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Object detection models are being widely used in many applications, such as 

autonomous driving, construction management, and cancer detection. Evaluating the 

performance of the object detection model is more complicated than other computer 

vision models such as image classification models. Most of the images have several 

objects to be detected, and the types of detections and their errors can be categorized 

in several different ways (e.g., classification error, localization error). To address this 

challenge, we design and develop an interactive tool that helps users evaluate and 

analyze results from object detection models. We first categorize detected and ground-

truth bounding boxes into 7 and 11 types based on the literature. We enable users to 

analyze object detection results based on this categorization at three different levels: 

summary level, class and detection type level, and image level. This enables users to 

analyze a large number of and a variety of model errors from a summarized overview 

into individual images. From the summary level, users can explore the overall 

detection results such as average precision, the number of detected labels and ground 

truth labels, and the number of each detection type. At the class and detection level, 

users can see more detailed information about a certain class and detection type and 

images that correspond to it. At the image level, users can click each image to get a 

detailed analysis. We developed an interactive user interface that implements this idea 

with a driving dataset, trained with a state-of-the-art object detection model. We also 

present a usage scenario of how users can use our tool for inspecting errors from the 

trained object detection model. Being able to easily browse object detection results 

and their images with a certain class and a detection type, our interface helps users to 

work with object detection models more effectively in their research. 
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Error Analysis of Object Detection Models  

with Interactive User Interfaces 

1 Introduction 

Recent advancements in deep learning and hardware computing power have increased the 

capabilities of computer vision (CV), a scientific field that defines how machines 

understand the meaning of images and videos like humans do. In general, CV tasks 

consist of image classification, object detection, facial recognition, and image 

segmentation. Among the CV tasks above, object detection, a task that works to identify 

and locate objects within an image or video has been one of the successful applications of 

CV in many fields such as robotics [8], transportation (e.g., autonomous driving [5]), and 

even in a medical [6] and construction area [7].  

 

To use the object detection model more confidently, the interpretability of a model with 

its performance is particularly important because the end-users can assess how well the 

model performs on a specific object detection task. Moreover, the users can make more 

critical decisions based on the results of the object detection model only when they 

interpret and rely on the model. Also, if the model is interpretable enough, the end-users 

readily understand the reasoning behind the predictions and decisions made by the model 

even without domain knowledge of computer science. The interpretability of the model 

can be improved when end-users recognize and correct predictions (i.e., object detection) 

that are incorrect. One key metric of the improved interpretability is its error debugging 

and intuitive diagnosis for the model’s detections and predictions. The users may need to 

debug any errors made from the model by evaluating and analyzing its prediction 

performance together with quantitative result tables of the model.   

 

Evaluating the performance of the object detection model is particularly challenging 

compared to other CV tasks such as image classification. It is because the object 

detection results can be categorized into many types, not just as correct and incorrect 

unlike other computer vision models such as image classification models. In further, 

several detected bounding boxes can be detected correctly but their detected class can be 

incorrect, and several bounding boxes are detected incorrectly but their detected class can 
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be correct. As a result, an effective performance evaluation method for object detection is 

needed in our body of knowledge. Meanwhile, to evaluate the performance of the object 

detection model, we may use various evaluation metrics such as mean average precision 

(mAP) and harmonic mean of precision and recall (F1-score), but they are not explaining 

detailed information about the errors. 

 

Therefore, as mentioned above we can specify the detection errors into sub-categories to 

understand the errors of detection results in more detail. In addition, sorting out images 

that contain particular labels, classes, or error types, and analyzing errors can be more 

complicated compared to other computer vision models. This issue is particularly 

important for non-computer science experts because it would be much harder for them to 

understand the model’s performance with their limited expertise and experiences.  

 

Previous research suggested various solution tools such as Voxel 51 [4], TIDE [1], and 

Hoiem et al [2] to address the problems above. Their framework provides the interface to 

look for the detection result of each image or provide chart information of the errors. 

Also, these works have categorized the incorrect detection results into several different 

groups to provide users with error information that was difficult to understand with mAP 

or correct and incorrect results alone. However, previous research works still have 

limitations as follows:  

1. Focusing only on showing bounding boxes of each image or summarizing 

detection errors causes a lack of information about the opposite.  

