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Assembly time estimation is a key factor in evaluating the performance of the assembly 

process in an automated assembly process. The overall goal of this study is to develop 

an efficient assembly time estimation method by generating the prediction model from 

an experimental design. In order to estimate these times, this paper proposes a way to 

divide the assembly into four actions which consist of a) part movement, b) part 

installation, c) secure operations, and d) subassembly rotations. The focus of this paper 

is a model for the secure operation; however, the methodology can be applied to the 

other three times of interest. To model secure times, a design of experiments is applied 

to collect experimental data based on the physical assembly experiments performed on 

products that are representative of common assembly processes. The Box-Behnken 

design (BBD) is an experiment design to support response surface methodology to 

interpret and estimate a prediction model for the securing operations. The goal is to use 

a quadratic model, which contains squared terms and variable interactions, to study the 

effects of different engineering parameters of securing time. The experiment is focused 

on individual-operator assembly operations. Various participants perform the 

experiment on representative product types, including a chainsaw, a lawn mower 

engine, and an airplane seat. In order to optimize the assembly time with different 

influence factors, mathematical model were estimated by applying the stepwise 

regression method in MATLAB. The second-order equations representing the securing 

time are expressed as functions with six input parameters. The models are trained using 

all combination data required by the BBD method and predict the hold back data within 

a 95% confidence interval. Overall, the results indicate that the predicted value found 

was in good agreement with experimental data, with an Adjusted R-Squared value of 

0.769 for estimated securing time. This study also shows that the BBD could be 

efficiently applied for the assembly time modeling, and provides an economical way to 

build an assembly time model with a minimum numbers of experiments. 
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1 Introduction 

 Assembly time is a key point in evaluating the performance of an assembly 

process in the early stage of manufacturing. In order to support the automated assembly 

planning, the necessary operation time during the assembly need a more accurate and 

efficient method to optimize. Therefore, a method of time predicting in assembly need 

to be developed efficiently. 

 For the assembly time, the prediction model could be a mathematical model 

that contains various factors with individual weighted coefficient, it describes the 

critical effect of each factor on the response in the model. In this report, a design of 

experiment (DOE) method is used to collect experimental data and estimate the 

relationships between factors and response in the mathematical model. Three assembly 

experiments were designed for obtaining quality data of all input factors and output 

response during the assembly.  

 In order to estimate these times, this paper divides the assembly into four 

actions, which consist of a) part movement, b) part installation, c) secure operation, and 

d) subassembly rotation [1]. The focus of this paper is a model for the secure operation. 

Securing model reflects the time necessary to secure two or more parts after installation. 

There are several kinds of method to secure parts in assemblies, such as snap fitted, 

tight fitted and welding etc. Due to the particularity and variety of securing methods, 

the combination among different securing methods would influence the result of 

securing time. Fastener securing is considered as the only securing method in this 

experimental design, since it is commonly used in industry for securing.  
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 The assembly experiments were conducted by each participant individually. 

The experimental objects from various types of products were selected, and sequence 

for each assembly step were designed and instructed to the participants. In the 

experiments, a chain saw, a lawn mower engine and an airplane seat were chosen for 

assembly experiments. The assembly working stations were designed by the authors to 

simulate manufacturing process. All components were placed in a designed 

arrangement with necessary tools provided.  The participants followed the instructions 

to install and secure the components, and the data for building securing prediction 

model was collected during the experiment. 

 The multiple linear regression model based on stepwise method was used to 

analyze the relationships between factors and establish a good prediction model. The 

stepwise regression method is well developed in the research of evaluating the 

significance of variables and improving the model by removing the insignificant factors 

[2]. Seven variables were selected as input parameters for model predication, and six 

of them were identified as significant variables to securing time by the analysis of 

stepwise regression. 
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2 Related Work 

 Many research have been done to build assembly time prediction model, and 

several methods to estimate the assembly time are well established [3]. The Interference 

