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volu estimation

Sean M. Garber, H. Temesgen, Vicente J. Monleon, and David W. Harm

Abstract: Subsampling and subsequent imputation of tree heights can improve the predictive performance of stand volume
estimation but may also introduce biases. Using coastal Douglas-fir data from southwest Oregon, USA, the predictive per-
formance of several height imputation strategies for estimating stand volume was evaluated. A subsample of 1-15 trees
was randomly selected per stand, and missing heights were imputed using a regional Chapman-Richards function with di-
ameter only and diameter plus stand density measures, fitted using a nonlinear least-squares model (NFEM) and a nonlin-
ear mixed-effects model (NMEM). Missing heights were imputed using the regional height-diameter equation and by
adjusting the equation with a correction factor (NFEM) or with predicted random effects (NMEM) to calibrate the height-
diameter relationship to each stand. Differences in actual stand volu mes, calculated with measured heights, and predicted
stand volumes, calculated using measured heights for the subsampled trees and predicted heights for those with missing
heights, were used to compare the alternative height imputation methods. Precision and bias were poorest for the regional
models, especially NMEM, and best for the adjusted models also using NMEM. Results suggest that a similar subsample
of heights (n = 4) is required for precise stand volume estimation as has been reported for height.

Resume: Le sous-echantillonnage et I'imputatiou subsequente de la hauteur des arbres peut ameliorer la performance pre-
visionnelle de l'estirnation du volume d'un peuplement, mais peut aussi introduire des biais. A l'aide de donnees sur Ie
douglas de Menzies du sud-ouest de I'Oregon (Etats-Unis), nous avons evalue la performance previsionnelle de plusieurs
strategies d'imputation de la hauteur pour estimer le volume des peuplements. Un sous-echantillon de un a 15 arbres a ete
selectionne alearoiremcnt pour chaque peuplernent et les hauteurs manquantes ont ete imputees en utilisant une fonction re-
gionale de Chapman-Richards basce soit sur des rnesures de diametre seules soit sur des mesures de diametre et de densite
du peuplement. Cette fonction a etc ajustee a l'aide des moindres carres non lineaires (NFEM) et deffets mixtes non line-
aires (NMEM). Les hauteurs manquantes ont ete imputees en utilisant l'equation regionale hauteur-diametre qui a ete
ajustee avec un facteur de correction (NFEM) ou avec des effets aleatoires de prevision (NMEM) pour etalonner la rela-
tion hauteur-diametre de chaque peuplement. Pour comparer ces methodes d'imputatlon de la hauteur, nous avons utilise
les differences de volume de peuplement entre les valeurs reelles, calculees a partir des hauteurs mesurees, et les valeurs
predites, calculees a partir des hauteurs mesurccs du sous-echanrillon d' arbres et des hauteurs predites pour Ies arbres dont
la hauteur etait manquante. Les moins bonnes valeurs de precision et de biais ont ere obtenues avec les modelcs regionaux,
particulierernent NMEM, alors que les meilleures valeurs ont ete obtenues avec Jes modeles qui utilisaient aussi NMEM.
Les resultats indiquent qu'un sous-echantillon similaire de hauteur (Il =: 4) est requis pour une estimation precise du vol-
ume d'un peuplement comme il a deja ete rapporte pour la hauteur.

[Traduit par la Redaction]

Introduction

Imputation of values for selected tree- and stand-level at-
tributes is a necessary component of forest inventory. The es-
timation of tree and stand volumes generally requires an
estimate of tree height. Likewise, individual tree growth

models require an estimation of height for each tree in the
tree list. For stands without height measurements, the com-
mon practice is to impute tree heights using regional equa-
tions, which are a function of diameter (Curtis 1967; Wykoff
et al. 1982; Huang et al. 1992; Lappi 1997; Temesgen et al.
2007) and perhaps of other tree or stand variables (Curtis
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1967; Larsen and Harm 1987; Hanus et a1. 1999; Temesgen
and von Gadow 2004; Temesgen et a1. 2007). Often heights
are sampled in the field using a double sampling approach
where a subset of sample trees is also measured for height.
This subsample can be used to develop local height-diameter
equations; however, adequate subsample sizes tend to be
fairly high (Houghton and Gregoire 1993). Likewise, sub-
sampled heights can be used to calibrate an existing regional
equation for a stand, using a ratio estimator or a correction
factor (Temesgen et a1.2008). This is the dominant technique
used in current inventory programs and growth models (e.g.,
Harm 2006).

