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cies, sidestepping, and walking backwards, (all in the same learned controller) have not
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architectures have resulted in better performance on a variety of reinforcement learning
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domization. I also demonstrate that various parameters of the dynamics, such as ground
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1 Background

1.1 Robotic Bipedal Locomotion
In the field of 3D bipedal locomotion, classical control methods such as Zero Moment

Point [1, 2, 3], Hybrid Zero Dynamics [4], and control hierarchies that use reduced or-
der models (e.g. Spring Loaded Inverted Pendulum) in conjunction with model predictive
control [5, 6], have made compelling progress. However, these control methods are often
limited due to their dependence on local feedback or online optimization and result in either
brittleness or slower than real-time evaluation. Furthermore, these approaches often require
disturbance observers and state estimators to account for errors [7, 8] due to the highly un-
stable nature of dynamical systems. These are generally memory-based, containing some
sort of hidden state which is updated in real-time, and can be seen as either predictive or
history-compressing mechanisms usually requiring tedious amounts of hand-tuning gains.

The robot used in this work, Cassie, is an approximately human-scale bipedal robot,
manufactured by Agility Robotics in Albany, Oregon. Cassie is powered exclusively by
electric motors and can walk for up to four hours on a single charge. The robot is ap-
proximately one meter tall and has ten actuators (five in each leg). Designing a walking
controller for Cassie is difficult in large part due to the complicated hybrid dynamics, the
springs which create nonlinear torque response in several of the joints, and the dynami-
cally unstable nature of bipedal locomotion. In the past, several effective classical control
methods have been used to control Cassie, including using OSC paired with a SLIP reduced
order representation as in Apgar et al. [9]. In recent years, methods involving applying deep
reinforcement learning have found success in learning stable control policies [10], opening
the door for further exploration into the application of deep reinforcement learning into
dynamically unstable control problems.

1.2 Deep Reinforcement Learning
1.2.1 Reinforcement Learning

Reinforcement learning (RL) is a class of methods which train agents to maximize
the expected return over some period of time using trial-and-error [11]. Reinforcement
learning problems are usually formalized as the interaction between the agent and a Markov
Decision Process (MDP) wherein at a given timestep t the agent receives a state st and
produces an action at using its parameterized policy πθ, and finally receives a reward rt
which varies depending on the ’goodness’ of state-action pair. The agent’s goal is to find
the policy that maximizes the expected discounted sum of rewards, or J(πθ):

J(πθ) = Eπθ

[
T∑
t=0

γtrt

]
Where πθ is a policy parameterized by θ which the agent uses to choose actions , T is a
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time horizon which limits the length of a state-action sequence, and γ is a coefficient which
discounts the reward at a given timestep t which is typically in the range [0.9, 0.99].

One of the most popular categories of RL algorithms is the family of policy gradient
methods. The guiding principle behind all policy gradient methods is optimizing the agent’s
policy by finding the gradient of J ; in other words, they compute∇θJ(πθ). Often, analyti-
cal computation of the gradient of J is expensive or impossible. Though its derivation [12]
will not be covered in this work, the gradient can be approximated as follows:

∇θJ(πθ) = Eπθ [Qπθ(s, a)∇θ lnπθ(a|s)]

Where Qπθ(s, a) is a heuristic denoting the value of a state-action pair following the
policy πθ and the expression ln πθ(a|s) represents the log probability of selecting an action
a given state s following the policy πθ.

Recent algorithms like PPO [13] or TRPO [14] replace the Q function with an advan-
tage function A(s, a) = Q(s, a)− Vπθ(s), where Vπθ(s) is a function which represents the
value of a particular state when following the policy πθ. Thus, the advantage function is a
version of the Q function which has lower-variance due to the subtraction of the baseline
state value. Intuitively, the advantage function can be seen as a measure of how much better
an action was than the average action conditional on the state when following the policy
πθ. In the context of deep reinforcement learning, the policy π, state-action value function
Q, and state value function V are usually represented by neural networks.