Detection Method (IDM) is one of the tools built to predict assembly time and reduce 

the required input from designers. In this method, the assembly time can be estimated 

from the part location represented by bi-partite graphs in the assembly space, where the 

components connectivity information is obtained from a computer-aided design (CAD) 

model. Different from the IDM method, the Assembly Mate Method (AMM) focus on 

the assembly mate information based on connectivity graph [3]. Although the two 

methods estimate the assembly time within 45% of the target time [4], both methods 

are limited to only CAD assembly files. Most methods using geometric and assembly 

connectivity are highly related to the CAD model, but some of the securing difficulties 

haven't been specified by these research. Different types of fasteners are major input 

parameters in the estimation of assembly time. The securing operation is a key section 

that needs to be considered in the assembly estimation. For example in the SolidWorks, 

the components and fasteners are only fitted with standard or mechanical mate, so the 

securing difficulty could be under-estimated. For some small size fasteners, more time 

is possibly necessary due to the handling or insertion difficulty. Hence, the simulation 

based on CAD model may not comprehensively include the securing difficulty in the 

real-time assembly. Therefore, more input parameters related to the fasteners are 

required to estimate the securing time. 

 Meanwhile, the Design of Experiment (DOF) has also been applied to the model 

prediction. In Arbizu and Perez's study [5], a factorial design using the response surface 
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methodology is used to predict the components’ surface quality and dimensional 

precision. The results show that a factorial design with regression analysis can 

successfully be applied for modeling, and significantly optimize the time and cost by 

reducing number of experiments. 

Also, stepwise regression method is one of the most successful methods to 

analyze and improve the prediction. The regression analysis method is compared with 

decision tree and neural network in Tso and Yau’s study [6] in predicting energy 

consumption. According to their results, the decision tree model and neural network 

model are slightly better in model prediction with simpler structure and fewer variables 

in energy field compared to the regression method. More factors and complex 

interaction effects are considered in this paper, making the regression method with 

statistical analysis a good estimator for model prediction. 
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3 Input parameters selection 

Assembly time can be affected by many factors. Design for assembly (DOA) 

indicates several factors that influence the assembly operations, such as part handling, 

size and geometrical features [7]. Since this paper is only focused on the securing time, 

and the number of input parameters is limited in data collecting in order to reduce cost 

and time; thus, the securing related factors are selected as the input parameters. Two 

types of screws were used in the experiments: a) partial threaded screw, b) full threaded 

screw, as shown in the Fig.1a. The selected input parameters need to represent the 

engineering features for these two types of screws and could be physically measurable. 

Moreover, the parameters also need be read from the CAD model, which requires less 

input value from users. 

 

 

 

 

As a result of the aforementioned reasons, normal length, diameter, thread 

number and insertion distance were selected as controllable variables and coded in 

three levels; insertion difficulty, tool effect and nut were chosen as covariates, which 

Figure 1: (a) Two types of screws and (b) Detailed features for screw 

(a) (b) 
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were coded as 0 and 1 as shown in the Tab. 1, where 0 represents non-existent and 1 

existent for insertion difficulty and nut; and for tool effect, 0 represents manual tool, 

such as screwdriver and wrench and 1 represents drill driver. The covariates are the 

factors during the measurements which might affect the response, so the covariates 

would be useful to be included as design factors. Covariates in this design are defined 

as uncontrollable variables that influence the response value but do not need to be 

included in the DOE; therefore, it can be shown as an experiment or measurement error, 

and only need to be recorded in the experiments.  

 Input variables 
Coded 
symbol 

Coded level 

Controllable 
variables 

Normal length x1 -1(low) 0(mid) 1(high) 

Diameter x2 -1(low) 0(mid) 1(high) 

Thread number x3 -1(low) 0(mid) 1(high) 

Insertion distance x4 -1(low) 0(mid) 1(high) 

Covariates 

Insertion difficulty x5 0(no) 1(yes) 

Tool effect x6 0(no) 1(yes) 

Nut x7 0(no) 1(yes) 

 

 

 

3.1 Normal length and Diameter 

 Oriented bounding box volume (OBB) is a major factor in securing model. It is 

defined as the smallest box that encloses the fastener, and its volume affects the time 

in handling. For example, if the fasteners are very small or very large, it would require 

more handling time during the assembly. A small fastener have the most possibility to 

be released before it is located [7], so it is reasonable to assume OBB volume would 

influence the securing time in handling and installing. For most of the fasteners, the 

Table 1: Input parameters chosen for securing operation model. 
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OBB volume can be approximately calculated by the normal length and diameter of a 

fastener because of its rotational symmetry. Moreover, normal length and diameter may 

have interaction effects on each other or on other variables; thus, these two were 

selected to represent OBB volume as variables for securing model. 

