we have
V (aaWe - Wig) = (V (agaw)) We - Wi +agae (V (emne)) We - Wi

+agyayne e (V(We - We))
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which imply that
age)aq) div (Wi @ Wiy + Wiy @ Wie)) = aeya) (Wie) @ Wiy + Wiy @ Wie)) V (nieynie))
— (V(aa©)) Wi - Wy — agyace) (V (neyne) We - Wio) + V (agya Wi - Wig) -

Now set
Ty = ayaiy (Wiey ® Wie) + Wiy @ W) V (neyne)) — (V (aaco)) Wee - Wi

—a@ya) (V (ene)) We - W

and
Py =V (agya )W)  Wp) -

Now for £ + ¢ = 0 we have

Wi ®Wg = 7 Wiy ©@Wig dx =FroWi @ Wi-g)

where P is the projection on mean free fields. Using Proposition 3.2.8 one has
1
. 2 2 2
P (a?ﬁ) div (W(E) W g+ Wig® W(E))) =Pxo (a(g)vn(g) - Maﬂl(g)f) (3.4.1)
Then using that

Pa0 (V (aleyie ) ) =Pro (afe (Vo) + (Vale)) o))

and
1 2 2 1 2 2 2 2
1 0P (atome) = ik (ate) () + iy 01 afe))€)

we see

. 1
P (aé) div (W(g) QW e +We_g® W(g))) =P,V (a%@néo - ;8751[‘)750 (a%g)n(zg)f)

1
2 2 2 2
~By0 (0 (o)) + Phia: (e Phatere)
Summing the above equation over ¢ and &, adding 8tw((121 and using (3.3.17) we see that

8twq+1+zzp¢0( b div (Wie) @ Wi_g) + Wi_g)® W(g)))

= (Z > (Bav (afsm?&)))) +Q (,i Z %@aé)’l?@f)

i (&)
_ Z %): P (U(Qg)v (aé))) + Z %): %IPQ&O (7](25)@&(25)5) .

Using the above we define
T3=) > Pz (”(s)v ( ) ( 5)3“1(5)))
(8
and

VP = (ZZ (P20 (a?o’?é)))) ( > dafey; sﬁ)

i (&) i (&)
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Collect all the T; and P; above we define

1 1
Rosc =R (Tl + §T2 + 2T3)

and

P=P+P+P;

then taking

Pg+1 = DPe — P — A_l div div (Rlinear + Rcorrector + Rosc + Rcom)

and

o

Rq+1 =R (P div (Rlinear + Rcorrector + Rosc + Rcom))
we see the triple (vg41,Pg+1,Rg+1) is a solution to the NSR equations.
3.5. Convergence of the Velocity Sequence. In this section we wish to show that velocity increments
are forming a bounded sequence in L2. Specifically we will gain the estimate
1
[lvg = vg4all 2 < Mgy
Since vg41 —vg = wéﬁ)l + wéi)l +wét+)1 + (ve —vy) we will wish to retrieve L? estimates for the four quantities.

For the iterate terms we will need a few estimates on the coefficient terms first. Additionally at this time

we explicitly fix £, 7, u, o as

=20
{= /\q
%
T= A
—15
— 16
o= )\q+1
and
_\3
n= )\q+1

to make these estimations possible. Additionally we will let C' denote an arbitrary constant independent of

q. Next we have by properties of convolution that

If % dellow = D ND*(f % ¢0)ll

0<a<N
= > DN el + Y, |[(DFfx DY)
0<a<k 1<a<N-—k
< CEN| fll o

for all 0 < k < N. Specifically for k = N — 1 we obtain

< a)

|y, = 0

1 1
Cm,t Cm,t



where we have used ||f * ¢[| o < ||f]|  ||®||;:- Finally by calculation we also have that

1f = &l poo = sup

/ (Mhﬂf(w) ~ fla- y>) o) dy‘
<sup [ 1 DS 191 dy

< LIDf[ ol

< CL|fllen
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where we have used the generalized mean value theorem, for instance see [9]. Applying this to v, we have

||Uq _W”Loc < Cé““q”ci_i

and furthermore

1
lvg — vell 2 < CvaqHC;J < 03 < g4

Proposition 3.5.1 ([4], 4.2). Let 0 < i < iy, and N > 1. Then the following identities hold

x| < C27,

and

xollex, =Y.