Recently, RL has shown significant promise on a variety of non-trivial control problems.
These include problems in manipulation [15, 16, 17] and in legged locomotion, both in
quadrupedal [18] and bipedal [10] locomotion. Reinforcement learning has the potential to
remove a large degree of complexity from control systems, which tends to optimize over a
much longer horizon, and reduce computational cost at the price of a black-box behavior.
Yet while many attempts have been made attempting to use deep reinforcement learning
to learn controllers, fewer have been made learning system identification or disturbance
observation.

1.2.2 Dynamics Randomization

Applying reinforcement learning to robotic control problems often requires large amounts
of data to be sampled in order to learn a useful policy; the number of samples required can
be as high as tens of millions [10], sometimes equivalent to thousands of years of simu-
lation time [16, 17]. Because of the prohibitively data-hungry nature of RL algorithms,
training is usually done in a simulator. Training in simulation rather than the real world
affords not only orders-of-magnitude faster training time, but also massive parallelism, fur-
ther increasing time-efficiency.

However, using simulators to train reinforcement learning agents has serious down-
sides. Approximations or inaccuracies in the physics model, errors in the physical prop-
erties of the physics model, or other potential disagreements between the real world and
the simulated world are the cause of what is known as the sim-to-real problem, or reality
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gap [19]. Training in simulation may lead the agent to exhibit behaviors that exploit quirks
of the simulator, but lead to poor or infeasible behavior in the real world. Training agents
to learn policies that are robust to potential differences between simulation the real world
is an open problem, but a few approaches appear to significantly improve the success rate
of sim-to-real transfer; recent work has found randomizing parameters of the simulation
dynamics, such as joint mass, joint damping, or ground friction, (known as dynamics or
domain randomization) [15, 18] during training to be an effective tool to overcome the re-
ality gap. By randomizing these parameters during training, agents are exposed to a wide
variety of possible simulation dynamics, thus increasing robustness to the inevitably differ-
ent set of dynamics experienced in the real world.

1.2.3 Neural Networks

Neural networks are a class of function approximators which have recently enjoyed
growing popularity in the field of machine learning for being easy to train and useful for
a variety of practical applications while bearing a superficial resemblance to networks of
biological neurons.

49 300 300 10

=LSTM

128 12849 10

Figure 1: A possible structure of a conventional neural network.

Mathematically speaking, a neural network is a series of linear projections with non-
linear ‘activation functions’ interspersed between the projections. An example of such a
neural network can be seen in Fig. 2. The edges connecting any two layers in a neural
network can be seen as collectively representing a matrix multiplication, and the neurons
in those layers as a nonlinear function applied to individual scalars in the projected vector.
This function is usually an S-shaped logistic function, like the sigmoid or tanh functions.

Often, neural networks are trained using a method known as gradient descent, wherein
the partial derivative of an objective function with respect to each of the neural network’s
parameters is calculated, and used to modify the parameters so that the objective function
is either maximized or minimized. To calculate the gradient of the objective function with
respect to the parameters of the neural network, the backpropagation algorithm (effectively
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a highly efficient ordering of derivative calculation through the chain rule) is used. When
using gradient-based optimization methods, it is important that all the functions used in the
neural networks are differentiable (or at least subdifferentiable) so that the partial deriva-
tives of the neural network’s parameters can be computed for the parameter update.

Neural networks in conjunction with reinforcement learning have been found to be very
effective for solving control problems, due to their computationally simple nature, flexible
structure and ease of training. They are universal function approximators, meaning that
they can in theory approximate any continuous function, but not discontinuous ones. This
implies that they could be ill-suited to solving the complex hybrid dynamics task posed by
bipedal locomotion, which are discontinuous.

1.2.4 Recurrent Neural Networks

49 300 300 10

=LSTM

128 12849 10

Figure 2: A diagram detailing the structure of a recurrent network. The recurrent policy, in this
case an LSTM, has a memory-like functionality produced by the connections which loop back onto
themselves, allowing the network to remember things from previous timesteps.

