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AN ISING-LIKE MODEL TO PREDICT

DIELECTRIC PROPERTIES OF THE RELAXOR

FERROELECTRIC SOLID SOLUTION

BaTiO3 −Bi(Zn1/2Ti1/2)O3

1 INTRODUCTION

1.1 Perovskites

Perovskites are a fascinating family of materials. The term comes from

the mineral CaTiO3, commonly known as perovskite, which was discovered

in 1839 by Gustav Rose and is named after the Russian mineralogist, L. A.

Perovski (1792 - 1856). More generally, a perovskite is any solid of the form

ABO3 where A and B are cations, with A located at the corners of the unit

cell, B at the center of the cell, and oxygen at the center of each face of the

cell, as shown in Figure 1.1. Other common examples of perovskites include

PbT iO3 (PT), BaTiO3 (BT), and SrT iO3. Perovskites have many interest-

ing properties including superconductivity, piezoelectricity, pyroelectricity,

paraelectricity and ferroelectricity.
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A
B
O

FIGURE 1.1: The smallest unit cell of a perovskite structure. Perovskites
have the form ABO3, with the A sites located on the corners, the B sites
located at the center, and the oxygen atoms located on the center of each
face.

1.2 Paraelectricity

All materials, perovskites included, are polarizable to some extent when

placed in an external electric field. This phenomenon is known as paraelec-

tricity. The key feature of paraelectric materials is that once the electric

field is removed, the induced polarization in the material is also removed.

For small electric fields, there is a linear relationship between polarization

and electric field,

~P = χ~E , (1.1)

but in the presence of large electric fields the relationship becomes non-linear

and eventually breaks down.
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1.3 Ferroelectricity

Another class of materials that is similar to paraelectrics is known as

ferroelectrics, with the primary difference being that ferroelectrics remain

polarized in the absence of an applied field. This spontaneous polarization

may be changed in the presence of an applied field to align with the field.

This behavior results in a hysteresis of polarization versus applied electric

field. Ferroelectrics are used in many electronic devices from electric RAM

to PTC thermistors [1].

As the temperature of a ferroelectric material is increased, there is a phase

transition into a paraelectric phase. This transition temperature is known as

the Curie temperature, which is a term borrowed from ferromagnetism. At

high temperatures the electric susceptibility obeys the Curie-Weiss law,

χ =
C

T − Tc
, (1.2)

where C is a material specific constant and Tc is the critical Curie tempera-

ture. At temperatures below Tc the material is in its ferroelectric phase and

has a spontaneous polarization.

1.4 Piezoelectricity

All ferroelectrics are at least somewhat piezoelectric as well. A piezo-

electric is a material that develops a strain in the presence of an applied
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electric field. Conversely, if a stress is applied to a piezoelectric it will induce

a polarization in the material.

Depending on the application, the amount of piezoelectricity may be more

or less desirable. For devices such as capacitors and RAM the amount of

piezoelectricity should be as small as possible. If the piezoelectric response

is large, the resulting deformation may over time lead to fatigue, and may

compromise the electrical properties as well.

1.5 High-Permittivity Linear Dielectrics

Linear dielectrics are well studied in undergraduate physics courses. Their

properties are easily understood and nearly all materials have linear dielectric

behavior for some range of electric fields. High-permittivity dielectrics require

a much lower applied electric field to achieve the same polarization as a

normal dielectric material, which makes them desirable for applications such

as energy storage in capacitors rather than RAM.

1.6 Relaxor Ferroelectrics

There is a family of materials related to ferroelectrics and paraelectrics,

which is called relaxor ferroelectrics, also known as relaxors. Relaxors may
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be used in many of the same applications as regular ferroelectrics and high-

permittivity dielectrics, since they exhibit many of the same properties. How-

ever, relaxors do not have a true ferroelectric phase, and are more simi-

lar to high-permittivity dielectrics in many cases. Thus, relaxors are bet-

ter suited for energy storage applications than RAM applications. Some

common perovskite relaxors are Pb(Sc1/2Nb1/2)O3, Pb(Mg1/3Nb2/3)O3, and

Pb(Mg1/3Ta2/3)O3 [2–4]. There is a simple 1:1 or 1:2 ratio of B-site cations

for perovskite ferroelectrics of this form. Since not all B-sites are not identi-

cal, microscopic disorder can and does occur because there is no restriction

on layering or homogeneity. This microscopic disorder gives relaxors their

unique behavior, which is discussed below, and distinguishes them from nor-

mal ferroelectrics [2].

1.6.1 Diffuse phase Transition

One obvious difference between relaxors and normal ferroelectrics is the

behavior at the critical Curie temperature. As was previously explained,

normal ferroelectrics have a sharp transition from ferroelectric state to a

paraelectric state at the Curie temperature. Relaxors do not have a critical

temperature and are said to have a diffuse phase transition. This terminology

is misleading in that relaxors do not actually have a ferroelectric phase [2].

Instead there is a more gradual transition from low to high permittivity as

the temperature changes. As the Curie-Weiss law (Eq. 1.2) suggests, there is

a singularity in the susceptibility at the Curie temperature for normal ferro-
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electrics. Relaxors do not obey this same law, and in fact the susceptibility

deviates strongly from it [5, 6]. This is due to the lack of a critical tempera-

ture and different low temperature phase, which is similar to the spin glass

phase [6, 7].

1.6.2 Polar Nano-Regions

Rather than a ferroelectric phase with a spontaneous long-range polar-

ization, relaxors spontaneously develop small polar nano-regions (PNR) with

differing polarizations [8–11]. Typically, PNRs are on the order of a few to a

few dozen nanometers in diameter. In normal ferroelectrics, the entire mate-

rial polarizes uniformly. In relaxors, while there is spontaneous polarization,

there is no long-range order, and thus restricts the entire material from ob-

taining a uniform polarization. Figure 1.2 shows a cartoon example of how

PNRs prohibit the entire material from polarizing uniformly.

FIGURE 1.2: A cartoon example of polar nano-regions. This cartoon shows
some PNRs that are uniformly polarized, but each region may have a different
polarization.
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The PNRs in relaxors are generally formed around a pinning center, which

is a region of the material that has a preferred polarization, commonly caused

by structural ordering in a small region. The polarization of the region

surrounding the pinning center is likely to align with the polarization of the

ordered region to lower the energy of the system. Since there are likely to be

many pinning centers in a given sample, multiple PNRs form with differing

polarization directions to create a situation like that illustrated in Figure 1.2.

The Burns temperature is the point below which PNRs form [12]. In

normal ferroelectrics, this point is well above the Curie temperature. The

Burns temperature is well defined and provides a good metric for comparison

with other relaxors, whereas the Curie temperature is not well defined since

there is no critical behavior. Experimentalists use the index of refraction to

determine that the structure of a material has changed, and thus measure

the Burns temperature [13].

1.7 Lead-Free Perovskites

Due to increasingly strict environmental and health regulations, there is

an increased demand for lead-free ferroelectric and relaxor materials. Until

the push to eliminate the use of lead, many ferroelectric and high-permittivity

dielectric devices used lead in some form, and many still do. PbTiO3 (PT),

Pb(ZrxTi1−x)O3, and Pb(Mg1/3Nb2/3) are prime examples of well-known and

commonly used materials [2, 14].
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As a result of the need to reduce the use of toxic materials, many re-

searchers are studying BaTiO3 (BT) based solid solutions instead of those

based on PT [15–21]. BT is the canonical example of a lead-free ferroelec-

tric perovskite. It has been well studied, and the mechanical, thermal, and

dielectric properties are very well understood both theoretically and experi-

mentally. The unit cell of BT is identical to the form in Figure 1.1, and shown

explicitly in Figure 1.3. Some key physical properties of BT are shown in

Table 1.1.

Ba

Ti

O
FIGURE 1.3: BaTiO3 cubic unit cell. The Ba atoms are located at the
A-sites, and the Ti atoms are located on the B-sites.

1.8 BT-BZT

By combining BT with other perovskite materials it is possible to create

a ceramic that is a relaxor ferroelectric [15–20]. The combination we chose

to study is xBaTiO3 + (1−x)Bi(Zn1/2Ti1/2)O3 (BT-BZT), with x = 1 corre-

sponding to pure BT. This material behaves like a relaxor for certain values
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TABLE 1.1: Important properties of BaTiO3. The theoretical lattice con-
stant was determined using methods described in Section 2.3, and well known
experimental data is shown [22,23].

Curie Temp. 393 K

Paraelectric Phase Cubic

Ferroelectric Phase Tetragonal

Cubic Lattice Const.
4.015 Å(exp)

3.989 Å(theory)

of the composition x, but it has not been studied as extensively as other

compounds [15,16,20]. One of the goals of this study is to observe BT-BZT

from a theoretical/computational standpoint.

1.8.1 Structural Phase depends on Composition

When combining BT and BZT, the resulting perovskite is tetragonal for

compositions consisting mostly of BT (x & 0.9) and rhombohedral for lower

compositions [15]. The material Bi(Zn1/2Ti1/2)O3 (BZT) by itself is highly

tetragonal, and depending on the atomic ordering in the unit cell the c/a

ratio can be as large as 1.286 [24]. The c/a ratio for BT-BZT is at most that

of pure BT, which is about 1.013.

1.8.2 Relaxor Behavior

Experiments show that as the composition of BT-BZT contains less BT,

the sharp ferroelectric phase transition is lost, and the solid solution begins
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to resemble a relaxor [15, 20, 23]. The peak in dielectric constant that is

present at the transition temperature of pure BT broadens and eventually

disappears altogether as the composition decreases, as shown in Figure 1.4.

Also, the Burns temperature and the magnitude of the polarization at low

temperatures both decrease with decreasing composition.
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FIGURE 1.4: Experimental dielectric constant for various compositions. As
the composition of BT-BZT decreases, the peak in dielectric constant broad-
ens and vanishes, indicating the transition to a relaxor phase. The experi-
mental data shown here is courtesy of Huang and Cann [15].

As shown by Huang and Cann [15] the strain of BT-BZT is greatly de-

creased as the composition shifts from high to low BT content. This is di-

rectly related to the piezoelectric response. Thus, a lower strain corresponds

to a lower piezoelectric effect. The maximum strain reported was 0.13% for

pure BT in a field of 70 KV/cm.
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1.9 Computational Models

Relaxors are not easy to model effectively, although there have been many

attempts with varying levels of success. These methods include molecular

dynamics (MD) simulations [4, 25–27], density functional theory (DFT) cal-

culations [2,24,28], spherical random-bond-random-field model [29], random

field-Ising-models [30, 31], other Monte Carlo (MC) simulations [32]. For a

good summary of many of these methods applied to relaxors, see Burton

et. al. [2]. The model we created combines both DFT and a MC Ising-like

method to try and capture the accuracy of DFT, while utilizing the long-

range scaling of Ising models.

1.9.1 Density Functional Theory

Density functional theory (DFT) is based on the idea that the density

of electrons in a system is all that is needed to determine the ground state

energy. DFT is derived from the variational principle,

Eground = min
ψ

〈ψ|H|ψ〉
〈ψ|ψ〉

, (1.3)

where H is the Hamiltonian and the optimal ψ is the many-body wave func-

tion that minimizes the energy of the system. Minimizing Equation 1.3 is

challenging because the many-body wave function of the system ψ grows ex-

ponentially with the number of electrons in the system. Hohenburg and Kohn

introduced a theorem in 1964 that allows for minimizing over the density of
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the electrons, instead of the actual wave function:

Eground = min
n(~r)

[
F [n(~r)] +

∫
n(~r)Vext(~r)d~r

]
, (1.4)

where n(~r) is the electron density, Vext(~r) is the external potential included

in the Hamiltonian, and F [n(~r)] is a universal functional of the density. This

functional is not known exactly, but can be reasonably approximated. The

Kohn-Sham Equations are the usual approach to construct such an approx-

imate functional:

F [n(~r)] = T [n(~r)] + VHartree[n(~r)] + Exc[n(~r)] , (1.5)

where T [n(~r)] is the kinetic energy of a non-interacting set of electrons,

VHartree[n(~r)] is an approximate Coulomb electron-electron interaction term

(known as the Hartree term), and Exc[n(~r)] is the exchange-correlation en-

ergy, which is a small correction to the functional that in principle gives the

correct answer. The kinetic energy term is given by

T [n(~r)] = min
{φi}

[∑
i

∫
φ∗i

(
−~2∇2

2m

)
φid~r

]
, (1.6)

where φi are the single electron orbitals of each electron and are restricted

by orthonormality and produce the electron density by n(~r) =
∑

i |φi|2. The

Hartree term is the electron-electron Coulomb interaction potential

VHartree[n(~r)] =
e2

2

∫
n(~r)n(~r ′)

|~r − ~r ′|
d~rd~r ′ . (1.7)
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By combining Equations 1.4 - 1.7 we obtain the total ground state energy

Eground = min
n(~r)

[
min
{φi}

{∑
i

∫
φ∗i

(
−~2∇2

2m

)
φid~r

}
+

e2

2

∫
n(~r)n(~r ′)

|~r − ~r ′|
d~rd~r ′ +∫

n(~r)Vext(~r)d~r + Exc[n(~r)]

]
.