Proof. Recall that by interpolation
1 1
Al 2 < NFIE NI Zoe

(3.5.1)

(3.5.2)

for f € L' N L*>°. Then as x(; is a bounded function we just need to show that Hx(i)HLl < C47*. For

1 =0,1 we have ||x(¢)HL1 < |T3| < C47% Then since ||X(i)HL& < 1 we have
4i-1 < )‘;Rfﬁ
- 100(5q+1 '

2

Xl < sup[Supp (x(o)| < sup

Next using Chebyshev’s inequality we have

. AR R ,
41—1 S q L 167,—1 -1 S
1006,41

i—2
(s
t

€R
Aq

/\ZR ég
100641

IA

€R
Aq

< S N~ . A~ é ’
= (100)4i—26,,4 H ¢

Lt

Then by the inductive estimate for HRqH | we see
L

xr g y
Hx(i)HLl < 041'5(;1 )(\1531 <04

which gives the desired result. To obtain (3.5.2) we observe that for o € N

7

D*(fog) =Dt o) = 3 (1) (0 ) (D).

0<i<a—1
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If we next assume that ||f||,~ < oo then by triangle inequality

1 .
1000l < 55 (971 Wfllen 1Dl < Clgln

1<i<a

Applying this to x(;), using the inductive estimate and the fact (-) > 1 we get

Irollo = 3 197x0lle < H<1gg;j§>H <om X | <o
O
With bounds on the stress cutoff functions we can now bound the coefficient functions a ).
Proposition 3.5.2 ([4], 4.4). For all 0 < i < iya. and N > 1 we have the following bounds,
llage)|| 2 < Coi2 < CoZ,,, (3.5.3)
la@lley, < CCMA. (3.5.4)

Proof. We recall that for ¢ > 1 we have

3 éz —€ 1+c 3 éé
age) = Pi X)) <Id_m> = (A7 0g+147) 2 Xy v (Id—'> :

Then using (3.5.1) we have
1 1 1
lla ]2 < Cofiy lIxll 2 < Cp27" < O34

For i = 0 the estimate is slightly more involved due to the definition of p(g). Using the definition of p(t) we
have for all ¢ that

0,
o0 <0 (et - [ lalax) +0 (S [ xtyax] + o2,

i>1

By inductive estimates we have that

— /'[[‘3 |vg|dx < Cdgq1.

For the second part we use that [p(;)| < 441 to write

TS
i>1 T T¢

T3
where we have used that [ X%o) dx > % Finally using that 0,42 << d441 we obtain (3.5.3) upon integrat-
ing.

To obtain (3.5.4) for ¢ > 1 we distribute derivatives, collect terms, use the boundedness of x and ~ (similar

(a2 e
P(i) P(i)

to estimates of the ) to find

lallew, < 2l | IIxoll 1= +Ixallex, |7
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Then by (3.5.1) we see

<ce N,

X llon,

~(1a- e
20

Distributing derivatives, the boundedness of «, and inductive hypothesis we also have

v [1d - R
P(i)

Combining these facts we obtain the bound

I,

. |IN
Ry
P(i)

R,
PG)

<C
cl,

< Cpgy (7N +2Y) < Cppy 7N

N 1
C:(:,t Car

llawlloy, < € (par 73N + 08y e7Y).
Now recalling the definition of 4,4, give by (3.3.18) we see

Py < ONOy < OO

where the second equality follows from the choice of 8b in the inductive estimate section. Similarly by

definition of p(;) given after (3.3.11) we also have
p(z) Z )\q—GRéq+1 Z )\;116,1+1 Z CvY.

