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The vegetation of a 420 square mile area of the

Oregon Coastal Mountain Range was mapped using data from

the multispectral scanner system aboard Landsat.

Advantages of this mapping system include rapid synoptic

coverage of the same geographic area at different

periods in time at a reduced cost compared to

photogrammetric mapping. The main disadvantages are the

relatively poor resolution (1.1 acres) and

classification accuracy for forest vegetation types.

This project was designed to investigate the use of

Principal Components Analysis (PCA) to combine data from

two different dates (May and late July) in an attempt to

improve classification accuracy. There were two

significant results of this study.

First, the overall classification accuracy was 7.7

percent (67.4 to 75.1 percent) higher for the July as



compared to the May overpass when only single dates were

used. This may be attributed to the stable phenological

condition of July vegetation as compared to more

variable condition in May. Spectral reflectance

constantly changes over the spring growth period and

varies greatly with changes in elevation.

Second, it was found that combining data from the

May and July overpasses using PCA resulted in an

additional increase in overall classification accuracy

by another 7.5 percent (75.1 to 82.6 percent) over the

July single date classification.
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Multitemporal Classification of Vegetation

in the Oregon Coastal Range

Using Landsat Multispectral Scanner Data

INTRODUCTION

As Paine (1981) defined in his book,

"In the broadest sense, the term remote
sensing involves techniques used to detect and
study objects at a remote distance without
physical contact.".

The process of remote sensing may be divided into three

parts: data collection, data storage, and data analysis.

Data collection requires a sensor such as the human eye,

a camera, or a scanner. Data storage for the human eye

is the brain, for a camera it is photographic film, and

for scanner it is usually a computer tape or disk.

Data analysis may be accomplished by the brain

and/or by computers with sophisticated software. All

remote sensing systems analyze differences in emitted or

reflected electromagnetic energy in one or more discrete

ranges of wavelength (spectral bands). The human eye is

limited to the visible light range of the spectrum

between 0.4 and 0.7 micrometers. Photographic film about

doubles this range to 0.3 to 0.9 micrometers. Scanners

and other remote sensors greatly expand this range. When

the range of sensitivity is separated and recorded



separately for two or more discrete bands, multispectral

analysis can be performed. Lillesand and Kiefer (1979)

stated that,

"Probably no combination of two technologies
has generated more interest and application
over a wider range of disciplines than the
merger of remote sensing and space
exploration".

The application of remote sensing from space became a

worldwide consideration after the first earth resource

satellite (Landsat-1) was successfully launched in 1972.

Vegetation mapping from space is a particularly inter-

esting area of research and is useful for resource

inventory, management, and planning. Much research has

been done and many improvements have been made since the

launch of Landsat-l. Advantages of satellite imaging are

synoptic coverage and repeated (multitemporal) coverage

of the same geographic area over time. These attributes

enable us to obtain information for resource management

in a rapid and economic manner. However, many problems

remain of which two are: (1) how can classification ac-

curacy be improved using the relatively coarse reso-

lution data provided by the Landsat Multispectral

Scanner (MSS) systems aboard the earth resource

satellites, and (2) how can we better utilize

inultitemporal information that is available due to

repeated coverage over time.
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This project was undertaken to investigate these

two questions. The objective in this project was to

improve the classification accuracy of information

derived from Landsat-acquired multispectral scanner data

for use in forest management and resource planning by

using multitemporal information. The plan was to use two

classified MSS image segments from different seasons and

to use Principal Components Analysis (PCA) as an aid in

producing a new and more accurate vegetation map. The

increased information resulting from phenological change

in forest sites and associated vegetation canopies

should decrease the uncertainty inherent in a single

date classification. Through the use of PCA, observed

responses from several overpasses at different dates

(seasons) could be modelled and an optimal combination

of temporal-spectral variables could be selected. This

study was limited to two dates and the combined PCA

results were compared to each of the two data sets that

were analyzed separately.

A combination of two Landsat overpasses is the

simplest combination of multitemporal data; yet, this

combination is an excellent example for investigating

the more complicated problem of information extraction

from multilayered Geographic Information System (GIS)

data. Furthermore, the logic and decisions required to

3



resolve the assignment of two attributes concerning the

same object, often with the attributes in conflict or

very uncertain, could be the basis for a computer-based

expert system that could provide satisfactory

assignment.
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LITERATURE REVIEW

Characteristics of Landsat

Landsats 1, 2, and 3 were launched into circular

earth orbits at a nominal altitude of 919 km (570

miles). All satellites had an orbital inclination of 99

degrees which is a nearly polar orbit. They orbited the

earth once every 103 minutes (14 orbits per day). The

sun-synchronous orbit caused the satellites to cross the

equator at approximately the same local time (9:30 to

10:30 a.m.). Because each successive orbit shifted

westward about 2875 km (1786 miles) at the equator,

after 14 orbits (i.e. one day) the 15th orbit shifted

westward from orbit 1 by 159 km (99 miles) at the

equator. Consequently, 18 days (about 20 times a year)

were needed to cover the 2875 km gap at the equator

(i.e., the temporal resolution was 18 days). Because the

scanning swath of each path was 185 km (115 miles) and

the westward shift was 159 km, there was about 26 km (16

miles) of sidelap (14 percent) at the equator and about

85 percent at 80 degrees of latitude (Jensen, 1986,

Paine, 1981)

For Landsats 4 and 5 the crossing time at the equa-

tor was changed from 9:30 to 11:00 a.iu. This change

resulted in higher sun angles to reduce the amount of
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shadow in the imagery. Generally this change helps vege-

tation mapping. However, it may reduce the relief effect

and increases the possibility of more cloud cover.

Another change is that the altitude of Landsats 4 and 5

was changed from 919 km (571 miles) to 705 km (438

miles). This change reduced the 18 day temporal reso-

lution to 16 days, but introduced more relief

displacement over mountainous terrain (Jensen, 1986).

Landsat has orbited three kinds of sensor systems:

multispectral scanner (MSS), return beam vidicon camera

(RBV), and the thematic mapper (TM). For this study the

emphasis is on MSS data. The MSS system was placed on

each of the five Landsat satellites. The instantaneous-

field-of-view (IFOV) of each MSS detector is square with

a ground resolution element of about 79 m by 79 in

(67,143 ft2). There are four energy ranges sensed by the

MSS system. The spectral range for each band is: band 4

from 0.5 to 0.6 micrometers (green), band 5 from 0.6 to

0.7 micrometers(red), band 6 from 0.7 to 0.8 micrometers

(near infrared), and band 7 from 0.8 to 1.1 micrometers

(near infrared). MSS bands 4, 5, 6, and 7 were re-num-

bered as bands 1, 2, 3, and 4 on Landsats 4 and 5

(Jensen, 1986). The two visible bands (4 and 5) are good

for identifying cultural features such as urban areas

and gravel pits. Because band 5 can better penetrate the
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atmosphere, it often provides a higher contrast image.

Infrared bands 6 and 7 are useful for delineating water

bodies, vegetation differences, and soil condition

because of high absorption by water (Lillesand and

kiefer, 1979)

Because the scanning mirror oscillates ± 2.89

degrees, the scanner has an 11.56 degrees field of view

which results in a swath width of about 185 km (115

miles) for each orbit. The analog signal from each

sensor is transformed to a digital value using an on-

board analog-to-digital converter. The data are

quantized to 6 bits which are ranging from 0 to 63.

These data are then rescaled to 7 bits (0 to 127) for

three of the four bands (bands 4, 5, 6) after received

at ground receiving stations (Jensen, 1986). The

sampling rate is about 100,000 times a second for each

mirror sweep in a west-to-east swath and results in a

ground distance of 56m between samples. Because of this

spacing, the nominal pixel (PICture ELement) size of MSS

data is 56m by 79m instead of 79m by 79m and there is an

overlap of about 23m on the ground (Lillesand and

Kiefer, 1979).

A typical MSS scene after processing consists of

approximately 2,340 scan lines and each line contains
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about 3240 pixels. This is 7,581,600 pixels per channel

and over 30 million observations for all four bands. One

MSS scene covers an area about 185 by 178 km with

approximately 10 percent endlap. It would require

approximately 5,000 aerial photographs at 1:15,000 scale

to cover the same area (Jensen, 1986).

Resolution Considerations

Many studies have been undertaken in an effort to

map different types and levels of ground vegetation and

to increase the classification and mapping accuracy.

Various factors are involved and overall resolution is

very important. The types of resolution may be defined

as spatial, spectral, temporal, and radiometric

(American Society of Photogrammetry and Remote Sensing,

1983)

Spatial resolution is a measure of the smallest

angular or linear separation between two objects that

can be resolved by the sensor (Swain and Davis, 1978).

Spatial resolution of aerial photography is commonly

evaluated as the number of resolvable linear pairs per

millimeter on a photograph. Spatial resolution of other

sensor systems is just the measurements of the ground-

projected IFOV of the sensor system. Spectral resolution

is usually defined as "the dimensions and number of

8



specific wavelength intervals in the electromagnetic

spectrum to which a sensor is sensitive" (Jensen, 1986).

Temporal resolution of a sensor system is the time

intervals of repeated measurements by a given sensor

over the same area. Radiometric resolution can be

defined as how sensitive for a given detector to detect

differences in signal strength when it records the

radiant flux reflected or emitted from the terrain

(Jensen, 1986).

It is usually assumed that improvements in

resolution increase the probability that phenomena may

be remotely sensed more precisely (Everett and Simonett,

1976). The trade-off is that higher resolution usually

results in additional data processing capability for

human and/or computer-assisted analysis (Jenson, 1986).

Different levels of vegetation classification require

different levels of resolution, and there probably is an

optimal range of resolution for a particular level of

vegetation classification. Also, any sensor requires a

minimum amount of electromagnetic energy in order to

collect the data. Lowering the sensor's sensitivity

limitation is another possible approach for improving

resolution.

Spectral Reflectance Features
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How does the sensor on the platform gain

information about an object, area, or phenomenon without

being in direct contact with it? The key element

involved is electromagnetic energy: visible light,

infrared radiation, microwave radiation, or any other

form of wave-transmitted energy. A sensor in space

simply collects the electromagnetic energy reflected or

emitted by the objects being sensed. The electromagnetic

energy follows the basic equation of the wave theory:

C =

where C is the velocity of light, f is the wave frequen-

cy and is the wavelength. Because C is a constant

(3X108 m/sec), frequency and wavelength for any given

wavelength are related inversely. Figure 1 on next page

shows the electromagnetic spectrum on a logarithmic

scale. The "visible" portion of the spectrum is

relatively small because the spectral sensitivity of the

human eye ranges only from about 0.4 to about 0.7

micrometers. Blue ranges from approximately 0.4 to 0.5

micrometers, green from 0.5 to 0.6 micrometers, and red

from 0.6 to 0.7 micrometers. Ultraviolet energy is on

the short wavelength side of the visible spectral

region. Beyond the visible red region are the infrared

wavelengths which contain reflected and thermal infrared

10



energy. The radar wavelength range (microwave portion of

the spectrum) is found at much longer wavelengths (1mm

to flu) (Lillesand and Kiefer, 1979, Paine, 1981).

Wavelength (pm)

10'i0'1010i01010-10' 1 10 102 iø 10 10 10' 10 10

Ultraviolet
(UV)

I

I

I \

I

I Visible \
/

0.4 0.5 0.6 0.7 (pm)

:22

Figure 1. The Electromagnetic Spectrum (Paine, 1981).

The particle theory is important for an

understanding of how electromagnetic energy interacts

with matter (Lillesand and Kiefer, 1979). The energy of

a quantum is given as :

E = hf or E = hC/

where E = energy of a quantum, Joules(J)

h = Planck's constant, 6.626 X io J sec

C = velocity of light

Reflected infrared
(I R)

I
Thermal

JR
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f = wave frequency

= wavelength.

The magnitude of numbers in this equation is not

important but the relationship is (Paine, 1981). It is

apparent that the longer the wavelength, the lower its

energy is, because the energy of a quantum is inversely

proportional to its wavelength. This indicates that

longer wavelength radiation is more difficult to sense

than shorter wavelength radiation (Lillesand and Kiefer,

1979, Paine, 1981). For example, Thematic Mapper band 6

(thermal IR) which has the longest wavelength among all

the bands in Landsat 4 or 5 required a 120m pixel for a

measurable signal instead of the 30m pixel sensed in the

other six bands.