2. Categorized error types do not include all the detected errors.  

 

This paper presents the object detection error analyzer [Figure 1], which is an 

interpretability tool that supports the evaluation and analysis of the result of the object 

detection model. Our tool will help users to work with the object detection model more 

efficiently by providing three different level approaches to the object detection results, 

which are summary level, class and detection type level, and image level. We designed it 
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into three different levels to provide adequate information, from the overall to detailed 

results of the model, to match the users’ needs. Also, we expanded six different detection 

errors created from the TIDE [1] into seven different categories including correctly 

classified bounding boxes and other remaining incorrect bounding boxes which were not 

included in the former six detection errors. In addition, we also categorized the ground 

truth bounding based on the detected bounding boxes and their detection status to show a 

relationship between detected and ground-truth bounding boxes. 

 

First, at the summary level, we designed a table and distribution charts that contain the 

overall and summarized results of the object detection model. From the table, users will 

be able to see basic information such as numbers and detected and ground truth bounding 

boxes, average precisions, and the number of labels belonging to each detection type 

based on the classes. Users can also look for the distribution of the size of bounding 

boxes, IOU, and detection score of all detected labels through distribution charts. Second, 

in the class and detection type level, based on the types that we classified the detection 

types and classes users can look for the corresponding images, distribution chart results 

of bounding boxes, IOU, and detection score. Third, at the image level, we designed a 

format that users can analyze all the detected and ground truth bounding boxes to get 

more detailed information about each selected image.  

 

With these features, this tool can support end-users to check the performance of the 

object detection model from overall summary to small detail. Also, it can help them to 

make better decisions for their purposes with reliability and accountability by effectively 

combining interpretability in the object detection model. Furthermore, from a technical 

point of view, this tool provides visualization of the performance and presents a 

systematic analysis method. This paper will first describe the dataset, models, and post-

processing methods, and then will describe the tool of design, and walk through some 

user scenarios.  
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2 Related Works 

Academy-wise, mAP score has been traditionally used as an indicator to measure the 

performance of object detection models, despite its drawback that it does not provide 

insights into the errors. Therefore, many researchers have made efforts to come up with 

better tools to measure the performance of the object detection models, especially in 

many cases by providing analytical information about the errors. Hoeim et al [2], and 

TIDE [1], created their own labels to categorize the object detection errors. Hoeim et al 

[2], showed which aspects influence the object detection and categorized the false-

positive errors into four different categories: localization error, confusion with similar 

objects, confusion with dissimilar objects, and confusion with the background. They 

showed the results of the false-positive errors of each class in the form of a pie chart and 

a bar chart. TIDE [1] categorized the errors into 6 different categories: classification 

error, localization error, classification and localization error, duplication error, 

background error, and missed detected error. They also used pie charts and bar charts to 

show the distribution of errors in each class and showed charts for different object 

detection models to compare performances. They compared different models and 

different datasets to evaluate the performance. In contrast, we have extended their 6 

different error categories to categorize the object detection results.  

 

Borji et al [3], introduced a new evaluation method called upper bound average precision 

(UAP). They calculated the UAP of each class, and also compared about 15 different 

object detection models, and evaluate and visualize the performance with graphs and 

tables. They showed the performance of different models for each class by using different 

icons and displaying them in the same bar, using the y-coordinate to illustrate the 

performance. Google open image dataset [12] created a browsing tool for images. It is not 

specific for the object detection models, but users can select filters such as class, train, or 

validation data to browse corresponding images. It allows users to browse individual 

images with objects and their bounding boxes and classes. Voxel 51 [4] introduced an 
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interactive tool to explore and browse the object detection model. They helped users to 

investigate the object detection results with the filtering functions such as labels, 

categories, and detection scores. It is possible to create a summary result that shows 

precision, recall, f-1 score, and support for each class. However, it has a shortcoming in 

that users have to write a python code to use this tool.  

 

Hoeim et al [2], TIDE [1], and Borji et al [3] showed the performance of object detection 

models by summarizing errors into the types they have created. Voxel 51 [4] and Google 

open image dataset [12] displayed the images that users have filtered. When evaluating 

the performance of object detection models and debugging them, it is important for users 

to intuitively understand how the objects were detected when they look at the results. 

