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1 INTRODUCTION 

1.1 Problem Definition 

The discovery in 1821 that a thermal gradient created across a material could generate 

a measurable voltage was followed by immediate interest in the topic. This interest in 

thermoelectrics waned after thirty years, and the practical applications resulting from 

this effect remained largely unexplored until the 1930s [l]. At this time, the interest in 

thermoelectric (TE) materials revived, and has continued to grow steadily until 1970 

[1]. A more recent second revival of TEs accompanies the growth of materials science 

and the semiconductor industry. In comparison to metallic thermocouples which 

generate relatively small voltages, thermocouples made from semiconducting 

materials produce much larger voltages and in principle can convert heat directly to 

electricity, or vice versa, thus acting as TE coolers and heaters, respectively [2]. 

The problem with current TE materials is low efficiency, making these materials 

impractical for industry or even consumer use. The performance of TE materials is 

characterized by a figure of merit, ZT, where Z is the material coefficient and T is 

the temperature. An interesting characteristic of this figure of merit is that it has no 

apparent thermodynamic upper limit [3]. TE power generation devices using TE 

materials with ZT < 1 correspond to a Carnot efficiency of less than 30% of the Carnot 

limit [l]. Thus, ideal TE materials maximize this figure of merit. The figure of merit is 

directly proportional to the square of the Seebeck coefficient, which will be described 

in detail later in this paper. Therefore, one desirable characteristic of TE materials is a 

large Seebeck coefficient. 

The Seebeck coefficient is a fundamentally complex problem since it depends on both 

kinetic carrier movement and the equilibrium entropy. In addition to the carrier 

movement mechanism, which is determined by the kinetics of carrier scattering or 

local site-to-site kinetics (hopping), other factors such as phonons may influence a 
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carrier's movement. These phonons are coupled to the electron via scattering kinetics, 

i.e. phonon drag. Electron-phonon coupling is a complex interaction that is outside the 

scope of this paper. However, the hopping transport mechanism and its effect on the 

Seebeck coefficient will be examined in more detail in the discussion on heat transfer. 

1.2 Motivation 

The characterization of new TE materials by a figure of merit that is strongly 

dependent on the Seebeck coefficient has renewed an interest in understanding the 

Seebeck coefficient from a first principles perspective. The materials science 

community must understand the Seebeck coefficient at a fundamental level in order to 

succeed in maximizing it. Additionally, current research in p-type transparent 

conductive oxides has influenced this project. Some of these materials, such as 

CuSc1_xMgxO2+y thin films, exhibit hopping as the carrier transport mechanism [4]. 

This encouraged the examination of the Seebeck coefficient not only in the hopping 

regime, but also in the high temperature limit, where a useful simplification can be 

made. Furthermore, the desire to determine material parameters such as carrier 

concentration from experimental data for materials such as CuSc1_xMgxO2+y is 

another motivation for this project. 

1.3 Statement of Purpose 

The objective of this project is twofold. First, a detailed understanding of the Seebeck 

coefficient is necessary. Thus, a thorough review of many existing derivations of the 

Seebeck coefficient is completed, followed by a comprehensive derivation from a first 

principles approach. The second aspect of this project is to examine the Seebeck 

coefficient in the high-temperature hopping regime using a model based on physical 

parameters, and to compare these results to those discussed in existing literature which 

take a less physical approach that emphasizes statistical and combinatoric methods. 

An additional emphasis is taken in this paper to make the discussions applicable for 
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both types of charge carriers, namely holes and electrons. Thus, formulae in this paper 

are generalized for a carrier with charge q. 

1.4 Overview of this Thesis 

This thesis begins with a discussion of the mechanisms that influence the transfer of 

heat within a material. The Seebeck coefficient is then briefly introduced from a 

familiar thermocouple perspective, and the details of this engineering approach are 

provided in Appendices A and B. This discussion is followed by an introduction of the 

Seebeck coefficient from a chemical potential perspective (entropy "current"). In 

Section 2.4, a first principles derivation of the Seebeck coefficient is completed; this 

derivation is essential for all calculations to follow. Section 2.5 illustrates a calculation 

of the Seebeck coefficient using Boltzmann transport theory. Although this approach 

is only valid for delocalized Bloch states, this calculation is worthwhile because it uses 

familiar Boltzmann theory (described in more detail in Appendix C) and yields the 

free-particle limit of the formula presented in the papers examined for the literature 

review. 

Chapter 3 examines the Seebeck coefficient in the high temperature, hopping regime. 

This chapter also contains the literature review of a paper that presents a theoretical 

approach to the Seebeck coefficient by examining possible carrier configurations on 

lattice sites. Results from this paper are presented, and will be referenced for 

comparison in Chapters 4 and 5. This paper also introduces the significance of the 

Hubbard Hamiltonian to the Seebeck coefficient in the high temperature, hopping 

regime. 

Chapter 4 introduces the least-bias approach to calculating the Seebeck coefficient. 

This approach uses the grand partition function, containing Hubbard Hamiltonian 

interaction terms, to calculate the chemical potential and ultimately the Seebeck 
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coefficient. Calculations using this approach, and results from comparisons with those 

from the literature review in Chapter 3, are included in Section 4.4 of this chapter. 

This chapter closes with a discussion of the results. 

Chapter 5 discusses the transfer matrix approach, another method for determining the 

grand partition function necessary for completion of the least-biased approach. This 

method utilizes the fundamentals of the Ising Model, which is described briefly in 

Appendix E. Section 5.3 shows the calculations and results for the transfer matrix 

approach. The advantages and disadvantages of this approach are included with a 

discussion of the results in Section 5.4. 

Chapter 6 discusses an application of the least-biased approach for calculating the 

Seebeck coefficient in the high-temperature regime for narrow-band materials with 

hopping carriers, the two-atom system. A specific case of the material 

CuSc1_xMgxOz+y is considered. Information on this material necessary for applying 

the least-biased approach correctly is given in Section 6.2. Calculations for this case 

are given in Section 6.3 and Appendix F. Results are presented at the end of the 

chapter and compared to experimental temperature-dependent Seebeck data for 

CuSc1_xMgxOz+y. This comparison shows that the theoretical result compares 

reasonably well with the experimental data. The chapter ends with a discussion of 

these results. 

The final chapter of this thesis, Chapter 7, gives a conclusion of the work done within 

this thesis and a brief summary of results. 
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2 GENERAL SEEBECK THEORY 

2.1 Heat Transfer 

There are two mechanisms that contribute to heat transfer within a material. The first 

is the transport of heat by charge carriers, the mechanism that causes metallic 

materials with larger electrical conductivities than other materials to be good 

conductors of heat [ 1]. However, the fact that heat can also be transported in 

insulators, which are characterized by small electrical conductivities, suggests that this 

is not the only mechanism present. The second mechanism at work is the transfer of 

vibrational energy from one atom to the next [1]. Since the atoms in a crystalline 

material are part of a bigger structure, a lattice, we can no longer think of the atoms as 

independent. Thus, it is the lattice structure, not individual atoms, that responds to 

incident vibrational waves. The boundary conditions, caused by the discrete nature of 

the atoms, put constraints on the types of waves allowed within the structure [l]. It 

was Peierls who introduced the concept of "phonon" wave packets that arise from the 

quantization of vibrational waves to explain this process [l]. These wave packets are 

now just referred to as phonons, and can be thought of as "the energy carriers that are 

responsible for the heat conduction by a lattice" [1]. The phenomenon called phonon 

drag that complicates the Seebeck effect is precisely the interaction of these heat

current carrying phonons that have been scattered by the conduction carriers [ 1]. 