Recurrent neural networks produce outputs that are conditioned on some sort of in-
ternal memory, often assumed to be a compressed history of states. One crucial distinc-
tion between conventional neural networks and RNNs is that RNNs operate exclusively on
time-series data, whereas conventional neural networks operate on individual points with-
out regard to time. This also means that calculating the gradient requires a special case
of the backpropagation algorithm known as backpropagation through time; because the
state of the memory at any timestep plays a role in the output of the neural network in
future timesteps, the chain rule expansion requires gradient information from the future.
This means that the neural network must process an entire time-series before any gradient
calculation can be done, in contrast to conventional neural networks.

Intuitively, an RNN has an awareness of the context of the state it observes at any point
in time. This allows it to model or account for conditions that aren’t directly observable, or
learn to remember information that could be useful later. For instance, RNNs are known to
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be able to approximate context-free grammars [20]. For robotics applications, this means
it has the potential to perform things like implicit online system identification [15, 21].

This ability endows RNNs with (theoretical) Turing completeness. They are capable of
approximating any valid computer program [22], which includes the class of discontinu-
ous functions, conferring an obvious advantage over conventional neural networks (which
have difficulty approximating discontinuous functions). For the sake of completeness, it
should be noted that it appears to be very difficult to harness this theoretical potential [23].
Nonetheless, the theoretical ability of RNNs has implications for solving the discontinuous
hybrid dynamics involved in bipedal locomotion. Where RNNs have been used to learn
control policies, they have often achieved superior performance to feedforward networks
[24, 25], with authors noting that RNNs are particularly adept at dealing with partial ob-
servability of an environment.

Another motivating factor for using RNNs to solve robotics problems is the fact that
classical control methods often use some sort of memory-based mechanism for observing
disturbances or aberrations from the expected behavior of the environment, like disturbance
observers [7, 8]. Using an architecture that can potentially mimic these mechanisms [15,
21] would likely be of much benefit to the learned control policy, especially if the task in
question is partially observable [26].
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2 Methods

2.1 Distinction between Group A and Group B
At the beginning of the research, we found a bare-minimum combination of dynamics

randomization and reward function terms that produced recurrent policies which consis-
tently transferred to hardware over the course of extensive hardware trials. As research
progressed, we made modifications to the dynamics randomization ranges and reward func-
tion as it became apparent what the policies were sensitive to. Though we conducted some
hardware tests on the newer policies, we failed to conduct the same rigorous hardware test-
ing we did for the original group before the COVID-19 pandemic made it impossible to
do further testing. Thus, to maintain a clear separation between policies which were tested
rigorously on hardware and those which were not, policies which were tested early enough
in the experimentation phase to be run on hardware are denoted as belonging to Group
B, while policies which were trained with a more expressive reward and more aggressive
set of dynamics parameters as belonging to Group A. While some policies from Group A
were tested on hardware and even outdoors, no rigorous testing was done and so no quan-
titative hardware results for Group A will be presented, while all quantitative training and
simulation results will be for Group A.

2.2 Input Space

π (LSTM) Cassie

PD Targets

State estimator

Sensor

Observed state

PD

33hz

2000hz

=LSTM

128 12849 10

Velocity Command(s)

Clock Input

Figure 3: The control setup we use to control Cassie using a neural network. The network receives
a cyclic clock input and velocity command in addition to the robot state, and outputs PD targets at
33hz. These targets are translation into motor torques at 2000hz by onboard PD controllers.
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All policies received information from the built-in state estimator on the Cassie robot,
including joint positions and pelvis orientation. All policies also received clock information
in the form of a pair of sine and cosine inputs which correspond to the stepping frequency
of a reference trajectory used to determine the reward for a given timestep.

Notable differences in the input include the addition of a desired sideways speed for
Group A, as well as the removal of information about pelvis height (which was found to be
a noisy and often biased estimate of the true pelvis height), as well as pelvis acceleration
(which was found to be more or less inconsequential). Group A was also trained with step
frequencies that varied throughout training, and so the clock input can be sped up or slowed
down to achieve a desired stepping frequency.