Because of this reason, many researchers have tried to categorize and show errors with 

simple and compact visualizations. However, 4 different false-positive error types and 6 

error types that previous research has created do not contain all the detection results 

which limit the explanation of the results. In addition, showing summary results with pie 

charts and bar charts is easy to check the percentage of each error type, but it is difficult 

to immediately check in detail which images and under what circumstances each error 

occurs. In this regard, we create an interactive tool that displays a summary, charts, and 

images all together to provide a simultaneous exploration of the results with example 

images. Also, we create new categories that include all the detected errors to allow users 

to browse all the objects and images based on the selected category. In this way, users 

can recognize the similarities among the objects that belong to the same category and 

check the overall performance of object detection models. 
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Figure 2. Ground truth result summary table from the summary view panel. 

 

Figure 1. The Object Detection Error Explorer. Summary view panel (A), Chart view 

panel (B), and Image view panel (C). 
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3 Methods 

The object detection result analyzer is an interactive tool that supports the evaluation and 

analysis of the results of the object detection model. The objective of our research is to 

develop a tool that enables debugging object detection models and verifies the features of 

the tool. For this purpose, we design the tool as a one-page web application with the 

features to analyze and evaluate the object detection results. In addition, we use a realistic 

user scenario to verify the function of the tool. We design three different panels to debug 

the object detection results by categorizing the object detection ground truths and 

detection labels, displaying distribution charts of different values such as IoU, detection 

score, and bounding box size. Finally, we display images with the bounding boxes to let 

users explore and interpret the object detection results easily.  

3.1 Tool development 

This section describes how we design the tool to implement the features to accomplish 

our research goal. Object detection result explorer is a one-page web application that 

provides three different views to analyze the object detection results: summary level table 

view, chart view, and image view.  

3.1.1 Summary view panel 

We design a summary result table [Figure 1. A] to display basic information about the 

object detection results. It contains the number of detected labels and ground truth labels 

of each class and their average precision values. We design a detected result summary 

table and ground truth summary table to check how many labels are in each class at a 

glance. One of the main information is the number of detected labels of each detected 

category by each class. We categorize the detection result and ground truth values in 

several different categories based on the literature so that end-users can easily explore the 

object detection results of their interests. 
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The most frequently used evaluation metric for the object detection model is the mean 

average precision (mAP). This measurement can show the accuracy of the model’s 

performance with a simple numeric number. However, it is difficult to conduct a detailed 

analysis of the object detection model’s results with this single result alone because it 

does not show any information about the incorrectly detected labels. Therefore, we 

categorize the detected labels into 7 different categories. In addition, to provide insights 

regarding the relationships between detected labels and ground truth labels, we categorize 

ground truth labels into 11 different categories.  

 

 

Figure 3. If users click the cell, the chart panel and image view panel update 

automatically with corresponding values. 
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Detected label types 

We create 7 different detected labels to categorize every detected label based on the 6 

error types from TIDE [1]. In accordance with the TIDE [1], the authors categorized the 

incorrectly detected labels into 6 different types: classification error, localization error, 

classification and localization error, duplicate detection error, background error, and 

missed ground truth error. However, several incorrectly detected labels do not belong to 

any of the categories. Therefore, we have revised the categories into 7 different types and 

included correctly detected labels to categorize all the detected labels. The following 

detected types (see fig.4) are calculated based on the two different IoU thresholds: 

foreground IoU threshold (tf) 0.5 and background threshold (tb) 0.1 [1]. 

1. Correctly detected: largest IoU and IoU >= tf for ground truth bounding box and 

detected class are correct.  

2. Classification error: max IoU >= tf for ground truth bounding box but the detected 

class is incorrect. 

3. Localization error: tb <= max IoU <= tf for ground truth bounding box, and the 

detected class is correct.  

4. Classification and Localization error: tb <= max IoU <=tf for ground truth 

bounding box, and the detected class is incorrect.  

5. Duplicate detection error: max IoU >= tf for ground truth bounding box but there 

is another bounding box with a higher IoU score exist.  

6. Background error: max IoU <= tb for ground truth bounding box.  

7. Other Incorrect errors: other detected bounding box that does not belong to the 

above 6 types. 

From the existing categorization methods from the TIDE [1], incorrectly detected labels 

with the characteristic of type 7 from our category and correctly detected labels did not 

have their type. We categorize all the labels into one of the categories to let users easily 

explore all the images based on certain detected types and classes. In the post-processing 

step, we calculate the max IoU score for every detected label. For each detected label, we 
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categorize it into one of the 7 detected categories based on its IoU score and its predicted 

class.    

