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Abstract. In multi-instance multi-label (MIML) instance annotation, the goal is to
learn an instance classifier while training on a MIML dataset, which consists of bags
of instances paired with label sets; instance labels are not provided in the training
data. The MIML formulation can be applied in many domains. For example, in an
image domain, bags are images, instances are feature vectors representing segments in
the images, and the label sets are lists of objects or categories present in each image.
Although many MIML algorithms have been developed for predicting the label set of
a new bag, only a few have been specifically designed to predict instance labels. We
propose MIML-ECC (ensemble of classifier chains), which exploits bag-level context
through label correlations to improve instance-level prediction accuracy. The proposed
method is scalable in all dimensions of a problem (bags, instances, classes, and feature
dimension), and has no parameters that require tuning (which is a problem for prior
methods). In experiments on two image datasets, a bioacoustics dataset, and two ar-
tificial datasets, MIML-ECC achieves higher or comparable accuracy in comparison to
several recent methods and baselines.

Keywords: multiple instance, multi-label, MIML, instance annotation, classifier chain

1. Introduction

The most common formulation of supervised classification is single-instance
single-label (SISL), where the training data consists of feature vectors (instances)
paired with single labels. The goal is to predict the label for a new instance.
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SVMs, logistic regression, and decision trees are for SISL. Multi-instance multi-
label (MIML) learning is a framework for supervised classification, where the
dataset is represented as a collection of bags of instances, paired with sets of
labels. For example, in an image domain, a bag is an image, the instances in the
bag are feature vectors describing regions, and the label set for a bag indicates
which objects or categories the image contains. MIML has been applied to to
image, text [39, 36, 18, 26], audio [5], and video [31] domains. There are many
algorithms that train a classifier on a MIML dataset to predict the label set for
a new bag (e.g., the original formulation of MIML [41]).

MIML instance annotation is a recent and little-studied problem for super-
vised classification. In contrast with most prior work on MIML, instance anno-
tation aims to train a classifier on a MIML dataset to predict the instance
labels. For example, we train a classifier on images paired with sets of objects
they contain, then predict the class label for each region of a new image. The
main advantage of MIML instance annotation compared to SISL is that it typi-
cally requires less human effort to provide bag label sets than to label instances.
For example, images tagged with label sets are abundant, whereas SISL data is
limited (there are not many images labeled at the pixel-level).

MIML instance annotation differs from the traditional MIML problem of
label set prediction (e.g., M3MIML [37]), and multi-label classification (MLC,
e.g., binary relevance). In particular, it is commonly assumed that each instance
only belongs to one class, thus the predictions to be made are single labels for
instances, not label sets. An appropriate objective for MIML instance annota-
tion is to maximize instance-level accuracy (the fraction of correctly classified
instances). However, it is not possible to train a model that directly optimizes
accuracy on the training data, because instance labels are not available for train-
ing.

Instance annotation problems for images have been widely explored. For ex-
ample, Yang et al. [34] used structural SVMs with latent variables representing
object labels and locations, and learned from image label sets. Sometimes it is
possible to modify a MIML or MLC algorithm that is designed for label set
prediction, to predict instance labels. The problem with this approach is that
the model is optimized for label set accuracy, not instance accuracy. However,
to our knowledge only two prior studies have specifically considered the gen-
eral domain-independent MIML instance annotation problem [3, 4]. Briggs et
al. [3, 4] proposed rank-loss Support Instance Machines (SIM), a collection of
SVM-style algorithms that learn a linear instance classifier by minimizing a rank
loss objective on bag-level labels.

Prior work [3, 4] has observed that the rank-loss SIM algorithms, as well as
several other baseline methods, achieve lower accuracy for inductive classification
of instances (predicting instance labels for previously unseen bags) in comparison
to transductive classifications (predicting instance labels for bags with known
label sets). We hypothesize that one way to improve the performance of inductive
classification is to exploit the contextual information provided by other instances
in the same bag.

Figure 1a illustrates the difficulty of instance annotation without context.
The region of pixels inside the red box is an instance. A MIML instance annota-
tion classifier might be asked to predict the class label of this instance. Without
the context provided by the rest of the image, it is hard to classify, even for a
human. Figure 1b shows the rest of the image. With this context available, it
is easier to recognize the instance. Figure 1a illustrates how inductive MIML
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(a) Without context (b) With context

Fig. 1. Inductive instance annotation with and without context – “What class is
the region of pixels inside the red box?” This image is from the VOC12 dataset.

instance annotation is posed in prior work [3, 4]. It is not as important to use
the context provided by other instances in the same bag for transductive classi-
fication, because the bag label set is already known, and provides a similar kind
of context. Consider the same example in Fig. 1a. If we know that the image
contains labels “cow” and “grass,” we do not need to see the rest of the image
to conclude that the label for this instance should be “cow.”

This paper proposes a new algorithm for MIML instance annotation designed
to improve inductive instance accuracy by exploiting the context provided by
other instances in the same bag. In particular, we capture the context by mod-
eling label correlations in the bag label set. The proposed method (Sec. 4) is a
multi-instance multi-label ensemble of classifier chains, called MIML-ECC. The
classification algorithm selects the maximum a posteriori (MAP) instance la-
bel as estimated by the ensemble, and the training algorithm is closely related
to EM and the Constrained Concave-Convex Procedure (CCCP) [35]. Train-
ing is asymptotically efficient in all dimensions of a problem (number of bags,
instances, classes, and feature dimension). Experiments (Sec. 5) on two image
datasets, a bioacoustics dataset, and artificial datasets show that MIML-ECC
achieves higher accuracy than several recent methods and baselines, including
Hamming, rank, and ambiguous-loss SVMs, and comparable accuracy to a recent
graphical model. Further experiments show that the chain structure outperforms
binary relevance, and an ensemble of chains outperforms a single chain. To gain
a better understanding of how MIML-ECC exploits correlation, we present ex-
periments with artificial datasets where the degree of correlation between classes
is controlled.

2. Problem Statement

For training, we are given a MIML dataset consisting of n bags paired with
their corresponding label sets {(B1, Y1), . . . , (Bn, Yn)}, where Bi is a bag, Yi ⊆
Y = {1, . . . , c} is its label set, and c is the total number of classes. Each bag Bi
contains ni instances, i.e., Bi = {xi1, . . . ,xini},x ∈ X = Rd.

We assume that each instance x in Bi has a single label y ∈ Y. The instance
labels are not available in the training data; and we only have ambiguous infor-
mation about them provided through the bag label sets. Our goal is to learn a
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Table 1. Frameworks for supervised classification
Framework Training Dataset Classifier
SISL (x1, y1), . . ., (xn, yn) y = f(x) : X → Y
MIL (B1, yi), . . ., (Bn, yn) y = F (B) : 2X → {0, 1}
MLC (x1, Y1), . . ., (xn, Yn) Y = f(x) : X → 2Y

MIML (B1, Y1), . . ., (Bn, Yn) Y = F (B) : 2X → 2Y

ALC/SLL (x1, Y1), . . ., (xn, Yn) y = f(x) : X → Y

classifier that predicts instance labels while training only on the bag-level label
sets.

Instance annotation can be applied in both transductive and inductive modes,
which differ in what information is available at the classification stage. The
transductive classifier is defined as:

y = f(x, B, Y ) : X × 2X × 2Y → Y (1)

The notation 2X indicates the space of possible bags, 2Y indicates the space of
label sets, and f(x, B, Y ) indicates that we are given all of the instances in a bag
B, its label set Y , and the goal is to predict the label y for a specific instance
x in B. For example, in the transductive mode, the prediction task could be:
given an image and the list of classes it contains, predict the class of a particular
segment in the image.

The inductive mode classifies an instance without the bag label set given.
For example, in the inductive mode, the prediction task could be: given an im-
age, predict the class of a particular segment in the image. Prior work [3] on
MIML instance annotation formulates the inductive classifier as f(x) : X → Y,
which ignores any context from the bag containing x. We instead formulate the
inductive classifier as

y = f(x, B) : X × 2X → Y (2)

The difference is that when classifying an instance x, we know that it is part of
a bag B, and can use the contextual information of B to improve the prediction.