2.2.1 Input Space of Group A

The policies in Group A received the following information from the robot’s state esti-
mator and operator commands:

XA
t =



fvel desired forward speed
svel desired sideways speed
sin(φ) clock input from gait phase
cos(φ) clock input from gait phase
ω̇, ρ̇ pelvis translational and rotational velocity
q̂, q̇ robot joint positions, velocities

2.2.2 Input Space of Group B

The policies in Group B received the following information from the robot’s state esti-
mator and operator commands:

XB
t =



fvel desired forward speed
sin(φ) clock input from gait phase
cos(φ) clock input from gait phase
h pelvis height from ground
ω̇, ρ̇ pelvis translational and rotational velocity
ω̈ pelvis translational acceleration
q̂, q̇ robot joint positions, velocities

2.3 Action Space
The output of all policies was a symmetric set of motor PD position targets, one for

each of the five motors per leg, illustrated in Figure 3. To reduce the probability of learning
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suboptimal walking behavior, an offset is added to the network’s outputted motor positions
which makes an output of all zeros correspond to a neutral standing position.

2.4 Reward Design
Both groups of policies used a sequence of states captured from log data of a known-

working controller walking forward at 1 m/s for one complete walking cycle, called a
reference trajectory. The reward for both groups of policies was based around information
obtained from this reference trajectory, similarly to Xie et al. [10]. From the reference
trajectory, only the joint positions and spring positions are used, while the rest of the re-
ward weighs factors like how well the robot is maintaining a straight-ahead orientation or
whether it is matching a desired speed.

• qerr is an error term representing the difference in joint positions between the refer-
ence trajectory and the current joint positions.

• springerr represents the difference between the reference trajectory spring positions
and actual spring positions.

• xerr is an error term denoting the difference between the forward position and desired
forward position.

• ẋerr is an error term representing the difference between the desired forward velocity
and actual forward velocity.

• ẏerr is an error term representing the difference between the desired sideways velocity
and actual sideways velocity.

• orientationerr which is the quaternion difference between the robot’s orientation and
an orientation which faces straight ahead.

• footfrcpenalty measures the dot product of foot force and foot velocity, a term intended
to ensure that large forces are applied only when the foot is stationary.

• ctrlpenalty is a measure of the difference between the last action taken and the current
action. This is intended to ensure that there are no large oscillations in applied torques
which can cause shakiness on hardware.

The policies in Group A used the following reward function:

R =0.30 · exp(−orienterr) +0.20 · exp(−ẋerr)

+0.20 · exp(−ẏerr) +0.10 · exp(−qerr)

+0.10 · exp(−footfrcpenalty) +0.05 · exp(−springerr)

+0.05 · exp(−ctrlpenalty)

(1)
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The policies in Group B used the following reward function:

R =0.30 · exp(−orienterr) +0.20 · exp(−qerr)

+0.20 · exp(−ẋerr) +0.20 · exp(−ẏerr)

+0.05 · exp(−xerr) +0.05 · exp(−springerr)

(2)

Since Group A was a later iteration of Group B, several insights taken from the earlier
group were used to inform the reward function of Group A. The weighting of qerr (joint
positional error) was reduced as it was found that allowing the policy to adhere less strictly
to the reference motion allowed for more robust behaviors. A term representing the position
of the robot (xerr) was also removed from the reward function after it was determined to be
redundant when combined with the robot velocity. A sideways input reward term was
added to allow the policy to learn sidestepping or sideways velocity matching behaviors.

2.5 Recurrent Proximal Policy Optimization
Proximal Policy Optimization (PPO) [13] is a popular model-free reinforcement learn-

ing algorithm. It has been used to train neural networks to control policies in the past
[10] to great success. Several variants of PPO exist; in this work, the algorithm used fea-
tures early-stopping once Kullback–Leibler divergence between the original policy and the
updated policy grows past some threshold. Additionally, before training commences, the
mean and standard deviation of the states is computed through random sampling and used
to normalize states collected during training.