(1.8)

The exchange-correlation term is not known exactly, and there are a va-

riety of approximations used to describe it. The two most common approx-

imations are the Local Density Approximation (LDA) and the Generalized

Gradient Approximation (GGA). The LDA is purely local in that it explicitly

depends only on the local density of the electrons, while GGA is non-local

because it depends on the density as well as the gradient of the density. The

LDA method has the advantage of being uniquely defined, but it is rarely

used because GGA usually gives better results. The problem with GGA is

that there are many types, such as PBE, PW91, and BLYP, and each type

is better in certain cases and worse at others. GGA methods are also some-

what more computationally intensive than LDA, so the benefits of GGA must

outweigh the computational cost.

One approximation that is commonly used with DFT is the pseudopo-

tential approximation, which allows us to treat explicitly only a subset of the

electrons in a given atom. The core electrons of an atom are bound tightly to

the nucleus and only the valence electrons are able to move freely. Because of

this we can make an approximation that includes only the valence electrons.
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For elements with so-called “semi-core” states that are not so tightly bound,

these may also be treated explicitly within the pseudopotential approxima-

tion.

DFT is widely used to calculate a wide range of material properties, such

as interaction energies, lattice parameters, phonon frequencies, and band

structures, as well as electronic and optical properties. One particular appli-

cation that will be particularly useful for studying ferroelectrics is the linear

response method for calculating the polarization of a system.

1.9.2 Modern Theory of Polarization

When studying ferroelectrics, it helps to be able to calculate the polar-

ization of a unit cell in a solid. At first glance this would seem trivial, given

the nuclear positions and electron density. For finite sized systems this is the

case, and we are able to determine the electron contribution to the polariza-

tion in the straight forward way

~P elec = − e
Ω

∫
n(~r)~rd~r , (1.9)

where Ω is the volume of the cell in question, and n(~r) is the electron density.

However, for systems with periodic boundary conditions, as we use with

DFT, the position vector ~r is not uniquely defined. Therefore, the total

polarization—which is the sum of electronic and ionic contributions—in a

bulk system is not well defined. Thus, it is a non-trivial task to compute the

electronic polarization and it cannot be done by a simple dipole calculation

using the electron density as one would hope. Figure 1.5 illustrates how the
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electron density changes the polarization for a finite cell and a periodic cell.

While the true polarization may be better represented by Figure 1.5(a), the

calculated polarization is determined by Figure 1.5(b).

(a) (b)

FIGURE 1.5: Polarization ambiguity of periodic cells. The dotted line rep-
resents the electron cloud surrounding the black atom, and the arrow shows
the direction of the polarization for each cell. The polarization for a finite
cell is shown on the left, and the polarization of a periodic cell is shown on
the right. The actual bulk polarization is not well defined in the classical
sense, and is only valid modulo e~R/Ω, as discussed in the text.

The Modern Theory of Polarization (MTP) method proposed by King-

Smith and Vanderbilt [33, 34], and reviewed by Resta and Vanderbilt [35],

allows us to compute the electronic contribution to the polarization by

~P elec = − e

8π3

∑
n

∫
BZ

d~k〈un,~k|∇~k|un,~k〉 , (1.10)

where the sum is over all occupied states, the integral is over the entire

Brillouin zone, and |un,~k〉 are the Bloch functions of the Hamiltonian taken

in an appropriate gauge.
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Because the electronic polarization makes use of the Bloch functions

|un,~k〉, there is an ambiguity in the polarization. Since the Bloch functions

are periodic, the polarization can only be calculated to within some modulus

of the actual value, which is determined by e~R/Ω, where ~R is a lattice vec-

tor. This modulus value corresponds to translating one electron by a lattice

vector. If spin degeneracy is included in the polarization calculations, both

the electronic polarization and the modulus will have an extra factor of two.

The total polarization is a sum of the electronic term ~P elec and the ionic

term

~Ptotal = ~P elec + ~P ion , (1.11)

with

~P ion =
e

Ω

∑
i

Z ion
i ~ri , (1.12)

where Z
(ion)
i is the nuclear charge of the ith atom located at position ~ri, and

Ω is the volume of the cell.

DFT together with MTP provides a powerful tool for predicting the di-

electric properties of materials, and there have been many studies of per-

ovskites, ferroelectrics, and relaxors using these methods. Simple perovskite

studies include BaTiO3, SrTiO3, CaTiO3, KNbO3, NaNbO3, PbTiO3,

PbZrO3, and BaZrO3 [14,36], which are focused on cell shapes and volumes,

c/a ratios, elastic constants, phonon frequencies, band structures, piezoelec-

tricity, and spontaneous polarizations. Studies of ferroelectric perovskites

with B-site disorder include Pb(Mg1/3Nb2/3)O3 [37], Pb(ZrxTi1−x)O3 [38],
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and Bi(Zn1/2Ti1/2)O3 [24]. The calculations of the properties of these ma-

terials are similar to that of the simple perovskites, but the B-site disorder

introduces a level of structural complexity that is also of interest. Solid so-

lution relaxors similar to BT-BZT, including

Pb(Mg1/3Nb2/3)O3 − PbTiO3, Pb(Zn1/3Nb2/3)O3 − PbTiO3 [28, 39], and

Bi(Zn1/2Ti1/2)O3−PbTiO3 [40], are also studied for structural and electronic

properties. Of those materials discussed above, the largest supercell for a

DFT calculation contains only 60 atoms in a 3× 2× 2 perovskite supercell.

There are drawbacks to restricting studies to only DFT and MTP calcu-

lations. Specifically, these methods are computationally expensive and are

therefore feasible only for moderately sized systems with tens to hundreds of

atoms. To incorporate the long-range disorder needed to effectively model

relaxors, another method is needed. One type of model that would allow

for the necessary long-range disorder is a lattice model similar to the Ising

model of magnetic spins.

1.9.3 Classical Ising Model

Ferromagnetic materials have been modeled for years using the Ising

model, which is a simple model based on the interaction between neighboring

spin-up and spin-down particles placed on a lattice. The Ising Hamiltonian

is given by

H = −J
2

cells∑
i

NN∑
j

σiσj −
∑
i

σiM , (1.13)
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where σi is the spin of the ith particle, J is a positive coupling constant, M is

the external applied magnetic field, and the factor of two in the interaction

term is to avoid double counting. If the spins on the lattice are all aligned the

energy of the system will be minimum, and if the spins are randomly aligned

the energy will be high. In the presence of an external field, if the spins

point in the direction of the field the system is in a lower energy state. This

model is a valuable tool used in thermal physics courses for understanding

phase transitions. The one dimensional case was solved exactly by Ising in

his PhD thesis in 1924 and later as a journal publication [41], and the two

dimensional case was solved analytically in the absence of a magnetic field by

Lars Onsager in 1944 [42]. Generally, the two- and three-dimensional models

are solved using Monte Carlo simulations, and the phase transition may

be approximately described using mean field theory for higher dimensional

cases [43].

1.9.4 Potts Model

The Ising model is based on a two state system. This simple case has

been expanded to a more complicated system with more than two available

spins. The q-state Potts model concerns a system where each particle has q

available magnetization states distributed evenly around a circle [44]. The

angles corresponding to each state are given by

θn =
2πn

q
, (1.14)
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where n = 1, 2, ..., q. The Hamiltonian is given by

H = −J
2

cells∑
i

NN∑
j

cos
(
θni
− θmj

)
−M

∑
i

cos(θni
) , (1.15)

where J is again the coupling constant and M is the external field. While this

model is more general than the classical Ising model, it is still very restricted

in that the magnetization states must lie in a single plane and can have only

certain values.

A 3D Potts model also exists with the interaction Hamiltonian of

H = −2
cells∑
i

NN∑
j

δ (qi, qj) , (1.16)

where qi is the magnetization state of the ith cell [45,46]. Note that the delta

function gives zero interaction energy if the spins are not aligned.

1.9.5 Heisenberg Model

As a further expansion of the Ising model, the Heisenberg model allows

for a lattice of magnetization states that may be oriented in any direction.

This fully vectored equation is described by the Hamiltonian

H = −J
2

∑
i,j

~si · ~sj − ~M ·

(∑
i

~si

)
, (1.17)

with the only restriction being that each vector ~si is of unit length. An

important difference between the 3D Potts and Heisenberg models is that

the Heisenberg interaction energy is not zero if the magnetization states are

not exactly aligned.
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1.10 A New Hope

We will introduce a new model, which combines methods such as DFT

and MTP, that can predict effects of short-range disorder, with a model

such as the Ising or Potts model that is capable of examining phenomena

involving long-range disorder. DFT and MTP are unable to address the long

range disorder because the number of atoms required to capture the long-

range effects would be much too large for a reasonable DFT calculation. By

performing DFT calculations on a small number of atoms, and using an Ising-

like model to scale up the system to a macroscopic level, the computational

resource requirements are much lower than a pure DFT calculation.

Since there is still much to understand about relaxors, this model may

give insight into the underlying physics at both microscopic and macroscopic

levels. Areas of particular interest are the physics of relaxors near the Burns

temperature and the dielectric properties as a function of temperature and

applied electric field.
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2 AB INITIO CALCULATIONS

2.1 Supercells, Atomic Configurations, and Symme-
tries

Barium titanate (BT) is cubic above the Curie temperature of 393K [23],

but is slightly tetragonal below the Curie temperature. The solid solution

BaTiO3 - Bi(Zn1/2Ti1/2)O3 (BT-BZT) is also slightly tetragonal at both high

and low temperatures [15]. The c/a ratio for BT-BZT was shown to be very

near unity in Section 1.8. As an approximation, BT-BZT is assumed to

be cubic for the purposes of this model. For the solid solution BT-BZT

we choose the smallest possible stoichiometric cubic cell. This supercell has

a lattice constant that is twice that of the unit cell of cubic BT, and a

volume that is eight times larger. If we restrict ourselves to supercells of

this 2 × 2 × 2 size, only compositions of x = 0, 0.25, 0.5, 0.75, 1 are allowed

given the solid solution formula BaxBi(1−x)Zn(1−x)/2Ti(1+x)/2O3. Figure 2.1

shows one atomic configuration of a 2×2×2 supercell with a composition of

x = 0.75. A composition of x = 1 corresponds to a 2× 2× 2 supercell of BT

that contains 40 atoms. We could use larger supercells, or other geometries,

which would allow cells to have additional compositions not available in the

2 × 2 × 2 configuration. Larger supercells, however, are computationally

expensive because of the large number of atoms, and other geometries do not

preserve the cubic symmetry that is desired for the latter part of the model.
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Thus, both larger supercells and non-cubic geometries are not studied here.