2.2 Seebeck Introduction 

Many texts introduce Seebeck, or thermopower, theory and the resulting Seebeck 

coefficient from an engineering perspective, using thermocouple theory. This will 

briefly be presented in this section, with supporting information in the appendices. 

However, the thermocouple explanation provides a limited insight into the physical 

processes taking place in the sample. Thus, a derivation of the Seebeck coefficient 

from a first principles perspective will also be presented in this chapter. The first 



6 

principles derivation is essential for the high temperature discussion and 

approximation presented in the following chapter. 

2.3 Seebeck Theory 

2.3.1 Open circuit analysis 

A thermocouple is a device used for measuring temperature that is made up of two 

dissimilar metals joined at one end [5]. The thermocouple junction is heated while the 

open ends are held at a constant reference temperature and a thermoelectric voltage 

can be measured across the open ends, as shown by the open circuit in Figure 2.1. 

Metal A 

Figure 2.1 Seebeck voltage, thermocouple 

For small differences in temperature, the Seebeck voltage is directly proportional to 

the temperature difference [5], as shown by 

(2.1) 

Here, V AB is the measured Seebeck voltage, tiT is the temperature difference between 

the junction and the open ends, and the coefficient of proportionality, a, is the 

Seebeck coefficient characteristic of the metal pair. 

2.3.2 Seebeck effect in a single homogeneous material 

In theory, a Seebeck voltage exists across any sample of material with a temperature 

difference maintained at the ends, as shown in Figure 2.2. 
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•----0f------'. 
TH0, =T(x) Tcotd =T(x+~) 

Figure 2.2 Seebeck voltage, material 

In practice, any resistance in the leads attached to a voltmeter will affect the measured 

Seebeck voltage. This must be accounted for in calculations using (2.1 ). For the 

moment, this detail will be disregarded. 

The nature of the thermoelectric effect within in a material is typically explained using 

classical diffusion and energy arguments. Since this is the explanation most commonly 

found in textbooks, I have included a discussion from this view in Appendix A and the 

necessary differential thermocouple theory in Appendix B. However, the Seebeck 

effect is fundamentally a chemical potential problem, as demonstrated by the 

thermodynamic approach involving the partition function, described later in this paper. 

Thus, I will begin here with a chemical potential description of the Seebeck effect. 

2 .3 .3 Seebeck effect and its relationship to the chemical potential 

The chemical potential, µ, is a thermodynamic property of the carriers within a 

material and it is related to thermodynamic variables such as internal energy by means 

of the First Law of Thermodynamics, 

dU = Tdr;-PdV + µdN. (2.2) 

Here, U, r;, V and N are the internal energy, entropy, volume and number of 

particles, respectively. Solving (2.2) for the chemical potential in terms of energy 

illustrates how the chemical potential can be thought of as "energy" per particle, 
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(2.3) 

Equivalently, one could solve (2.2) for the chemical potential in terms of entropy, 

illustrating how the chemical potential could also be thought of as "entropy" per 

particle. 

µ=-( d;) . 
dN UV 

(2.4) 

The chemical potential is also often described by its relationship to the 

electrochemical potential energy, namely 

(2.5) 

Here, µ and <I> are the electrochemical potential energy and the electrostatic potential 

[6], respectively, and q is the charge of carrier including the sign (q = -lei for 

electrons, q = jej for holes). 

Since there is a temperature gradient across the material shown in Figure 2.2, a 

gradient in the chemical potential is also present because the chemical potential is 

temperature dependent. The Seebeck coefficient, S, ultimately describes this 

infinitesimal change in chemical potential per change in temperature, and can be 

written as 

laµ 
S=---. 

qaT 
(2.6) 

This expression will be derived from a first principles argument in the following 

section. 

The Seebeck coefficient is usually given in units µV /K (microvolts per Kelvin). Thus, 

the term "thermoelectric power" or "thermopower" is misleading, because the 
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coefficient is by no means power. An important characteristic of the Seebeck 

coefficient is that the sign of the coefficient corresponds to the type of charge carrier 

present in the material. Thus, the Seebeck coefficient is positive if the carriers are 

holes and negative if the carriers are electrons. For semiconducting materials this 

would correspond to p-type and n-type materials, respectively. This is seen by 

examining (2.6) for fermions, where by definition aµ/aT <0; for electrons, q = lei 
yielding S < 0, and for holes q = jej yielding S > 0. 

2.4 Seebeck Theory, First Principles Approach 

2.4.1 Motivation 

Although the qualitative description of the Seebeck effect presented earlier, and that of 

carrier movement presented in Appendix A, are useful, they should be accompanied 

by a detailed quantitative derivation. Thus, a first principles approach to the Seebeck 

coefficient is presented in the following section. 

2.4.2 Deriving a meaningful formula for the Seebeck coefficient 

The physical condition of dynamic equilibrium that characterizes the Seebeck effect is 

that heat is transferred through the sample without the actual transfer of charge, when 

a small temperature gradient exists across a material. Thus, to calculate the Seebeck 

coefficient, one can compute the gradient of the electrochemical potential needed to 

offset the current flow [7]. This can be examined by setting the charge current density, 

J, given by 

J =qi, (2.7) 

to zero. Here, I is the carrier density described by the Onsager transport equation [8] 

given by 

(2.8) 
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Here, a is the electrical conductivity of the material, µ is the electrochemical 

potential, T is the temperature, and S is the Seebeck coefficient. 

Substituting (2.8) into (2.7), and setting J in (2.7) equal to zero, to represent no 

current transport within the sample, yields 

aVµ=-SaVT. 
q 

(2.9) 

The electrochemical potential energy, µ, is comprised of the chemical potential, µ, 

and electrostatic potential, <I>, as given by (2.5). Since no external voltage is applied to 

the sample for the Seebeck effect, <I> = 0, the gradient of the electrochemical potential 

in (2.9) reduces to the gradient of the chemical potential, µ(<I>= 0) = µ, 

a 
-Vµ=-SaVT. 
q 

(2.10) 

Considering, for example, transport m only the x -direction, the following 

substitution is made, 

(2.11) 

Solving (2.10) for S and applying (2.11) yields our first fundamental description of 

the Seebeck coefficient, 

(2.12) 
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2.5 Calculating the theoretical Seebeck coefficient 

One way to determine an expression for (2.12) is to examine Boltzmann transport 

theory combined with band theory. Although this only holds for delocalized Bloch 

states (free carriers that scatter), and we are ultimately interested in the case of 

localized Wannier states (bound carriers that hop), it nonetheless provides a starting 

point and a straightforward approach for the form of the Seebeck coefficient. 

Non-equilibrium carriers of a system are typically described by a local occupation 

function, f(r,k,t), which is a solution to Boltzmann's transport equation. Here, r is 

the local spatial coordinate, k is the wavenumber of a quantum state and t is an 

explicit time dependence. Since holes and electrons are fermions, in equilibrium the 

distribution for either carrier type is given by the Fermi distribution function, 

(2.13) 

Here, E is the energy of the carrier. In the Boltzmann picture, the energy for electrons 

and holes is c= ti2k2/2m and c= -n2k2/2m, respectively. Sommerfeld determined 

that the number of carrier states permitted per unit volume within a defined energy 

range from E to E+ de is given by [1,9] 

(2.14) 

Here, g( c) is the free particle density of states. Thus, the number of charge carriers per 

unit volume in the aforementioned energy range is described by 

(2.15) 

Reducing the problem to one dimension defines carriers of charge q as moving in the 

x direction with a velocity v x. Then the current per area, or electric current density j 

[l], is given by 
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00 

j = f qvxf(e)g(e)de. (2.16) 
0 

No net charge flows when the system is in equilibrium described by (2.13). Thus, 

when f(e) = f
0
(e), the current, and thus the current density, must be zero [l]. 