The sun is the major source of radiation energy for

remote sensing. However, terrestrial objects are also

sources of radiation because all matter at temperatures

above absolute zero emits electromagnetic radiation

(Lillesand and Kiefer, 1979). The Stefan-Boltzmann Law

is used to calculate how much energy an object radiates,

W =

where W = total radiant emjttance from the surface of a

material, Wm2;
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a = Stefan-Boltzmann constant,

5.6697X108 Wm2 K4;

T = absolute temperature(°K) of the emitting

material.

This equation adequately describes a blackbody

which is a hypothetical, perfect radiator that absorbs

and re-emits all energy incident upon it (Lillesand and

Kiefer, 1979). The wavelength at which a blackbody

radiation curve achieves the maximum is associated to

its temperature by Wien's Displacement Law,

m=A/T

where m = wavelength of maximum spectral radiant

emittance, and

A = 2898 /.Lm°K,

T = Temperature, °K.

Because the temperature of the earth's surface ma-

terials such as soil, water, and vegetation is about 300

°K (27 °C), the wavelength of the maximum spectral

radiation from these features is about 9.7 micrometers.

Because this radiation relates to terrestrial heat, it

is often called "thermal infrared" energy. Reflected IR

and emitted IR wavelengths are usually divided at about

13



3 micrometer wavelength. (Lillesand and Kiefer, 1979).

All radiation caught by remote sensors passes

through some part of atmosphere (the energy flow path).

The path of incident and reflected sun light to a sensor

in space usually passes through the atmosphere twice.

However, this is not always the case. For example, only

one short atmospheric path length is involved in an

airborne thermal sensor (Lillesand and Kiefer, 1979,

Paine, 1981)

There are two main effects when electromagnetic

energy interacts with the atmosphere: scattering and

absorption. Atmospheric scattering is usually caused by

diffusion of particles in the atmosphere. It is very

unpredictable. Absorption is usually caused by water

vapor, carbon dioxide, and ozone. These molecules absorb

electromagnetic energy in certain wavelengths. Those

portions of the spectrum not filtered out are called

"atmosphere windows". For example, multispectral scan-

ners use the windows from about 0.3 to 14 micrometers

(the thermal infrared windows are at 3 to 5 and 8 to 14

micrometers), and the radar and passive microwave

systems operate through the window in the 1 mm to lm

region (Lillesand and Kiefer, 1979, Paine, 1981).

14



When incident electromagnetic energy hits the earth

surface there are three essential energy interaction

features: reflected energy, absorbed energy, and

transmitted energy. Different earth features will result

in various proportions of energy reflected, absorbed,

and transmitted. For a given earth feature these

proportions will deviate at different wavelengths. These

differences help distinguish different features of an

image (Lillesand and Kiefer, 1979).

The reflecting surface is either a specular or a

diffuse reflector depending on the surface roughness of

the object and on the incident wavelength. For example,

fine sand appears rough in the visible portion of the

spectrum (short wavelength) but it appears smooth in the

microwave portion (long wavelength). The portion of

incident energy that is reflected by an object is called

spectral reflectance which is the ratio of reflected

energy to incident energy for a given wavelength. A

graph that shows the spectral reflectance of an object

as a function of its wavelength is called a spectral re-

flectance curve or signature (Lillesand and Kiefer,

1979, Paine, 1981).

Vegetation

Understanding observed spectral reflectance

15



features of vegetation classes is critical for vege-

tation classification and mapping based on remotely

sensed data. Figure 2 illustrates typical spectral

reflectance patterns for healthy green grass, dead or

senescent grass, and dry soil. There is always a "Peak-

and-Valley" shape for live healthy green vegetation

(Lillesand and Kiefer, 1979). Valleys in the visible

0

BLUE GREEN RED REFLECrEE-mIFRARED
BAND 4 BAND S BAND 6 BAND 7

l:

TT1TTI
,'. DRYSOIL I

10

GREEN dRASS
I I

I I I I

I
I I

I

16

40

I
I

I
I

I

I
I

I

I
I

I
I
I

0.4 0.5 0.6 0.7 0.8 Li
WAVELENGTh (MICROMETERS)

Figure 2. Spectral Signature of Healthy Green Grass,
Dead or Senescing Grass, and Dry Soil
(Jensen, 1986).

spectral region are mainly caused by leaf pigments,

primarily chlorophylls (Gates, et al., 1965).

Chiorophylls definitely absorb energy (about 80 to 90



percent) in the visible bands centered between 0.45 and

0.65 micrometers (Jensen, 1986, Lillesand and Kiefer,

1979). Healthy vegetation appears green because of high

absorption of energy associated with the blue and red

region and the high reflection of energy associated with

green region by plant leaves (Lillesand and Kiefer,

1979). If a plant is under certain stress that

interferes its normal growth, the concentration of

chlorophyll pigment is reduced. This can result in less

absorption in the red wavelength region (0.55 to 0.68

micrometers) and a significant shift in the spectral

reflectance curve (Waring, 1986). The curve of "dead

grass" shows this trend very clearly.

The reflectance of healthy vegetation increases

dramatically starting at about 0.7 micrometers where

about 40 to 50 percent of the incident near infrared

energy is reflected (Jensen, 1986). This reflectance

increase in the near infrared band (0.7 to 1.3 microme-

ters) is caused by scattering at the interfaces of the

cell walls (Knipling, 1970). Because the internal

structure of plant leaves varys among plant species,

many plant species can be separated by reflectance

measurements in this range. Also, because many plant

stresses actually change the reflectance in this region,

vegetation under stress can be detected by sensors

17



operating in this region (Lillesand and Kiefer, 1979).

Soil

Figure 2 shows that the soil curve has much less

peak-and-valley variation comparing to the vegetation

curve. Soil moisture content, soil texture, surface

roughness, the presence of iron oxide, and organic

matter content are some of the causes affecting soil

spectral reflectance. Soil moisture content will de-

crease reflectance. Soil moisture content is also

correlated to soil texture. Coarse, sandy soils usually

have a low moisture content resulting a relatively high

reflectance because of well drained condition while the

poorly drained fine soils normally have lower

reflectance. However, if there is no water in the soil,

there will be a reverse tendency observed: coarse soils

will be darker than fine soils (Lillesand and Kiefer,

1979)

Organic matter and iron oxide in the soil can also

reduce reflectance. Because these factors are very

variable and complicated, the reflectance patterns of a

soil are consistent only within particular ranges of

conditions, and it is important to be familiar with the

conditions at hand (Lillesand and Kiefer, 1979).
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Spectral signatures

Spectral reflectance curves are sometimes called

spectral signatures (Paine, 1981). Figure 3 shows the

spectral signature of coniferous and deciduous trees.

The reflected infrared region provides an opportunity to

separate conifers from hardwoods. As Paine (1981)

mentions, spectral signatures have two valuable

functions:

"(1) they provide a comparison standard for
identifying unknown objects, and (2) they are
used to identify spectral regions for the
differentiation of objects."

z

A'
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Figure 3. Spectral Signiture of Coniferous and
Deciduous Trees (Wolf, 1974).



However, it might be better to call spectral signatures

spectral response patterns because there is considerable

variation within each wavelength for same type of object

under different conditions (Paine, 1981). Spectral

reflectance curves measured by a remote sensor may be

quantitative but they are not necessarily unique.

Temporal effects (seasonal changes), spatial effects

(size, shape, and proximity), moisture stress, genetic

variation within a species, and soil nutrients can

produce different spectral responses for some species.

Studying spectral signatures and spectral responses is

important in vegetation classification because a few

general rules hold; however, these guidelines are not

unique and absolute. There is considerable variation

under different environmental conditions (Jensen, 1986,

Lillesand and Kiefer, 1979).

Spectral class plot

One of the valuable tools available for

interpreting clusters of spectral signatures derived

from satellite digital data is a two-dimensional plot of

spectral data. For Landsat data the most common plot is

the spectral response of band 4 (infrared) over band 2

(visible) for known classes and features. Similar plots

can be made for TM data using TM bands 3 and 4.

Generally, the two bands selected are those two least
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correlated; also, the first two principal components

from principal components analysis (PCA), to be

explained later, can be used (Jensen, 1986, Murray,

1981, 1986)

For both MSS and TM data, including multitemporal

combinations, two-dimensional plots provide adequate

representation of the range of spectral responses

together with similarities and differences. Plotting

allows a pictorial representation of the spectral

structure of a data set. It greatly helps the analyst in

his interpretation (Murray, 1986).

Image Processing and Classification

Statistics

It is useful to look at the fundamental univariate

and multivariate statistics of the multispectral data

set at the beginning of data processing. Statistics such

as the mean, standard deviation, covariance matrix,

correlation matrix, and frequencies of spectral band

response provide valuable information. Covariance or

correlation matrices are helpful for understanding

relationships between bands or variables. For example,

high correlation between one band and other bands

indicates that there is significant redundancy. In this
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case one or more bands could be eliminated from the data

set to reduce the amount of computation when a large

data set is involved such as a full scene of a TM image.

A histogram representation is often used in remote

sensing image processing, because histograms for each

band can provide a clearer view of the quality and

specific features of the data (Jensen, 1986).

Image corrections

Some image correction is usually required before

analyzing the image. This is usually considered as part

of image preprocessing. For example, image rectification

is often performed before data classification. There are

two common types of errors to be considered in

preprocessing: radiometric and geometric. Both kinds of

error can be divided further into systematic and nonsys-

tematic, e.g., scan skew is a systematic geometric

error, and changing altitude is an nonsystematic error

(Jensen, 1986). Corrections for systematic errors and

for radiometric response are made when the data are

processed into computer-compatible format from the raw

telemetry. However, for MSS data the user may choose

geometrically corrected, partially corrected, or

uncorrected data depending on their application and

interest (Holkenbrink, 1978).
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For accurate mapping at 1:24,000 scale the user

must perform additional image registration. For mapping

at this scale, no matter what method is used, the

registration technique relies on the use of ground

control points (GCP5) located on the image and on a

corresponding map in order to empirically determine a

mathematical coordinate transformation to correct

geometry errors (Murray, 1983). Two basic operations are

used in the registration process, spatial interpolation

and intensity interpolation (Green, 1983).

There are two general approaches to spatial

interpolation, analytic correction and least-squares

transformation. The analytic approach uses mathematical

models. These models are based on the relative geometric

configuration of the scene, the platform, and the

sensor. However, because of the complexity of many

factors, such as inadequacies of the model, errors in

the estimation of model parameters, and unmodeled random

distortion, ttthjs approach often does not provide

correction at the desired level of accuracy't (Ford,

1985)

The spatial interpolation using a least-squares

transformation method has been presented in detail by

Ford (1985) and Jensen (1986). Three steps are commonly
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used in this procedure. The first step is identifying

ground control points in the original image (such as

Landsat MSS single-band, grey-level map) and on the

reference map (such as a 7.5', 1:24,000

orthophotographic map). Then the least-square coordinate

transformation can be computed by using a GCP5 data set.

For example, a linear regression might be used as

follows:

X' = a0 + a1X + a2Y

= b + b1X + b2Y

where X, Y are the positions in the reference map and

X', Y' are the corresponding positions in the original

MSS image.

The third step is to look at the regression

residuals or root mean square error. If any residual or

total root mean square error exceeds the threshold,

established by the analyst before the GCP calculation,

the point which has the largest error is deleted and the

regression can be started again until a predetermined

goal is reached.

The second operation, intensity interpolation, can

be conducted after spatial interpolation. Usually
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relocation of a pixel's value from the original image to

the corrected image requires a resampling procedure,

such as nearest-neighbor, bilinear interpolation, or

cubic convolution to decide a new pixel's value in the

corrected image. The nearest-neighbor resampling method

is often preferred for vegetation classification not

only because it is computationally efficient but also

because it does not alter the pixel brightness values

during resampling (Jensen, 1986).

Multispectral image classification

Image classification is one of the most important

steps in the processing of remotely-sensed digital data.

Nultispectral image classification uses imagery

collected in multiple regions of the electromagnetic

spectrum. Nultispectral classification may be either

supervised or unsupervised classification (Jensen,

1986)

In supervised classifications, the analyst usually

locates specific sites on the image to be classified

that represent homogeneous examples of the interested

thematic classes, such as urban, agriculture, or forest

(Townshend, 1981). These sites are known by the analyst

before the classification and are commonly called

training sites (Jensen, 1986). The analyst may identify
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and locate them through a combination of field work,

aerial photo interpretation, maps, and personal

experience (Heaslip, 1975).