Depending on the composition, the 2 × 2 × 2 supercell may have many

possible atomic configurations. The number of unique configurations for each

composition are shown in Table 2.1. Unique configurations are determined by

first finding all possible atomic configurations and then applying symmetry

operations such as rotations, reflections and translations to each configura-

tion. If two configurations are identical with the application of a symmetry

operation, then the configuration is degenerate and only one instance of the

configuration need be computed. See Figure 2.2(a) for a cartoon example

of atomic configurations that are related by a symmetry operation, and Fig-

ure 2.2(b) for an example of unique atomic configurations. Once all unique

atomic configurations are known for each composition, we are able to use ab

initio methods to begin to predict some of the properties of BT-BZT.

TABLE 2.1: The number of unique atomic configurations for each composi-
tion of a 2× 2× 2 supercell.

Number of Zn atoms Composition x Distinct atomic configurations

0 1.0 1

1 0.75 3

2 0.50 26

3 0.25 13

4 0.0 6
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Bi

Zn

O

Ba

Ti

FIGURE 2.1: BT-BZT cubic 2×2×2 supercell example with x = 0.75. The
lattice constant of the supercell is twice that of the smallest cubic BT unit
cell.
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(a) Degenerate configurations related by a 90 degree rotation.

(b) Two unique configurations not related by any symmetry operation.

FIGURE 2.2: A cartoon example distinguishing between degenerate and
unique atomic configurations.



25

2.2 Density Functional Theory Calculations

DFT is a widely-used tool for determining various properties of solids and

molecules, as explained in Section 1.9.1. Here, we use DFT to find the self-

consistent ground state energy of each 2×2×2 supercell configuration, using

the Quantum Espresso package [47] with a PBE-GGA exchange-correlation

functional, ultrasoft pseudopotentials, a cutoff energy of 80 Rydberg, and a

2× 2× 2 Monkhorst-Pack k-point grid.

The energy of each atomic configuration is calculated in two cases. The

symmetric case consists of all atoms being positioned directly on the coor-

dinate axes and evenly spaced, and the relaxed case begins with the atoms

randomly displaced slightly away from the symmetric positions. By mini-

mizing the forces on each atom, which also minimizes the energy, the final

relaxed positions are determined self-consistently. See Figure 2.3 for an ex-

ample of a symmetric atomic positions versus final relaxed atomic positions.

We repeat this relaxation procedure several times and with different random

atom displacements in order to check for cases with multiple local minima.

However, for each 2× 2× 2 atomic configuration, we were only able to find

one relaxed state.
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(a) Symmetric (b) Relaxed

Bi

Zn

O

Ba

Ti

FIGURE 2.3: Symmetric and relaxed atomic positions for one atomic config-
uration with x = 0.75. There are four supercells shown together for clarity.

2.3 Lattice Constant and Bulk Modulus

One important parameter, which can serve as either input or output of

any DFT calculation is the lattice constant of the unit cell. In a perfect world

the theoretical lattice parameter which minimizes the energy would match

exactly to the experimental value at zero temperature. However, because we

are using an approximate exchange-correlation functional this is simply not

true.

In order to find the theoretical lattice constant for cubic BT, we first use

the experimental parameter as a starting guess. If an experimental value is

not known, a reasonable estimate is all that is needed. Then DFT calcu-

lations are done for several lattice parameters near the initial guess. The
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lattice constant that has the lowest energy is closest to the correct theoret-

ical lattice parameter. We can fit the energy vs lattice parameter data to

a quadratic function in order to determine the minimum value more pre-

cisely. This method for a single cubic cell of BT gives a lattice parameter

of a = 3.989Å using the same energy cutoff, pseudopotentials, k-point grid,

and PBE-GGA exchange correlation functional as described above. The cal-

culated lattice constant agrees well with the experimental lattice constant of

a = 4.015Å [22] as shown in Table 1.1.

The bulk modulus, defined by

B = V
∂2E

∂V 2
, (2.1)

where V is the volume of the cell and E is the energy of the system, can also

be computed with this same procedure. By varying the volume slightly near

the value that gives the minimum energy, and fitting a quadratic function

as we did to find the lattice constant, we can find the curvature near the

minimum and obtain the bulk modulus. We calculated the bulk modulus

for pure cubic BT to be 164 GPa, which is slightly below the experimentally

measured values in the range of 179 GPa to 191 GPa [48].

2.4 Polarization of Relaxed States

Once the minimized energies and relaxed atomic positions of each 2×2×2

supercell have been found, we apply the Modern Theory of Polarization
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(MTP) method from Section 1.9.2 to find the polarization of each super-

cell using the Quantum Espresso package. Unfortunately, MTP only calcu-

lates the polarization to within some modulus of the true value due to the

periodic boundary conditions of the DFT calculations. We can, however,

find the polarization of the relaxed configurations relative to the symmetric

configurations by making a few extra calculations.

The first step is to determine the polarization of the supercell with atoms

in the symmetric positions, which will serve as our reference state. The

next step is to adiabatically displace the atoms from the symmetric posi-

tions toward the fully relaxed positions and calculate the polarization for

each displacement step. Each time the atoms are displaced toward the fully

relaxed positions, a new set of DFT/MTP calculations is needed. To avoid

unnecessary calculations, we can perform only a few displacement steps and

use the slope of the polarization vs displacement curve to find the correct

polarization for the fully relaxed state relative to the symmetric state. We

are able to use the slope because the fully relaxed displacements are small

and the polarization difference is approximated as a linear dipole moment.

The final polarization of the fully relaxed case is found by adding or sub-

tracting the known modulus value to the relaxed polarization until it lies on

the line determined by the adiabatic displacement method. If it does not lie

exactly on the line, the value closest to the line is chosen. Figure 2.4 shows

one example of adding the modulus to the final polarization value until it

lies on the line determined by the adiabatic displacements.
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FIGURE 2.4: Polarizations of adiabatically displaced atoms. By displacing
the atoms from the symmetric positions to the relaxed positions adiabatically,
the relative polarization can be determined using the known modulus and
the slope of the adiabatic displacement curve. In this case the modulus is
subtracted from the original polarization twice to obtain the polarization
relative to the value of the symmetric configuration.
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Depending on the atomic configuration and structural symmetry of the

supercell there are often several degenerate ground states with different polar-

izations. The simple cubic unit cell for BT, for instance, has eight degenerate

polarization states, one in each of the (111) directions. The adiabatic dis-

placement method gives a polarization value in a single (111) direction. By

applying all symmetry operations to the cubic supercell of BT, we find a

polarization in all (111) directions.

For some of the more structurally interesting atomic configurations there

may be between 2 and 48 degenerate polarization states for a single 2×2×2

supercell of BT-BZT. Figure 2.5 is a cartoon example of a configuration with

only two unique polarization states, and Figure 2.6 shows two actual exam-

ples of available polarization states after applying all symmetry operations.

Table 2.2 shows the number of available polarization states for every atomic

configuration.

FIGURE 2.5: A cartoon example of two possible polarization states of the
same atomic configuration of a less symmetric structure. The arrow repre-
sents the individual dipole moment of each individual cell. The adiabatic
displacement method is used to find a single polarization, and the remaining
available polarizations are found using symmetry operations.
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(a) (b)

FIGURE 2.6: Two examples of polarization states projected onto the x-
y plane from two different atomic configurations of the same composition.
Clearly, not every atomic configuration has the same available polarization
states.
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TABLE 2.2: The number of available polarization states for each atomic
configuration. The maximum number of polarization states is 48, since there
are 48 symmetry operations of a cube. The configuration number is arbitrary
and is used only to identify unique configurations.

x Config # Polarization
States

1 1 8

0.75 1 2
2 4
3 6

0.5 1 4
2 8
3 16
4 8
5 16
6 4
7 4
8 12
9 2
10 2
11 2
12 4
13 4
14 2
15 4
16 4
17 2
18 4
19 8
20 8
21 8

x Config # Polarization
States

0.5 22 8
(cont.) 23 4

24 16
25 8
26 48

0.25 1 2
2 4
3 4
4 2
5 4
6 4
7 2
8 2
9 4
10 4
11 4
12 4
13 12

0.0 1 2
2 4
3 4
4 2
5 4
6 2
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3 A NEW ISING-LIKE MODEL

Using the energies from density functional theory (DFT) and the polar-

ization states from the adiabatically relaxed modern theory of polarization

(MTP) data for each type of cell, we arrange many cells on a 3D lattice using

a stochastic process directed by Boltzmann statistics in the grand canonical

ensemble. The polarization of each cell interacts with its nearest neighbors

with the Ising-like Hamiltonian:

H = −J
cells∑
i

NN∑
j

~pi · ~pj −
cells∑
i

~pi · ~E , (3.1)

where ~pi is the polarization of a single cell, ~E is the external electric field

and J is a coupling constant, which we tune to match the experimental Curie

temperature of pure barium titanate (BT). The notation of the Hamiltonian

may be simplified as

H = E − ~p · ~E , (3.2)

where E is the total interaction energy and ~p is the total polarization of

the entire system. This simple notation will be referred to throughout this

dissertation.

This model is similar to a traditional Ising, Potts, or Heisenberg model,

but differs in that each cell has a discrete number of possible states (similar

to Potts), and not every cell has the same available states or even the same

magnitude. For example, one type of cell may have eight polarization states
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in each of the (111) directions as is the case for pure BT, while another type

of cell may have six states that point in each of the (100) directions. This

enables us to introduce and model disordered solid solutions. The actual

polarization states available in this model are much more complex, with cells

having up to 48 available polarization states as shown in Table 2.2.

3.1 The Monte Carlo Simulation

The Monte Carlo method is a technique based on random sampling of

data. The general method is used in many scientific areas as well as the

financial sector [49,50]. The random sampling we are concerned with is that

of the polarizations on a lattice. Each cell on the lattice has a polarization

that is pseudo-randomly flipped from one available state to the next, as

we describe later in Section 3.1.2. After a certain number of cell flips, the

polarization and energy of the entire lattice are sampled. Thus, our MC data

is a random sampling of polarizations and energies.

To begin an individual Monte Carlo simulation there are some important

matters to address. The first is the lattice size. Nearly all calculations re-

ported here were performed with a lattice size of 16×16×16 cells, where each

cell represents a 2×2×2 perovskite supercell. Thus, our simulation represents

163840 atoms (with 40 atoms per supercell) which would be challenging to

handle even with classical Molecular Dynamics simulations and prohibitive

with DFT. We performed additional calculations with larger cells to ensure
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the results are consistent. The 16×16×16 size was chosen to allow for some

long range disordering, while keeping the computational time reasonably low.

3.1.1 Populating the lattice

We begin each MC simulation by determining the atomic configuration

for each of the cells on the lattice. For a simulation of pure BT this is not an

issue since every cell of BT is identical and has the same polarization states

available in any possible rotation or reflection. Treating a solid solution

requires additional effort.

To populate the lattice, we determine the proper number of each config-

uration of BT-BZT to match the desired composition. We do this using a

grand canonical ensemble where the chemical potential is determined by the

DFT ground state energy difference between BT-BZT cells of differing com-

position. This means that configurations with a lower ground state energy

will be used more often to populate the lattice than supercells with higher

energy, with the appropriate Boltzmann ratio.

Once the proper number of each type of cell has been found, each cell is

randomly placed on the lattice with a random orientation. This is especially

important for cells that do not have cubicly symmetric polarization states.

One problem that may occur due to this random placement and random

rotation and/or reflection of each cell on the lattice, is that in certain cases the

mean polarization may never be zero. For pure BT, where each cell has the

same available cubicly symmetric polarization states, the mean polarization



36

will always approach zero for a very long simulation. Since the BT-BZT

mixtures may not have the same symmetry, the mean polarization will rarely

approach zero for a long simulation, given a finite lattice size. To avoid this

inconvenience, we mirror the lattice for all BT-BZT mixtures and double its

size. This extends a 16× 16× 16 lattice to a 16× 16× 32 lattice. Each cell

on the original lattice has its mirror image also placed on the lattice. The

result is that the mean polarization is guaranteed to be zero in the limit of

an infinitely long simulation.

3.1.2 Equilibration and Data Gathering

As was explained in the previous section, the cells on the lattice start

with a random polarization state, which corresponds to a high energy, high

temperature state. We allow the system to equilibrate at a given tempera-

ture using the Metropolis algorithm, which was designed for constructing a

canonical ensemble.