Related Problems There are many other formulations of supervised classifica-
tion that are related to MIML instance annotation. The main difference between
these frameworks is the structure of training data (instance or bag, single- or
multi-label), and the type of prediction it makes (instance-level or bag-level, sin-
gle or multi-label). Refer to Table 1 for a statement of the training data and
inductive classifier in each framework.

The most common supervised classification formulation is single-instance
single-label (SISL). Most standard methods such as support vector machines,
decision trees, and logistic regression are for SISL. Multiple-instance learning
(MIL) is a framework where the training data consists of bags of instances paired
with a single binary label, and the classifier maps bags to binary labels. Multi-
label classification (MLC) [25] pairs single instances with sets of labels, and the
goal is to predict a label set given a new instance.

Ambiguous label classification (ALC) [8] and superset label learning (SLL)
[19] have the same structure of training data as MLC, but assume only one label
in the set is correct and the rest are “distractors.” The goal is to learn a classifier
to predict a single label for a new instance. MIML instance annotation can be
reduced to ALC/SLL by pairing each instance with its bag label set. However,
this reduction can be undesirable as it discards the context of the bag.
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Fig. 2. Graphical models for binary relevance and classifier chians.

3. Background

A key observation motivating our approach is that the context provided by a
bag’s label set is useful for classifying instances. In the previous example, knowing
that there is “grass” in the image can help for predicting the label “cow” for the
given instance, because the labels “cow” and “grass” are correlated. A natural
way to exploit such context is to follow a classifier-chain approach, which has
been previously developed for MLC to exploit label correlation. Below we begin
with a review of classifier chains for MLC. We then discuss some design patterns
in MIL and MIML algorithms that learn an instance-level model from bag-level
labels, which provide inspiration for our algorithm.

3.1. Classifier Chains for Multi-Label Classification

Recall the setup for MLC: Given an instance x, we denote its label set Y as a
binary vector: Y = [Y 1, . . . , Y c], where Y j = 1 if the label set for instance x
contains class j.

Binary relevance is an algorithm for MLC, which builds one binary model for
each class, and treats the classes independently. Binary relevance uses a binary
SISL classifier to model P (Y j |x), for j = 1, . . . , c. Figure 2 the graphical model
for binary relevance.

Originally introduced for MLC, classifier chains [25] exploit label correlation
by building a chain of binary classifiers. We use Y 1:j−1 = [Y 1, . . . , Y j−1] to refer
to the first j− 1 elements of Y . The key idea of classifier chains is to use a chain
factorization of the conditional joint distribution of Y :

P (Y |x) = P (Y 1|x)

c∏
j=2

P (Y j |x, Y 1:j−1) (3)

During training, one binary model P (Y j |x, Y 1:j−1) is learned for each class j,
which depends on x, and all of the preceding classes 1, . . . , j − 1. Let ⊕ denote
vector concatenation. The basic training algorithm is:
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MLC Probabilistic Classifier Chain – Train

for j = 1, . . . , c :

Dj = {. . . , (xi ⊕ Y 1:j−1
i , Y ji ), . . .}ni=1

train classifier P (Y j |x, Y 1:j−1) on Dj

For each class j, a binary supervised classification problem Dj is created
(this is a standard SISL problem, not an MLC problem). This 2-class problem
has n instances like the original MLC problem. Each instance consists of the
original feature vector xi concatenated with part of the corresponding label
vector [Y 1

i , . . . , Y
j−1
i ], and paired with the binary label Y ji . The binary model for

class j, namely P (Y j |x, Y 1:j−1), can be learned using any binary probabilistic
classifier, e.g., logistic regression or Random Forest (RF) [2].

To classify a new instance x with a probabilistic classifier chain, one can
evaluate P (Y |x) for all 2c possible label vectors Y , and pick one that minimizes
a set-level loss function. However, this approach may be intractable unless c is
small. An alternative is to greedily construct a single value of Y . A basic greedy
algorithm [9] is:

MLC Probabilistic Classifier Chain – Classify

Y = []
for j = 1, . . . , c :

Y = Y ⊕ I[P (Y j |x⊕ Y ) > 0.5]
return Y

In ensembles of classifier chains (ECC) [25], there are multiple chains, each
of which is learned as above, but factorizing the classes in a different random
order. When classifying with ECC, each chain votes. ECC reduces the sensitivity
to the specific order of the chain and is generally observed to improve accuracy
over a single chain.

3.2. From Instance to Bag Labels

A central problem in MIL and MIML is that labels are only provided at the bag
level. Learning an instance classifier from bag label sets requires an assumption
about the relationship between the observed label sets and the hidden instance
labels. A common assumption in MIL is that if any instance is positive, the
bag label is positive, otherwise it is negative. The corresponding assumption in
MIML is that the bag label set is equal to the union of instance labels. Prior
algorithms approximate these assumptions using different formulations, e.g., the
max model.

Let f(x) be an instance-level score function, and F (B) be a bag-level score
function. In the MIL setting, the max model is: F (B) = maxx∈B f(x), i.e. the
bag-level score F (B) is the max over the instance-level scores f(x) on all in-
stances in the bag.

For probabilistic MIL classifiers, the max model has also been called the
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Table 2. Summary of notation
Notation Meaning
⊕ vector concatenation operator
Bi the ith bag in the training data
Yi label set for bag Bi, Yi ⊆ {1, . . . , c}
n number of bags in the training set
ni number of instances in bag Bi
π a permutation function indicating the order of a chain
π(j) the j’th class in some permutation π
πl(j) the j’th class in the permutation for chain l

Y
πl(j)
i the j’th bit (0 or 1) of the label set Yi in order πl

Y
πl(1):πl(j−1)
i the first j − 1 bits of the label set Yi in order πl

x ∈ Bi an instance in bag Bi, a vector in Rd
fjl instance-level score function for class πl(j)
Fjl bag-level score function for class πl(j)
x̂ijl support-instance for bag i, chain l, class πl(j)
yk indicator variable for instance x in class k

“most-likely-cause estimator” [20],

P (y = 1|B, θ) = max
xi∈B

p(yi = 1|xi, θ) (4)

Here y is the binary label for bag B, and yi is the binary label for instance xi.
The equivalent formulation for MIML [37, 3] applies the same principle for each
class j = 1, . . . , c:

Fj(B) = max
x∈B

fj(x) (5)

Given a model for connecting bag labels with instance labels, the output of a
bag-level classifier can sometimes be expressed as a function of a single instance
in the bag or representing the bag. For example, assuming the max model for
MIL we have:

F (Bi) = max
x∈Bi

f(x) = f(x̂i) (6)

x̂i = arg max
x∈Bi

f(x) (7)

where x̂i is referred to as the support instance (or “witness instance” [1]) for
bag Bi. We can define support instances similarly for MIML, except that one
support instance is defined for each class and each bag. Alternatives to the max
model are discussed in Sec. 6.

Many existing algorithms for MIL (e.g., MI-SVM [1] and EM-DD [38]) and
MIML (e.g., SIM [4]) alternate between computing support instances based on
a current classifier, and training a SISL classifier on the support instances. Our
proposed algorithm follows the same pattern.

4. Proposed Methods

Our goal is to learn a classifier that predicts the label of a given instance, us-
ing its feature vector x and the context provided by the bag B containing x.
We propose the MIML-ECC algorithm, which is motivated by the observation
that the prediction of whether an instance belongs to a particular class can be
influenced by the presence/absence of some other classes in the bag. To capture
the label correlation, we assume an ordered chain structure such that whether
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an instance belongs to a particular class depends on whether the bag contains
classes earlier in the chain. First, we present a training algorithm to learn such a
model from MIML data. Then we discuss instance classification in transductive
and inductive modes. Table 2 summarizes notation for the proposed method.

