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Chapter 1 – Introduction

The prediction of substrate noise coupling effects in Systems-on-a-Chip (SoC) is

becoming an increasingly important issue. As larger numbers of circuits are in-

tegrated on the same substrate, the differences between ideal simulations and the

actual performance of the silicon can become pronounced. If coupling issues are

discovered and addressed in simulation, appropriate and adequate steps can then

be taken to reduce or isolate the noise.

This thesis describes methods and considerations for the simulation of substrate

noise. This chapter examines the background and previous work on which this

thesis is based. Chapter 2 describes the setup of the simulation tests. An improved

method for modeling digital circuitry for substrate noise simulation is presented in

Chapter 3. Results for the simulation tests are presented in Chapter 4. Chapter

5 analyzes different aspects of substrate noise simulation. Finally, conclusions and

future work are described in Chapter 6.

1.1 Background

As IC technologies continue to scale down, high power consumption in traditional

CMOS digital logic makes the exploration of alternative implementations more

appealing. One such alternative is asynchronous digital logic, such as NULL Con-
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vention Logic (NCL) [1]. This logic presents advantages in power consumption,

synchronous switching, and subsequently, substrate noise [2]. It is, therefore, im-

portant to simulate the substrate noise generation from these alternative imple-

mentations.

The simulation of substrate noise is most accurate with complete knowledge

of how the circuits will be laid out in silicon. Post-layout information provides

a substrate network which is complete. By incorporating this substrate network

with a full transistor and parasitic description of the circuitry, the substrate noise

simulations can be accurately matched with measurements. Several tools are avail-

able to facilitate post-layout simulation, including the Cadence tool SNA [3] and

Silencer! [4].

In contrast, pre-layout simulation is of particular interest for designers. Earlier

discovery of substrate noise issues allows for adjustments not only at the layout

level, but also at the schematic level. A methodology is presented which facilitates

pre-layout substrate noise simulations. With a Hardware Description Language

(HDL) netlist of the digital block, the digital block’s substrate noise behavior is

simulated using the characterization information generated from a standard cell

library. Along with a schematic level netlist of the analog block, substrate noise is

estimated without final layout information.

Similar methodologies for substrate noise prediction have been presented in

[5, 6, 7, 8]. However, none of these have addressed the simulation of noise in asyn-

chronous circuits. The method presented in this thesis accounts for key issues that

are critical for predicting the noise generated in asynchronous circuits. Specifi-
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cally, the effect of the delay modeling and state information in asynchronous logic

is examined. An advanced delay model and an approach that accounts for the

internal states of a sequential gate have been developed. These form the basis for

an efficient and accurate approach for simulation of substrate noise.

1.2 Previous Work

The method for modeling the substrate noise behavior of digital blocks, or digital

macro-models (DMM), presented in this thesis is based upon previous work [9, 10].

The basic concept behind these models is to simplify the simulation by deriving

a model for the digital logic which retains the correct substrate noise injection

characteristics. By simulating the digital logic with a HDL, the correct switching

behavior of the logic is preserved. This is an idealized simulation which gives no

substrate noise information. A mapping of the switching of a digital gate to the

amount of current through the ports of the gate allows calculation of the substrate

noise. The simulation is now a two step process, the simulation of the HDL for

switching and the simulation of the current sources along with the sensitive circuits.

The advantage of the two step process is the efficiency and speed increase over

the equivalent single simulation at the transistor level. Much of the digital gate

information preserved by a full transistor level simulation is not needed in substrate

noise simulations.

The DMM presented in [10] requires two library characterization steps. Stan-

dard cell libraries for digital gates need to be characterized for the simulation of
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Out

Vdd

Vss Vss BulkBulk

Vdd

In

Figure 1.1: Model previously used to represent the digital gates.

substrate noise through this method. The first characterization determines the

gate’s local substrate network. The second characterization determines the cur-

rent waveforms used when mapping switching information to the equivalent gate

model for the final substrate noise simulation.

The gate model of an inverter for the DMM presented in [10] is shown in Fig. 1.1.

In this model, the non-linear transistors are replaced with current sources. The

sources model the current passing through the gate ports to the supply lines. The

gate model has no input or output ports. The digital signal information passed

between gates is represented only by the changes in the current sources.

1.3 Test Chips

Two test chips (Losco and Eris) were fabricated in TSMC’s 0.25µm logic process.

The test chips have clocked Boolean logic (CBL) and NCL versions of digital logic

circuitry implemented on each. This section describes the circuits and implemen-

tations on the test chips. The lab setup and measurements are presented in more
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PRNGs

SA

Figure 1.2: Die photo for the Losco test chip.

detail in [11].

1.3.1 Losco Test Chip

The die photo for the Losco test chip is shown in Fig. 1.2. The pseudo-random

number generators (PRNGs) are the digital circuitry implemented on this chip

in both CBL and NCL versions. There are 72 PRNGs, 36 CBL and 36 NCL,

interdigitated in the region indicated in Fig. 1.2. The PRNG block is a combination

of an adder, multiplier, and register. When correctly seeded the PRNG generates

a pseudo-random number sequence. The sequence repeats every 256 cycles, and

generates a digital word representing numbers between 0 and 255.

A sense amplifier was implemented on the Losco test chip in the region labeled
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‘SA’ in Fig. 1.2. This circuit is approximately 200µm from the closest edge of the

PRNGs. The sense amplifier is a differential low gain, wide bandwidth amplifier,

which has one input capacitively coupled to a dedicated ‘quiet ground’ pin, and

another input capacitively coupled to the substrate [12, 13]. The amplifier is

designed to drive 50 Ω loads through ground-signal-ground (GSG) probes placed

directly on the die.

The CBL PRNGs are clocked at the equivalent operating frequency of the

NCL PRNGs. The equivalent operating frequency is defined as the rate the CBL

circuitry must be clocked to complete the same functions as the NCL over the

same time period. After testing, this was found to be approximately 50MHz for

the PRNGs.

Each version of PRNGs is tested at separate times for comparisons between

the CBL and NCL logic. The printed circuit board (PCB) used to test the chip

has jumpers for disconnecting any unused pins, so all pins not used in a particular

test are left floating. The signal generator used for the CBL clock has rise and fall

times of 1.5ns. All circuits were supplied with on-PCB regulation of 2.5V except

the buffers which required 3.3V.

1.3.2 Eris Test Chip

The die photo for the Eris test chip is shown in Fig. 1.3. An 8051 microprocessor

was designed with two separate cores in the region indicated. One core was de-

signed using CBL, and the other core with NCL. Both 8051 cores share the RAM,
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CBL

8051 Microprocessor

NCL

SA

RAM

Figure 1.3: Die photo for Eris test chip.

IO buffers, and wrapper logic. The wrapper logic is a collection of digital gates

used to connect and control the signals between the different sections of the micro-

processor. The cores can operate separately for characterization of their substrate

noise generation. The shared RAM is loaded with a program which generates a

random number sequence in an effort to create random substrate noise with limited

program memory.

The same sense amplifier implemented on the Losco test chip, is also imple-

mented on the Eris test chip in the region labeled ‘SA’ in Fig. 1.3. This circuit is

approximately 1mm from the 8051 microprocessor cores.

As done in the PRNG setup, the CBL core is clocked at the equivalent operating

speed of the NCL core. This equivalent frequency was determined to be 33MHz

for the 8051 microprocessor. It may be confusing to note that this frequency is no
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longer the same as the PRNG blocks, while the technology and logic libraries are

exactly the same. However, the NCL and CBL are not directly comparable. The

number of gates and configurations are synthesized differently. For this reason,

different configurations of digital logic offer slower or faster equivalent operating

speeds.
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Chapter 2 – Simulation Setup

Substrate noise is a deterministic noise source. The transitioning of digital gates

injects noise into the substrate at levels much higher than random noise. For this

reason, substrate noise can be accurately predicted in a transient simulation. This

chapter describes the setup of the transient simulations presented in this thesis.

The setup of the circuit blocks is described in the first section. The second section

presents the parasitic modeling used in simulations. The final section examines

the substrate and its modeling in simulations.

2.1 Circuit Blocks

Transistor level simulations are the most accurate method for transient simulation.

Transistors, however, are non-linear devices, and require significant computational

time to converge to a solution. Although the full transistor level simulation is ac-

curate, there is a significant trade off in terms of simulation time and convergence

issues. Replacing transistor level descriptions of digital blocks with an equiva-

lent DMM reduces both the number of instances and nodes in a substrate noise

simulation. However, only digital blocks composed of gates from a standard cell

library can be replaced by an equivalent DMM. This section presents a top level

description of the circuit blocks used in the simulations.
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VDD2

VDD3

CBL
PRNGs

NCL
PRNGs

VSS3

Sense
Amplifier

VDD4

VSS4

Buffers

VDD1

VSS1

VSS2

RST

CLK

RST

- DMM / Transistor Level

- Transistor Level Only

Figure 2.1: Block diagram showing the circuit setup for the simulation of the
PRNG blocks.

2.1.1 Pseudo-Random Number Generators

A block diagram of the circuit setup for the PRNG simulations is shown in Fig. 2.1.

The IO buffers and sense amplifier are simulated as transistor level blocks. Al-

though the IO buffers are digital blocks, they are not composed of gates from a

standard cell library, and cannot be replaced with an equivalent DMM. The CBL

and NCL PRNG blocks have both transistor level and equivalent DMM versions.

Simulation of the transistor level PRNG blocks is performed for comparison with

the measurements. The DMM versions are simulated and compared with the tran-

sistor level versions for validation of the DMM methodology.

The connections in the circuit setup are identical to those in the test chip. The

supply lines for each circuit block have separate pins for VDD and VSS. The clock
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and reset lines are connected through the IO buffers to the PRNG circuits. The

DMM versions of the PRNGs have the clock and resets aligned correctly with the

outputs of the IO buffers. This alignment is required for correct timing of substrate

noise injections from the different circuit blocks.

2.1.2 8051 Microprocessors

A block diagram of the circuit setup for the 8051 microprocessor simulations is

shown in Fig. 2.2. The sense amplifier is simulated as a transistor level block. The

DMM method was used on three separate blocks in the 8051: the NCL core, the

CBL core, and the wrapper logic. Each block described as an equivalent DMM is

characterized twice, once for the running of the NCL core, once for the running of

the CBL core. Although one core is turned off during operation of the other, the

equivalent gate parasitics are required for accurate simulation. The IO buffers and

RAM blocks are not implemented with discrete gates and must be simulated at

the transistor level. Simulation of the complete microprocessor at the transistor

level is not possible due to convergence issues of such a large circuit. The circuit

setup is simulated and compared with measurements.

Since the RAM is described at the transistor level, it must have the correct

stimulus and initial conditions to operate correctly. An adjusted version of the

DMM is used to find the input switching voltages to the RAM (described more

in Appendix A). This facilitates the simulation of the RAM without simulating

the rest of the microprocessor at the transistor level. The initial conditions for the



12

VSS1

VDD1

Wrapper
Logic

Shared
RAM

- DMM

- Transistor Level

Buffers

VDD1

NCL
Core

CBL
Core

VDD1

VSS1

VSS1

VDD1

VSS1

Sense
Amplifier

VDD2

VSS2

VDD1

VSS1

Figure 2.2: Block diagram showing the circuit setup for the simulation of the 8051
microprocessor cores.

RAM are found by a separate simulation. By simulating the RAM block alone,

and with a simpler transistor model, the program memory is loaded. The final

conditions for this simulation are used as the initial conditions for the RAM in all

8051 microprocessor simulations.

The p-tap connections of other circuits on the Eris test chip have their ground

pins always connected, and must be modeled for the 8051 microprocessor simula-

tions. Two large digital signal processing (DSP) blocks, a delta-sigma modulator

(DSM), and the buffers for the DSPs all have low resistance paths from the single

node backplane out through their ground pins. All of these connections to the

substrate network are included in the simulations.
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Figure 2.3: Model used to represent the parasitics of the package.

2.2 Parasitics

The modeling of off-chip parasitics is critical for the simulation of substrate noise.

These off-chip parasitics include bond wires, packaging, socket, and PCB. All the

simulations in this thesis pay careful attention to accurately modeling these para-

sitics.

The bond wires are modeled with the approximation that a gold bond wire of

1 mil diameter has 1 nH/mm of inductance and 50 mΩ/mm of resistance. The

length of the bond wires are determined for each setup, and used in simulation.

The package is modeled based on the manufacturer’s data. The package for

the 8051 microprocessors (Eris) is a Kyocera ceramic PGA132. The package for

the PRNG circuits (Losco) is a Kyocera ceramic PGA257. However, there is no

available manufacturer’s characterization for the PGA257. The next closest size

was the PGA132 package, so an extrapolation of the parasitics is used. The package

model given on the data sheet is shown in Fig. 2.3. The ground in the model is

assumed to be an ideal ground for the simulations.

The socket and PCB parasitics are the most difficult to model for simulation.
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Figure 2.4: Approximated 3-layer profile for the TSMC 0.25µm heavily doped
substrate.

There are not many socket models readily available, and PCB parasitics require

the use of more complicated physical modeling to extract a SPICE/Spectre model.

For the test cases presented in this thesis, large decoupling capacitors are placed

very close to the chip on the PCB. Large ground planes make it possible to assume

ideal supply and ground at these decoupling capactors. An inductor in series with a

resistor is therefore used as a simple model for the socket and PCB trace. By using

the method described in [14], both values are determined and used in simulation.

2.3 Substrate Modeling

Heavily doped substrates with a high resistivity epitaxial layer are commonly used

to avoid latch-up issues in SoCs. The profile for the TSMC 0.25µm logic process (a

heavily doped process) was approximated as the 3 layer profile shown in Fig. 2.4.

In this substrate, the bottom layer has a much lower resistivity and is considered

to be single node for the entire chip [15].
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Figure 2.5: Model used to represent the substrate.

Using this single node approximation, the digital and analog block’s substrate

networks are extracted separately. As long as the blocks have adequate separation

(4 times the epitaxial layer and channel stop layer thicknesses [15]), the cross-

coupling can be assumed to be negligible compared to the coupling through the

single backplane node.