Then as £ = )\;20 we conclude that

locol ey, < A

For the case ¢ = 0 we need to distribute derivatives onto p(p). We use the smoothing to gain a power of (1

for each derivative and the bounds above in the sup norm to finalize (3.5.4). ]

Now with bounds on the coefficient functions we can prove the following proposition.

Proposition 3.5.3 ([4], 4.5). The principal, incompressibility and temporal corrector have the bounds

M 1
Hwéi)l’ Lo = 5 0 (3.5.5)
c 3 1,1
el ] <o, oo

Proof. Applying Lemma 3.7 (‘LP decorrelation’) from [4] we have

llaeWiel| . < Cpz2™ < 052,27

Summing over i and using the triangle inequality we have

(») 3
] <

Using the (universal) finiteness of the various sets and parameters we can find a bounding M independent

of all parameters to satisfy (3.5.5).
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Now we consider a generic term of w, ;. By direct calculation we have,

Iz

1
H a(s)??())x‘%’ <C>\—q‘|Va M) + ae) (Ve

L2

1

< C)Tq (HVC‘(E)HLOO H77(§)HL2 + ||a(§)HLoo HVH(E)HLQ) ’

Using that Ha 5)||L°O < 05q+1 (3.5.4), and Proposition 3.2.6 we have

1

/\q+1 A q+1

1
Next by selection of parameters we have that £~ < >‘q5q2 o7 and we obtain
)\102i0r.

< coz,,

1
HA Viagme) x Wg‘
q+1

Summing over i and ¢ and absorbing any ¢ constants with a power of (=% we have

1
< C(S;HOT

(e) ’
w
H a+l L2 b3

Similarly for w((lt_zl we have

6q+14ir%
7/1, .

1 2 2 1y 5 2
=l < ato <c
o= |[Erataas]| <ok [l ol <

Summing over i and &,

o < o2
lp
Adding the two estimates and using that fuo < r (by choice of ) we obtain (3.5.6) as desired.

Directly applying the proposition above we deduce that

Corollary 3.5.4 ([4], 4.6).

1
v = vgtallpz < Mgy,

Proof. Note r%,u_lé_l = A(I_QO)\(ﬁl < 1 as b was taken sufficiently large. Thus we have

») 0
|+ [,

]+ e = el < 18

[vg+1 — vgll 2 < g+1 q+1

as desired.

g a
Finally noting that (55 = )\12 ( B)b with a,b >> 1 and 0 < 8 we have

1 3g N 33 _ava 33 1
Do =2 (a7 < AT (a7F) =2 o <

a>1 a>1 a>1

Letting ¢ < j be natural numbers and using the triangle inequality we obtain

) )
1
lo: = vl 2 < D Mok —veall < D 6

k=j+1 k=j+1

(19000 | 0 5+ ao ][ 1910 |],2) = O (7080 + 265, 2 0)
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(3.5.7)

Hence {v,} is a Cauchy sequence in the L? norm and we define v = lim,_,o0 v,. Then from the other

inductive estimates stated above and proved in [4] we see that v is a weak solution to (3.0.1) with arbitrary
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nonnegative energy profile. Using this we can construct velocity fields v that disappear for a finite time then

reappear, giving non-uniqueness of weak solutions.
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4. CONCLUSION

Nash shows in [1] that highly surprising examples and results could be built using iterative schemes to
gradually increase a desired quantity to a specific bound. In [6] DeLellis and Székelyhidi Jr extended an
analogue of the Nash’s method to the equations of Fluid Dynamics. Applying this analogous method to a
special class of stationary solutions of the Euler equations DeLellis and Székelyhidi Jr produced an iterative
scheme that locally increased the energy of a approximate solution while making the approximate solution
closer to a ‘true’ solution. Taking the limit of the approximate solutions we recovery a weak solution to the
Euler equations with an arbitrary (positive, smooth) energy profile. Similarly, Buckmaster and Vicol in [4]
built an iterative scheme using modified Beltrami flows giving rise to a weak solution of the Navier-Stokes
equations with arbitrary energy profile .