First, we determine the energy of the entire system based on the Hamil-

tonian. Next, a random change is proposed. In our case we change the

polarization at a single site. The change in energy of the system is then

calculated, and if the energy decreased after the change, then the change is

allowed to remain. If the energy increased after the change, then the change

is allowed to remain with a probability determined by the Boltzmann factor

F = exp

(
−∆E

kBT

)
. (3.3)

If the change in energy is comparable to kBT , then there is a reasonable
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probability that the change may occur naturally. A temperature that is low

relative to the energy difference indicates a low probability and high tempera-

tures indicate a high probability. In a ferroelectric, this leads to a uniformly

polarized lattice at low temperatures and a randomly polarized lattice for

high temperatures as will be shown in the next chapter. This algorithm is

applied many millions of times to reach equilibrium. Once equilibrium is

reached, we can calculate properties such as the Curie temperature.

The system undergoes at least 106 changes per site, and the total polar-

ization and energy are recorded after every 10 changes per site. Equilibrium

is considered to be reached and the system is said to be “warmed up” when

the system has run for several energy correlation times. Once the system has

reached equilibrium, we can calculate the mean value of any function of the

energy and polarization simply by

〈f(E, ~p)〉 =
1

N

N∑
i=1

f(Ei, ~pi) , (3.4)

where the subscript i is the index of a particular data sample, and N is

the total number of samples. We can then calculate properties such as the

dielectric constant and specific heat using the variance of the polarization

and energy respectively.

A cluster algorithm such as the Wolff method would be better suited for

convergence at low temperatures using an Ising model, but such methods are

challenging to apply to our heterogeneous system. Not all cells have the same

available polarization states, making it hard to classify if two neighboring
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cells belong to the same cluster.

3.2 Boltzmann Probability

The probability of finding a system in in a given microstate in thermal

equilibrium at a given temperature can be found by examining the appropri-

ate Boltzmann factor,

Pi =
1

Z
exp(−βEi) , (3.5)

and its associated partition function,

Z =
N∑
i=1

exp(−βEi) , (3.6)

where β = 1/(kBT ), Ei is the energy of the ith microstate, and N is the total

number of microstates. The mean value of any function f(Ei) can now be

determined by

〈f(E)〉 =
N∑
i=1

f(Ei)Pi , (3.7)

Expanding this formula to include the polarization microstates and the elec-

tric field term in the Hamiltonian in Equation 3.2 gives

〈f(E, ~p)〉 =

∑N
i=1 f(Ei, ~pi) exp(−β(Ei − ~pi · ~E))∑N

i=1 exp(−β(Ei − ~pi · ~E))
. (3.8)
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3.3 Susceptibility

The dielectric constant is an important property in ferroelectric and re-

laxor materials. In order to create an effective model of these materials it is

important that the dielectric constant will be predicted accurately. Starting

with the electric field in a medium, we can find the dielectric constant and

the susceptibility of the medium:

~D = ~E + 4π ~P (3.9)

ε ~E = ~E + 4π ~P (3.10)

~P =
1

4π
(ε− 1) ~E = χ~E (3.11)

In relation to the Monte Carlo data it is the mean of the polarization that is

of interest:

〈~P 〉 = χ~E (3.12)

The susceptibility is a tensor response function, valid for small changes in

electric field, and each component is defined separately by

χxx =
∂〈Px〉
∂Ex

. (3.13)

By taking the derivative of Equation 3.7, we can express the susceptibility

as the variance of the polarization:

χxx = β
(
〈P 2

x 〉 − 〈Px〉2
)

(3.14)

By simply calculating 〈Pi〉 and 〈P 2
i 〉 (where i is either x, y, or z in this case)

of a given simulation, we can compute the susceptibility in any particular
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direction of the material.

Once the susceptibility is known, it is then a simple matter to determine

the dielectric constant using

ε = 1 + 4πχ . (3.15)

It is important to note that this is the zero frequency value of the dielectric

constant. It is not possible to determine the frequency dependence without

including dynamics, which are not included in a Metropolis Monte Carlo

simulation.

3.4 Specific Heat

Another property of any solid, which is particularly interesting in phase

transitions, is the specific heat. Thermodynamically, the intensive dimen-

sionless specific heat at constant volume is defined as

cv =
1

NkB

(
∂U

∂T

)
v

, (3.16)

where kB is the Boltzmann constant, N is the number of cells on the lat-

tice, U is the internal energy of the system, and T is the temperature. By

substituting β = 1/(kBT ) and U = 〈E〉 into Equation 3.16, the specific heat

becomes

c = −β
2

N

∂〈E〉
∂β

, (3.17)

where we have dropped the constant volume subscript, since our model does

not include volume effects.
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Taking the derivative of Equation 3.7 the specific heat can be expressed

as the variance of the energy:

c =
β2

N

(
〈E2〉 − 〈E〉2

)
. (3.18)

Similar to the susceptibility, the specific heat of the material can be deter-

mined by calculating only 〈E〉 and 〈E2〉 for a given simulation.

3.5 Finite-size scaling

Because the correlation length diverges at phase transitions, it is par-

ticularly important to examine finite-size scaling in systems with a critical

temperature [51, 52]. This divergence makes it difficult to obtain good re-

sults at or near the critical temperature. However, since the solid solution

BT-BZT behaves as a relaxor, there is no phase transition and thus no crit-

ical temperature. For this reason, we ignore most finite-size scaling issues.

However, in order to accurately find the Curie temperature of BT, we use

the Binder cumulant method, since finite-size issues are important for critical

systems.

3.5.1 Binder cumulant

We use the Binder cumulant method [53] to determine the coupling con-

stant J which reproduces the experimental Curie temperature of BT. The

fourth order cumulant is independent of the number of cells in the lattice at
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the critical temperature, and is given by:

UL = 1− 〈~p 4〉
3〈~p 2〉2

, (3.19)

where the mean values 〈~p 4〉 and 〈~p 2〉 are calculated using Equation 3.8.

Considering pure BT where the system does indeed have a critical temper-

ature, we ran Monte Carlo simulations for various lattice sizes and temper-

atures near the Curie temperature. By plotting the cumulant as a function

of temperature for different lattice sizes L, the intersection point is at the

critical temperature as shown in Figure 3.1. The coupling constant J is then

tuned such that the correct critical temperature for pure BT at 393K is ob-

tained for the model. Since BT-BZT does not have a Curie temperature, we

must approximate the coupling constant for compositions other than x = 1.

We do so by using the same coupling constant for interactions between neigh-

boring cells of all compositions and configurations as we do for interactions

between neighboring BT cells.
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FIGURE 3.1: The fourth-order Binder cumulant as a function of temper-
ature for a range of cell sizes. The intersection point reveals the critical
temperature, since this cumulant becomes independent of the lattice size at
the critical value. The coupling constant J is found by tuning this cumulant
intersection to the critical temperature of BaTiO3.
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3.6 Strain

Since BT and BT-BZT are both at least somewhat piezoelectric, it is

important to discuss the effect of strain on the system. Experimentally, the

maximum strain for BT due to a large applied electric field is less than 0.13%,

and lower still for solid solutions of BT-BZT [15].

The strain we are concerned with is that which is due to placing many

supercells on a lattice, and whether or not using cubic supercells is a good ap-

proximation, as well as how the polarization from neighboring cells will affect

a given cell. Relaxors with PNRs may undergo a great deal of deformation

due to stresses caused by the large regions of uniform polarization [54], and

if this is true for BT-BZT our simplistic approach may not be sufficient.

To determine an upper bound on the energy difference due to strain be-

tween two neighboring cells, we relax the system into a natural rhombohedral

state (stretched in the direction of the polarization for pure BT), and then

force it into an unnatural rhombohedral state (in a (111) direction that is

not in the direction of the polarization), and compute the difference in the

energy of those two states using DFT. For a cubic unit cell of BT, as shown

in Figure 1.3, the difference in energies of the two rhombohedral systems

comes out to be 3.2× 10−5 Hartree.

We compare this energy difference with the interaction energy of the Ising-

like Hamiltonian, Eint = −J~pi ·
(∑

j ~pj

)
. Considering only a cubic lattice

where each cell has six nearest neighbors, and avoiding double counting of
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neighbors, the energy equation expands slightly to E = −6
2
J~pi ·

(∑
j ~pj

)
.

Given the polarization value, ~p ≈ (1, 1, 1) × 0.0039 e/a20, for BT, and the

coupling constant J ≈ 19 we obtain a value for the interaction energy of

E = 8.29 × 10−4 Hartree. Comparing the strain energy to the interaction

energy we get Ediff/(3Jp
2) = 4%. Since the calculated strain energy is

small compared to the model interaction energy, and the experimental strain

is low, we expect that our cubic-only model will give qualitatively correct

predictions.

3.7 Thermal Expansion

Another aspect of stress-related effects is the variation of cell size and

shape with temperature. The temperature values we are interested in range

from 250-500 K. Over this range of temperatures, pure BT (x = 1) undergoes

multiple phase changes from cubic to tetragonal to orthorhombic, and has

a maximum thermal expansion of 1.9× 10−5K−1 at room temperature [23].

The value of common materials ranges from 0.1− 9.0× 10−5K−1. The value

for BT-BZT is expected to be lower than that of pure BT, simply because

it does not undergo such a drastic phase change, and it’s c/a ratio is very

nearly one.

If a hydrostatic pressure is applied to pure BT, the Curie temperature

decreases linearly. For a pressure of 3000 atm, the Curie temperature drops

by about 20 K [23]. This pressure corresponds to a strain of ε = 1.5×10−3. At
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atmospheric pressure BT-BZT has an experimental volume strain of 7×10−3

[15] over the entire range of compositions we are interested in, which is larger

than the effect of thermal expansion of BT. This compositional strain effect

corresponds to a change in the Curie temperature of approximately 100 K.

Thus, the thermal effects of strain are not as important as the compositional

effects.

Since the coupling constant J is determined using the Curie temperature

as a fitting parameter, an uncertainty is introduced as the critical tempera-

ture varies with a change in the lattice parameter. Any value of J that gives

a Curie temperature of BT within the 100 K range described above does

not affect the qualitative results we are interested in. The magnitude of the

polarization, dielectric constant and specific heat would all have the same

behavior as we see in the next chapter, but the critical behavior would shift

to a lower temperature.

To keep our model from having too much complexity, we would like to

ignore the effects due to variations in the lattice constant. Compared to

other approximations that we make, this variation is much less important

in qualitatively determining the properties we are interested in, such as the

overall shape of the dielectric constant or specific heat. We use the same

coupling parameter J for interactions between cells of all compositions as that

of BT cells, and by doing so we are unable to account for any compositional

effects on J . We expect that the largest errors in our model are due to the

approximation of the coupling constant J in this way, and the fact that the
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interaction energy is a dot product of relative cell polarizations.

3.8 Application to Other Relaxors

As it stands, the new Ising-like model could be applied to any solid so-

lution that has a ferroelectric composition with a known experimental Curie

temperature. We are choosing to focus on BaTiO3 − Bi(Zn1/2Ti1/2)O3, but

this model may be applied to PbTiO3 based solid solutions including

Pb(Mg1/3Nb2/3)O3 − PbTiO3, Pb(Zn1/3Nb2/3)O3 − PbTiO3 [28, 39], or

Bi(Zn1/2Ti1/2)O3 − PbTiO3 [40], as well as other BaTiO3 based materials

like (La1/2Na1/2)TiO3 − BaTiO3 [55], just as easily. For the PbTiO3 based

materials, the experimental Curie temperature of PbTiO3 would be used to

find the coupling parameter. The things that would be different for each type

of solid solution are the number of configurations and resulting polarization

states of the supercells to be placed on the lattice.