Regional height equations are estimated using either lin-
ear or nonlinear fitting techniques, such as least squares,
that often do not account for the hierarchical nature of the
data (i.e., trees within plots within stands). That is, the ob-
served trees are assumed to be independent and the param-
eters of the equation are assumed to be fixed. It follows
that these parameter estimates also provide unbiased height
predictions for a new sample of trees from the same popu-
lation. However, they do not necessarily give the most pre-
cise (lower variance) height predictions (Temesgen et a1.
2008) because of the nature of height subsampling. It is
likely that trees within a given stand are more similar than
trees from different stands. Moreover, the assumption that
the parameters are fixed, meaning that they take the same
value in all stands, may not hold if there are subtle differ-
ences among stands. More recently, modeling techniques
have been utilized in forestry that account for this hierarch-
ical data structure. Instead of fitting the models with the as-
sumption that the parameters are fixed, random effect
fitting techniques allow one or more parameters to vary by
some hierarchical grouping variable (e.g., by stand). To
date, these so-called mixed-effects models have been used
to fit models for a number of forestry applications (Biging
1985; Gregoire et a1. 1995; Garber and Maguire 2003;
Weiskittel et a1. 2007), including height imputation equa-
tions (Calama and Montero 2004; Castedo et al. 2006; Te-
mesgen et al. 2008).

Despite the attractive nature of mixed-effects models,
problems have surfaced with regard to the use of these equa-
tions for predicting and imputing missing values in a new
stand (i.e., a stand that is not a member of the original mod-
eling data set). Several studies have found the poorest pre-
diction performance (bias and variance) using nonlinear
mixed-effects models (NMEM) (Monleon 2003; Robinson
and Wykoff 2004; Temesgen et a1. 2008). Since the random
effect for a new stand is not known, the fixed-effect portion
of the model is the only part used for prediction (the random
effect is assumed to be zero). Unlike ordinary least squares
or linear mixed-effects models, predictions from NMEMs
are biased when the random effect is nonlinear in its param-
eterization and assumed to be zero. Techniques are available
for estimating the random effect by using a best linear un-
biased predictor (BLUP) (Goldberger 1962; Temesgen et aI.
2008) and a subsample of tree heights in the new stand. A
number of studies have reported the prediction performance
from these models to be superior to that of other techniques
(Monleon 2003; Robinson and Wykoff 2004; Temesgen et
aI. 2008). Moreover, a large subsample of heights is not re-
quired (Temesgen et al. 2008).
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Despite the superior height prediction of NMEMs when
the random effect is predicted. tree heights are generally not
an end unto themselves but rather a means to some other
end, such as the estimation of tree and stand volume. Rela-
tive performance of the alternative height imputation techni-
ques does not necessarily translate for stand volume, since
they are optimized for height prediction. Therefore, the pri-
mary objective of this study was to evaluate several height
imputation techniques on stand volume prediction. Specifi-
cally, two model forms found to be superior by Temesgen
et a1. (2007) and assessed for height prediction by Temesgen
et al. (2008) were compared for their ability to predict stand
volume using the following four strategies: (i) nonlinear
fixed-effects models (NFEM) were fit to a regional data set
using least-squares regression and then applied to a new
stand without a correction factor, (ii) NMEMs were fit to a
regional data set and then applied to a new stand without
calculating the BLUP, (iii) NFEMs were fit to a regional
data set and then applied to a new stand with a correction
factor based on subsampled heights, and (iv) NMEMs were
fit to a regional data set and then applied to a new stand
with the BLUP calculated using the subsampled heights.