 

 

 

Figure 4. Detected label types 

 

Ground-truth label types 

We also create 11 different ground-truth label types (see fig.5) to categorize all the 

ground-truth labels based on the relationship with detected labels. When analyzing the 

results of the object detection model, exploring both the ground truth labels and the 

detected labels together may provide more diverse perspectives than when analyzing only 

detected labels. If both detected and ground truth bounding boxes are shown together, 

end-users can analyze the performance more accurately when the ground truth’s 

relationship with detected boxes is shown than when there is just basic location 

information on ground truth. For example, there should be cases where a certain ground 

truth object is properly detected only once and another one is done several times. In that 

situation, by accumulating and analyzing the images of such cases, end-users can have a 

better understanding of the commonalities and features, which is more useful than the 

plainly expressed ground truth.  
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1. One match + Correct label: Matches with only one detected label and the 

matching detected label is type correct. 

2. One match + classification error: Matches with only one detected label and the 

matching detected label is classification error.  

3. One match + localization error: Matches with only one detected label and the 

matching detected label is localization error. 

4. One match + classification, localization error: Matches with only one detected 

label, and the matching detected label is classification + localization error. 

5. One Match + incorrect error: Matches with only one detected label and the 

matching detected label is another incorrect error. 

6. Matches + Correct and duplicate errors: Matches with more than one label and all 

the detected labels are detected with the correct category  

 . All the detected labels are correct and duplicated errors, detected 

categories match with ground truth labels, and all IoU >= tf 

7. Matches + Correct and classification errors: Matches with more than one label 

and all the detected labels have IoU >= tf but include correct and incorrect labels.  

8. Matches + Correct and localization errors:  Matches with more than one label and 

all the detected labels are detected with the correct category. 

 . Including detected labels with IoU >= tf and tb <= IoU < tf. 

9. Matches + Include correct: Matches with more than one label and include at least 

one correct label.  

10. Matches + Incorrect: Matches with more than one label but all the detected labels 

are incorrect.  

11. Missed detected error: No match with the detected label. 

  

Type 11 in the ground truth category was one of the 6 types of errors made from TIDE 

[1], which is an undetected ground truth not already covered by classification and 

localization error (false negative). TIDE [1] put this error into their 6 types of errors, but 

we put this false-negative labels into one of the ground truth categories because we 
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categorize all the ground truth labels and separated them with the categories of detected 

labels. We use the matching index between detected labels and ground truth labels that 

we calculate through the post-processing steps to categorize the ground truth labels.   

 

Based on the created categories and classes, users can click the cell of detection 

categories and class to see corresponding images to the cell from the detection summary 

table. When the users hover over each cell of the table, the letters on the selected cell turn 

into bold to notify the cell that the users are hovering over. The background color of the 

cell will also change to a darker color when the users click the cell, and the chart view 

and image view will update automatically based on the class and detection type that users 

select. [Figure 3] The cell with highlighted color will change when the users click a 

different cell, and the chart and image will automatically update. If the users double click 

the highlighted cell, the color of the cell goes back to the default color, and the chart and 

image view will also go back to the default view.   

 

Next to the result summary title, there is a toggle switch button that changes between 

detection result and ground truth result. The ground truth summary table shows the 

number of each ground truth category for each class. (See fig.2) In the class column, 

there is a color block next to the name of each class. Each color block shows the color of 

the bounding box depicted on the image view panel. 
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Figure 5. Ground-truth label types 

 



14 

 

 

 

Figure 6. When users click one of the bars from the chart view panel, the image view 

panel updates automatically with corresponding images. 

  

3.1.2 Chart view panel  

A chart view panel is located on the bottom left of the tool (see Figure 1. B). It shows 

three different bar charts: the distribution of the size of bounding boxes of detection 

labels, the distribution of the IoU score of detection labels, and the distribution of the 

detection score. We select these three aspects to see correlations between different 

detection categories. On the default page [Figure 1], the chart panel shows three 

distribution bar charts for the whole detected labels, and the color of the default bar chart 

is light blue. The bounding box bar chart has 10 different labels, from the size 10 to 

100,000, the detection score distribution bar chart has 9 different labels, from 0.2 to 1.0, 

and the IoU score chart has 10 different labels, from 0.0 to 0.9. The labels are created 

based on the minimum and maximum values of each chart value.  