In unsupervised classifications, the identities of

thematic classes to be classified in the image are not

generally known before hand because ground truth is

lacking or surface features within the scene are not

well defined (Jenson, 1986). The unsupervised

classification consists of two steps. The first step is

to generate spectral classes (spectral "clusters")

according to the class mean, variance and spectral

characteristics. The second step is to group spectral

classes into the information classes of interest.

Unsupervised classification usually requires only a

minimal amount of initial input from the analyst. It is

coinputationally efficient and is easier to handle. How-

ever, the analyst needs adequate experience and a good

understanding of both spectral classification and

grouping procedures. The minimum distance classifier is

often used in the unsupervised classification (Jensen,

1986, Murray, 1981).

Given the same input statistics, a different

classifier will produce comparable results (Hixson, et

al., 1980). Variables with the greatest influence on
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classification results are the training statistics used.

In practical use, the classification algorithm used will

be the one most commonly available. Therefore, the

analyst should understand the basic principles of the

classifier and how to select representative test sites

and statistics (Jensen, 1986, Murray, 1981).

Although there have been numerous reports and

investigations on selecting an optimal subset of bands

for classification, the computational effort required

makes this a questionable practice for each study.

First, even "redundant" bands contain some additional

information. Second, the effort need to select an

optimal set of bands is not trivial with only a limited

reduction in the overall computing task. Generally

speaking the cycle times required to fetch even a

limited set of variables far exceeds the time required

for the arithmetic operations following memory or disk

access.

The classifier used in multispectral classification

assigns an unclassified pixel to a known class or a

spectrally similar cluster (Jensen, 1986). If it is a

supervised classification, the known class is the final

information class. It is a spectral class to be grouped

into the information class in the unsupervised clas-
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sification. The minimum-distance classifier is a

coniputationally simple and commonly used classifier. Its

classification accuracy may be comparable to other more

computationally intensive classifiers, such as maximum

likelihood classifier (Hixson, et al., 1980). The

similarity measure used in the minimum-distance

classifier is sometimes slightly different, such as,

Similarity measure : D = E j(BV - M )/ ]2

Euclidian distance : D = [ E (BV - )2 ]l/2

where: BV is the brightness value, , represents mean

value, and a is the standard deviation (Jensen, 1986,

Murray, 1981).

In the maximum likelihood classifier, each input

pixel is assigned to a class according to the

probability which is most probable (or most likely) when

compared to all other classes. Maximum likelihood

classifier requires normal distribution of the training

data statistics for each class in each band (Jensen,

1986). Bayes' decision rule is often used in the maximum

likelihood classifier and a priori probabilities are

introduced into the classifier (Strahler, 1980). The

maximum likelihood classifier is computationally
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intensive. It needs more computations than either the

minimum distance or parallelepiped classifier and it

does not always show superior results (Jensen, 1986).

The parallelepiped classifier is a another widely

used classifier. It is established on simple Boolean

logic. It is a computationally efficient classifier.

However, due to the overlapping problem caused by some

parallelepipeds, the unknown pixel might please the rule

of more than one class. Both the parallelepiped and

minimum distance classifiers are nonparametric, because

they do not require the normal distribution in the

training data set (Jensen, 1986).

Principal Components Analysis

Principal components analysis (PCA) is a powerful

tool for digital image processing. New principal

component images transformed from raw data by PCA are

often more interpretable than the original data (Jenson,

1986). For example, principal components analysis of

spectral class mean reflectance values can provide more

i n t e r pr eta b 1 e information in multi spectral

classification (Murray, 1983). PCA can also be used to

compress the data set dimensionally without losing a

significant amount of information from the original

image. For example, the seven thematic mapper bands may
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be compressed into just two or three new principal

component images to reduce the data dimensionally

without losing significant amount of information

(Jensen, 1986).

Mathematically, the objective of PCA is to achieve

the variances of the succeeding principal components as

small as possible. According to this criteria the

proportion of the total variance explained by the first

component is a maximum. Then the proportion of the re-

maining variance explained by the second component is a

maximum, and so on. Consequently, the proportions of the

total variance explained by the last few components is

minimized. It is not an easy job, however, to compress

multispectral data remotely sensed by satellite because

of the dimension and data size. For example, when

compressing a 256 by 256 subscene of TM data by the PCA

method, we have a data set with 65,536 observations each

with 7 band values, and we are required to generate a 7

by 7 covariance matrix from 65,536 observations. This

256 by 256 area is less than 0.2 percent of one TM scene

(Jensen, 1986, Johnson and Wichern, 1982).

Algebraically, principal components are expressed

as a set of linear combinations of the n random

variables X1, X2, ... , X. Geometrically, this set of
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linear combinations represents the selection of a new

coordinate system. This new coordinate system is

generated by rotating the original system with X1, X2,

Xn as the coordinate axes. The new axes show the

directions with maximum variability. These new axes give

a simpler way to characterize the covariance structure

because they are mutually orthogonal. It is noticeable

that all mathematical operations of PCA are only related

on the covariance matrix (or the correlation matrix)

Development of PCA does not require a multivariate

normal assumption (Johnson and Wichern, 1982).

As Johnson and Wichern (1982) discussed in their

text book, suppose we have the original random vector

X=[X1, X2, ..., X] (For example, the four bands of MSS

Landsat data with n = 4). COV is the covariance matrix

of vector ç, e is an eigenvector and ? is an eigenvalue

of covariance matrix COV,

where

Consider the linear combinations Y =

111X = 111X1 + 121X2 + ... + 11X

= 12X = 112X1 + 122X2 + ... + ]n2Xn
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Yn = ln'X = 11X1 + l2X2 + ... +

where Var(Y1) = lj'(COV)li and COV(YjiYk) = li'(COV )lk

(i = 1, 2, . .., n, k = 1, 2, . .., n)

According to PCA requirements, the linear

combination 11X that is the ith principal component

will maximize var(l'X) subject to l'l = 1 (i.e.

standardized) and cov(111X, lk'X) = 0 for k<i (i.e.

orthogonal) (Johnson and Wichern, 1982). The eigenvalues

and eigenvectors of CoV will satisfy the requirements.

Using the eigenvalue-eigenvector pairs (xl' e1),

?', e) where11 ... > > 0,

the th principal component is (Johnson and Wichern,

1982):

= e1t2 = e11X1 + e2iX2 + ... + epjXn

i=l, ...,n

with these choices,

Var(11) = e'(COV)ej =
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COV (Y1
,
k) = e' (COVx) ek = 0 i = k

n
and also the total population variance = E Var(Xi) =

n i=l
= E Var(Y) = "i +Y + ... +)

i=l
The percent of total variance explained by each of

the principal components, is calculated using the

equation (Jensen, 1986):

n
= .)j/ E>..1 (i = 1 ..., n).

1=1

Within each component the magnitude of eki

(e1' = [e1, ., eki, ..., e1]) evaluate the

importance of the kth variable to the 1th principal

component. Also eki is proportional to the correlation

coefficient between
'L

and Xk (Johnson and Wichern,

1982). It may be seen from the following:

Yi'Xk = eki( i / akk)11'2 i,k=1,2, ...,n.

As mentioned above, PCA is used to explain the

variance-covariance structure through a few linear

combinations of original variables. The general

objectives are data reduction (or compression) and

facilitating data interpretation. One more point should

be mentioned; that is, principal components analysis is

functioned as "more of a means to an end rather than an

end in themselves because they frequently serve as
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intermediate steps in much larger investigationst'

(Johnson and Wichern, 1982).

PCA can be based on a covariance matrix that is not

centered on the variable (column) means (Noy-Meir,

1973). By using a non-centered matrix, the principal

components are referenced to a zero point and for

spectral classes that zero point is a spectral class

with no reflectance. This reference point is useful for

interpreting the first principal component as a weighted

measure of overall scene brightness, more so than the

usual variance-centered covariance matrix (Murray,

1986)

Accuracy Assessment

If we want to use the classification results

derived from a remote sensing image such as Landsat MSS

data, some method or measurements are needed to evaluate

classification accuracy. This usually requires the

analyst to collect ground truth data which can then be

used to compare with the derived classification map.

Consequently, there are two classification maps: (1)

remote-sensing derived map, and (2) ground truth map.

The ground truth map can be obtained from ground

visiting or quite often from the interpretation of

aerial photography (Jensen, 1986). For example, the in-
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terpretation of the 1:24,000 photography could be used

as basic ground truth information for MSS or TN data.

Also, the same scale and near perfect registration are

usually required in the accuracy assessment (Jensen,

1986). However, the ground truth map usually is not

error-free. There may be both interpretation and

registration errors present, but the implied assumption

is that errors in the ground truth map are minor in

comparison with errors in the classification map.

The accuracy of classification results is usually

expressed by calculating the percentage of correctly

classified areas as compared with ground truth data.

This accuracy measure is derived from sampled classified

data. It is quite often given in the form of an error

matrix, sometimes called a confusion matrix or a con-

tingency table. Table 5 on page 72 is an example of an

error matrix (Lillesand and Kiefer, 1979, story and

Congalton, 1986).

Either random or systematic sampling can be used to

generate the error matrix. Sometimes systematic sampling

is used because of the ease of application. Less often,

stratified systematic sampling in MSS data is used to

improve the sampling efficiency. Because of registration

errors, the size of each sampling plot is at least than
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9 pixels in the classified image (at 1:24,000 scale).

The number of sample points can be estimated from

the binomial probability formulas (Jenson, 1986). The

formula for the number of sample points to be selected

is:

n = 4(p)(q)/E2

Where: n is the sample size,

p is the expected percent accuracy,

q is the expected probability of classification

error,

E is the allowable error expressed as a

proportion.

In Table 5 on page 72 the total column shows the

presumed true number of pixels in each class (reference

data) while the total at the bottom of each column

indicates the number of pixels in each class found

within the sample sites on the classified area. The

major diagonal elements exhibit the agreement between

the classified and reference data. The ratio of the

total number of correct classifications (the sum of the

major diagonal elements) to the total number of samples

taken is the overall accuracy for the classified area.
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The overall accuracy can provide a general estimate of

accuracy. It does not, however, provide information on

the accuracy of the individual classes. Sometimes there

are statistical differences among these accuracies of

the individual classes. The off-diagonal elements can

provide more information on errors of omission and

commission. Errors of omission for each class is the

ratio of the total number of pixels assigned to

incorrect categories along each row to the total number

of true pixels in the category. Errors of commission is

the ratio of the total number of pixels assigned to

incorrect categories along each column to the total

number of pixels assigned to the column category

(Jensen, 1986, Story and Congalton, 1986).

Traditionally we usually use the ratio of the

number of correctly classified samples of a certain

category to the total number of the assumed true samples

(ground truth) of that category as accuracy assessment.

This percentage actually shows how a reference (ground)

sample will be correctly classified. This is actually

related to the errors of omission. Story and Congalton

(1986) called this as the ttproducers accuracy" because

the producer of the classified image "is interested in

how well a specific area can be mapped". They also

mentioned that
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"an important, but often overlooked, point is
that a misclassification error is not only an
omission from the correct category but also a
commission into another category".

They defined the percentage of the number of correctly

classified samples of a certain category divided by the

total number of samples that were classified in that

category (i.e., the column total) as "user's accuracy".

This is actually related to the commission error. The

user accuracy provides the user with the reliability of

the map, "or how well the map represents what is really

on the ground". It is important to know that both the

"producer's" and the "user's" accuracy are needed to

have a better evaluation of accuracy because "using only

a single value can be extremely misleading" (Story and

Congalton, 1986).

One more question about accuracy assessment is how

to quantitatively compare two or more different remote

sensing data classification results under varied

conditions. Two approaches are generally used in making

these comparisons: analysis of variance and discrete

multivariate analysis (maybe called contingencv table

analysis). Because analysis of variance uses only the

diagonal elements, requires normally distribution and

independence of the categories in the error matrix,

discrete multivariate analysis techniques are usually

preferred (Congalton and Oderwald, 1983). One of the
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discrete multivariate analysis methods is to test the

overall agreement between two separate error matrices.