An additional modification to the algorithm must be made due to the fact that computing
the gradient of an RNN necessitates the backpropagation through time (BPTT) algorithm.
Normally, a batch of transitions is sampled from a so-called replay buffer, which stores a
collection of transitions (where a transition is the state, action, reward, and critic value at
a given timestep) from the simulated environment, and used to inform the gradient calcu-
lation for the policy. However, in the case of an RNN, a batch of trajectories of timesteps
must be sampled due to the need to calculate a gradient over time. This is described by
Sutton and Barto [11] as trajectory sampling.

2.6 Simulation
2.6.1 Dynamics Randomization

Ranges were chosen for each dynamics parameter based on whether or not robot be-
haviors seemed sensitive to that particular parameter. For the policies belonging to Group
A, a set of 77 dynamics parameters are randomized, a description of which can be found
in Table 1. The choice for the ranges and parameters themselves in Group A was informed
by results obtained in Group B and trial-and-error discovery of what did and did not in-
fluence robustness on hardware. The policies belonging to Group B were trained with 61
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randomized dynamics parameters. Descriptions of these parameters can be found in Table
2.

Parameter Unit Range
Joint damping Nms/rad [0.2, 6.0]× default values
Joint mass kg [0.2, 2.0]× default values
Friction coef. (translational) - [0.2, 1.4]
Ground slope (pitch) degrees [−4.6, 4.6]
Ground slope (roll) degrees [−4.6, 4.6]
Joint encoder bias degrees [−0.6, 0.6]
Simulation delay milliseconds [30, 36]

Table 1: Ranges for dynamics parameters in Group A. Random biases are added to the joint posi-
tions reported by the encoders to account for any calibration error, and incline or decline the ground
by several degrees so that resulting policies are more robust to slopes in the real world. Also ag-
gressively randomized are damping and ground friction, to make policies robust to wear and tear on
the robot and slippery or grippy surfaces.

Parameter Unit Range
Joint damping Nms/rad [0.5, 1.5]× default values
Joint mass kg [0.7, 1.3]× default values
Pelvis CoM (x) cm [−25, 6] from origin
Pelvis CoM (y) cm [−7, 7] from origin
Pelvis CoM (z) cm [−4, 4] from origin

Table 2: Ranges for dynamics parameters in Group B. Initially, the pelvis center of mass was aggres-
sively randomized because it seemed apparent that the robot’s center of mass in simulation differed
significantly from the center of mass on hardware, though this turned out later to be unlikely.

2.6.2 Simulation Robustness Test

Six types of policy from Group A were evaluated on their robustness to a variety of
dynamics disturbances in simulation; LSTM networks trained with and without dynamics
randomization, and conventional (feedforward) neural networks trained with and without
dynamics randomization. The average time before falling down was recorded for each type
of policy, and experiments that ran for more than 40 seconds were cut short for computa-
tional efficiency.

2.6.3 Parameter Inference

To perform online system-ID, the memory of the recurrent networks is treated as a
latent encoding and used to train a decoder network to transform the memory back into
the original dynamics parameters. The decoder networks are conventional feedforward
networks taking the policy’s memory as input, each with three hidden layers of sizes 256,
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Recurrent Policy Network

32
Damping Decoder

Friction Decoder

Mass Decoder

256 128 64 32

256 128 64 32

32
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Figure 4: Two hidden LSTM layers (in orange) of a recurrent policy network form inputs to four
decoder networks, which predict various dynamics parameters (predictions in blue).

128, and 64, and an output layer of size equal to that specific dynamics parameter. A
diagram of the architecture of the policy and decoder networks can be seen in Fig. 4.

Training was done under a supervised learning paradigm, where 60,000 memory-label
pairs were generated using the simulated Cassie environment. At a randomly chosen point
during a simulated rollout, the policy networks’ memory was sampled and stored along
with the current dynamics parameter values to create the dataset. Afterwards, simple su-
pervised learning was conducted with a split of 48,000 pairs in the training set and 12,000
pairs in a testing set using MSE loss and the Adam optimizer with a learning rate of 5·10−5.

2.6.4 Principal Component Analysis

Interesting patterns emerge when principal component analysis is performed on the
memory of the recurrent policies by collecting the state of the memory over the course of
one rollout, then projecting each timestep’s memory into a 2-dimensional or 3-dimensional
point using PCA and visualizing the resulting scatterplot.