For frequencies below 1GHz, the substrate network is modeled as a resistive

network [16]. Since the PMOS transistors are isolated in n-wells, their substrate

noise coupling is significantly reduced and, consequently, their connections to the

substrate need not be modeled very accurately. A capacitor in series with a resis-

tor from the power supply to the backplane is used. The NMOS transistors are

connected to a π-model substrate network as shown in Fig. 2.5. Both the p-taps

and the transistor bulk terminals are shown.

The resistive substrate network can be extracted using finite difference [16, 17]

or boundary element methods [18, 19]. The extractions for this thesis have used

EPIC, a Green’s function based boundary element solver [20].



16

Extracted Netlists

Substrate Networks

Delay
Information

Transition
Waveforms

Equivalent
Parasitics

ModelSim

Concatenation
Program

Final Spectre Simulation
Analog Netlist

Package/PCB
Parasitics

Top Level HDL

PWL Files

Gate
Transition
Info

Substrate Noise Effects

HDL of
Gates

Layout of
Gates

1

2

3

Figure 3.1: Flow chart showing all the steps in the digital macro-modeling (DMM)
method.

Chapter 3 – Digital Macro-Model (DMM)

The improved DMM method presented in this thesis is described with the flow

chart shown in Fig. 3.1. The flow is divided into three distinct parts. The first

part is the characterization. The second is the digital noise current generation.

The third part is the substrate noise simulation. All parts are described in this

chapter, with the digital noise current generation and substrate noise simulation

both being incorporated in the simulation flow section.
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3.1 Characterization

Before the creation of a DMM for a digital block, the standard cell library used

must be characterized. The standard cell library implemented in a specific tech-

nology is characterized gate by gate. Both a transistor and HDL netlist of each

gate in the library is required for characterization.

There are four types of characterization for each gate. These are displayed,

along with the extraction of netlists (described briefly in the transition waveforms

section), as Part 1 in Fig. 3.1. The following subsections will describe the different

characterizations. More specific details on coding and how the characterizations

are done is described in Appendix A.

3.1.1 Substrate Networks

The substrate network for the complete digital block is a combination of locally

derived gate substrate networks. The local substrate networks for each gate are

π-networks representing the resistances between the bulk contact (active region)

of the transistor, the p-tap contacts, and the single-node approximated backplane.

As in the previous method [10], all bulk regions are approximated as a single node,

and an equivalently sized contact is created.

The contact information for each gate is found from the layout information in

the Cadence environment (Contact Lister, see Appendix B). EPIC simulations for

each gate are run to find the resistive substrate network. A text file containing

the resistor network of each gate in the library is saved and used in the simulation
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flow, described in Section 3.2.

Combining the local substrate networks into a complete substrate network is

a valid approximation for several reasons. Since the substrate is a heavily doped

substrate, the cross coupling resistances become negligible, compared to the cou-

pling to the single node backplane, for distances larger than 4 times the thickness

of the epitaxial and channel stop layers [15]. For the profile used, this equates to

distances of approximately 16µm. This means only directly adjacent gates will be

close enough to be significant. The circuit level connections of the contacts also

play a role. The p-tap contacts are all connected together to the digital on-chip

ground, making the cross coupling between these contacts of adjacent cells negli-

gible. The other type of contacts, the bulk contacts, are positioned close enough

to the p-taps to provide a low coupling resistance. The cross coupling to other

contacts outside of the gate will be negligible compared to this low resistance.

3.1.2 Equivalent Parasitics

One of the characteristics of the digital gates which must be preserved in the DMM

representation is the equivalent parasitics between the supplies (Vdd and Vss). The

equivalent parasitics are formed by a combination of routing capacitances, chan-

nel resistances, and junction capacitances. Many digital macro modeling methods

presented by other sources appear to neglect these important parameters as well

[5, 6, 9, 10]. One reason for this may be that these parasitics do not affect sub-

strate noise simulations in smaller digital circuits. Another reason may be that
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Figure 3.2: The parasitics of a simple inverter.

decoupling capacitances added on-chip can be much larger than some digital cir-

cuit’s equivalent parasitics. However, as the size of a digital circuit increases,

these parasitics become important for an accurate estimation of supply ringing,

and subsequently, substrate noise.

To determine the type of equivalent model that should be used, an examina-

tion of a simple inverter’s parasitics will first be conducted. Neglecting any routing

capacitances, an inverter’s parasitics are shown in Fig. 3.2. In this figure, the resis-

tance through the substrate is assumed to be zero, making the source and bulk the

same node for each transistor. The gate-to-bulk and gate-to-source capacitances

are combined under this assumption.

By assuming an input voltage to the inverter, the parasitics can be simplified

further. The input to the gate is tied low through a previous logic gate’s NMOS
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Figure 3.3: Equivalent parasitics of an inverter when the input is held low and the
overlap capacitances are ignored.

transistor, and the output is tied to the Cgs of the next logic gate’s NMOS tran-

sistor. The equivalent parasitics are now represented by Fig. 3.3. The overlap

capacitance is assumed to be negligible in this figure. The NMOS transistor of

this gate is replaced by an open circuit since it is in cutoff. The PMOS transistor

is replaced with an equivalent resistor since it is in deep triode. From this figure it

can be seen that a dominant pole between the rails is formed by 1
Rdsn Cgs

. Another

similar sized pole between the rails is formed by 1
Rdsp (Cdb+Cgs)

. As this analysis

is expanded to larger gates, the problem becomes much more complex. However,

the dominant pole or poles will continue to come from the deep triode resistance

which holds the output of a gate to either supply, and the capacitances from that

output to the opposite supply.

The preceding analysis justifies the characterization of each gate’s equivalent
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parasitics as a resistor in series with a capacitor between the supply lines. The

values of these equivalent parasitics vary depending on the digital state of the

gate being modeled. Each gate is characterized for all input combinations and

internal states. The parasitics are characterized after settling, with no input or

output transitioning occurring. The parasitic information is stored and used in the

simulation flow (described in Section 3.2) to construct a complete set of equivalent

rail parasitics.

3.1.3 Delay Information

The correct delay information is important in making sure the gate level simula-

tion’s timing, and subsequently, the substrate noise waveforms are equivalent to

the noise generated in a transistor level simulation. For clocked logic, all combina-

tional logic following the flip-flops needs to be triggered at the correct time after

a clock edge. For clockless logic this becomes an even larger issue, since any small

error in delay can cause differences not only locally for a proceeding gate, but

globally and cumulatively, since the logic is never re-synchronized with a clock.

For these reasons each cell must be correctly characterized to generate a Stan-

dard Delay Format (SDF) file that is back annotated during the gate level simu-

lation. The gate level delays are then combined to form a global delay file. One

assumption made with this method is that the majority of the delays for the overall

digital block will come from the switching of the gates themselves. The delays for

the switching of the gates are usually orders of magnitude larger than the delays
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added from interconnects between gates. A global SDF file is used in the DMM

method presented in [10]. This file is not always available or accurate for a specific

process.

Multiple SDF files are generated for each gate from an extracted netlist. The

delays for different paths through a gate can depend heavily on the number of

other gates connected to each output. Therefore, the gates are simulated multiple

times and a set of SDF files are created which can be selected when simulating

a specific configuration. The gates are loaded with an average-sized gate, since

specific loading would require either a pre-known configuration or unacceptable

amounts of simulation and storage.

The delays through a gate vary due to internal effects, not just external effects

like output loading. The delay from an input to an output can be affected by the

value of other inputs or the internal state of the gate. These delay paths are called

conditional delays. The best SDF file is one which not only characterizes all delay

paths, but also all conditional delays of each of these paths. The characterization

first produces this type of SDF file.

Even with the best SDF file, the delay information must be correctly repre-

sented in the gate’s HDL level model. If the HDL models do not have conditional

delay paths described in them, the information in the SDF file will not be used in

the simulation. The back annotation will only adjust the delay paths, not add new

ones. Some HDL gate models contain conditional delays which may be simplified

from several specific conditional delays. To account for all of the preceding issues,

the complete SDF file must be tailored to correctly match the delays provided in



23

the HDL model. This adjusted SDF file is saved for later use in the simulation.

The delays are timed from the switching voltage of an input to the switching

voltage of an output. The switching voltage can be a difficult parameter to de-

termine. If the switching voltage is defined as the point when the output equals

the input, then the switching voltage from high-to-low and low-to-high is equal.

However, this voltage can change based on the input and output branches and the

sizing of the transistors. Finding when an input switches is based only on the gate

being characterized. Determining when an output switches is based on the switch-

ing of the connected gate(s). Therefore, the switching voltage is not recorded as

a gate by gate specification, but determined as an average switching voltage for a

particular gate library.

3.1.4 Transition Waveforms

Perhaps the most important characterization is that of the transition waveforms.

When a given gate input transitions, there is a combination of switching and

capacitively injected current through the terminals of the gate. This current is

recorded and later used along with the switching information to form piece-wise

linear (PWL) current sources which represent the active components of the gate

in a substrate noise simulation.

A gate is defined as having an internal state if it’s outputs are dependent on

the current inputs as well as previous inputs. The DMM presented in [10] did

not account for the internal states of gates. For circuits where the only gates
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Figure 3.4: Supply current of a flip-flop for a given input pattern when the output
(a) changes state, and (b) remains the same.

with internal states are a small number of flip-flops, and most of the logic is

combinational, this is an acceptable approximation. However, in logic circuits

where many of the blocks have multiple internal states, the differences in injected

substrate noise from different states is too significant to ignore. For NCL, multiple

states exist for most of the logic gates to enable the passing of NULL and DATA

values.

To demonstrate the concept of internal states changing transition waveforms,

a simple flip-flop is considered. The simulated supply current is compared for the

same input transitions, but with different cell states. The current waveforms are

shown in Fig. 3.4. The waveform in Fig. 3.4(a) shows a larger supply current

waveform when the inputs and previous state cause a change in the output state.

The waveform in Fig. 3.4(b) shows the supply current when the inputs and previous

state cause no change in the output state.
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Figure 3.5: Internal logic branches switching when a D-type flip-flop does not
change states.

The differences in the two waveforms are due to the multiple logic branches in

the flip-flop. It can be observed from Figs. 3.4(a) and (b) that the peak current

flow is the same at approximately 1.4ns. This initial current peak is due to logic

branches switching in response to the incoming clock. The following current peaks

found in Fig. 3.4(a) but absent from Figs. 3.4(b) are caused by the output and

other internal branches switching as the flip-flop changes states.

In order to visually show the internal branches switching, a combinational logic

implementation of a D-type flip-flop is examined. Fig. 3.5 shows the implemen-

tation of a D-type flip-flop with its internal state remaining the same after input

switching events. The logic levels of each node are shown, and the internal gates,

or branches, which switch are shadowed. Fig. 3.6 shows the implementation of a

D-type flip-flop with its internal state changing after input switching events. The

logic levels and internal branches switching are shown. In this example, the differ-

ences in transition waveforms are caused by the output logic branches switching

when the internal state changes.
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Figure 3.6: Internal logic branches switching when a D-type flip-flop changes states.

Since the internal state can change the transition waveforms, each gate is char-

acterized not only for all possible input switching conditions, but for all possible

input switching with different initial states. All of this switching information is

stored in files and used in the simulation flow (described in Section 3.2).

Internal states for gates must be clearly defined in this methodology. To keep

track of this information, a state map of each gate is created during character-

ization. The state map defines the internal state that the gate is in, based on

its current outputs, and previous input values. The majority of internal states

are defined only by the outputs. The previous input values are used in situations

where the output values are identical for different internal states. The state map

also helps to signal when the gate has entered an undefined state. There are some

situations where the gate simulation may generate output or previous input values

which do not describe any characterized state of the gate. In these cases, the state

map adds some error checking to the simulation flow.

The waveforms are saved in constant time increments, with a fixed time length

set in the characterization script. This time length must be long enough for all
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gates in the library to settle. The length of all gate waveforms must be the same

after the characterization. During the simulation flow, the lengths are truncated

to the minimum allowable for a particular energy loss, as described in [21]. Per-

forming the truncation later allows for different energy losses to be selected for

different simulations, without having to re-characterize the standard cell library.

It also alleviates the need to save the length of each truncated waveform. The

disadvantages are larger file sizes from the excess data and a slight addition to the

simulation flow time because of the truncation.

The time increments with which the waveforms are saved can also be adjusted.

This change of resolution increases the file size, but also increases the accuracy of

the simulation. The effect of increased file size is actually two-fold. Increasing the

transition waveform files is only the first part. If the resolution is increased, then

over the same simulation time, the final PWL files describing the gate’s switching

noise will be proportionally increased. If the length of these PWL files are too long,

and the number of gates too large, Spectre may run out of memory when trying

to load them. The increased resolution allows for the saving of higher frequency

noise which will not be seen in simulations with a lower resolution. This resolution

should be adjusted depending on the frequency range of interest in the substrate

noise simulation. For the simulations in this thesis, a 100ps time step gave adequate

resolution while allowing for reasonable file sizes.

The gates are all simulated with netlists extracted from layout information.

The extraction also includes interconnect coupling capacitances for more accuracy.

The bulks of all NMOS transistors are disconnected and added together as another
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pin for the gate. This allows for the saving of the current waveforms through the

Vdd, Vss, and bulk connections.

It is important to transition the inputs of the gate correctly. A PWL source is

used to model the rising or falling waveforms. The exact waveform exciting the gate

will depend on the previous gate, and that gate’s output load. It is not reasonable

to characterize and store this level of detail for all gate configurations. For this

reason, the gates in the standard cell library are each simulated, and an averaged

output transition waveform is developed that is used for all input transitions.

3.2 Simulation Flow

After the standard cell library characterization is complete, the DMM simulation

of any digital block utilizing that library can be performed. This simulation flow

is seen in Fig. 3.1, indicated by 2 and 3. These two parts will be described in the

following subsection. For more specific information on coding of these parts refer

to Appendix A.

3.2.1 Digital Noise Current Generation

The digital noise current generation is the process used to create the DMM of a

specific digital block for use in the substrate noise simulation. The digital block

is analyzed, and individual gate information combined to form the top level sub-

strate network and the global SDF file. The delay information is used in an HDL
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simulation to determine the gate transitions. The input transitions for each gate

are saved during the simulation. For cells which have multiple states, the outputs

are also saved when there are input transitions.