Methods
Data

The data were collected in two studies associated with the
development of southwestem Oregon variant of the ORGA-
NON growth model (SWO-ORGANON) (Hann 2006). The
first set of data was collected during 1981, 1982, and 1983
as part of the southwest Oregon Forestry Intensified Re-
search Growth and Yield Project. This study included 391
plots in an area extending from near the California border
(42o10'N) in the south to Cow creek (43°00'N) in the north,
and from the Cascade crest (122o15'W) on the east to ap-
proximately 15 miles (l mile = 1.609 344 km) west of Glen-
dale (123°50'W). Elevation of the sample plots ranged from
250 to 1600 m Selection was limited to stands under
120 years of age and with 80% basal area in conifer species.
The second study covered approximately the same area but
extended the selection criteria to include stands with trees
over 250 years in age and to younger stands with a greater
component of hardwoods. An additional 138 plots were
measured in this second study. Stands treated in the previous
5 years were not sampled in either study.

In both studies, each stand was sampled with 4-25 sample
points spaced 45.73 m apart. The sampling grid was estab-
lished in a manner such that all sample points were at least
30.5 m from the edge of the stand. At each sample point,
trees were sampled with a nested plot design composed of
four subplots: (i) trees with  < 10.2 cm diameter at breast
height (d) were selected on a circular subplot with a fixed
2.37 m radius, (ii) trees with 10.3-20.3 cm d were selected
on a circular subplot with a fixed 4.74 m radius. (iii) trees
with 20.4-91.4 cm d were selected on a 4.592 basal area
factor (BAF) variable radius subplot, and (iv) trees with
>91.4 cm d were selected on a 13.776 BAF variable radius
subplot.

Measurements of total tree height (h) and d were taken on
all sample trees. Diameter was measured to the nearest
0.25 cm, rounded down, with a diameter tape. Height was
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measured either directly with a 7.6-13.7 m telescoping fiber
glass pole or, for taller trees, indirectly using the pole-tangent
method (Larsen and Hann 1987) and was recorded to the
nearest 0.03 m. For trees with broken or dead tops, h was
measured to the top of the live crown. All trees were as-
sessed for type and severity of damage. Time since last
cutting was determined on all previously treated plots.

A total of 30 tree species was found on 529 plots. The
number of species found on a single plot ranged from 1 to
12 and averaged almost five species. Coastal Douglas-fir
(Pseudotsuga menziesii (Mirb.) Franco) was the most com-
mon species, found on 339 plots. and was the focus of this
study. From each untreated plot, height and diameter of un-
damaged trees were extracted to evaluate selected height
prediction strategies on stand volume estimation. Since one
of the main objectives of this study was to evaluate the pre-
dictive performance of the models as a function of the num-
ber heights subsampled from the stand, only stands with at
least 25 coastal Douglas-fir sample trees were included.
This resulted in a total of 4948 trees on 142 plots. The data
set covered a wide array of stand densities with the basal
area (BA) ranging from 8.1 to 101 m2·ha-l, the crown com-
petition factor (Krajicek et al. 1961) ranging from 112.2% to
490.4%, d ranging from 0.3 to 178.9 cm, and h ranging from
1.4 to 62.1 m (Table 1).

Models and prediction strategies
In this paper, we examined four model-based strategies.

While the first two strategies fill in the missing height using
preestablished coefficients, the last two strategies fill in the
missing height by using the subsample tree data to adjust the
height-diameter equations.

Strategy 1-NFEMs without correction
Two Chapman-Richards based model forms found to be

superior model forms in fit statistics (Temesgen et al.
2007), a base model that was a function of d only (eq. 1)
and an enhanced model that was a function of d and addi-
tional tree and stand variables (eq. 2) were fitted by nonlin-
ear least squares and thus are NFEMs.

where β0, β00, β01, β02, β1, and β2 are the parameters to be
estimated by the data; dU is the diameter at breast height of
tree j in stand i; hij is the height of tree J in stand i; CCFLij
is the crown competition factor in trees of larger than dij for
tree j in stand i; BA; is the basal area of stand i; and Eij is an
error term assumed to independent between observations
and N(0, οε2). Equation 2 was motivated by the assumption
that the height-diameter relationship depends on tree posi-
tion wi thin the stand and stand density. CCFL was calcu-
lated by summing the maximum crown area of all trees in
the stand with a d greater than that of the subject tree. Max-
imum crown areas were calculated using the maximum
crown width equations of Paine and Hann (1982).
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Table 1. Summary of tree- and stand-level attributes used in the
study.