This model uses a coupling constant determined by fitting to the Curie

temperature for a ferroelectric phase of a given composition of the solid

solution. By estimating a coupling constant instead of fitting to a ferro-

electric Curie temperature, this model can be applied to relaxors that do

not have composition with a known Curie temperature. This would at least

give qualitatively reasonable results, as the coupling constant only shifts the

temperature of critical behavior.
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4 DIRECT MONTE CARLO RESULTS

4.1 Pure BT

Lets begin the analysis by examining pure barium titanate (BT) simula-

tions with various lattice sizes. Simulations were run at every 5 Kelvin from

250 K to 500 K, for a minimum of 106 iterations per site, while sampling the

polarization and energy every 10 iterations per site. The initial polarizations

on the lattice are randomized, and each temperature simulation starts in

the same lattice configuration for a given lattice size. The magnitude of the

polarization, the dielectric constant, and the specific heat are all calculated

using the mean values shown in Equation 3.4. Figures 4.1 - 4.3 respectively

show the polarization magnitude, dielectric constant, and specific heat as

functions of temperature lattice sizes of 16 × 16 × 16 , 24 × 24 × 24, and

32×32×32. These lattice sizes correspond to a total of 163840, 552960, and

1310720 atoms respectively, where each cell contains 40 atoms.

The nonzero magnitude of the polarization which is apparent below the

Curie temperature of 393K in Figure 4.1 indicates ferroelectric behavior.

Above the Curie temperature, BT is in a paraelectric phase and should have

zero polarization for very large lattice sizes. The slight difference in polariza-

tion, and the fact the value is not exactly zero, above the Curie temperature

is a finite lattice size effect.

There is a distinct peak in both the specific heat and dielectric constant
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FIGURE 4.1: The magnitude of the polarization density as a function of
temperature for various cell sizes of pure BT (x=1).
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sizes of pure BT (x=1).
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shown in Figures 4.2 and 4.3 respectively. These peaks are expected since

they occur at the phase transition temperature, and the singularity of the

dielectric constant is consistent with the Curie-Weiss law shown in Equa-

tion 1.2. Fluctuations are apparent in the dielectric constant (Figure 4.3)

at low temperatures which are due to the random nature of Monte Carlo

simulations. For well converged simulations, the fluctuations should subside.

However, using the Metropolis algorithm it would take a very long time to

obtain well converged results. As was previously discussed, cluster algorithms

would help to hasten the convergence, but clusters are challenging to describe

when compositional disorder is present in the solid solution.
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FIGURE 4.3: The dielectric constant as a function of temperature for various
cell sizes of pure BT (x=1).

Independent of the algorithm used, well converged simulations would give
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dramatically different dielectric constant at low temperatures. In the sim-

ulations shown here, only a single polarization state is reached and the en-

tire system is not likely to flip to another polarization state in a reasonable

amount of time. In a well converged system, the entire polarization will

change directions sporadically. If the system is allowed to change polariza-

tion states freely, the dielectric constant will be large. However, if the system

is restricted to a single polarization state, the dielectric constant will be small

as we see in Figure 4.3.

4.2 BT-BZT Solid Solution

Lets now turn our attention to the BaTiO3 - Bi(Zn1/2Ti1/2)O3 (BT-BZT)

solid solution, focusing on the composition of x = 0.95. Again we plot the po-

larization, specific heat, and dielectric constant as a function of temperature

in Figures 4.4 - 4.6.

The polarization as a function of temperature for BT-BZT (Figure 4.4)

is clearly different from that of pure BT. As the cell size increases, the polar-

ization magnitude approaches zero for the entire temperature range. This is

consistent with the finite lattice size effect that is seen in Figure 4.1. The spe-

cific heat shown in Figure 4.6 does not show any large peak, which indicates

that there is no phase transition.

In order to capture the long range disorder behavior, it is best to use a

large lattice size. However, larger lattice sizes take much more computational
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effort than smaller lattice sizes, so if the larger size does not have different

physics than that of a smaller cell, then there is a benefit to using the smaller

lattice size. Figures 4.1 - 4.5 have a negligible difference between the various

cell sizes. Therefore, the smaller lattice size shown should be acceptable. Fig-

ure 4.6, however, does have a noticeable difference in the dielectric constant

between the different cell sizes at low temperatures. As we will demonstrate

in the next section, there is a reason for the difference other than cell size.

4.3 Lattice Configurations

In general, the outcome of any two Monte Carlo simulations may be

slightly different depending on the random number generators or random

number seeds used. If the simulation is run for a large number of iterations,

the results for different random number seeds will approach the same value.

This is the nature of Monte Carlo methods.

There is a difference in the outcome of a simulation depending on the

random number seed used populate the lattice. Each lattice configuration

may not approach the same equilibrium value. Figures 4.7 - 4.9 show the

polarization magnitude, specific heat, and dielectric constant for single lat-

tice size of 16× 16× 16 (32) and a composition of x = 0.95 for five different

initial starting conditions. At high temperatures where the system is almost

completely disordered, the different lattice configurations do not have a large

effect. At low temperature where the system is mostly ordered the different
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lattice configurations play a huge role. This make sense as the low tem-

perature simulations may freeze into a particular polarization state, and the

frozen polarizations will differ greatly depending on the lattice configuration.

We will need to average over many lattice configurations in order to get the

correct answer. Another way to get this type of spatial averaging would

be to use larger lattice sizes. The multiple histogram method discussed in

Chapter 5 is the technique we chose to do this type of averaging.
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4.4 Correlation Time

The MC simulation output is a list of energy and polarization values. One

important feature of the output data is how correlated the data samples are.

Ideally, each sample would be completely independent, and sequential itera-

tions would be uncorrelated. To determine the correlation between samples

in a given simulation, we use the normalized autocorrelation coefficient as a

function of lag k:

fAC(k) =

∑N−k
i=1 EiEi+k − 〈E〉2∑N

i=1E
2
i − 〈E〉2

, (4.1)

where 0 ≤ k < N has a maximum value of one at k = 0. The autocorrelation

coefficient is a measure of the correlation in the energy, which is one of the

quantities of great interest for this model.

To determine the correlation time τ , which is a measure of randomness

of the samples in the simulation, fAC(k) is fit to a decaying exponential

exponential exp(−k/τ). A set of completely random samples will have a cor-

relation time of zero. The term ’correlation time’ may be slightly misleading

in that it is the Monte Carlo samples that we are interested in, which are

not a function of any real time.

For each simulation used in this model, the data was sampled at every

10 iterations per site in order to reduce the correlation time to less than

one in most temperatures away from the Curie temperature. Near the Curie

temperature, the correlation time is greatly increased as is to be expected for
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any material with critical behavior. If the data is sampled too often, much

of it will be redundant.

4.5 Correlation Length

A related quantity of interest is the spatial correlation function. The

same technique is applied as was used to find the correlation time. The same

type of correlation coefficient is found,

fAC(kx) =

∑Lx−kx
i=1 ~pi · ~pi+kx − 〈~p〉 · 〈~p〉∑Lx

i=1 ~pi · ~pi − 〈~p〉 · 〈~p〉
, (4.2)

where ~pi is the polarization of the individual cell at site i, kx is the lag in the

x-direction, Lx is the lattice size in the x-direction, and the randomness is a

measure of the polarization instead of energy. The correlation length λx is

found by again fitting the correlation coefficient function to an exponential

exp(−kx/λx). As is clear by the notation, this only determines the correlation

length in the x-direction of the lattice. The correlation lengths are found in

the y and z directions as well. The total correlation length used here is the

average of the three components,

λ =
λx + λy + λz

3
. (4.3)

By observing an individual sample of the polarizations of each cell on the

lattice, the correlation length may also be observed visually. The maximum

correlation length possible is only L/2 given the finite cell size used, so any
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value greater than L/2 means the system is totally correlated. A correla-

tion length of 0 is completely uncorrelated. The correlation length roughly

corresponds to the size of the uniformly polarized regions.

Figures 4.10 - 4.18 show snapshots of the ordering of equilibrated systems

at various compositions and temperatures. Each figure shows the relative

magnitude and direction of the polarization of each cell projected onto the

yz-plane for a single x-coordinate value, and the color represents the inter-

action energy of each cell with its nearest neighbors Eint = −J~pi ·
(∑

j ~pj

)
.

Blue regions correspond to low energy where neighboring cells are aligned,

red regions correspond to high energy states where neighboring cells are op-

positely aligned, and white regions correspond to uncorrelated polarizations.

The energy-vector diagrams of pure BT are shown in Figures 4.10 - 4.12.

For the low temperature simulation at 250 K in Figure 4.10, nearly all cells

are uniformly polarized which is clear by the near solid blue energy surface, as

well as observing the individual cell polarization projections. Figure 4.11 has

almost no blue or red regions, which means the system is uncorrelated and the

cells are randomly polarized. This behavior is expected for a simulation at a

temperature of 500K, which is well above the Curie temperature. Figure 4.12

is simulated at a temperature of 385 K, which is slightly below the Curie

temperature, and the energy surface shows some small regions of correlation

and some regions of randomness. The correlation lengths for each simulation

are shown in Table 4.1, and should roughly correspond to the size of the blue

correlated regions of each energy-vector diagram.
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The energy-vector diagrams for x = 0.95 and x = 0.9 are shown in Fig-

ures 4.13 - 4.18 for the same simulation temperatures of 250 K, 385 K, and

500 K. Many features are similar to that of pure BT, with large correlated

regions at low temperatures and small correlated regions at high tempera-

tures. The correlated regions are areas of uniform polarization, which is also

known as a polar nano-region (PNR). Using a lattice size of 8Å for each

2× 2× 2 supercell and the correlation length of each simulation, we obtain

approximate diameters for the PNRs which are also shown in Table 4.1, with

a minimum diameter of the size of a single supercell.

Color alone is not enough to determine PNR size or existence in the

energy-vector diagrams. We must also look at the polarization projections of

each cell. Compositions of both x = 0.95 and x = 0.9 have large low energy

(blue) regions, but the polarization arrows are not all aligned in the same

direction as they are for pure BT. This is a clear indication that there are

PNRs for compositions less than one, even at low temperatures.
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TABLE 4.1: Correlation lengths and PNR size for various compositions and
temperatures. A correlation length of zero corresponds to a completely un-
correlated system, and a correlation length of greater than half of the lattice
size is completely correlated. The PNR diameter is calculated by multiplying
the correlation length by the supercell lattice constant of 8Å. The minimum
PNR size must be at least the size of a supercell, and if the correlation length
is larger than half of the lattice size (16 in this case), then the PNR diameter
is infinite.

Composition Temperature (K) Correlation length Approx. PNR

(# cells) size (Å)

x = 1 250 9.0 ∞
385 1.7 14

500 0.6 8

x = 0.95 250 3.2 26

385 1.0 8

500 0.7 8

x = 0.9 250 1.4 11

385 1.0 8

500 0.8 8
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5 THE MONTE CARLO HISTOGRAM METHOD

5.1 Single Histogram Method

Using Equation 3.4, we can find the mean value of any function of energy

and polarization. Unfortunately, this method only gives results at the tem-

perature used to create the sampled data, which means we need to perform a

computationally expensive Monte Carlo simulation for each temperature we

wish to study. Using the single histogram method, we can use data from a

simulation at one temperature to predict properties at another similar tem-

perature [56].

The histogram method was created to extract as much information as

possible from a Monte Carlo simulation, while using as little data as is nec-

essary. This technique relies on the fact that if the probability of finding the

system in each microstate at a given temperature is precisely known, then in

principle we can predict the probability of finding the system in any of those

microstates at any other temperature. In practice, we can only approximate

these probabilities, and our predictions are limited to similar temperatures.

The single histogram method allows us to calculate the probability at a

particular temperature, given that we know the histogram of microstates.

The histogram H(E, ~p) is determined by a Monte Carlo simulation, where

each data sample fills a bin of the histogram, and is a record of how likely a

given microstate happens to be. The probability of finding the system in a
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particular microstate at a similar temperature is given by

Pβ(E, ~p) =
1

Zβ
H(E, ~p) exp(−(β − β0)(E − ~p · ~E)) , (5.1)

where β0 = 1/(kBT0) with T0 being the simulation temperature, β = 1/(kBT )

with T being the desired temperature, and Zβ is a new partition function

Zβ =
∑
E, ~p

H(E, ~p) exp(−(β − β0)(E − ~p · ~E)) . (5.2)

The mean value of a quantity at the desired temperature is then found in

the usual way,

〈f(E, ~p)〉β =
∑
E, ~p

f(E, ~p)Pβ(E, ~p) . (5.3)

This technique is only accurate if T is near T0. The sums in Equations 5.2

and 5.3 are over all of the energy and polarization bins of the histogram

H(E, ~p).