4.1. Training

A classifier chain for MLC is a chain of SISL classifiers. At a high level, our
method can be viewed as building an ensemble of L chains of MIL classifiers.
Each chain l = 1, . . . , L in the ensemble views the classes 1, . . . , c in a differ-
ent order πl, such that πl(j) is the j’th class in the order for chain l. We will
use Fjl to denote the MIL classifier for the j-th class in chain l, which predicts
the presence/absence of class πl(j) in the label set of a bag given the bag and
Y πl(1):πl(j−1), the presence/absence information of the first j−1 classes in chain
l. The training algorithm viewed in terms of MIL classifiers is:

MIML-ECC – Train (Bag-Level View)

Input: MIML dataset {(B1, Y1), . . . , (Bn, Yn)}
Output: MIL classifiers Fjl

for l = 1, . . . , L :
πl = random–permutation([1, . . . , c])
for j = 1, . . . , c:

Djl = {. . . , (Bi ⊕ Y πl(1):πl(j−1)i , Y
πl(j)
i ), . . .}ni=1

train MIL Classifier Fjl on Djl

Each MIL dataset Djl constructed in the algorithm pairs the bag Bi (and the

context Y
πl(1):πl(j−1)
i ) with one bit of the label vector Y

πl(j)
i . In a standard MIL

formulation, there are only bags of instances, so it is a modification of MIL to

allow the context Y
πl(1):πl(j−1)
i , which is a vector in {0, 1}j−1, to be associated

with the bag rather than an instance. However, in practice we simply append
this vector to the end of all of the instance features.

Because our goal is ultimately to predict instance labels, we instantiate this
template with a MIL classifier that internally builds an instance-level model.
The instance-level models are SISL probabilistic classifiers fjl for j = 1, . . . , c

and l = 1, . . . , L. We assume fjl maps the input x⊕ Y πl(1):πl(j−1) to an output
in [0, 1] (as is the case for a RF). Recall that Y = {1, . . . , c}; we encode the
label y ∈ Y of instance x with c binary indicator variables y1, . . . , yc where
yj = I[y = j], and interpret fjl : Rd+j−1 → [0, 1] as the posterior probability

P (yπl(j)|x, Y πl(1):πl(j−1)). MIL classifiers Fjl are obtained from the instance-level

classifiers using the max model, taking into account the context Y πl(1):πl(j−1):

Fjl(Bi ⊕ Y πl(1):πl(j−1)) = max
x∈Bi

fjl(x⊕ Y πl(1):π(j−1))

Similar to the MIL algorithm EM-DD, and rank-loss SIM for MIML, we
define the bag-level model in terms of a support instance. In MIML-ECC, there
is a different support instance for each bag, class, and chain. The bag-level model
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in terms of support instances is

Fjl(Bi ⊕ Y πl(1):πl(j−1)) = fjl(x̂ijl ⊕ Y πl(1):πl(j−1)i )

x̂ijl = arg max
x∈Bi

fjl(x⊕ Y πl(1):πl(j−1)i )

The support instance x̂ijl is the instance in bag Bi that is most representative
of class πl(j), according to the classifiers in chain l.

The MIML-ECC training algorithm alternates K times between updating
support instances according to the max model, then training SISL classifiers on
binary datasets that pair support instances with bits of the label set. In the first
iteration, there are no instance classifiers fjl to compute support instances from,
so we start by setting the support instances to the average of the instances in
each bag, as in [3, 4]. The instance-level view of the training algorithm is:

MIML-ECC – Train (Instance-Level View)

Input: MIML dataset {(B1, Y1), . . . , (Bn, Yn)}
Output: SISL classifiers fjl

for l = 1, . . . , L :
πl = random–permutation([1, . . . , c])
for k = 1, . . . ,K :

if k = 1 then:
for i = 1, . . . , n : for j = 1, . . . , c :

x̂ijl = 1
ni

∑
x∈Bi x

if k > 1 then:
for i = 1, . . . , n : for j = 1, . . . , c :

x̂ijl = arg maxx∈Bi fjl(x⊕ Y
πl(1):πl(j−1)
i )

for j = 1, . . . , c:

Djl = {. . . , (x̂ijl ⊕ Y πl(1):πl(j−1)i , Y
πl(j)
i ), . . .}ni=1

train SISL classifier fjl on Djl

Similarities with EM The proposed training algorithm is a heuristic, and
is not proven to converge over multiple support instances updates. However,
empirically we observe convergent behavior. Note that our training algorithm
is closely related to some prior work using support instances with expectation
maximization (EM), which we discuss below.

EM-DD [38] is a widely used EM-style algorithm for MIL (single-labeled
bags of instances). The “E-step” consists of computing support instances, and
the “M-step” maximizes likelihood in a model involving the support instances.
EM-DD also uses the max model to define the support instances. The main
difference in how support instances are treated in MIML-ECC is that each bag
has a different support instance for each class and chain. Recall that MIML-ECC
trains SISL classifiers fjl in each iteration. If the base SISL classifier maximizes
log-likelihood (e.g., logistic regression), there is a direct correspondence with the
M-step of EM-DD. In our implementation of MIML-ECC, fjl is a RF using the
Gini split criteria, which greedily minimizes squared-loss L2(y, p) = (y − p)2

on the training data [6]. If the entropy split criteria were used instead, the RF
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would greedily maximize likelihood. Gini and entropy are very similar for binary
problems.

4.2. Classification

We consider a probabilistic framework for instance classification based on the
maximum a posteriori (MAP) approach. Our method can be viewed as ap-
proximately optimizing the instance prediction accuracy. In the training phase,
instance-level binary classifiers fjl(x⊕Y πl(1):πl(j−1)) are obtained for every class
j and chain l. The output of fjl can be considered as an estimate of the pos-

terior P (yπl(j)|x, Y πl(1):πl(j−1)). These binary classifiers can be used directly in
the transductive mode, where Y is available. In the inductive mode, Y is not
given, so we generate samples of Y by conditioning on all instances in the bag.

4.2.1. Transductive Mode

In the transductive mode, we condition on the bag and its label set, and predict
instance labels according to

f(x, B, Y ) = arg max
j∈Y

P (yj |x, B, Y ) = arg max
j∈Y

P (yj |x, Y )

This prediction rule assumes that bag label set Y provides all of the contex-
tual information that is relevant to predicting the label for x, i.e. the label is
conditionally independent of the other instances in the bag B given Y .

During training we introduced random orders π for the purpose of construct-
ing an ensemble. Now we take a Bayesian approach and assume that π is random
variable from a uniform prior P (π), so each chain in the ensemble corresponds
to one i.i.d. sample πl ∼ P (π) for l = 1, . . . , L. We estimate the probability
for instance x to have label y = k as P (yk|x, Y ) = Eπ[P (yk|x, Y, π)] using L
samples, one for each chain in the ensemble:

P (yk|x, Y ) ≈ 1

L

L∑
l=1

∑
{j:πl(j)=k}

P (yπl(j)|x, Y πl(1):πl(j−1), πl)

The algorithm for classification in the transductive mode is:

MIML-ECC – Classify (Transductive)

Input: instance x, label set Y
Output: label y

for j = 1, . . . , c : yj = 0
for l = 1, . . . , L :

for j = 1, . . . , c :
yπl(j) = yπl(j) + fjl(x⊕ Y πl(1):πl(j−1))

y = arg maxj∈Y y
j
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4.2.2. Inductive Mode

In the inductive setting, the bag label set is not given, so the posterior required
for classification conditions only on the instances from bag B (and not the bag
label set). Therefore, we predict the instance label as the class with the highest
posterior probability

y = f(x, B) = arg max
j=1,...,c

P (yj |x, B) (8)

The probability P (yj |x, B) is not directly modeled by the instance-level classifiers
fjl; instead we estimate this probability by marginalizing P (yj |x, Y, B) over the
latent variable Y . This process requires a probabilistic model for Y given B,
which we develop below. We begin by stating the assumptions of this model.

Assumption 1: There exist one or more chain orders π, such that for an
instance x, the indicator variable yπ(j) for that instance to belong to class π(j)
is conditionally independent of any other instances in the same bag B, given the
first j − 1 bits of the bag-level label set Y π(1):π(j−1):

P (yπ(j)|x, B, Y π(1):π(j−1), π) = P (yπ(j)|x, Y π(1):π(j−1), π)

In other words, Y π(1):π(j−1) provides all of the context that is useful to decide if
x belongs to class π(j), and it is not necessary to consider the rest of the label
set, or the other instances in the bag. We give an example of a machine vision
problem where this assumption is reasonable in Section 4.3.