Therefore, (2.16) is modified to include this constraint, and the current density is 

rewritten as 

00 

j = f qv x(J(e) - f/e) )g(e)de. (2.17) 
0 

Next, Boltzmann's transport theory in the relaxation time approximation is used to 

determine f ( E) - f 
O 

( E). Boltzmann's transport equation, given by 

f(e)- f/e) = vx afo ((e-µ) ar + aµ), 
r ae T ax ax 

(2.18) 

is derived in Appendix C. Here, r represents the scattering time, which is the time 

duration between scattering events. For details, see Appendix C. 

Solving (2.18) for f(e)- f
0
(e), the current density, given by (2.17), is rewritten and 

simplified as follows, 

j = J qv~r afo ((e-µ) ar + aµ)g(e)dE. 
0 ae T ax ax 

(2.19) 

Applying the condition that j = 0 in dynamic equilibrium, which is a characteristic of 

the Seebeck effect discussed earlier in the first principles derivation, one can solve for 

aµ/ ar needed in equation (2.12). This solution method is demonstrated in the 

following equations, 

(2.20) 
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l aT J00 

2 af0 ( ) aµ J00 

2 afo -- qvxr- E-µ g(E)dE=-- qvxr-g(E)dE 
T~o ~ ~o ~ 

(2.21) 

aµ 
-= 

l aT J00 

2 aJ. -- qvxr- 0 (E-µ)g(E)dE r ~ 0 aE 

ax 
(2.22) 

J qv;r afo Eg(E)dE- µ J qv;r afo g(E)dE 
aµ 1 ar O aE O aE 
-=-------"----------"'------

] qv;r afo g(E)dE 
0 aE 

(2.23) 

aµ 1 ar 
-=---
ax Tax 

(2.24) 

J qv;r afo Eg(E)dE 
aµ 1 ar O aE 
-=-- µ-
ax T ax J00 

2 aJ. qv x r- 0 g(E)dE 
0 aE 

(2.25) 

J qv;r afo Eg(E)dE 
aµ aµ ax 1 0 aE 
-=--=- µ-
ar ax aT T J00 aJ. qv;r- 0 g(E)dE 

0 aE 

(2.26) 

Substituting (2.26) into (2.12) yields the final equation for the Seebeck coefficient 

based on a first principles derivation, 

(2.27) 

an expression that appears widely in the literature e.g. [10,6]. This can be rewritten as 
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(2.28) 

where K1 and K 0 are scattering integrals, 

K1 = - f qv;r afo cg(c)dc 
o Jc 

(2.29) 

K 0 = f q2v;r afo g(c)dc 
o Jc 
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The derivation of the Seebeck coefficient given by (2.28) is based on Boltzmann 

transport theory, also called one-electron theory since it is describes the response of an 

independent charge carrier. This is a valid approach for materials with broad bands 

and where r >> 1, such as pure metals and defect-free semiconductors. However, a 

free-electron gas does not provide a good model for the narrow-band materials with 

localized impurities, where r << 1, of interest in this paper. For example, highly-doped 

materials where the dopants overlapped, creating bands. In 1963, J. Hubbard 

introduced a "theory of correlations" to examine such systems of interacting carriers in 

a crystal lattice [11,12] for which Bloch states are no longer a good representation. 

Hubbard's Hamiltonian is widely used to describe the interaction terms for narrow

band materials. It has also been shown that carriers in these semiconductor bands may 

contribute to conduction by means of thermally activated hopping [13]. The following 

literature review was performed to examine papers incorporating hopping, and thus 

the Hubbard Hamiltonian, into thermopower analysis. 

3.2 Literature Review 

The basis for this section is three sequential papers discussing the use of Hubbard 

formalism in thermopower calculations [ 14, 15, 16]. The first of these presented 

experimental data and comparisons with previous calculations [14] for quasi one

dimensional systems. The latter two papers [15,16] expand on localized thermopower 

theory as discussed in further detail in this section. 

3.2.1 Chaikin and Beni 

"Thermopower in the correlated hopping regime" by P. M. Chaikin and G. Beni is 

motivated by experimental research done on compounds with properties satisfying the 

narrow-band Hubbard model. Chaikin and Beni begin by using Kubo formalism [15] 
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to transform the equation for the Seebeck coefficient to a more applicable formula 1 for 

semiconducting materials, given by 

µ s(2l/s(1) 
S=-------'--

qT T 
(3.1) 

Here, s(r) and s(z) are transport correlation functions, that represent a carrier velocity 

term and a heat term, respectively [17]. Also note that (3.1) has a form similar to that 

of (2.28), which is a special case of the Kubo formalism result, (3.1 ), representing the 

free-particle (weak-scattering) limit. Whereas (2.26) is valid only for delocalized 

Bloch states, (3.1) is generalized to localized (tight-binding) Wannier states. Beni 

examined the thermopower of narrow-band Hubbard systems two years prior to the 

aforementioned work with Chaikin, by using perturbation theory to evaluate the 

correlation functions s(r) and s(z) [17]. Since these correlation functions are 

mathematically complicated, I became particularly interested in the following 

approach presented by Chaikin and Beni in their 1976 publication. They claim in the 

high temperature limit, the s(z) / s(r) term becomes temperature independent, unlike the 

chemical potential [15]. Thus, as T- oo, (3.1) reduces to 

(3.2) 

which is not only mathematically more straightforward, but also lends itself to 

equilibrium thermodynamic analysis. 

The chemical potential is contained in the first law of thermodynamics, 

dU = Td;-PdV + µdN. (3.3) 

There is a misprint in Chaikin and Beni's publication on page 647 such that this formula appears as 
s(2J/s(ll / • . . s(2J/s('l . s = + µ, e. This formula 1s then corrected on the followmg page, S = ---+ _/1,__. Here, e 1s the absolute 

T T fl 

value of the electron charge. Substituting e ._ -q in this formula, and in the s( 2J/ s( 1) terms, yields the form used in 

this thesis: µ, s(2l/ sl1l. S=-~---· 
qT T 
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Here, U, f;, V and N are the internal energy, entropy, volume and number of 

particles, respectively. Note that the chemical potential, µ, is proportional to an 

entropy per carrier at constant internal energy and volume, and is given by 

(3.4) 

Using (3.4), Chaikin and Beni take a theoretical approach for calculating µ by 

examining possible carrier configurations on the atomic lattice sites. Boltzmann's 

entropy 1 is given by 

(3.5) 

where g represents a degeneracy or multiplicity function at constant internal energy. 

Chaikin and Beni then use a combinatorics approach to calculate g corresponding to 

different configurations for the carriers on atomic sites. They determine the 

thermopower, or Seebeck coefficient, in various "regions of applicability," defined by 

the magnitude of the correlation parameters in the extended Hubbard Hamiltonian, 

[15] 

i,a 

+Uo2n;,ani,-a + 2Uj,ani,,ni+j,a'. 