One issue confronted during the HDL simulation is matching the gate tran-

sitions with the transition waveforms. The delay characterization, as described

previously, is timed in reference to switching voltages of the gates. Therefore, the

transitions occurring in the gate level simulation are ideal changes that happen

when the gate input/output would pass the switching voltage. However, the tran-

sition waveforms do not begin when the switching voltage is crossed, but as soon

as the input begins to change. To account for this difference, an offset is be sub-

tracted from the gate transition times. This time is a constant for each standard

cell library characterization, based on the input switching waveforms and when

they pass the determined switching voltage.

The input transitions, output values, and current waveform information is then

used in a concatenation program. This program selects the correct current wave-

form to use at the designated input switching times, and concatenates them to-

gether for each gate. If the gate has multiple states, it also uses the output infor-

mation and the state map of that gate to determine the current waveforms.

The output of the digital substrate noise generation is a set of PWL data that

is stored in files. These files describe the current waveforms generated by the gates

in the block. By linking these files through PWL current sources, the switching

currents of the transistor level digital blocks are correctly modeled.
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3.2.2 Substrate Noise Simulation

The final substrate noise simulation is performed after the digital noise current

generation has been completed. This simulation incorporates the models for the

digital gates with the rest of the substrate noise setup. The simulation is performed

in the Cadence environment with Spectre. For specific coding and details on the

digital model placement script, refer to Appendix B.

Part of the DMM for the digital block is the substrate network. The substrate

network created in the digital noise current generation is added into the schematic

view with the correct connections.

The equivalent parasitics are also added into the schematic view as part of the

digital gate model. The gate transition information of each gate is needed. The

input transition information (along with any output information for gates with

internal states) is used to determine the equivalent parasitics at different times

throughout the simulation. The equivalent parasitics for each gate are averaged

over time and placed as constant values.

After the final addition of the PWL current sources, the simulation generates

the correct amount of substrate coupling from the modeled digital block to the

sensitive circuits modeled at the transistor level. The circuits substrate networks

are connected together in the simulation through the common backplane node.
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Chapter 4 – Simulation Results

The simulation results from the setups described in Chapter 2 are presented in this

chapter. The PRNG simulations are shown for verification between measurement,

transistor level simulation, and the improved DMM method. The 8051 micro-

processor simulations are presented to verify the use of the DMM in a large and

complex circuit which is not easily simulated at the transistor level.

4.1 Pseudo-Random Number Generators

The results for the PRNG test setups are presented in this section. The transistor

level simulation subsection compares measurements and transistor level simula-

tions of the PRNGs. This comparison verifies the complete setup of the substrate

noise simulation. The digital macro-model subsection compares the transistor level

simulation results with simulation results where the PRNGs are replaced with

equivalent DMM blocks. This comparison verifies the improved DMM presented

in this thesis. Each comparison is performed for the CBL and NCL versions of the

PRNGs.
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4.1.1 Transistor Level Simulation

The measurements and transistor level simulation results for the CBL PRNGs are

shown in Fig. 4.1. The shape of the noise waveforms in simulation are similar to the

shape displayed by the measurements. There are two noteable differences between

the measurements and the simulations. The first is the difference in waveform

shown by the circled region. The second is the size of the voltage peak, pointed to

by the arrows. Both of these differences are believed to be connected. There are

two local peaks in the circled region of Fig. 4.1(a). The earlier local peak seems to

be missing from the circled region of Fig. 4.1(b). This peak is still in Fig. 4.1(b),

however it has shifted to the left. The superposition of this peak and the voltage

peak coming just before the circled region have formed a single voltage peak which

is lower and wider in the simulations. This timing issue is coming from an inability

to model the loaded clock generator perfectly in simulation.

The measurement and simulated data are both processed using a fast Fourier

transform (FFT) in Matlab. The results of each in the frequency domain are shown

in Fig. 4.2. The spectra are similar, with a noise floor peaking around 100 MHz due

to package ringing (circled regions). The clock’s fundamental frequency and tones

are similar, with some higher frequency tones being higher in the measurements.

The measurements and transistor level simulation results for the NCL PRNGs

are shown in Fig. 4.3. Both waveforms start out at similar peak voltage values.

The measurements shown in Fig. 4.3(a) have more separation between the pri-

mary and secondary voltage peaks (circled regions). This difference comes from
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Figure 4.1: Comparison of time domain (a) measurements, and (b) simulations for
the CBL PRNGs.
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Figure 4.2: Comparison of frequency domain (a) measurements, and (b) simula-
tions for the CBL PRNGs.



34

(b)(a)

0 50 100

-100

0

100

200

300

400

Time (nsec)

A
m

p
lit

u
d

e 
(m

V
)

0 50 100

-100

0

100

200

300

400

Time (nsec)

A
m

p
lit

u
d

e 
(m

V
)

Figure 4.3: Comparison of time domain (a) measurements, and (b) simulations for
the NCL PRNGs.

differences in the NCL gates’ delays in simulation and measurement. The switch-

ing events between gates are occurring faster in the simulation (possibly due to

missing parasitics) and are causing the substrate noise injections to happen closer

together. Further evidence of this delay difference is noted in the rate at which

the voltage peaks occur. Over the same time period, there are nine voltage peaks

in the measurement, compared to 10 voltage peaks in the simulation.

An expanded time scale comparison of measurements and transistor level sim-

ulation results for the NCL PRNGs is shown in Fig. 4.4. This figure shows another

difference between the measurements and simulations. The measurement voltage

peaks decay down significantly, while the simulation peaks stay at approximately

the same level. The repetitive placement of the PRNG blocks is responsible for

this behavior in measurements. The NCL PRNG blocks have no global clock, and

only the reset signal keeps them synchronized. When the reset signal first occurs,
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Figure 4.4: Expanded time scale comparison of (a) measurements, and (b) simu-
lations for the NCL PRNGs.

all blocks are injecting noise with the same pattern. However, each block is not

identical. Mismatch between the NCL PRNGs cause the blocks to run at different

equivalent operating speeds. As time progresses, each block runs at a similar but

slightly different frequency, resulting in less addition of switching current peaks.

In simulation there is no variation in the NCL PRNG blocks, so the current peaks,

and subsequently substrate noise peaks, always add.

To demonstrate this concept, test simulations are performed. A simulation

setup with 5 NCL PRNG blocks is constructed using simple supply parasitics and

substrate networks. Fig. 4.5 compares two simulations of this setup. In Fig. 4.5(a)

the voltage on the backplane node is shown when the Vth of the transistors is

held constant. In Fig. 4.5(b) the voltage on the backplane node is shown when the

Vth is varied for each NCL PRNG block. The varied Vth simulation results show

similar voltage peaks to those in the constant Vth simulation initially. However,
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Figure 4.5: Comparison of a test setup with the NCL PRNGs with (a) constant
Vth, and (b) varied Vth.

the peaks quickly degrade as the NCL PRNG blocks fall out of synchronization

with each other in the varied Vth simulation.

Again, FFTs of the measurement and simulated data are performed in Matlab.

The results of each in the frequency domain are shown in Fig. 4.6. As would

be expected from the measurement results, there are significant differences in the

FFTs. Both FFTs do however display peaks close to the equivalent operating

speed of 50 MHz (shown as circled regions) and it’s harmonics. The magnitude of

the peaks in the FFT of the simulation results is at higher levels as expected from

the time domain results.
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Figure 4.6: Comparison of frequency domain (a) measurements, and (b) simula-
tions for the NCL PRNGs.

4.1.2 Digital Macro-Model

The transistor level and DMM simulation results for the CBL PRNGs are shown

in Fig. 4.7. The voltage peaks are slightly higher in the DMM simulations than

in the transistor level simulations. The noise shapes and timing compare closely

between the simulations.

The transistor level and DMM simulation results for the NCL PRNGs are shown

in Fig. 4.8. The DMM simulation’s first voltage peak is similar in magnitude to

that of the transistor level simulation’s first voltage peak. All other voltage peaks

are slightly lower in magnitude in the DMM simulation. The difference comes from

the delay modeling in the DMM simulations. The NCL block’s have no conditional

delay paths defined in their HDL descriptions. The generalized delay paths cause

the switching activity peaks to occur closer together in the gate level simulation.
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Figure 4.7: Comparison of time domain (a) transistor level simulations, and (b)
DMM simulations for the CBL PRNGs.

The difference in the time separation of the voltage peaks is shown by the circled

regions in Fig. 4.8. Further evidence of this difference in delay modeling is seen by

the rate at which the voltage peaks occur. Over the same time period, the DMM

simulation shows 6 sets of the same double peaked waveform, the transistor level

simulation shows only 5.

4.2 8051 Microprocessor

The results for the 8051 microprocessor test setups are presented in this section.

The equivalent DMM simulations of the PRNGs show good agreement with tran-

sistor level simulations. As a larger and more complex simulation, the 8051 micro-

processor will verify the improved DMM methodology for a more realistic circuit

implementation. Comparisons between the measurements and DMM simulations
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Figure 4.8: Comparison of time domain (a) transistor level simulations, and (b)
DMM simulations for the NCL PRNGs.

are presented for both the CBL and NCL cores.

The measured and simulated results for the CBL core are shown in Fig. 4.9.

Good agreement between simulations and measurements is seen. The simulations

have similar noise waveforms as those seen in measurements. The peak-to-peak

values in the simulation are similar but slightly higher for some sections of the

waveform than the measurements.

The measured and simulated results for the NCL core are shown in Fig. 4.10.

Again, the simulations are in good agreement with the measurements. The noise

waveforms and peak-to-peak voltages are similar. The measurements for the NCL

core were taken without averaging. Since the transition times can vary significantly

over long time intervals with clockless logic, any averaging would corrupt the noise

measurements by averaging misaligned voltage peaks. However, without averaging,

noise from the measurement setup cannot be removed. This noise is evident in the
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Figure 4.9: Comparison of time domain (a) measurements, and (b) DMM simula-
tions for the CBL 8051 microprocessor core.
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Figure 4.10: Comparison of time domain (a) measurements, and (b) DMM simu-
lations for the NCL 8051 microprocessor core.

measurement results of the NCL core.
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Chapter 5 – Critical Aspects of Substrate Noise Simulation

Substrate noise simulations can be very difficult to setup. There are many different

parasitics and non-idealities that may have to be included in a simulation for

matching with measurements. In this chapter, various aspects of accurate substrate

noise simulations will be addressed. The CBL PRNG simulations in Chapter 4 are

used as a baseline. By adjusting a single parameter at a time, the effects on the

overall accuracy can be carefully examined.

5.1 On-Chip Buffers

The core digital blocks may not be the only circuits injecting noise into the sub-

strate. Clock and data lines are often buffered before coming on-chip or going

off-chip. These IO buffers can be very large digital circuits with substantial cur-

rent switching. In a substrate noise simulation, the inclusion of the noise from

these circuits is very important.

On-chip buffers were used in the CBL PRNG test setup to buffer the clock and

reset lines coming from the PCB. To analyze the effect of the substrate noise gen-

erated by these buffers, the CBL PRNG simulation is performed without including

the substrate network for the buffers. A comparison in the time domain between

the CBL PRNG transistor level simulations is shown in Figs. 5.1(a) with and (b)
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Figure 5.1: Comparison between (a) the complete simulation of the CBL PRNGs,
and (b) the same simulation with the IO buffers’ substrate network removed.

without the substrate noise from the IO buffers included.

The results without the IO buffers’ substrate network in Fig. 5.1(b) show two

significant differences from the complete simulation of Fig. 5.1(a). The first dif-

ference is the missing smaller peak, shown by the circled regions. The second is

the larger secondary peak, pointed to by the arrows. Since the IO buffers’ sub-

strate noise is directly proportional to the incoming clock, this example shows the

significance of modeling the incoming clock and IO buffers in substrate noise sim-

ulations. It also supports the earlier claim that differences between measurement

and complete CBL PRNG simulations are due to the clock waveform.
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Figure 5.2: Comparison between (a) the complete simulation of the CBL PRNGs,
and (b) the same simulation with coupling capacitances between interconnects
removed.

5.2 Capacitance Between Interconnects

One of the most common parasitic extractions is the extraction of capacitive cou-

pling between different interconnect layers. Parasitic interconnect capacitances can

have significant effects on simulation results. To analyze how much this type of

parasitic capacitance changes substrate noise simulations, the CBL PRNG simu-

lation is performed again without the capacitance extracted between interconnect

layers. A comparison in the time domain between the the CBL PRNG transistor

level simulations is shown in Figs. 5.2(a) with and (b) without the interconnect

coupling capacitances.

The noise waveform of the simulation without parasitic interconnect capaci-

tances, Fig. 5.2(b), has one significant difference from the complete simulation in

Fig. 5.2(a). The noise shape is changed within the circled regions of Fig. 5.2. The
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voltage peaks are slightly sharper in Fig. 5.2(b), but remain at similar levels as

the voltage peaks in Fig. 5.2(a). This example shows the capacitance between

interconnects affects substrate noise simulations, but only to a limited extend for

this test setup and this clock frequency.

5.3 Capacitance to Substrate

Parasitic capacitors are also present between the interconnect layers and the sub-

strate. This coupling can be much weaker, but can add up cumulatively for very

large areas. Structures such as bond pads, and large low level metal traces can

add up not only in area capacitance, but also in fringing capacitance, to form a

path for high frequency noise injection in the substrate.

For the CBL PRNG simulations, the bond pads and probe pads were the only

structures large enough to form any significant capacitance to the substrate. To

analyze the effects of modeling these structures, a simulation of the CBL PRNGs

is performed again without the extraction of the bond pad and probe pad coupling

to substrate. Fig. 5.3 shows a comparison in the time domain between the CBL

PRNG simulations with and without the pad coupling capacitances.

The results show similar waveforms for both comparison cases. The substrate

noise in this setup is neither coupling through, or being dampened by, the bond

and probe pad capacitances. Substrate noise injected by other sources is much

larger for this test setup and clock frequency.
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Figure 5.3: Comparison between (a) the complete simulation of the CBL PRNGs,
and (b) the same simulation with the pad capacitances to substrate removed.

5.4 High Frequency Substrate Model

As described in Section 2.3, the p-type substrate is modeled as a purely resistive

network. This network is found from the use of a particular version of EPIC.

