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Data in the form of counts or proportions often exhibit more

variability than that predicted by a Poisson or binomial

distribution. Many different models have been proposed to account

for extra-Poisson or extra-binomial variation. A simple model

includes a single heterogeneity factor (dispersion parameter) in the

variance. Other models that allow the dispersion parameter to vary

between groups or according to a continuous covariate also exist but

require a more complicated analysis. This thesis is concerned with

(1) understanding the consequences of using an oversimplified model

for overdispersion, (2) presenting diagnostic tools for detecting the

dependence of overdispersion on covariates in regression settings for

counts and proportions and (3) presenting diagnostic tools for

distinguishing between some commonly used models for overdispersed

data.

The double exponential family of distributions is used as a

foundation for this work. A double binomial or double Poisson



density is constructed from a binomial or Poisson density and an

additional dispersion parameter. This provides a completely

parametric framework for modeling overdispersed counts and

proportions.

The first issue above is addressed by exploring the properties

of maximum likelihood estimates obtained from incorrectly specified

likelihoods. The diagnostic tools are based on a score test in the

double exponential family. An attractive feature of this test is

that it can be computed from the components of the deviance in the

standard generalized linear model fit. A graphical display is

suggested by the score test. For the normal linear model, which is a

special case of the double exponential family, the diagnostics reduce

to those for heteroscedasticity presented by Cook and Weisberg

(1983).
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DIAGNOSTIC TOOLS FOR OVERDISPERSION IN GENERALIZED LINEAR MODELS

Chapter 1

THE DEPENDENCE OF OVERDISPERSION ON COVARIATES

1.1 OVERDISPERSION

Data in the form of counts or proportions are often analyzed as

observations from a Poisson or binomial distribution. Counted data,

however, often exhibit greater variability than that predicted by

these parametric models. This extra variability has been called

extra-Poisson or extra-binomial variation or, more generally,

overdispersion. This thesis will discuss the analysis of

overdispersed counted data with regression models when the

overdispersion may depend on covariates or factors. In particular it

will provide a practical diagnostic tool for determining whether it is

necessary to model this structure.

There are potentially many models for overdispersion and it is

desirable to evaluate the appropriateness of each. A simple model

(Finney, 1971; Wedderburn, 1974) accounts for overdispersion by a

constant heterogeneity factor. Nelder and Pregibon (1987) noted that,



"Wedderburn's original quasilikelihood model assumed that the
dispersion parameter fo is constant for all observations. In

certain applications it may be desirable to check this
assumption, or perhaps model F as a function of known
covariates."

Thus there is a need for an easy diagnostic method for identifying

patterns in the extra variability. Fitting a model where

overdispersion is accounted for by a constant heterogeneity factor is

relatively simple. It would be nice to know whether the data supports

this model or whether it indicates that a more sophisticated model is

needed.

Various models have been proposed for the probabilistic

mechanisms that produce overdispersed data. For example, important

covariates left out of the regression model, measurement errors in

covariates, inter-subject variability and mixture models can be

responsible for variation that is greater than expected. For

proportions, non-independence of Bernoulli trials can also lead to

extra binomial variation.

In many cases overdispersion may be directly related to factors

or to continuous covariates. For example, a treatment may affect the

variability of the responses as well as the mean. If a regression

model is fit to a function of the mean and an important covariate is

omitted, then it is possible that overdispersion is associated with

the omitted covariate. If a measuring process improves over time,

then overdispersion may be related to time. If a covariate in the

regression model contains measurement error then the variability of

the response given the measured variable will depend on a term which
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is proportional to the variance of the covariate given its

measurement.

In addition, the variance model with a simple heterogeneity

factor may be an oversimplification of the variability in responses,

even though overdispersion doesn't depend on covariates. For

example, if Y is a count with mean #, two common models for

extra-Poisson variation are, Var(Y) = r
2
# and Var(Y) = #(1 + r

2
#).

It will be shown in Chapter 3 that the latter model can be studied

using a constructed covariate. It may be desired to include an

assessment of the appropriateness of each of these models in the

statistical analysis.

In all of these situations, the extra variation may be modeled

using known covariates or factors. This thesis is concerned with

simple methods for using the data to indicate whether or not this is

necessary. The following examples illustrate situations in which it

is desired to investigate the dependence of overdispersion on

covariates as part of the statistical analysis.

1.2 INTRODUCTION TO THE EXAMPLES

The data described in Examples 1 through 5 are provided in the

appendix.

1.2.1. Fish Toxicoloav Data

An experiment was conducted by researchers in the Environmental

Health Sciences Center at Oregon State University to investigate the



carcinogenic effects of aflatoxin, a toxic by-product produced by a

mold which infects cottonseed meal, peanuts and grains. Tanks of

rainbow trout embryos were exposed to either aflatoxin B1 or a related

compound, aflatoxicol, at one of six doses for one hour. The fish

were allowed to grow for one year and then the number of fish

developing liver cancer in each tank was recorded. The entire

experiment was replicated four times. The statistical analysis

involves fitting a logistic regression model to determine if there is

a difference in the dose response relationships for the two

carcinogens. Figure 1.1 is a plot of the empirical logit versus dose

level for each treatment.

Researchers involved in this experiment know that the metabolic

pathway from aflatoxicol to liver cancer is much longer than the

pathway from aflatoxin B1 to cancer. Thus they expect to see more

variation in the outcomes for fish treated with a given dose of

aflatoxicol than for an equivalent dose of aflatoxin Bl. This

suggests that overdispersion may depend on the treatment group. In

addition, a lack of independence in the outcome for each fish due to

such things as competition for food may also lead to overdispersion.

It would be useful to apply the diagnostic tools described in this

thesis to investigate the presumed dependence of overdispersion on

treatment group.

1.2.2. Fish Vaccination Data

An experiment was conducted by researchers in the Department of

Microbiology at Oregon State University. The proportion of fish dying



Cr)

cv

1-'

Figure 1.1 Fish Toxicology Data

1

1 2 3 4

Dose Group

5

Aflatoxin B1 = (*) Aflatoxicol = (+)

6



due to viral infection in several treatment groups was used to study

the effectiveness of an antiviral vaccine. Interest lies in comparing

the expensive inoculation vaccine treatment with the inexpensive

immersion vaccine.

Tanks of fish were given one of three vaccination treatments and

after a period of 30-35 days were exposed to one of 5 dilutions of

virus. The number of fish dying due to viral infection in each tank

was recorded. The vaccination treatments were (1) no vaccine, (2)

vaccine was dissolved in the water into which the fish were immersed

and (3) vaccine was applied by injection to each fish. This set-up

was replicated at four locations and each replication was labeled an

experiment. The statistical analysis involves fitting logistic

regression models to determine the relative risks of death for the

inoculated and immersed treatment groups. The data from the first of

the four experiments are plotted in Figure 1.2

There are two reasons to suspect overdispersion in this data set.

First, as in Example 1 above, the tank effects may be thought to

induce correlations between outcomes for individual fish, resulting in

overdispersion. Second, the exact dosage of vaccine is known for the

control and the inoculated treatment groups. However, the exact

dosage is not known for the immersed fish. The absorption rate of the

vaccine may depend on fish size, overall fish health or on other

unidentified factors. In any case, there is some measurement error

associated with the amount of vaccine received by each fish in this

treatment group which would result in a higher degree of

overdispersion in this treatment group than in the others.
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As a preliminary step in the analysis of this data it would be

helpful to know whether the degree of overdispersion does, in fact,

differ for the different treatment groups.

1.2.3 Salmonella Data

Simpson and Margolin (1986) reported the results of an experiment

in which plates containing Salmonella bacteria were exposed to various

doses of Acid Red 114 and the number of revertant colonies in each

plate was observed. The researchers were interested in the pattern of

response and the tendency of the treatment to be toxic at high dose

levels. The logarithm of the count for each plate is plotted in

Figure 1.3 versus the logarithm of dose.

For this problem it may be of interest to determine which models

for overdispersion are appropriate. If E(Yi) = pi, then some possible

models discussed throughout this thesis for the variance of Yi are:

Var (YI). = pi,
2

and

Var(Y.) = #.[1 + .

o 1

The first model is relatively simple; the second model will allow

extra-Poisson variation to change with the mean. A useful analysis

would include an evaluation of the appropriateness of each model.

1.2.4 Chromosome Aberration Data

Blood samples from 649 survivors of the atomic bombing of

Hiroshima were collected after the bomb blast. Thirty to one hundred

circulating lymphocytes were examined and the number of lymphocytes

with chromosome aberrations was observed (Otake and Prentice, 1984).
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An estimate of the amount of gamma and neutron radiation received was

also estimated using information provided by the survivor on their

location and shielding at the time of the blast. It is of interest to

know how the aberration rate depends on the total dose of radiation

received. Based on biological consideration, the statistical analysis

involves fitting a linear regression model to the proportion of

chromosome aberrations. The data are plotted in Figure 1.4. A small

random uniform number was added to each grouped average exposure to

display the concentration of points in each dose category.

The measured radiation dose is known to contain substantial

measurement error and the standard deviation of the measured radiation

dose is thought to be proportional to the true radiation dose. As

discussed previously, if Y is the proportion of chromosome

aberrations, X is the true radiation received and Z is the measured

radiation, then with a simple multiplicative model for measurement

error, the variance of Y given Z would be the binomial variance plus a

term which is quadratic in Z. The diagnostic tools presented in this

thesis may be used at an early stage of the analysis to check on this

presumed form for the overdispersion.

1.2.5 Rotenone Data

In an experiment to assess the insecticidal properties of

rotenone and degulin, two compounds obtained from the roots of the

plant genus Perris, batches of the Chrysanthemum Aphid,

Iacrosiphoniella sanborni were exposed to either rotenone or degulin

at varying doses or to a 1:4 mixture of the two toxins, and the
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mortality of each batch was noted. It is of interest to know whether

an additive model is adequate to describe the toxic effects of

rotenone and degulin or whether interaction terms are needed to

represent non-parallel probit regression lines. The statistical

analysis involves fitting a probit regression model to the data with

and without the appropriate interaction terms. Figure 1.5 is a plot

of the empirical probits versus the logarithm of dose. This data was

initially reported by Martin (1942) and Finney (1971) fit a probit

regression model to the data.

Since it can be difficult to distinguish between overdispersion

and interaction, it is important that the overdispersion be modeled as

adequately as possible. So it is worthwhile to compare the relative

validity of competing models for overdispersion. If Yi is the

proportionadeadinseasinabeachasizem.alld E(Y1) = pi, two

models for the variance of Y are given by,

3.3.

Var(Y.3. ) = #.(1-#.)(1/m) r
2

and

Var(Yi) = pi(1-µi) (1/m) (1 + sopi(1-#i)] .

These models are are analogous to the models for counts given in

Example 3.

In this example, the treatment is applied to an entire batch of

insects and not to individual aphids, and so there are potential

differences in the doses actually received by individual insects. If

it is suspected that the standard deviation of the measurement error
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is proportional to the logarithm of the dose, than another potential

model for the variance of
Yi

is,

Var(Y1) = p.(1-p.)(1/m) (a
o
+ a log(dose)]

It would be helpful to include a comparison of the validity of

these three competing models in the statistical analysis.

1.3 DESCRIPTION AND SUMMARY OF THE THESIS

The examples of Section 1.2 have shown that there are often good

reasons for suspecting that the amount of overdispersion can depend on

a factor or covariate.

Many different models for overdispersed data exist and some are

described in Chapter 2. Some account for the overdispersion through a

heterogeneity factor which is constant for all observations. For

example, a model for overdispersed counts that is often fit by

q r2µ.,

where M.) = pi and a
2

is constant for all observations. Computer

packages such as GLIM (Baker and Nelder, 1978) are available to fit

this type of model. This has contributed to the growing recognition

and statistical treatment of overdispersed data.

Models that will allow overdispersion to depend on a covariate or

vary from group to group, such as the regression models used with

extended quasi-likelihood methods (Nelder and Pregibon, 1987) or

double exponential families (Efron 1986), also exist (see Section
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2.2.4). However, these models may be quite sensitive to outliers, and

in addition, the computer analysis using these models requires

additional programming by the researcher.

The consequences of using the wrong assumptions about

overdispersion will be examined in Chapter 3. Two questions that will

be addressed are, (1) What can go wrong when overdispersion is

ignored altogether? and (2) What can go wrong if the dependence

overdispersion on a factor or covariate is ignored?

A score test for double exponential families and a simple

diagnostic plot that can be used to detect the dependence of

overdispersion on covariates will be presented in Chapter 4. These

depend in a simple way on statistics and residuals routinely available

from a standard fit to a generalized linear model. The diagnostic

tools will be applied to the examples of Section 1.2.
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Chapter 2

A REVIEW OF OVERDISPERSION MODELS FOR COUNTS AND PROPORTIONS

2.1 GENERALIZED LINEAR MODELS

Probit, logistic and log-linear regression models, along with

others relating a response variable from a one parameter exponential

family to covariates were collected into a general structure, termed

a generalized linear model by Nelder and Wedderburn (1972). If Y is

a response variable from a one parameter exponential family with

E(Y) = #, then a generalized linear model will describe a function of

# as a linear combination of coefficients. These models have been

made popular by McCullagh and Nelder (1983) and by the widespread use

of statistical computer packages such as GLIM (Baker and Nelder

1978). The general definition of a generalized linear model is given

below and the special cases of logit regression and log-linear models

are given as examples.

Suppose Yi ..... Yn are independent random variables with density

functions given by,

f (yi; ei do) = expl [yiej-b(Oi) ] lai(io) + ctyi, 01,

for some specific functions ai(F), b(0) and c(yi,F). Then,

E(Yi) = #i = Var(Yi) = b"(c)ai(F) and b"(ei) = V(#1.)

is called the variance function. p is called the dispersion

parameter and when p is known, f(yi:Oi,F) is a one parameter
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exponential family. The function ai(p) often has the form

a.(0=p/w.wherew.is called the prior weight.

Let vi = h(pi) = gi'/ where h(pi) is called the link function,

x.
2

is a (pxl) vector of explanatory variables and / is a (pxl) vector

of unknown parameters. Often q is selected so that vi = 0i, and the

corresponding h(#) is called the canonical link, which has desirable

statistical properties. There is often however, no a priori reason

for using the canonical link from a data analytic viewpoint; its use

may be simply a mathematical convenience and other links can be used

if desired.

Maximumlikelihoodestimatesofthefl.3 's can be found using

Fisher's scoring method which can be carried out by iteratively

weighted least squares using the working dependent variable,

zt Iti(yZigt) [(211
It

t
where #

t
and q are the estimates of # and q after (t) iterations.