 

3.2 Insertion distance 

 The insertion distance is used to estimate the distance for fastener insertion by 

approximating the depth that a fastener needs to be thread-inserted into the parts. 

Usually, this parameter can be represent by the thread length. However, the thread 

length cannot accurately describe the actual insertion distance for fastening in some 

situation. Meanwhile, the actual insertion distance inside the part is very difficult to 

collect from experiments. In order to save time and cost, approximately half of the 

thread length is estimated as the insertion distance for the situations where thread length 

could not represent insertion distance.  

 

3.3 Thread number 

 Thread number is another input parameter for securing model. It is defined as 

the how many turns are needed for fastening. There are two reasons that thread number 

was selected. First, if two types of fasteners have the same normal length and assuming 

fasten speed is constant, then the one with more thread number obviously need 

relatively more time than the one with less thread number. Second, it is a measurable 

feature related to the fasten speed, which is very hard to measure and control in the 

experiment. Again, approximately half of the thread number is used as input parameter 
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when a nut is involved in the fastening or the actual thread number is difficult to 

measure. 

 

3.4 Insertion difficulty 

 Insertion difficulty is used to describe the extra time for inserting fasteners 

before fastening, which happens quite often during the experiment. As shown in Fig. 

2a, the screws may be blocked by the bad alignment from two components. The value 

0 and 1 are assigned to represent the insertion difficulty. If there is no insertion 

difficulty, 0 is assigned, which means there is no insertion effect on the experiment. 

And a value of 1 will be assigned if more time is needed during the fastener insertion 

due to bad alignment of two connecting parts. 

 

 

 

 

 

 

Figure 2: (a) Insertion difficulty for two connecting parts; (b) Nuts option for two types of fastener. 

(a) 
(b) 
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3.5 Tool effect 

 Two fixture methods are designed in this research. Drill driver and manual tools, 

such as screw driver, wrench and torque wrench are used in the assembly process. Fig.3 

shows the tools used during the assembly process. This parameter is defined as: 0 

represents the manual tools and 1 represents the drill driver. 

 

 

 

3.6 Nuts 

 Two nut options are considered in this research, screws with nuts, coded as 1 

and screws without nuts, coded as 0, and the example is shown in Fig.2b. This 

parameter is included because screws with nuts would require relatively more time and 

more tools than the alternative. 

 

 

 

 

Figure 3: Manual tools and drill driver. 
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4. Design of experiments 

 In recent years, design of experiments has been applied to optimize and predict 

multiple variable systems in various fields [2][5]. The advantage of DOE is to use a 

statistical approach to avoid studying all possible combinations, and a minimum 

number of experiments is required to analyze the relationships between the response 

and multiple-variables. 

 

4.1 Response surface methodology and Box-Behnken design 

 Response surface methodology (RSM) is a statistical analysis for model 

building and predicting. By carefully designing experiments, RSM can identify the 

relationship between response and predictors or input variables [8]. Therefore, the goal 

of RSM in this study is to find an approximation for the true relationship between 

securing time and input parameters. 7 variables for securing model have been 

determined, but the relationship between the securing time and variables is unknown. 

The next step for RSM is to use a special experimental design to perform a response 

surface regression. If a full factorial design is constructed for seven variables, all 

possible variable interactions must be considered to estimate the fitting error of the 

model. Usually, it would require a large number of repeated testing which is time 

consuming and less efficient. The Box-Behnken design (BBD) was used to efficiently 

optimize the response of seven input parameters. Each factor was divided into three 

levels and a reasonable number of experimental runs were proposed at the same time 

for all seven variables. Thus by studying the designed combinations of factors, the 
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coefficients for each factor can be estimated and fitted in a mathematical model that 

best fits the experimental data. Moreover, this method also involves predicting the 

response of the fitted model and checking the accuracy of the model by comparing the 

predicted value to the experimental value [8]. 