The measure of agreement, called KHAT (i.e., K), is

calculated by:

r r r
K = (N E Xj - E (X1 * X)) / (N2 - E (Xi+ * X))

il 1=1 i=l

where r is the number of rows in the error matrix, X1j

is the 1th element of the error matrix, X and Xj are

the marginal totals for row i and column i respectively,

and N is the total number of observations (Bishop et

al., 1975, Congalton and Oderwald, 1983).

The approximate large sample variance, a(k), can be

calculated. The formula can found in Bishop's (1975)

book or Hudson and Ramm's (1987) paper.

The test statistic for significant difference in

large samples is given by:

Z (K1 - K2)/(a1 +

This test uses the normal curve deviate (Z) to

determine if the two error matrices are significantly

different assuming two KHAT's are independent (Cohen,

1960)
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Using this method we can, for example, test

different classification algorithms, determine which

date of imagery yields the best results, or compare the

imagery from different sensors. However, this method is

"limited in that only one factor in the classification

may vary at a time" (Congalton and Oderwald, 1983).
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STUDY AREA

The study area includes over 1087 square kilometers

(420 square miles) located in the Coast Range of western

Oregon between 44 degrees 15 minutes and 44 degrees 45

minutes north latitude and between 123 degrees 45

minutes and 124 degrees east longitude. The area is

covered by eight 7.5-minute topographic quadrangles

made by United States Geological Survey (USGS). The

names of these topographic quadrangles and correspondent

orthophotographic quadrangles are listed below:

Topographic quadrangle Orthophotographic quadrangle

TOLEDO NORTH TOLEDO NW

EDDYVILLE TOLODO NE

TOLEDO SOUTH TOLEDO SW

ELKCITY TOLEDO SE

TIDEWATER TIDEWATER NW

HELLION RAPIDS TIDEWATER NE

CANNIBAL MOUNTAIN TIDEWATER SW

FIVE RIVERS TIDEWATER SE

The Alsea and Yaquina rivers pass through the area

on the way to the sea. More than half of the area is

within the Siuslaw National Forest with the rest
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comprised of private, state, and Bureau of Land

Management (BLM) lands.

The Coast Range expands from the middle fork of the

Coquille River in Oregon northward into southwestern

Washington. The elevation of main ridge summits range

from about 450 to 750 meters (1476 to 2461 ft).

Scattered peaks are often capped with intrusive igneous

rocks. Marys Peak at 1,249 meters (4098 ft) is the

highest. Soils over most of the Coast Range are

Haplumbrepts. They were derived from basalt. Their color

are usually reddish-brown. They are relatively stone

free. Surface textures are generally clay loam. Some

Haplohumults on basalt parent materials can be found in

the southern portion of the range (Franklin and Dyrness,

1973)

Climate over the Coast Range is uniformly wet and

mild. There are variations, however, in this wide range

because of latitude and elevation. The annual

precipitation varys from 1,500 to 3,000 millimeters (59

to 118 inches). Average mean annual temperatures are

usually from 8 to 10 degrees centigrade. It is

relatively dry during the summer. However, frequent fog

and low clouds are helpful to reduce moisture stresses

(Franklin and Dyrness, 1973).
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The Coast range is a classic coniferous forests of

the world. It is a

"popularly known region of Douglas-fir
(Pseudotsuga menziesii (Mirb.) Franco.)
dominance, of western hemlock (Tsuga
heterophylla (Raf.) Sarg.) climaxes, and
coastal sitka spruce (Picea stitchenis (Bong.)
Carr) 'rain forest'" (Franklin and Dyrness,
1973)

Some outstanding features of these forests are the

nearly total dominance, the size, and the longevity of

the dominant species. Other coniferous species consist

of grand fir (Abies qrandis (Dougi.) Lindl.) western red

cedar (Thuja plicata Donn.), western larch (Larix

occidentalis Nutt.), etc. The common deciduous hardwoods

include Oregon white oak (Ouercus garryana Dougl.),

bigleaf maple (Acer macrophgllum Pursh), and red alder

(Alnus rubra Bong.) (Franklin and Dyrness, 1973).

As mentioned above, Douglas-fir is a main species

dominating more than half of the forested area. Alder is

the most common hardwood species appearing in nearly

pure stands in drainage bottoms, and from the bottom to

top of ridges or mixed with the conifers. There are some

old growth Douglas-fir and spruce stands still left

within the study area, such as the old growth stands

near Canal and Drift creeks located in the USGS

TIDEWATER 7.5-minute topographic quadrangle. Most of the

43



forested areas are young growth, including mature Doug-

las-f ir regenerated a century ago, small saw timber and

pole size conifers, regeneration, mixed hardwood-

coniferous stands, brush, and both new and old

clearcuts.
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PREVIOUS WORK

As part of another project, Richard NcCreight- of

the Department of Forest Management, Oregon State

University, completed a preliminary vegetation mapping

project using NSS digital data from a single date (May

22, 1983). He started out with several vegetation

classes but condensed them into five management classes.

These classes were based on some of the information

needed by forest managers and planners. Little

consideration was given to how well management classes

might match the MSS spectral classes. In other words,

the management classes were defined and then a best

match was made with the spectral classes. The management

classes were:

Harvest -- Mature conifer including small saw

timber and larger. The age class may be 80 years and

older;

Thinning -- Pole-size conifer sites including both

thinned and not thinned;

Release -- Hardwoods, hardwoods mixed with few

conifers, brush land, regeneration site mixed with brush

and shrubs;

1Unpublished research by Richard McCreight of the
Department of Forest Management, Feb. 19, 1985.
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Planting -- Clearcuts, both burned or unburned,

agriculture land, or grass land with more soil exposure;

Other -- Water, urban, or build-up land.

McCreight's final results (unpublished) are shown in

Table 1.

Table 1. Results of McCreight's (1985) single

Date MSS Classification.
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Class Acreage percent(%)

Harvest 61,024 21.9

Release 100,883 36.2

Planting 36,269 13.0

Thinning 75,726 27.2

Other 4,935 1.7

TOTALS 278,837 100.0



METHODS

An objective of this study was to improve the

mapping accuracy of McCreight's single date MSS

classification using multispectral data and PCA. A

logical approach might have been to compare the accuracy

of the results of this study with McCreight's results.

This was not feasible, however, because: (1) additional

ground truth points were used in this project because it

was decided that McCreight's project was inadequate in

this respect and (2) different spectral class groupings

were used in this project. To be consistent it was

necessary to re-analyze the 1983 single data set to be

compared with the results of PCA analysis using two

dates. Thus, both the ground truth and spectral analysis

were conducted by the same individual making the single

date and multi-date analyses directly comparable.

Field Work and Ground Truth

Visiting the study area prior to classification

usually helps the analyst understand the particular

situation on the ground, such as geographic differences,

species variety, seasonal changes, soil types, and

moisture stress. All these factors help in the

understanding of spectral reflectance patterns of

vegetation and in the selection of training sites. The
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knowledge gained from field work is useful for grouping

spectral classes into the information classes.

However, due to cost and accessibility problems,

National High Altitude Photography (NHAP) was used in

this project as the primary source of ground truth with

some field checking. Before the field trip, photo

interpretation was done to locate several representative

vegetation types found within the study area. During the

field check, corrections were made to improve the

quality of NHAP photo interpretation. Several typical

sites in the Tidewater NW quadrangle were visited during

August, 1986, which were mostly located along both sides

of the Alsea River drainage. The sites visited provided

representation examples of vegetation classes present.

The NHAP photography was flown in July, 1982. The

scale was 1:58,000 (1 inch equals about 0.9 miles) and

the photographs were color infrared positive

transparencies (9in. X 9in. format). Each frame,

acquired at 40,000 feet, covers nearly 68 square miles

of terrain. The quality is much better than average. The

vegetation classification system was based on a photo

legend system developed by M. Hall of Environmental

Remote Sensing Application Laboratory (ERSAL) for

McCreightt s study.
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Landsat I4SS Data

Two MSS scenes were used in the project and, due to

the high cost of the new tapes, two existing tapes from

the ERSAL Library were selected. One MSS scene was from

the May 22, 1983, overpass and the other was from the

July 29, 1979, overpass. In spite of four years dif-

ference it was assumed that the acreage of most natural

forest vegetation changes were small and that man-

induced changes could be accounted for. The primary man-

induced changes include clearcuts, fire (both natural

and man-caused), and thinning.

When comparing Mss data from scenes acquired four

years apart and from different seasons, there are two

major influences on the spectral response of vegetation.

The dominant influences are the seasonal phenological

differences resulting in different spectral

characteristics of the May and July overpasses.

Secondary influences are changes caused by man over the

four year period. With the exception of clearcuts and

other major changes, the spectral changes associated

with vegetation within a four year time frame are

minimal when compared with the May-to-July seasonal

changes. In May, new leaves have broken bud, but are

succulent and immature. By the end of July all new
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leaves were fully developed and in a mature stage.

Registration

The 1983 data had been geometrically corrected as

part of McCreight's study, and only the 1979 data were

geometrically corrected in this study. The 1:24,000

scale USGS orthophotographic quadrangle maps were used

as reference maps. For each map five ground control

points were selected with 4 points near the 4 corners

and one near the center. Thus, 40 control points with

both Universal Transverse Mercator (UTM) and MSS image

coordinates were recorded for regression. The linear

regression equations used are:

= a0 + a1X1 + a2X2

= b0 + b1X1 + b2X2

where, Y1 is column number of MSS data,

2 is scan line number of MSS data,

X1 is coordinate of UTM Easting,

X2 is coordinate of UTM Northing.

The computed coefficients are:

a0 = 1377.57 b0 = 10936.0

a1 = 1.03797 b1 = -0.302309
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a2 = -0.243179 a2 = -1.30338

Forty residuals were calculated for each regression

equation. Because all residuals were smaller than the

pixel dimensions, no control points were deleted. Near-

est-neighbor resampling was used to generate a 1:24,000

scale line-printer map (Murray and Alexander, 1983). A

common line-printer character size is 8 lines per inch

and 10 characters per inch so that at 1:24,000 scale,

one line printer character represents a 250 (high) by

200 (wide) ft2 area which is about 1.15 acres.

Classification

A separate spectral classification was completed

for each of two MSS scenes. An unsupervised minimum

distance classifier was used to generate spectral

classes. This required two steps. The first step was

cluster building or prototype class generation (Murray,

1981). Decisions by the analyst were required to

generate prototype classes, e.g., when should a new

spectral class be formed or when should two spectral

classes be merged? These decisions depended in part on

previous experience, the particular research interest,

minimum number of pixels in each class, and maximum

number of classes to be separated. The final

classification took several iterations of step 1 and
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step 2. The next step was the assignment of pixels to

one of the classes using the minimum distance classifi-

er. A similarity measure (Murray, 1981) was used as

follows:

7

DIk =E ((Xjk - J.Ljj) /
j=4

where Dik is the similarity measure,

is the mean value,

is the standard deviation,

k is the index of the kth pixel from a set of n

(unknown) pixels; k = l,2,3,...,fl,

j is presently limited to values 4,5,6,7; i.e.,

the four Landsat bands,

i is the th class from a set of in "prototype" or

spectral classes; i = l,2,3,...,iu.

Note that Dik is calculated for all in classes for

each pixel Xk. Then the pixel Xk is assigned to the

class i for which Dik is the smallest. If we have n

pixels and m spectral classes there is a total of n X in

Dik values that must be calculated in each iteration.

The means and standard deviations were calculated for

each class based on the pixels assigned to the class by

the minimum distance classifier (Murray, 1981). There

were 68 spectral classes (62 symbols) in 1979 data and
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49 spectral classes in 1983 data. Summaries of these

classes statistics are in APPENDIX A and B.

Once the spectral classes were obtained, they were

grouped into information (or management) classes

(Murray, 1981). Because the spectral classes were

generated mathematically by the similarity measure,

usually there were spectral classes which were not in a

one-to-one correspondence with the real information

classes, or one spectral class contained two or more

information classes. Where possible, these classes were

identified. It was necessary to know the spectral

characteristics of the study area well enough to

correctly group a large number of spectral classes into

a smaller number of information classes.