By using a different version of EPIC, a higher frequency substrate model can be

obtained. For frequencies up to 5GHz, the substrate can be modeled with the

structure shown in Fig. 5.4 [22]. The permittivity of the substrate is required for

calculating this model. The permittivity of silicon is given as:

εSi = ε0 εr = 1.0359× 10−10F/m (5.1)

To test the effects of using the higher frequency substrate model on simula-

tions, the CBL PRNG simulation is repeated with the substrate network replaced

with the higher frequency model. The results of the CBL PRNG transistor level
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Figure 5.4: The substrate π-network incorporating higher frequency effects.

simulation with the purely resistive network and with the high frequency network

are shown in Fig. 5.5.

The results show no noticeable difference with the use of the higher frequency

substrate model. For this test setup and clock frequency, the use of a purely

resistive substrate model is both sufficient and accurate.



47

(b)(a)

0 50 100

-400

-200

0

200

400

Time (nsec)

A
m

p
lit

u
d

e 
(m

V
)

0 50 100

-400

-200

0

200

400

Time (nsec)

A
m

p
lit

u
d

e 
(m

V
)

Figure 5.5: Comparison between (a) the complete simulation of the CBL PRNGs,
and (b) the same simulation with the high frequency substrate model.
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Chapter 6 – Conclusions

The substrate noise simulation methods presented in this thesis have many advan-

tages. This chapter summarizes the advantages and accomplishments of this work.

Then a discussion of some lessons learned is presented. Finally, issues and future

work with the methods presented are described.

6.1 Summary

In this thesis, the setup of substrate noise simulations is discussed. Several test

setups are presented which modeled microchips fabricated in TSMC’s 0.25µm logic

process. The test setups contained both clocked and unclocked digital logic circuits.

A method for modeling the digital block in a substrate noise simulation is

presented. This method is presented not only as a way to overcome some of

the issues with a full transistor level simulation, but also as a way to perform

pre-layout substrate noise simulations. The method is described in three steps:

characterization, digital noise current generation, and substrate noise simulation.

The characterization step only needs to be completed once per gate library. The

digital current generation needs to be performed once per digital block setup. The

final substrate noise simulation is then performed with an equivalent digital model

which runs faster and more efficiently in the simulator.
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Table 6.1: Execution time of different substrate noise simulations.

Transistor Level DMM
CBL PRNG 33h, 52m 14h, 57m
NCL PRNG 49h, 21m 11h, 3m

8051 CBL Core - 702h, 13m
8051 NCL Core - 531h, 2m

Table 6.1 shows the execution times of the substrate noise simulations presented

in chapter 4 of this thesis. The PRNG simulations show a definitive advantage in

execution time with the use of the DMM method. The NCL PRNG simulations

show an increase in simulation speed by over 4 times. The CBL PRNG simula-

tions show an increase in simulation speed by over 2 times. The CBL PRNG’s

DMM simulations are slowed significantly by the need to simulate the switching

clock buffers at the transistor level. All PRNG circuits are run for 1µs transient

simulations.

The 8051 microprocessor will not simulate at the transistor level due to con-

vergence issues for such a large circuit. The DMMs for the 8051 microprocessor

circuits are run for 15µs transient simulations.

The digital macro modeling method presented in this thesis is not only able

to simulate large static CMOS blocks, but is general and applicable to different

types of digital logic, such as asynchronous NCL. In fact, this is the first method

to address noise generation from asynchronous blocks. Validations with measured

results demonstrate the accuracy and efficacy of the method.
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6.2 Lessons Learned

External parasitics are important for an accurate prediction of substrate noise.

The off-chip parasitics are often more important than the on-chip parasitics. The

package, bond wires, and PCB parasitics may all include large inductances and

capacitances. The series inductances will increase the magnitude of the supply

bounce seen on-chip when switching events occur. These inductances, along with

parasitic and decoupling capacitances, will also influence the ringing on the supplies

after a switching event. All of this activity on the supply lines will couple through

the NMOS or PMOS taps to the substrate, and form the majority of the substrate

noise. The one exception to off-chip parasitics having more influence on simulation

results than on-chip parasitics is the on-chip trace resistances. If critical lines are

not made sufficiently wide, but are considerably long, the on-chip series resistance

can easily grow larger than any off-chip resistances.

The exact test setup has to be accurately modeled. The input sources used in

the lab drastically change the substrate noise waveforms. Knowing which equip-

ment and connections were used, or are going to be used, for a particular substrate

noise measurement is essential in getting simulations that match. Many of the

manuals for the different test equipment have sections describing the properties

of the signals they generate, or the equivalent models that should be used when

they are connected. It is important to decide which models and characteristics are

critical, and which are unnecessary at the frequencies of interest in the simulation.

Ground connections of other on-chip circuits make a significant difference in
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substrate noise. The simulation of the 8051 microprocessor cores produces un-

matched results when the other substrate connections on the die are not modeled.

In substrate noise simulations it is a common mistake to include only the circuits

of interest in a setup. However, when there are multiple circuits on the same die,

and their pins are connected, these can provide pathes for noise to exit the sub-

strate. Noise currents injected into the substrate can use these alternative paths

to couple off-chip instead of coupling to the sensitive analog nodes. This will man-

ifest as different peaks and ringing frequencies in the simulation than those seen

in measurements.

An exact match of clockless circuits in simulation is difficult. There are many

modeling parameters in simulation that can not be perfectly matched with actual

silicon. Random noise or variations in process, voltage, and temperature can cause

differences from simulation. One benefit of simulating clocked circuits is the ability

of the clock to ‘re-align’ simulated and measured waveforms. With clockless logic,

even small differences in modeling can lead to larger variations over long periods

of time through accumulation. This is particularly demonstrated in the differences

between the test simulations for the NCL PRNGs, shown in Fig. 4.5.

6.3 Future Work

The parasitic extractions used in this thesis were done with the help of modified

Diva extraction rules. These rules are relatively simple to modify. However, they

are no longer supported by Cadence or commonly used in industry. To make future
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substrate noise simulation setups more up to date and applicable to industry use,

the extraction should be done with a more commonly used tool. Assura is the

currently supported parasitic extraction method from Cadence. This would be

a logical choice for developing adjusted extraction rules to be used for substrate

noise simulation. The rules for Assura are very similar to the rules for Diva, so

the method of adjustment may be the same. The exact adjustments made to the

Diva rules are explained in more depth in Appendix B. These adjustment were

done manually to the rules as well, but a method for automatically adjusting the

rules would be very convenient for easy setup with new processes.

When using Silencer!, the first step is to locate the substrate contacts. This is

either done manually, by the user, or with the use of Silencer!’s built in contact

location function. However, the location of substrate contacts is not trivial. With

large layouts, a function is needed in order to automate the drawing of each contact.

Layouts are also done in a large variety of ways, making the structures defined as

substrate contacts sometimes oddly shaped. A tool called the Contact Locator

has been written in Skill code to help in the location of substrate contacts (see

Appendix B). The tool helps the user by allowing flexible specifications for the

contact finding algorithms, but does not find all contacts automatically. There is

a need for future work in developing algorithms that will automatically adjust the

contact finding functions based on the layout. These adjustments should then be

added into Silencer!’s built in contact location function.

The present DMM flow is a two simulation process. The first simulation is

done at the gate level to generate the digital switching patterns. The second
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simulation is the use of the equivalent DMM model in a transistor level simulation

of the substrate noise sensitive circuitry. Each of these simulations is currently

done with different tools. The gate level simulation is done with Modelsim. The

transistor level simulation is done with Spectre in the Cadence environment. The

integration of the gate level simulation to the Cadence environment would be useful

in creating a seamless substrate noise simulation tool. There are some advantages

to having the DMM flow done with two separate simulations. If concerned with

the effects of one constant digital block on different or changing analog blocks,

the first simulation needs to be done only once, and the second simulation is then

repeated. However, if this type of iterative simulation process is not needed, it

is better to integrate the two simulations as one mixed-signal simulation. Future

work could include the automated creation of mixed-signal models for the digital

logic gates.

There are several issues in the present DMMs which should be addressed in any

continuation of this work. The loading of digital gates affects not only the delays of

the propagating digital signals, but also the shape of the noise being injected into

the substrate. Unfortunately, this substantially complicates the estimation of the

substrate noise waveforms generated by each digital gate. With the current version

of the DMM, the digital blocks have a simple load and the waveforms generated

by that load are used for every instance of that gate, no matter what the actual

load is. The most accurate method would be to record the switching transition

waveforms not only for every combination of inputs and internal states, but also

for every combination of output loads. However, the number of possible loading
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combinations becomes very large with multiple outputs and large fan outs. As an

example, one of the largest digital blocks characterized is a Theseus Logic block

called THFAX0. This block has 6 inputs, 4 outputs, and 9 internal states. With

the current method for finding switching waveforms, this leads to 36,864 different

combinations. If the load must now be varied, this number of combinations must be

recorded for each variation. With 4 outputs for which the loads can be varied, even

a small number of maximum fan outs will lead to unacceptable costs in memory

and characterization time. Future work could determine a way to account for the

changes in the substrate waveforms due to loading without the use of brute force

characterization.

The equivalent parasitics of the digital gates is another issue with the present

DMM flow which should be addressed in any future work. The parasitic model

incorporates a simple resistor in series with a capacitor between the rails. The

values for these are found through simulation of each digital gate at different steady

states. When the switching information for a large digital block is determined, the

equivalent parasitics are calculated as an average of the steady state parasitics for

the gate. A time varying model for the changing resistance and capacitance would

allow for more accurate parasitics between the supply rails at specific times.

At present, the DMM flow combines the substrate networks generated locally

for each gate to form the complete substrate network for the digital block being

tested. One problem with this, however, is that the p-tap contact for each indi-

vidual gate (shown in Fig. 6.1), will overlap with the p-tap contacts from adjacent

gates in the layout, as illustrated in Fig. 6.2. This creates differences between the
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Bulk Contact

P-tap Contact

Figure 6.1: Substrate contacts defined for a single gate.

actual substrate network of the overall digital block and the substrate network

formed by the combination of the gates’ local substrate networks. The combi-

nation network overestimates both the perimeter and area of the p-tap contacts,

which leads to lower resistances to backplane for the on-chip digital ground node.

Future work should include a method to account for this problem, and combine

the local substrate networks in a way which yields a complete network equivalent

to post-layout substrate extraction of the digital block.

Finally, the simulation benefits of using the DMM can be significantly improved

with a modification to the PWL files created by the digital noise current generation

step. The PWL files are currently a concatenation of the transition waveforms for

each gate. The transition waveforms are formed with data at set time steps. The

time steps allow for ease in the concatenation, but cause Spectre to evaluate at

each time point when the PWL file is used in simulation. If the PWL files were

modified after creation to allow for varying time steps, but retain an equivalent

noise current shape, the simulation speed benefits of the DMM could be increased

even more.
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Figure 6.2: Example of defined substrate contacts for individual gates overlapping
in the layout.
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Appendix A – Using the DMM Method

This appendix describes in more detail the actual coding and implementation of the

digital macro-modeling method. This version of the DMM is an adjusted version

of the previous DMM presented by Martin Held here at Oregon State University.

The code was adjusted significantly from the previous version, with more error

checking and gate characterization added.

In this appendix, an overview of the file structure and flow is presented. A

hierarchical description of how the DMM is organized is shown, describing where

files are located. A functional description is then presented, describing the DMM

more from an execution standpoint. The characterization part of the DMM is

described in one section, and the digital current generation in another. After this,

the steps for creating a new setup are described. Finally, an example of adjusting

the flow (specifically the digital current generation) is shown. The DMM can also

be used to help model the stimulus to digital blocks instead of the current through

them. This section will describe the setup which was used to generate voltage

source inputs for simulating the 8051 ram at the transistor level.

Disclaimer: I have tried very hard to make this code as bug free as possible,

however I have only had a certain number of cases with which to test it. When

setting up anything new with the code, always double check a simple case and be

wary of bugs. There is always the possibility that some bug which was not obvious
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Figure A.1: The folder system for the DMM as a tree graph.

in the setups I checked could cause serious problems for a new setup.

A.1 File System

The file system for the DMM is shown as a tree structure in Fig. A.1. For sim-

plicity only the folders are shown in this figure. All of the files in the DMM use

relative paths to allow correct functionality when the complete structure is copied

or moved to a new location. All files are also correctly setup to run on either

Sun or Linux operating systems. The files used in the DMM are found in the top

level digital macro model folder. The next level of folders in this top level folder

contain the files needed for characterization, digital noise current generation, and

the storing of temporary data.

The characterization folder contains all of the scripts and files needed to do
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the characterization of the digital libraries. There are five sub folders within this

folder:

• gen para - This folder contains the scripts needed in order to characterize

the equivalent parasitics of each gate.

• gen sdf - This folder contains not only the scripts for generating the SDF

files for each gate, but scripts for determining the switching voltages of each

gate.

• gen substrate - This folder contains the scripts needed for the generation of

the local substrate networks of each gate.

• gen trans - This folder contains the scripts needed to characterize the tran-

sition waveforms of each gate.

• tsmc models - This folder contains the basic model information used in all

current DMM setups. This folder also has three sub folders:

– netlists : This folder contains the extracted netlists of all gates.

– state info: This folder contains the state maps and initial conditions for

the gates which have multiple internal logic states.

– transistors : This folder contains the different process and run specific

transistor models to be accessed during characterization.

The dig current gen folder contains most of the scripts and files needed to run

the digital noise current generation part of the DMM. During the digital noise



64

current generation, files from the characterization steps will be accessed and used

accordingly. There are seven sub folders inside of the dig current gen folder, as

well as the setup run files and temporary run information files. The seven folders

are:

• compile scripts - This folder contains the scripts used to correctly compile

all the needed blocks for a particular setup.

• do files - This folder contains all the do files needed when simulating different

setups in Modelsim.

• hdl - This folder contains the hardware description language files for all

digital blocks and test benches. This folder also contains one sub folder:

– conversion: This folder contains scripts to convert HDL code from Ver-

ilog to VHDL.

• h files - This folder is used to temporarily store all the transition waveforms

of the digital block currently being modeled.

• pattern files - This folder contains files for the pattern generator used to load

and run the 8051 microprocessor in the lab. The convert2force.cal script

converts these pattern files to do files for simulating the 8051 microprocessor

in Modelsim.

• scripts - This folder contains the various scripts which are used to perform

the digital current generation.
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• sdf - This folder contains the sdf files used in the digital current generation.