  

4.2 Determination of levels and number of experiments 

 The controllable variables, normal length, insertion distance, diameter and 

thread number were chosen and assigned three range levels. Three coded range levels 

were defined to describe the different levels for each factor: low (-1), center (0) and 

high (1) as shown in Tab. 2. 

 

 

 The required combinations of four variables in Box-Behnken design are shown 

in Tab. 3. In this table, each (±1, ±1) combination within a row represents a full 22 

factorial design. In each block (each experiment), two factors are in all combinations 

for the factorial design, while the other factors are kept at the central values [9]. 24 is 

required as the minimum number of experiments in this BBD, and appropriate 

Range levels of variables chosen for the BBD  

Variables 
Coded 

Symbols 
Uncoded range levels 

  -1 0 1 

Normal length (mm) x1 0~20 20~40 40~60 

Diameter(mm) x2 5~7 7~10 10~15 

Thread length (mm) x3 5~14 14~16 16~18 

Thread number x4 5~7 10~13 13~22 

Table 2: Range level of variables chosen for the design 



12 

 

 

replications on experimental run 7 is used to decrease the experimental error. Therefore, 

29 experiments (with 5 central replications) were determined for the four factors BBD. 

Coded factor range levels for Box-Behnken 
design 

Experiment run 
Four-factor 

x1 x2 x3 x4 

1 ±1 ±1 0 0 

2 0 0 ±1 ±1 

3 ±1 0 0 ±1 

4 0 ±1 ±1 0 

5 ±1 0 ±1 0 

6 0 ±1 0 ±1 

7 0 0 0 0 

 

 

4.3Mathematical model for prediction 

 The mathematical relationship between the seven variables and the response 

can be approximated by the following quadratic polynomial equation: 

𝑇𝑠 =  𝑤0 +  𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑤5𝑥5 + 𝑤6𝑥6 + 𝑤7𝑥7 

          +𝑤11𝑥1
2 + 𝑤22𝑥2

2 + 𝑤33𝑥3
2 + 𝑤44𝑥4

2 + 𝑤55𝑥5
2 +  𝑤66𝑥6

2 + 𝑤77𝑥7
2 

          +𝑤12𝑥1𝑥2 + 𝑤13𝑥1𝑥3 + 𝑤14𝑥1𝑥4 + 𝑤15𝑥1𝑥5 +  𝑤16𝑥1𝑥6 + 𝑤17𝑥1𝑥7 

          +𝑤23𝑥2𝑥3  + +𝑤24𝑥2𝑥4 + 𝑤25𝑥2𝑥5 + 𝑤26𝑥2𝑥6 + 𝑤27𝑥2𝑥7 + 𝑤34𝑥3𝑥4 

          +𝑤35𝑥3𝑥5 + 𝑤36𝑥3𝑥6 + 𝑤37𝑥3𝑥7 + 𝑤45𝑥4𝑥5 + 𝑤46𝑥4𝑥6 + 𝑤47𝑥4𝑥7 

          +𝑤56𝑥5𝑥6 + 𝑤57𝑥5𝑥7 + 𝑤67𝑥6𝑥7 

where 𝑇𝑠  is response variable; 𝑤0is model constant; 𝑤𝑖  (i = 1,2,3,4,5,6,7) are linear 

coefficients; 𝑤𝑖𝑖  are quadratic coefficients; 𝑤𝑖𝑗  (j = 1,2,3,4,5,6,7) are cross product 

coefficients. The experimental process and operations are presented in section five. 

 

Table 3: Coded factor levels for Box-Behnken designs for four factors 



13 

 

 

5. Experiment of product assemblies 

 The goal of this experimental design is to collect data for model prediction, 

where the data consist of the input parameters and the time for each step during the 

assembly. In this experiment, three products were assembled by various participants 

and the operation processes were recorded. The assembly times were recorded by 

breaking the video into frames to avoid possible measurement error. 