(3.6) 

i,a i,j,a ,a 

Here, t is the transfer matrix element, also called the nearest-neighbor tight-binding 

transfer integral; c:,a and C;,a create and destroy a carrier with spin a at the ith site, 

respectively; n;,a = c:,aci,a is the number operator for spin a; U
0 

is the on-site 

Coulomb interaction and U j is the Coulomb interaction between carriers on sites j 

units apart (15,16]. All "regions of applicability" explored by Chaikin and Beni are 

within the limit of a small transfer matrix element, ksT >> t. Since t arises from a 

I 
Here, log= log,. 
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kinetic energy term between neighboring states, the case of small t corresponds to a 

nearly static electrical state of the system. Note that heat can still be transferred 

through the system even though charge is not transferred, as discussed in the heat 

transfer section earlier in this paper. 

I will discuss three of the cases presented in Chaikin and Beni's paper, to which I will 

make comparisons later in this paper. 

3.2.1.1 Heikes Formula 
For this case, the system is described as spinless fermions on atomic sites, where only 

single occupancy is allowed. The calculated degeneracy for this system is given by 

(3.7) 

where N is the number of electrons and NA is the number of atomic sites [15]. They 

calculate the Seebeck coefficient given by (3.2) using Stirling's approximation, with 

the result, 

S(T- oo)- -(ks /e)ln[{l- p)/ p ], (3.8) 

the so-called Heikes formula. Here, p = N /NA is the ratio of electrons to sites ( carrier 

concentration) and e is the absolute charge of an electron [15]. The Seebeck 

coefficient is usually given in units µ V / K, and the magnitude of the leading factor 

ks/ e is approximately 86.2 µ V / K. One of Chaikin and Beni' s motivations for their 

paper was the concern that there was "a great deal of misuse" of the Heikes formula in 

the analysis of thermopower of narrow-band systems [15]. They predicted the 

following two cases, presented here in Sections 3.2.1.2 and 3.2.1.3, would be more 

useful than the Heikes formula. 

3 .2 .1.2 Interacting Systems, fermions with spin 
In this case, they consider the aforementioned system but allow double-occupancy to 

be as likely as single-occupancy on a site. They calculate the appropriate degeneracy, 
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and determine the Seebeck coefficient, [15] 

S(T- oo )- -(ks /e)ln[(2- p)/ p ]. (3.9) 

3 .2 .1.3 Interacting Systems, on-site repulsion 
This case is also similar to the Heikes case, in that only single occupancy is allowed 

on an atomic site. However, now spin is taken into account. Chaikin and Beni 

calculate the Seebeck coefficient, [15] 

S(T- oo)- -(ks /e)ln(2[1- p]/ p). (3.10) 

3 .2 .2 Discussion 

An application of the formulas for the Seebeck coefficient calculated in Chaikin and 

Beni's paper is determining the carrier concentration, p, using a measured value of 

the Seebeck coefficient [18]. The three cases examined in Sections 3.2.1.1 - 3.2.1.3 

yield different formulas for the Seebeck coefficient and thus fundamentally different 

trends when examined as a function of p. 

~ .... 
> e u .E 
..., 

Seebeck Coefficient, S=S(p) 

400 -r-_-_-_-_-_-_-_-_-_"""'..._ ______________ ___ 

1--EquatiOn 3.8 (Heikes) I 
1--Equat1on 3.9 

1 ZOO ,--Equation 3.10 

Ill -200 

-400 +u---- ......... ----.-----------
0 0.2 0.4 0.6 0.8 

p 

Figure 3.1 Plot of Seebeck coefficient equations (3.8), (3.9) and (3.10) 

Thus, without properly examining the assumptions that influenced (3.8), (3.9) and 

(3.10), one could potentially incorrectly interpret the carrier concentration from their 
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physical Seebeck results by applying a formula that is inconsistent with the physical 

parameters in their material. This is why Chaikin and Beni mentioned in their paper 

that they believe there is "a great deal of misuse" of the Heikes formula. For example, 

many publications use (3.8) or (3.10) without extensive arguments discussing the 

physical applicability of these formulas [10,19,20,21]. 

There are disadvantages to the approach taken by Chaikin and Beni. The primary 

disadvantage is that the combinatoric approach for calculating the degeneracy factor 

examines possible carrier configurations on the atomic sites, making the problem more 

like the classic statistics problem of X red balls and Y black balls, rather than one of 

physical parameters. The result of their approach is an equation for the Seebeck 

coefficient that is independent of the Coulomb interaction parameters and temperature. 

Thus, a motivation for my research is to determine the Seebeck coefficient using a 

least-biased thermodynamic approach, discussed in the next chapter, such that the 

result for the Seebeck coefficient will be a function of these and other physical 

parameters. 
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4 LEAST-BIAS APPROACH 

4.1 Introduction 

A least-bias approach was used to determine the Seebeck coefficient in the high

temperature limit for narrow-band materials with carriers whose transport mechanism 

is hopping. The objective for this approach is to examine the Seebeck coefficient as a 

function of concentration, from an equilibrium thermodynamics perspective that 

preserves microscopic physical information about the system, such as temperature and 

the Coulomb interaction terms of the Hubbard Hamiltonian. Limiting cases of the 

Seebeck coefficient solution are also examined for comparison with the results 

presented in the Chaikin and Beni paper discussed in the literature review in the 

previous section. 

This chapter begins with a general discussion of the least-bias method and how it is 

applied to the Seebeck problem. Section 4.4 shows the calculations and results for the 

Seebeck coefficient using this least-bias approach. This chapter closes with a 

discussion of the results, including how they compare with the results from the 

Chaikin and Beni paper mentioned in 3.2.1. 

4.2 Discussion of Method 

The least-bias approach incorporates the macroscopic canonical probabilities from 

statistical mechanics into the method of Lagrange multipliers. The latter method 

includes terms from an entropy function, which introduces the mixed-state density 

operator from quantum mechanics. The method of Lagrange multipliers also includes 

the expectation value of the canonical Hamiltonian, which introduces thermodynamic 

quantities. Thus, the least-bias approach is inherently a quantum-statistical 

thermodynamics approach, lending itself to applications in condensed-matter physics. 

We begin by treating the material for which we want to examine the Seebeck 
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coefficient as a quantum system, thus introducing the mixed-state operator. In 

quantum mechanics, states with maximal information are referred to as pure states. 

Thus, any state with less information is referred to as a "mixed state" and can be 

represented by the mixed state density operator, p:. The eigenvalues for the mixed 

state density operator are the probabilities that the system is in a mixed state s with 

energy Es. Thus, the trace of the mixed state density operator is just the sum of 

probabilities, and thus must equal one. 

The mixed state density operator provides us with information about the system since 

it can be used to calculate average values, which we know can be related to observable 

quantities. For example, the internal energy for a system is the expectation value of the 

Hamiltonian energy operator [22], which can be expressed in terms of the mixed state 

density operator 

(4.1) 

However, in order to apply this to the macroscopic problem of the Seebeck coefficient, 

we need to introduce thermodynamic theory so that we can calculate the chemical 

potential. Since we know nothing about the quantum state of the system, we assume 

the system is in a mixed state with the minimal amount of information, and thus in the 

state with the least bias. 

The method of Lagrange multipliers yields a solution to an optimization problem. 

More specifically, this method finds the extremal values of a function that is subject to 

some set of constraints by examining the Lagrangian for the system. By least-bias we 

mean that we want the most-probable or most-likely case. According to the second 

law of thermodynamics, the most probable case is that which maximizes the entropy. 