An example of the resulting curve can be seen in Fig. 5. I further explore the effects of
dynamics randomization on the PCA projections by performing the analysis over multiple
translational friction values, including some outside the range that policies were trained
on. These values range from approximately the friction of wet concrete to the approximate
slipperiness of slick ice and visualize the effect that these changes in the simulation dy-
namics have on the effect of the policy’s PCA-projected memory. Also compared are PCA
projections between memory taken from a recurrent policy trained with a clock input, and
a PCA projection of recurrent policy memory trained with no clock input.
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Figure 5: A plot of the 2-dimensional (left) and 3-dimensional (right) PCA-reduced state of a re-
current policy network’s memory over the course of one rollout consisting of several gait cycles. In
the 2D projection, points become lighter as a function of time. In the 3D projection, points become
lighter as a function of depth.

2.7 Treadmill Test
The policies in Group B were evaluated on their ability to walk upright before falling

over in the real world on a treadmill at a speed of 1 m/s. Experiments that ran for more
than 40 seconds were cut off.

3 Results

3.1 Simulation Robustness
Recurrent LSTM networks and simple feedforward networks both with and without

dynamics randomization were trained and compared; a graph of their reward curves when
trained without dynamics randomization is shown in figure 6. LSTM networks achieved
the highest reward, while feedforward networks failed to reach similar performance.

Also conducted was a simulation robustness test, which measured the time in seconds
a policy was able to remain upright and walking forward at 1 m/s subject to the dynamics
encountered under the set of dynamics parameters µAi , sampled from the ranges for Group
A described in Table 1. LSTM networks trained with dynamics randomization did not fall
down under any of the conditions presented by a dynamics parameter µAi , while every other
group fell at least once or suffered from degraded performance. Despite achieving a higher
reward as observed in Table 6, LSTM policies actually performed slightly worse than FF
policies during the simulated robustness test. This is likely due to some sort of overfitting,
as the computational capacity of the LSTM networks allows it to overfit to quirks of the
simulator or static dynamics parameters.

The LSTM DR policies in Group A exhibited an encouraging range of robust behaviors.
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Figure 6: Averaged reward curves of LSTM and feedforward policies trained on the Cassie simulator
without dynamics randomization. LSTM networks clearly outperform FF networks, but fail to do
better on hardware as seen in Table 5 and do not outperform FF networks on a simulation robustness
test as seen in Table 3. This could be because LSTM networks are more adept at overfitting to the
simulation dynamics.

Parameter Set LSTM DR LSTM FF DR FF
µA
1 10s 1s 1s 1s
µA
2 40s 27s 33s 40s
µA
3 40s 1s 34s 1s
µA
4 40s 1s 40s 1s
µA
5 40s 1s 34s 2s
µA
6 40s 4s 40s 17s
µA
7 40s 1s 29s 3s
µA
8 40s 25s 24s 11s
µA
9 40s 9s 26s 1s

µA
10 40s 3s 15s 3s

Avg. 37.0 7.4 27.6 8.1

Table 3: Time (in seconds) that a policy resulting from a seed was able to walk in simulation subject
to the dynamics imposed by µAi . Each µAi is a collection of 77 parameters sampled from the ranges
described in Table 1.

The policies were able to walk with a varying stepping frequency, and at speeds of up to 1
m/s. Some of these behaviors, such as sidestepping, were demonstrated previously in the
literature by Xie et al. [10], though each behavior was learned by distinct policies; e.g.,
one for sidestepping and one for walking forward. The policies presented here represent,
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for the first time ever, learned controllers that are capable of walking at variable and even
backwards speeds, sidestepping or strafing, and changing the stepping frequency on the fly.

3.2 Memory Introspection
3.2.1 Parameter Inference
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Figure 7: Absolute error on the test set over the course of training for the four decoder networks,
each trying to predict a dynamics parameter using only a snapshot of memory sampled randomly
from a policy rollout. Predictions conditioned on memory sampled from networks trained with
dynamics randomization are labeled LSTM w/ DR, and those sampled from networks without dy-
namics randomization are labeled LSTM.