 

5.1 Product selection for experiment 

 Various assembly products with significant distinctive features, such as fastener 

size, type and special features need to be selected carefully to ensure that wide ranges 

of data can be obtained for estimating a more universal prediction model. In this study, 

a chain saw, an engine and an airplane seat were selected to increase the variety of the 

data. For each object, an overall arrangement were created in one white and blank paper 

for each component individually. All parts were displaced in a random location on the 

paper without any connection to the next part to which they will be fastened. The 

authors traced the profile of all components for each object, and illustrated the assembly 

order by labeling number beside each component, and it is required that each 

participant follows identical instructions. The securing information, like location and 

type of fasteners, were provided to the participants before the experimental assembly. 

 

5.1.1 Chain Saw 

 Chain saw is a relative small and light-weight product primarily consists of 

twenty two plastic components, and only the chain supporter and the motor are made 
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of metal. This product also contains 16 threaded fasteners which are of 6 different 

types. This product is chosen because it has more complex alignment features than 

other products that make securing more difficult. And most of fasteners have less thread 

number than those from the other two products. Therefore, choosing this product can 

test whether it is suitable to select insertion difficulty and thread number as input 

parameters. 

 

5.1.2 Engine  

 The second product is a lawnmower engine. In order to save time in the 

experiment, the repeated components such as valves, valve rods and cams were 

removed to reduce the installation time. After the reduction, this engine has 21 parts, 

and most of them are made of metal. Nine fasteners from three different types are used 

for fastening the product. The majority of the parts is small and needs relatively more 

time to assembly. Meanwhile, the fasteners for this product consist of cap socket 

screws, which required different tools and all fasteners are full threaded screws with 

large thread numbers. Thus it provides significant diversity to the experimental data 

compared to the chain saw. 

 

5.1.3 Airplane Seat 

 The third assembly is an airplane seat. Overall 32 parts could be disassembled 

and 48 fasteners are used for the assembly. There are three reasons to select this 

product. First, it has both the largest and smallest size of fasteners of three products. 

Moreover, some fasteners have the longest normal length but a very small diameter, so 
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it is a good decision that normal length and diameter were selected to represent OBB 

volume. Second, compared to the first two objects, the airplane seat has a more complex 

structure and larger size, which can be used both for developing installing and securing 

model. Several screws came with nuts in the experiment. Selecting this product can 

obtain more experimental data related to the different size of fasteners, and also explore 

the nut effect for fastening time.  

 

5.2 Operating participants 

 In order to obtain more data from experiments, the assembly operations for each 

of the three products were conducted by five individuals, and all fasteners were 

repeated twice by each participant. All participants were properly trained and instructed 

before the experimental assembly, thus it is assumed all participants have qualified 

capability to accomplish the assembly operation.   

 

5.3 Experimental procedure 

 During the assembly, the experiments were designed and simulated as the 

manufacturing scenario, with the assembly layout shown in Fig. 4. All components 

were placed in a randomly designed location with a number that indicates the assembly 

sequence. The goal of this assembly layout is to collect the experimental data for the 

installing and securing operation at the same time. Each fastener and tool should be 

taken one per time during the experimental procedure. The majority of the fasteners 

were fastened by a drill driver, some fasteners were fixed manually by screw driver or 
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wrench. All fixture tools and fasteners were placed within the working area storage, 

and brought back after the installing or securing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) 

Figure 4: Three assembly layouts for product assembly experiments: (a) chain saw, (b) lawnmower 

engine (c) airplane seat 
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3.5 Time recording 

 The securing time for each step need to be recorded precisely in the 

experimental design. The experiments basically focus on two major times, inserting 

and fastening time. In order to eliminate the confounding factors, the authors defined a 

criterion that inserting time starts as the fastener touch the part, and ends when it is 

completed inserted in the hole. And then the fastening time is recorded as the fixture 

time by tools. 