 

When the users click one of the class and detection cells from the summary table, the 

chart view panel gets updated based on the detection labels belonging to the selected 

class and detection. The color of the bar chart for the selected class and detection type is 
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light yellow. We use different colors to differentiate between the default distribution 

chart and the selected class and detection chart. In the selected class and detection chart, 

users can select one of the bars to browse corresponding images in the image view panel, 

and the color of the selected bar turns darker yellow. The users can reverse their choice by 

double-clicking the selected bar, and the image view panel shows the whole selected and 

detection images, and the selected bar will go back to light yellow.  

 

The default three distribution charts are the bounding box size chart and IoU score chart. 

However, there is a variation depending on the detection category. The classification 

error category is when the detected bounding box has a higher IoU score than the IoU 

threshold, but the detected category is incorrect. It is important to know how the detected 

category is incorrectly detected in this case. Therefore, we add one more distribution 

chart called the missed detected class chart which shows how the detected labels of the 

selected class are incorrectly classified. The labels in the missed detected class chart are 

the names of the classes that detection labels incorrectly classified, so the number and 

names of the label are different depending on the selected class. The users can also click 

one of the bars to see corresponding images on the image view panel. (see fig.4) In 

addition, the background detection error category is when the detection result detected 

the background. Therefore, there is no IoU distribution chart for this case because there 

are no matching bounding boxes between the ground truth bounding box and the detected 

bounding box.  
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Figure 7. The modal window for each image for more detailed information. 
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3.1.3 Image view panel  

The image view panel is located on the right side of the tool (see Figure 1. C). The 

default image view shows the first 500 images from the BDD 100k dataset [9]. We use 

13 different colors to represent each class, and the color is shown in the summary table. 

To represent the detection result and ground truth result, we use a solid rectangle and 

dotted rectangle, so the users can see both detected bounding boxes and ground truth 

bounding boxes of each image at once. Also, we use a pop-up window for each image to 

show all the detected bounding boxes and ground truth bounding boxes on a bigger 

screen. 

 

When the users select one of the cells in the detection summary table, the image view 

panel shows the corresponding images. For each class and detected type, we find the 

image index that contains the selected class and detected type. Then, we calculate the 

image index and the number of detected labels that belong to the selected class and 

detected type and sort the list of image indexes based on the number of detected labels. 

Therefore, in the image view panel, the order of the image is the number of detected 

labels that belong to the selected class and detection type. The selected image view only 

shows detected and ground truth bounding boxes that belong to the selected class and 

detection type. Users can hover over the detected bounding box to see the ground truth 

class, predicted class, and detection score.  

 

At the selected image view, users can click each image for more detailed information. 

The modal window pops up when users click any image. As we can see in fig 5, there is a 

list of classes with ground truth and detected checkboxes and a list of detected error 

types, where users can check to see corresponding bounding boxes. When users first open 

a modal window, the selected class and error type from the table summary is selected as a 

default, and users can toggle checkboxes to see other bounding box information.   
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3.2 Post-processing  

From the detection result of the object detection model, several post-production steps are 

required to have an adequate data structure for our tool. First, before categorizing the 

detected and ground truth labels. For each image, we compare every detected bounding 

box with ground truth bounding boxes to find a matching ground-truth bounding box for 

each detected bounding box. From every detected bounding box from one image, we 

calculate all the Intersection over Union (IoU) between a detected bounding box and all 

the ground truth bounding boxes from the same image. Then extract the max IoU value 

from the list of calculated IoU scores and its corresponding ground-truth label id. In this 

way, it is easy to check the detected and its corresponding ground-truth label. When 

calculating the IoU, we set the default IoU value as -1, and if the maximum IoU is -1, 

then it means there is no match between the ground-truth bounding box and the detected 

bounding box. In this case, we left the matching ground-truth id field and max IoU value 

field empty. After we find the max IoU value and its matching ground truth label for 

every detected bounding box, we use the well-known object detection post-processing 

algorithm non-maximum suppression (NMS) to reduce the overlapping detected 

bounding boxes. NMS algorithm uses the detection score and IoU value to calculate 

which labels to remove. It designates one label with the highest detection score from the 

input list as a standard and compares the IoU score with the pivot label. If the IoU score 

between the pivot bounding box and another bounding box is higher than the IoU 

threshold parameter (0.5), it deletes the labels to remove overlapping bounding boxes.  