Thus the function to be maximized within the Lagrangian should be directly related to 

entropy. 
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Recall from the discussion of the Chaikin and Beni paper in Chapter 3 of this paper, 

that Boltzmann's entropy postulate is 

(4.2) 

Here, ~ is the entropy of the gs-fold degenerate state with energy Es. This expression 

for Boltzmann's entropy is presented in Chaikin and Beni's paper, however it can be 

shown that it is a corollary of the least-biased approach as follows. Assuming a system 

has gs-fold degeneracy, let the probability of the yth degenerate state be ;z>( Es,r ). The 

entropy for the system is then given by 

g, 

~=-ks 2iZ>( Es,r )log;z>( Es,r). (4.3) 
r=l 

In order to examine the "least-biased entropy", the least-biased probabilities need to be 

determined. The least-biased case occurs when all probabilities are equal, i.e. when no 

particular state is biased. Thus, the least-biased probability for a system with gs-fold 

degeneracy is then ;z>(E,) = 1/gs for all states y. The least-biased entropy is then given 

by 

g, ( 1 l ( 1 l ~=-ks2 - log - . 
r=l gs gs 

(4.4) 

Since the expression inside the sum is no longer a function of y, the sum over gs states 

in (4.4) can be simplified, 

(4.5) 

Further simplification of ( 4.5) yields 

(4.6) 

which is precisely Boltzmann's entropy shown in (4.2). 
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Thus, for a least-biased system, i.e. a system of equally-probable states, the general 

case of ( 4.3) is reduced to a special case expressed by the following function 

(4.7) 

Here, Ps = ~( E.) = 1/ gs, and this function is called a "fairness" function [22]. By 

"fairness" it is meant that 'J is a function of probabilities, 'J(Pi,P2,P3 .. .Pn), and thus 

measures bias in a probability distribution. The least-bias approach then uses the 

method of Lagrange multipliers to maximize this fairness function, which is 

essentially obtaining the entropy of the system by selecting the "least-biased" set of 

unknown probabilities. "Equivalently, it is the basis of a statistical inversion procedure 

to infer least biased probabilities that are consistent with relevant thermodynamic 

measureables" [22]. This is a useful approach to the Seebeck problem, because the 

Seebeck coefficient is a function of a thermodynamic quantity, the chemical potential. 

4.2.1 Forming the Lagrangian 

The system is also considered to be an "open system," one in which particle number 

changes. For our purposes, "particles" are just the carriers. Thus, the grand canonical 

A 

or thermodynamic Hamiltonian, -;:II, given by 

(4.8) 

is used to describe the system. The thermodynamic Hamiltonian is composed of the 

canonical Hamiltonian, -;:ll
0
P, which for our purposes will contain the Hubbard 

Hamiltonian. The second piece of the thermodynamic Hamiltonian is the particle 

number operator, 1t
0
P, and the chemical potential, µ. It is precisely expression (4.8) 

that gives the chemical potential meaning as an energy per particle [23]. Here, both 

-;:ll
0
P and 1t

0
P are operators with their own eigenvalue equations. Taking j<p,) to be the 

A 

eigenstate corresponding to state s that is a simultaneous eigenstate of -;:II, -;:II op 
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and 1t op, yields the eigenvalue equation for -;ii, 

(4.9) 

The eigenvalues for -;ii op and 1t op, Es and N respectively, will further be defined as 

-;ii op/cps)= Es/cps) 

1top /cps)= N/cps) 
(4.10) 
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Recall from statistical mechanics that if we let ;z,[ cs( N)] be the probability that the 

system is in state s with energy Es and N number of carriers, the expectation value for 

A 

-;ii can be written as 

\ ?/) = (-;ilop )- µ(1top) (4.11) 

(?I)= ~c,(N);z>[Es(N)]-µ ~N;z>[Es(N)]. 
s s 

(4.12) 

N=0,1,2 ... N=0,1,2 ... 

A 

The expectation value for -;ii will be needed as a constraint in the Lagrangian 

equation, described in Appendix D. 

In the case of the Seebeck problem, (-;ii op) is given by 

(4.13) 

Since the cases we are interested in calculating for comparison with Chaikin and 

Beni's work fall in the regime of a small transfer matrix element, namely ksT >> t, 

we are only interested in the limit t -o. Taking this limit in the Hubbard Hamiltonian 

given by (3.6), the average value, (-;i1
0
P)' becomes 
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(-.¥ ,,,) = E,,.,= + "• "~Ju 0 t;n,,,n,.~ 

+ . 2 U jpn;,ani+ j,a'liZ'[ cs( nr,n 2, ••• ,nN)] 
l,JP,O 

( 4.14) 

Note that the energy of the system, E system, arises from the "on-site" energy terms 

~t
0
c:c;, which are not involved in the "hopping." Assume that each particle has the 

same energy, E. In the case of the Seebeck problem, we can think of this as a binding 

energy for the carrier to bind to an atomic site. Thus, taking spin into account, Esystem 

can be written as 

(4.15) 

Furthermore, since the particles are assumed to have the same energy, the probabilities 

associated with each state are now equivalent. Thus iZ'[cs(n"n 2, ... ,nN)] can be replaced 

by iZ'(nr,n 2, ... ,nN). Using this with (4.10), (7i
0
P) can be rewritten as 

(-.¥0,) = "•·"~Jt(n,,, + n,.~ )e+ U0 tn,,,n,.~ 

+_ 2ujpn;pni+j,a'liZ'(ni,n2,···,nN). 
l,J,OP 

( 4.16) 

Substituting (4.13) for the average value (7i
0
P) in equation (4.8), the Lagrangian 

determined in Appendix D can be written as 
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-), L.tJ t ( n;,, + n;.~ )e+ U O t n;A.~ (4.17) 

+. 2 uj,ani,ani+ j,a'l;z>( ni,n2,···,nN) 

l,J,0,0 

4.2.2 Maximizing the Lagrangian 

The next step in the method of Lagrange multipliers is to maximize the function. This 

is done using the usual method for finding an extremum, namely by taking the partial 

derivative of the Lagrangian with respect to the probability that the system is in some 

state k, given by Pk= ;z>( ni,n 2 , ... ,nN ), and setting the derivative equal to zero. Note 

that doing so will result in selecting only the Pk terms from the sums, since all other 

terms will be zero. This result is given by 

a.t 
0 = aP = -ks(I + logPk)-A 0 

k 

-Ai[L ( n;,a + ni,-a )c + Uo 2 n;,ani,-a 

lP lP 

(4.18) 

+_ Iujpnipni+j,a' -µ2(n;,a +ni,-a)l 

l,J,OP l,O 

Since constants will contribute zero during this derivative step, one may choose to not 

include the constant value to which the constraint is set. 

Using (4.18), the equation for Pk can be determined, 
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( 4.19) 

Following the method of Lagrange multipliers, applying the first constraint yields 

(4.20) 

which is that the sum of the probabilities must equal one. Solving ( 4.20) by 

substituting the expression for Pk given by ( 4.19), yields an expression for the 

Lagrange multiplier, Ao, 

(4.21) 

Substituting ( 4.21) into ( 4.19) yields an equation for the probability, given here by 

-: [ 2(n;,a+n;,-a)e+Uo2n;,an;,-u+ 2 ,Uj,an;,an;+j,a'-µ2(n;,a+n;,-a)] 
e B 1,0 1,a i,j,a,a 1,a 

~=---~----------------~ 
-: [ 2(n;,a+n;,-a)e+U 0 2n;,an;,-a+ 2 Uj,an;,an;+j,a'-µI(n;,a+n;,-a)]' 2 e B ;,a ;,a i,j,a,a' ,,a 

(4.22) 

n1 ,n2 , ... ,nN 

Note that by doing so, the Lagrange multiplier Ao has been eliminated. 