The sdf for the digital block currently being modeled is saved here as de-

lay file.sdf. In some DMM setups there are digital blocks used which are not

being modeled, but must have correct delay information for the gate level

simulation. The sdf files for these blocks are also stored in this folder.

Temp folders is actually representative of several folders in the file structure.

For each digital current generation setup, a new folder must be created to contain

all of the output information. All of this output information is re-created and

written over each time the digital current generation is run. The raw PWL files

are all stored in the dat files sub folder.

A.2 Characterization

The characterization is run as a series of independent scripts. The scripts are run

separately for flexibility reasons. There are cases where you may need to run some

sets of scripts multiple times, but not all of them. The characterization scripts are

divided into the five following subsections.

A.2.1 Model Information

The model information for the digital libraries is stored in the tsmc models folder.

It is stored in three sub folders: netlists, state info, and transistors. A header file

containing a summary of the gate information is stored in this folder as well, called
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lib cell header.lib. The format for this file is one gate per line. Each line contains

the name of the gate first. The ID number is arbitrarily assigned and listed as the

second value on the line. The number of internal logic states follows next. The

last two values are the number of outputs and the number of inputs to the gate.

Whenever a gate is added to the library, it should be added correctly into this

header file.

The netlists folder contains all of the extracted netlists of the gates. The final

netlists are labeled as GATENAME.cell.scs. The labels are changed to pins in the

layout before extraction. The extraction is performed with parasitic capacitances

added. The current extracted netlists were generated with the Diva extraction rules

provided by TSMC for the 0.25µm RF process. Even though the logic process

was used in the simulations in this thesis, the extraction rules are very similar

between the two. The version of the RF rules that Oregon State University has is

also newer than the logic process rules. The extraction from Cadence is saved as

GATENAME.cell. This file is then trimmed down to a sub-circuit definition, and

then saved as the GATENAME.cell.scs by the script convert netlists.pl. The script

also separates out the NMOS bulks from VSS and attaches them to an added pin

called BULK. This script checks the entire folder for .cell files which don’t have an

equivalent .cell.scs file, so the entire folder can be converted at once, or individually

as new netlists are created.

The state info folder contains all the state information for gates in the library

which have multiple internal logic states. A gate must have a folder containing

it’s state information here if it is described as having two or more states in the



67

lib cell header.lib file. The state info folder contains all the sub folders for the gate

information, and a Matlab script called state map gen.m for helping to generate

state maps for gates. The state map is a file which contains one number (repre-

senting the state number) per line. Each line represents an output and previous

input combination. The purpose of the state map is to associate arbitrarily defined

states to the gate’s actual IO levels.

To demonstrate a state map, an example for a flip-flop is shown in Fig. A.2.

The state map index number for the flip-flop is composed of the current outputs

as the most significant bits, and the previous inputs as the least significant bits.

The order of the outputs and inputs is equivalent to the order in the HDL logic

libraries and extracted netlists. State 1 is defined for each index where Q is 0 and

QN is 1. State 2 is defined for each index where Q is 1 and QN is 0. Since a

flip-flop’s QN output is defined as the opposite of Q, the other output patterns are

not valid, and are defined as state 0. This adds some error checking functionality

which is used in the digital noise current generation.

What is saved in the state map file is only the State column from Fig. A.2. The

line number in the file is the index number. In this case, and in fact in all of the

gates with multiple internal logic states which have been characterized so far, the

state is distinct by the outputs, and not the previous inputs. The previous inputs

are still used to remain flexible in the future for gates which may have different

internal logic states for the same output patterns.

Before the state map gen.m script is run, a folder for the gate must already

be created. When the script is run, general information like the gate name and
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Figure A.2: Example of a state map for a simple D-type flip-flop.

its number of inputs and outputs needs to be entered. At the main menu the

state information can then be entered. When state information is added, it is

very similar to filling in the table displayed in Fig. A.2. To simplify don’t care

cases, a wild card character ‘*’ can be used. For the previous flip-flop example,

2 states would need to be added. State 1 and 2 could be added with only the

outputs defined, and the previous inputs defined as simply ‘**’. The 0 states will

be defined by default to all unspecified cases. The option to reset or plot the state

map is also available. Plotting gives a graphical representation of the states you

have filled in so far. Since the index numbers may go rather high with certain

gates, displaying the state map as text can be difficult to view. In order to save

the state map in the folder of the gate, you must quit and save from the main
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menu.

The gate sub folders in the state info folder contain both the state map for

the gate, and the initial conditions for the different states. There is presently no

automated way to determine internal logic states. The generate SDF scripts have

some checking which will determine if a gate’s HDL description has time-varying

blocks, but this will only let you know that you need to correct it, not how. Most of

the time, after determining a block needed to be characterized for different states,

the HDL description was sketched on paper. While looking at the gate description

the state information was decided on, as well as the input switching needed to get

the gate into those states. By running the generate transition waveforms scripts, all

of the switching information to a gate can be setup in a netlist. Adding a writefinal

statement to the correct switching simulation can save the final conditions in a .fc

file. This file is then named as STATE.fc and placed in the correct gate sub

folder. For example, with the previous flip-flop example, not only will there be a

state map.txt file in the gate sub folder, but also two files, 1.fc and 2.fc, which are

used as initial conditions in other characterization scripts to set the gate into the

correct internal logic state.

The last folder in the tsmc models directory is the transistors folder. This

contains the transistor model files specific to run and process. Each file is named

by the run name, and both the bsim3 NMOS and PMOS models are listed. Which

model to use is picked as a variable in the characterization script being run.
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A.2.2 Generate Substrate

The majority of the scripts used to generate the local substrate networks for each

gate are contained in the gen substrate folder. A file named subsMap.txt needs to

first be created by a Silencer! Digital function called the Contact Lister (described

in Appendix B.1.2), and then copied into this folder. This file contains the contact

geometries for each gate, and is used by the create gate subs.pl script.

The names of the gates in the subsMap.txt file are often times not the same

as the HDL descriptions. This happens since the Contact Lister will descend

to a low enough hierarchy level to find cells which have the correct p-tap and

bulk contacts it would expect of a normal gate. Many times the name of this

layout cell is different, and is contained within some higher level cell which has the

correctly matching name. The create gate subs.pl makes an attempt to correctly

adjust the name by capitalizing and shortening, but this does not always work.

Checking through the gates manually is always recommended. In the worst case,

any missing or incorrectly named gates will throw an error when the digital noise

current generation is run, and can be tracked down then.

The create gate subs.pl script loops through the subsMap.txt file, and creates

an EPIC input file for each gate. The file is composed of a header, the contact

geometries, and a footer. The header and footer are the same for all gates, and

are provided as input files to the script. The header file contains specific profile

information, which should be changed if a different process is simulated. After

the EPIC input file is created, it is run through the correct version of EPIC. In
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gate_number_1 r11 r12 r22
gate_number_2 r11 r12 r22
gate_number_3 r11 r12 r22
gate_number_4 r11 r12 r22
gate_number_5 r11 r12 r22

bc
kP
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r12

r22

r11Bulk

P-tap

Figure A.3: Representation showing the way the resistive substrate model for each
gate is saved.

order for the code to be flexible, it must be able to run on Linux or Sun. EPIC

executables compiled in each are contained within the gen substrate folder, and

will be chosen based on which system the user is currently on. The output file

from EPIC is then opened, and the resistance values are extracted and saved in

relation to the gate name. All local substrate networks are saved in an output

file at the end of the script called rmatrices.txt. The format of the rmatrices.txt

file is shown in Fig. A.3. This file needs to then be copied to the correct folder

inside of gen trans. When the digital current generation is run, the local substrate

information will be looked for one level up from where the transition waveforms

are saved.

A.2.3 Generate Transition Wavefoms

The scripts to generate and save the transition waveforms are contained in the

gen trans folder. The top level script is a Matlab script called create tran.m. The
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script displays run information in the command window as it progresses. There

are several variables set at the beginning of the script. Those variables are:

• output library - This variable is used to define the location where the output

files will be saved. The current format is ‘./CHIP NAME/RESOLUTION/’.

• cell header file - This variable points to the cell header file. The file contains

general gate information for the standard cell library. The cell header file for

all current setups is found in the tsmc models folder.

• time step - The time step that the simulator saves the transition wave-

forms in is set by this variable. The combination of this variable and the

time length variable set the number of points in the transition waveforms.

For smooth truncation in the digital noise current generation, the number of

points should be a power of 2. The units are seconds.

• time length - The length of time that the transition waveforms are recorded

for is set by this variable. The combination of this variable and the time step

variable set the number of points in the transition waveforms. For smooth

truncation in the digital noise current generation, the number of points

should be a power of 2. The units are seconds.

• output load - This variable sets the number of load gates attached to each

output when the gates are characterized. This option was not used in the

characterization of the current setups, but is available.
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• model file - This variable sets the transistor models used in the simulations.

The transistor models are found inside the tsmc models/transistors folder.

• simulator - The unix command for calling Spectre is set by this variable. The

path to version 5.10 was used previously, however the path to version 6.1 has

been used in some cases for faster simulation times. The output format must

currently be ASCII because of the Perl script used to extract the data.

• rising input - This variable sets the PWL file used as the input rising stimu-

lus in simulation. This file must be carefully formatted to start rising at the

correct time. The start time of the transition waveforms is set in the cre-

ate tran netlist.pl file, and must be set early enough to capture the complete

waveform during the input rising.

• falling input - This variable sets the PWL file used as the input falling stim-

ulus in simulation. This file must be carefully formatted to start falling at

the correct time. The start time of the transition waveforms is set in the cre-

ate tran netlist.pl file, and must be set early enough to capture the complete

waveform during the input falling.

• VDD - The value of the VDD rail is set with this variable. The units are

volts.

• VSS - The value of the VSS rail is set with this variable. The units are volts.

• cell vect - This variable is an array which determines the gates which will be

characterized. The array is made up of the the cell IDs, as defined in the
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cell header file.

The create tran.m script loops through each gate in the cell vect array, and

characterizes them. In the loop it first calls the Perl script create tran netlist.pl

to generate Spectre netlists. Several of the variables from the Matlab script are

passed down to the Perl script, as well as some new variables set specifically in cre-

ate tran netlist.pl. One of these variables is the load file. This file contains a gate

which acts as an ‘average’ output loading for this library. The create tran netlist.pl

script creates the gate specific netlist(s) needed to test the gate for all input tran-

sition and internal state possibilities. A netlist is created for each possible internal

state of the gate, and each netlist contains multiple altergroups for simulating all

input switching patterns. The netlists are saved as files named for the state number

(for example tran gen s1.scs, tran gen s2.scs, tran gen s3.scs, etc.).

The netlist(s) are then simulated, and all of the data must be extracted. By

looping through the output files, the extract power.pl script is used to extract and

save the data in a file currently called power.out. The file contains the time and

current information through the VDD, VSS, and BULK pins. This file is then

loaded and organized in Matlab.

After all of the netlist data is loaded in Matlab, it can be saved in the appro-

priate files. Three files are saved: one each for all the current waveforms through

the VDD, VSS, and BULK pins. The data in these files is saved as a large matrix,

with the rows being the time index, and the columns being the input transition

and internal state index. Fig. A.4 helps to demonstrate this organization by show-

ing the matrix for a hypothetical gate. This gate has only one input, and two



75

000000004

00.3-0.100-0.20.203

01.8-0.4000.51.202

000000001

1110010011100100

State 2State 1

Time Index

Figure A.4: The matrix format for saved transition data of a hypothetical gate
with one input and two internal states.

internal logic states. There are only four time points saved for each waveform in

this example. Each column represents a different waveform. The numbering for

the columns is the input’s initial logic level, followed by the input’s final logic level.

There are some columns which contain no waveform information for this reason,

like 00, which keeps the input constant. For simplicity the gate is characterized

sequentially, including non-input transition cases like this. If the gate has more

than one input, the order of the inputs used to form the number is based on the

order in the HDL and netlist files. The waveforms are also organized by initial

internal state, from left to right, as seen by the repeat in the input numbering.

A.2.4 Generate SDF

The scripts for generating the SDF files of gates are contained in the folder gen sdf.

The top level script is a Matlab file called create sdf.m. This script displays run
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information in the command window as it loops through and creates all of the SDF

files for the gates specified. There are several variable inputs to this file:

• output library - This variable is used for the location where the output files

will be saved. The current format is ‘./CHIP NAME/’.

• verilog file - This variable sets the first file the script should look in to find

an HDL definition of the gates. This file needs to be a Verilog description.

• verilog file2 - This variable sets the second file the script should look in to find

an HDL definition of the gates. This file needs to be a Verilog description.

• max load - The maximum number of loads connected to each output is de-

fined by this variable. The script will iteratively attach all combinations of

loads from 0 to this value on all outputs, and characterize an SDF file for

each loading.

• cell header file - This variable points to the cell header file. The file contains

general gate information for the standard cell library. The cell header file for

all current setups is found in the tsmc models folder.

• model file - This variable sets the transistor models used in the simulations.

The transistor models are found inside the tsmc models/transistors folder.

• simulator - The unix command for calling Spectre is set by this variable. The

path to version 5.10 was used previously, however the path to version 6.1 has

been used in some cases for faster simulation times. The output format must

currently be ASCII because of the Perl script used to extract the data.
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• rising input - This variable sets the PWL file used as the input rising stimulus

in simulation.

• falling input - This variable sets the PWL file used as the input falling stim-

ulus in simulation.

• units - This variable sets the units of time used in the SDF files. The de-

fault is currently 1e-12 (ps). If this value is changed, the timescale variable

should also be changed in the make sdf.pl script for the digital noise current

generation.

• VDD - The value of the VDD rail is set with this variable. The units are

volts.

• VSS - The value of the VSS rail is set with this variable. The units are volts.

• Vsw - This variable sets the value used to define IO switching. The path

delays in a gate are timed from an input crossing this threshold, to an out-

put crossing this threshold. This value can be found with the help of the

find vsw.m script.

• cell vect - This variable is an array which determines the gates which will be

characterized. The array is made up of the the cell IDs, as defined in the

cell header file.