In this study, sites with known information classes

were randomly selected and matched to the spectral class

maps. All pixels within the matching ground sites were

counted and used to categorize the spectral classes. The

spectral classes with the most frequent occurrences best

represent the corresponding information class. However,

several problems occurred. Sometimes not all of the

spectral classes appeared in the selected ground truth

site. Another problem was that sometimes there was no

strong association between a spectral class and one

information class; instead, the spectral class was
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associated with several information classes. This

required an additional backwards-matching method in the

grouping procedure. Large, spatially homogeneous blocks

of spectral symbols were located and matched with an

interpreted or known information class. Thus, it was

possible to find stronger (more probable) associations,

or that a spectral class represented two or more

different information classes.

Graphic plots were helpful when grouping spectral

classes. Figure 4 on next page is a 4-band spectral

reflectance value plot of typical vegetation classes

derived from the July 1979 data. The advantage of this

kind of plotting is that changes in the spectral

response values by class are shown over the four bands.

The plots are similar to spectral response patterns or

"spectral signature" plots. Thus, spectral class means

were plotted and compared with known response patterns.

However, when there were many spectral classes and espe-

cially when the range of the values was close, the lines

representing the spectral classes became mixed and dif-

ficult to recognize. When spectral response curves for

several classes were similar in shape and magnitude,

they were grouped into a single information class.
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BAND4 BAND5 BAND6 BAND?

Figure 4. Spectral Signiture Plot of Selected
Vegetation Classes from the July 1979 Data
(+ Water, 0 Mature Conifer, Young Conifer
A Brush, X Bare Soil, Hardwood).

A two-dimensional plot of the spectral classes

produces a good pictorial representation of class

proximity in spectral space. Usually a band 5 versus

band 7 plot is used for Landsat MSS data (Murray, 1981).

The shape of spectral classes indicates two-dimensional

standard deviation limits. Figures 5 and 6 are plots of
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Figure 5. Band 5 versus Band 7 for 1979 Spectral Mean

Classes and Standard Deviation Limits
(See APPENDIX A for Symbol Assignments).
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Figure 6. Band 5 versus Band 7 for 1983 Spectral Mean
Classes and Standard Deviation Limits
(See APPENDIX B for Symbol Assignments).
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the spectral classes from the 1979 and 1983 data. From

an understanding of the spectral features and

comparisons with spectral class responses from known

ground sites, we can predict what these spectral classes

represent. For example, in Figure 5, the symbols N, I,

G, B probably represent mature conifers because the

values of both bands 5 and 7 are lower than most other

classes; also, the symbols +, 8, L, K mostly represent

hardwoods and brush because their values of band 7 are

high and the values of band 5 are relatively low (g.

Figure 4).

Principal components analysis of spectral class

mean reflectance values was also used in the grouping

procedure. The first two components out of four possible

components for a single scene of MSS data usually

represent more than 90 percent of the variation, and

plotting the first two principal components may provide

additional information about spectral-to-information

class assignments. Figures 7 and 8 are PCA plots for

1979 and 1983 data respectively. In comparison with band

5-7 plots, PCA plots usually provide more information

about spectral class features (Murray, 1983, 1986).

Comparing PCA plots with band 5-7 plots (Figure 5 versus

Figure 7, Figure 6 versus Figure 8), it was found that

the general trends are similar but the PCA plot shows a
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Figure 7. PCA Plot of 1979 Spectral Mean Classes and
Standard Deviation Limits (See APPENDIX A for
Symbol Assignments).
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Figure 8. PCA Plot of 1983 Spectral Mean Classes and
Standard Deviation Limits (See APPENDIX B for
Symbol Assignments).



better separation for some classes. With the help of PCA

plots and band 5-7 plots plus the two-way matching (from

ground truth to spectral classes and from uniform

spectral class blocks to ground truth), a grouping was

done. The final grouping decisions were made after three

iterations of grouping on the 1979 data and one

additional iteration on the previously grouped 1983 data

(McCreight's third grouping). The 68 spectral classes

were grouped into 14 information classes for 1979 data

and 49 spectral classes into 16 information classes for

1983 data. A final grouping into five management

opportunity classes was completed for both dates. By

using non-centered covariance matrices the principal

components are on approximately the same scale for both

years and have the same reference points. The error

ellipses in Figure 7 and 8 are a mapping of the original

one-standard deviation ellipses (Figures 5 and 6) into

principal component space.

Verification of Single Date Classification

Verification of classification accuracy was done on

both single date classifications. In each of the eight

7.5 minute quadrangles, four one-km by one-km

verification sites were randomly selected by UTM grid

coordinates. Then the locations of the 32 verification

sites were transferred to the NHAP photos. After photo
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interpretation was completed for those blocks, the

boundaries of each information class interpreted were

transformed back to the orthophotographic quadrangles

using a stereo zoom transfer scope. By transferring

boundaries from the photo interpretation to

orthrophotos, the NHAP coordinates were mapped into UTM

coordinates at 1:24,000 scale. The overlays with the

ground truth matching the selected sites were then put

on the top of computer-generated line printer maps at

the same scale and the occurrences of spectral class

symbols tabulated. Tables 2 and 3 (page 68 and 69) show

the classification results for both dates.

Temporal Merginq

The two geometrically registered scenes of MSS data

were then merged and each 250 by 200 ft ground pixel

(scaled at 1:24,000 and referenced to tJTM grid

coordinates) now had a two-symbol representation based

on the classification results from two different dates.

For example, a symbol pair $=" corresponds to a pixel

labelled as mature conifer in the 1979 classification

and a clearcut in the 1983 classification. If both of

classifications are correct and, if the geometric

registration is accurate, this pixel would represent a

clearcut made after July 29, 1979, and before May 22,

1983.
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In the two-symbol mapping, there would be 288

possible combinations of information classes because

there were 16 classes in 1979 data and 18 in 1983 data

(16 X 18 = 288). However, because some combinations did

not actually exist, only 255 combinations were found.

These 255 combinations were sorted by symbol and by

occurrence (see APPENDIX C for a sample page of the

sorted results). Then 61 out of 255 combinations were

selected for principal components analysis. The

selection criteria were:

a pair must have more than 500 occurrences;

no unreasonable changes resulting from spatial

mis-registration (e.g., no changes from mature

conifer to thinning, clearcut (planting) to mature

conifer);

C) combinations with no changes (e.g., thinning-

thinning, release-release).

Thus, the 61 symbol pairs represent the most plausible

and most frequent change combinations resulting from

seasonal and year-to-year influences.

There were eight spectral class means for each

combination. Because these information classes were

grouped from spectral classes, these eight means were
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combination of I, K, X, E, etc.; the means were

recalculated as follows:

n

MGk = E FkjNkj / E Fki k = 4, 5, 6, 7

i=l i=l

where MGk = the grouped new mean of band k,

F = the frequency of th spectral class of

band k,

Mki = the mean of th spectral class of band k.

Principal components analysis was then conducted on

the eight composite means for the 61 combinations (see

APPENDIX D for the completed list of the means, 1979-

1983 symbol pairs, and single symbols). The non-centered

covariance matrix was generated, and the eigenvalues and

eigenvectors were then calculated. The first five

principal components for 61 combinations were printed.

Finally, the first two components for 61 combinations

were plotted. Figure 9 shows the first two components

with 61 symbols. APPENDIX E contains the computer output

for the PCA computation results. Using ground truth, the

sorted 255 combinations, and the PCA plot, the 255

combinations were grouped into 20 symbols in a first

grouping and 11 symbols in a second grouping. These 20

and 11 class groups were further compressed into four

information classes (see APPENDIX D for the list of

these symbol assignments).
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Programing for the Project

Several different computer programs were required

for this project. The main program, 'PIXSYS", was

developed by the Mime Computer Center for ERSAL. In

addition several new programs were developed

specifically for this project by RJay Murray of the

Mime Computer Center, assisted by the author. All new

programs were coded in FORTRAN and run on the Mime

Computer Center CYBER (Control Data Corporation) 170/720

computer.

Program TEMPMERG was developed to merge

classification output from several MSS scenes. Up to

five MSS scenes can be merged using this program, and a

new header containing information from the merged scenes

was created. The file <MERGED> is the primary output of

this program. Using <MERGED> as input, program SYMATCH

sorts and counts the occurrences of all class symbol

combinations by either first symbol or by decreasing

occurrences. Double hashing (Knuth, 1973) was used to

find distinct combinations of class symbols, and

matching collisions were used to count the occurrences

for each combination. Program GRPMEAN was written for

calculating the new means of an information class formed

by grouping several spectral classes. An output file

titled <NEWNEAN> contains the new mean values. Program
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PCASAMP was used to generate a file of multitemporal

means for PCA. Mean spectral responses, the <NEWMEAN>

files for each date, the file <SORTED> from SYMATCH, and

a file containing the temporal symbol string and

replacement symbol were merged in PCASANP. The output

file <CLMEAN> was generated by PCASANP. The last program

developed is called TEMPREP which assigns a single

symbol to the same pixel to produce the line printer map

in merged scenes after final grouping.
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RESULTS

Acreage Classification

Tables 2 and 3 show the acreage results for each

single date classification (In McCreight's study [see

Table 1, page 46], the corner of one quadrangle was

clipped off, thus resulting a small difference in the

reported acreage totals found in this study).

Table Data Classification Results.2. July, 1979,
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Class Acreage Percent(%)

Harvest 94,456 33.3

Release 108,431 38.2

Planting 22,083 7.8

Thinning 49,723 17.5

Other 8,847 3.2

TOTALS 283,540 100.0



From these two tables a general trend is evident.

Harvest and release acreages decreased about 15 percent

and planting and thinning increased about 15 percent

between the 1979 and 1983 analyses. However, changes of

this magnitude are not expected over only a four year

period. It is very likely that the major reason for this

change is misclassification with either or both of the

single date classification results. One could

hypothesize that the July analysis is more accurate

because the phenological condition of the vegetation is

more stable at this time of year. In May there is

considerable phenological difference between high and
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Table 3. May, 1983, Data Classification Results.

Class Acreage Percent(%)

Harvest 74,681 26.3

Release 83,226 29.4

Planting 38,845 13.7

Thinning 77,269 27.3

Other 9,519 3.7

TOTALS 283,540 100.0



low elevation vegetation. As will be shown later, the

July single date analysis proved to be more accurate

than the May single date analysis.

Acreage statistics of each management class are

shown in Table 4 for the multitemporal classification

using PCA. The percentages of harvest and release were

close to the 1979 single date classification, however,

planting and thinning changed substantially.

Table 4. Multitemporal Classification

(July, 1979 and May, 1983) Results.

Harvest 93,922 33.1

Release 102,654 36.2

Planting 48,319 17.1

Thinning 28,625 10.1

Other 10,020 3.5

Accuracy Comparison

Comparison of single date classifications
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Class Acreage Percent(%)

TOTALS 283,540 100.0



Tables 5 and 6 are the error matrices of the July,

1979, and May, 1983, single date classification results.

The overall accuracy of the July, 1979, classification

is 7.7 percent higher than for the May, 1983,

classification. As stated earlier, this may due to a

more stable phenological condition of the vegetation in

late July than in May. Although the producer's accuracy

(omission error) for thinning is better in 1983 date

classification, the user's accuracy for thinning of both

1979 and 1983 classification is very low (less than 30

percent). In order to quantitatively compare the result,

a contingency table analysis was performed. Congalton's

(1987) program was used to calculate the KHAT and Z

statistics. The KHAT of 1979 data is 0.65624 and 0.56353

for the 1983 data. The test statistic (Z = 8.6982) shows

that the difference between two error matrices is

significant (< 0.01). See completed print out in

APPENDIX F for this test. The 1979 classification shows

a significantly higher accuracy than 1983

classification.
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Table 5. Error Matrix of the July, 1979, Data

Classification Results.

H 2,211 387 103 12 4 2,717 81.4 %

T 94 309 103 1 0 507 60.9 %

R 165 394 2,030 46 2 2,637 77.0 %

P 19 20 156 458 0 653 70.1 %

0 46 1 25 74 7 153 4.5 %

Total 2,535 1,111 2,417 591 13 6,667

User's Accuracies

87.2% 27.8% 84.0% 77.5% 53.8%

Sum of the major diagonal = 5,015

Overall Accuracy = 5,015/6,667 = 75.2%

H - Harvest; T - Thinning; R - Release;

P - Planting; 0 - Other.
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Table 6. Error Matrix of for the May, 1983, Data

Classification Results.