So thematically, this paper has explored the notion of relaxing the idea of solution (or, equivalently, using
approximate solutions) and building a sequence of relaxed solutions that converge to a strict solution. For
John Nash this was using short embeddings, for the fluid dynamic papers it was introducing a Reynolds

System.
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APPENDIX A. A REMARK ON ESTIMATES OF [4]

One of the crucial estimates for the velocity iterates inductive estimates is Lemma 4.4 in [4] that states

the following bound,

llalley, <CET. (A.1)
To derive this bound the authors use the bound
Ix@lley, € Ol ™

as stated in Lemma 4.2. In the proof provided of the lemma a key dependence on ¢ is lost in the final

equations. Specifically it is claimed,

, . N
AR R, AR R, o . 1V
q q oo~ +||# 22
H<1005q+1 > o + H< 1005541 > o ( e, e (4.2)
€ER €R
which has lost the term 5 % which has ¢ dependence. Restoring this term and using the inequality 6q+1 <
q+1 q+1

MR we see that (A.2) can be replaced with

g+1
/\ZR éz )\ZR é(
+
1003441 /|| . 100041

Substituting this in the proof we gain the following modified lemma.

N

+ ()™ ||

Cl

z,t

94€er pl—N || p
<C ()\Hiﬁf HRE‘
ct,

N A

. .3
o) O
Lemma A.1 (Lemma 4.2, [4]). Let 0 <4 < iyqr. Then we have

x| < C27,

lolley, < A0 < c.
As mentioned this also affect the crucial Lemma 4.4 which becomes
Lemma A.2 (Lemma 4.4, [4]). For all N > and 0 < i < iymq, we have he bounds
Ha(E)HL? =< sz’%27i < C§q%+1a
||a(€)||Loo < C’pi% < 05§+12ia
lage) oy, < CEY < VAL, (A.4)

Here (A.4) has been modified from the original paper to gain a factor of Agii’?.
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The error introduced in Lemma 4.2 then ends in Proposition 4.5 due to an over estimate for i,,q,. It is

(p) ’ ’
Wl

helpful to examine the calculation of qu 1

in equations (4.45) of [4]. Specifically they state,
P

[ =[5 Hlo

i 56/\@)

Z Z éil)‘q+17"%_%

1 €A

o, Wl

<C (ﬂxqﬂr%*%)
where we use Proposition 3.2.6, Lemma 4.4, and that ‘summing over ¢ and & loses a factor of =1, This final

line is a consequence of i being a finite index with ip,q, = min{i : 472 > )\éléq_jl} as
Imae < C'ln ()‘q+1) =Cln (671) << ot
Clearly we have a lot of room in this estimate. Indeed for large enough a we have
imaz < AL

Then as eg < % we have that

| <c (z 5™l s [ s
i EEAW
<cC (Z S A A (A.6)
EEA ()
=0 ( 1>‘231+ER>\q+1T% %)
( q-i-lr2 ;)-

Thus the omission of the ¢ dependence does not change the estimate. In the rest of the paper we see this
same behavior appear. Whenever a C '+ estimate is needed for the coefficent functions a¢) we are summing
over our various families. The factor introduced in the sum can be taken to be smaller then in the original

paper to restore the desired estimates. Consequently the inductive estimates also hold.
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APPENDIX B. DIRICHLET KERNEL LP NORMS

Here we develop some basic properties of the N** order Dirichlet kernel Dy .

Lemma B.1 (Equivalent Definitions). The following definitions of the Dirichlet Kernel are equivalent

N
> et (B.1)

k=—N
_ sin (2N+15C)

Dy (z) = O (B.2)

N
Dy(z)=1+2) cos(kz), (B.3)

k=1
Dy(z) = (e7)" T] (e + &nir) (B.4)

k=1

th

where £y, = €'m is a m*™ root of unity.