The create sdf.m script loops through each gate in the cell vect array, and

characterizes them. The script has another nested loop to cycle through all possible
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output load combinations in order to develop a library of SDF files to choose

from when running the digital current generation. Inside the nested loop, a Perl

script, create sdf netlist.pl, is called to generate Spectre netlists. Several of the

variables from the Matlab script are passed down to the Perl script, as well as some

new variables set specifically in create sdf netlist.pl. One of these variables is the

load file. This file contains a gate which acts as an ‘average’ output loading for

this library. The created netlists correctly simulate all input transition and internal

logic state possibilities for the gate. This information can then be organized to

generate all delay paths through the gate. The netlists are saved as files named for

the state number (for example sdf gen s1.scs, sdf gen s2.scs, sdf gen s3.scs, etc.).

The netlist(s) are then simulated, and all of the data must be extracted. By

looping through the output files, the extract output.pl script is used to extract

and save the data in a file currently called output.out. This file contains the time

and voltage information of each gate output. When the data is loaded back into

Matlab, it is compared to the Vsw variable, and the output switching time is

determined. Since the input switching time is based only on the input switching

waveform used, the delay for the paths of this simulation are easily determined.

The delay paths for all input switching and internal logic states are all loaded and

organized in Matlab. A complete SDF file for each gate is then created from this

data.

The delay definitions for cells with internal states is complex in the HDL de-

scriptions. This makes matching them to the SDF delay definitions difficult. For

this reason, the SDF files for gates with internal logic states contain only general
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delay paths, no conditional delay paths.

The complete SDF file for the gates without internal logic states is then trimmed

down to correctly match the HDL description with the convert sdf.pl script. This

script is run twice, once for verilog file and once for verilog file2, to find where the

gate is described. The script finds the defined conditional delay paths in the HDL

description, and adjusts the complete SDF file to match.

There are some instances where the digital block which needed to be simulated

had gates with very large output loads. The simulation of all possible output

load combinations, as done in create sdf.m, was not feasible in these cases. An

alternative characterization script was created for these cases, create sdf2.m. This

Matlab script has all of the same variable inputs as create sdf.m with the removal

of max load and cell vect, but the addition of:

• component load file - This variable points to a file created in the digital cur-

rent generation containing all un-characterized gate and load combinations.

This file is created when make sdf.pl fails. The current default is the com-

ponent load.txt file.

The create sdf2.m script works very similar to the create sdf.m script, however

it loops through the component load file and determines the appropriate gate and

loading to simulate. The component load file is created from the digital current

generation, and so becomes something of a backwards step in this case. The char-

acterization of the gates for SDF files is done after the digital current generation

is run and fails once. This generates the list of gates and loads which must be
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simulated, and then the create sdf2.m file characterizes what is needed.

One missing piece of information from the SDF files for flip-flops is the tim-

ingcheck values. A work around for this is the use of the add timingcheck.pl

script. This script is contained in the output library. It uses the file ff list.txt to

determine which gates are flip-flops and need to be checked to make sure their

SDF files contain timingcheck information. The timingcheck information is ei-

ther copied from a pre-existing SDF file, or determined manually, and placed in

a file named timingcheck.txt inside of the gate’s folder in the output library. The

add timingcheck.pl script checks all flip-flops defined in the output library and

adds the timingcheck information to any SDF files missing it. The timingcheck

information is defined by default in the HDL description of the flip-flops, however

it is defined too small in most cases. This causes errors when simulating with the

correct delays from the new SDF files.

In the create sdf.m and create sdf2.m scripts, the Vsw variable must be defined

to determine the delays from input to output. This switching voltage varies from

gate to gate and input to input, but the complexity of defining every possibility

makes this unfeasible. The find vsw.m script is provided to help find an average

Vsw for a standard cell library. This is a Matlab script, and has the following

variables as inputs:

• cell header file - This variable points to the cell header file. The file contains

general gate information for the standard cell library. The cell header file for

all current setups is found in the tsmc models folder.



81

• model file - This variable sets the transistor models used in the simulations.

The transistor models are found inside the tsmc models/transistors folder.

• simulator - The unix command for calling Spectre is set by this variable. The

path to version 5.10 was used previously, however the path to version 6.1 has

been used in some cases for faster simulation times. The output format must

currently be ASCII because of the Perl script used to extract the data.

• VDD - The value of the VDD rail is set with this variable. The units are

volts.

• VSS - The value of the VSS rail is set with this variable. The units are volts.

• cell folder loc - This variable sets the location of the gate netlists. This is

set here and passed down to other scripts. The current default for this is in

the tsmc models/netlists folder.

• Rail th - This variable sets the percentage of the overall supply voltage that

the tied together input/output must be away from the VDD and VSS rails

before being considered a valid switching voltage. If the tied together in-

put/output is at a voltage level equivalent to either rail, this combination

does not cause switching.

• v mid - This variable gives an initial guess to the switching voltage. Unfor-

tunately, the DC simulation may not correctly settle to a switching voltage.

This initial condition helps the simulator find the switching stable state, in-
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stead of the stable state(s) where the output stays at one of the rails. The

units are volts.

• cell vect - This variable is an array which determines the gates which will be

characterized. The array is made up of the the cell IDs, as defined in the

cell header file.

The find vsw.m script loops through all the gates specified in the cell vect

array. It then calls the Perl script get iolist.pl to find all of the inputs and outputs

for the gate. Nested loops are used to go through all combinations of inputs and

outputs. The Perl script create vsw netlist is called in the loop to generate netlists

for each of these IO combinations. The netlists created contain DC simulations.

Each simulation connects a specified input to a specified output through a 1 Ω

resistor. The other inputs of the gate are then varied systematically in different

altergroups. DC simulations are used instead of transient for simplicity and faster

execution.

After the netlist is created, it is simulated, and the data extracted with the

extract vsw.pl script. This script pulls out the dc value of the input/output com-

bination that is connected together. This value is passed back to Matlab and

tested. If it is determined that it is far enough away from either supply rail, it is

saved as a switching voltage. As find vsw.m is being run, it is constantly saving

switching information to a log file named vsw summary.log. Average switching

information for each gate and the overall run are displayed in both the Matlab

command window and in more detail in this log file.
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A.2.5 Generate Parasitics

The scripts which characterize gates for their equivalent parasitics are contained

in the gen para folder. The top level script is a Matlab file named create para.m.

This script displays run information in the command window. It contains several

variables for specifying inputs:

• output library - This variable is used for the location where the output files

will be saved. The current format for this is ‘./CHIP NAME/’.

• output load - This variable sets the number of load gates attached to each

output when the gates are characterized. This option was not used in the

characterization of the equivalent parasitics, but is available.

• model file - This variable sets the transistor models used in the simulations.

The transistor models are found inside the tsmc models/transistors folder.

• simulator - The unix command for calling Spectre is set by this variable. The

path to version 5.10 was used previously, however the path to version 6.1 has

been used in some cases for faster simulation times. The output format must

currently be ASCII because of the Perl script used to extract the data.

• cell header file - This variable points to the cell header file. The file contains

general gate information for the standard cell library. The cell header file for

all current setups is found in the tsmc models folder.
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• VDD - The value of the VDD rail is set with this variable. The units are

volts.

• VSS - The value of the VSS rail is set with this variable. The units are volts.

• Vstep - This variable sets the voltage step which is applied to the VSS rail

during the simulation. The units are volts.

• Tstep - This variable sets the time over which the voltage step happens on

the VSS rail during the simulation. The units are seconds.

• Tsettling - This variable sets the time allowed for settling when the transient

is first started. This settling occurs before the voltage step is applied to the

VSS rail. The units are seconds.

• cell vect - This variable is an array which determines the gates which will be

characterized. The array is made up of the the cell IDs, as defined in the

cell header file.

The create para.m script loops through the gates specified in the cell vect map.

Inside the loop it calls the Perl script create para netlist.pl to generate the netlist

of each gate. Several of the variables defined in create para.m are passed down

to this script, as well as some locally defined variables. One of these variables is

the load file. This file contains a gate which acts as an ‘average’ output loading

for this library. The script creates netlists which simulate all possible steady state

input and internal state combinations. The simulation applies a step voltage to

the VSS rail of each combination, and saves the current through this rail. The
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netlists are saved as files named for the state number (for example para gen s1.scs,

para gen s2.scs, para gen s3.scs, etc.).

Once the netlist(s) are created, they are then simulated, and the data extracted

with the extract para.pl script. This script actually opens and runs through the

transient data twice, once to find the final current value, then once again to find

the time when the current is at 80% of the final value. It then returns these values

to Matlab.

All of the data to determine the equivalent parasitics is now available. The

current equation for a capacitor can be rearranged to the form of equation A.1. To

find this capacitance the final current and voltage step characteristics (Vstep over

Tstep) are simply used. The current response of a series resistor and capacitor

to a voltage step can be determined by equation A.2. Re-arranging this equation

yields equation A.3, which is used to find the equivalent series resistance between

the supply rails. The time value is the time to get the current to 80% of the final

current, and the C is the previously determined equivalent capacitance.

C =
I

dv/dt
(A.1)

I = Ifinal (1− e
R
C

t) (A.2)

R =
t

C × ln(0.2)
(A.3)
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A.3 Digital Noise Current Generation

The top level digital noise current generation script is called generate idats. An

executable file is created for different setups named generate BLOCKNAME. As

an example the NCL core of the 8051 is run from the command line by typing

‘generate ncl8051’. This runs the executable file which has all options for that

particular setup, and then passes them to the generate idats script. The option

arguments for generate idats are described as comments at the beginning of the

code.

The generate idats flow is described in Fig. A.5. The generate idats script is a

shell script which runs 11 other sets of programs/scripts to perform the complete

noise current generation. After each script is completed, generate idats will check

for errors and halt if it finds the script failed.

The generate idats program is a c-shell script. It starts with some initializa-

tion. This includes setting the location of awk depending on the operating system,

setting the offset variable to the value in the offset file of the current transition

library, and making a copy of the modeled digital block’s HDL description. The

HDL copy is renamed with ‘adjusted ’ prepended to the original name (for exam-

ple ncl8051.vhd becomes adjusted ncl8051.vhd). This copy can now be modified

and the original preserved.

The first script called by generate idats is get instances.pl (the current version

is get instances4.pl). This Perl script steps through the modeled digital block’s

HDL description and compiles information about the components and instances.
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genpara3.pl

get_instances4.pl

check_order.pl

insert_measuring5.pl

make_sdf.pl

make_subnet.pl

test_run.sh

copy_hfiles4.sh

gen_modcelllib.sh

truncate4.m

gentrans-v8

generate_idats

Figure A.5: The program flow of the digital noise current generation.

It saves this information to various files in the run directory for later read in and

use.

The next script called by generate idats is check order.pl. This Perl script is

used specifically for error checking, it is not actually needed for DMM generation.

The current DMM method relies on using input logic transitions to help find the

transition waveforms that gates generate. If the order of the inputs in the modeled

digital block’s HDL description doesn’t match the order used when the transition

waveforms were characterized, the modeling will be incorrect. This script compares

the order of inputs found for each gate during get instances.pl with the netlists used

for transition waveform characterization.

The insert measuring.pl (the current version is insert measuring5.pl) script is
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then called by generate idats. This Perl script uses the instance information found

by the get instances.pl script to add logic transition recording code into the mod-

eled digital block’s HDL description. The code sets up a loop which checks the

inputs of gates at time intervals during the gate level simulation. If the logic levels

change between iterations of the loop, then a transition is found, and the informa-

tion is stored in a file. The output information is also stored after a transition is

found, for gates which have internal logic states.

The next script called by generate idats is make sdf.pl. This Perl script com-

bines the SDF information of each gate in the modeled digital block. The instance

information found by the get instances.pl script is used to determine the gates and

output loads. If the gate SDF information is missing, the program keeps track,

and continues. At the end of the script the user is given the chance to continue or

halt execution of generate idats if there was missing SDF information. If a gate’s

delay information is not specified, the default delays in the HDL description of the

gate will be used. A file is also created (called component load.txt currently) to

keep track of any missing gate and load information. This file can be used by the

create sdf2.m characterization script to generate specifically the missing gate SDF

files. The SDF file created by this script only represents the modeled digital block.

If there are other digital logic blocks which must have correct delay information

back annotated in during the Modelsim simulation, these must be created prior to

the running of this generate idats setup.

The make subnet.pl script is then called by generate idats. This Perl script

combines the local substrate information for all gates in the modeled digital block
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to form the complete substrate network. The instance information found by the

get instances.pl script is used along with the rmatrices.txt (found in the transition

waveform library) to create the r matrix which represents the substrate of the

modeled digital block. The r matrix is saved in the temporary data folder for this

setup (for example digital macro model/temp ncl8051).

The next thing which generate idats does is to setup and simulate the adjusted

HDL code in Modelsim. The shell script test run.sh is used to do this. This

script cleans out the old work directory, and creates a new one. It uses a special

compile script to compile only the needed HDL blocks into the new work directory.

This compile script is specific for the setup being run, and must be created before

generate idats is run. A do file is constructed and then used, along with the SDF

file, when Modelsim is run on the testbench for this setup. As the simulation is

running, the input transition and output state information are being saved to files

in the temporary data folder for this setup (digital macro model/temp ncl8051).

The input transition and output state files must have the simulation step reso-

lution added as the first line to them. This simulation step resolution is the rate at

which the input transitions were checked for in the gate level simulation. The tran-

sition waveforms for the gates of this modeled digital block are then copied locally

to the h files folder by the copy hfiles.sh script (current version copy hfiles4.sh).

The gen modcelllib.sh script then adds the length of these transition waveforms to

the instance information file previously created by get instances.pl.

The next script called by generate idats is truncate.m (the current version

is truncate4.m). This Matlab script truncates the length of the locally copied
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transition waveforms. These waveforms are reduced to a length which preserves

a specified percentage of the total energy. The truncate script cycles through all

gates and each type of transition waveform (those through the VDD, VSS, and

bulk nodes of the gate). The new length waveforms are then saved in the h files

folder, and the length of each is added to the instance information file to be used

later.

The gentrans program (current version gentrans-v8) is called by generate idats

next. This C program uses the input transition and output state information to

concatenate together the appropriate transition waveforms and form the noise cur-

rents of the gates. After loading the needed data, the gentrans program searches

through and finds the input transition events for each gate. The gates are looped

through, and the transition waveforms for each input transition event are strung

together at the correct times to form the noise currents through the VDD, VSS,

and bulk nodes. These noise currents are saved as PWL files in the temporary data

folder for this setup (for example digital macro model/temp ncl8051/dat files).