 To minimize the error during the time recording, a High Definition (HD) 

camera was used to record every step of experiment for each participant. All videos 

were replayed on Video Studio X Pro, in which each second was broken down in 30 

frames. By applying this method, the authors could precisely read the assembly time 

by simply calculating how many frames were used during each step of assembly. 
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6. Results and discussion 

 The experimental data and analysis of the stepwise regression model for BBD 

are discussed in this section. The relationships between the securing time and selected 

variables were shown in the plots. And experimental data was used to construct 

predictive model for securing time. The analysis and variance (ANOVA) was used to 

determine whether this predictive model is significant or not [9]. The model was 

improved and finalized through the stepwise regression analysis.  

 

6.1 Data processing  

 Each experimental run (each fastener) was done by five participants with two 

replications. That means, for each type of fastener, ten datasets were collected from 

five participants. The experimental time were transformed with a natural log logarithm. 

Using all of data instead of the mean response is to eliminate the experimental error 

and consider the person to person variance in the further work. Fig. 5 shows the log-

transformed securing time with 4 controllable variables. The plots don't show a 

monotonously increase for each variables, which is possibly due to the fact that the 

experimental sample is not large enough or there are interaction effects, so the securing 

time trend cannot be clearly seen from these plots. Considering this situation, a multiple 

regression method is used to estimate the securing time by the seven variables.  
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6.2 ANOVA results and regression model 

 A quadratic model using standard multiple regression was built and the result 

shows that this model is highly significant regardless of the significance of factors. The 

model has a F-value of 37.87 with a low probability value (P = < 0.05). The adjusted 

R-square is 0.775. This value suggests that the model can predict 77.5% of the 

variability in the response [10]. The p-values were used to identify the significant 

variables, and they also showed whether interactions between different factors are 

significant. Given the p-value of the F-test for each factor and interactions shown in 

Tab. 4, several terms in this model suggest an insignificant effect on the response time. 

Figure 5: Plots of experimental time with input parameters: (a) Normal length; (b) Diameter; (c) 

Thread length; (d) Thread number 
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Including these terms may provide a well-fitted model for the training data, but could 

result in an imprecise prediction for the new data.  

 

 

 

6.3 Stepwise regression method 

 In view of this full term quadratic model, some variables or terms have an 

insignificant effect on the predicted response. To improve the model, a robust method 

is to use stepwise regression to add terms that contribute to the prediction or remove 

terms that don’t. In general, the stepwise regression model is to select the best 

combination of variables to predict the response, not all variables or interactions are 

Table 4: ANOVA table for the standard regression model 
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kept in the equation [2]. During the analysis, one predictor is removed or added at each 

time, where the predictor could be a variable or interaction; the process of selecting 

significant factors stops when the predicted model cannot be improved in terms of 

increasing the correlation, adj-R2 value [10]. All variables and interactions are tested 

by a F-test to fit the model, and a significant factor will be kept if the P-value given by 

F-test is less than 0.05. 

 The first step for stepwise regression is to choose a constant model as the initial 

equation. In this research, the initial equation is comprised of the first-order and second-

order terms of all factors. Then, the significant interaction terms are added and 

insignificant variables are removed. The finalized prediction model through stepwise 

regression analysis is shown in the following equation (in term of coded symbols). 

 

Log(Predicted time) = 9.170 − 0.049𝑥1 −  1.662𝑥2 + 0.053𝑥3 + 1.543𝑥5 

               + 2.774𝑥6 − 0.904𝑥7 + 0.001𝑥1
2 + 0.101𝑥2

2 − 0.004𝑥3
2 

                                −0.188𝑥2𝑥5 − 0.651𝑥2𝑥6 + 0.563𝑥3𝑥6 + 0.055𝑥3𝑥7 + 0.356𝑥5𝑥7 

 

The above equation is based on the quadratic model improved by the stepwise 

regression method. The p-value of each factor was used to examine the significance 

level, which also show the interaction effect, as shown in the Tab. 5. The model’s F-

value of 69.6 implies that this reduced model is significant. The significant variables 

and interactions are indicated as the value of "Prob>F" less than 0.05 [10]. Thus, 

𝑥1, 𝑥2, 𝑥3, 𝑥5, 𝑥6, 𝑥7, 𝑥1
2, 𝑥2

2, 𝑥3
2, 𝑥2𝑥5, 𝑥2𝑥6, 𝑥3𝑥6, 𝑥3𝑥7, 𝑥5𝑥7 are significant model 
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terms. The adjusted R-square value of this quadratic model is 0.769, which indicates 

that the fitness of the chosen model of this process is good. 