To fill a histogram as a function of energies and magnetizations of a simple

Ising model is easy. The energy and magnetization of every conceivable

microstate are known a priori, for a given lattice size. Thus, the number

of samples with each energy and each magnetization are clear. For an Ising

model, the histogram bin sizes are known exactly and correspond to the

difference in energy and magnetization for a single cell flip.

For our relaxor model, instead of calculating every possible microstate of

energy and polarization, a standard bin size is used because different lattice

configurations may have different sets of energy and polarization states. As

will be shown later, this enables us to readily combine data from multiple
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simulations. The bin size that is used here was determined by calculating

the energy and polarization differences for a single flip of the cells with the

smallest polarization. The histogram is then filled with the simulation data

according to the smallest bin sizes. Bin size effects are discussed in more

detail in Section 5.3.

5.2 Multiple Histogram Method

The single histogram method allows us to perform calculations near the

temperature used for an individual simulation. For temperatures far from the

simulation temperature the technique is not effective, because the simulation

will fail to sample microstates that may be populated at the new temperature.

One solution to this problem is to combine data for multiple simulations

over a range of temperatures. This will allow us to essentially interpolate

as if we ran simulations at any given temperature near any of the simulated

temperatures. Fewer simulations are needed to obtain results for a large range

of temperatures than running a simulation for each temperature. This also

allows us to get more precise results, even at the simulation temperatures,

and also leads to much faster computation time.

In order to combine multiple simulations into a single probability, a new

method must be applied. The multiple histogram equations proposed by
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Ferrenberg and Swendsen [57], are given by

P̃β(E, ~p) =

∑N
n=1Hn(E, ~p)g−1n exp (−βE)∑N
m=1 nmg

−1
m exp (−βmE − fm)

, (5.4)

where βm = 1/kBTm, N is the number of simulations, Hn(E, ~p) is the his-

togram of the nth simulation, nm is the total number of samples included in

the mth histogram, gn = 1 + 2τn and τn is the correlation time calculated

using the method described in Section 4.4, and fm is an estimate of the

dimensionless free energy of the mth simulation. The correlation time is in-

corporated as a weighting factor to account for the differing correlation times

of the samples for different simulations. Simulations with longer correlation

times will not contribute as much to the probability as simulations with short

correlation times, since that would effectively count the same data more than

once. The free energies serve as a correction factor due to combining data

from multiple temperatures, and are calculated self consistently using

exp (fm) = P̃βm(E, ~p) . (5.5)

Note that Equation 5.4 does not give the actual probability, but a proba-

bility distribution function that is unnormalized. To normalize the distribu-

tion function and obtain an actual probability, it is just a matter of dividing

by yet another partition function

Pβ(E, ~p) =
P̃β(E, ~p)∑
E,~p P̃β(E, ~p)

. (5.6)

Once the probabilities are determined, we are able to calculate the mean

value of a quantity using Equation 3.7 as before. Figure 5.1 compares the
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dielectric constant and specific heat for single simulations at every 10 K

and the multiple histogram method using the data from the same input

simulations.
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FIGURE 5.1: Dielectric constant and Specific Heat of BT (x = 1) on a
16 × 16 × 16 lattice using raw data and the multiple histogram method.
The simulations used for the old method are also the inputs in this multiple
histogram method. The multiple histogram method is sampled every 1K,
while the input simulations were performed every 10K.
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5.3 Histogram Bin Size

As was previously discussed, the bin size that determines the allowable

microstates for energy and polarization is not as easily defined as for the sim-

ple Ising model. The bigger the bin size, the smaller the computational cost,

since the mean value of any function of E and ~p is a sum over the available

microstates. More bins equal more microstates, and more microstates equal

more computational time. However, there is a limit to the maximum size a

bin may be before the technique loses accuracy.
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FIGURE 5.2: The dielectric constant dependence on polarization histogram
bin size. A bin size of one corresponds to the minimum possible polarization
difference of a single flipped cell.

Figures 5.2 and 5.3 are a direct analysis of the dependence of the dielectric

constant and specific heat on the bin size. The dielectric constant is the
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FIGURE 5.3: The specific heat dependence on energy histogram bin size. A
bin size of one corresponds to the minimum possible energy difference of a
single flipped cell.

variance of the polarization, and thus depends only on the bin size of the

polarizations. Similarly, the specific heat only depends on the bin size of the

energy because it is the variance of the energy. The figures show the results

using a range of bin sizes, with the smallest bin being calculated based on

the energy and polarization differences due to the flipping of a single cell.

The maximum accurate bin size for both energy and polarization seems to

be about four times the minimum bin size.
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5.4 Combining Histograms of Different Configurations

Due to the large variation of the results of specific heat and dielectric

constant for different lattice configurations as discussed in Section 4.3, it is

necessary to find a way to combine the data into a single result. Simply

taking an average of each value is not correct in this situation, because each

lattice configuration does not necessarily have the same available energy and

polarization states. The usual multiple histogram method does not allow for

combination of systems with different available microstates.

Consider the case of two systems with the same composition and lattice

size, but different lattice configurations. The two systems may be combined

into one large system with twice the volume and number of cells of each orig-

inal system. To get accurate results for this larger system we must calculate

the probabilities for the new larger system prior to obtaining the averaged

values from Equation 3.7. Instead of running the full Monte Carlo simu-

lation of the larger cell, the probability of finding each microstate may be

approximated using the probability distributions of the smaller subsystems.

In general, the probability of finding multiple configurations each with a

particular energy is the product of the individual probabilities

Ptot(E1, E2, ..., En) = P1(E1)P2(E2)× ...× PN(En) , (5.7)

where Pi(Eji) is the probability of finding system i with energy Ei. The

caveat is that each system is considered non-interacting and independent.
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To describe a system that combines multiple systems together into a

larger volume, the resulting probability should be a function of the total

energy, rather than the energy of each subsystem as in Equation 5.7. This is

accomplished by integrating over all energy microstates with an appropriate

delta function constraining the total energy

Ptot(Etot) =

∫
dE1

∫
dE2...

∫
dEnP1(Ej1)P2(Ej2)× ...

×PN(Ejn)δ(E − (E1 + E2 + ...+ En)) .

(5.8)

Considering only discrete states and including the polarization dimension as

well, the combined probability becomes

Pβ,tot (E, ~p) =
∑
E1,~p1

∑
E2,~p2

...
∑
En,~pn

Pβ,1 (E1, ~p1)Pβ,2 (E2, ~p2)× ...

×Pβ,N (EN , ~pN)× δE,(E1+E2+...+EN )×

δ~p,(~p1+~p2+...+~pN ) ,

(5.9)

where the subscript β indicates the dependence of probability on tempera-

ture.

One problem that arises when calculating the total probability this way is

that it is very computationally expensive. If each sum is order O(M), where

M is the number of energy and polarization microstates for an individual

lattice configuration, and the total probability is a combination of N lattice

configurations, the resulting probability calculation is order O(MN). Obvi-

ously, this can be a real problem for combining more than just a few lattice

configurations. A solution is needed to speed up the computational process.
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A convolution of two functions f(t) and g(t) is defined as

(f ◦ g)(t) ≡
∫ ∞
−∞

f(τ)g(t− τ)dτ . (5.10)

To quickly calculate convolutions we employ the convolution theorem, which

states that the Fourier transform of a convolution is proportional to the

product of the Fourier transforms of its parts

F [f ◦ g] = A · F [f ] · F [g] , (5.11)

where A is determined by the Fourier transform normalization convention.

Recognizing the similarity between the new total probability and a series

of convolutions allows us to take advantage of discrete Fourier transforms to

calculate the final probability:

Pβ,tot (E, ~p) = AF −1
[
F [Pβ,1 (E1, ~p1)] · F [Pβ,2 (E2, ~p2)] · ...

·F [Pβ,N (EN , ~pN)]
]
,

(5.12)

where A is a normalization constant. The value of A is unimportant, since

Pβ,tot(E, ~p) must be divided by the new total partition function

Zβ,tot =
∑
E,~p

Pβ,tot(E, ~p) . (5.13)

In order to use the Fourier transform technique, each individual prob-

ability must have the same number of microstates as the total probability.

As was previously stated, the number of microstates of the final probability

is of order O(MN). This number can be dramatically reduced by making

the bins of each individual histogram, and subsequently each polarization,
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conform to the same microstate grid. If each histogram has the same bin size

and is centered on the same values, the number of microstates of the final

polarization can be reduced to

MEtotal
=
[
ME1 +ME2 + ...+MEN

− (N − 1)
]
, (5.14)

M~ptotal =
[
M~p1 +M~p2 + ...+M~pN − (N − 1)

]
, (5.15)

M = MEtotal
×M~ptotal , (5.16)

where MEi
, M~pi are the number of energy and polarization microstates of the

ith lattice configuration respectively, and N is the number of lattice configu-

rations being combined. To calculate the total probability of Equation 5.9,

there are N convolutions required and 3N FFTs per convolution. Each

FFT is of order O(M logM), so the total probability calculation is of or-

der O(N × M logM). When combining many simulations, or even a few

simulations with many bins, this can be computationally challenging.

Once the probabilities are determined for any given microstate, the di-

electric constant and specific heat can be determined by use of the Boltzmann

mean in Equation 3.7. For a given lattice configuration, the polarization and

dielectric constant are calculated in each cartesian coordinate. Since the lat-

tice configuration is not invariant under rotations, this is essentially the same

as calculating a single component of the polarization and dielectric constant

for three separate lattice configurations. Thus, the three components of po-

larization and associated dielectric constant values must be combined into a

single result using this new convolution method.
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Pure BT has only one lattice configuration, so combining different lattice

configurations of BT with this new method is moot. Other compositions are

interesting when combined this way, and we analyze x = 0.95 and x = 0.9

here. Figures 5.4 and 5.5 show the dielectric constant for each cartesian

coordinate of the polarization, as well as the result of the combination of

each probability using the convolution method. The specific heat is not

analyzed in this way since it depends only on the energy, and the energy

microstates are independent of rotation.
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FIGURE 5.4: The dielectric constant of each cartesian coordinate of the
polarization for a single lattice configuration of x = 0.9 compared with the
combined histogram method. Each of the three values are combined using
the convolution method and the result is plotted in black.
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FIGURE 5.5: The dielectric constant of each cartesian coordinate of the
polarization for a single lattice configuration of x = 0.95 compared with the
combined histogram method. Each of the three values are combined using
the convolution method and the result is plotted in black.
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Another interesting case is the combination of different lattice configura-

tions. Figures 5.7 and 5.6 show the dielectric constant and specific heat for

five different lattice configurations and a single component of the polariza-

tion, as well as the convolved combination of each configuration. In this case,

the specific heat convolution is interesting since each lattice configuration has

different energy microstates available.
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FIGURE 5.6: The dielectric constant of a single component of the polariza-
tion for each of five different lattice configurations and the combined result
for x = 0.95.

The convolved result looks very much like a weighted average of each

other result for both the specific heat and the dielectric constant. At high
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FIGURE 5.7: The specific heat of five different lattice configurations and the
combined result for x = 0.95.
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temperatures, where the results from each lattice configuration are very sim-

ilar, the convolved results are quite smooth. At low temperatures, there is

quite a difference in the results for each lattice configuration. The convolved

results begin to smooth out compared to the results for an individual sim-

ulation, but there is still a high degree of uncertainty, and it seems that

additional lattice configurations would reduce the uncertainties.

5.5 Uncertainties

The amount of confidence we have in any computed quantity is always

of great importance, and the multiple histogram method is no exception.

In general, Monte Carlo methods have the advantage of begin able to pro-

duce strong statistical error bars. The statistical uncertainty of the multiple

histogram probability is given by

δPβ (E, ~p) =

(
N∑
n=1

Hn (E, ~p)

gn

)−1/2
Pβ (E, ~p) , (5.17)

where the sum is over all simulations, Hn(E, ~p) is the histogram of a single

simulation, and gn = 1 + 2τn is the correlation time factor [57].