The gentrans program is compiled and can be remade by typing ‘make’ in the

scripts folder. This call uses the Makefile, which can be adjusted for different

versions or compile options.

The last script called by generate idats is genpara.pl (the current version is

genpara3.pl). This Perl script creates the equivalent parasitics between the supply

rails of the modeled digital block. The script uses the input transition and output

state files created during the Modelsim gate level simulation to determine the

time varying equivalent parasitics. This version of genpara.pl saves only the time
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averaged parasitics for each gate in the temporary data folder for this setup (for

example digital macro model/temp ncl8051).

A.4 Making a New Setup

This section will describe the steps to setting up a new digital block for the DMM

method. The setup process can vary in complexity depending on how much the

new digital block uses old gate characterization information. This section will

attempt to be general enough to describe a setup done from scratch.

A.4.1 HDL Simulation

The HDL description of the digital block is the starting point of the DMM setup.

The HDL must be a gate level description, with all gates being those found in the

standard cell library. Before any gate characterization or model development, the

gate level simulation should first be correctly setup.

A testbench must be developed to correctly simulate the digital block. Do files

can be used to add the proper stimulus for simulation, however there must be one

level of HDL code inside which the digital block is run. The do files which are

used for the simulation are created as two files (these are combined again later in

the digital noise current generation). The first file is wave BLOCKNAME.do (for

example wave ncl8051.do). This file usually contains the add wave commands or

any other setup commands. The second file is test BLOCKNAME.do (for example
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test ncl8051.do). This file usually contains the force and run commands used to

run the gate level simulation.

Modelsim can compile or run either VHDL or Verilog descriptions, however, the

modeled digital block must be described in VHDL for the DMM. The transition

sensing code added in the insert measuring.pl script is specifically VHDL code. If

the digital block is described as Verilog, it can be converted to VHDL through the

use of the convertV2VHDL.pl script (found in the hdl/conversion folder). This

script was designed for a specific format of Verilog code, always try to compile and

verify the functionality of the output code.

A shell script to compile the HDL code needed for the gate level simulation

should be created as compile BLOCKNAME.script (ex: compile ncl8051.script).

This script should compile all Verilog and VHDL code needed in the simulation of

the testbench. This script will later be used by the digital noise current generation.

For that, the digital block’s name will need to be prepended with ‘adjusted ’ and an

extra file compiled for the transition sensing code. This extra file can be compiled

with the addition of the following line:

vcom -93 hdl/txt util.vhd

A.4.2 Library Characterization

After the gate level simulation is correctly running, the gates used in the digital

block should be characterized. To begin this, a list of the gates used in the digital

block should be created.
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The characterization step can be approached from two different ways. One is

the characterization of specific gates in a digital block. The other is the charac-

terization of all the gates in a specific standard cell library. The former will be

described in this section. However, with a complete list of the gates in a standard

cell library, the later’s steps are not significantly different.

First, the gates’ netlists must be extracted from layout information. These

extractions should be performed to include parasitic coupling capacitances. The

netlists should be saved in the tsmc models/netlists folder (or another process

folder than tsmc models). The format for the netlist names is GATENAME.cell.

The convert netlists.pl script can be run from this folder to adjust the netlist to the

correct sub circuit format. The correct transistor model for these netlists should

also be obtained, and placed in the tsmc models/transistors folder (or another

process folder than tsmc models).

A file named lib cell header.lib needs to be created/appended to store gate

information. The file is located in the tsmc models folder (or a different named

process folder). The format of lines in this file are:

gate name ID number states outputs inputs

The gate name is the same as the name used in the netlist and HDL description.

The ID number is an arbitrarily assigned unique number for the gates in the library.

The states are the number of internal logic states that the gate has. The number

of states may not yet be known, this can be left as 1 by default. The outputs and

inputs are the number of each that the gate has.
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With the netlists and lib cell header.lib file created, the characterization of

the gates used in the digital block can now begin. Many of the details for this

characterization were previously described in Section A.2.

The internal logic states of the gates which have them should first be char-

acterized. After which, the generation of local substrates should be done for all

gates used in this digital block. The EPIC input header needs to be correct for

the particular process the digital block is fabricated in.

Next, the transition waveforms for all gates need to be created. The resolution

on these transition waveforms is up to the user. Time steps of 100ps provided a

reasonable trade-off between accuracy and simulation time for the results presented

in this thesis. The time length of the transition waveforms was chosen to give a

number of data points which is a power of 2. The length of the transition waveforms

being a power of 2 is recommended for accurate truncation during the digital noise

current generation.

The generation of the SDF files for each gate in the digital block should be

preformed next. The create sdf2.m script was used for characterization being per-

formed on gates of an already known digital block. If a standard cell library is

being characterized, the create sdf.m script is recommended, with an appropriate

value selected for the maximum load variable. The characterization of the gates

for the switching threshold may also need to be performed for more accurate SDF

files at this point. This switching threshold is used in either of the SDF generation

scripts.

The last characterization which needs to be performed is the generation of the
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equivalent rail parasitics. The Vstep, Tstep, and Tsettling variables should be

correctly setup to find the parasitics of most gates. The values can be adjusted for

more or less resolution if the gates are significantly different than those currently

tested.

A.4.3 Generate Script

Now that the gates are all correctly characterized, the setup of the digital noise

current generation can be done. With the setup of the HDL simulation, many

things are already in place. The compile script and do files should already be

created, and placed in the correct folders.

A temporary data folder for the setup should be created in the top level folder

(for example temp ncl8051). All final data from the digital noise current generation

will be placed in this folder.

Next, a file needs to be created to execute the generate idats script. It is

possible to simply call this script every time you would like to run the digital noise

current generation. However, with 12 inputs, it is easier to save this command in

a file and make it executable. All inputs to generate idats are described in the

comments at the start of the code. The name of the block should be consistent

throughout the setup file names.

Lastly, the test run.sh script must be adjusted. Adjusting scripts in the DMM

in order to add a new setup is not the most desirable solution. This step should be

adjusted in future versions of the code. When Modelsim is executed in this script,
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it is done with a case statement. A new case should be added for any new block

name. Modelsim should be simulated at 1ps resolution. The SDF file(s) should be

back annotated to the correct block(s) and the typical option used.

A.5 A Different Application

This section describes a slightly different application of the DMM method. Till

now the method has been shown to model digital logic gates for substrate noise

simulation. One main part of this modeling is the digital noise current generation,

which models the currents through a gate based on the gates input transitions and

previous internal states. By stopping this process early, and only finding the input

transitions to a gate, another application is utilized.

The 8051 microprocessor contains a shared RAM block. This block is not com-

posed of digital logic gates from the standard cell library, and cannot be modeled

with the DMM. Therefore, the transistor level netlist of this block must be used

in the final substrate noise simulation. However, the RAM is an internal block in

the 8051 microprocessor, and is not directly connected to the chip pins. The issue

is therefore how to simulate the RAM at the transistor level, without having to

simulate the rest of the 8051 microprocessor at the transistor level.

The c-shell script generate vdats was created to generate the stimulus needed

to run the RAM at the same time as the rest of the substrate noise simulation. The

script takes 11 inputs, and an executable options file is created similar to those

made for generate idats (for example generate ncl8051 ramnoise).
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The generate vdats script runs similar to generate idats. It first uses the scripts

get instances.pl and insert measuring.pl to adjust the HDL code. In this case

however, the RAM is surrounded by an extra wrapper, so that the only block it

identifies as a gate is the RAM. The transition sensing code added is then modified

slightly by the change2binary.pl script. The gate level simulation is then performed

in Modelsim with the test run.sh script, with all of the input transition and output

state information of the RAM block saved in files.

Finally, generate vdats uses the genVtrans.pl script. This is a Perl script which

uses the input transition information, and changes it into PWL files usable by

voltage sources for stimulus in a Spectre simulation.
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Appendix B – Silencer! Adjustments

This appendix will describe the adjustments made to Silencer!, a substrate noise

simulation tool, for use in this research. Not only is additional code written, but

some previous coding has been adjusted or replaced in order to allow for more

functionality in substrate noise simulations. The first section will describe the

Silencer! Digital add-on. The functions in this add-on were developed to be used

specifically on digital blocks in the Cadence environment. The Silencer! Extracted

add-on will be described in the next section. This add-on enables the use of

extracted views inside the Silencer! flow. Lastly, various issues with the execution

of Silencer! and the adjustments made will be described.

One thing should be noted about the way in which Silencer! was used in these

adjustments. Silencer! currently has two layers used for defining connections to

the substrate, SC Inj and SC Sen. The two layers were implemented as a way

to distinguish between an aggressor and victim in the substrate noise simulation.

This distinction is not however used in EPIC, and rarely in the Silencer! code

itself. For simplicity reasons I used only SC Inj in the majority of the add-on and

adjustment code.
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B.1 Silencer! Digital

Silencer! Digital is an add-on to Silencer!, previously started by Martin Held. The

coding has been cleaned and adjusted, but still maintains many of the original

functions. The package is a collection of Skill files which are loaded along with

Silencer! at the start of the Cadence environment. The functions were written

specifically for digital cells, and enable the DMM to work correctly throughout its

flow.

The file system for Silencer! Digital is shown in Fig. B.1. The top level folder

is named Silencer Digital. The loadSilDig.il file contains the Skill code for the load

function. This function is called in the .cdsinit.user file, and loads all of the Silencer!

Digital functions at startup. This function also reloads itself, making it useful to

call after making changes to any part of Silencer! Digital. The sdFinder.il and

sdLister.il files contain the Contact Finder and Contact Lister respectively. These

tools will be described in more detail in the following subsections. The functions for

placing the completed DMM into a schematic are contained in the sdPlaceDMM.il

file. This tool is also described more in one of the following subsections. The

sdFunctions.il file contains many simple functions. These are general functions

used throughout Silencer! Digital. The sdSubCont.il file contains the contact

location functions. These functions are used in the Contact Finder and Lister, and

help to determine different types of substrate contacts.
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loadSilDig.il

sdFinder.il

sdFunctions.il

sdLister.il

sdSubCont.il

Silencer_Digital

sdPlaceDMM.il

Figure B.1: The file system for Silencer! Digital as a tree graph.

B.1.1 Contact Finder

The Contact Finder is a tool developed to assist in the location of substrate con-

tacts in a layout. Silencer! currently has an automated method for finding sub-

strate contacts which uses polygons of the SC Inj and SC Sen layers. This auto-

mated method however does not allow for the flexibility needed to find substrate

contacts from a variety of different layout styles. The Contact Finder tool enables

the user to customize the types of contacts created, and how they are found, in

an easy to use GUI. Finding substrate contacts prior to using Silencer!’s built in

‘LOCATE Substrate Ports’ function is also required in the use of the Silencer!

Extracted add-on.

The Contact Finder is accessed in the layout editor, from the Silencer! menu,

with ‘Use Substrate Contact Finder’. The GUI for the Contact Finder is shown in

Fig. B.2. The different controls on the GUI are:

• Discard contacts smaller than - This option allows the user to specify a

minimum size for the contact areas being considered. In some large layouts
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Figure B.2: GUI of the Contact Finder.

it may be advantageous to neglect very small substrate contacts, and consider

only the large ones. If the button is pushed, the minimum area can be entered

into the text box.

• Adjust Contact Layer Definitions - This button opens a GUI used for entering

the substrate contact layer definitions. The definitions are loaded and saved

to a file named contfinder param.txt in the Silencer folder.

• Make polygon contacts into rectangular contact - This option specifies the

way in which polygon contacts are treated. The version of EPIC currently

integrated into Silencer! does not accept contacts which are polygons. If this

option is set, it converts the polygon contacts into rectangular contacts. A
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common centroid method is used to find the equivalent rectangular contact.

The radio buttons below this option further specify the way the conversion

is performed. ‘Centroid X Only’ sets the minimum and maximum Y values

in the rectangle to be the same as the polygon, then uses the centroid to set

the X values. ‘Centroid Y Only’ sets the minimum and maximum X values

in the rectangle to be the same as the polygon, then uses the centroid to set

the Y values. ‘Both’ tries to preserve the ratio of width in X and Y directions

and uses the common centroid of each. Area is preserved in all conversions.

• Ptap Contacts - This cyclic field specifies how the Ptap Contacts are cre-

ated. ‘None’, ‘One’, or ‘Multiple’ ptap contacts can be created. When ‘One’

is selected, all ptap contacts found in the layout are combined to a single

equivalent contact. For this option ‘Make polygon contacts into rectangular

contact’ is automatically selected, since combining to an equivalent polygon

would be too complex.

• Bulk Contacts - This cyclic field specifies how the Bulk Contacts are cre-

ated. ‘None’, ‘One’, or ‘Multiple’ bulk contacts can be created. When ‘One’

is selected, all bulk contacts found in the layout are combined to a single

equivalent contact. For this option ‘Make polygon contacts into rectangular

contact’ is automatically selected, since combining to an equivalent polygon

would be too complex.

• Label ptaps with a common name - This option allows the Ptap Contacts to

be labeled to a common name. A small label is placed inside the contact



103

layer. If the button is pushed, the name can be entered in the text box.

This option is only useful for the old method of Silencer!, which uses contact

labels, unlike Silencer! Extracted, which uses connectivity information.

• Find New Contacts - This button searches for and creates new Ptap and

Bulk Contacts in the current layout view.

• Remove All Contacts - This button removes all shapes in the SC Inj layer

from the current layout view.

• Find Nwell Contacts - This button searches for and creates new Nwell Con-

tacts in the current layout view.

One important control in the Contact Finder GUI is the ‘Adjust Contact Layer

Definitions’ button. Clicking this will open the GUI shown in Fig. B.3. This allows

for the adjustment of the contact layer definitions used in the Contact Finder.

The Contact Finder defines three types of substrate contact: Ptap Contact, Bulk

Contact, and Nwell Contact. These definitions are simply names which match up

to the controls in the Contact Finder GUI. The user is free to use the definitions

for some other type of contact than the name. Up to 5 layers can be used to

form the boolean logic definition of the contact formed. The priority is critical in

the contact definitions, where the boolean logic between layers will be performed

from top to bottom. The Bulk Contact definition for example will be defined in

Fig. B.3 as ((((DIFF and NIMP) or NDIFF) and not NWELL) and not PSUB2).