 

After we apply the NMS algorithm and reduce multiple overlapping labels, we calculate 

the mean average precision (mAP) for each class. Average precision (AP) is a widely 

used evaluation metric to check the accuracy of object detection models, which computes 

the average precision and recall curve. To calculate the precision value, we need to 

compute true positive values over the summation of true positives and false positives, and 

to calculate the recall value, we need to compute the true positive values over the 

summation of true positives and false negatives. In the object detection model, we 
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consider one detection as a true positive when the predicted class is the same as the 

ground-truth class and also the IoU value is larger than the IoU threshold. A false positive 

is either when the predicted class is different from the ground-truth class or the IoU value 

is smaller than the IoU threshold. A false negative value will be the undetected ground-

truth bounding box, and a false positive does not apply to an object detection model. We 

use 10 different IoU thresholds, from 0.2 to 0.7, to calculate the true positive and false 

positive, and calculate the mAP score for each class. 

 

 
 

 

 
 

a) Car localization error bounding box distribution chart 

 

 
b) Pedestrian localization error class distribution chart 

 
c) Car localization error detection score distribution chart 
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d) traffic light classification error bounding box distribution chart 

 

 

 
e) traffic light classification error detection score distribution chart 

 

 
f) traffic light classification error IoU distribution chart 

Figure 8. Chart images for user scenarios 
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4 Use cases 

In this section, we want to verify the functionality of the tool through a user scenario 

case. For the use case scenario, we will create a persona called Amy as a potential user of 

our tool. We assume that she has basic background knowledge about machine learning. 

She wants to use this tool to answer the questions that she has had in her autonomous 

driving research.  

4.1 Dataset and model 

For the experiment, we have chosen the BDD 100K driving dataset [9], a well-known 

object detection dataset, which is also known to have a very large-scale dataset with more 

than 10 object categories. There are a couple of experiment objectives to lead us to select 

this dataset: Firstly, we hope to investigate how classes with similar properties are 

detected/differentiated and to produce detection results from a minimum of 7 to 8 classes 

as well as from distinct objects. Given this dataset has 13 classes, we can perform this 

experiment objective without hurdles. Secondly, we want to test whether external factors 

influence detection results. Given this dataset has several external properties such as 

brightness and darkness (daylight and night-time), and occluded or blurred, it enables us 

to carry out the second experiment objective. We have chosen Faster-RCNN 

Resnet50_v1 [10, 11] pre-trained model to train and test the dataset. We fine-tuned it 

with the BDD 100k dataset.  The total mAP value with COCO 2017 dataset was 29.3, 

and the total mAP fine-tuned with BDD 100K train dataset was 25.3. Classes like other 

person, other vehicle, trailer, and the train had only 2 to 15 ground truth labels and 

detected labels are usually zero. In addition, the value of the mAP calculated without the 

4 classes was 36.6, which was enough for the experiment. 

4.2 User scenario 

We create a scenario where our persona uses our tool to answer her research questions. 

She will investigate the cause of errors while interpreting the results of the object 
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detection models. Frequently occurring classification and localization errors are her main 

focus.  

4.2.1 Finding similarities between certain errors 

Classification errors. 

Amy first looks for the summary view panel to view the overall performance of the 

Faster-RCNN [10, 11] model. She finds that there are many classification errors among 

the classes, so she wants to look for any common characteristics in those images or 

objects. First, she clicks the ‘car, classification error’ cell from figure 1. A, to see how the 

object ‘cars’ are incorrectly classified as other classes. In the image view panel, she 

checks images that have detected labels mis-detected as cars. Then from the chart view 

panel, she checks the classification error distribution chart, and she finds that many trucks 

and buses are mis-detected as cars. After looking at the images from the image view 

panel she first finds that many labels are incorrectly detected as cars when their ground 

truth labels are trucks, mostly the cases are when the objects are white vans or very small. 

She also finds that many of the mis-detected objects are placed in the dark or shadowed 

places.  

 

Second, she clicks on the ‘bicycle, classification error’. From the chart distribution panel, 

she clicks bars of the large size bounding boxes from the bounding box size distribution 

charts to see corresponding images and finds the similarity that many objects are also 

placed in the night scene or shadowed. Third, she clicks the ‘traffic light, classification 

error’ cell to see any common characteristics among the images. Front the chart view 

panel, she looks at the bounding box and detection score distribution chart and finds that 

most of the bounding boxes have small sizes and the detection score is quite low. Also, 

the classification error distribution chart shows that many traffic signs are mis-detected as 

a traffic lights. Then she looks at the image view panel to browse corresponding images 

and finds that most of the objects that are incorrectly detected are commonly from night 

scene images and the objects are rather small or shadowed.  
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Localization errors 

Amy then clicks the ‘car, localization error’ cell to see when and how the localization 

errors occur. From the chart panel view, in fig 6. a, she finds that the size of the bounding 

boxes is small, and detection scores are distributed in the low values (see fig 6. c). Then 

from the image panel view, she finds that localization errors are closely located so she 

clicks the image to popup the modal window to have a close look at them. After clicking 

ground truth and localization error together there, she can compare the sizes of the 

ground truth bounding box and detected bounding box in a bigger window in more detail. 