The weight after (t) iterations is defined to be,

[P]2
't

where 0
t

is the estimate of 0 after (t) iterations. See McCullagh

and Nelder (1983) for a full description.

An important quantity in the study of generalized linear models

is the deviance function. This statistic is a generalization of the
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residual sum of squares from ordinary regression models. It measures

the discrepancy between the completely saturated model and the model

in question. If interest lies in testing Ho: 7i = against

Ha: 7i = 7i, then the deviance statistic is the likelihood ratio test

statistic for testing this hypothesis. It is given by,

D(y;#)/F = Eid(yi:0/10 = 2Ei[Yi(Bi-k)-b(01.)+b(k)]/a(19)

where O. is the estimate under H
a

and 8. is the estimate under H
o

.

The deviance components, d(yi,pi), are important tools in the

residual analysis of a generalized linear model and will play an

important part in the diagnostic presented in Chapter 4.

Asymptotically, as mi m for proportions, or for counts, as

_
pi m, for each i, D (V0/10 X

2

-p 1#
and, when F is known and the .

n

are large, the goodness of fit of the model can be evaluated by

comparing the deviance to the chi-square distribution with n-p

degrees of freedom.

Example 1. Logit Regression. The binomial logit regression model

can be put into the generalized linear model framework. Suppose that

Y binomial(m,#)/m with logit(p) = x'Ar.. Then, the generalized

linear model parameters are,

= logit(p) = ln[p/(1-p)] and 7 = ln[p/(1-p)].
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Also, a(p) = p/m = m-1 and V(#) = #(1-#) and the deviance for one

observation is given by,

d(y;#) = fy ln[y/#] + (m-y)ln[(m-y)/(m-#)]1.

Example 2. Poisson Log-linear Models. Log-linear models can also be

cast as generalized linear models. If Y POO and ln(#) = x'/ then,

B = ln(#), 8 = ln(#), a(p) = p = 1 and V(#) = #.

The deviance is given by,

d(y;#) = In (y /µ) + (y-#)].

2.2 REVIEW OF EXISTING MODELS FOR OVERDISPERSION

The presence of overdispersed data has been recognized for a

long time. Greenwood and Yule (1920) use a Poisson distribution with

a gamma mixing distribution to obtain the negative binomial

distribution for overdispersed counts. Cochran (1943) proposed a

weighted estimator of # to account for extra-binomial variation in

fractions and percentages. Skellam (1948) introduced the

beta-binomial model as a parametric model for overdispersed

proportions. Since then many different types of models have been

proposed to help explain observed variability that is larger or

smaller than that predicted by a particular distribution.
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There are two general groups of models that incorporate

overdispersion. The first group contains models with explicit

likelihood functions. Overdispersion is modeled either through

mixing distributions or, in the case of proportions, by assuming the

existence of correlations between Bernoulli trials. The second group

of models is based only on assumptions about the first and second

moments of the response variables.

I have distinguished between models and methods in this chapter.

Models are the assumed relationships between E(Y) and Var(Y) and

include likelihood functions. Examples are Models I, II and III of

Section 2.2.3. Methods are the processes by which estimates of the

parameters are obtained from the models. Methods discussed in

Section 2.2 include maximum likelihood, maximum quasi-likelihood,

maximum extended quasi-likelihood and iteratively weighted least

squares.

2.2.1 Likelihood Based Models for OverdisDersed Proportions

2.2.1.1 BETA-BINOMIAL MODEL

One of the oldest models for extra binomial variation is the

beta-binomial model. Given observations, Y, such that

mYIP Binomial(m,P) and P Beta(7,6), the unconditional

distribution of mY is described by the probability mass function

f (Y) =
n714411) r(7)ros)

r(,+y) r(7+6)
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for y = 0,1,...,m, where 7 > 0, S > 0 and r(.) is the gamma

function.

Define # = [43],
ty2

=
[ Ad

and V(#) = #(1-#). Then

E(Y) = [.--47-31 = # and

Var(Y) = (1/m)#(1-#) + (1/m)(m-1),2#(1-#)

= (1/m)V(#)[1 + o2(m -1)]

As either 7 or 6 approach infinity (which means the variance of

the beta distribution goes to zero), o
2
approaches zero and the

variance of Y approaches binomial variance. But as 7 and 46

simultaneously approach zero, ,
2
gets large and the variance of Y is

dominated by the extra-binomial variability.

To incorporate a regression model into this framework, let

logit(#i) = gi'l where xi is a (pxl) vector of explanatory variables

and 1 is a (pxl) vector of parameters. Estimates of the ft's can be

obtained by maximum likelihood.

The beta-binomial model was introduced by Skellam (1948) and

since then it has been used in many different applications. It has

been applied to point quadrat data by Kemp and Kemp (1956), to

consumer purchasing behavior by Chatfield and Goodhart (1970) and to

household incidence of disease by Griffiths (1973). Williams (1975)

applied the beta-binomial model to toxicology data involving litters
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of mice and Aeschbacher (1977) applied it to dominant lethal tests in

mice. The beta-binomial model has been favored because the

flexibility of the beta distribution allows for a wide range of

shapes and because the density exists in closed form so that maximum

likelihood estimates are relatively easy to obtain.

IfY=Lii.3. wherei1 is a Bernoulli random variable with

parameter #, then the beta-binomial model implies that all the

correlationsbetweenif.'s are positive. Prentice (1986) extended the

beta-binomial model to allow for negative correlations under certain

conditions. Altham (1978) gave a model that allowed for positive and

negative correlation between observations but this model is difficult

for researchers to interpret.

2.2.1.2 CORRELATED BERNOULLI MODEL

As an alternative to the beta-binomial model, Kupper and Baseman

(1978) developed a simple model for either positively or negatively

correlated Bernoulli trials.

Let Y = )711 Y. whereY.-Bernoulli(#).
i=1

If Yi,...,Ym are independent, the probability mass function for Y is

given by

P(y) = #Y(1-#)m-Y for y = 0,...,m

However, if correlation exists between Yi and Yi P(y), must be

multiplied by a factor to adjust for this dependence. This factor is
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a function of second order, third order, on up to m
th

order

correlations where Kupper and Haseman define the p
th

order

correlation to be HO m
i 0i( 1

Yi--01iii
)

1. The factor is complicated but

[

is

an approximation can be obtained by ignoring all second order and

higher corellations.

If p = Cov(Yi,Yj,) and all second order and higher correlations

are taken to be zero, then the approximation to the correct

probability mass function is given by,

1

P

Y
P
2
(Y) = M 0Y(1-#)M-1711 + 2 [(y-m0)

2
+ y(20-1) mp2 ll.

20"(1-0)

P
2
(y) is a valid probability mass function if and only if:

-2
# (1-0) P 20(1-0)

iTiFIT min 1-0 ' 0 17-077Wr (m-1)0(1-0+.25-70

where 70 = min ([ y (m-1)0-.5]
1/2

1 . Kupper and Haseman (1978)

give a table of permissible ranges of p for various choices of m and

0.

Better approximations to the true probability mass function can

be obtained by including higher order correlations but Kupper and

Haseman reported that P2(y) performed adequately for most of the

applications they studied. Estimates of p and 0 can be otained from

maximum likelihood methods.
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For the data sets given in Baseman and Soares (1976), Kupper and

Baseman (1978) show that the use of this model improves the fit

relative to the binomial model with independent Bernoulli trials.

2.2.1.3 CORRELATED PROBIT MODEL

Ochi and Prentice (1984) presented the following correlated

probit regression model. Let wi = (Nii be normally

distributed variates with common mean 0, variance r
2
and correlation

p.

1 if w.. > 0

Then let Y. = E.Y. . where Y.. =
13

1 3 13 13 0 if w.. < 0
13

If p = 0, then this gives the standard probit model with

,, pY.
1

binomial(m1. .), E(Y) = m.p. Var(Y) = m.p1(1-p.) and

1(µi) D) = 0/r = ./1 where ) is the standard normal distribution

function. The parameter vector maybe estimated by maximum

likelihood methods.

If p is not zero then the correlated probability mass function

for Y.
1

is,

m
P(y.) = (

Yi
f
m
(w.,0,1,p)dw

A

',here .{vi
1 1

) -0 /c when i < y; or v. < -0 /c when i>y

For this probability mass function,

E(Y) = mp and Var(Y) = mp(1 -p)[1 + (m-1)4]
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wherep=107/4,1-1(p)= xl .1 and 6, the correlation parameter

for Y1 .,
is given by,

8 srco
f(w,0,1,p)dw #

2 fp(1-#)1 -1
.

Ochi and Prentice report that 6 is fairly stable for p close to 0.5.

The estimates of the Qt's in this model may also be obtained using

maximum likelihood methods.

Regression models for p may also be used and negative as well as

positive correlations may be incorporated into this model. Although

the full likelihood consists of the product of the PfyiPs, it is

computationally difficult to maximize.

2.2.1.4 LOOIT-NORMAL MODEL

Pierce and Sands (1975) proposed the following logit regression

model with fixed and random effects on the logit scale. Suppose

that, mYIP Binomial (m,#), and logit(P) = x'l + u

where u N(0,82 ). Then E(Y1u) = EP
u

and Var(Y1u) = mP
u
(1-P

u
)

where P
u
= exp(e/ + u)/[1+exp(x'A + u)].

Expanding E(Y1u) about u = E(u) = 0 and calculating the

unconditional expectation and variance of Y gives,
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E(Y) = PO + op(a)

Var(Y) = (1/m)P
0
(1-P

0
)[1 + f

2
(m 1)P

0
(1-P

0
)] +

p

in an asymptotic sequence where r -4 0 and where

P
0
= exp(x1)/[1+exp(x'A)].

The unconditional variance of Y can be thought of as binomial

variance plus an extra-binomial term that depends on f
2

. This model

can be more directly interpreted than other models since the random

variation occurs on the same scale as the covariates and the model

allows for the incorporation of complicated randomization schemes.

However, the likelihood is computationally difficult to maximize.

2.2.2. Likelihood Based Models for Extra-Poisson Variation

2.2.2.1 NEGATIVE BINOMIAL MODEL

For overdispersed count data, suppose YIU Poisson(U) and

U Gamma(7,6). Then the unconditional distribution of Y is

f (y)
Y

r(7+y) 1{ 6 lY [ 1 7

for y = 0,1,2,...
r( r(y+i) 6 +1

which is the negative binomial probability mass function.
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If the probability mass function above is reparameterized so

that p = 78 and r2 = 6, then unconditionally

MY) = E[E(YIU) ] = E(U) = 75 = # ,

Var(Y) = E[Var(YIU)] + Var[E(YIU)]

= E(U) + Var(U)

= 78 + 782 = 78 Cl + 6)

= #(1 + r2).

This is analogous to the mean/variance relationship that arose

from the beta-binomial model and the correlated probit and Bernoulli

models.

Alternatively, if the model is parameterized so that 78 = # and

1/7 = r
2

then

E(Y) = E[E(YIU)] = E(U) = 76 = # ,

Var(Y) = E[Var(Y(U)] + Var[E(Y(U)]

= E(U) + Var(U)

= 76 + 762 = 76 (1 + 78/7)

=p Cl + #o2) .

This mean/variance relationship has a similar structure to that which

arises by modeling the random effects on the same scale as the

covariates for the mean in the logit normal model. Maximum
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likelihood techniques are used to find estimates of # and r
2

for

either parameterization.

Greenwood and Yule (1920) introduced this model and Skellam

(1948) showed how it is obtained as the limiting form of the

beta-binomial distribution. McCaughran and Arnold (1976) presented

this model for use in the study of embryonic deaths in mice and Moore

(1985) gives a full description of this model and its score

functions. Collings and Margolin (1985) proposed tests for extra

Poisson variation based on the negative binomial distribution when

(1) the mean was constant, (2) the mean depended on a single

covariate and the regression line passed through the origin and (3)

the mean took on a fixed number of values according to a one-way

layout. Dean and Lawless (1989) extended these tests to include

arbitrary Poisson regression models.

2.2.3 Models Based Only on First and Second Moment Assumptions

2.2.3.1 HISTORICAL RESULTS FOR I.I.D. SETTINGS

Cochran (1943) recognized extra-binomial variation in data that

was reported as fractions and percentages. He proposed

#(1-#)

Var(Y) + o

as a model for the variance of the proportion Y, where o
2

is the

extraneous variance. He noted that while it is not always clear what

assumptions can be made about a2, there is probably not one set of

assumptions for all data sets.
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Given observed percentages, Yi, based on mi trials, with

E(Y
i

) = p, for i = 1 ..... n, Cochran proposed a weighted estimator of

it,
w.y.
1 1

= anl E w.
1

where w. could be either (1) the binomial sample sizes m.1 , (2) 1,

or (3) m.mi . for the lower third of the ordered and min(mi) for the
1

upper two thirds or the ordered mi, where the minimum is over the

upper two thirds of the binomial samples. The efficiencies of these

weighting schemes depend on the proportions of binomial and

extraneous variation that are present.

Kleinman (1973) extended Cochran's ideas by estimating HeHe

supposed that given a percentage Y based on m trials,

ZYIP binomial(m,P), E(P) = p and Var(P) = r2A(1-A)(1/m). It can

be noted that these assumptions are analogous to those made in

deriving the beta binomial distribution. However, the form of the

unconditional distribution is not specified here. Unconditionally,

E(Yi) = A and Var(Yi) = A(1-A)(1/mi)[1+c
2
(mi-1)].

y.

Defining A =
.

and S = Ew.(y.-A) 2
, Kleinman set A

E w

1 1
11

1

and S equal to their expected values and solved for s2. Then he

proposed the following scheme for estimating wi.

1. Letting wil = 1 or mi, use the equations for p and S to solve for

o
2.

2
2.Letwi2=m1 4[14-8.(m.-1)] and evaluate A with

wi wit.1

Finney (1971), working in the context of probit analysis, also

recognized the presence of overdispersion. If Y is an observed
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proportion and the mean of Y is estimated correctly, then, in the

absence of overdispersion, the generalized Pearson chi-squared

statistic x2 should, on the average, equal its degrees of freedom,

(f). Finney suggested that a significantly large value of x
2
would

imply that the variance of Y was inflated by a heterogeneity factor,

h, and h could be estimated by x
2
/f. Finney noted that it is

difficult to distinguish between overdispersion and inadequacies in

the model for the mean.