For training, we defined the relation between instance labels and bag label
sets according to the max model. The max model is also part of our assumptions
for inference, although we will rewrite it in probability notation.

Assumption 2: Bag label sets and instance labels are linked via the max
model,

P (Y π(j)|B, Y π(1):π(j−1), π) = max
x∈B

P (yπ(j)|x, Y π(1):π(j−1), π)

Section 3.2 discusses the motivation for this assumption in depth.
Similar to a classifier chain for MLC, the conditional distribution of the bag

label set is factored as a chain in the order π as

P (Y |B, π) = P (Y π(1)|B, π)

c∏
j=2

P (Y π(j)|B, Y π(1):π(j−1), π)

Recall that Assumption 2 defines the conditional probability for Y π(j) in
terms of the instance-level probabilities for yπ(j), while Assumption 1 defines the
instance-level probabilities for yπ(j) in terms of Y π(1):π(j−1).

We estimate P (yj |x, B) by sampling as follows. For a given π, we apply
Assumption 1 to obtain

P (yπ(j)|x, B, π) = EY π(1):π(j−1)|B,π
[
P (yπ(j)|x, Y π(1):π(j−1), B, π)

]
= EY π(1):π(j−1)|B,π

[
P (yπ(j)|x, Y π(1):π(j−1), π)

]
(9)

Because π is a permutation, computing P (yπ(j)|x, B, π) for j = 1, . . . , c implies
computing P (yj |x, B, π) for all j.
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Finally, we average the posterior estimates over multiple samples from a
uniform prior on π:

P (yj |x, B) = Eπ
[
P (yj |x, B, π)

]
(10)

As in the transductive mode, each chain in the ensemble gives one sample of
πl ∼ P (π) to estimate the expectation. The inductive classification algorithm is:

MIML-ECC – Classify (Inductive)

Input: bag B = {x1, . . . ,xni}
Output: instance labels y1, . . . , yni

01: for i = 1, . . . , ni : for j = 1, . . . , c :

02: yji = 0
03: for l = 1, . . . , L :
04: Y = []
05: for j = 1, . . . , c :
06: for i = 1, . . . , ni :

07: y
πl(j)
i = y

πl(j)
i + fjl(xi ⊕ Y )

08: pj = maxi=1,...,ni fjl(xi ⊕ Y )
09: Y = Y ⊕Bernoulli(pj)
10: for i = 1, . . . , ni :

11: yi = arg maxj=1,...,c y
j
i

Line 7 updates the estimate of y
πl(j)
i based on one sample of the expectation (9).

Line 8 applies the max model (Assumption 2). In lines 4 through 8, the pseu-
docode variable Y stores Y πl(1):πl(j−1). In Section 3.1, we discussed the basic
greedy algorithm for classifier chains in MLC. In that algorithm, bits of the label
set are added deterministically, depending on whether a probability is above or
below 0.5. Line 9 serves an analogous purpose in MIML-ECC, but instead the
bits are generated randomly based on a probability. Specifically, line 9 samples
Y πl(j) from a Bernoulli(pj) distribution, and appends it to the current label
vector.

4.3. Example of Inductive Classification

To clarify how MIML-ECC classifies in the inductive mode, we provide a hypo-
thetical example of object recognition in an image domain. Suppose an image
is segmented into instances x1, . . . ,x4 as in Fig. 3a, and there are three classes:
grass, cow, and penguin. To simplify the example, we consider a single chain
ordered so that π(1) = grass, π(2) = cow, and π(3) = penguin. Classification
might proceed as follows:

– The instance-level score function f1 predicts the indicator y
π(1)
i for each in-

stance to belong to class π(1) = grass, given only the instance feature vector
xi (Fig. 3b). Instance x1 is very small, and with no context it is difficult to
determine what it is. However, it is not green, so the score function f1(x1)
may be low, e.g., 0.1. The instance x2 is very likely to be grass based on its
color, so we will assume the score function returns 0.99. The instance x3 looks
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x1
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x3

x4

(a) Instances
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⇡(1)
1 |x1) = 0.1
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⇡(1)
2 |x2) = 0.99

P (y
⇡(1)
3 |x3) = 0.3P (y

⇡(1)
4 |x4) = 0

(b) π(1) = grass

P (y
⇡(2)
1 |x1, Y

1) = 0.6
P (y

⇡(2)
2 |x2, Y

1) = 0

P (y
⇡(2)
3 |x3, Y

1) = 0P (y
⇡(2)
4 |x4, Y

1) = 0.99

(c) π(2) = cow

P (y
⇡(3)
1 |x1, Y

1, Y 2) = 0.1
P (y

⇡(3)
2 |x2, Y

1, Y 2) = 0

P (y
⇡(3)
3 |x3, Y

1, Y 2) = 0
P (y

⇡(3)
4 |x4, Y

1, Y 2) = 0.1

(d) π(3) = penguin

Fig. 3. A hypothetical example illustrating how MIML-ECC classifies instances
in the inductive mode with a single chain in the order π(1) = grass, π(2) = cow,
π(3) = penguin.

somewhat like grass, but much less so than x2; suppose the score function for
this instance is 0.3. Instance x4 does not look at all like grass, so we assume
a score for class π(1) of 0. This step corresponds to line 7 of the pseudocode
(for a single chain).

– The first bit of the label set is sampled as Y 1 ∼ Bernoulli(p1) where p1 is the
max of the instance-level scores for class π(1), i.e., p1 = max{0, 0.1, 0.3, 0.99}.
Most likely, this will result in a sample Y 1 = 1 which corresponds to the result
that this bag should have grass in its label set, because at least one instance
looks like grass. This step corresponds to lines 8 and 9 of the pseudocode.

– The instance-level score function f2 predicts the indicator y
π(2)
i for each in-

stance to belong to class π(2) = cow, given the instance feature vector xi, con-
catenated with the bit of the label set that was just sampled, Y 1 (see Fig. 3c).
Instance x1 would be difficult to identify without context, but given that we
already sampled a bit indicating the image contains grass, and the fact that
cow and grass are correlated, it receives a higher probability than it might
otherwise, e.g., 0.6. Instances x2 and x3 do not look at all like a cow, so are
assigned probability 0. Instance x4 is clearly recognizable as a cow, and the
context of grass being present reinforces the conclusion that it is a cow, hence
the score function assigns it a high probability, e.g., 0.99.

– The second bit of the label set is sampled as Y 2 ∼ Bernoulli(max{0, 0, 0.6, 0.99}),
and most likely Y 2 = 1. Hence the prediction is that cow is in the label set.
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– The instance-level score function f3 predicts the indicator y
π(3)
i for each in-

stance to belong to class π(3) = penguin, given the instance feature vector xi,
concatenated with Y 1 and Y 2 (Fig. 3d). Without context, the instances x1

and x4 might be given a high probability to be penguin, on the basis of their
colors. However, given the context of Y 1 and Y 2, they are given lower prob-
abilities because there is a negative correlation between penguins and grass,
and penguins and cows.

– The last bit of the label set Y 3 is sampled, although it is irrelevant to the
instance labels. The instance labels are predicated according to the highest
scoring class. For example, the label predicted for x1 is cow, because that
class received the highest score while progressing through the chain.

The steps above show how a single chain generates the class-scores for each
instance. With multiple chains, the scores from each chain are summed before
picking the highest-scoring class.

In this example, it is difficult to tell if the instance x1 belongs to the class
cow or penguin without context, but with the context that grass is in the label
set, it is easier to identify as cow. This example is just for the sake of illustration.
However, we present results on a similar situation where there are two correlated
classes, one of which is easily confused with a third class in Sec. 5.5.