 

 

 

 

6.4 Verification and predication testing 

 A normal probability plot of residuals is shown in Fig. 6. The plot shows the 

error terms of the regression model are approximately normally distributed along a 

least-square line. Thus, it is reasonable to assume that no serious assumptions are 

violated under the analysis [9].  The histogram of residuals show there is no obvious 

outlier in the modified model. 

Table 5: ANOVA for stepwise regression model 
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 This model was built using the training data, and three testing data were used 

to test the prediction model. Tab. 6 shows the comparison of prediction value and 

experimental value. For the 29 training data sets, mean experimental response was used 

to examine the model accuracy. According to the results, 75.9% of the experimental 

points distribute between the 95% confidence interval, which is basically close to the 

fitness correlation of 0.769 (adjusted R-square). Three new testing data that were also 

collected from the experiment but didn’t get use in the model building were chosen for 

the verification. Fig. 7 shows the 95% confidence interval (CI) of predictions, each data 

point represents the log-transformed securing time from five operating participants. 

The results show the mean response (dash line) falls between the predicted confidence 

 

Figure 6: Plot of histogram of residuals and normal probability of residual for securing time model 
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interval, but only 43% of experimental data falls in-between confidence bounds, which 

is much lower compared to the adjusted R-square value. One possible reason for this is 

that all experiments were done by students, even though they were trained before the 

experiments, there is still large variance in some operations, as shown in Fig. 8. 

Moreover, the variable combinations requirements for BBD couldn't be meet perfectly 

in the experiment, some of the experiment runs are missing because of the selection of 

product and experimental cost. Therefore, a better method need to be developed to 

eliminate the person-to-person variance effect and enhance the model accuracy in the 

further work. 

Table 6: Three experimental runs with their experimental and predicted response (s) 
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Figure 7: Predicted log time vs. experimental value. The blue section define the 95% 

confidence bound for predicted log time; the diamond points are experimental value 

from 5 participants; dash line is the mean response for the experimental value. 

Figure 8: Person to person variance in the experiments. Box plot defines the range 

and mean response for each experiment run; the blue point and solid line are used to 

represent the corresponding variance.  
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7. Conclusion 

 Securing operation time for various type of fasteners was optimized using Box-

Behnken design of experiments based on the regression analysis of experimental data. 

The securing prediction model could be a support to develop an automated time 

prediction tool for evaluating assembly times for sequence planning. Three assembly 

experiments were conducted to obtain the training data to ensure product diversity. A 

HD camera was used to accurately record time data. The Box-Behnken experimental 

design is an efficient method to predict securing time from limited number of 

experimental runs with the help of stepwise regression analysis. Out of seven different 

variables chosen for the study, six were found to be significant for predicting a securing 

operation time. Given the experimental data for building model, the predicted value 

had an adjusted R-square value of 0.769, which could be considered as a good fit of the 

chosen model in analyzing the experimental data.  

 The ANOVA results indicate that normal length, diameter, thread number, 

insertion difficulty, tool effect, nut, normal length squared, diameter squared and thread 

number squared are the main parameters, which have significant influence on securing 

time. The interactions between diameter and insertion difficulty; diameter and tool 

effect; thread number and tool effect; thread number and nut option; insertion difficulty 

and nut option also have great effects on securing time.  

 Based on the experimental design and analysis, the BBD approach was used to 

develop a predict model with low cost and high efficiency. The results indicate that the 

prediction model can fit the training data with 76.9% variability in the response; but 

only 43% for testing data because of the larger experiment variance from participants. 
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For the further work, more experimental data need be obtained from more complex 

assemblies to achieve higher accuracy. More analyses need to be conducted to 

eliminate the person-to-person variance during the experiments. 
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