 

After browsing several images, she finds that many localization errors frequently 

occurred when the objects were stuck together, and small or occluded objects tended to 

have more localization errors than clear and big objects. She also finds that there are 

several objects with higher bounding boxes that have higher detection scores, and most of 

the objects with localization errors are small. After that, she clicks the ‘pedestrian, 

localization error’ cell to see the characteristics of the corresponding images. After 

browsing the chart panel view, she finds that ‘pedestrian, localization error’ has a similar 

distribution to ‘car, localization error’ (see figure 6. C and fig 6. h) Then she looks at the 

image panel view and discovers that similar to the previous findings, many objects are 

stuck together, and the sizes are very small.  

4.2.2 Finding example images for specific conditions 

Mis-detection between pedestrians and vehicles and finding ground truth errors 

Amy wants to explore this object detection model to answer the question of whether there 

are cases where pedestrians are mis-detected as vehicles due to the concerns that 

confusing pedestrians and vehicles are quite detrimental in autonomous driving. Then, 

she first clicks the “car, classification error’ cell, then looks at the classification error 

distribution chart, and clicks ‘pedestrian’ in the bar chart. After looking at several 

example images, she realizes that the pedestrian objects are placed right next to the cars 
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and the objects are very small. She next clicks the “pedestrian, classification error” cell, 

and looks for classification errors as “car” (see fig 6. b), to see the objects which are 

detected as pedestrians, but the ground truth is cars. However, she finds out some objects 

from the examples were detected correctly. So, she clicks one of the images to look for 

more details and double-check the ground truth, detected bounding boxes, and finds that 

the ground truth is wrong.  

 

Missed to detect pedestrians and vehicles 

Amy also pursues answers on the question of when pedestrians or vehicles are missed to 

be detected due to the concerns about the safety in that situation by using the object 

detection model. detected properly?” To see the undetected objects, she first switches the 

detection summary table to the ground truth summary table by clicking the toggle button. 

Then, Amy selects “pedestrian, undetected”, and “car, undetected” cells to see common 

characteristics of the undetected objects. From the chart view panel of “pedestrian, 

undetected”, she finds that the size of the bounding boxes is very small and checks the 

corresponding images. Most of the undetected labels were on the sidewalks or the road, 

and there were densely placed in the images. In the case of the chart view panel from the 

“car, undetected” cell, she also finds that the size of the bounding boxes is also very small 

in this case and checks the corresponding images. She clicks one of the corresponding 

images to open the modal window and compares the correctly classified ‘car’ and missed 

detected ‘car’. In this case, lots of undetected ‘car’ objects were on the opposite side of 

the roads, outside of the roads, and they were very small. Therefore, based on those 

findings, Amy concludes that the missed detected ground truth labels are not critical to 

safety in driving, but she could run more training to improve the model. 



25 

 

 

5 Discussion and Future work 

The objective of our research is to develop an interactive tool that helps evaluate and 

analyze the results of the object detection model. We believe that our tool can help non-

computer science experts to evaluate the performance of the models and answer their 

questions by finding common characteristics in certain errors by browsing the images of 

their interests. Based on the analysis of the object detection results obtained from the tool, 

users can decide to use this model for their research or not or decide to train further to get 

higher accuracy. In addition, they may understand in which cases the model performs 

poorly. Despite our efforts herein, there are limitations in this work. This tool needs to 

enhance explainability and interpretability in order for users to use the object detection 

model with more ease and confidence. Specifically, our current work has not provided 

clear answers to the question of ‘why’ this model detected objects correctly or 

incorrectly. Instead, by showing the images and the results, the tool helps users to infer 

the black box of the model to a certain degree. Therefore, in future works, we need to 

improve the explainability by showing the images of users’ interests such as using a grad-

cam to show how a model detects an object. Future works may also include exploring 

chart values and images, intersecting with the ground truth and detected object categories, 

making it possible to browse more detailed and specific conditions. 
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