Strategy 2-NMEMs without BLUP
Since eqs. 1 and 2 do not account for the hierarchical

structure of the data, these same model forms were also refit-
ted to incorporate a random asymptote that varies by stand.

where bi is the random effects for the ith stand and is as-
sumed to be independent among stands and distributed N(0,
(οb2); all other variables are defined above.

Strategy 3-NFEMs with correction
A subsample of h collected from a new stand (m) can be

used to calculate stand-level correction factors to adjust
eqs. 1 and 2 for imputation. The technique described by
Draper and Smith (1998, p. 225) and implemented by Te-
mesgen et al, (2008) was used in this study.

Suppose again that the h of a subsample of nm trees from
a new stand is known. Let hm and Xm be the h and matrices
of covariates from those trees. Then. the h of another tree
from the same stand can be adjusted with the following or-
dinary least-squares correction factor on the regional hand d
equations (Draper and Smith 1998, p. 225):

where t; is the predicted h from eq. 1 or 2 and hmj is the
observed h. Then, the adjusted predicted h for a tree from
the new stand can be calculated as
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Fig. 1. Frequency distribution of the root mean square error (RMSE) of the estimated stand volume after 200 simulations for the nonlinear
least-squares model (NFEM) with a correction factor (strategy 3) base model. as a function of the number of randomly selected heights used
to predict the random effect. For comparison, the RMSEs from the fits of Temesgen et al. (2008) to all trees for the following models are
shown as vertical lines: the base NFEM without the correction factor (broken grey line), the enhanced NFEM without the correction factor
(solid grey line), the base nonlinear mixed-effects model (NMEM)without a best linear unbiased predictor (BLUP) (broken black line), and
the enhanced NMEM without a BLUP (solid black line). The base models include just diameter and the enhanced models include diameter,
crown competition factor in larger trees, and stand basal area.

For the enhanced equation, the adjustment is

Strategy 4-NMEMs with BLUP
For a new stand, the random effects were approximated

using a BLUP (Goldberger 1962). The closed-form BLUP
for a single random effect presented by Temesgen et al.
(2008, p. 557) was used in this study.

where  βm is the predicted random effect for stand m; β0, β1,

β2, Ο2
b and Ο2

e
; are parameters estimated from the training

data set; Im is the  n x n identity matrix; and Zm is a vector
of transformed co variates with the jth element defined as

The h of a new tree from the m stand is predicted as

When relative position and stand density variables are in-
cluded, the closed form will have the same form but with βo
substituted by β00 + β01 CCFLmj + β02BAm•

Simulation and prediction performance
The predictive performance of the different strategies was

evaluated using the following steps for each of the 142 stands.
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Fig. 2. Frequency distribution of the root mean square error (RMSE) of the estimated stand volume after 200 simulations for the nonlinear
least-squares model (NFEM) with a correction factor (strategy 3) enhanced model, as a function of the number of randomly selected heights
used to predict the random effect. For comparison, the RMSEs from the fits of Temesgen et al. (2008) to all trees for the following models
are shown as vertical lines: the base NFEM without the correction factor (broken grey line), the enhanced NFEM without the correction
factor (solid grey line), the base nonlinear mixed-effects model (NMEM) without a best linear unbiased predictor (BLUP) (broken black
line), and the enhanced NMEM without a BLUP (solid black line). The base models include just diameter and the enhanced models include
diameter. crown competition factor in larger trees, and stand basal area.

1. Starting with the first stand, parameters were estimated
based on strategies 1--4 and by using the data from the
remaining 141 stands, using the fitting procedures out-
lined above.

2. A subsample of 1-15 heights was selected from the stand
of interest. The correction factor (strategy 3) and random
stand effect (strategy 4) were calculated from this sub-
sample. Since we did not correct for the different inclu-
sion probabilities associated with the use of nested fixed
and variable radius subplots, the random-subsampling
approach we used will tend to include larger trees from
the stand more frequently than smaller trees.

3. The height of the remaining trees in the selected stand
was predicted and individual total tree volumes were cal-
culated. The individual total tree volume equation with-
out the crown ratio of Walters et al. (1985) was used in
this study. This equation was constructed using many of
the plots in this study. Actual tree volumes were esti-
mated using the observed heights and were multiplied
by their expansion factors and then summed across the

Douglas-fir trees in the stand to determine actual stand
volume (V;). The predicted stand volumes (Vi) were cal-
culated in the same fashion except the tree volumes were
predicted using the predicted tree heights for trees not
subsampled and the actual tree heights fo~ trees that
were subsampled. The prediction error (Vi - Vi) was cal-
culated for each stand.