2.2.3.2 REGRESSION SETTINGS AND QUASI-LIKELIHOOD MODELS

A general class of regression models in which the variance of

the response variable is proportional to a function of its mean was

described by Wedderburn (1974). Given Yi,...,Y
n

independent

observations such that E(Yi) = pi, vi = h(pi) = ai'/ and

Var .(Y1 ) = f
2
V(#

2
i), where x. is a (pxl) vector of covariates, the

quasi-likelihood function EiQ(yi,#i) is defined by:

Yi-Ai
WT; Q(YvAi) i IR/Li

The maximum quasi-likelihood estimate of the vector is the /

such that E.Q(y.4.) > E.Q(y.,#.) for all # where g(#) = x.2 '/ and

g(#) = Ei'l-

Wedderburn showed that EiQ(yi,#i) has many properties similar

to log-likelihoods. He showed that a quasi-likelihood function is

identical to a likelihood function if and only if the distribution of

Y is from the exponential family. Thus if the mean/variance
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relationship is known and is the same as a known exponential family

(up to a multiplicative constant in the variance) then the maximum

quasi-likelihood estimates of ,a are identical to the maximum

likelihood estimates. Thus quasi-likelihood estimation generalizes

maximum likelihood estimation of generalized linear models in the

same way that least squares estimation generalized maximum likelihood

estimation for normal theory regression.

The dispersion parameter, '2 is estimated separately. The

suggested estimator of a
2

,

(Yi-iii)

2

r =
n-p

= x2
/(n-p)

n

V o)
_

i=1

is the generalized Pearson chi-squared statistic divided by its

degrees of freedom, as in the method suggest by Finney (see Section

2.2.3). Since
u2

is estimated separately from the .

7

quasi-likelihood models can be fit in the framework of generalized

linear models using Fisher's scoring method (McCullagh and Nelder,

1983). When the assumed mean/variance relationship is the same as

that of a one parameter exponential family except for the

multiplicative constant r
2

, the maximum quasi-likelihood estimates of

the Qt's are identical to those obtained by maximum likelihood under

the corresponding one parameter exponential family model but the

estimated standard errors of the estimates must be scaled by r.

McCullagh (1983) studied the asymptotic properties of

quasi-likelihood estimators and showed that among all estimators of 8
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for which the influence function is linear, quasi-likelihood

estimates have minimum asymptotic variance. Firth (1987)

investigated the efficiency of maximum quasi-likelihood estimators in

the presence of overdispersion with respect to maximum likelihood

estimators and found that for mixing distributions with regular

cumulant behavior maximum quasi-likelihood estimators are greater

than 90% efficient if .2 is less than 1.3.

Williams (1982) summarized logistic regression models for

proportions given below and provided macros to fit these models in

GLIM (Baker and Welder, 1978).

Model I. E(Y) = # logit (ii) = x'A Var(Y) = #(1-#)/m

Model II. E(Y) = p logit (0 = el

Var(Y) = #(1-#)/m [1 + r2(m-1)]

Model III. E(Y) = p logit (#) = Kil

Var(Y) = #(1-#)(1/m)[1+,2(m-1)#(1-#)]

Model I is the binomial model without overdispersion. Model II

contains the same mean/variance relationship that arose using the

beta-binomial distribution or the correlated Bernoulli or the

correlated probit distribution. Model III contains approximately the

same mean/variance relationship as the logit normal distribution

discussed in Section 2.2.1. It arises by modeling random variation
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on the same scale as covariates. It will be described further in the

next section.

Similarly, three models for overdispersed counts can be

provided.

Model I'. E(Y) = # log (it) = x'/ Var(Y) = p

Model II'. E(Y) = # log (p) = x'A Var(Y) = # [1 + '2]

Model III'. E(Y) = p log (p) = x'l Var(Y) = /[1+,2#]

Model I' is the Poisson model without overdispersion. Model II'

contains the same mean/variance relationship as the negative binomial

model and the correlated models of Section 2.2.1. Similar to the

model for proportions, Model III' arises by modeling random variation

on the same scale as the covariates. Model II' and Model III' can be

obtained from the negative binomial model for counts as discussed in

Section 2.2.2.

Breslow (1984) discussed model III' for overdispersed Poisson

data. Given an observed count, d, with fixed denominator m, and an

unknown rate parameter A assume dIA Poisson (mA) and

log(A) = x'/ + u where E(u) = 0 and Var(u) = a2. This is analogous

to Williams' model III in that variability occurs on the same scale

as the covariates.

Then, if d is large, log(d/m) has an approximate normal

distribution with mean x'8 and variance [f
2
+ E(d)

-1
]. Estimates of
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the ft's can be obtained using weighted least squares with weights

(9
2

+ d
-1

).

For small d, Breslow suggested expanding E(dlAm) about

u = E(u) = 0 to obtain,

E(d) = expllog(m) + log[E(A)]1 = expllog(m) +

= #

Var(d) = E[Var(dlm,A)] + Var[E(dlm,A)]

:;',1 #(1 + r2p).

This model can be fit using quasi-likelihood methods and the

"2
estimated prior weight, (1 + e

2
pi)

-1
, where r is the generalized

Pearson chi-squared statistic divided by its degrees of freedom.

Moore (1987) presented an extension of the quasi-likelihood

method for modeling the variance of overdispersed proportions. Under

his model, E(Y) = p, h(#) = x'/ and

Var(Y) = (1 /m)µ(1 -µ) [1 + e2pe(1-p)e]

where e is an additional parameter. The case of C = 2 corresponds

approximately to Williams' model III. Moore suggests that an

appropriate value of f may be chosen by examining residuals or by

minimizing

VC) = E. le.12 - ;.1(1-i.1)(1/m.1 )
;2 p.(1.-#.)12
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where e.
2

1 i i i
= (y #) and # and a

'2
are obtained using the

quasi-likelihood method.

2.2.3.3 REGRESSION SETTINGS FOR MODELS III AND III'

In addition to the logit normal model discussed in 2.2.1, Pierce

and Sands (1975) presented Model III above, in the context of logit

regression. They modeled random effects as additive on the same

scale as the covariates without specifying a distribution for u.

In a derivation similar to the one in 2.2.1, suppose that,

YIP
u

Binomial (m,P
u
) /m, and logit(P

u
) = x'l + u where E(u) = 0

and Var(u) = a
2

. Expanding E(y lu) about u = E(u) = 0 and calculating

the unconditional variance of Y gives,

(1/m)E(Y) = PO + op(a) ,

Var(Y) = (1/m)P
0
(1-P

0
)[1 + a

2
(m 1)P

0
(1-P

0
)] + op(a)

in an asymptotic sequence where a -0 0 and

where Po = exp(x'/)/[1+exp(x/A)]. This model can incorporate

variability due to omitted variables, random effects and complicated

randomization schemes.

In the absence of overdispersion, where ui = 0 for all i, this

is the usual logit regression model and A, the maximum likelihood

estimator of I can be found using iteratively weighted least squares.
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For u N(0,,
2
), Pierce and Sands show how to find the maximum

likelihood estimates using numerical quadrature. On the basis of

simplicity, they suggested estimating g2 with,

"2 ri(Yi-Y)
2

-EimiPi(1-Pi) -1
f =

n-m
1]

E.mi

where logit (Pi) = x'A. This estimator is inadmissible, although

Pierce and Sands say that it fails only slightly to be admissible for

the examples they have studied. Unlike the maximum likelihood

estimate, this unbiased estimator can be explicitly evaluated once Pi

is estimated and its variance function is similar to that of maximum

likelihood estimators for moderate a
2

.

2.2.4 Models that Incorporate Covariates Into the Variance

2.2.4.1 EXTENDED QUASI-LIKELIHOOD

Quasi-likelihood methods provide for a dispersion parameter that

is constant for all observations in a dataset and the model given by

Moore (1987) allows for a dispersion parameter that depends on the

mean and one additional parameter. Based on the discussion of

Chapter 1, it may be reasonable to model the dispersion parameter as

a function of known covariates which may or may not include the mean.

Nelder and Pregibon (1987) introduced extended quasi-likelihood

functions in order to allow for comparisons of link functions, linear
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predictors and variance functions between competing models as well as

regression models for the dispersion parameter.

Suppose Yi,...,Yn are independent observations with E(Yi) = pi,

Var(Y.1 ) = a
2
.V(11.) and deviance components d(Y.1 ;p.). The extended

i

quasi-likelihood function is defined to be

Q
+
(Y,A,,

2
) = -1/2 ; (log{2we

2

i
V(yi )) d(Y4i

i
/1)/,

2
1
1

The maximum quasi-likelihood estimates of p are the estimates which

maximize Q
+

. If r
2

i
= r

2
for all i, the estimate of If

2
obtained by

maximizing Q
+

is r
2

= Eid(yi;pi)/n. Notice that the extended

quasi-likelihood function depends only on first and second moment

assumptions.

Now suppose 7i = h(pi) = xi'/ and w(tri) = zi'a where xi is a

(pxl) vector of covariates for the mean, , is a (pxl) vector of

unknown parameters for the mean, Li is a (qxl) vector of covariates

for the dispersion parameter, a is a (qxl) vector of unknown

paramters for the dispersion parameter, h(.) is the link function for

the mean and w(.) is the link function for the dispersion parameter.

Nelder and Pregibon suggest the following scheme for finding the

estimates that maximize Q
+

.

21.Nolde.fixedato..2 . Using tr.

0
as a prior weight and

1 10 1

fitting the generalized linear model with E(Yi) = pi, Var(Yi) = a2i0

V(pi), h(pi) = xi'/, obtain the updated estimates of pi, pil,.
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2. Holding #i fixed at p1.
1, i

tr.

2
is estimated by fitting the

generalized linear model with d(yi;pil) as the dependent variable

with E(d(yi;pil) = ei, w(oi2 ) = li'A and V(ei)=(ei)
2

.

3.Holdo.2 fixed at the new estimate,
I

oil, obtained in step

2, and refit the generalized linear model in step 1 with r2.
is

replaced with
till'

Iterate between steps 2 and 3 until convergence. The standard

errors obtained at each step for each set of parameter estimates are

conditional on the values of the other set being equal to their

estimates. This procedure is relatively simple to program using

existing computer software.

For a single observation, y, if an extended quasi-likelihood

model is chosen with the same variance function as the inverse

Gaussian or normal distributions, then Q
+
is the log-likelihood

function for that exponential family. For the gamma distribution, si+

differs from the log-likelihood by a factor that depends on ForFor

the negative binomial, Poisson or binomial distributions, Q+ can be

obtained from the log-likelihood by replacing k! with (27k)
1/2

k
k
e
-k

(Nelder and Pregibon, 1987).

By multiplying exp(e) by a normalizing factor c(p,e2), a

distribution can be formed. However Nelder and Pregibon argue that

since c(p,e
2

) contains little information about p or o
2

, very little

is lost in maximizing the unnormalized extended quasi-likelihood.

This is similar to the situation that occurs in the double

exponential families presented below.
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2.2.4.2 DOUBLE EXPONENTIAL FAMILIES

Double exponential families were presented by Efron (1986) in

order to allow for the estimation of a dispersion parameter

independent of the mean which could depend on covariates. In Efron's

words, double exponential families are a way to take the "quasi" out

of quasi-likelihood. Let Y have a one parameter exponential family

distribution with density f(y;p,) given by,

f(y;p) = expf[ye-b(0)]rn + c(y)1

where 9 = 9(i) is the canonical parameter, E(Y) = p and

Var(Y) = V(p) and m is a known constant. The double exponential

family density is defined to be,

g(Y:11,m) = c(p, p,m) p1/2 ffy(y;#)1F ffy(y;y)11-F.

Efron (1986) shows that under the double exponential family,

E(Y) z p, Var(Y) N V(p)m/F and c(p,F,m) z 1. In addition, with u

and m fixed, g(y) is an exponential family with parameter F. Notice

that if a quasi-likelihood model was used to describe this

mean/variance relationship, the quasi-likelihood dispersion

parameter, a
2

, corresponds to where p is the double exponential

family dispersion parameter.
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The deviance for one observation, y, is defined to be

D(y;#) = 2flog [f(y;y)] log [f(xy)] 1

where # is the maximum likelihood estimate of # under the model of

2
interest and D(y,# ) xi as ,a . m, or as m ----# m for proportions.

Also, /
,P

, the expected Fisher Information matrix for # and F
#

(m fixed) is approximately

I=
#,P

m p/V( #) 0

0 (42)-1

Regression models for both # and p can be incorporated into double

exponential families. Let vi = h(#i) = Ki'A and

= w(pi) = zi'a where h() and w() represent link functions for

the mean and dispersion parameter respectively. The expected Fisher

Information matrix for a and is given by

X'WX 0
LI 0

/PA =

0 1/2 Z'VZ

=

0 /
a

K is the (nxp) matrix with row K4,

Z is the (nxq) matrix with row z,
1

where,

b" ( 81. ) mi diii

W = diag , and
nl
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y = diag[pi
2
fari/d(ziel)il

Fisher's scoring method can be used to find the maximum likelihood

estimatesofthea.'s and Bb's. If et and It are the vectors of

estimates after the (t) iteration, then the improved estimates, e
t+1

and /
t+I

, are given by,

st+1
',a

1(A,,dat)

/
t4.1

= /
t

+
-1

(

el
/08

t
)

5
where Olio&

t
,

t
are the score vectors evaluated at 8

t
and /

t
.

Double exponential families are similar to extended

quasi-likelihood models presented by Nelder and Pregibon (1987). It

can be shown that the double exponential family log-likelihood is

equal to the extended quasi-likelihood except for an additive term

that does not depend on the parameters. Thus, estimates which

maximize the extended quasi-likelihood are identical to estimates

which maximize the double exponential family likelihood. Double

exponential families are also similar to West's (1985) scaled

exponential family, and to Jorgensen's (1987) exponential dispersion

model.

2.3 DISCUSSION OF EXISTING MODELS AND METHODS

The models given in Section 2.2 have been derived in an attempt

to find an understandable way to explain extra-Poisson or
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extra-binomial variability. Some likelihood-based models have added

parameters to account for correlations that induce overdispersion;

other have incorporated mixing distributions to model variability in

parameters. The models based on first and second moment assumptions

such as quasi-likelihood models, have traded some efficiency for the

desirable property of robustness. In addition, the availability of

GLIM (Baker and Nelder, 1978) has made quasi-likelihood models very

easy to use in practice and estimates are available with a minimum of

time invested in programming.

Before discussing the models presented in 2.2, however, two

other methods, a jackknife estimator and transformations, for

handling overdispersed data are presented below.