The form of Equation 5.17 is similar to that of any counting experiment,

with a relative uncertainty proportional to 1/
√
N . Just as more counts reduce

the uncertainty in any normal counting experiment, more counts per bin of

each histogram will reduce the statistical error in the probabilities here. If the

relative uncertainty is high, we must obtain more Monte Carlo data to fill in
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the gaps for those microstates. The relative uncertainty should be low for the

entire range of occupied microstates in order to produce reliable results at a

given temperature. Figure 5.8 shows the relative uncertainty of Equation 5.17

using both two and three simulation temperatures. The relative uncertainty

with only two simulations has a region of high uncertainty, while adding a

third simulation reduces the uncertainty for a larger temperature range. The

uncertainty at the end points diverges as there are no occupied microstates

far from the simulated temperatures.
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FIGURE 5.8: The relative uncertainty for two different multiple histograms.
One with simulations at T=450,500K, and the other with simulations at
T=450,475,500K. The relative uncertainty with only two simulations has a
region of higher uncertainty. Adding a third simulation to the histogram
data lowers the uncertainty in the center region so the relative uncertainty
of the probability for the entire valid region is less than 2%. The end points
diverge since there is no data outside of this small energy range.

Another source of error in histogram re-weighting is due to using a finite
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number of samples in the histogram. For a great source of discussion on all

errors associated with the histogram method, see Newman and Palmer [58],

in which they discuss the finite sampling error. As long as the histograms of

every simulation temperature have sufficient overlap, the finite sample error

will be small for the entire temperature range. Figure 5.9 shows the overlap

of three histograms at different simulation temperatures. If the amount of

overlap is sufficient, the finite sample error will be small because the value

of the histogram is large. At the end points of the histogram the finite

sample error becomes large because the histogram is not filled in that region.

This becomes extremely important if the histogram contains empty bins.

According to Equation 5.17, the relative statistical uncertainty is infinite for

microstates with empty bins. To avoid this problem, we ensure that we use

only data that has a reasonably high number of samples. Thus, the statistical

error will dominate over finite sampling errors and remain finite. This may

require more simulations or longer runs.

Equation 5.17 gives the statistical error for the normal multiple histogram

method. When combining multiple lattice configurations, the uncertainty

equation must be modified in a way that is consistent with the combined

probability of Equation 5.9. To make this clear, a shorthand for the proba-

bility in Equation 5.9 is introduced as

Ptot =
∑
1

∑
2

...
∑
N

P1P2...PN , (5.18)

where the summation is over the microstates of the probabilities of the same
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FIGURE 5.9: Single and multiple energy histograms of BT. Each of the three
histograms have considerable overlap and combine to form one continuous
multiple histogram. Sufficient overlap of histograms reduces the finite sample
error.

subscript, and the delta functions are simply implied. The uncertainty in the

total probability is then given by

δP 2
tot =

∑
1

(
∂P

∂P1

δP1

)2

+

∑
2

(
∂P

∂P2

δP2

)2

+ ...+
∑
N

(
∂P

∂PN
δPN

)2

,

(5.19)

where the uncertainty for each lattice configuration δPi is calculated using

Equation 5.17. This method is valid if each probability is independent and

random. Different lattice configuration simulations are independent and ran-

dom, but different polarization directions of a single lattice configuration are

not independent. While both types of data are combined with this combined

histogram method, the uncertainty is not exact when we include multiple
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polarizations from each lattice configuration.

The derivative of Equation 5.9 with respect to a single lattice configura-

tion probability is

∂P

∂Pi
=
∑
1

...
∑
i−1

∑
i+1

...
∑
N

P1...Pi−1Pi+1...PN . (5.20)

The error in the total probability is then given by

δP 2
tot =

∑
1

[
(δP1)

2

(∑
2

∑
3

...
∑
N

P2P3...PN

)2 ]
+

∑
2

[
(δP2)

2

(∑
1

∑
3

...
∑
N

P1P3...PN

)2 ]
+ ...

+
∑
N

[
(δPN)2

(∑
1

∑
2

...
∑
N−1

P1P2...PN−1

)2 ]
.

(5.21)

While this method is accurate considering the assumption that each prob-

ability is random and independent, it is computationally challenging, even

when we take advantage of FFTs to do the convolutions. Since convolutions

are essentially three discrete Fourier transforms, each convolution scales as

that of an FFT, which is of order O(M logM), with M being the num-

ber of microstates and histogram bins. The uncertainty of the combined

probability requires N2 convolutions, thus the computational time is order

O(N2 ×M logM). As we saw when computing the polarization, many sim-

ulations or many bins creates a challenge for computing the uncertainties as

well.

Once the total uncertainty δP is found, we are able to determine the

uncertainties in the polarization magnitude, specific heat, and dielectric con-
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stant. First, consider the polarization magnitude. The uncertainty in the

mean magnitude of polarization is given by

δ〈 | ~p | 〉2 =
∑
E,~p

(
∂〈 | ~p | 〉
∂Pβ(E, ~p)

δPβ(E, ~p)

)2

. (5.22)

Taking the derivative of Equation 3.8 we obtain

δ〈 | ~p | 〉2 =
∑
E,~p

( | ~p | − 〈 | ~p | 〉)2
(
δP

Z

)2

. (5.23)

The uncertainties of the susceptibility can be determined in the same manner

as Equation 5.22,

δχ2 =
∑
E,~p

(
∂χ (~p)

∂Pβ (E, ~p)
δPβ (E, ~p)

)2

. (5.24)

By carrying out the derivative of Equation 3.13, and using the average values

in the form of Equation 3.8, we get

δχ2 =
β 2

Z2
β

∑
E,~p

[[
~p 2 − 〈~p 2〉+ 2〈~p〉 2 − 2〈~p〉 ~p

]2
(δPβ (E, ~p))2

]
, (5.25)

and similarly for the specific heat,

δc2 =
β 4

M2Z2
β

∑
E,~p

[[
E 2 − 〈E 2〉+ 2〈E〉 2 − 2〈E〉E

]
2 (δPβ (E, ~p))2

]
, (5.26)

where M is the number of cells on the lattice.
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6 RESULTS AND DISCUSSION

In this chapter, we present results of the model introduced in Chapter 3

and compare these results with the experiments of Huang and Cann [15].

All of the results produced by the model presented here are found using the

combined histogram method discussed in Section 5.4. Each combined data

set is found using simulations performed on a 16 × 16 × 16 (32) lattice at

every 5 Kelvin, each with at least 106 Monte Carlo flips per cell.

6.1 Dielectric Constant

Figures 6.1 - 6.5 show the dielectric constant for the model and experiment

for various compositions. Each of the experimental results of the dielectric

constant are shown for a range of frequencies. In general, at high tempera-

tures there is little to no frequency dependence of the experimental dielectric

constant, while at low temperature there is some frequency dependence that

grows larger as the composition decreases. The predicted dielectric constant

at low temperatures does not match experiment for any composition, due

to the frequency dependence and the fact that our model only predicts the

zero-frequency limit.

Figure 6.1 shows the dielectric constant for pure barium titanate (BT)

(x = 1). The experimental results show a clear transition near the Curie
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temperature and almost no difference between the various frequencies. The

model prediction shows very a precise curve, as the error bars are smaller

than the thickness of the line. However, the value of the curve is not as

accurate as one could hope. The predicted dielectric constant is well above

the experimental value for all temperatures. For temperatures slightly above

the critical point, the dielectric constant is almost an order of magnitude too

high, and at high temperatures the difference is around a factor of two.
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FIGURE 6.1: The dielectric constant of pure BT (x = 1) compared with
experiment. The predicted result is compared with multiple frequencies of
experimental results of Huang and Cann [15].

Below the critical point, the predicted value diverges, while the experi-
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mental value drops down significantly. This divergence can be understood by

considering that the model computes the zero frequency limit (DC) in ther-

mal equilibrium [32]. The direct analysis of the MC data shows a drop in

the dielectric constant below the critical temperature, as seen in Figure 4.3.

The direct analysis method fails to sample all accessible polarization

states at low temperatures, while the multiple histogram method combines

multiple simulations, which leads to better sampling of all available polariza-

tion states. As more states are included in the analysis through the combined

histogram method, the calculated dielectric constant will approach the true

value in the DC limit. This is roughly equivalent to the results that would

be predicted by a well-converged straight-forward MC simulation.

Physically, the direct analysis is more representative of an actual ferro-

electric at non-zero frequencies. At low temperatures, a ferroelectric is not

likely to change polarizations over short time scales. Thus, only a single

polarization state is all that is needed to determine the dielectric properties.

The combined histogram method includes many polarization states for each

temperature, and thus gives a non-physical result below the critical temper-

ature. One possible solution would be to break the symmetry of the system

by calculating the probabilities used to determine the dielectric constant in

the presence of a small applied electric field. This would force the system

to have only those polar states that are aligned with the electric field. In

practice, the symmetry breaking leads to instabilities in both the dielectric

constant and specific heat, which is likely due to poor convergence in our low
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temperature simulations.

Figures 6.2 and 6.3 show the experimental and model data for BaTiO3 -

Bi(Zn1/2Ti1/2)O3 (BT-BZT) with compositions of x = 0.95 and x = 0.9

respectively. For each of these figures, the model data was found using the

combined histogram method with the x̂, ŷ, and ẑ components of the polar-

ization for five different lattice configurations. This is roughly equivalent to

using a single component of the polarization for 15 separate lattice config-

urations. Since there are multiple configurations being considered, there is

a visibly larger uncertainty in the dielectric constant for both x = 0.95 and

x = 0.9.
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FIGURE 6.2: The dielectric constant of BT-BZT (x=0.95) compared with
experiment. The predicted result is compared with multiple frequencies of
experimental results of Huang and Cann [15].

The experimental data for x = 0.95 still shows some critical behavior at

a slightly lower temperature than pure BT. For x = 0.9, the experimental

data does not show any criticallity. Figure 6.3 clearly shows the dielectric

constant has a low temperature frequency dependence.
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FIGURE 6.3: The dielectric constant of BT-BZT (x=0.9) compared with
experiment. The predicted result is compared with multiple frequencies of
experimental results of Huang and Cann [15].

The model predicts the dielectric constant reasonably well for both x =

0.95 and x = 0.9 at high temperatures. The difference between the model

data and experimental data is now much less than a factor of two, even as the

temperature decreases. For lower temperatures the model predictions still

diverge for these compositions. The temperature at which this divergence

occurs, however, is much lower than that of pure BT.

Figures 6.4 and 6.5 show the model and experimental dielectric constant

for x = 0.8 and x = 0.7. These model results were found using the three
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polarization components of only two and three atomic configurations respec-

tively. For these lower compositions, the model dielectric constant is no

longer higher, but lower than experiment. At medium and high tempera-

tures, both theoretical values are still within a factor of two of the experi-

ment. At low temperatures, both the x = 0.8 and x = 0.7 curves have an

upward trend similar to that of the higher compositions and the DC limit.
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FIGURE 6.4: The dielectric constant of BT-BZT (x=0.8) compared with
experiment. The predicted result is compared with multiple frequencies of
experimental results of Huang and Cann [15].
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FIGURE 6.5: The dielectric constant of BT-BZT (x=0.7) compared with
experiment. The predicted result is compared with multiple frequencies of
experimental results of Huang and Cann [15].
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6.2 Curie-Weiss Law at High Temperature

As was previously discussed, the Curie temperature is the critical temper-

ature below which ferroelectric materials are spontaneously polarized. The

Curie-Weiss law (Equation 1.2) indicates an inverse relationship between

temperature and the susceptibility. Figures 6.6 - 6.8 show the inverse sus-

ceptibility as a function of temperature for various compositions. At high

temperatures, if the Curie-Weiss law is obeyed, the curve will be linear with

the x-intercept of the linear portion corresponding to the Curie temperature.