User's Accuracies

87.2% 24.9% 81.4% 66.8% 48.5%

Sum of the major diagonal = 4,504

Overall Accuracy = 4,504/6,660 = 67.6%

H - Harvest; T - Thinning; R - Release;

P - Planting; 0 - Other.
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H 2,013 590 106 33 12 2,754 73.1 %

T 66 413 75 9 0 563 73.4 %

R 169 644 1,550 149 4 2,516 61.6 %

P 8 13 146 512 1 680 75.3 %

0 40 1 27 63 16 147 10.9 %

Total 2,296 1,661 1,904 766 33 6,660

Reference Classified Data producer's

Data H T R P 0 Total Accuracies



Multitemporal versus single date

The error matrix for the multitemporal

classification is shown by Table 7. An overall accuracy

of 82.3 percent was achieved which is much better than

for either single date classification. Both producer's

and user's accuracies for harvest, release and planting

show improvement. Producer's thinning accuracy declined

slightly while user's accuracy increased. This is

considered to be a very satisfactory result when MSS

data is used for vegetation mapping. The KHAT value is

the highest for the multitemporal classification. The Z-

test statistics were more significant (19.1428 and

10.1411) as compared to the 1983 and 1979 data sets for

single date classification.
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Table 7. Error Matrix of Multitemporal (1979 and 1983)

with PCA Classification.

H 2,340 197 118 34 0 2,689 87.0 %

T 81 252 104 6 0 443 56.9 %

R 133 178 1,990 137 8 2,446 81.4 %

P 4 12 51 815 12 894 91.2 %

0 39 3 24 14 8 88 9.1%

Total 2,597 642 2,287 1,006 28 6,560

User's Accuracies

90.1% 39.3% 87.0% 81.0% 28.6%

Sum of the major diagonal = 5,405

Overall Accuracy = 5,405/6,560 = 82.4%

H - Harvest; T - Thinning; R - Release;

P - Planting; 0 - Other.
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CONCLUSIONS

It is clear from the classification results that

the multitemporal classification method developed in

this study shows significant improvement over single

date classification. All but the thinning class

indicated accuracies exceeding 80 percent. Most

management classes obtained from NSS data have 80 to 90

percent accuracies. From either single date or

multitemporal classification the accuracy of thinning

class is low. This class apparently is not associated

with a distinct spectral response resulting from MSS

data. Multitemporal MSS scenes provide more information

over single date, especially when seasonal changes are

involved.

Another advantage of multitemporal classification

is that it provides information about change over time

(usually defined as change detection). However, the

burden of data handling, processing, and analysis

increases dramatically when using more than two scenes.

There is a tradeoff between using multitemporal scenes

and using higher resolution imagery depending on the

cost, accuracy, and management requirement. The PCA-

based classification of multitemporal spectral mean

classes derived from single date classification is a new
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way to increase efficiency and accuracy for vegetation

mapping using remotely-sensed multitemporal data.

A combination of two Landsat overpasses is the

simplest combination of multitemporal data; yet, this

combination is an excellent example for investigating

the more complicated problem of information extraction

from multilayered Geographic Information System (GIS)

data. Furthermore, the logic and decisions needed to

resolve the assignment of two attributes from the same

object, often with the attributes in conflict or very

uncertain, could be the basis for a computer-based

expert system that would provide satisfactory

assignments with minimal human interpretation.
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SUMMARY

Advantages of satellite imaging are synoptic

coverage and repeated (multitemporal) coverage of the

same geographic area over time. These attributes enable

us to obtain information for resource management in

rapid and economic manner. This project was undertaken

to investigate these two questions: (1) how can

classification accuracy be improved using the relatively

coarse resolution data provided by the Landsat

Multispectral Scanner (MSS) systems aboard the earth

resource satellites, and (2) how can we better utilize

multitemporal information that is available due to

repeated coverage over time. Two MSS image segments from

different seasons over the study area were selected and

classified. Then multitemporal analysis was conducted

using Principal Components Analysis (PCA) as an aid in

producing a new and more accurate vegetation map.

Results from single date classification and

multitemporal classification were compared. The

increased information resulting from phenological change

in forest sites and associated vegetation canopies

decreased the uncertainty inherent in a single date

classification. The use of PCA digital data from several

overpasses at different dates (seasons) could be mode-
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lied and an optimal combination of temporal-spectral

variables could be selected.
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APPENDIX A

SPECTRAL MEAN CLASSES AND FINAL SYMBOL ASSIGNMENTS
FOR 1979 DATA SET

S Symbol on the plot,
#PIX Number of pixels,
M4-M7 Means of band 5 to band 7,
ST4-ST7 Standard deviation of band 5 to band 7.
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#PIX M4 M5 M6 M7 ST4 ST5 ST6 ST7

C 20997 15.61 10.95 32.82 27.68 .92 .86 .82 .86

A 20883 16.39 11.50 38.10 35.03 .97 .83 .80 .86
B 19368 14.70 10.07 28.25 21.46 .84 .81 .72 .82

E 17067 15.05 10.30 31.36 25.90 .88 .81 .80 .81
F 17067 16.67 11.74 39.68 37.77 .91 .81 .86 .92

H 16661 15.71 10.96 36.30 32.26 .86 .80 .90 .95
J 17026 14.71 10.00 29.70 23.58 .78 .78 .74 .84

D 15469 15.35 10.66 34.48 29.90 .84 .82 .86 .91

I 14971 14.03 9.12 24.39 17.17 .61 .72 .71 .79

R 12831 16.73 12.18 34.62 29.75 .81 .80 .89 .97

O 12965 16.96 12.28 36.83 32.37 .80 .72 .90 .93

K 11636 16.91 12.03 40.99 40.69 .90 .83 .85 .90

G 11016 14.45 10.23 25.94 19.25 .75 .50 .84 .90

Q 11617 15.87 11.55 30.48 24.18 .88 .78 .89 .95

V 9059 17.67 13.94 39.41 36.80 .67 .83 .87 .83

N 8835 13.83 8.86 22.76 15.07 .65 .88 .83 .82

1 8548 14.19 8.78 26.24 19.46 .69 .50 .93 .93

T 8478 17.59 13.96 38.03 34.17 .67 .82 .79 .78

L 7748 17.26 12.36 42.51 43.46 .83 .82 .92 .96

U 7558 17.87 14.14 40.89 39.48 .63 .86 .85 .89

S 7494 17.15 13.71 32.80 26.78 .87 1.10 .88 .89

X 6776 17.85 14.88 36.69 31.64 .73 .70 .98 .87

6168 17.85 14.97 34.83 28.98 .72 .72 .96 .96

" 4516 18.16 14.77 42.60 42.52 .66 .75 .98 1.05
- 3995 13.55 8.37 20.26 12.71 .73 .96 1.11 1.10
8 3720 17.33 12.33 43.94 46.42 .82 .76 .83 .96

? 3600 18.61 16.24 39.17 35.30 .66 .80 1.02 1.20
4 3418 17.39 14.47 31.12 24.23 .83 .73 .87 .92

Z 3033 18.80 18.25 35.81 29.82 .72 .89 .86 .80

N 3531 15.57 11.72 27.17 19.63 .91 .86 1.00 .96

\ 3371 14.88 11.00 24.28 16.60 .86 .87 .88 1.00
6 2955 16.51 13.09 29.17 21.88 .93 1.05 .82 .84

Y 2878 18.80 18.01 37.50 31.91 .7]. .86 .77 .86

( 2600 18.12 14.65 44.13 46.02 .68 .70 .96 1.04



MANAGEMENT CLASSES SYMBOLS

HARVEST -MI\1GNB6JQE
THINNING C D R H 0
RELEASE 4 S52ZXY/T?7AVFU

K + L 8
PLANTING P >' *$!3=O<[9]).
OTHER W
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S #PIX 144 M5 146 Mi ST4 ST5 ST6 ST7

, 2381 19.30 17.81 41.57 39.56 .90 1.24 .96 1.11
2 2718 18.68 18.12 34.50 27.74 .72 .91 .88 .79

9 2347 20.30 21.22 35.51 28.70 .98 1.12 .89 .89

0 2215 18.87 19.08 31.60 23.93 .76 .71 .84 .88

[ 2214 19.88 20.60 33.79 26.40 .95 .81 .96 .98

] 2166 20.28 20.69 37.40 31.31 .97 .89 .80 .97

= 1968 20.14 21.40 31.36 23.26 .93 .83 .95 1.07
5 2123 18.66 18.18 32.92 26.08 .69 .89 .76 .78

/ 2177 19.34 18.98 38.65 33.95 .81 .76 .88 .85
+ 2123 17.70 13.14 45.27 49.35 .73 1.06 .88 .96

2202 18.19 16.47 31.88 24.68 .63 .67 1.00 1.05
< 2141 21.77 23.85 33.21 24.85 1.19 1.14 1.34 1.66

; 2075 22.14 24.08 37.05 29.99 .99 1.20 1.10 1.74
1980 20.44 22.30 29.19 20.06 1.28 1.36 1.01 1.15

7 1995 19.75 19.11 40.24 36.71 .98 .87 .80 .93

3 2120 18.75 19.17 29.89 21.74 .73 .86 .79 .85

1844 18.06 16.15 29.51 21.56 .62 .86 .88 .97

)
1382 21.03 21.49 39.01 34.05 .75 1.05 .88 1.04

$ 1509 17.32 14.83 27.54 19.25 .86 .73 1.05 1.00
* 1508 18.60 19.23 28.17 19.37 .70 .83 .84 .92

P 1495 17.16 14.82 24.03 15.07 .98 .98 1.41 1.87
1240 18.44 18.79 24.20 14.99 .79 1.11 1.20 1.69
1058 18.14 17.52 26.66 17.98 .67 1.00 1.00 .97

> 975 19.52 21.44 26.24 17.21 1.00 1.17 1.09 1.17
+ 917 19.96 18.48 43.60 42.97 1.11 1.22 .91 1.25

938 22.41 22.99 40.72 36.36 1.26 1.93 1.08 1.98
+ 520 18.19 14.03 46.66 52.08 .64 .97 .82 1.15
+ 316 19.75 17.73 45.45 47.25 1.05 1.21 1.04 1.27
+ 236 17.61 12.35 46.96 53.81 .73 .84 1.01 1.62
W 556 16.58 11.26 7.31 1.47 1.00 .81 2.09 .81

W 508 17.20 14.12 13.99 5.16 1.01 1.04 1.91 1.78
W 499 18.54 17.93 18.61 8.39 .95 1.30 1.52 1.71
W 109 17.21 13.23 8.31 1.72 .78 .50 1.03 .99

W 488 13.68 8.07 13.68 6.80 1.29 1.47 4.70 3.64



APPENDIX B

SPECTRAL MEAN CLASSES AND FINAL SYMBOL ASSIGNMENTS
FOR 1983 DATA SET

S Symbol in the plot,
#PIX Number of pixels,
M4-M7 Means of band 5 to band 7,
ST4-ST7 Standard deviation of band 5 to band 7.