2.3.1 Other Methods

Gladen (1979) proposed a jackknife estimator for p, the true

proportionofaffectedfetusesoutofm.fetuses in a litter in

teratological experiments. If M is ;mi. and ri is the proportion

of affected fetuses in the ith litter where i = 1,...,n and p is the

estimate of
1

pandifY.=111.a. (r.3. 0(M-m.)-1 , then Gladen

estimated the variance of p with

Var(p) = M-
1

(M 1) (y. y)2
=1 1

Gladen reported that the jackknife estimates of A are almost fully

efficient with respect to the maximum likelihood estimates under

various models.
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Another method of analysis for data which exhibit extra

variation which has not been discussed previously involves the use of

transformations. When it is desired to use analysis of variance or

regression techniques with proportions or counts, transformations

such as the Freeman-Tukey binomial or Freeman-Tukey Poisson

transformation are often used to stabilize variance and/or transform

the data to approximate normality. See Mosteller and Youtz (1961)

for a description of the transformations. Because the

transformations are relatively easy to apply and ANOVA and regression

techniques are well known, such analyses are often carried out in

practice. But such an analysis assumes constant variance and using

transformations in a situation where overdispersion varies from group

to group may result in incorrect inference.

2.3.2 Comparison of Models

Some results are available on the efficiency of maximum

likelihood estimates and maximum quasi-likelihood estimates. Firth

(1987) studied the asymptotic relative efficiency of quasi-likelihood

estimates when the mean/variance relationship arose from

overdispersion relative to an exponential family. If Var(Y) = V(p)

under the exponential family and Var(Y) = a
2
V(p) under the

corresponding quasi-likelihood model, he found that for any mixing

distribution with regular cumulant behavior, maximum quasi-likelihood

estimation has efficiency greater than 90% if ,
2

< 1.3.

Lawless (1987) studied the robustness of the maximum likelihood

estimator, 1, obtained from the negative binomial distribution (see
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2.2.2) with a constant dispersion parameter when the negative

binomial assumption was wrong. For the cases, pi = for all i, and

exp[fl + fl x.] where one third of the x's are 0, one third are 1
o 1

and one third are -1, he compared the covariance matrix given under

the negative binomial distribution assumption with the true

covariance matrix given by White (1982). He found that the incorrect

maximum likelihood procedure slightly underestimated the true

variance in large samples.

Kupper et al. (1986), Williams (1988) and Pack (1986) studied

bias and hypothesis testing for beta-binomial models fit using

maximum likelihood. Kupper et al. (1986) used the beta-binomial

model to fit dose response regressions to the proportion of affected

fetuses in teratology experiments. They found that the maximum

likelihood estimator obtained from this model become biased when it

is assumed that the intra-litter correlations are homogeneous. They

used a simulation study where the number of affected fetuses, Y..,
ij

i=1,2,3 and j = 1,...,ni, had a beta-binomial distribution with

2 2
E ..) = m..p., and Var(Y..) = m..p.(1-p.)[1 + o.(m.-1)] where (7. is
(Yu ij i 1 i 1

the intra-litter correlation for the ith group. The regression model

was taken to be

log[pi/(1-µi)]= fi0+
fi1

111 di

for ln di . = 1,2,3. They found that if it was assumed that

2 2 2of = a2 = a3
2

then fli is negatively biased if el
2

( e2 e3
2
and

2 2 2
positively biased if of

)
a2 > e3.
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Williams (1988), investigating these results, suggested that for

a single group with mean s < 0.5, the maximum likelihood estimator,

p, will be negatively biased if it is assumed that e2 is smaller than

thetruer2and positively biased if it is assumed that r2 is larger
1

thmithetruer.2 . The results would be reversed for p > 0.5.
1

'
Williams showed that p is approximately unbiased when it is assumed

that r2 is equal to zero or when it is equal to its true value. He

suggestedregressingr.2
1

ond.or using Moore's (1987) method to
i

reduce the number of parameters in the model. He also notes that the

bias could be eliminated by using the more robust quasi-likelihood

model.

Pack (1986) studied power and type 1 error rates for likelihood

ratio tests under the beta-binomial model for the hypotheses,

H1

H2

H5

2 2

Al 142 el e2

1,21

022

#1 #2

v.s. H1

v.s. H2

v.s. H5

p1 # /12 el2 # r

/41 # /12 I e21 # e22

p1 # /12

He found that, in general, the likelihood ratio test of H5 had

acceptable error rates for all (p,r
2

) combinations considered and

it was the most powerful in a broad range of situations. He compared

the above test with the Student's T-test on the Freeman-Tukey

transformed data and Kleinman's (1973) weighted estimator and found

that for small differences in means (about 0.02) none of the tests

had a clear advantage. He also gives a good summary of prior studies

of control versus treatment comparisons for reproductive studies.
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Results from Table 2 of Pack (1986) showed that if Fi ( F2 and

2 2
tri < o and the null hypothesis p1= F2 is tested then the

likelihood ratio test assuming of a
2

is more powerful than the
1 2

2
likelihood ratio test assuming ri

2
= 02. Williams (1988) notes that

this power difference can be partially attributed to the

underestimation of Fi p2 when ri
2

and f2
2

are incorrectly

assumed to be equal.

These results suggest that using maximum likelihood estimates

from incorrectly specified distributions can lead to problems. The

loss in efficiency of maximum quasi-likelihood estimation does not

seem to be a large problem. However, the results of Kupper et al.

(1986) and Williams (1988) suggest that making the incorrect

assumption of homogeneous correlations can in the case of the

beta-binomial model lead to incorrect inference about the pi's.

Moment methods such as quasi-likelihood provide estimates with

minimal assumptions about the distribution and hence are robust

alternatives to the use of specific likelihood functions. The loss

in efficiency due to using maximum quasi-likelihood methods over

maximum likelihood seems to be small and well worth the gain in

robustness especially since it is often difficult to specify the

exact form of the distribution with much confidence. The robustness

of quasi-likelihood models and the ease with which they can be fit

make them attractive models to use in practice.

Once it has been decided to use a method based on first and

second moment assumptions it becomes necessary to choose the

mean/variance relationship. The relationships considered here are
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given by Models I, II and III and I',II' and III' of Section 2.2.3.

Model I and I' can be obtained when extra variation is not present

and should be used in the absence of overdispersion. However, as

McCullagh and Helder (p. 127, 1983) note, it is wise to assume that

overdispersion is present unless there is strong evidence to the

contrary. Models II and II' can be obtained by hypothesizing the

existence of a constant correlation between observations. Models III

and III' came about by modeling random variation on the same scale as

the covariates for the mean. In designed experiments or

observational studies variability due to random effects are often

thought to be additive on the same scale as the covariates. Model

III or III' is appropriate in this case. In the discussion to

Diaconis and Efron (1985), Pierce notes that when the binomial sample

sizes are very different model II or II' may not be a reasonable

model to use. He suggested model III or III' as an alternative.

Williams (1982) notes that the effective difference between

model II and model III is a factor of #i(1-#i) in the weight term and

this factor is relatively constant for #i between 0.2 and 0.8. He

suggests that it will only be possible or important to distinguish

between model II and model III if there are a substantial number of

observations for which #i is close to zero or one.

If all the mi are approximately equal, which is often the case

in data analysis, than model II or II' can be reparameterized as

Var(Yi) = Y(#) p
-1

,
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where F
-1

= [1 + r
2
(m-1)] and such a model can be fit using

quasi-likelihood methods. A generalization of Model II is,

Model IV. E(Yi) = pi h(p1) = xil Var(Yi) = V(pi),(Ki'10-1

where F-1 is allowed to vary between observations according to the

covariate vector z..

Chapter 3 will investigate the consequences of using the model

with Var(Y) = V(p)F
-1

when model IV is more appropriate. It will

also be shown how model III or III' can be written as model IV.

Hence the consequences of using the model with Var(Y) = V(p)F
1

when model III or III' is more appropriate can also be investigated.

2.3.3. Covariates in the Variance Function

In the previous sections, the variance of Y has been modeled

generallyasV00Fi 1
where V(p) is called the variance function and

pi
1

has been written as r
2

, [1 + r
2
(m-1)] or (1 + r

2
(m-1)V(p)].

In all of the models discussed so far the variance function has been

assumed known and it depends on the covariates x only through

h(p) = x'/.

One class of models which has not been discussed contains models

of the form,

Model V. E(Y) = p h(p) = x'a Var(Y) = IT
2
V(z,a,8)

where the variance function V(L,a,0) depends on the mean p, not only

through the vector a but it also depends on the unknown parameter 0
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and the known vector of covariates L (which may or may not include

x). Models of this type and methods of estimation are discussed by

Davidian and Carroll (1987).

In many applications, especially in the area of quality control,

interest lies not only in the mean response, but also in patterns of

variability and the factors which affect variability. For such

applications, model V is very useful. However, for the problems

discussed in this thesis, interest lies mainly with inference about

the mean. Accounting for variability and overdispersion are

important but approximations to the exact form are acceptable for

this type of problem.

For example, Efron (1986) using a binomial double exponential

family distribution to model the proportion of subjects testing

positive for toxoplasmosis, as a function of rainfall, used a

quadratic function of the binomial sample sizes in the regression

model for the dispersion parameter. Such a model does not give clear

insights into the patterns of variability but it serves as a good

approximation for estimating standard errors.

In the rest of the thesis, models for the variance of Y having

theform,VWFi 1
foil,

corresponding

be investigated. Various forms for ,

corresponding to models I, II and III discussed earlier will be used.

-
Chapter 3 will explore the consequences of using simple forms for

Fi

1
.

when in fact more complicated forms are appropriate. Diagnostic

tools to help decide when Fi
1
does not have a simple form will be

presented in Chapter 4 and the tools will be applied to the examples

given in Chapter 1.
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Chapter 3

CONSEQUENCES OF USING INCORRECT ASSUMPTIONS ABOUT OVERDISPERSION

Many models and methods exist that allow a researcher to

incorporate overdispersion into an analysis. In some cases the

design of the experiment or prior knowledge held by the researcher

dictate which model for overdispersion is chosen. In other cases the

researcher settles on a method out of convenience or because there is

no evidence to support a particular model.

It is possible that the chosen model is not the most appropriate

one and that the assumptions upon which the chosen model is based do

not apply. It is of interest to know the extent to which inference

based, incorrect assumptions affect the estimated coefficients and

the associated tests.

In this chapter the following four models for overdispersion

will be discussed. Suppose that E(Y) = F and h(F) = x'l define

the regression model for the mean and consider the models below for

the variance of Y.

Model 0. Var(Y) = V(F)

Model 1. Var(Y) = p(a0)-1V(µ)

Model 2. Var(Y) = p(so + zi'al)-1V(µ)

Model 3. Var(Y) = V(F)(1/0[1 + f
2
k(m)V(#)]

V(p) is the variance function, Ei is a (qxl) vector of covariates for

the dispersion parameter p, el is a (qxl) vector of unknown

parameters, a
o
is an unknown scalar parameter and k(m) is a function
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of the known m's. For counts, k(m) is equal to 1 and k(m) is equal

to (m-1) for proportions. As discussed previously, model (0) can be

used for the variance of Y under the one parameter exponential family

model. Model (1) was used by Finney (1971) and has been made popular

by quasi-likelihood estimation methods. Model (2), used by Nelder

and Pregibon (1987) and also by Efron (1986), allows the dispersion

parameter to depend on covariates or factors and can be fit, for

example, using either an extended quasi-likelihood model or a double

exponential family distribution. Model (3), discussed by Pierce and

Sands (1975), Williams (1982) and Breslow (1984), arises in modeling

extra variation on the same scale as the covariates for the mean.

The main focus of this chapter will be to investigate some

consequences of using model (1) when the variation of Y is more

appropriately described by either model (2) or model (3).

3.1 Consequences of Ignoring Overdispersion

In their introduction to the analysis of count data using

log-linear models, McCullagh and Nelder (p. 127, 1983), note that

often counts do not occur according to the Poisson model of

randomness, but occur in clusters or batches. They suggest,

"Unless there is strong evidence to the contrary we
avoid the assumption of Poisson variation and assume
only that

Var(Y.) = e
2
E(Y.)

where a
2

, the dispersion parameter is assumed constant
over the data."
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The estimated ft's obtained from fitting model (0) are identical

to the estimates obtained from model (1) using quasi-likelihood

methods and accounting for a constant dispersion parameter

(Wedderburn, 1974). Ignoring the presence of overdispersion,

however, can result in underestimation of standard errors and

incorrect inference about parameters. Consequently the presence of

ignored extra variability may also prompt the researcher to include

unnecessary interaction terms or extra explanatory variables in the

regression.

Consider Example 5 from Chapter 1 where batches of aphids are

exposed to insecticides at different dose levels. Suppose that the

regression model for the mean is given by

probit(#i) = fio + fillog(conc) + fi2class2 + fisclass3 + fi4I2 + fi5I3

where log(conc) is the logarithm of the toxin concentration used,

(class 2) is an indicator for the degulin group, (class 3) is an

indicator for the rotenone+degulin group and 12 and 13 are the

[log(conc) x class2] and [log(conc) x class3] interactions

respectively. The maximum likelihood estimates of the coefficients

and the associated standard errors under model (0) and the maximum

quasi-likelihood estimates and their estimated standard errors under

model (1) are given in Table 3.1 below. The estimated coefficients

are identical under both models but the standard errors are larger

under model (1). In addition, the deviance statistic no longer has

an asymptotic chi-squared distribution so that the deviance goodness
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of fit test, mentioned in 2.1, is not valid. Notice that while there

is still evidence for the significance of the interaction terms in

the second fit, it is less conclusive.

Table 3.1. Rotenone Data. Estimates and Standard
Errors Under Model (0) and Model (1).

Coefficient
Model (0)

Estimate S.E.

Model (1)
Estimate S.E.

fib -2.8870 0.3510 -2.8870 0.4505
log(conc) 1.8300 0.2087 1.8300 0.2678
class2 0.2201 0.4944 0.2201 0.6344
class3 0.8565 0.4431 0.8565 0.5687

12 -0.6465 0.2434 -0.6465 0.3124

1
3

-0.7371 0.2391 -0.7371 0.3068

Cox (1983) showed that the maximum likelihood estimates obtained

from model (0) retained high efficiency with respect to the maximum

quasi-likelihood estimates obtained under model (1) in the presence

of small amounts of overdispersion, so that for p(a
o
)

-1
< 1.2, for

example, the loss of efficiency due to using model (0) is minimal.

3.2 CONSEOUENCES OF INCORRECTLY ASSUMING A SIMPLE

HETEROGENEITY MODEL

3.2.1 Normal Theory Regression

To study the consequences of estimating regression coefficients

in a model for E(Y) and assuming model (1) for overdispersion when

model (2) is correct, we can begin with the special case of normal

linear models. Some consequences of using model (1), when model (2)

is appropriate, for normally distributed data have been studied. In
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this case, model (1) corresponds to the usual assumption of constant

variance for linear models and model (2) corresponds to a particular

form of heterogeneity where the variance depends on a known

covariate.