4. The process was repeated for all stands to estimate the
prediction RMSE and prediction bias. Note that the true
volume of a tree was not known but was predicted from
a volume equation. Therefore, in estimating the predic-
tion error, RMSE, and bias, we are actually comparing
the volume computed when tree heights are estimated
with the volume computed when the true tree heights
are known. rather than with the actual volume. There
would be an additional prediction error associated with
use the volume equation. Gertner (1990) found a 6.76%
prediction error when a regional volume function was
used. The volume equation used in the study is the stan-
dard equation used in the region (Hann 2006). Since the
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Fig. 3. Frequency distribution of the root mean square error (RMSE) of the estimated stand volume after 200 simulations for the nonlinear
mixed-effects model (NMEM) (strategy 4) base model, as a function of the number of randomly selected heights used to predict the random
effect. For comparison, the RMSEs from the fits of Temesgen et al. (2008) to all trees for the following models are shown as vertical lines:
the base nonlinear least-squares model (NFEM) without the correction factor (broken grey line), the enhanced NFEM without the correction
factor (solid grey line), the base NMElvl without a best linear unbiased predictor (BLUP) (broken black line), and the enhanced NMEM
without a BLUr (solid black line). The base models include just diameter and the enhanced models include diameter, crown competition
factor in larger trees, and stand basal area.

main interest is in predicting stand volume, estimates of
the RMSEand bias were averaged over the 142 stands.

5. The process was repeated 200 times with the prediction
RMSE, and bias was calculated during each iteration.
They were then averaged over the 200 iterations to cal-
culate the mean RMSE and mean bias.

Results
The mean and variance of the distribution of the root

mean square errors from the 200 iterations decreased with
increasing sample size for the NFEM with correction factor
(strategy 3) using the base (Fig. 1) and enhanced (Fig. 2)

models. The pattern was similar for the base (Fig. 3) and en-
hanced (Fig. 4) NMEM with a BLUP (strategy 4). A sub-
sample of a single tree height resulted in a wide range of
RMSE values, primarily ranging from 33 to 61 m3·ha-1 for
the base and enhanced NFEMs (Figs. 1 and 2). Large varia-
tion was also evident with the base and enhanced NNIEMs,
though both the RMSE average and range were much
smaller (Figs. 3 and 4). For the corrected NFEMs, a subsam-
pIe of three heights resulted in more than 95% of the RMSE
values below the best uncorrected model (enhanced NFEM).
A subsample size of only two trees (not shown) was suffi-
cient to accomplish the same result for the NMEMs.

Mean RMSE was lower for the enhanced models fit with
either NFEM or NMEM (Fig. 5). Likewise, mean RMSE
was lower when subsampled heights were used to calculate
an adjustment factor (NFEM) or a BLUP (NMEM). An in-
crease in subsample size showed a large initial reduction in
mean RMSE (Fig. 5). A random subsample of just one tree
resulted in a lower mean RMSE for the base NMEM with a
BLUP than either of the regional base models (Fig. 5(a). A
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Fig. 4. Frequency distribution of the root mean square error (RMSE) of the estimated stand volume after 200 simulations for the nonlinear
mixed-effects model (NMEM) (strategy 4) enhanced model, as a function of the number of randomly selected heights used to predict the
random effect. For comparison, the RMSEs from the fits of Temesgen et al, (2008) to all trees for the following models are show as vertical
lines: the base nonlinear least-squares model (NFEM) without the correction factor (broken grey line), the enhanced NFEM without the
correction factor (solid grey line), the base NMEM without a best linear unbiased predictor (BLUP) (broken black line), and the enhanced
NMEM without a BLUP (solid black line). The base models include just diameter and the enhanced models include diameter, crown com-
petition factor in larger trees, and stand basal area.

subsample size of two heights was necessary to accomplish
the same result for the corrected NFEMs. As subsample size
increased, the difference in the mean RMSE between the
corrected base and enhanced NFEMs decreased, with the
NMEM with a BLUP having greater mean precision than
the NFEM with correction. However, the average RMSE
for those two scenarios did not quite converge in the range
of sample sizes assessed. Results were similar for the en-
hanced models, except regional enhanced models performed
better than the regional base models (Fig. 5b). As with the
base models. the enhanced NFEM with correction and
NMEM with a BLUP mean precision increased with in-
creasing subs ample size, converging somewhere between
seven and ten height subsamples.