4.4. Asymptotic Complexity

MIML-ECC implemented with RF as the base SISL classifier is asymptotically
efficient in all important dimensions of the problem size. The size of a MIML
dataset is determined by the number of bags n, the total number of instances in
all bags m, the number of classes c, and the instance feature dimension d. MIML-
ECC has several parameters that affect its runtime: the number of chains L, the
number of trees in each RF T , and the number of support-instance updates K.
Note that the runtime to train a RF on a SISL dataset of n instances with feature
dimension d is O(T (log d)(n log n)), and to classify it is O(log n). It follows from
the loop-structure of the pseudocode that the training time for MIML-ECC is

O
(
LKT

(
m(log n)(log d) + cn log n log(d+ c)

))
(11)

An efficient implementation of MIML-ECC classifies all instances in a bag
at once, rather than treating each instance classification problem separately, in
order to share redundant work. Using this optimization, the classification time is
O(LTc log n) per instance. In Section 5.4 we provide empirical runtime results.

5. Experiments

Our experiments compare MIML-ECC to prior and baseline methods on two
vision datasets, an audio dataset, and two artificial datasets. Our experimental
setup is identical to the setup used in [4] and [19], hence results are directly com-
parable (e.g., the same features and folds for cross validation are used). There-
fore we report new results for MIML-ECC and baseline methods, and compare
to previously reported results from the aforementioned prior work.
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Table 3. MIML datasets
Dataset Classes Dimension Bags Instances
MSRCv2 23 48 591 1,758
VOC 2012 20 48 1,053 4,142
Birdsong 13 38 548 4,998
Carroll 26 16 166 717
Frost 26 16 144 565

5.1. Datasets

The datasets used in our experiments are summarized in Table 3. Datasets have
been preprocessed through feature rescaling (which does not affect RF), to im-
prove results for SVM style-classifiers, by the same process in [8, 3, 4].

Vision Datasets We consider two vision datasets, Microsoft Research Cam-
bridge v2 (MSRCv2) [29], and PASCAL Visual Object Recogntion Challenge
(2012 “Segmentation”) [11]. Both datasets contain images of objects with pixel-
level labeling of regions. MSRCv2 provides a single class label for each pixel.
VOC provides a segmentation of each image into objects and a label for each
object. Here bags are images labeled with a list of objects, instances are objects
(regions of pixels), described by a 48-D feature vector. Single-label images are
removed to make the learning problem more challenging.

Bioacoustics Dataset This dataset was introduced by [5], applying a MIML
formulation for label set prediction to a real-world application of classifying bird
song collected in field conditions. Each bag is a 10 second audio recording labeled
with the set of species it contains. Each instance is an utterance of bird sound
obtained by an automatic segmentation algorithm. This dataset has also been
used in work on MIML instance annotation and superset label learning [3, 4, 19].
For instance annotation, [3] introduced two variants of this dataset, “filtered”
and “unfiltered.” Our experiments use the filtered variant, as does [19].

Artificial Datasets We use the same artificial MIML datasets as [3, 4], which
are generated to simulate correlations between labels by using letter correlation
in English words. The datasets are generated based on the words in two poems,
“Jabberwocky” by Lewis Carroll [7], and “The Road Not Taken” by Robert
Frost [13], hence they are referred to as Carroll and Frost. Each bag is a word,
its letters are instances, and the bag label set is the union of instance labels.
The instance features are sampled randomly from the UCI Letter Recognition
dataset [12].

5.2. Prior Methods

We compare MIML-ECC with a number of prior methods that can be applied
to MIML instance annotation.

M3MIML Originally intended for label-set prediction, M3MIML is a MIML
support-vector machine algorithm, which builds one linear instance-level model
per class by minimizing a heuristic relaxation of bag-level hinge loss, and con-
necting instance labels with bag label sets by the max model. Although not
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intended for this purpose, the learned instance-level models can be used for in-
stance annotation.

Rank-loss SIM Rank-loss SIM was introduced by [3], and refers to a class of
instance annotation algorithms which learn one linear instance-level model per
class by minimizing a bag-level rank-loss objective. Different variants of rank-loss
SIM consider different models for connecting bag-level output with instance-level
outputs, and apply different procedures for optimizing the rank-loss objective.
We consider SIM-Heuristic using a softmax model and SIM-CCCP with the max
model, with random Fourier kernel features [23] to achieve nonlinear classifica-
tion by approximating an RBF kernel. These models are chosen for comparison
because they achieved the best accuracy in [4].

CLPL Like the other SVM-style algorithms, Convex Learning from Partial La-
bels (CLPL) [8] learns one linear instance-level model per class, but uses an ALC
formulation instead of MIML. CLPL minimizes a loss function which can be seen
as an upper bound to the 0/1 loss on the true-unknown label, which is part of
the candidate label set.

LSB-CMM Logistic Stick-Breaking Conditional Multinomial Model (LSB-CMM)
[19] is a recent hybrid generative / discriminative graphical model for SLL that
have been used (by reduction) to solve the instance annotation problem. In par-
ticular, the same Birdsong and MSRCv2 datasets were used in [19] to evaluate
its instance annotation accuracy. We compare to the results reported in [19] on
these two datasets.

5.3. Experimental Setup

Transductive and Inductive In the transductive mode, there is no cross-
validation (the whole dataset is used for training and testing). However, because
MIML-ECC is a randomized algorithm, we run 10 repetitions and report the
average accuracy ± the standard deviation over repetitions. Most of the other
algorithms we compare to are not randomized, so in the transductive mode there
is no uncertainty associated with the accuracy result.

In the inductive mode, we use 10-fold cross validation, except for the VOC
dataset, for which there is a pre-specified partition into “train” and “val” sets.
Results with 10-fold cross-validation are reported as average accuracy over all
folds ± standard deviation. A different random instantiation of MIML-ECC is
used in each fold, so we do not run multiple repetitions on top of cross-validation.
However, because there is only one fold for the VOC dataset, we report results
± standard deviation over 10 repetitions for MIML-ECC (and the randomized
baseline method SISL Random Forest) on VOC.

M3MIML, CLPL, and rank-loss SIM-Heuristic/CCCP all build one instance-
level model per class fj(x). In the inductive mode, these models are used to
predict an instance label by the rule f(x) = arg maxj=1,...,c fj(x). In the trans-
ductive mode, the rule is f(x, Y ) = arg maxj∈Y fj(x) (hence when the bag label
set Y is known, it is used to constrain the instance-label predictions). This con-
straint provides some context for instance-label prediction, so one might not
expect as much benefit to be had from looking at other instances in the trans-
ductive mode.
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Table 4. Instance annotation accuracy († – results from [4], ‡ – results from [19])

(a) Transductive accuracy ± standard deviation over 10 repetitions for MIML-ECC and SIM-RF

Algorithm Carroll Frost Birdsong MSRCv2 VOC Avg Rank
Proposed Methods
MIML-ECC (L = 20,K = 20, T = 100) .803 ± .006 .831 ± .004 .779 ± .003 .805 ± .007 .624 ± .004 1.8
Prior Methods
† CLPL .672 .688 .742 .678 .598 4.0
† M3MIML .454 .532 .651 .547 .533 5.0
† SIM-CCCP max + kernel .807 .780 .829 .798 .623 2.2
† SIM-Heuristic softmax + kernel .794 .819 .833 .766 .634 2.0
Baseline Methods
SIM-RF (K = 20, T = 100) .756 ± .0148 .807 ± .0137 .782 ± .009 .777 ± .010 .619 ± .005

(b) Inductive accuracy ± standard deviation over 10-fold cross validation or 10 repetitions for VOC

Algorithm Carroll Frost Birdsong MSRCv2 VOC
Proposed Methods
MIML-ECC (L = 20,K = 20, T = 100) .618 ± .059 .646 ± .048 .666 ± .052 .611 ± .038 .430 ± .004 1
Prior Methods
† CLPL .464 ± .058 .506 ± .063 .620 ± .038 .431 ± .036 .345 3.6
† M3MIML .288 ± .041 .313 ± .041 .433 ± .073 .317 ± .055 .396 4.2
† SIM-CCCP max + kernel .618 ± .042 .576 ± .065 .630 ± .040 .519 ± .044 .343 2.6
† SIM-Heuristic softmax + kernel .596 ± .041 .587 ± .066 .642 ± .039 .506 ± .038 .337 2.8
‡ LSB-CMM – – .715 .459 –
Baseline Methods
SIM-RF (K = 20, T = 100) .542 ± .059 .562 ± .069 .636 ± .050 .584 ± .042 .437 ± .004
MIML-ECC (L = 1,K = 20, T = 2000) .530 ± .047 .598 ± .040 .644 ± .044 .580 ± .047 .425 ± .003
SISL Methods (uses instance labels)
† SISL SVM (multi-class,linear) .772 ± .049 .753 ± .038 .772 ± .032 .638 ± .045 .440
SISL Random Forest (T = 1000) .809 ± .049 .807 ± .076 .805 ± .033 .729 ± .050 .511 ± .002