First for the case of two independent normal samples and the

test of equal means, consider the model,

Y. = fl + fl x. + e. where x. =
[0 i = 1,...m

0 1 1 1 i= m+1,...,m+n

E(e.) = 0 and Var(e.) = & + a x.
1 1

and the test of the hypothesis that fli = 0 when it is incorrectly

assumed & is zero. As discussed in Section 3.1, the estimate of fl

1
1

in this example remains unbiased but its standard error is

underestimated. The resulting Student's T-test will not necessarily

have a Type 1 error rate equal to the nominal level. For example,

Wetherill (1981) showed that the probability of exceeding the nominal

5% limit is equal to 5% if n = m or if & = 0. However, for n 0 m

and * 0, the probability differs from 0.05 and the difference can

be substantial. For example, if n/m = 2 and e
0
/(0

0
+

I

) = 0.2

then the Type 1 error probability is 0.15 and if a
o
/(&

o
+ at) = 2.0

the probability is equal to 0.029.

Next, consider the following regression model:

Y. = x.2 '/ ele+ . E( .) = 0 Var(e.) = F
2
w. for i = 1,...n

Iftlerex.1 isa(Imflvectora
1

knowncovariatesandw.is a known

scalar. It is well known (Draper and Smith, 1981) that the
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unweighted least squares estimator of / is inefficient and a more

efficient estimator is obtain by weighted least squares.

If ordinary least squares is used to estimate / in the model

above, then the covariance matrix for the estimated A, Als, is ,

Con (/is) = (X1X)-1X'WX (rX)- 1,2

and the covariance matrix of the estimated A under a weighted least

squares analysis, /wis is given by ,

Cov (Awls) = (X W
-1

X)
-1 2

where X is the (nxp) matrix with i
th

row x.' and W is the diagonal

matrix with ith diagonal entry wi. The standard errors of the /is

obtained from Cov (11s) are larger than the standard errors of the

1w1 s

3.2.2 Generalized Linear Models

3.2.2.1 GENERAL RESULTS

In the context of generalized linear models, it is desired to

assess the consequences of using model (1) when model (2) is correct.

Some of the results of White (1982) on the asymptotic properties of

maximum likelihood estimators from misspecified likelihoods will be

used to assess the consequences of model misspecification for the

special case of generalized linear models with the canonical link.

For this application the asymptotic results do not require that the
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full distribution be known, only the first two moments must be

specified. For this reason, the following discussion can be based on

the double exponential family distribution (Efron, 1986) without loss

of generality, at least in an asymptotic sense. In the absence of

overdispersion the double exponential family is a one parameter

exponential family and maximum likelihood estimates obtained from it

are equivalent to maximum likelihood estimates obtained from the one

parameter exponential family. When model (1) is used, the maximum

likelihood estimates obtained from the double exponential

distribution are the same as the maximum quasilikelihood estimates.

So double exponential families provide a useful framework into which

models (0), (1) and (2) can be placed. It will be shown in Section

3.3 that model (3) can be approximately described by model (2) and

placed in the double exponential family framework as well.

Given Yi,...,Yn, independent observations from a double

exponential distribution, as described in Section 2.2.4, with true

density Eig[yi;pi,p(o0 + zi'ai)] and canonical parameter, 8i,

suppose that,

and

E(Yi) = pi, Oi = h(pi) = B112 ,

Var(Yi) = (1/mi)V(p1)ri
-1

where pi = p(00 + li'AI) ,

for some positive function p(). If al = 0 then pi is constant so
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that the mean/variance structure corresponds to model (1); otherwise

it corresponds to model (2). The question of interest is how the use

of the incorrect assumption of a constant dispersion parameter (that

is, falsely assuming a = 0), affects asymptotic standard errors,

confidenceintervalsandrelativeefficiencyoftheestimatedVs .

Suppose model (1) is assumed by a researcher to be correct and

the likelihood is taken to be E.3. g[p.,p(a
0
);y.], when in reality

model (2) is correct and the true likelihood is

Eig[yi;#i,p(ao + li'AI)]. In addition, suppose (1,a
0
) maximizes

Eic[lli,F(a0);yi], the misspecified likelihood, and let

(10,4
a

(10,_0, 0
a ) be the true values of the

0 I -I

parameters under model (2). Then, under suitable regularity

conditions (White 1982), A converges in probability to A° and ',(ro)

converges, approximately, in probability to

p(c(*0 ) .niE p(a + z.'a )-11-1
i 0 -1-1

In addition, fn [(A',a ) - (A0',a)] converges in law to a

multivariate normal distribution with mean 0 and asymptotic

covariance matrix, (A
-1
B A

-1
), where,

lim
n

n

A =
-1

m3. x)

n4m 3. -1x3.

'

lim
n
-1

n
-1

m V(# ) [p(a o + z.'a°)] x.x.'
nom 3. 3. 0

and h(4) =
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Under the misspecified model (1), the researcher would think

that the asymptotic covariance of / was,

Cov(1) = p(a0)-1 E m.V(#i ) x1.x1 .' (4)

The incorrectly estimated asymptotic covariance matrix, Cov(A), would

be obtained from (4) with #i replaced with #i and tro replace with ao.

However, the previous results show that in the presence of model

misspecification the covariance matrix of the 53's is not given by

(4)butby(n-11-111A-1).Thusthestandarderrorsofthe.ft's are

incorrectly estimated. The question of how the use of the wrong

covariance matrix due to model misspecification affects inference and

efficiencyofthefl.'s is addressed in the next two sections.

In the first section, coverage probabilities of asymptotic

confidence intervals will be used to study the effect of model

misspecification on inference. Using results derived above,

approximate coverage probabilities for asymptotic nominal 95%

mifidenceintervalsforthe.ft's can be obtained. These

approximate coverage probabilities are explicitly evaluated for some

simple cases. In the second section the asymptotic relative

efficiencyofthefl.'s is evaluated for these simple cases.

3.2.2.2 COVERAGE PROBABILITIES

To explore the effect of the incorrect standard errors on

inference, consider the true asymptotic coverage probabilities of 95%

confidence intervals based on the incorrect standard errors. Under
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the misspecified model (1) and a double exponential family

distribution with a variance structure as in model (1), the maximum

likelihood estimate of Os ) is, Oa
o

) = n [.E.d(y.3. ,#.)]
-1

where the

d(yi;#i)'s, the deviance components are defined in Section 2.1.

Using this and the previous results on the true asymptotic

distribution of / and
o

, it can be shown that the incorrectly

estimatedasymptoticcovariancematrixofthefl.'s, Cov(/), converges

*
in probability to approximately, [p(a0)

-1
(n A)-1].

When model (2) is correct, the true asymptotic coverage

probabilities of nominal 95% confidence intervals for fl , based on

the incorrect standard errors from model (1), can be approximated by

[

1 2 Pr Z > 1.96 filar(fl.J )

*
/ Var(fl.J )111 2 (5)

where Vax(-#.)* is the
th

diagonal entry of [p(ft*
0

-
n A)

-1
] and

Var(f.) is the
.th

diagonal entry of (n
-1

A
-1

B A
-1

).

These coverage probabilities will be evaluated for several

examples where the xi's are given. The A and B that appear in (5)

will be replaced with their sample versions,

n

A = n 1 )11.1 m.V(#) x1.x-1 .'
-n

n

n
-1

=1
m1 V(#1 (p(1

,

a
0)] -1

x2x3.
' .

(6)

(7)
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Independent Samples

As a simple example, consider two independent double-binomial

samples of sizes nl and n2 respectively where the j
th

proportion in

th
the i group is based on m..

ij
trials. Let the regression model for

the mean be given by,

O. = logit(Ai
2

) = x./1 for i = 1,2

where xi = (1,0) and 3q = (1,1) and /' = (161082), so that

01 = 01 and 02 = 01 + 02 . The objective here is to find

approximate true coverage probabilities for the nominal 95%

confidence interval for '02 = (02 - 0
1

) when it is incorrectly

assumed that the dispersion parameter is p(a
o

) =
o

-1
for both

observations when, in fact, the true dispersion parameter is given

by,

p(a + z.) = (a + a x.)-1
1 2 1 2 1

Using (5), the approximate true coverage probabilities of the

nominal asymptotic 95% confidence interval for fl2 is given by,

1 2 Pr Z ) 1.96{ [(1-R
2

) + 6
2
R
2J

1

1

.6 + A

12 1/2

[
2 2
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n2

where V(pi) = pi(1-pi), R2 n
1

= (a
1

+ a2) /a1 and

m

+ n2

A2
2 [ V(p1) yid'

V(µ2) Eim

Notice that if the assumption that p(a
o

) = a
o

-1
is true, i.e.,

a2 = 0, so that 62 = 1, then the nominal asymptotic 95% confidence

interval has the correct coverage probability. Also, if the number

of observations, the total binomial sample sizes and the means are

all equal in each group, the coverage probability is still correct,

even though the amount of overdispersion in each group is different.

Table 3.2 shows how the approximate true coverage probabilities

change for various other choices of R2, 1
2

and 6
2'

Note that

. = E.m.
3 13
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Table 3.2. Approximate True Coverage
Probabilities for Nominal 95% Asymptotic
Confidence Intervals for (9

2 1
).

nt:n2 mil/Wal2V(p2) al:a1+02 coverage

1:5 5:1 5:1 1.00
1:5 5:1 2:1 .99
1:5 5:1 1:2 .88

1:5 5:1 1:5 .78

1:5 2:1 5:1 .99

1:5 2:1 2:1 .98

1:5 2:1 1:2 .90

1:5 2:1 1:5 .81

1:5 1:2 5:1 .97

1:5 1:2 2:1 .96

1:5 1:2 1:2 .93

1:5 1:2 1:5 .90

1:5 1:5 5:1 .95

1:5 1:5 2:1 .95

1:5 1:5 1:2 .95

1:5 1:5 1:5 .95

1:2 1:5 1:5 1.00
1:2 1:5 1:2 .99

1:2 1:5 2:1 .91

1:2 1:5 5:1 .88

1:2 1:2 1:5 .99

1:2 1:2 1:2 .97

1:2 1:2 2:1 .92

1:2 1:2 5:1 .88

1:2 2:1 1:5 .95

1:2 2:1 1:2 .95

1:2 2:1 2:1 .95

1:2 2:1 5:1 .95

1:2 5:1 1:5 .93

1:2 5:1 1:2 .94

1:2 5:1 2:1 .96

1:2 5:1 5:1 .98
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As a second example consider 3 independent samples of

proportions with the regression model for the mean given by,

O. = logit(pi ) = x.1 11 for i = 1,2,3

where xi = (1,0,0), Lq = (1,1,0) xi = (1,0,1) and l' = 01,#243).

Again it is incorrectly assumed that the dispersion parameter is

0

-1
for all observations when in reality, the trueY

dispersion parameter is given by,

p(0,
1

+ a
2 A
z, + a

3
z
3

) = (a
I
+ a

2 A
z, + a

s
z
3
)-1

where z
2
is an indicator variable for group 2 and z

3
is an indicator

variable for group 3.

Then, using (5), the approximate coverage probabilities of the

nominal 95% asymptotic confidence intervals for ,82 = (02 el) and

for fl3 = (03

( 0
2

01)

(0
3
- 8

1
)-

01) are given below.

1 2 Pr Z > 1. 96{ [R1 +
R262

1 - 2 Pr[ Z > 1.9602, + R252

+ R3 63]

+ R3(53][

1 + A2

52 + A2

1 +4.A3

3 3
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[

V(p) Ejmkj
where V(pi) = pi(1-pi), Hi = ni/(Eini), Ak v(#1) I:jmii '

a + a
2

+
6 and 6

32 al al

If the amount of overdispersion is the same for all groups, then

the coverage probability attains the nominal level, as was the case

for the two sample problem. However, if the number of observations

in each group, the total binomial sample sizes and the means of all

the groups are equal, the coverage probability is not identically

equal to 0.95 as it was for the two sample problem. The approximate

true coverage probability can either be larger or smaller than the

nominal probability. Table 3.3 shows how the true coverage

probabilities change as Ri, Ak and Sj change.
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Table 3.3. Approximate True Coverage Probabilities for Nominal 95%
Asymptotic Confidence Intervals for the Difference in Canonical
Parameters.

nn2:n3o miV(p1):m2V(#2):m3V(# 3) al: *
C2

**
C3

1:1:1 1:1:1 1:2:3 .98 .95

1:1:1 1:1:1 1:1:3 .99 .93

1:1:1 1:2:2 1:2:3 .98 .97

1:1:1 1:2:2 1:1:3 .99 .95

1:1:1 1:2:3 1:2:3 .98 .98

1:1:1 1:2:3 1:1:3 .99 .96

1:2:2 1:1:1 1:2:3 .98 .96

1:2:2 1:1:1 1:1:3 .99 .94

1:2:2 1:2:2 1:2:3 .99 .98

1:2:2 1:2:2 1:1:3 .99 .96

1:2:2 1:2:3 1:2:3 .99 .98

1:2:2 1:2:3 1:1:3 .99 .97

2:1:1 1:1:1 1:2:3 .97 .93

2:1:1 1:1:1 1:1:3 .98 .91

2:1:1 1:2:2 1:2:3 .98 .95

2:1:1 1:2:2 1:1:3 .98 .94

2:1:1 1:2:3 1:2:3 .98 .97

2:1:1 1:2:3 1:1:3 .98 .95

* C2 : coverage probability for 02 01

** C3 : coverage probability for 03 01 .

A Single Continuous Covariate

For a third example suppose that Oi = h(pi) = Ki'A where

=, [1, .xl ] , X.
1

is a continuous covariate, =
0'

fi ) and

i = 1,...,n. Suppose that it is incorrectly assumed that Oa) =
1

for all observations, when in reality, the true dispersion parameter

is given by F(Li'a) where Ei' = [1,xi) and a' = [ao,a1]. Again,

using (5), the approximate coverage probability of the nominal 95%

asymptotic confidence interval for fi
1

is,



[1 2 Pr Z > 1.96
Var(fil)

1 Var(fil)
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where Var(fi
1

)

*
is approximated by the (2,2) entry of

p(a
o

*
)

-1
(n An) -1 and Var(fi1) is approximated by the (2,2) entry of

-1 -1BA -1(n Am ).

Then, if X = (1/n)Eixi,

0a3 aia2
-1

Var(fl
1

)

1 o I 1 0 1 a
o a a a2

0 2

where,

a =

a =
2

a
3

=

The following example has been constructed in order to evaluate

these expressions for a specific X matrix. This example is roughly

similar to the Salmonella example of Chapter 1.