Proof. Let us first show that (B.1) and (B.3) are equivalent. By reordering the sum in (B.1) we have

N

N N
Z ehr =1 4 Z ke o) =1 42 Zcos(kcc)
k=1

k=—N k=1
which shows that (B.1) and (B.3) are equivalent.
Next we will show that (B.1) and (B.2) are equivalent. Using that the exponential form of the Dirichlet

kernel is a geometric sum we write

N 1_ 6i(2N+1)x>

§ eikm _ efiN:c i
1—ew

k=—N
(e—z‘;> (e—z’Nac _ ei(N+1);c>
= iz — _ikz
e I—e (B.5)

eii%I — eiL;rlm
- efz%x _ ei;
sin (25551 7)
sin (%x)

which gives the desired equivalence.

Finally to complete the proof we will show that (B.1) and (B.4) are equal. To this end observe

m—
l+z+a%+- H z+Ek).
Hence
N 2N 2N
Z eik}LE _ e—in Z(eim)k _ e—iNx H (eiw +£§N+1)
k=—N k=0 k=1
which completes the proof. O

Using this we can now prove the following classical result.
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Lemma B.2 (Dirichlet LP growth). For fized 1 < p < oo there exists positive constants c¢(p),C(p) indepen-
dent of N such that

e(p) 2N +1)'7% < [|IDyll, < Cp) 2N + 1! (B.6)
Proof. First for the case p = oo using (B.3) and triangle inequality we immediately get
|[Dy(z)| <2N +1 Vo € R.
Then evaluating Dy (0) using (B.3) we have equality and deduce
D]l = 2N +1

which gives the result with c¢(co) = C'(00) = 1.
Now for fixed 1 < p < oo we will instead bound |[Dy||}, = 2/ |Dy|? for our ease. Recalling the
0

elementary inequality

2 .
—x <sinx <z
T

for x € [0, g] we deduce

7 i (2N41 ) |P 7 ain (2N4+1 ) |P 7l (2N4+1 ) |P
sin x sin x sin x
2p/ ( 2 ) dacg/ # dxgwp/ ( 2 ) dz.
0 X 0 Sin (513) 0 X
Next changing variables we have
™| sin (22t ) | 2N +1\""" 27 [sinu”
/ (2 z) do — ( + ) / sinul®

0 T 2 0 U

which in combination with the inequalities

1

us

T P 2N+ : p 1 oo
/2 sinu dug/ z sinu dug/ du+/ du _ p
0 u 0 u 0 1w p—1
gives
2 sinz _ P mT\P 1
4 de | 2N+ 1P <||Dy|P <4 —— | (=) @N+1)P".
(/ - x)( syt < oxly <4 (S2) (5) @y
Thus using e(p) = (4 (¥ 222" dz))” and C(p) = (4(521) (5)")" the result follows. 0

Seeing that || Dy |5 grows like N?~! it is natural to ask if for integer p, |[Dy]|? is a polynomial of degree
p—11in N. To approach this result we will pass through the complex plane to derive a series identity for

the integral

[ iy da

—Tr
where p is a positive rational number. To this end we first observe that Dy is a real valued function so we

have that

|Dn ()| = sign (D (2)) D (2),
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where the sign of Dy (z) is easily computed from (B.2). Combining this with the fact that e‘® parameterizes

the unit circle for —7 < z < 7 we deduce for p ¢ 2N that
- N N P dz
[ pspac= Y | (Z ) -
. Py VLT W 1z

with «y; being the following parameterized paths:

(G>0) v ={e" :(j—-1) 213’_7_1 <t< ]2]\2,%} with counterclockwise orientation if j is even and clockwise
if 7 is odd;

(j <0) ~; =7=; with counterclockwise orientation if j is even and clockwise if j is odd;

(1=0) v ={e : m21311 <t < (m+ 1)%} with counterclockwise orientation if m is even and clockwise
if m is odd.