A bias was evident for all strategies (Fig. 6). A positive
bias (observed volume greater than predicted volume) was
evident for all strategies and subsample sizes except the
NFEM with correction at low subsample sizes. The NFEM
regional base model had mean biases less than 4 m3·ha-1

and performed much better than the NMEM base model,
which had mean biases greater than 20 m3·ha-1 (Fig. 6(a).
Using subsampled heights, either through strategies 3 or 4,
improved mean bias for the NFEM and NMEM relative to
the regional models. Mean bias improved with subs ample
size, leveling off near a subsample of four trees, though
both models improved slightly as subsample size continued
to increase. The enhanced models showed similar results.
but the bias was smaller in magnitude (Fig. 6b). With a sin-
gle subsampled height, the NFEM had the lowest mean bias.
At larger subsample sizes, the NFEM with a correction fac-
tor and NMEM with a BLUP had smaller mean biases than
the regional enhanced models. At low subsample sizes,
NFEM with a correction factor had slightly less mean bias
than the NMEM with a BLUP. Beyond a subsample size of
seven, the two models were virtually indistinguishable.

Trends in bias averaged over the 200 iterations showed
some small pattems as a function of stand variables. There
were no obvious pattems with site index or crown cornpeti-
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Fig. 5. Mean root mean square error (RMSE) for the four prediction
strategies as a function of the number of tree heights subsampled at
random to predict the nonlinear least-squares model (NFEM) with a
correction factor or nonlinear mixed effects model (NMEM) with a
best linear unbiased predictor (BLUP) for the (a) base model and
(b) enhanced model. For comparison, the NFEM without the cor-
rection factor and NMEM without a BLUP (b) are shown.
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Fig. 6. Mean bias for the four prediction strategies as a function of
the number of heights subsampled at random to predict the NFEM
with correction factor or the nonlinear mixed-effects model (NMEM)
with a best linear unbiased predictor (BLUP) for the (a) base model
and (b) enhanced model. For comparison, the NFEM without the
correction factor and NMEM without a BLUP (b) are shown.

tion factor. Interestingly, there was a positive nonlinear
trend in mean bias with stand basal area in the base
NFEM and NMEM (Figs. 7a and 7c). TIns pattem disap-
peared with the correction factor and a BLUP, respectively
(Figs. 7f and 7h).

Discussion
Without subsampling, the NFEM had greater precision

and less bias than the NMEM models. In particular, the
base NMEM's RMSE and bias were at least 40% and 400(/0
higher, respectively, than any of the other strategies as-
sessed. This result was not completely unexpected, as sev-
eral studies have reported larger biases in height prediction
using NMEM without BLUPs (Monleon 2003; Robinson
and Wykoff 2004; Temesgen et al. 2008). Mean percentages
of bias and RMSE in height prediction were approximately
3% and 16%, respectively, for NMEM without BLUPs in
these stands (calculated from Temesgen et al. 2008). These
numbers are well within the 40% the height estimation er-
ror tolerance for utilizing a height-based volume equation
(Williams and Schreuder 2000), these translated into mean
percentages of bias and RMSE of roughly 7% and 20%,
respectively, in stand volume estimation.

The incorporation of additional tree and stand competition
variables improved stand volume prediction bias and preci-
sion. The importance of these variables has been demon-
strated in past studies for improving model fits (Ritchie and
Hann 1987; Zumrawi and Hann 1989; Hann et al. 2003;
Temesgen et al. 2007) and height prediction (Temesgen et
al. 2008). Height has generally been considered to be less

sensitrve to density than diameter (Curtis and Marshall
2002). Moreover, tree position in the stand and stand den-
sity influence tree crown length and stem form and thus
the height-diameter relationship (Larson 1963).