Figure 6.6 shows the inverse susceptibility for pure BT (x=1), which

displays clear linear behavior at high temperature in the experimental data.

The theoretical curve is also linear at high temperatures, but with a much

smaller slope. Since the theoretical model was fit to the Curie temperature of

BT using the Binder cumulant method, the linear portion of the model data

might be expected to intercept the x-axis at the correct Curie temperature.

Unfortunately, due to finite size effects, this is not the case. The dashed lines

show a linear approximation to the high temperature portion of each curve.

The x-intercept of the experimental curve is at approximately 397K, while

the theoretical value is approximately 408K. Both values of the x-intercept

are above the experimental Curie temperature of 393K.

Figure 6.7 shows the inverse susceptibility for x = 0.95. The experimental

curves are essentially linear above the critical temperature. The theoretical

curve is slightly nonlinear, even at high temperatures. The slopes of the
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FIGURE 6.6: The inverse susceptibility of pure BT (x=1) compared with
experiment. The predicted result is compared with multiple frequencies of
experimental results of Huang and Cann [15]. The dashed lines show an
approximate linear trend of the high temperature data, which is comparable
to the Curie-Weiss law.
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FIGURE 6.7: The inverse susceptibility of BT-BZT (x=0.95) compared with
experiment. The predicted result is compared with multiple frequencies of
experimental results of Huang and Cann [15]. The dashed lines show an
approximate linear trend of the high temperature data, which is comparable
to the Curie-Weiss law.
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approximately linear region at high temperature for experiment and theory

are approximately the same, but the x-intercept differs by about 20K.

For a composition of x = 0.9, the inverse susceptibility curve has no linear

region as shown in Figure 6.8. This deviation from the linear Curie-Weiss law

is expected for relaxor ferroelectrics, as was discussed in Section 1.6.1. Thus,

it can said that this composition does behave as a relaxor. Compositions

below x = 0.9 are qualitatively similar to this.
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FIGURE 6.8: The inverse susceptibility of BT-BZT (x=0.9) compared with
experiment. The predicted result is compared with multiple frequencies of
experimental results of Huang and Cann [15].There does not appear to be
a linear trend at high temperatures, and thus a deviation from the linear
Curie-Weiss law.
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6.3 Polarization Magnitude

The simplest indicator of ferroelectric behavior is the magnitude of the

polarization as a function of temperature. Above the Curie temperature

for a true ferroelectric the net polarization should be zero, and below the

critical point there should be a spontaneous polarization. This can be seen

in Figure 6.9, where the magnitude of the polarization density is shown for

various compositions. Due to finite-size effects, we do not expect the mean

polarization ever to vanish, but instead to approach some small value.
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FIGURE 6.9: The magnitude of the polarization density for various compo-
sitions as a function of temperature. For x = 1, there is a clear transition at
the Curie temperature. For x < 1, there is no ferroelectric state as indicated
by the absence of a spontaneous polarization.
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By observing the magnitude of the polarization of the solid solutions, it

is clear that true ferroelectric behavior is not present for x ≤ 0.95. Referring

back to Section 4.5, the solid solutions appear to have polar nano-regions

in random orientations, and disorder that keeps the entire system from uni-

formly polarizing.

6.4 Specific heat

Figure 6.10 shows the predicted specific heat for various compositions, but

there are no experimental results currently available for the specific heat of

the solid solution BT-BZT. There have, however, been studies of the specific

heat of pure BT near its critical point. Experimentally, there is a discon-

tinuity directly at the critical temperature, with a nearly constant specific

heat both above and below the critical point, where each phase has a differ-

ent value of specific heat [59]. The predicted specific heat has a peak near

the Curie temperature which is consistent with experiment, and above the

critical point the specific heat is nearly constant. Below the critical value

the predicted specific heat decays as temperature decreases, which does not

agree with experiment. The disagreement is due to finite size effects, and

in the limit of infinite lattice size the model result should approach a delta

function peak at the critical point.
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FIGURE 6.10: The specific heat as a function of temperature for multiple
compositions. There is a clear phase transition as indicated by the sharp
peak for the x = 1 case. There are no peaks for x < 1, and thus no apparent
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6.5 Non-Zero External Electric Field

So far our discussion and analysis has only included effects from the near-

est neighbor interaction term in the Hamiltonian in Equation 3.1. For fer-

roelectric materials it helps to understand the behavior of the material in

the presence of an external electric field. To include the second term in the

Hamiltonian in our analysis, we only need to modify our probability (Eq. 5.4)

to include this new term in the energy:

Pβ, ~E(E, ~p) =

∑N
n=1Hn(E, ~p)g−1n exp

(
−β
(
E − ~p · ~E

))
∑N

m=1 nmg
−1
m exp (−βmE − fm)

. (6.1)

Note that the energy in the denominator does not include the electric

field term, because all simulations were done with zero electric field applied.

The beauty of the histogram method is that as long as the polarization and

energy microstates exist in the histogram, then the probability of finding the

system with that microstate can be found. The energy in the denominator

of Equation 6.1 corresponds to the Hamiltonian used in each simulation.

This is made clear since it is this energy that is multiplied by βm, which

corresponds to the simulation temperatures. Since the value of β in the

numerator corresponds to the desired temperature, the desired electric field

term also makes an appearance. Thus, using the histogram method it is

possible to use data simulated at zero applied E-field to get a probability at

a non-zero E-field.

Figure 6.11 shows the polarization density in the direction of the field as
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a function of electric field for both the model and experimental data of pure

BT at room temperature. The obvious difference between the model and

experiment is that the model is completely polarized in the direction of the

applied field, even for small fields. Since pure BT is ferroelectric at room

temperature, the large polarization is expected, even in the absence of an

applied electric field.

-20

-15

-10

-5

 0

 5

 10

 15

 20

-40 -30 -20 -10  0  10  20  30  40

P
o

la
ri
z
a

ti
o

n
 D

e
n

s
it
y
( 

µ
 C

/c
m

2
 )

Efield ( kV/cm )

Experiment
Model

FIGURE 6.11: Polarization vs electric field for pure BT (x = 1) compared
with experiment at room temperature. The model data is fully saturated in
the presence of very small fields, since BT is only in the ferroelectric state
and fully polarized at room temperature. Experimental data provided by
Huang and Cann [15].

The magnitude differs from the experimental values at low fields because
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the Monte Carlo model predicts a DC value, which corresponds to the infinite

time limit of an applied DC field. This leads to the drawback that we are

unable to predict the hysteretic behavior shown by experiment. The slope

of the polarization versus electric field curve is the susceptibility in the limit

of small electric fields. The discontinuity of the predicted curve shows an

infinite slope for small fields. This corresponds with the divergence of the

dielectric constant below the Curie temperature of BT in Figure 6.1. In the

limit of high field, the experiment and model agree quite nicely. This is

due to the fact that high field strengths force the system into a single bulk

polarization state that is equivalent to the equilibrium state for the model.

Figures 6.12 - 6.15 show the polarization density vs electric field with

compositions of 0.95, 0.9, 0.8, and 0.7, for both experiment and model data.

As was previously stated, and may be more obvious here, the model fails to

predict hysteresis, since there can only be one true equilibrium state in the

presence of an electric field.

One feature that occurs for all x < 1, is that the maximum polarization

of the model is much lower than the maximum for the experiment. This is

most likely due to the lack of available microstates with high polarizations in

the model. Since the input simulations are all performed with zero applied

electric field, the high polarization states most likely have not been sampled.

This is clear by observing the low polarization value of the solid solutions

in Figure 6.9. If the solid solutions had high polarization states available as

input to the histogram method, the maximum polarization of the ~P vs ~E
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FIGURE 6.12: Polarization vs electric field for BT-BZT (x = 0.95) compared
with experiment at room temperature. The polarization of the model is
saturated at a much lower value than the experimental data of Huang and
Cann [15]. This effect is due to the fact that large polarization states have
not been sampled for this composition, which is apparent in Figure 6.9.
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FIGURE 6.13: Polarization vs electric field for BT-BZT (x = 0.90) compared
with experiment (x = 0.92) at room temperature. The polarization of the
model is saturated at a much lower value than the experimental data of
Huang and Cann [15]. This effect is due to the fact that large polarization
states have not been sampled for this composition, which is apparent in
Figure 6.9. In the range of small electric field, the slope is in a very good
agreement with experimental data.
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graphs would better match the experimental values, which suggests that we

would benefit from performing additional MC simulations with an applied

finite electric field. Even so, the combined multiple histogram method helps

us by reducing the number of such simulations required. For BT this issue

did not arise because the high polarizations were sampled, since the low

temperature states with zero field are identical to states with a large electric

field applied.

For all of the solid solution polarization versus electric field graphs there

is a finite slope at small applied field, while the slope of the x = 1 graph

is infinite. The linear behavior of this slope at small applied fields indi-

cates that the materials with lower composition are linear dielectrics, and

the value of the slope and the dielectric constant show that they are in fact

high permittivity linear dielectrics.
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FIGURE 6.14: Polarization vs electric field for BT-BZT (x = 0.8) compared
with experiment at room temperature. The polarization of the model is
saturated at a much lower value than the experimental data of Huang and
Cann [15]. This effect is due to the fact that large polarization states have
not been sampled for this composition, which is apparent in Figure 6.9. In
the range of small electric field, the slope is in a very good agreement with
experimental data.
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FIGURE 6.15: Polarization vs electric field for BT-BZT (x = 0.7) compared
with experiment at room temperature. The polarization of the model is
saturated at a much lower value than the experimental data of Huang and
Cann [15]. This effect is due to the fact that large polarization states have
not been sampled for this composition, which is apparent in Figure 6.9. In
the range of small electric field, the slope is in a very good agreement with
experimental data.
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7 CONCLUSIONS

Using only ab initio methods and the experimental Curie temperature

of BaTiO3 (BT), we developed a model to predict the dielectric properties

of BaTiO3 - Bi(Zn1/2Ti1/2)O3 (BT-BZT) in solid solution. This material

behaves as a relaxor ferroelectric for some compositions as shown experi-

mentally [15] and through our own predictions.

We first use Density Functional Theory (DFT) to calculate the ground

state energies of small 2×2×2 cubic supercells of the BT-BZT solid solution.

This is a slight challenge, since there are many atomic configurations of the

solid solution supercells. We then use the Modern Theory of Polarization

(MTP) to determine the available polarization states of each supercell. DFT

and MTP alone are unable to effectively model relaxors due to the importance

of long range disorder.

In order to model the long-range disorder effects of relaxors we introduce

a Monte Carlo lattice Ising-like model, where the cells on the lattice are the

supercells used in the DFT calculations with polarization states determined

by MTP. Our model differs from Ising, Potts, and Heisenberg models in that

each cell has a finite number of polarization states that are of differing magni-

tude and orientation, and not every cell on the lattice has the same available

states. The interaction energy coupling constant needed for this Ising-like

model was determined by fitting to the experimental Curie temperature of
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BT.

To analyze the Monte Carlo data we use the multiple histogram method

to combine data from simulations of a single lattice configuration at multiple

temperatures. However, to combine simulations of multiple lattice configura-

tions we had to develop a modified version of the multiple histogram method.

Using this new analysis tool, we combine Monte Carlo data from multiple

simulations and temperatures to obtain the most statistically accurate data

possible.

The new model and analysis method allow us to predict a dielectric con-

stant that has reasonable agreement with experiment, especially at high tem-

peratures. The manner in which the predicted dielectric constant as a func-

tion of temperature changes with respect to the composition is consistent

with that of experiment. We also predict the behavior of the polarization of

BT-BZT in the presence of an applied external electric field, with reasonable

agreement in the range of small electric fields.

Future work could incorporate long-range effects of strain, by includ-

ing non-cubic cells. This may give better results at lower temperatures. It

would also be interesting to run simulations of lower compositions with ap-

plied electric fields to try and sample high-polarization states. The resulting

polarization versus electric field plots should be more accurate in the pres-

ence of high electric fields. Finally, this type of model should be used to

study other relaxor materials. BT-BZT has not been studied experimentally

as extensively as many lead based solid solutions, and this model may give
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more insights when applied to other relaxors.
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