4.2.3 The Grand Partition Function 

Once the probability function has been determined, the next step is to find the grand 

partition function for the system. Note that by definition, this is the normalizing 

denominator of the probability expression (4.21). Thus, the grand partition function, 

f gr' is given by 

(4.23) 
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Consistency with thermodynamics, i.e. the First Law, requires ~ = -
1
-. Thus let 

kB kBT 

f3 = 1/ks T replace the Lagrange multiplier term present in (4.23). Doing so yields the 

final form for the grand partition function, 

(4.24) 

that will be used to calculate the chemical potential, and ultimately the Seebeck 

coefficient. 

4.3 Application to Seebeck coefficient problem 

The Seebeck coefficient can then be calculated using the partition function given by 

( 4.24 ). Recall from the discussion in Chapter 3 that the Seebeck coefficient in the high 

temperature regime is given by 

S(T- oo) = _..!:!__ 
qT 

(4.25) 

The approach for determining the Seebeck coefficient is as follows. In statistical 

mechanics, the average number of particles, (N), is by definition a function of the 

grand partition function, 

(4.26) 

Note that since none of the cases to be compared with Chaikin and Beni's work 

include nearest-neighbor interaction terms, the limit Uj -o is taken immediately, 

reducing the grand partition function to 

(4.27) 
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Then, (N)/N will be replaced by p, which represents average number of carriers on 

occupied sites per total number of sites, i.e. the carrier concentration. The remaining 

expression can be rearranged such that chemical potential, µ, will be a function of p. 

Replacing µ in ( 4.25) with the expression for µ as a function of p will yield an 

expression for the Seebeck coefficient as a function of p. It is this expression of the 

Seebeck coefficient that will be compared with the results from the Chaikin and Beni 

paper, discussed in Chapter 3. 

4.4 Calculations and Results 

4.4.1 Heikes Formula 

The Heikes case is characterized by a system of spinless fermions on atomic sites, 

where only single occupancy is allowed. Since spin is not considered, the grand 

partition function given by (4.27) reduces to 

~ -/3[ }:(e-µ)n,] 
.LJ e 1,a 

0 ( 4.28) 

Note that in this case, the onsite Coulomb interaction, U
0

, goes to zero because this 

interaction cannot exist if only single occupancy is allowed. Expanding the sum in the 

exponent of ( 4.28) yields 

t!2 ~ -f3(e-µ)n 1 -/3(e-µ)n 2 -f3(e-µ)nN 
7 gr = LJ e e .. .e • (4.29) 

At this point, the assumption is made that all the carriers are identical. Thus, ( 4.29) can 

be simplified, and rewritten as 

(4.30) 

Now consider the possible occupation numbers, n. In the Heikes case described 
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above, double occupancy is not allowed. Thus, possible occupations are zero or one 

carrier per site, n = 0, 1. Completing the sum in ( 4.30) with these occupations yields 

( 4.31) 

Note that the grand partition function is now in a closed form. The binding energy can 

also be set to zero without loss of generality, 

(4.32) 

Making the substitution, e13
µ - J.., in the grand partition function ( 4.32) together with 

( 4.27) yields 

The carrier concentration is then given by 

J.., 
p=(N)/N=-. 

1 + J.. 

Solving for J.. = J..(p) yields 

p 
A=-. 

1-p 

(4.33) 

(4.34) 

(4.35) 

Replacing the substituted value, J.., with the original expression, e13
µ, allows for 

solving of the chemical potential as a function of p, 

µ = _!_ log(_f!_l · 
/3 1-p 

(4.36) 

Finally, the Seebeck coefficient for this case can be calculated using (4.25) and the 

chemical potential given by ( 4.36), 
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(4.37) 

Note that if the charge carriers are chosen to be electrons, q - -e, as is the case 

presented in the Chaikin and Beni paper, the Seebeck coefficient calculated using this 

least-bias method precisely matches that presented in the aforementioned paper, given 

by (3.8). 

4.4.2 General Solution, no nearest-neighbor interaction 

A general solution for the Seebeck coefficient can be found for the case that allows 

double-occupancy and considers the spin of the carrier. Examining the limiting cases 

of this solution will yield results for comparison with those in Chaikin and Beni's 

paper, as discussed in Sections 3.2.1.2 and 3.2.1.3. 

For this case, the grand partition function is given by ( 4.27). Again, a closed form of 

the grand partition function can be found by assuming the carriers are identical, 

(4.38) 

Following the same steps of the least-bias approach, as discussed in the previous 

section for the Heikes case, the solution for the Seebeck coefficient is 

(4.39) 

Note that the Seebeck coefficient given by (4.39) contains more information than was 

available using the approach of Chaikin and Beni. Recall that each of their results was 

a function only of carrier concentration. Here, ( 4.39) still contains a temperature 

dependence, hidden in the f3 term. Additionally, ( 4.39) is a function of the on-site 

Coulomb interaction, U
0

, allowing one to examine the effects of a finite Coulomb 

interaction. 
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4.4.2.1 Interacting Systems, fermions with spin 

A limiting case of ( 4.39) is examined for comparison with Chaikin and Beni' s results. 

This case considers there to be no on-site Coulomb interaction between the carriers, 

thus single occupancy and double occupancy are equally probable. The following limit 

is taken, U
0 
-o, and the Seebeck coefficient becomes 

(4.40) 

Note that choosing the positive case in the denominator yields a negative argument in 

the logarithmic term for all positive binding energies, and causes the Seebeck 

coefficient to be always imaginary. Since the Seebeck coefficient is by definition an 

observable, and thus cannot be imaginary, only the negative case will be further 

examined, 

(4.41) 

Note that if the charge of the carrier is replaced by that of an electron, and the binding 

energy, E, is taken to be zero, ( 4.41) precisely matches the corresponding result in the 

Chaikin and Beni paper, given by (3.9). 

4.4.2.2 Interacting Systems, on-site repulsion 

Another limiting case of ( 4.39) is examined for comparison with Chaikin and Beni' s 

results. This case considers there to be a strong on-site Coulomb interaction between 

the carriers, such that only single occupancy is allowed. Thus the following limit is 

taken, U
0 

- oo, and the Seebeck coefficient is given by 

(4.42) 

Choice of the negative sign yields a zero argument in the logarithmic term, causing the 
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limit of Seebeck coefficient to go to negative infinity. However, choosing the positive 

case yields a 0/0 argument in the logarithmic term. Since we are examining a limiting 

case, we can use l'Hopital's rule, 

frJ f(x)l = limr 1,'(x)l· ,,1 g(x) u1 g (x) 
(4.43) 

Let the original logarithm term in (4.39) be defined as f(U 0)/g(U 0), 

(4.44) 

Taking derivatives of the numerator and denominator with respect to U
0 

yields 

/(U) and g'(U), 

(4.45) 

(4.46) 

Using (4.45) and (4.47), /(U
0

)/ g'(U) is constructed, 

/ (Uo) = -2e-{3f ✓(p2 -2p)(l- e-f3Uo) + 1 

g'(U) p 
(4.47) 

Applying l'Hopital's rule, examine the limitU
0 

- oo, 

(4.48) 

Thus the Seebeck coefficient for an infinite on-site Coulomb interaction, causing only 

single occupancy to be allowed, is given by 
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(4.49) 

If the charge carriers are chosen to be electrons, and the binding energy, c, is taken to 

be zero, (4.49) precisely matches the corresponding result in the Chaikin and Beni 

paper, given by (3.10). 