86

S #PIX M4 M5 M6 1(7 ST4 ST5 ST6 ST7

A 11810 18.66 11.42 45.91 32.75 .84 .87 .91 .85

J 14305 17.93 11.77 47.51 34.78 .84 1.12 .87 .88

E 15274 16.65 10.32 37.86 24.06 1.03 1.11 1.07 1.01
H 15031 19.59 12.40 44.77 31.15 .89 1.60 .86 .96

C 15492 17.33 10.86 43.25 30.01 .71 .89 .89 .71

L 13531 20.98 13.02 57.50 47.72 1.37 1.29 .95 1.36

G 13706 19.89 11.79 50.34 38.69 .52 .87 .92 .88

B 11461 17.27 11.29 39.74 26.43 .79 .79 .64 .79

F 10993 20.19 11.90 53.21 41.24 .70 .87 .83 1.00

D 19222 19.93 12.02 48.68 36.12 .58 1.29 .88 .89

K 11422 15.93 9.46 32.63 20.38 1.11 1.31 1.69 1.05
N 11520 20.14 11.91 55.05 43.90 1.20 .82 1.00 1.05
I 11278 21.45 14.34 55.20 43.84 1.47 .78 1.10 1.25
S 11099 22.87 20.03 43.46 28.26 1.80 2.98 1.35 1.67

R 9393 17.78 11.95 49.36 37.49 .74 1.09 .90 .91

O 8666 24.27 21.62 47.25 32.38 1.54 2.26 1.18 1.33

P 8091 22.89 17.51 54.27 42.05 1.49 1.04 1.33 1.61
8 10498 17.08 11.16 44.86 32.28 .77 1.08 .88 .96

2 9260 20.51 14.26 52.53 41.04 1.08 .66 .99 1.08

M 7143 22.43 14.85 50.87 38.18 .99 .77 1.33 1.41
6 10274 19.84 12.60 47.24 33.33 .65 1.03 .87 .86

X 6575 15.72 10.23 35.23 22.61 .93 1.06 .85 .91

Q 8055 21.05 16.32 47.68 34.01 1.32 1.36 1.07 1.42
0 7185 17.48 12.68 42.64 28.98 .69 .77 .94 1.08

T 6574 19.48 11.12 43.14 29.53 .54 .90 .79 .72

1 7432 19.68 12.45 41.56 27.25 .77 1.78 1.18 1.02

) 6741 24.88 22.14 50.58 36.89 1.66 1.97 1.29 1.47
+ 8206 17.39 10.81 41.85 27.15 .59 .69 .73 .82

U 7051 18.25 11.98 51.75 40.52 .88 .95 1.14 1.14
Z 5348 24.73 21.12 54.40 41.55 1.59 1.48 1.41 1.77

Y 5743 21.90 12.10 51.63 39.14 .92 .86 1.27 1.64
5729 17.37 8.74 40.19 26.65 .91 .73 1.12 1.34

3 7640 20.06 15.28 50.20 38.02 .72 1.61 1.01 1.08
V 4025 23.28 18.20 50.79 38.06 .94 .75 1.06 1.11



HARVEST
THINNING
RELEASE
PLANTING
OTHER

] K7 *XEB1+ ; .0
T C 8 AJ DRG
H653MPY2 [IFiJNL, $<
/-=SO) 94QVZ
w

87

S #PIX M4 1(5 1(6 ST4 ST5 ST6 ST7

5562 15.54 11.14 41.00 27.70 .80 .82 1.15 1.23

E 4218 23.72 17.70 57.52 46.73 1.45 1.77 .88 1.22

I 3695 15.31 9.16 27.95 17.84 1.24 1.29 1.53 1.18
7 3683 17. 60 10.74 34.62 21.82 .72 1.03 .94 .94

w 16081 18.09 9.39 4.83 2.11 1.75 1.91 1.68 .74

5 3337 21.71 12.80 47.97 34.60 .85 1.13 .94 .87

4 2632 23.57 18.58 48.94 34.-88 .99 .94 .81 .88

$ 2957 22.09 13.88 59.47 51.68 1.28 1.03 .65 1.08
* 6411 19.06 13.27 38.42 23.83 1.47 2.14 1.60 1.53

3148 26.88 27.63 44.91 28.79 1.37 2.10 1.71 2.06

/ 2958 23.82 22.85 39.47 23.40 1.80 2.75 1.62 1.68
9 2249 22.28 15.08 45.87 31.35 .88 1.05 1.04 .98

1537 23.90 17.30 59.33 50.74 1.49 1.61 .77 1.36
1914 20.95 12.60 60.14 54.03 1.35 1.27 .68 2.14
1648 29.24 31.02 47.56 31.57 1.45 2.70 1.82 2.56

MANAGEMENT CLASSES SYMBOLS



APPENDIX C

A SAMPLE PAGE OF THE SORTED RESULT
ON 255 HULTITEMPORAL SYMBOLS

88



NUNBER OF CHARACTER COII8INATIONS = 255
TDTAL OCCURkNCESI=NUPIBER OF PIXELS) 2'.7021.
SYIt4OLS AND OCCURRENCES FOR SCENE I

A C 1 0 S V N '. 8 444UM (P4) .821.1-- i06t-- 797J --2517& 14356 -7465-. 3989 3 1929 -. 1218. 1 7091-- iS5i.i-_L4_.
S

NUM(N) 71.317 3533 5776 71'.

SY'I8OLS AND OCCURRENCES FO SCENE 2
C H I N 0 VNUM(N) 5754 5459 13165 17679 11586 18469/

NUH(NP 1212 57268 2575 5785 1712 568'.

CHARACTERs COHBINATIONSI 16 TOTAL OCCURRENCESS 18400Z TOTAL PIWELSS 71,49
N 8 1 V 0 8 6 = 6 '4 VNIJI1(N) 5666 3961. 3254 1031 1008 81.7 809 737 336 171 t5'. 11.9N/OCC .308 .215 .177 .056 .055 .01.6 041. .01.0 .018 .009 .008 .0084CC P4/0 .308 .523 .700 .756 .811 .857 .901 .341 .950 .969 .377 .985_J4/TOT .fl23_Qj&_. 011 ..00'. O4.OD3.O03_.00i__.L001 fl01 flOi4CC N/T .023 .039 .052 .056 .060 .06'. .067 .070 .071 .072 .073 .073N/SC1 308 .000 .209 .069 .032 .113 .011 .029 .095 .000 .000 .000N/SC2 .191 .22'. .053 0T .055 .073 .01'. .128 .131 .035 .028 .066

z /
NIJPI(N) 96 7'. 60 1.0

_.NIOCC 005__0fl4__..Qli3_o02
4CC P4/0 .991 .995 .998 1.000
N/TOT .000 .000 .000 .000
4CC N/T 074 .07'. .07'. .07'.
N/SC1 .000 .104. .000 .000
N/SC2 .017 .01.3 .050 .019

CHARACTERI S COHBINATI0NSI 18 TOTAL OCCURRENCESI 74317X TOTAL PIAELSI 30.085
3 o V 0 N ii

NJM(N) 1.1790 16033 2603 2152 1731 1722 1691 i'.26
P4/0CC .562 .216 .035 .029 .023 .023 .023 .0194CC P4/0 .562 .778 .813 .842 .865 .889 .911 .930.k.ITOT t69 -111.5 .011 -aag -0flL.._Ofl7 -OL ..Ul4CC N/T .169 .23'. .2'.5 .253 .260 .267 .27g. .28a
I'4/5L1 .562 1.031 .000 .117 054 .231 .000 .000
N/SC2 .729 .260 .1.58 .072 .09'. .1'.9 .096 .262

/ Y w
NUPI(N) 51.7 345 268 160 19 6._N/OCC ___07__.flOS -JiI'._. .fl02_..0OL_. .000_.
4CC ((/0 .989 .99'. .99 1.000 1.000 1.000w/rer .002 .001 001 .001 .000 .00
ACC N/T .298 .299 .300 .301 .01 .301
NISCI .155 .000 .375 .000 016 001.
NfSCZ .212 .285 .157 .095 .021. .001

I 6
1226 1110 859 627.016 .015 .017 .008.95.7 .962 .973 .982If -Ofl5___flOj. D0 .flfl
.285 .289 .293 .295.082 .000 .000 .025.093 .531 .178 .109

N V 5 8 3
796 1688 4831 41563 29685 2090
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ss
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APPENDIX D

COMBINED SPECTRAL MEAN CLASSES AND
FINAL SYMBOL ASSIGNKENTS FOR 61 MULTITEMPORAL

COMBINATIONS (1979-198 3)

1979-1983 symbol pairs,
Single symbols on the PCA plot,
Means of band 5 to band 7 for 1979 data,
Means of band 5 to band 7 for 1983 data.

18.2116.1235.5730.08

M5 M6 M7 N8

16.5810.2837.2924.13

90

14.64 10.00 26.87 20.03

18.64 18.39 29.60 21.43
14.64 10.00 26.87 20.03

14.64 10.00 26.8? 20.03
14.64 10.00 26.87 20.03

16.52 11.61 38.81 36.26

16.26 11.54 36.53 32.31
16.26 11.54 36.53 32.31

14.64 10.00 26.87 20.03

16.52 11.61 38.81 36.26

16.58 10.28 3729 24.13
18.36 11.51 46.35 33.55

18.36 11.51 46.35 33.55
18.36 11.51 46.35 33.55
21.90 14.84 56.62 46.22
18.36 11.51 46.35 33.55
21.90 14.84 56.62 46.22
23.25 18.92 50.00 36.50
18.36 11.51 46.35 33.55

18.36 11.51 46.35 33.55
19.71 11.92 53.58 42.10
18.36 11.51 46.35 33.55
18.36 11.51 46.35 33.55

18.36 11.51 46.35 33.55
21.90 14,.84 56.62 46.22
16.58 10.28 37.29 24.13
16.58 10.28 37.29 24.13
23.25 18.92 50.00 36.50

16.58 10.28 37.29 24.13
23.48 20.73 45.12 30.07

21.90 14.84 56.62 46.22
23.25 18.92 50.00 36.50
23.25 18.92 50.00 36.50
23.48 20.73 45.12 30.07
19.71 11.92 53.58 42.10
16.58 10.28 37.29 24.13

19.71 11.92 5.3.58 42.10

16.58 10.28 37.29 24.13
19.59 12.40 44.77 31.15
19.89 11.79 50.34 38.69

Ml M2 M3 M4

14.64 10.00 26.87 20.03
14.64 10.00 2..87 20.03
16.52 11.61 38.81 36.26
16.2611.5436.53 32.31
18.21 16.12 35.5? 30.08

15.98 11.35 34.54 29.83

17.29 12.58 42.46 43.42

18.21 16.12 35.5? 30.08

18.21 16.1235.57 30.08
15.61 10.95 32.82 27.68

16.52 11.61 38.81 36.26

17.70 14.01 39.39 36.72

17.29 12.58 42.46 43.42

15.05 10.30 31.36 25.90

20.98 22.06 36.13 29.42

15.05 10.30 31.36 25.90

18.21 16.12 35.5? 30.08

20.98 22.06 36.13 29.42

15.61 10.95 32,82 27.68

15.98 11.35 34.54 29.83



(CONTINUATION OF APPENDIX D)
9].

SP SS Ml M2 M3 M4 M5 M6 M7 M8

00

IV

0

6

18.64 18.39 29.60 21.43
i7.7ci 14.01 39.39 36.72

23.48 20.73 45.12 30.07
23.25 18.92 50.00 36.50

$1 J
14.64 10.00 26.87 20.03 20.94 14.76 51.30 39.23

0+ 1
18.64 18.39 29.60 21.43 21.90 14.84 56.62 46.22

GV K 16.52 11.61 38.81 36.26 23.25 18.92 50.00 36.50

4+ 1
16.26 11.54 36.53 32.31 21.90 14.84 56.62 46.22

V 0 18.9819.4226.2417.16 23.25 18.92 50.00 36.50

GO ;
16.52 11.61 38.81 36.26 23.48 20.73 45.12 30.07

+V X 17.29 12.58 42.46 43.42 23.25 18.92 50.00 36.50

8N R 15.98 11.35 34.54 29.83 19.71 11.92 53.58 42.10

=0 18.98 19.42 26.24 17.16 23.48 20.73 45.12 30.07

1$ 17.70 14.01 39.39 36.72 16.58 10.28 37.29 24.13

+0 C 17.29 12.58 42.46 43.42 23.48 20.73 45.12 30.07

40 S 16.26 11.54 36.53 32.31 23.48 20.73 45.12 30.07

VH > 18.21 16.12 35.57 30.08 19.59 12.40 44.77 31.15

+$ B 17.29 12.58 42.46 43.42 16.58 10.28 37.29 24.13

46 t 16.26 11.54 36.53 32.31 19.89 11.79 50.34 38.69

80 1 15.98 11.35 34.54 29.83 23.48 20.73 45.12 30.07

I 4 20.98 22.06 36.13 29.42 20.94 14.76 51.30 39.23

8H Y 15.98 11.35 34.54 29.83 19.59 12.40 44.77 31.15

$6 * 14.64 10.00 26.87 20.03 19.89 11.79 50.34 38.69

HO .J 20.98 22.06 36.13 29.42 18.36 11.51 46.35 33.55

58 18.1514.7343.1643.80 18.36 11.51 46.35 33.55

10 17.70 14.01 39.39 36.72 23.48 20.73 45.12 30.07

V: / 18.21 16.12 35.57 30.08 18.80 12.56 42.09 28.10

S 14.64 10.00 26.87 20.03 27.69 28.79 45.82 29.75

CN U 15.6110.9532.8227.68 19.71 11.92 53.58 42.10

OS 2 18.64 18.39 29.60 21.43 16.5810.2837.2924.13

+ ;, 18.98 19.42 26.24 17.16 21.90 14.84 56.62 46.22

4Y t 16.26 11.54 36.53 32.31 21.90 12.10 51.63 39.14

MANAGEKENT CLASSES SINGLE SYMBOLS

HARVEST $ ? F < Q E ( ) HP -] * /
THINNING U89 \D5
RELEASE GL+ , N" Z IJ [R>YW
PLANT ING M3A. V! 061K0 ; X=CS

T4-' 27



APPENDIX E

PCA OUTPUT OF 61 MIJLTITEMPORAL COMBINATIONS
(1979-1983 SPECTRAL MEAN CLASSES)
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fXCURL VERSION 3.0 2 nARCH 982 87/05/28. 12.50.33.