Next letting v;,(t) = ry;(1 — t) be the 7" dilate with reversed orientation we define the straight line

parameterized paths

6jrt = (1 =)y (1) + 75, (0),

(Sj’r’, = (1 — t)’yjrj(l) + t’Yj (0)

Thus for any r the parameterized path 7; 0 §; 4 07, 0 d;, — is a closed path enclosing no singularities of

Dp. From this we infer that

e S (S 2 (55 (£72)

j=—N N N
Remark B.3. Here it is important to note that for rational p the subdivision of the real integral above when
treated as a complex integral may cross the ’cuts’ of the root function. To overcome this obstical we may
either take N large so the root is well defined on a nieghborhood of the arc of the circle or create a futher
subdivision. In the case of the further subdivision the arguement below proceeds naturally upon noting the
orientation introduced for each sub arc will provide cancelation among the radial lines. Then expansion into

the power series allows us to 'reglue’ the radius r subarc back together to obtain the original arc.

Then by (B.4) and the definition of the d;, + we have

22N—1 ) i
[Dn ()] < —5—[€" = & 1<k<2N+1
and
N P _
d 92N—-1 pl-r 92N -2
Siurt \he N 12 T 0 r

which imply that

- N N P .
/ Dy (@) dz = lim Z/ (Z zk> % : (B.7)

-7 j=—N "V
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FI1GURE 2. Visualization of integration technique for Ds. Start at top left then go right,

down, left, down, right for order of steps.

Next as |z| = r < 1 in the above identity we can use the geometric series and binomial theorem to write

N p
d 1 1 1
/ Z Zk 72 = *./ Niﬂi (1 - 22N+1)p dz
P W iz i), NPT (1—2z)p

N Jsr

L (B P)E )

1 1 =
= ;/ N chz dz
RER k=0
oo ~
LY
k=0 v

where

w3 (e ey )

=0
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Then since
Vi, (1)
/ k_leZk—Np k 7& Np
v

Zk—Np—l dz = 'Yj,r(o)
i g (1
o In Z|1j;,fo§ k= Np
we naturally split into the cases that Np is integer® and Np is not an integer. As such define
0 Npé&Z

CNp =
6Np NpeZ

then

- Ck k—Np—1 1. _ (_ L] 27 c- 1 (1)\F—Np _ (1))F—Np
S G A= (0 e+ 3 e (07 = 1))

k=0 Jr k=0
k#Np
ul, 2w 1 = 1 , _
= (D o+ o 2 art s (5 = 0F).
kgﬁ:]\(/')p

Thus we have

N p %)
dz il 2 1 1
k _ (L5 kL (. (1\k=Np _ . (\k—Np
/7. (Z Z) i - D e o kz_o etz (5 () w(O). (BS)

i \k=—N —
k#Np

. Then observing we can rewrite vy; as

i(t) =

o T ol .
ew (i [i -3 - (0 G-0]) o
exp (izﬁil [N - % - (—I)L?J t

we see that if we fix £ and sum over j,

N

3 Ly 0 ) =

j=-N
+ % EN: ( M*Np(l) - vj’-“*N”(O)} + [vE;N”(n - WENP(O)D
= S (@) - () )

+ % zN:(—l)jH <{(€%N+1)kNp - (gg]_Vl“)kNp}

_ 2%(-1)%1 sin ((2;1 1) (k- Np)j> .

6Here we have used that we can find an antiderivative for % in a neighborhood of the path.
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Now for ease let n = k — Np, and € := £an41. Then as Im is a linear operator over C viewed as a R vector

space we have

N o N
_1)it+1 g i = _gmyJ
S sin (52 =~ 3 (-¢)
j=1 j=1
n o emN+1
. (5 + (=€) )
14¢&n
L (S (DR
1+
241
=1Im <T/:tn)
£24¢2
1 I <§3j:1)
= m
w 2
COS(2N+177)
L (T
“2 N1
That is,
Mo U
>0 3 s =0 ) = tan (T - V) ). (B.9)
j=—N
Collecting (B.7), (B.8), and (B.9) we deduce that
/7T Dy (2)|P do = 2n enp + lim L i cpr® tan 2n (k— Np) (B.10)
N TON 41 NPT ST | e P k 2N + 1 P '