Suppose Yi is an observed count with,

log(#i) = fio + fil[log(dosei)]2

where Po = 4.0, fli = -0.01, dosei = 100 for i = 1,...,9;

dose.=333fori=10,,18;dose.=1000 for i = 19,...,27;
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dose.
1
= 3333 for i = 28,...,36 and dose. = 10000 for

i= 37,...,44.

Suppose that the correct model for the dispersion term is,

p(15 - 0.15 zi) = (15 0.15 zi)-1

wherez.
1 1

2
. It is incorrectly assumed that

Oa
o

) = a
o

-1
for all observations. Using the formula above for

rar(#1)

1
with m. = 1 for counts, the approximate coverage

Var(fl1)

probability for the nominal 95% confidence interval for fl1 is 0.90.

3.2.2.3 ASYMPTOTIC RELATIVE EFFICIENCY

Under the misspecified model (1), where E(Yi) = pi,

h(#i) = gi'l and Var(Yi) = p(a0)-1V(#i), the approximate efficiency

attained by the estimated / vector, /, is also of interest. Under

the misspecified model (1), the correct covariance matrix of 1 is

(n
-1

A
-1

B A
-1

) which can be estimated by (n
-1

A
-1

B
n

A
-1

). Now if-n -n
(/,

0 -I
, ) maximizes the true likelihood under model (2), the

correct covariance matrix of 2 is,

-n
-1
-1

C
1

= m.V(#9) [p(a
o
+ z.'a )] x.x.

-1-1

-1
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Then the asymptotic relative efficiency of A with respect to 2

is approximated by,

IC
A.R.E. =

n

In
-1

A
-1

B A
-1

1n -T1

where p is the number of elements of xi and An and An are given by

(6) and (7) respectively.

For the two and three independent sample examples given

previously, the asymptotic relative efficiency is identically 1.

For the case of a single covariate, xi, in the regression model

for the mean and a single continuous covariate, zi, in the regression

model for the dispersion parameter, the asymptotic relative

efficiency of 2 with respect to A is given by,

A.R.E.-
InAn1

]
1/2

where, if h(pi) = flo + dixi, la(zi'e) = p(a0+ alzi) and

V. = m1V(#.) then,

InA I = [(E.v.)(E.v.x.
2

) (E.v.x.)
2
] ,

-T1 1 1 1 1 1 1 1 1

I = 103.v.p(z. 'a.)-1] (E.v.0(z.'17)-lx.21 - (E.v.m(z./a)-lx.12,n 3. 11 llrl 1J 1
1,

and
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= i [EI, 0 z ' 0 ] [E,17 0 z , 0 x 2] - [E,1, 4 ( z , 0 x ] 2 } .1 1 1 i i 1 1 1 1 -1 1

For the constructed example in the previous section, where

p(Ii:0) .--,(1.1:0)-1,zi.x.1 ancli.Ti --./i , the asymptotic relative

efficiency is approximately, 86%.

3.3 MISSPECIFICATION OF MODEL (3)

Assuming model (1) when model (3) is appropriate is another type

of misspecification which might occur. Under model (3) (See Section

2.2.3.3),

Var(Y) z (1/m)V(p)(1 + a
2
k(m)V(p)].

Model (3) can be approximated by model (2) by making the following

substitutions. Let A be the estimate of / from model (2) which can

be obtained using maximum quasi-likelihood estimation methods. Let p

be such that h(#) = Ki'l, and let F be defined by p(a) = a-1. Let

z.
1

= k(m)V(#). Then,

Var(Y) 21 V(#) (1/m) (1 + ff2k(m)V(#)].

z V(#
o

) (1/m) p(a +a z)
-1

o 1

where a
o
and a replace 1 and r

2
respectively. For proportions

t

- -
z.
1
= (m-1)#(1-#i

1 i
) and for counts z. = # so that model (3) can be

approximated by model (2) using the constructed covariate z
i

. Thus
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the results of Section 2.1 can be applied to this type of

misspecification as well.

3.4 SUMMARY

For the cases of two and three independent samples discussed in

Section 3.2.2, the incorrect use of model (1) when in fact model (2)

is correct does not lead to a loss of efficiency. However, it does

result in incorrect standard errors as evidenced by the coverage

probabilities that are not equal to the nominal value. How true

coverages differ from the nominal level depends on the sample sizes,

on the ratios of the binomial or Poisson components of variance as

well as on the relative degree of overdispersion in the samples.

However, when these ratios are 2:1 or less, the coverage

probabilities differ from the nominal level by 3% or less.

When both overdispersion and the mean depend on continuous

covariates, coverages can differ from the nominal probability and

asymptotic relative efficiencies can differ from one. However, X and

Z matrices as well as parameter values are necessary to evaluate

these differences. Since in practice parameter values are unknown,

the extent to which mistakes may be made can be difficult to

evaluate.

In the next chapter a diagnostic tool for deciding whether or

not model (2) is more appropriate than model (1) will be developed.

The plot is an extension of a diagnostic technique presented by Cook

and Weisberg (1983) for non-constant variance in ordinary regression
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and is easy to use with existing software packages for generalized

linear models.
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Chapter 4

A DIAGNOSTIC TOOL FOR THE DEPENDENCE OF OVERDISPERSION

ON COVARIATES AND FACTORS

For overdispersed counts and proportions, the model used by

Finney (1971), (see Section 2.2.3) in which the variance of the

response is assumed to be a constant multiple of the binomial or

Poisson variance, has proved to be quite useful. In the context of

overdispersed counts, McCullagh and Nelder (p. 132, 1983) note that,

"If the precise mechanism that produces the overdispersion or
underdispersion is known (e.g. as with electronic counters),
specific methods may be used. In the absence of such knowledge

it is convenient to assume as an approximation that Var(Y) = r
2
#

for some constant a
2

. This assumption can and should be checked,
but even relatively substantial errors in the assumed functional
form of Var(Y) generally have only a small effect on the
conclusion."

It is therefore desirable to have an easy diagnostic method for

deciding when it is necessary to use a more sophisticated model for

the overdispersion than the one with a single heterogeneity factor.

For ordinary regression analysis the adequacy of the model and

the assumptions on which the model are based can be checked using

diagnostic statistics and plots. There exists a large body of

literature concerning regression diagnostics and Cook and Weisberg

(1982) provide a good review. To assess the assumption of constant

variance in ordinary regression, a plot of residuals versus fitted

values is often used. If the plot shows a megaphone shape indicating
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that the residual variability increases for increasing fitted values,

this is taken as evidence of variance which depends on the mean.

In generalized linear models the dependence of a dispersion

parameter on known covariates can be checked by comparing models fit

using extended quasi-likelihood (see Section 2.2.4). For normal,

inverse Gaussian or gamma random variables, in which the dispersion

parameter depends on the covariates, zip, Smyth (1989) noted that the

score test statistic for testing that the coefficients of the zip's

are zero can be interpreted as one half of a regression sum of

squares. This was also noted by Cook and Weisberg (1983). In

addition, the method presented by Moore (1987) (see Section 2.2.3) can

be used to determine whether the dispersion parameter depends on a

power of the variance function. In both cases, by comparing the fit

of models with and without the parameters of interest, a data analyst

can decide if the dispersion parameter varies across groups or

observations.

For overdispersed proportions, Williams (1982) suggests that

plots of standardized residuals versus #i, in which the variance of
AP

the residuals decreases markedly as #i approaches 0 or 1 may be

indicative of the appropriateness of model (3).

A score test for detecting the dependence of heteroscedasticity

on covariates for ordinary regression was presented by Cook and

Weisberg (1983). An extension of their test and an associated

diagnostic plot of overdispersion in general linear models is derived

in this chapter. The results of Cook and Weisberg are given in

Section 4.1. The extension to overdispersion is presented in Section
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4.2. An examination of this score test and the associated graph for

some simple cases are given in Section 4.3. Finally, in Section 4.4,

the diagnostic is applied to the examples of Chapter 1.

4.1 A SCORE TEST FOR NON-CONSTANT VARIANCE IN ORDINARY REGRESSION

Cook and Weisberg (1983) suggested a diagnostic plot for ordinary

regression based on a score test for non-constant variance. They

noted that the variance may depend on known explanatory variables such

as time or spatial order and developed the following model to

incorporate these variables.

The Gaussian regression model can be written as

Y = al + e where e MVN(0, r
2
I) .

An alternative model that can incorporate covariates in the variance

is given by,

Y = + f where e MVN(0, a2W)

th
where W is a diagonal matrix with

.

diagonal entry w(Ai,a), a is a

(qxl) vector of unknown parameters and zi is a (qx1) vector of known

covariates for the variance and may, but need not, coincide with the

variables in X. The function w(zi,a) is assumed to be twice

differentiable with respect to a and it is assumed that there exists

an a such that w(z1 .,a ) = 1 for all z.1 .



Cook and Weisberg (1983) suggested the general family

[w(za .,a) = exp *.(z..)aj
j=1 13
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where za = log(z) for a = 0. This family contains two useful specific

families,

if 'a.
J

= 1 then w(z2. a) = exp lz.2 'al

if a.
J

= 0 then w(zi,g) = exp {E. alog[Jziq.
J

If it is desired to model the variance as a function of the expected

response then one may use w(zi,a) = w(a
0x.11.)

where a
o
is a scalar.

1

Under these specific models for w(zi,e), the score test of

constant variance corresponds to testing a = a = 0 and it will be

shown that this test has a simple form. Define w(z
1,

) to be the

(qxl) vector with j
th

entry

Ow(z.,a)
1

'

wj (.
-2

a ) = as
j a = a

th.
and let a be the (nxq) matrix with 2 row

*
)]'. Then the

score test statistic for the hypothesis of constant variance, i.e.,

*
= a is given by
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S = 1/2 U'Dc(ac'Ec)-1Dc1U ,

2
where if . = (y.-x. /) and lr = (1/n) E.e.

2
, then U is an (nxl)el 1 1 1 1

vectorwithelements.e2 / a2 and Dc = [D 111D(1/n)], i.e., Dc has

mean corrected columns. Under the null hypothesis, S has an

asymptotic central chi-square distribution with q degrees of freedom.

When w(z. a) = exp[zi'a] then w(z.,a
*

) = zi and the ij
th

element of D is zij under the null hypothesis. If

3
w(z.2 ,a) = exp[E.J a.J log(z3...)], then the ij

th
element of D under the null

hypothesis is log[z.lj 1 So that for these choices of w(z a), the
-is

matrix D is not difficult to compute.

S can be computed as one half of the sum of squares for the

regression of U on D in the constructed model U = 71 + D7 + e. To

obtain the statistic S, fit the regression model of interest and

obtain the ordinary regression residuals, ei. Calculate the vector U

using the residuals, and the matrix D. Regress the vector U on D in

the model with an intercept and obtain the regression sum of squares

from this constructed model. Thus the score test statistic is easy to

obtain from standard regression software packages.

Since testing procedures can be sensitive to the appropriateness

of the normal regression model and to the presence of outliers, Cook

and Weisberg (1983) suggest that a graphical procedure based on the

score test offers a complementary method for distinguishing between

models. The null hypothesis would tend to be rejected when the

score statistic is large and this occurs when the regression sum of

squares from the regression of (e
2
/ c2) on

j
(z a ) is large. Thus
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plots of (e.
2 "2
/ r ) versus W.( z2 .,& ) where the mean of the

2
(e. /

a2) changes with w (z. & ) are evidence of non-constant

variance. When only one covariate is being considered and

w(zi,A) = exp[zi'AJ then w(zi,e ) = zi. The plot suggested by the

scoretestisjustaplotof.2el / &2
1

versus the elements of z.. If

w(z.,e) = exp[E.a.log(z..)], then ii(z.,&
*

) has j
th

element log[ ..]
1 J J ij 1

zu

andforonecovariatetheplotisjustaplotof.2el /,2
versus

log[zi].

CookandWeisbergalsonotethatOotting(e.2 /,
2

) instead of

the usual residual ,ei, places residuals with the same absolute value

together. This increases the density of points in the plot which is

helpful for small to moderate sample sizes. Many of these ideas

extend quite naturally to generalized linear models and double

exponential families if the "residuals" used are deviance residuals.

This extension is discussed in detail in the next section.

4.2 A DIAGNOSTIC FOR OVERDISPERSION IN GENERALIZED LINEAR MODELS

4.2.1 Model 1 versus Model 2

For the overdispersion problem it is desirable to have a similar

method for deciding whether overdispersion depends on covariates or

whether it can be modeled in a simple fashion. The diagnostic should

be easy to obtain and use, and it should not require fitting

additional models. The diagnostic should complement the model fitting

process and should not require a large investment of time.
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A diagnostic procedure to explore the dependence of the

dispersion parameter on covariates, analogous to the one presented by

Cook and Weisberg (1983), can be derived using the double exponential

family distribution. The double exponential family setting is

convenient since the models discussed in this thesis for

overdispersion can be fit into this framework. A double exponential

family is derived from a one parameter exponential family, so

overdispersed counts and proportions as well as heteroscedastic normal

regression problems can be modeled. The models that have been used

with quasi-likelihood and extended quasi-likelihood methods can be fit

into the double exponential family framework as well. As noted in

Section 2.2.4 estimates from a model obtained using extended

quasi-likelihood are identical to the maximum likelihood estimates

from the analogous double exponential family. A double exponential

family distribution serves as a general setting for the problem of

covariate dependent variation.

Suppose that E(Yi) = #i and h(#i) = 31'1 define a regression

model for the mean of Y.. Consider the following models, presented

previously in Chapter 3, for the variance of Y.

Model 1. Var(Yi) = p(a0)-1V(#i)

Model 2. Var(Y.) = + z.'a
-1

)-1V(#i)
1 -1

where V(iii) is the variance function, which refers here to the usual

variance for binomial proportions or Poisson counts and zi is a (qx1)



79

vector of known covariates for the dispersion parameter, F. The

parameter a
o
is an unknown scalar parameter and a

1
is a (qxl) vector

of unknown parameters.

The quasi-likelihood method of estimation is appropriate for

models in the form of model (1) where the dispersion parameter i is

constant for all observations. For model (2) the dispersion parameter

can vary according to the covariate vector zi. This vector could

contain indicator variables for groups, continuous covariates or

combinations of these. Notice that if the vector a. is the zero

vector then model (2) is the same as model (1).

A score test, similar to the one in Section 4.1 satisfies many of

the requirements of a diagnostic for overdispersion. A score test of

A
:1

= 0 would correspond to testing the appropriateness of model (1)

over the more general model (2). A score test would required fitting

model (1) but not model (2), i.e. only the simple model needs to be

fit. Finally, the form of this score test in the double exponential

family setting will be shown to have a form that is easy to calculate

with existing software.