4.5 Discussion of Results 

The least-bias approach examined in this chapter is used to determine the Seebeck 

coefficient in the high-temperature limit for narrow-band materials with carriers 

whose transport mechanism is hopping, and whose interactions are described by the 

terms in the Hubbard Hamiltonian. This approach utilizes the thermodynamic 

understanding of the chemical potential and its relationship to the Seebeck coefficient. 

Incorporating the chemical potential gives the parameters physical meaning, and 

yields a temperature-dependent equation for the Seebeck coefficient, as a function of a 

carrier concentration parameter. Limiting cases of this Seebeck coefficient solution 

compare well with the results presented in the Chaikin and Beni paper discussed in the 

literature review in Chapter 3. 

Additionally, the least-bias approach is not limited to one-dimension, as is often the 

case for the Chaikin and Beni results. Their approach for calculating the degeneracy 

parameter, upon which their chemical potential is based, can be restricted by the 

dimension of the configurations. They note in the conclusion of their publication that 

problems which involve only on-site interactions, such as equations (3.9) and (3.10), 

are valid for any number of dimensions [15]. Thus, it makes sense that these compare 

exactly with the limiting cases of the results from the least-bias approach. 

Furthermore, the reason the least-bias results and the Chaikin and Beni cases 

(examined in Chapter 3) compare well is not coincidence, but rather due to a subtle 

feature shared by both approaches. Both approaches treat the Seebeck coefficient as an 

entropy problem. Chaikin and Beni use Boltzmann's entropy to define the chemical 
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potential, and calculate it indirectly by means of a degeneracy parameter. Although the 

least-biased approach allows one to calculate the chemical potential directly, the 

underlying assumption of the least-biased approach is that the case of least-bias (i.e. 

the most probable case) is being examined, since the method of Lagrange multipliers 

is applied to maximize the uncertainty function for the system. 
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5 HUBBARD CHAIN 

5.1 Introduction 

The purpose of the one-dimensional Hubbard chain is essentially the same as that of 

the one-dimensional Ising chain, to examine a chain of interacting atoms. Important 

features of the Ising model are discussed briefly in Appendix E. The interactions 

between atoms in the Hubbard chain are precisely those determined by the Hubbard 

Hamiltonian. The Hubbard chain is useful for the same reasons as the Ising chain, 

namely that it produces a closed form solution of the grand partition function. 

Additionally, the same grand partition function can also be found by using the transfer 

matrix approach of the Ising chain. This approach utilizes a matrix that contains all the 

possible interatomic interactions, and its eigenvalues can be used to form the grand 

partition function. This approach will be described in more detail in the following 

section. 

5.2 Transfer Matrix Approach 

In this section, the transfer matrix approach is applied to the Hubbard chain and to the 

Seebeck problem. First, consider the following Hubbard chain interactions as 

described in Chapter 3: on-site binding energy, on-site Coulomb interactions, and 

near-neighbor Coulomb interactions. In addition to these interactions, each atomic site 

also has a given number of possible occupations for carriers of a given spin. 

For our purposes, the problem is simplified to consider only the on-site binding 

energy, the on-site Coulomb interaction and the j = i + I nearest-neighbor interaction. 

Additionally, zero, one or two spin-1/2 carriers may occupy an atomic site. Thus, the 

total Hamiltonian is as follows, 

A A 

H = H Hubbard - µN (5.1) 
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(5.2) 

Here, n; represents the occupation on the i th atomic site. The arrow subscript denotes 

the spin of the carrier. Each element in the transfer matrix corresponds to a possible 

occupation. For example, one element corresponds to zero occupation on both the i th 

and /h sites. Another corresponds to one spin up carrier on the ith site and zero 

occupation on the /h site, etc. Thus, define the function that describes the occupation 

for that site as follows, 

(5.3) 

Since up to two carriers are allowed per site, and per nearest-neighbor site, (5.3) must 

be a function of four variables, as shown. Each variable represents a carrier that is 

either present or not present; this is represented by replacing the variable with one or 

zero, respectively. Thus there are 24 = 16 possible occupation scenarios, and the 

transfer matrix will be a 4 x 4 matrix is as follows, 

P(0,0,0,0) 

P(0,1,0,0) 

P(l,0,0,0) 

P(l,1,0,0) 

P(0,0,1,0) 

P(0,1,1,0) 

P(l,0,1,0) 

P(l,1,1,0) 

P(0,0,0,1) 

P(0,1,0,1) 

P(l,0,0,1) 

P(l,1,0,1) 

P(0,0,1,1) 

P(0,1,1,1) 

P(l,0,1,1) 

P(l,1,1,1) 

(5.4) 

Applying the zero and one substitutions into P(it'iPjt'j!) given by (5.3) yields 

1 1 1 1 
-fJ(,-µ) e-fJ(U1 +,-µ) e -fJ(U1 +,-µ) -fJ(2U1 +,-µ) 

e e 
P= -/3(,-µ) e-fJ(U1 +,-µ) -fJ(U1 +,-µ) e-fJ(W1 +,-11) (5.5) 

e e 

e 
-fJ[U0 +2(,-µ)] 

e 
-fJ[2U1 +Ua+2(,-µ)] 

e 
-fJ[ 2U1 +Uo +2(,-µ)] 

e 
-fJ[ 4U1 +U0 +2(,-µ)] 

The next step in the transfer matrix approach a chain of N atoms is to determine the 
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eigenvalues of the transfer matrix. These eigenvalues for a M x M matrix are then 

summed as follows to determine the grand partition function, 

(5.6) 

Once the grand partition function is determined, the same steps are followed to 

determine the Seebeck coefficient as outlined in Section 4.3. 

5.3 Calculations and Results 

5.3.1 Excluding Nearest Neighbors 

First the case of no nearest-neighbors is considered. Thus the limiting case of U1 - 0 

is taken for the transfer matrix given by (5.5), which yields 

1 1 1 1 
-{3(,-1,) -f3(,-µ) -f3(,-µ) -f3(,-µ) e e e e 

P= -f3(,-µ) -/3(,-µ) -f3(,-µ) -f3(,-µ) e e e e 

e -f3[U
0 

+2(,-µ)] e -f3[U0 +2(,-µ)] e -f3[U0 +2(,-µ)] e -f3[U0 +2(,-µ)] 

There are four eigenvalues for this case, 

Using (5.6) to solve for the grand partition function yields 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

Following the same procedure as outlined in Section 4.3, the Seebeck coefficient is 

(5.11) 

Note that (5.11) precisely matches the result from the least-bias approach, (4.39). Thus 
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the limiting cases examined in Sections 4.4.2.1 and 4.4.2.2, and their comparison to 

the Chaikin and Beni results, are equally valid here. 

Thus, the transfer matrix provides an alternate approach for calculating the grand 

partition function, yet follows the same steps of the least-bias approach to complete 

the calculation of the Seebeck coefficient. 

5.3.2 The Nearest-Neighbor Problem 

A solution to the nearest-neighbor problem 1s found by calculating the four 

eigenvalues of the transfer matrix given by (5.5). These eigenvalues were calculated 

using Mathematica, and the results were too lengthy for a grand partition function of 

the form (5.6) to be formed. Thus a Seebeck coefficient, in principle obtainable, could 

not conveniently be calculated for this case using the transfer matrix method. 