ENTER W OF COLUMNS, OF ROUS

8 61

CRIER INFO F FILE FORMAT
FREE FORMAT 0

READ BINARY 1

0

INPUT Df1A FROM INHAT(LUN 4) -- FREE FORM
ENTER NUMBER PLACES TO SHIFT INPUT VALUES LEFT
CR> DEFAULT 0

ENTER FILE TYPE
RH CORRELATION ABOUT MEAN
RU CORRELATION ABOUT ORIGIN
CM COVARIANCE ABOUT MEAN
CO COVARIANCE ABOUT ORIGIN
CO

ENTER 10 RECORD--iiAX 2 LINES OF 60 CHARS
TERMINATE )11I4 EOF

' SEN UANG 61 CLASS SELECTION 1Sf
? 61 SPECTRAL CLASS COMBINATIONS X 8 COLS

CORRELATION REDUCTIONS VIA COOLEY-LOHNES 8 COLUMNS 61 ROWS
FILE ID -

C[[[ID)]COSEN WANG 61 CLASS SELECTION 1ST
61 SPECTRAL CLASS COMBINATIONS X 8 COLS

DO YOU WANT TO PRINT CORk MATRIX?-- (CR> NO
YES

COVARIANCE (OR CORRELATION) MATRIX

SECTION 1

ROW 1 2 3 4 5 6 7 8

1 17721.988

2 14387.773 12000.062
3 35609.154 28447.541 73493.433
4 30689.809 24275.015 64112.638 56552.121
5 21158.263 16991.364 42655.433 36598.742 25850.348
6 (5086.658 12170.855 30269.372 25919.375 18724.662 13944.439
7 48920.165 39241.897 98780.804 84814.648 59304.133 42195.754 138Oo9.64
8 35552.572 28559.669 71701.162 61523.270 43140.259 30541.970 101130.185 74502.42



'BF.IGEN .vM (RX .OUTRAN

EIGENVALUES AND VECTORS
2 SETEMBER 1981 VERSION 1.0 87/05/28. 12.53.13.

FILE ID

CCE[ID]]COSEN AN6 61 CLASS SELECTION 1ST

61 SPECTRAL CLASS COMBINATIONS X 8 CULS

EIGENVALUES, SMALLEST TO LARGEST

1 2 3 4 5 6 7 8

1.4251 5.0492 7.8977 174.27 936.99 16o8.2 5358.3 .40398E+06

tIGENVECIORS AS COLUMNS CORRESPONDING TO EIGENVALUES ABOVE.

1 2 3 4 5 6 7 8
1 .82387 -.11288 .11071 .25120 .38214 -.20788 -.23856E-01-.20812
2 -.36284 .52518E-01 .80015E-01-.38181 .75660 -.33293 .47941E-01-.16681
3 -.17948 .32288E-01-.66731 .35333 .86805E-01-.21521E-01-.45775 -.42316
4 .68390E-01-.11132E-01 .44246 -.38893 -.17420 .16609 -.67569 -.36562
S -.26698E-01 .80237 .20923 .18708 -.22841 -.38551 .11341 -.25112
6 .?0006E-01-.38050 -.21607 -.34218 -.43303 -.67425 .11150 -.17885
7 -.29330 -.38174 .36776 .37543 -.58447E-01 .12889 .36353 -.58299
8 .24709 .22142 -.33846 -.47115 -.23261E-01 .44503 .41665 -.42568

ENTER NUMBER OF COLUMNS AND ROWS IN ORIGINAL DATA MATRIX
? 8 61

SUM RMS REAL IMBEIJ PERCENT
N (C-N) EV2 ERR. ERR. ERR. NALINOVSKI VAR. RATIO

I 7 8152.1 4.0872 4.3694 1.5448 .89171E-01 98.02 75.39
2 6 2793.9 2.3927 2.7629 1.3814 .7o74?E-t 99.32 3.21

3 5 1125.6 1.5)88 1.9211 1.1764 .76844E-01 99.73 1.78
4 4 188.65 .62175 .87928 .62175 .54955E-01 99.95 5.38
5 3 14.372 .17161 .28024 .22155 .31138E-01. 100.00 22.07
6 2 6.4743 .11518 .23037 .19950 .57591E-01 100.00 - 1.56
7 1 1.4251 .54039E-01 .15285 .14297 .15285 100.00 3.54

AVERAGE EIGENVAL!JE 51517.

RMS ERR. ... ESI RMS OF (RECONSI. DATA - ORIGINAL DATA)
RE (REAL ERR.) ... EST. OF (PURE DATA - ORIGINAL DATA)
IE lIMBED. ERR.) ... EST. OF (PURE DATA - RECONST. DATA)

ENTER NUMBER JF FACTORS
15

AETRACT CCLUMM MATRIX CC] TRUG])
-.229 -.167 -.423 -.366 -.251 -.179 -.583 -.426-.f224 .048 -.458 -.676 .113 .111 .364 .417-.209 -.333 -.222 .10 -.386 -.674 .129 .445.292 .757 .087 -.174 -.228 -.433 -.058 -.023.25: -.382 .353 -.389 .187 -.342 .375 -.471

94



95

(U[ID]]COSEN WANG 61 CLASS SELECTIOl 181
SI SPECTRAL CLASS COMBINATIONS X 8 COLS

-61 .422 .93274 -1.4025

-71 .381 8.4902 2.4419

1.0245

- .66337

3.7784

2.6536

3 -83. 027 -7. 9094 3.9537 -.5 1759 .4 1787

4 -80. 552 -4. 1940 3. 4241 -.17974 1.1097

-93.365 7. 7105 4. 4964 1 .1903 -2. 2120

6 -78. 713 -1.6098 3.1765 -.17123 1 .3234

7 -100.38 -4. 6049 7.9336 -3.5654 -3.8454

8 -86. 43? 1.8621 -3.9539 -.27183 -1.2613

9 -80.500 -2. 0? 47 1.1442 4. 3 358 .37902

10 -77. 0 56 .6 1995 3. 0665 - .39004 1.6616

11 -91 .294 -1.5200 7.893? -1.6249 - .78407

12 -84.086 -8. 3988 2.9733 1.7194 -.17622

13 -87.511 -14.390 4 .5814 -.41985 -1.2543

14 -75.562 2. 4732 3.1351 -.91249 1 .9455

15 -94.928 8.1188 1 .8213 6. 9066 -3.3296

16 -65. 603 -5. 08 42 - .70926 .77535 3.0703

1? -70.54 2 -9. 6321 -2.7002 6. 02 36 1.5038

18 -88.000 2. 2704 -6.6290 5. 4 445 -2.3788

1? -67. 097 -6.9 375 - .77785 1.2978 2.7863

20 -68.755 -9. 1672 - .66786 1 .5166 2. 4981

21 -81 .237 -2. 3 63 1 -8.7534 - .67336 -.64018

22 -84.246 18. 275 5.794 1 -3. 8 089 62570E-01

23 -81.216 10.538 -6.1072 2.5986 -.765 15

24 -77.31? 12.42? -2. 6562 -5. 2710 1.0133

25 -72.11? 8. 2018 -7. 45 57 -5. 6 725 1.6344

26 -79.64? 14. 880 6 .3818 -1 .7707 1.4519

2? -73.068 -15. 467 .10939 1 1703 1 .5424

28 -88. 819 2.1955 7.364 1 -1 .2871 -.91?95E-01

29 -70.593 -11.751 -.42025 1 .508 1 2. 2345

30 -69.906 7.1546 .95913E-01-1 .1815 3.1168

31 -87.975 -4 1 26 5. 9768 -1.3411 -.31567

32 -76. 016 6. 3129 -10. 907 2.1970 -.14404

33 -90. 023 -4.4621 -2.12 47 -2. 8882 -1.8165

34 -77. 913 13.311 2. 4217 -3. 0814 1.2064

35 -88.145 16.386 2. 3430 4. 0607 -1 .7159

36 -88.96 4 -3.972? -1.1443 -5.1252 -1.2226

37 -93.417 5. 5912 6.7763 -3. 32 53 -1.4813

38 -78.476 15.003 -7.1577 3. 9 599 - .59948

39 -83.763 -8.19?? -5.9429 -5.526? -.60153

40 -93. 4 48 -10. 453 -.5 1667 -5.0275 -2. 89 46

41 -86.980 4.7797 7.1165 -1 .2786 .17162

42 -73. 275 10.777 -11.95? 3. 5584 .21 624E-01

43 -74.128 -15.956 -.87103 3. 4072 .94853

44 -88.248 -14.678 -5. 3162 -5. 4290 -2. 27 35

45 -81 .288 -4.4824 -6. 4 735 -5. 1889 .90548E-01

46 -79.026 -3.4103 -1.2018 3.8176 .84213

47 -77.553 -21 .947 .73703 1.2680 -.12956

48 -85.500 -.39?lo 5. 44 72 -1.0032 .37640

49 -79.450 -1.8982 -6.7211 -5. 1804 .35 416

5;) -88.596 3.1546 -1.5511 7. 63 40 -2. 185'

St -7.23? -2.9454 .83052 -.68939 1.8365

52 -76.329 1 2 . 2 7 4. 4650 -1.4868 1 .9203

53 -82.063 -1.6664 -1.5310 10. 052 - .73853

-a8.484 -14.825 3. 7349 1.5300 -1 .2596

-84.823 -8. 873 -6. 9243 -3. 28 98 -1.1954

56 -75.945 -5. 74 98 -2.6308 4.2021 1.0331

57 -74.88? 9.6990 -14. 565 -10.158 .?7632E-0l

58 -85.323 7. 0094 7. 0065 -1.4974 .4 5986

59 -65.32 1 - .95607 -4.8535 8. 89 40 1 9999

60 -85.404 20. 851 1 .2925 5.4220 -1.5502

61 -87.004 .52179 4. 8298 -1.8824 .91864
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PC (7s-3)

THE ORISINRL ERROR MATRIX IS:

LOWER LIMIT (HT UPPER LIMIT

.74448 .75754 .77061

TH1 THe TH3 TW4 VRIPNCE

.836485 .325588 .562909 .466048 .00004444

THE Z STRTISTIC 16: 113.63500

DTE79

THE ORIGINPL ERROR NIRTRIX IS:

LOWER LIMIT <HT UPPER LIMIT

.64166 .6Z624 .67083

TH 1 THC TH3 TH4 VRIWNCE

.769514 .322507 .536948 .477038 .00005534

THE Z STATISTIC IS: 8. 1726

97

2340. 197. 118. 34.
81. 252. 104. b.
133. 178. 1990. 137.

4. 12. 51. 815.

2211. 387. 103. 12.
94. 309. 103. 1.

165. 394. 2030. 46.
13. 20. 156. 458.



THE ORIGINPL ERROR MPTRIX IS:

LOWER LIMIT KHAT UPPER LIMIT

.54857 .56353 .57849

TH1 TH2 TH3 TN'. VRINCE

.690887 .291788 .438163 .376538 .00005828

THE Z STRTISTIC 19: 73.81763

SUMr'1RV TLE PND COMPPRISONS

rPTRIX LOWER LIMIT KHT UPPER LIMIT

COr'1BINTION TEST STATISTIC

1 .1 1O.1'.11

1 3 19.1428

2 3 8.6982

2013. 590. 106. 33.
66. 413. 75. 9.

169. 644. 1550. 149.
8. 13. 146. 512.

.74448 .75754 .77061

.64166 .65624 .67083

.54857 .56353 .5743

DTE83 98