To derive the score test of a
1
equal to zero in a double

exponential family, suppose Yi,...Y
n

, have a double exponential family

distribution with density given by,

F
0(17;#07,m) = c(p,F,m) F1/2 ff(y;p)1 If(Y;y)11-11

where, as described in Chapter 2, f(y;p) is a density from a one

parameter exponential family such as binomial or Poisson and
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c(#4,m) z 1. Let regression models for the mean and dispersion

parameters be given by h(#i) = 41'/ and p(ao + zi'al), where h(.) is

a positive link function. Assume that p(ao + zi'al) is twice

differentiable with respect to e. Then, under the null hypothesis,

.

p(a
o -1
+ z.a

1

th
' ) = p(a

o
). Let Z be the (nxq) matrix with 1 row z.' and

-1

let Zc = Z-111Z(1/n). Let d(yi,#i) be the ith deviance component.

Using the approximation E[d(yi;#i)] z p(zi'a)-1 (Efron, 1986), the

approximate score test statistic for testing the null hypothesis

p(a
o
+ z.'e) = p(ft

o
) is given by

-1

S = 1/2 [p(a
o
)]

2
d'Zc(Zc'Zc)

-1
Zc'd

. .

where #i and p(a0) are the maximum likelihood estimates obtained from

mod (1), d is the (nxl) vector with i
th

entry d(yi;#i) and

p(cr
o

) = na.1
3.

d(y.;#.)]
-1

. A complete derivation of this statistic is
3.

given in Section 4.5.

As noted previously, when p(ao + zi'al) = p(a0), # is the maximum

quasi-likelihood estimate from model (1). The deviance components are

also available from a maximum quasi-likelihood fit to this model. S

is easily obtained as one half of the sum of squares of the ordinary

regression of d(yi;#i)p(a0) on the mean corrected z's and S has an

asymptotic chi-squared distribution with q degrees of freedom.

As noted in Section 4.5, the derivation of this score statistic

uses the approximation
1 3.

Fi fron, 1986), which is

valid for large binomial sample sizes or for large Poisson means.

However, the results of Pierce and Schafer (1986) suggest that this
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approximation may be good even for small binomial sample sizes or

Poisson means.

For the special case of normally distributed data, this score

test reduces to the score test given by Cook and Weisberg (1983). The

deviance components for the normal distribution are the squared

residuals and the Zc matrix is the Dc matrix of the previous section.

Although the score test could provide evidence to reject the null

hypothesis it does not provide information on the relationships

between overdispersion and the covariates. A scatter plot relating

the overdispersion to covariates may be able to provide more

information of this type and it can be used to see if outliers are

responsible for the result of the score test. In addition, the

validity of the score test statistic and its asymptotic distribution

depend on large sample sizes and adequate approximations while a

scatter plot relies less heavily on distributional assumptions.

The null hypothesis is rejected when the regression sum of

squares is large and this suggests that plots of [p(so)d(yi;Ai)]

versus z's could help in deciding whether or not overdispersion

depends on covariates. In the case of a single covariate, a strong

relationship between [r(cr
0 3. i ij
)d(y.;p)] and z would mean that there

is evidence for the inclusion of the covariate in the model. Since

the statistics necessary for these plots are all easily computed when

model 1 is fit using maximum quasilikelihood methods and existing

software, the plot is a simple way of examining model assumptions.
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4.2.2 Model 1 versus Model 3

If E(Yi) = pi, h(pi) = gi'/, defines a regression model for the

mean pi, model 3 for the variance of Yi is given by,

Model 3. Var(Yi) = V(pi) [1 + r2k(m)V(pi)]

where k(m) is equal to 1 for counts and to (m-1) for proportions.

This model was introduced in Section 2.2.3 and it can arise when

overdispersion is modeled on the same scale as the covariates for the

mean. It was shown in Section 3.3 that model (3) can be written as

Var(Y) = F(a0 + ftlzi)
-1

V(pi)

where :z. = k(m.1 )V(p1). So model (3) can be approximated by model (2)

using the constructed covariate zi.

The suggested diagnostic could also be applied, using the

constructedcovariatez.defined in Section 3.2, to help determine if

model (3) is more appropriate than model (1).

4.3 EXAMINATION OF THE TEST FOR SPECIAL CASES

4.3.1 Two and Three Independent Samples

SupposethatYiji i= 1,2 and j = 1,...,ni, have a double

expmentialf"ilyclistributiond letij

n.

d. )71 d(y.)4p.1 ). Interest lies in testing the null
1. ._. 15



hypothesis,

Var(Y..) = p(e
0

)

_
1V(pi)

13
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versus the alternative,

Var(Y1j) = p(00)-1V(pl) and Var(Y2j) = p(ao + a2)V(p2).

The score test statistic for this hypothesis is given by

S

+

.

2n
1
n
2

d
1.

+ d
2.

When n
1
= n

2
= n, S can be written as,

S = n
d
1.

+ d
2.

This statistic is large when the difference between the weighted

deviance within samples is large relative to the total deviance.

Similarly, for three independent sample of sizes n
l'

n
2
and n

3'

the score test statistic is given by,

_ nin2(12 - A1)
2

+ n1n3(A3 A1)
2

+ n2n3(A2 - A3)
2

[

S = 2p(a0)
d
1.

+ d
2.

+ d
3.

where A. =
i

di.
[ere and

-

F(cro)

n +n +n
[Ai--]

ni
y A2 y A3 %]

"41.' "2.. "3.'
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If ni = n2 = n3 = n, then the score statistic is given by,

3n (d2.- d1.)
2

+ (d3.- d1.)
2

+ (d2.- d3.)
2

S = (7
(d
1.

+ d
2.

+ d
3.

)

2
]

In this case the statistic S is large when the sum of weighted

pairwise differences in the total between groups is large.

For these independent sample problems, the diagnostic plot is a

visual comparison of the scaled deviance components for each group.

Groups for which the scaled deviance components seem to be quite a bit

larger than other groups may have more variability than the other

groups.

4.3.2 One Continuous Covariate

If it is thought that the dispersion parameter depends on a

single, continuous covariate, z
i'

for i = 1,...,n, then the score test

statistic is just the scaled regression sum of squares for the

regression of the d(yi;pi) on the zi, i.e., S is given by,

S =
1 n

12 Ei(di-i)(zi-i)

2
[Eid(yi;;i) Ei (z

i
i)

2

where di = d(yi;pi), z = (1/n)[Eizi] and d = (1/n)[Eidi].

The diagnostic plot is a scatter plot of the scaled deviance

residuals versus the zi's. The dependence of the variability on z.
2

is
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indicated when the plot shows a dependence of the scaled deviance

components on zi.

4.3.3 Model 3

The diagnostic score test and plot can be carried out to compare

the appropriateness of model (3) and model (1). This was shown in

Sectim4.2.2wherethez.1 's, the covariate in the regression model

1i
forthevariance,arez.1 =k(mi )V(p). Here p. is the estimate of

E .(Y1 ) under model (1).

The procedure could be carried out as follows. First, fit model

MandobtaintheestimatesofE(Y1
i

). Next, calculate the z's and

d(yi;pi)'s. From these produce the scatter plot and compute the score

test statistic.

The score test statistic has the same form as in the previous

section,

S

- - _

1 n
12 Ei(di-di)(zi-z)

2
[Eid(yijii).1 Ei(Zi - i)2 is

where . := 41(y4p.), z = (1/n)a.z.] and a = (1/n)a.d.). Thed1
1 i.i. i 1

plot is a scatter plot of the scaled deviance components versus the

constructed covariates, z.1 .
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4.4 APPLICATION OF DIAGNOSTIC TOOLS TO THE EXAMPLES

4.4.1 Fish Toxicolocv Data

In this experiment, tanks of fish were exposed to one of six

doses of either aflatoxin 81 or aflatoxicol and the proportion of fish

developing liver cancer was noted. As explained in Chapter 1, it is

thought that overdispersion depending on treatment might be present.

In order to apply the diagnostic plot to investigate the dependence of

overdispersion on treatment group, model (1) was fit to the data by

maximum quasi-likelihood.

A mean was fit to each treatment/dose group and overdispersion

was accounted for with a constant heterogeneity factor. From this

fit, deviance components, d(yi,pi), and the estimated heterogeneity

factor, p(a0), were obtained.

Figure 4.1 is a plot of p(oo)d(yi,pi) versus treatment group.

The plot suggests that the overdispersion varies between the

aflatoxicol and the aflatoxin B1 treatment groups. The score test

statistic was calculated to be S = 4.130 on one degree of freedom

(p = 0.0421). Figure 4.2 is a plot of the scaled deviance components

against the constructed variable, zi = (m1-1)/11(1-#1), and there does

not appear to be a strong relationship. The score test statistic for

the corresponding test is S = 4.037 with one degree of freedom

(p = 0.0445).

Although Figures 4.1 and 4.2 seem to indicate that the extra

variation may depend on treatment group and not on zi, the score test

statistics have very similar p-values. A closer examination of the

data, see Figure 1.1, shows that the difference between treatment
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group means is approximately the same for all dose groups except group

6. When dose group 6 is omitted from the analysis, and the score test

of the hypothesis, "overdispersion does not depend on treatment group"

is conducted, S = 5.015 (p = 0.025) and the score test statistic of

the hypothesis, "overdispersion does not depend on the constructed

variable z.", is S = 2.393 (p = 0.122). So the evidence that

overdispersion depends on treatment group is stronger if group 6 is

omitted. The researchers explained that they expected the outcomes

for dose group 6 to be different than the outcomes for the other

groups. A large dose of toxin was given to this group and led to the

death of fish rather than to the development of cancer.

This analysis confirms what the researchers had initially

expected; there may be more overdispersion in the aflatoxicol group

due to the longer metabolic pathway to cancer for this compound than

for aflatoxin

4.4.2 Fish Vaccination Data

In this experiment the effectiveness of two types of fish vaccine

treatments were compared. In order to compare the relative risks of

death of a control group, an inoculated group and an immersed group, a

logit regression model for E(Yi) = #i was fit with factors

representing experiment and treatment groups and virus dilution as a

continuous covariate. It is suspected that overdispersion may vary

between treatment groups and the diagnostic score test and plot were

applied to the data to investigate this possibility.
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Figure 4.3 is a plot of p(ao)d(yi,#i) versus the code for

treatment group where #i and p(60) are the estimates under model (1)

using maximum quasi-likelihood. The plot suggests that overdispersion

does vary between treatment groups. But rather than the immersed

treatment group having more overdispersion as was initially proposed,

it appears that the control group has more overdispersion relative to

the vaccinated groups.

The score test of the null hypothesis that overdispersion does

not depend on treatment group (control versus treated), yields a test

statistic of S = 9.64 with one degree of freedom (p = 0.002) which

also suggests that pi = p(ao + alzi) is to be preferred to the

simple model pi = 000).

In the investigation of the appropriateness of model (3), a plot
_ .

of d(yi;#i) versus the constructed variable, zi = (mi-1)#i(1-#i), did

not show any trends and the score test statistic for the corresponding

test is S = 0.20 with one degree of freedom (p = 0.66). Both the plot

and the score test suggest that model (3) is not appropriate.

The diagnostic plot was able to detect a pattern in the

overdispersion that was different than what had been initially

suspected; it showed that groups receiving the vaccine in any form

exhibited less variability than the control group.

4.4.3 Salmonella Bacteria Data

In this example, it is desired to investigate potential models

for overdispersion. A log-linear model was fit to the data using

log(dose) and log(dose)2 as independent covariates, a factor
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representing replicate effects and replicate x log(dose) interactions.

Several graphs were constructed and plots of deviance components

versus log(dose) and log(dose)2 did not reveal any obvious trends.

However, Figure 4.4 shows a relationship between the deviance

components and the constructed variable zi = #. The score test

statisticfortheinclusionofz.1 in the dispersion parameter is

S = 4.967 with one degree of freedom (p=0.026). Overdispersion

doesn't appear to depend on covariates included in the model for the

mean, but there is evidence that the overdispersion is not constant

for all observations and that model (3) may be a more appropriate

choice than either model (1) or model (2) for this data.

4.4.4 Chromosome Aberration Data

The application of the diagnostic procedures to the chromosome

aberration data will be used to check on the form of the

overdispersion. Under the measurement error model for this data, the

variance should be quadratic in estimated radiation dose. A

regression model was fit to the proportion of chromosome aberrations

using total estimated radiation dose as the explanatory variable and

estimates of the deviance components and a constant dispersion

parameter were obtained.

Figure 4.5 is a plot of the scaled deviance components versus the

squared estimated dose. The score test statistic for the inclusion of

the squared estimated dose is S = 154.2 on 1 degree of freedom

(p ( 0.00001). Both the plot and the score test indicate that there

is evidence to support the measurement error model.
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4.4.5 Rotenone Data

For this example, researchers are interested in the inclusion of

interaction terms in the regression model for the mean. As discussed

in Chapter 1, omitting important covariates in the regression model

for the mean can make it appear as if overdispersion is present.

Therefore, it is important to model the mean as completely as possible

before deciding on the model for overdispersion. However, the

question here is, just which terms do belong in the regression model

for the mean. The procedure will be to fit a rich model for the mean,

i.e., including interaction terms, then use the diagnostic tools to

assess the dependence of the variability on the type of toxin and the

dose level. Once a model for overdispersion has been selected, the

inclusion of the interaction terms can be studied.

A probit regression model was fit to the data using

[log(toxin concentration)] as a continuous covariate, factors to

represent the rotenone, degulin and rotenone+degulin treatment groups

and the treatment x log(concentration) interactions.

From this model deviance components and a constant dispersion

parameter were estimated. Figure 4.6 and 4.7 are plots of the scaled

deviance components versus log(concentration) and treatment group

respectively. Although one deviance component seems larger than the

others, no clear pattern emerges. The score test statistic for the

dependence of overdispersion on treatment group is S = 2.9 on 2

degrees of freedom (p = 0.2357), and for the dependence of

overdispersion on [ log(concentration)], S = 0.4363 on 1 degree of



LO

4 .4-c
a)

O
CI
EO co

(..)
a)0
C
as
'5 C \I
a)0

73
a)
('S0 .