We compare dynamics parameter predictions from decoder networks trained to output
dynamics parameter estimates conditioned on memory sampled from the recurrent policies
trained with and without dynamics randomization. In general, the dynamics parameter pre-
dictions conditioned on memory sampled from networks trained with dynamics random-
ization outperformed predictions conditioned on memory sampled from networks trained
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without dynamics randomization, with the exception of ground friction, as can be seen in
Fig. 7. In addition, table 4 lists the percent improvement for each dynamics quantity, where
the percent improvement is a quantity representing how much better the decoder networks
trained on LSTM w/ DR memory did than the decoder networks trained on LSTM w/o
DR. We use the performance of decoder networks trained on LSTM w/o DR as a baseline,
since these networks did not encounter random dynamics parameters during training and
so could not have learned to encode these quantities, meaning that any decoding of those
memory states is simply the decoder networks using state history to make educated guesses
about possible dynamics values.

Dynamics Parameter Percent Improvement
Damping 0.13%
Friction -20%

Mass 10%
Slope 51%

Table 4: Percent improvement of decoder networks conditioned on memory from LSTMs trained
with DR over decoder networks conditioned on memory from LSTMs not trained with DR.

One possible (counterintuitive) reason for the friction discrepancy could be that LSTM
networks trained with dynamics randomization simply choose a stepping pattern which is
robust to a wide range of ground frictions rather than inferring and accounting for varying
ground friction. If this is the case, then it would be difficult to observe any sort of difference
in the hidden states of the LSTM, as it is robust enough to friction that it does not need to
invest any effort into changing its behavior or memory to account for it. Conversely, the
LSTM networks trained without ground friction would be unable to be robust to the varying
ground friction, and this would have a presumably large effect on not just the actions taken
by the network, but also the internal state of the network. If these effects are simple enough,
they could be easy for the decoder networks to use to inform a ground friction prediction.
The reproducibility of this result and robustness of LSTM policies trained with DR to
ground friction seems to imply that this is the case.

In the other curves, memory sampled from LSTM policies trained with dynamics ran-
domization helps the decoder network learn faster and also settle at a lower minimum,
implying that these memories contain more information about the dynamics disturbances.

3.2.2 Principal Component Analysis

Interesting patterns emerge when dimension reduction through PCA is performed on
the memory of the recurrent policy networks as it changes over the course of a rollout.
As can be observed in Figures 5, 8, and 9, the two-dimensional PCA projection of the
memory is a circular shape, analogous to a central pattern generator [27]. Interestingly,
all of the recurrent policies have a similarly elliptic 2-dimensional PCA reduced memory
representation. The regularity of the shape of the reduced dimensional projection of the
memory may indicate the importance of the clock in achieving a stable walking cycle.
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Figure 8: 2-dimensional (left) and 3-dimensional (right) PCA projections over the course of a rollout
taken from memory of a policy trained with a clock input (top) and without a clock input (bottom).

In fact, policies not trained with a clock input appear to be missing the distinct 28-part
segmentation that can be observed in policies trained with clock input (as can be seen in
Fig. 8), and overall the projection is more stochastic in appearance; this is further evidence
for the importance of the clock input, which appears to play a role in increasing the amount
of variance in the memory which can be captured in a low-dimensional PCA projection.
The saddle-like shape of the 3-dimensional projection is also extremely regular and appears
in every recurrent policy evaluated, though it varies in steepness of shape from policy to
policy. Notable in every projection is the apparent segmentation of the ellipsis, which
features 28 distinct segments in keeping with the gait phase.

The shape of the ellipses in the reduced-dimension projection appears to decohere as the
dynamics approach values not seen in training. This can be seen in Fig. 9 as the ellipses
appear to fray at the edges and eventually lose their shape as a function of decreasing
ground friction. The slipperiest ground friction visualized (0.25) is roughly equivalent
to walking on slick ice. The PCA projection of the memory of the policy trained with
DR more or less maintains its shape throughout the rollouts with low friction, while the
projection from the policy not trained with DR is unable to find a consistent shape.
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Figure 9: 2-dimensional and 3-dimensional PCA projections of a policy network trained with DR
and without DR, over the course of several rollouts with varying ground friction coefficients.