k#Np
Then for an odd integer p we see that ¢ =0 for & > (2N + 1)(p + 1) which collapses the infinite sum to

a finite sum. Evaluating the limit for odd p we have

(2N+1)(p+1)—1

i 2m 2m

k=0
k#Np

Unfortunately, for even p the above technique is more painful to make rigorous as the complex function will be
1

integrated around a singularity. Ultimately though the only thing that is left is the integral — [ 51 enpz Tt dz
i

which gives
HDNHZ = 27TCNp.

Instead we will treat even p as a special case and develop a polynomial identity to pickout 'zero frequencies’

of the |[Dy|P. First a telling example to our approach.
Ezxample B.4. For any natural number N,

/” |DN(I)\2 dz = 27(2N + 1)

—T
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Proof. Recall that Dy is a real valued function so |Dy(z)|? = (Dx(z))2. Then using (B.1) we compute

/7; Dy ()] dz = /7; (k_zj\i:Neik“’>2 dz

= Z /7r dz + Z /W k=T qg

_N<k=j<N“’— —N<k#j<N7’~

=27(2N +1)

which finishes the example. (|

Building off this example our goal is prescribe coefficients in the following equality,
N p Np
Z elk’l‘) — Z akeikm
<k=—N —Np
as this implies that

[|Dn |5 = 2mag.

To this end we prove the following proposition.

Proposition B.5. For any p, M € N the following identity holds

M p Mp
<Z mk> = kaxk (B.12)
k=0 k=0

where
k

- LMi:lJ(_l)l((k —I(M+1)+p— 1) (;;)

1=0 p—1

Proof. Much as before we use the geometric sum identity, (formal) binomial expansions and geometric series.

That is,
M p 1 o oo i 1 , » 1
(;wc) = m (1 _ M+ ) = (I;) ( +Z )mk> (kzzo (z>(_1)kmk(M+ )) _

Expanding the product, collecting terms, and noting the left hand side is a polynomial of degree Mp we
deduce that

- L%J(_l)l <(k — UM +1))+p— 1> <ylo>

1=0 p-1

and my, = 0 for k > Mp. This completes the proposition. O

Remark B.6. Observing that if N = 2N then m; = ¢é;. As such since my = 0 for k > Mp we that the finite
sum in (B.11) in fact has the index 0 < k < 2Np.
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Now using B.12 we have that for any integer p,
( N p 2N p
Z eikx) _ e—in;E (Z eik:w)
k=0

k=—N
2Np
_ €7inI (Z Ekeik:z>
k=0
2Np
_ Z ékei(k—Np)ac.
k=0
Hence for even p,
IDn |} = 2menp. (B.13)
Finally we collect (B.10), (B.11), and (B.13) in the following proposition.

Proposition B.7. Let p be a positive number, N a natural number, and Dy denote the order N Dirichlet

kernel.. Then the following identities hold

2 1 o 27
| — 1 _ . k —
DN = orryen + Jim | (5 2 o tan<2N+1(k Np)) ’

k=0
k#Np
2m Ap 2w
Dy|p = " T (k- N
D31l = g gemn + 3 avtan (g (6= ) (b 0dd).
k;tf_Np
and
[[Dn]|h = 2meny (p even)
where for k # Np
Lomert) .
1 ((k—j2N+1)+p—1
et B ()
-Np = (k—j(2N +1)) J
and
Lawir) .
3 (Np —j(2N +1)) j

Jj=0

Remark B.8. Here we have used the continuity of the LP norm.

Now we return to our original motivation. Is [|[Dy||} a polynomial in N for integers p? Surprisingly, yes
if p is even. No if p is not. Finally we remark that the ¢ are related to bounded affine linear subspaces in
RP, and hence the LP norm of the Dirichlet kernel is adding up weighted sums of the integer lattice points

where weights come from the affine subspaces.
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