Parameter Selection All of the rank-loss SIM algorithms, CLPL, M3MIML,
and SISL SVM have a regularization parameter (either λ or C). When random
kernel features are used to approximate the RBF kernel, there is also a kernel
parameter γ, and a parameter D which controls the approximation accuracy. In
prior work, these parameters are optimized post-hoc by a grid search as described
in [4]. This means the experiment is run once for each parameter setting in a grid,
and the best test accuracy over all parameters is reported. Post-hoc selection is
not feasible without using instance labels to compute which parameter setting
has the best accuracy, but it has been accepted in prior work on MIML instance
annotation because it is an unsolved problem. Results using post-hoc selection
can be interpreted as the highest accuracy that can be achieved using an oracle
to select meta-parameters. Results listed in Table 4 that are marked with a † are
obtained with post-hoc parameter selection.

An important practical advantage of MIML-ECC compared to the above
prior methods is that it does not have regularization parameters that must be
tuned. Note that MIML-ECC has parameters L,K, and T . The accuracy of the
algorithm tends to increase as these parameters increases up to a limit. So the
parameter choices primarily depend on the time budget for training and testing.
Our experiments set L = 20,K = 20, T = 100, which provides a good tradeoff
between runtime and accuracy.

LSB-CMM [19] has some parameters which can affect accuracy, but in their
experiments these parameters are set to standard values for all datasets.

5.4. Results

Comparison With Prior Methods MIML instance annotation algorithms
are evaluated based on accuracy, which is the fraction of correctly classified
instances. These experiments compare multiple classifiers on multiple datasets,
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so following the recommendations of [10], we summarize results using wins, ties,
and losses, and average ranks. Table 4 lists the accuracy and average rank results
in transductive and inductive modes. Average ranks are computed by sorting the
accuracy of MIML-ECC, and the prior methods M3MIML, CLPL, SIM-Heuristic,
and SIM-CCCP on each dataset, then averaging the position in the sorted list
over all datasets. We do not include LSB-CMM in the ranking because there are
only 2 datasets with comparable results.

In the inductive mode, MIML-ECC ties with SIM-CCCP max with RBF
kernel on the Carroll dataset, and wins in all other comparisons. Results are
not as decisive in the transductive mode, but MIML-ECC still achieves the best
average rank over all datasets. This is consistent with our expectation because
the known label sets provide a surrogate for context to the other algorithms.

It should be noted that due to the use of post-hoc selection in experiments
for CLPL, M3MIML, SIM-Herustic and SIM-CCCP, they are actually given an
unfair advantage compared to MIML-ECC, which does not use the test data
ground truth in training or parameter selection.

The comparison with LSB-CMM on two datasets is less conclusive. MIML-
ECC outperforms LSB-CMM by a margin of 15.2% on the MSRCv2 dataset, but
LSB-CMM is slightly better (by a margin of 4%) on the Birdsong dataset.

Ensemble of Chains vs. Binary Relevance (SIM-RF) MIML-ECC is mo-
tivated by the idea that bag-level label correlations captured through the chain
structure are useful for predicting instance labels. However, it is possible that the
improved performance we observe compared to prior linear/kernel algorithms
is not due to exploiting label correlations, but instead to using a RF as the
base-classifier. To address this hypothesis, we consider an additional compari-
son against a baseline that we call SIM-RF, which is the same as MIML-ECC
in all details except it does not use a chain or model correlations. SIM-RF is
equivalent to running MIML-ECC with one chain (L = 1) but omitting all of
the concatenation of label set bits, i.e. ⊕Y π1:π(j−1). SIM-RF is also equivalent
to binary relevance with each class modeled by a MIL classifier which alternates
between computing support instances and training an RF on them.

MIML-ECC achieves better accuracy than SIM-RF most of the time. The
win-loss count is 4-1 in favor of MIML-ECC for both transductive and inductive
modes. The comparison to SIM-RF suggests that the chain structure is actually
critical, and the improved performance of MIML-ECC compared to prior meth-
ods cannot be attributed only to switching from a linear or kernel SVM classifier
to RF.

Single Chain vs. Ensemble of Chains We want to know how much benefit
the ensemble provides compared to a single chain. The results we reported so
far are obtained with L = 20,K = 20, T = 100, i.e., 20 chains and 100 trees and
20 iterations of support instance updates. To understand the impact of using
mulitple chains with a fair comparison, we run MIML-ECC with one chain order
(L = 1), and K = 20, T = 2000, so the total number of decision trees that vote
on an instance label is the same. Table 4b lists results for 1-chain MIML-ECC
in the inductive mode (see Baseline Methods). In this comparison, MIML-ECC
with multiple chains achieves higher accuracy on all datasets than MIML-ECC
with a single chain. These results suggest that given a fixed time budget, it is
better to have multiple chains, each with less trees, than a single chain with more
trees. Recall that when predicting instance scores for class j, each chain can only
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Table 5. Runtime for training and classification with MIML-ECC, per fold of
cross-validation or per repetition (seconds)

Mode Carroll Frost Birdsong MSRCv2 VOC
Transductive 104.9 84.4 251.8 304.5 798.0
Inductive 69.4 57.8 135.5 202.8 2895.8

use the presence/absence of other classes which come before j in the chain. Using
multiple chains with random orders increases the chance that relevant classes are
available for use as context (at least in some of the chains).

Comparison to SISL We also consider SISL algorithms, which have an unfair
advantage of learning directly from instance labels. Results with these SISL
algorithms are presented for the inductive mode as an empirical upper bound
on the accuracy that can be achieved on these datasets. For this comparison, we
use a SISL RF (with 1000 trees), and refer to prior results from [4] with a SISL
multi-class linear SVM.

SISL methods achieve better accuracy in inductive experiments than MIML
instance annotation, ALC and SLL (Table 4b), which is expected because they
are trained on unambiguously labeled instances. This improved accuracy must
be weighed against the greater human effort required to obtain instance labels
compared to bag label sets.

Empirical Runtime Table 5 lists empirical runtimes for training plus classi-
fication with MIML-ECC (with L = 20,K = 20, T = 100), on each dataset,
averaged over the number of repetitions or folds of cross-validation. The runtime
is on the order of seconds or minutes for all datasets. In our experiments, training
is parallelized using threads1, and classification is done sequentially2.

5.5. Experiments With Controlled Correlation

MIML-ECC is motivated by improving instance annotation accuracy by exploit-
ing correlation in the label set. In order to gain a better understanding of how
correlation affects both MIML-ECC and SIM-RF, we conduct additional exper-
iments in which the correlation between classes is controlled.

Similar to the Carroll and Frost datasets, we obtain instance feature vectors
from the UCI Letter Recognition dataset [12]. The UCI Letter dataset is a SISL
dataset with 26 classes (one for each letter of the alphabet), and 16-d feature
vectors. For the purpose of these correlation experiments, however, we only use
subsets of 3 or 4 classes from the original dataset, which are chosen deliberately to
illustrate a situation where correlation is expected to be beneficial. In particular,
we will consider a setup where there are two correlated classes that are easy
to distinguish, and a third class which is hard to distinguish from one of the
correlated classes. In order to identify classes that meet these criteria from the

1 We found it effective to use a pool of threads, with each handling one of the L chains. Within
each of these threads, construction of the RF classifiers was parallelized over trees. Support
instance updates cannot be parallelized, because they occur sequentially in time.
2 Code is C++ compiled with GCC 4.0 (most speed optimizations enabled). Experiments ran
on a Mac Pro with 2x 2.4 GHz Quad-Core Intel Xeon processor and 16 GB 1066 MHz DDR3
memory, with OS X 10.8.1.
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26 available in the UCI Letter Recognition dataset, we consider the confusion
matrix for a SISL experiment with the full 26 classes. Training and test sets are
formed by splitting the instances from each class randomly into 50% training and
50% test; this split results in 10007 training examples and 9993 test examples.
A Random Forest with 100 trees is trained on one set, then used to predict the
labels in the other.