18



3.3 Hardware Results
3.3.1 Treadmill Test

Before the Covid-19 pandemic, the policies in Group B were evaluated on a treadmill
at a speed of 1 m/s, and the time walking upright before falling over was recorded. Policies
that were able to walk for more than 40 seconds were cut short. The results can be seen
in Table 5. None of the LSTM policies trained with dynamics randomization fell over
before the end of the 40 second experiment, while only two of the LSTM policies trained
without dynamics randomization were able to walk for more than 40 seconds. Feedforward
policies performed roughly equivalently to LSTM policies when not trained with dynamics
randomization despite achieving lower reward in simulation, which I attribute to the LSTM
overfitting the simulation dynamics, much like the simulation robustness test.

Seed LSTMB LSTM DRB FFB

1 7s > 40s 0s
2 7s > 40s 16s
3 > 40s > 40s > 40s
4 11s > 40s 9s
5 3s > 40s 33s
6 3s > 40s 0s
7 2s > 40s 5s
8 0s > 40s 3s
9 > 40s > 40s 7s
10 4s > 40s 10s

Avg. 11.7s 40s 12.3s

Table 5: Time (in seconds) that a policy resulting from a seed was able to walk in the real world.
Experiments that ran for more than 40 seconds were cut off.

Feedforward policies trained with dynamics randomization were not able to walk due
to unsafe oscillations in the output, and so only LSTM, LSTM DR, and FF were evaluated
on hardware. Though several policies from Group A were tested on the treadmill, no
comprehensive or rigorous experiments were done and so quantitative hardware results
only for the older Group B are presented.

All policies, whether trained with dynamics randomization or not, exhibited a curious
’falling backward’ behavior when policies were commanded to step in place, marked by at
first flat-foot walking, then heel-walking and slowly drifting backwards, and finally falling
over backwards. The randomization of pelvis center of mass was a proposed solution which
sought to address a hypothesized cause of this behavior, which we initially thought to be
a discrepancy between the simulation robot center of mass and true hardware center of
mass, since this behavior was not present in simulation. Randomizing pelvis center of
mass greatly improved the robustness of policies to falling backwards (policies in some
cases were able to walk in place for up to thirty seconds), but the issue persisted regardless
of the range of center of mass.
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Figure 10: A recurrent policy being evaluated on the physical Cassie robot.

Walking forward was not an issue, and recurrent policies trained with dynamics ran-
domization were generally able to walk forward while even some recurrent policies not
trained with dynamics randomization were able to complete the walking forward task.
This could possibly be because walking at speed is more dynamically stable and easier
than stepping in place. The training regimen for Group A was to a large degree informed
by attempts to stamp out the falling backwards behavior observed in Group B.

4 Conclusion
In this work, it has been shown that recurrent policy networks are a compelling choice

of agent for learning robotic bipedal locomotion due to their high level of robustness and
the fact that they are theoretically more sound for complicated, nonlinear and discontinuous
problems like bipedal locomotion. They are capable of learning an wide range of all-in-
one expressive behaviors which have not yet been demonstrated using a single learned
controller. This bodes well for various other challenging robotics problems suffering from
partial observability which can be solved by learned controllers. Additionally, the result-
ing shape of the PCA-projected memory over time heavily implies that some sort of clock
input is important to achieving stable, robust walking behavior analogous to central pattern
penerators. Furthermore, the ability of learned, memory-based controllers to embed indi-
rectly observed information such as parameters of the dynamics (though the information
can currently only be retrieved in a lossy way), has consequences for all sim-to-real tasks.
One can imagine using these networks to collect data and infer information about the real
world, and use the inferred information to inform values in simulation; or, at the very least,
using them to account for disturbances to the expected physics dynamics in real-time.
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