If less that the 5 layers are to be used, the cyclic field should be changed to ‘End’
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Figure B.3: GUI for adjusting the substrate contact layer definitions.

after the final layer. Clicking ‘OK’ or ‘Apply’ saves the settings to a file named

contfinder param.txt inside the Silencer folder.

After all controls are set as desired, and the contact layers are correctly de-

fined, the user can affect the layout by using the ‘Find New Contacts’, ‘Remove

All Contacts’, and ‘Find Nwell Contacts’ buttons. When the ‘Find New Contacts’

button is clicked new Ptap and Bulk Contacts are created. The ‘Find Nwell Con-

tacts’ button creates new Nwell Contacts. Each button should only be pushed once

before clearing out old contacts. Overlapping contacts will cause problems when

sent to EPIC. For this reason the ‘Remove All Contacts’ button is provided to

remove all shapes in the SC Inj layer from the layout. The button is separate and

not included as part of the create contact buttons to allow flexibility to the user.

This flexibility comes with the added responsibility to keep track of overlapping
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contacts. Only a warning message is displayed if the functions find an overlap in

the SC Inj layer.

B.1.2 Contact Lister

The Contact Lister is a tool developed for compiling substrate contact information

for the characterization portion of the DMM method. The generate substrate

portion of the characterization requires a file with all of the substrate contact

information for each gate. This tool runs some of the same substrate contact

locating functions found in the Contact Finder on multiple layouts, and gathers

the geometrical data into an carefully formatted output.

The Contact Lister is accessed in the layout editor from the Silencer! menu

with ‘Use Substrate Contact Lister’. The GUI for the Contact Lister is shown in

Fig. B.4. The different controls on the GUI are:

• Location of cells to list - This option is used to determine which cells the

lister should search through for contact information. ‘This cell’s hierarchy’

sets the lister to look at all layouts of cells within the current layout and

hierarchically below. ‘This cell’s library’ sets the lister to look at all layouts

of cells within the same library as the current layout. The cell’s hierarchy is

the recommended method.

• Output filename - This option sets the name and location of the output file

containing the substrate contact geometries. The file location is in reference

to where icfb was run.
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Figure B.4: GUI of the Contact Lister.

• Adjust Contact Layer Definitions -This button opens a GUI used for entering

the substrate contact layer definitions. The definitions are loaded and saved

to a file named contfinder param.txt in the Silencer folder. This is described

in more detail in the previous section.

• Type of contact approximating - These radio buttons specify the method used

to convert polygon contacts into rectangular contacts. ‘Centroid X Only’ sets

the minimum and maximum Y values in the rectangle to be the same as the

polygon, then uses the centroid to set the X values. ‘Centroid Y Only’ sets

the minimum and maximum X values in the rectangle to be the same as the

polygon, then uses the centroid to set the Y values. ‘Both’ tries to preserve

the ratio of width in X and Y directions and uses the common centroid of

each. Area is preserved in all conversions.
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The output of the Contact Lister is a file with the substrate contacts for each

gate found. The local substrate networks used in the DMM method contain only

2 contacts, one for the gate’s ptap contact, one for the gate’s bulk contact. For

this reason, all contacts found must be condensed down to a single rectangular

contact of either type. There are therefore less options in the Contact Lister than

the Contact Finder.

The Contact Lister searches through the cell structure specified and looks for

layout views. It opens each layout and attempts to create substrate contacts. If the

layout contains a ptap and a bulk contact, the geometry information is saved into

the output file. Some cells which are not gates from the standard cell library may

end up getting contact information saved in this file. The file should be visually

inspected after creation, and before submitting to the substrate generation scripts.

B.1.3 DMM Placing Tool

After a DMM equivalent of a digital block has been created (as described in Ap-

pendix A) the model must be added into a schematic view for simulation in the

final substrate noise simulation. The model can be very large for digital blocks

with thousands of gates. This tool enables the user to automatically place the

complete DMM into a schematic view.

The DMM Placing Tool is accessed in the layout editor from the Silencer! menu

with ‘Place Digital Macro Model’. The GUI for the DMM Placing Tool is shown

in Fig. B.5. The different controls on the GUI are:
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Figure B.5: GUI of the DMM Placing Tool.

• DMM data folder - This field sets the folder name and location where the

data for the DMM is found.

• Current source model - This option sets the current sources used for the

DMM. If ‘Full model’ is selected, all three current sources are used for each

gate, one each for VDD, VSS, and bulk currents. If ‘VDD only’ is selected,

only the VDD current is used for each gate, connected between the VDD

and VSS nodes. If ‘VSS only’ is selected, only the VSS current is used for

each gate, connected between the VDD and VSS nodes.

• Include DMM substrate network - This option enables the placement of the

resistor matrix which represents the substrate network of the complete digital
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block. This resistor matrix was created during the DMM generation, and is

currently stored as a file named ‘rmatrix.txt’ in the DMM data folder. This

option is automatically unselected if the current source model is set to either

‘VDD only’ or ‘VSS only’.

• Include DMM equivalent parasitics - This option enables the placement of

the equivalent gate parasitics. The equivalent parasitics were created during

the DMM generation, and are currently stored as a file named ‘res cap.dat’

in the DMM data folder.

• VDD node name - This option sets the node name of the DMM’s VDD

terminal in the schematic.

• VSS node name - This option sets the node name of the DMM’s VSS terminal

in the schematic.

• Backplane node name - This option sets the node name of the backplane

connection to the substrate network. This option is automatically disabled

if the ‘Include DMM substrate network’ is not set.

• Origin for placement - These values set the origin that the tool uses for

reference to begin placement. The model is placed above and to the right of

this point.

Clicking the ‘Apply’ or ‘OK’ buttons places the specified DMM into the schematic

at the point designated by the origin. The placing tool allows for the flexibility to

add different parts or versions of the DMM into the schematic. Adding pins and
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creating a symbol then allows for a clean placement in a substrate noise simulation

setup.

B.2 Silencer! Extracted

Silencer! Extracted is an add-on to Silencer! which enables the use of the extracted

view in substrate network extraction. Silencer! currently requires a schematic

which is properly labeled in relation to the layout to correctly connect the generated

substrate network. This add-on allows a layout to be extracted, and the generated

connectivity information used directly to connect the substrate network. The

inclusion of parasitic capacitances in substrate noise simulations is also made more

convenient with this add-on.

A flow chart which shows how to use Silencer! Extracted to generate substrate

network information is shown in Fig. B.6. The layout view is the starting point

of the flow. Using the Contact Finder places the SC Inj layer defined substrate

contacts into the layout. The substrate contacts must be found previous to Diva

extraction, since the extraction rules must connect the SC Inj contacts to the

correct nodes in the extracted netlist. For this reason we cannot use the built in

‘Select New Injector Region’ function in Silencer!, since it does not locate substrate

contacts until after the ‘LOCATE Substrate Ports’ step. A special set of Diva

extraction rules are then used on the layout view containing substrate contacts.

This generates an extracted view for the layout with substrate contacts, which

now has the correct connectivity. Parasitic interconnect capacitances can also be
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added to the extracted view during this step. Next, ‘LOCATE Substrate Ports’ is

selected from the Silencer! menu. This function is somewhat misnamed. Although

it does enable the location of substrate ports under areas previously defined by

‘Select New Injector Region’, this functionality is not used in this flow. The other

thing which this function does is to create the EPIC input file, and copy the

view to a new cell with snc appended to the name. This sets up the use of the

‘CALCULATE Substrate Newtwork’ function. This starts EPIC (or whichever

substrate extraction tool is currently being used) in the background. After this

is completed, the substrate network is added back into the extracted view. The

option to place the substrate network automatically must be selected from the

Models & Options menu the same way it was previously done for the schematic.

A option from the pull down menu will also add a previously generated substrate

network into the extracted view, the same way it is added into the schematic view

with the current Silencer! code.

In order to use the extracted view in a substrate noise simulation, a few steps

must be taken before the Diva extraction is performed. Any IO pins for the

layout must be placed in order be correctly netlisted during the extraction. If the

substrate network is going to be connected to something else through the common

backplane node, a pin should also be place named ‘bckPln’. This pin should touch

no layers, but will be correctly connected when the substrate network is added

back into the extracted view. Making a symbol for the final extracted view with

substrate network then allows for the simulation of the block in a schematic view.
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Figure B.6: Flow chart describing the steps to use Silencer! Extracted.

B.2.1 Diva Extraction Rules

The standard Diva extraction rules for a particular process must be adjusted to

facilitate the use of the Silencer! Extracted add-on. The adjustments to the file

depend on the way the original rules were written, however some general require-

ments can be listed.

1. The substrate must be divided correctly into local areas. The substrate

is usually defined as a layer named ‘sub’ and initially set to the complete

background. Every connection to the substrate is connected to the same

node. For the purposes of Silencer! Extracted, the substrate should not

be an equipotential like this. The connections to the substrate should be

isolated in the netlist, and then connected through the substrate network.
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To perform this isolation the ‘sub’ layer is broken up to be defined directly

below ptap contacts or transistor bulk regions.

2. The Silencer! specific layers must be added to the rules. The layers must be

recognized as layers at the beginning of the rules. The layers also need to be

saved as interconnects at the end of the file. If the layers are not saved, they

will not be represented in the extracted view, which is required for Silencer!

Extracted. Net layers of the special Silencer! layers were added to the layer

map specifically for this purpose.

3. The substrate contacts must be connected to the correct nodes. Vias must be

constructed to connect the SC Inj layer, that the substrate contacts are made

of, to the local substrate areas. Since the bulks of the transistors and ptap

contacts are usually connected to the substrate layer, this will also connect

the substrate contacts.

4. Capacitive coupling should be added between SC Inj and other layers. Most

Diva extraction rules include parasitic capacitive coupling between standard

interconnect layers. By adding similar code between the SC Inj layer and

other interconnects, substrate contacts can be created for interconnect cou-

pling to substrate. If a large area of metal 1 is present in the layout, this

coupling to the substrate may be significant. By adding a substrate contact

directly below the metal, it will be capacitively coupled to the substrate net-

work. Capacitive coupling defined between the SC Inj and the Nwell layer

will enable the simulation of coupling through the nwell in a similar manner.
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seFunctions.il

seRedefine.il

Silencer_Extracted

Figure B.7: The file system for Silencer! Extracted as a tree graph.

There are two rules files currently adjusted, one for TSMC’s 0.25µm RF process,

and one for TSMC’s 0.35µm process. Each set of rules has been modified to be used

with the Silencer! Extracted add-on. Both the 0.25µm and 0.35µm rules require

the ‘PARASITIC C’ and ‘parasitics’ switches, respectively, to enable capacitive

coupling to the SC Inj layer. The 0.25µm rules were also written with the intent

to allow for normal extraction, or extraction for use in Silencer! Extracted. A

switch named ‘Sub Injector Bulk Connect’ must be set in the 0.25µm rules when

using in conjunction with Silencer! Extracted.

B.2.2 Skill Coding

The file system for Silencer! Extracted is shown in Fig. B.7. The top level folder is

named Silencer Extracted. In a similar manner to loadSilDig.il, loadSilEx.il loads

all the Skill files containing Silencer! Extracted functions. This load function is

called in the .cdsinit.user file as well. The seFunctions.il file contains all of the

newly created functions used as the Silencer! Extracted add-on. The sdRedefine.il

file contains functions which were previously defined in Silencer!, but are redefined

for the Silencer! Extracted add-on. The loadSilEx.il file must therefore be loaded

after the original Silencer! Skill in the .cdsinit.user file.
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Some of the most significant changes in the previously defined functions came

from the treatment of contact labeling, and the placement of the completed sub-

strate networks in extracted views. The substrate contacts previously used labels

placed inside the contact layer for net naming. Silencer! Extracted needed the

functions redefined in order to check the connectivity of the substrate contact lay-

ers. These net names are then used again when the substrate network is added back

in to the extracted view. An extracted view will not simulate if the last extracted

time stamp is different than the last modified time stamp. The substrate network

placement now includes code to modify both time stamps for the extracted view.

The new functions still allow for the previous Silencer! flow to be performed on

the layout view.

B.3 Various Adjustments

There are few other adjustments made to the Silencer! tool which did not fall into

any of the previous sections. This section briefly describes some of the issues with

the execution of Silencer!, and the various adjustments done to try and account

for them.

Negative resistors can appear in a substrate network due to round off errors

in the calculations of a substrate network extraction program. Tighter extraction

options will reduce the number of these negative resistors found in a substrate

network, but also slow down the execution time. The negative resistors are usually

supposed to be very large resistors. The removal of the negative resistance values
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from the network is desirable over having negative resistors in a simulation. For

this reason, the epic2spectre.rb script has been adjusted to replace all negative

resistors with a ‘-’ value. This is interpreted by the substrate network placements

scripts as a place holder, and no actual resistor is placed. After the placement it

will be obvious how many negative resistors were created by the number of holes

in the triangle shaped substrate network.

The minimum panel size is one of the EPIC settings adjusted in the ‘Models

& Options’ menu. If this option is set too large, very large substrate networks can

take much longer to simulate as the contacts are being divided into an excessive

number of panels. If this option is set too high, EPIC will say it is re-adjusting

the panel size to account for the smallest contact dimension, but really still fails.

To help find this minimum panel size, the Perl script min panelsize.pl was placed

in the Silencer/Files folder. This script searches through the subsPorts.txt file and

finds the minimum dimension in the contact geometries. The minimum panel size

should then be set to this value or lower. Unfortunately the subsPorts.txt file is

not created until after the EPIC input file has been created in Silencer!. For this

reason, the ‘LOCATE Substrate Ports’ function may need to be run twice, once to

determine the minimum panel size, then again after the minimum panel size has

been adjusted in ‘Models & Options’.

With the use of the Silencer! Extracted add-on, many contacts can now have

the same name/node connection. When this happens, the network can be simpli-

fied by the parallel resistor combinations. For some configurations, the network

reduction is significant (contacts connected to vss is a common example). A con-
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dense SCnetlist.pl Perl script was written to help reduce the substrate network

while Silencer! is running. The script reduces the substrate network directly after

the SCnetlist.txt has been created, and is called in the snc model.rb script. A

special version of this script is used for macro model 1. Not only is the network

reduced for parallel contacts, but dummy resistors are added in for any missing

branches. These dummy resistors are needed to correctly place the substrate net-

work back in the Cadence environment.