From the confusion matrix, we find that H is the lowest-accuracy class, with
only 0.389646 probability for H instances to be classified correctly. Instances
belonging to class H are most often confused with instances of class X, with
probability 0.125341. However, H is easily distinguished from instances of class A;
zero instances of H are misclassified as A, and instances of A are misclassified as H
with probability 0.0027248. Therefore we will setup a MIML instance annotation
experiment with three classes: A, H and X. The correlated classes will be A and
H, and X will be uncorrelated. We hypothesize that MIML-ECC will achieve
better accuracy when A and H are positively or negatively correlated in the
label set, because the context provided by the presence or absence of A can help
to differentiate between H and X.

The next step in setting up this experiment is to generate bag label sets in
such a way that the occurrence of A and H has correlation related to a parameter
ρ. Let the label set for a bag B be Y = [yA, yH , yX ], where yA, yH , yX ∈ {0, 1}.
Will will assume a prior for yA and yX of P (yA) = 1

2 , P (yX) = 1
2 . Hence it

suffices to generate yA ∼ Bernoulli( 1
2 ) and yX ∼ Bernoulli( 1

2 ). Finally, to

obtain yH such that yA and yH have correlation ρ, we generate

yH ∼ Bernoulli(1

2
(ρ+ 1)yA +

1

2
(1− ρ)(1− yA)) (12)

A proof of that this process generates yA and yH with correlation ρ is given in
Appendix 1.

We are now ready to supply the remaining details of the experiment. For
each value of ρ ∈ {−1.0,−0.9, . . . , 0.9, 1.0}, we generate 100 bags for training
and 100 bags for test with label sets as described above. For each class that is
present in a bag’s label set, we sample 5 instances from the corresponding class
randomly. At each value of ρ, we train MIML-ECC or SIM-RF on the 100-bag
training set, then classify all instances in the 100-bag test set. The parameters
for MIML-ECC are L = 10,K = 10, T = 10, and the parameters for SIM-RF
are T = 100,K = 100, hence both algorithms generate the same total number of
trees. Because this is a random experiment, we use 1000 repetitions at each value
of ρ to compute statistics about the results. These experiments are conducted in
the inductive mode only.

One issue that can occur with the setup described above is that a bag may
be generated with an empty label set, and consequently it will have no instances.
Such bags are not valid input for MIML-ECC or SIM-RF. We handle this issue
with two different variants of the experiment. One approach is to discard any bag
that is generated with an empty label set. This approach has the consequence
that the sample correlation coefficient ρ̂ between yA and yH is not equal to the
parameter ρ. Figure 4 shows ρ̂ as function of ρ, with empty label sets discarded,
estimated by sampling 1,000,000 label sets at each value of ρ. Rejecting empty
label sets causes ρ̂ to be systematically lower than ρ, although there is still a
value of ρ such that ρ̂ ≈ 0. Furthermore, discarding empty label sets means that
yX is not conditionally independent of (yA, yH). For example, knowing yA = 0
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Fig. 4. Sample correlation ρ̂ between yA and yH as a function of the parameter
ρ (empty label sets are discarded). The dotted line is ρ̂ = ρ.

and yH = 0 implies yX = 1. This kind of relationship is not captured by pairwise
correlation.

The second approach we use to address this issue is to inject “noise” instances
into each bag, which come from an unknown class that is not accounted for by
the label set. Such noise instances realistically occur in machine vision and audio
datasets, because automatic segmentation often produces instances that do not
belong to any class in the label set. For each randomly generated bag, we add
5 noise instances from the UCI Letter Recognition class W (there is 0 confusion
between W and A, H, and X in in both directions). This approach guarantees
that all bags have some instances, so it is not necessary to discard bags with
empty label sets. In this case, the sample correlation between A and H is not
biased, i.e. ρ̂ ≈ ρ and yX is completely independent of yA and yH .

We evaluate the predictions in these experiments based on three measures
as functions of ρ: accuracy over all classes, precision on H, and recall on H.
Precision and recall are only considered for class H because it plays a central
role in this experiment, as it is correlated with A, and easily confused with X. In
the second variant of the experiment, noise instances are skipped for the purposes
of computing these statistics, because it is not possible for the classifier to predict
the correct label (as in [4]). Precision P and recall R are computed as follows:

P =

∑
I[y = ŷ = H]∑
I[ŷ = H]

, R =

∑
I[y = ŷ = H]∑
I[y = H]

(13)

where y is the true label for an instance, and ŷ is the predicted label.

Controlled Correlation Results Figures 5a–c and 5d–f show the results of
the correlation experiments without and with noise, respectively. We highlight
several conclusions based on these results.

First, MIML-ECC generally achieves better accuracy on all classes, and better
precision and recall on class H, than SIM-RF across the full range of values for ρ,
despite both methods using the same total number of decision trees. Toward the
extremes of ρ = −1 or ρ = +1, this result may be attributed to MIML-ECC’s
ability to exploit label correlation. Interestingly, MIML-ECC still outperforms
SIM-RF, even at ρ = 0 or ρ̂ = 0. This result may be explained by MIML-ECC
producing a more diverse ensemble, e.g., because there is more variety in the
support instances it selects for training. In the case where there is no noise and
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Fig. 5. Controlled correlation results. In a–c, there is no noise class, and bags
with empty label sets are rejected. In d–f, there is a noise class, and empty label
sets are allowed.

empty label sets are rejected, knowing any two bits of the label set provides
information about the third, hence even if the pairwise correlation is 0, there
is still some higher order correlation that MIML-ECC can exploit. In the case
where there is noise and empty label sets are allowed, MIML-ECC may still have
an advantage when ρ = 0 because knowing that one class is present implies not
all instances can belong to the other classes. For example, if the chain order
is A, H, X, and MIML-ECC predicts A is present, subsequent predictions for
the probability of an instance to belong to H or X might be reduced. It is also
notable that the gap between MIML-ECC and SIM-RF is more pronounced in
the experiment with noise, which suggests that MIML-ECC is more robust to
noise.

As ρ approaches 1, both classifiers have lower performance according to all
three performance measures. The explanation for this result is simple: when
ρ = 1, there are no unambiguous examples of A or H, because they always occur
together, or not at all. Hence there is a fundamental limit to the accuracy any
classifier can achieve in this case. However, there is a slight positive trend in the
recall for MIML-ECC in Fig. 5f, which suggests that MIML-ECC is gaining some
benefit from positive correlation, although this effect is overpowered by the lack
of unambiguous training examples.

As ρ approaches -1, the accuracy and recall for MIML-ECC increases, whereas
SIM-RF remains comparatively flat across the range of values for ρ. One effect
that occurs as ρ approaches -1 is that there are more unambiguous examples of
A and H, although there are no unambiguous examples of X (because either A or
H is always present). However, the widening gap between MIML-ECC and SIM-



Context-Aware MIML Instance Annotation: Exploiting Label Correlations With Classifier Chains 23

RF as ρ approaches -1 indicates that the improved performance of MIML-ECC
cannot be attributed entirely to training with fewer unambiguous examples, and
is instead caused by MIML-ECC exploiting negative label correlation.

Another trend in the results is visible in Figs. 5d and 5e: the accuracy and
precision for SIM-RF slope slightly downward as ρ goes from 1 to -1. In partic-
ular, as ρ approaches −1, there is a clear dip in both overall accuracy, and the
precision on class H. This can be explained by the fact that as ρ decreases and
approaches −1, it becomes less likely to see a training bag that contains only X.
Note that when ρ = −1, X never appears alone in a bag. Since X is already easily
confused with H, this makes it progressively more difficult to correctly classify
X, decreasing the overall accuracy as well as the precision on H.