When tree heights were subsarnpled, the NMEMs
(strategy 4) were superior or equal to NFEMs with a correc-
tion factor (strategy 3) at all subsample sizes, albeit the dif-
ference was negligible for large subsample sizes. Smaller
subsample sizes were required to produce smaller RMSE
and bias with the NMEM with a BLUP than with the
NFEM with a correction factor. A similar result was ob-
served in height prediction using a similar analysis with the
same data set (Temesgen et al. 2008). The results presented
here suggest that these results carry through to the estima-
tion of stand volume.

Three sources of error have been observed in the estima-
tion of stand volume from a stand inventory: error due to
the sample trees selected (sampling error), error due to the
volume equation (regression function error) , and error asso-
ciated with measuring the attribute of interest (measurement
error) (Gertner 1990). As mentioned above, all attributes are
rarely measured on all sample trees for the calculation of
tree volume. Therefore, we have introduced two new sources
of error: imputation error (enol' in missing height prediction
strategies) and subsampling error (the error associated with
the subsampled height trees) (Gregoire and Williams 1992).

Sampling and measurement errors were not addressed in
this study and thus are not components of the results pre-
sented. Likewise, the regression error associated with the
volume equation was not addressed because true tree vol-
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Fig. 7. Bias averaged over the 200 simulations for a subsample size of five random tree heights over stand basal area for each of the 142
stands. (a) Base nonlinear least-squares model (NFEM) without the correction factor, (b) base NFEM with the correction factor, (c) enhanced
NFEM without the correction factor. (d) enhanced NFEM with the correction factor, (e) base nonlinear mixed-effects model (NMEM) without
a best linear unbiased predictor (BLUP), (f) base NMEM with a BLUP, (g) enhanced NMEM without a BLUP, (h) enhanced NMEM with a
BLUP.

umes were unknown. Tree volumes calculated using the
measured values of h were assumed to be the Hue tree vol-
umes. Consequently, volume regression function error would
not be a component of the results. Regardless, since these
equations were developed using trees from these plots and
produced very good fits to these data (Walters et a1. 1985),
the contribution of this error in practice would likely be rel-
atively small (Gertner 1990).

The error associated with the height imputation function
and the subsampling error on stand volume were the main
focuses of this study. The magnitude of the bias and in-
creased variability demonstrated the effect of error propa-
gated between tree height prediction and stand volume
estimation. From the standpoint of volume calculation, the
en'or in tree height prediction is one form of measurement
error (Monserud and Ek 1974). If these errors are assumed
to have an expectation of zero, then the impact is compara-
ble to sampling error and would likely decrease with in-
creasing sample size of plots (Gertner 1990). However. if
the expectation of the error is not zero, then the prediction
error would likely be the dominant source of error and

would not decrease with sample size (Gertner 1990;
Gregoire and Williams 1992). As previously demonstrated,
bias exists to a varying degree during height imputation
(Temesgen et al. 2008). The incorporation of stand varia-
bles reduces bias and improves precision in height predic-
tion (Temesgen et al. 2008), thus resulting in better stand
volume estimates. Likewise, subsampling heights and esti-
mating an ordinary least-squares correction factor or the
NMEM best linear unbiased predictor reduce bias and im-
prove precision in height prediction (Temesgen et al,
2008), resulting in better stand volume estimates. These
two approaches were comparable as they both utilize stand
information to improve prediction. However, the relative
enol' increases from the tree-level height predictions to the
stand-level volume predictions because, although less. bias
still exists (i.e., the expectation of the error is not zero).

Conclusion and recommendations

Temesgen et al. (2008) recommended the use of NFEMs
with stand and tree density variables for stands without a
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subsample of heights and NMEMs with or without density
variables for stands with a height subsample. The results of
the present study underscore these recommendations. The
use of NMEM is not recommended when a subsample of
heights is not available because of extremely high bias and
low precision when stand volume will be calculated after
imputing tree heights. Results here suggest either approach
is applicable when height subsamples are collected and tree
and stand volume is of interest. In cases where there are
very few tree heights subsampled, such as measurement of
site trees for the estimation of site index, the NMEMs ap-
pear to have greater precision. Temesgen et al. (2008) rec-
ommended a subsample size of around four random trees or
fewer if larger trees were subsampled. The results here sug-
gest this number of trees is also adequate for stand volume
calculation; however, there does not appear to an appreci-
able gain if larger trees were preferentially subsampled.
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