CO

0

Figure 4.6 Rotenone Data

*

* *

* *I
*

I

*

*

*

*

I I

*
*

*

1

*

*

0.5 1.0 1.5 2.0 2.5 3.0

Log(Toxin Concentration)

3.5 4.0



LO

.4 ct-c
a)
C0
o_
EO co0
a)
C)
C
as
'5 cm
a)a
a)
To0 ,
ci)

0

Figure 4.7 Rotenone Data

*

*

*

*

*
*
*

*
*
1 t

1 2

Treatment Group

3

Rotenone=1 Degulin=2 Rotenone+Degulin=3



98

freedom (p = 0.5089). The diagnostic plot of the scaled deviance

components versus the constructed variable, zi = (mi-1)pi(1-pi), did

not show any relationship either and the associated score test

statistic is S = 0.5548 with one degree of freedom (p = 0.456). None

of the diagnostic plots exhibited a strong pattern, suggesting that

model (1) is an adequate representation of the data.

4.5 DEVELOPMENT OF THE SCORE TEST

If f(yi;pi) is a one parameter exponential family density,

f(yi;pi) = expl[yiei-b(ei)]mi + c(yi))

then the corresponding double exponential family distribution is given

by,

= c(#i,Fi) F112 [f(Yi:/li)]lli [f(Yi;Yi)]19i

(see Section 2.2.4). Efron (1986) showed that under the double

exponential family distribution, c(pi,pi) 1, E(Yi) .1:1 pi = b'(0i),

andVar(Ir.)z V(#.)/(m3. .p.) = b"(9.)/(m.3. p.).
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Suppose Y1,...,Yn are independent random variables from a double

exponential family distribution with,

E(Yi) = pi = k(li)

Var(Yi) = V(#1.)/(mipi) pi = w(7i) . a + z.'a71
o -1 -1

where x.
1
is a (pxl) vector of known covariates, A is a (pxl) vector of

unknown parameters, k() is a known,one to one, monotonic function,

V() is a known positive function, the mi's are known constants, Kic

is a (qx1) vector of known, mean corrected covariates (i.e.,

E.z3.3..c = 0), a
0
is a scaler parameter and a1 is a (qxl) vector of

unknown parameters and w() is a known positive function.

by,

Then, the log-likelihood function for the vector (A,/) is given

1(#,p,y) = (1/2)log[pi) + pid(yi;#i) + log[f(y.,y.)]

1=1

where d(yi;#i), the deviance component is,

d(yi;#i) = 2( yi(Bi 0i) b(0i) + b(Oi)l /ai

and O.
1

is the maximum likelihood estimate of O.
1
based on y.

1
alone.



The components of the score vector are given by,

S
/ '

(1 a
0
,e

1

) = [olieD

100

ri(Yi #)
i

]
k(q) x. ,

i V(#i) -a

n

-1

"1"""=°1"110]"112)E.-cl(Y.;#.)] i(7i) ,

a o 1
{171

i i
o

i =1

n

-1
.9(1,0,1?).01/(4]=0./2)E.-cl(Y.:#.) Ii(7i)Eic ,

a 0 i i [Pi i i

i=1

where i(vi) = alc(74.)/agi and W(7i) = Ow(7i) /07i. The information

matrix is given by,

1(1, a 0, Ai) =

lif q

0 .10,

o

0 0

0

0

I
a

where,

I
A
(1,o

0,
a

,

) = -E[021/(a1 dl')]

n

= E (pimi/V(pi)] i(vi)2 xi xi'

i=1



Ie0(11,110,s1) = -K(721/0020)]

n

= (1/2) E {
i=,
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1
w(7i)]

2 1
[Fi w(7i)] + w(7i)E[d(yi;iii)]1

I
a

(Lee
0 1

) = E[021/0
21

d
21

1]
1

n

1. 2 1"
= (1/2)):11[r. w(7)] [F w(7.)] + w(7i)E[d(y.;#.)0 zecz.c'11 11 1 1 1 1

i=1

where w(7i) = di(7i)/d7i.

Now,EN(y.;#.)] z Pi -1 (Efron, 1986) when the binomial sample

size is large or when the Poisson mean is large, that is, as mi m.

But results from Pierce and Schafer (1986) suggest that this

approximation may be good even for small mi. Using this

approximation,

-1
/ (/,0 ,cf ) = (1/2) F. w(i. 2
&
o

o -1 1 .1)

1=1

/ (1,8 & ) = (1/2) '/ -&.ic

,

o't
1=1
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The score test statistic for the null hypothesis a = 0 is given

S = S (1,a ,0)' [I (1,6 ,0)]
-1

S (1,er ,0)

1 o
1

o 8
-1

0

where / and a
o
are the maximum likelihood estimates when a

1

= 0. Note

that when & = 0,

p. = if( .71 ) = w(1
o

)

which does not depend on i, so

Sa ,0) = (1/2)i(7) 110:1 E z.c E
i=1 i=1

= -(1/2)i(7)Zc'd since E zinc = 0,
i=1

th
where d is an (nxl) vector with i entry d(y.-p.) and Zc is an (nxp)

th
matrix with i row z.1 c .

Also,

Ia (1,a0,0) = (1/2)[pli(7)12 Zc'Zc
1
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So the score test statistic is given by,

S = f-(1/2)1i(7)Ic'il' f26-1i(7)]21-1 flcizcl-1 f-(1/2)i(7)1ci1

= (1/2) ;2 'i'lc (Iclx)-1 Ic'a

where pi and p are the maximum likelihood estimates when a = 0 and
_

d has ith entry d(yi;pi).
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Chapter 5

CONCLUDING REMARKS

For the analysis of overdispersed counts or proportions many

different models for the variance of Y have been suggested. Finney's

model, in which the variance is assumed to be a constant multiple of

the binomial or Poisson variance, is useful for many applications.

However, as McCullagh and Nelder (1983) and Nelder and Wedderburn

(1987) point out, it is important to check the validity of this

model. In the examples of Chapter 1 there are a priori reasons to

suspect that overdispersion depends on known covariates or on some

function of the mean. The diagnostic tools proposed in Chapter 4,

the score test and scatter plot based on deviance components, provide

an easy way to investigate the suspected dependencies with standard

computer programs. The following points are to be noted in assessing

the extra variability and in using the diagnostics suggested in this

thesis.

1. Chapter 3 showed that the major effect of ignoring the

dependence of overdispersion on covariates will be the use of

incorrect standard errors of the estimated 8.'s and related errors

regarding the conclusions of tests. These were demonstrated through

the actual (asymptotic) coverage probabilities of nominal 95%

confidence intervals. For two independent samples from a double

binomial population, with different amounts of overdispersion but the
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same mean, the difference between the true coverage probability and

the nominal value depends on (1) the ratio of the Finney

heterogeneity factor in the groups, (2) the ratio of the number of

observations in each sample and (3) the ratio of the total number of

Bernoulli trials in each sample. When all of these ratios are

between 1/2 and 2, the coverage probabilities are between 92% and

97%. For a more extreme case, consider the following example. If

the first group has five times as many observations and five times as

much extra variation compared to the second group, but there are five

times more Bernoulli trials in the second group, the true coverage

probability of the asymptotic nominal 95% confidence interval is 78%.

However, such differences in sample sizes and binomial denominator

sizes do not seem likely in practice.

When overdispersion depends on a continuous covariate, the

difference between the true coverage probability and the nominal

value depends on the values of the covariate. For the constructed

example in Chapter 3, the true coverage probability was 90%,

indicating that inference can be affected by ignoring the dependence

of the overdispersion on the covariate.

For estimating means from independent samples from populations

with different amounts of overdispersion, there is no loss of

asymptotic efficiency. But for the constructed example in which

overdispersion depended on on a covariate, the asymptotic relative

efficiency of the vector / dropped to 86%. So ignoring the

dependence of overdispersion on covariates may also lead to a loss of

efficiency.
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2. The diagnostic tools proposed in Chapter 4 are easy to

obtain using standard software for generalized linear models. First,

obtain the maximum likelihood fit ignoring overdispersion (or

equivalently, the maximum quasi-likelihood fit) and obtain the
...

deviance components, d(yi;pi), and the average deviance,

1)..(11-1Ei Ci#.y)].Plotsof di* = [d(yi
3.

4p.)/D] versus the
' i

suspected covariates can then be used to investigate the dependence

of extra variation on these covariates. The score statistic is one

*
halfatheregressionsumasquaresintheregressimad.1 on the

suspected covariates, and this may be compared to a chi-squared

distribution with degrees of freedom equal to the rank of the matrix

of the suspected covariates.

3. In this thesis, interest lies mainly with inference about

the "63 .'s. Here it is important to account for overdispersion but

models for the variance do not need to be realistic or "exact" to

ensure good inferential techniques for the parameter 1. Often

several models may be suitable. For example, if Y is a count, with

h(#) = flo + fix , the diagnostic tools might indicate that the

residual variation depends on the covariate x. However, a simpler

model might be one in which the variance depends on x only through

the mean, such that Var(Y) = #(1 + /2/1). The latter would ordinarily

be chosen over Var(Y) = #(0
0
+ a

I

x) since it involves the covariate

only through the mean. The diagnostic tools can be used to decide

when a simple model can serve as an adequate representation of the
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data, but as in ordinary regression, there is not typically one best

model.

4. It is important to use a rich model for the mean when

investigating possible models for the variance, since covariates

omitted from the model for E(Y) can result in overdispersion which

depends on the omitted covariate (or on any variable correlated with

the omitted covariate). However, in many cases it can be difficult

or impossible to distinguish between interactions in the model for

E(Y) and overdispersion based on the data. The choice of which to

include can sometimes be settled by the prior knowledge of the

researcher. In the absence of such knowledge, simple and

interpretable models are preferred.

5. For large sample sizes, the score test statistic has a

chi-squared distribution. But the small sample properties of the

score test statistic proposed here have not yet been explored. Cook

and Weisberg (1983) conducted a small simulation to explore the

chi-squared approximation for the case of normally distributed data.

They found that, in general, the approximation leads to a

conservative test and appears to be adequate for diagnostic purposes.

6. Outliers can affect the judgment of models for the

variability. Influential points make the overall residual

variability appear to be larger than it really is. The diagnostic

plot can help to detect outliers, but points with a large amount of
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leverage will be close to the regression line and detecting them can

be difficult. For this reason, it is recommended that each deviance

component be replaced by the deviance component divided by (1-hii),

th
where h.. is the i diagonal entry of the generalized linear model

11

equivalent of the "hat" matrix, as suggested by McCullagh and Nelder

(Section 11.5.3, 1983). This improvement was also suggested by Cook

and Weisberg (1983).

7. Efron, (1986, Remark 12) and Carroll and Rupert (1988) note

that difficulties can arise when the regression model for the

variance has been overfit. Using rich models for the variance in the

double exponential family, for example, as a method of estimating B,

which is robust to the form of overdispersion may lead to similar

problems. For this reason, a graphical tool such as the one

presented here will be useful even when a more sophisticated computer

program for modeling the overdispersion is available.
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APPENDIX A

Fish Toxicology Data. Number of Fish Developing
Liver Cancer.

Dose Group

Aflatoxin B1 Aflatoxicol

# in
Tank

# with
cancer

# in
Tank

# with
cancer

1 86 3 87 9

1 86 5 86 5

1 88 4 89 2

1 86 2 85 9

2 87 14 86 30

2 90 14 86 41

2 83 9 86 27

2 88 12 88 34
3 90 29 89 54

3 89 31 86 53

3 89 33 90 64
3 87 26 88 55

4 86 44 88 71

4 80 40 89 73

4 89 44 88 65

4 88 43 90 72
5 87 62 86 66

5 88 67 82 75
5 88 59 81 72

5 84 58 89 73
6 77 62 54 46
6 78 63 56 39
6 79 62 55 43

6 79 67 55 43
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APPENDIX B

Fish Vaccination Data. Number of Fish Dying From Viral
Infection.

Experiment Dilution
Control

# in #

Tank Dead

Immersed
# in #

Tank Dead

Inoculated
# in #

Tank Dead

1 -2 25 18 25 4 25 4

1 -3 25 13 25 4 25 3

1 -4 25 1 25 0 25 1

1 -5 25 0 25 0 25 0

2 -2 25 21 25 17 25 8

2 -3 25 15 25 6 25 3

2 -4 25 12 25 1 25 0

2 -5 25 8 25 0 25 0

3 -2 25 25 25 18 25 14
3 -3 25 25 25 7 25 5

3 -4 25 14 25 2 25 0

3 -5 25 3 25 0 25 0

4 -3 32 32 25 23 24 18
4 -4 37 37 25 15 26 13

4 -5 30 20 25 5 22 1

4 -6 30 5 27 3 23 0
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APPENDIX C

Salmonella Bacteria Data. Number of Visible Colonies
After Exposure to Acid Red 114.

Dose (pg/m1)

Replicate 100 333 1000 3333 10000

1 60 98 60 22 23
1 59 78 82 44 21

1 54 50 59 33 25
2 15 26 39 33 10
2 25 17 44 26 8

2 24 31 30 23
3 27 28 41 28 16
3 23 37 37 21 19

3 21 35 43 30 13
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APPENDIX D

Chromosome Aberration Data; Hiroshima. Number of Cells With
Aberrations Out of 100 CellS Per Subject.

Number of
Aberrant

Estimated Radiation Dose (rads/100)

Cells 0 0-.99 1-1.99 2-2.99 3-3.99 4-4.99 5+

0 139 20 23 2 1 3

1 66 23 12 2 1 1

2 35 6 20 5 1 1 2

3 17 7 23 5 1 1 2

4 3 3 6 3 3 3 2

5 2 2 12 14 3 4

6 1 5 12 3 3 1 1

7 2 12 2 3

8 5 4 3 2 1

9 1 2 3 3 1

10 5 5 3 3

11 1 2 1 1 1

12 2 1 1 1

13 7 3 2 1

14 1 1 3 2 2 1

15 1 1 1

16 2 2 1 3

17 1 2 2 1 4

18 4

19 2 1

20 1 1 1

21 1 1

22 1 1 1

23 1

24 1 1

25 1 1 1

26-27
28 1

29 1 1

30-33
34 1

35-36
37 1

38-39

40 1

41

42 1 1
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APPENDIX E

Rotenone Data. Number of Aphids Dead Due to Insecticide.

Concentration (mg/1)

# of insects used # deadRotenone Degulin

10.2 0.0 50 44
7.7 0.0 49 42
5.1 0.0 46 24

3.8 0.0 48 16

2.6 0.0 50 6

0.0 50.5 48 48

0.0 40.4 50 47

0.0 30.3 49 47

0.0 20.2 48 38

0.0 10.1 48 18

0.0 5.1 49 16

5.1 20.3 50 48

4.0 16.3 46 43

3.0 12.2 48 38

2.0 8.1 46 27

1.0 4.1 46 22

0.5 2.0 47 7