In conclusion, we see that MIML-ECC benefits more from correlation than
SIM-RF, particularly when correlation is negative, and is also more robust to
noise instances. However, these effects are intertwined with varying levels of
ambiguity.

6. Related Work

Graphical models for MIML sometimes include instance labels as hidden vari-
ables. Inference over these hidden variables can be used for instance annotation.
In addition to LSB-CMM, some recent examples of graphical models for MIML
include Dirichlet-Bernoulli Alignment [33] and Exponential Multinomial Mixture
model [32]. [36] proposed MLMIL, a conditional random field for MIML which
uses Gibbs sampling to infer instance labels.

[28] developed a MIML SVM algorithm which uses a bag-level kernel. Their
algorithm predicts instance labels by applying the bag-level classifier to a bag of
one instance. [27] proposed a MIML instance annotation algorithm which alter-
nates between sampling random instance labels and training a Semantic Texton
Forest (a specialization of RF to images). [22] proposed a MIML algorithm which
alternates between assigning instance labels and training a maximum margin
classifier. [17] considers the problem of selecting a set of instances explaining
each label, which is different from instance annotation, where the goal is to label
all instances.

Several formulations besides the max model have been used for MIL and
MIML to relate instance and bag labels. Different formulations encode different
assumptions about instance labels. One version of the Diverse Density algorithm

for MIL [21] used a Noisy-OR model P (y = 1|B, θ) = 1 −∏xi∈B

(
1 − P (yi =

1|x, θ)
)

. [20] points out that the max model makes fewer independence assump-

tions than the Noisy-OR model, although both generate similar probabilities in
many cases. In later work the EM-DD [38] algorithm replaced Noisy-OR with
max. [24] proposed Multiple-Instance Logistic Regression, which uses a smooth
softmax approximation to max. [3, 4] used a multi-class softmax model. [30] pro-
pose a model where the bag-label probability is the average of the instance-label
probabilities.

Prior work on context-aware learning considered multi-instance learning prob-
lems where instances in the same bag are inter-related (non-i.i.d) [16, 15, 40].
A common theme of these approaches is to use graphs to encode inter-instance
relationships (e.g., spatial relationship) within a bag, which is then used to help
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make more accurate bag-level predictions. This line of work differs from ours
in two ways. First, they are primarily interested in improving bag-level predic-
tions by considering the structure within bags. In contrast, we are interested in
instance-level predictions. Second, these approaches model context as relation-
ship among instances, whereas our work focuses on context provided by the bag
label set. One possible direction for future work is to investigate how both types
of context can be used to help with instance annotation.

7. Conclusion & Future Work

We proposed MIML-ECC, an algorithm for context-aware MIML instance anno-
tation. Experiments on image, audio, and artificial datasets show that MIML-
ECC achieves better accuracy than other recent algorithms. MIML-ECC is asymp-
totically efficient, and does not require parameter tuning. Further experiments
provide runtime results, suggest that the improved accuracy cannot be attributed
only to switching from an SVM-style base classifier to a RF, that ensemble is
beneficial, and that MIML-ECC’s improved accuracy is related to exploiting
correlation in the bag label sets.

MIML-ECC exploits context through correlations, which can be summarized
by statements like “if A is present, B is also likely to be present.” However,
MIML-ECC cannot exploit a different kind of context, which can be summarized
as “if one A is present, there are likely to be more A’s.” For example, consider
Fig 1b. It might be easy to recognize some of the larger cows in the image,
but harder to recognize the small ones. However, after recognizing one cow, it
we might expect to find more cows. MIML-ECC will not exploit this kind of
context because it can only use information about the presence or absence of
other classes to inform its prediction. A useful direction for future work is to
develop algorithms for MIML instance annotation that can exploit both bag-
level label correlations, and relationships between instances, as in [16, 15, 40].
Similar correlation structures have been exploited in MLC using a collective
classification / relational learning approach [14].

We made several assumptions in formulating MIML-ECC; it is interesting
to explore related models with different assumptions. For example, we assumed
each instance has exactly one label. However, there are cases were instances have
none of the labels in the set of known classes (e.g., clutter in an image), and also
where an instance should have multiple labels.

Acknowledgements. This work is partially funded by NSF grant 1055113 to Xiaoli
Z. Fern, and the College of Engineering, Oregon State University.

References

[1] S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines
for multiple-instance learning. Advances in Neural Information Processing
Systems, 15:561–568, 2002.

[2] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[3] F. Briggs, X. Fern, and R. Raich. Rank-loss support instance machines for
miml instance annotation. In International Conference on Data Mining,
pages 534–542, 2012.



Context-Aware MIML Instance Annotation: Exploiting Label Correlations With Classifier Chains 25

[4] F. Briggs, X. Fern, R. Raich, and Q. Lou. Instance annotation for multi-
instance multi-label learning. Transactions on Knowledge Discovery from
Data (TKDD), 2012, 2012.

[5] F. Briggs, B. Lakshminarayanan, L. Neal, X. Fern, R. Raich, S. Hadley,
A. Hadley, and M. Betts. Acoustic classification of multiple simultaneous
bird species: A multi-instance multi-label approach. Journal of the Acous-
tical Society of America, 131:4640, 2012.

[6] A. Buja, W. Stuetzle, and Y. Shen. Loss functions for binary class prob-
ability estimation and classification: Structure and applications. Technical
report, 2005.

[7] L. Carroll. Through the looking-glass: and what Alice found there. 1896.

[8] T. Cour, B. Sapp, and B. Taskar. Learning from partial labels. Journal of
Machine Learning Research, 12:1225–1261, 2011.

[9] K. Dembczynski, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel
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Appendix 1

The correlation coefficient ρ(X,Y ) between two random variables X and Y is
given by

ρ(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
(14)

Let X be a Bernoulli RV with P (X = 1) = 1
2 . Similarly, let Y conditioned on

X be a Bernoulli RV with P (Y = 1|X) = 1
2 (1 + ρ)X + 1

2 (1 − ρ)(1 − X), as in
Sec. 5.5, eqn. (12). The correlation coefficient ρ(X,Y ) = ρ.

Proof : we begin by noting the property that the expected value of an arbitrary
Bernoulli RV T with P (T = 1) = p satisfies E[T ] = P (T = 1) = p. Moreover,
since T ∈ {0, 1}, T k = T for k = 1, 2, . . . and consequently E[T k] = p. The
variance of T is given by Var(T ) = E[T 2]−E[T ]2 = p−p2 = p(1−p). To compute
the correlation coefficient ρ(X,Y ), we first compute E[X], E[Y ], Var(X), Var(Y ),
and Cov(X,Y ). Since P (X = 1) = 1

2 , we have E[X] = P (X = 1) = 1
2 . The

expectation of Y is computed as follows

E[Y ] = EX [EY [Y |X]]

= EX [P (Y = 1|X)]

= EX [
1

2
(1 + ρ)X +

1

2
(1− ρ)(1−X)]

=
1

2
(1 + ρ)EX [X] +

1

2
(1− ρ)(1− E[X])

=
1

2
(1 + ρ)

1

2
+

1

2
(1− ρ)

1

2

=
1

2
. (15)

Since X and Y are Bernoulli RVs with P (X = 1) = P (Y = 1) = E[X] = E[Y ] =
1
2 , we also have Var(X) = Var(Y ) = 1

2 (1− 1
2 ) = 1

4 . Next, we compute

E[XY ] = EX [EY [XY |X]]

= EX [XEY [Y |X]]

= EX [XP (Y = 1|X)]

= EX [X(
1

2
(1 + ρ)X +

1

2
(1− ρ)(1−X))]
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=
1

2
(1 + ρ)EX [X2] +

1

2
(1− ρ)E[X(1−X)]

=
1

2
(1 + ρ)

1

2

=
1

4
(1 + ρ). (16)

The covariance is therefore Cov(X,Y ) = E[XY ]−E[X]E[Y ] = 1
4 (1 + ρ)− 1

2

2
=

1
4ρ. Finally, substituting Var(X) = Var(Y ) = 1

4 and Cov(X,Y ) = 1
4ρ into (14),

yields ρ(X,Y ) = ρ.
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