5.4 Discussion of Results 

Although both the least-bias method and Hubbard chain approach yield the same 

result, there are subtle differences that surround the two approaches. Although the 

least-bias approach may be easier to follow since thermodynamic quantities are 

methodically calculated, the transfer matrix bypasses all of these calculations, and 

simply uses its eigenvalues to determine the end result of a grand partition function. It 

should also be noted that the closed form for the grand partition function using the 

least-bias approach directly results from the fact that the summation in ( 4.27) could 

easily be represented in a closed form. Had the nearest neighbor interaction, Ul' been 

included in this summation, the closed form of the solution is no longer obvious and 

we cannot complete the least-bias approach. In this respect, the transfer matrix 

approach ensures a closed-form solution for the one-dimensional chain because of its 

origin in the Ising model and the nature of a linear algebra problem. Thus, the transfer 

matrix approach is not limited by one's ability to recognize the closed form of a 

summation, but rather by the ability to take complicated eigenvalues to the N th power. 
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The resulting partition function should be the same for both approaches since both 

methods contain the same physical information; the transfer matrix just allows for an 

alternate way of doing the calculation. Additionally, since the partition function is the 

starting point for determining the Seebeck coefficient it makes sense that ( 5 .11) is 

equivalent to ( 4.39), and that the limiting cases still agree with the Chaikin and Beni 

results in Section 3.2. 
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6 APPLICATION: TWO-ATOM SYSTEM 

6.1 Introduction 

In the final process of fabricating p-type thin film transparent conductive oxide (TCO) 

CuSc1_xMgx O2+y, the material is exposed to oxygen under pressure. This step 

intercalates oxygen into the lattice structure (see Section 6.2), which has the effect of 

introducing acceptor-like impurities (holes). These holes are assumed to thermally 

migrate from the intercalated oxygen to nearby copper sites providing the system with 

transport carriers under the influence of electric fields and/or temperature gradients. In 

particular, the measured Seebeck coefficient is examined by a thermodynamic theory 

constructed to determine carrier and material properties in the oxygen-doped thin film 

TCO compound CuSc1_xMgxO2+y. 

6.2 Oxygen Intercalation, CuSc1_>fgxOz+y 

The p-type TCO CuSc1_xMgxO2+y is magnesium-doped copper scandium oxide, into 

which oxygen is intercalated at various pressures. The amount of oxygen in the 

material depends on the pressure at which the sample was intercalated, as is obvious 

even by visual inspection. 

Sample Name 16d 16c 17a 17b 18d 16a 16b 

0 2 3 50 120 15515 77573 

Oxygen Increasing 
Intercalation 
Pressure 

Figure 6.1 CuSc 1_,Mg,02+y thin films intercalated at various oxygen pressures 

This material has a delafossite crystal structure as shown in Figure 6.2. 

(Torr) 
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Sc or 

• .... • .. ~Cu 

Figure 6.2 Delafossite Structure 

Oxygen atoms surround a scandium or magnesium atom, while the copper atoms are 

located in a layer. The intercalation process represents a case of diffusive equilibrium 

in that the number of carriers on copper and oxygen sites will change with temperature 

while preserving a conservation of total carriers. 

Each intercalated oxygen atom, 0, enters the crystal structure with six electrons, and 

therefore two holes. The copper atoms in the delafossite structure are Cu'+. The 

copper layer can accommodate the size of the oxygen atoms, so the intercalated 

oxygen atoms bond with copper atoms in this layer with one hole donated to each of 

two neighboring copper atoms, as illustrated in the cartoon below, 

s p 

0 [ill It i Ito Ito I 
s d 

Cu 1• 

Cu 1+ □ ININININI 
s p 

tt 
Cu 11• 

tt 
Cu u• 

011- [ill It i It i It i I 
s d 

Cu 11+ D IN IN IN Ito I 

Figure 6.3 Introduction of carriers (holes) 

Thus, with the loss of two holes, the oxygen atom becomes 0 11
- and thus has a filled s 

and p shell. Additionally, Cu'+ begins with a full d shell and becomes Cu11+ with the 
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addition of one hole. Furthermore, it is suggested by the fit of the theoretical model to 

the experimental results (Section 6.4) that the carriers originating on the intercalated 

oxygen atoms will either both go to copper sites or both remain on the oxygen atom, 

i.e. it is unlikely that only one carrier will go to a neighboring copper atom. 

This process is, of course, equivalently and conveniently described in terms of 

electrons rather than holes. For example, after the intercalated O atom enters the 

copper layer, two neighboring Cu1 
+ atoms each donate one electron to the O atom. 

Thus O becomes au- since the atom gained two electrons. Each Cu1
+ atom becomes 

Cuu+, since they have each given away one electron. This viewpoint makes more 

evident the role of electron correlations on the oxygen sites. 

In terms of electron occupation, the problem is described as follows. Each O and 

Cu1 
+ atom is an atomic site whose electron occupation can be described by the spin 

vector Gl · The allowed electron occupations for the oxygen and copper sites are 

(:)-(~). (~). ( ~). (:) and (:) = (~). (~). (~) respectively. These occupations are 

described further in the following paragraphs. 

Prior to electron thermalization, the intercalated O site has the electron occupation 

(: )-( ~) w bile each Cu
1

' site has the electron occupation (: H ~) or ( ~) • If both 

neighboring Cu1
+ atoms give an electron to the O atom, the O atom becomes au

and the electron occupation of its site is now (:) = (:). With the loss of an electron, 

each Cu1
' atom is now Cu11

', and the electron occupation ofits site is now (:) = (~)

The intercalation result can be represented by a state of diffusive equilibrium, 

according to the following electron conservation equation, 
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(6.1) 

Thus, the sum of the average number of electrons on oxygen sites, (NO), and copper 

sites, (Neu), must equal the total number of "available" electrons. Since each copper 

atom can contribute one electron to this process, the total number of "available" 

electrons is then just the total number of copper atoms, Neu· [In principle, the 

correlation energy between oxygen atoms and nearest neighbor copper atoms should 

play a role. But to a zeroth approximation this detail is neglected.] 

6.3 Quantitative Procedure 

The grand partition functions for electrons on copper and oxygen atoms can be 

determined using either the transfer matrix approach [see Section 5.2] or the least

biased approach [see Section 4.2]. Recall the general partition function determined in 

Section 4.2.3 for the Hubbard Hamiltonian case of no nearest neighbor interactions 

given by ( 4.27), repeated here, 

fgr = (6.2) 

Applying the appropriate electron occupations for CuSc1_xMgxO2+y yields the closed 

form of the grand partition function. As described in Section 6.2, the possible electron 

occupations of the copper site are (:) = ( ~) = ( ~) or ( ~ )- Additionally, it is believed 

that the possible electron occupations of the oxygen site are G) = (~) or(:). 

However, we can verify this assumption by also examining the occupation of just one 

electron on the oxygen site, (:) = ( ~) or ( ~ l • and comparing numeric results for the 

Seebeck coefficient with that from experimental data on CuSc1_xMgxO2+y samples. If 
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the best fit occurs when the oxygen on-site Coulomb interaction parameter is largely 

negative, this suggests that double-occupancy is highly favored. 

Thus, there are two cases to consider. Case A examines all possible electron 

occupations on the oxygen site, (:)-(~).(~}( ~) and (:) Comparison with 

experimental Seebeck data is used to determine the sign and magnitude of U
0

• Case B 

considers a modified partition function of Case A, where the case of single occupancy 

is eliminated. 

6.3.1 Case A 

Applying the electron occupations for Case A yields the following grand partition 

functions, 

(6.3) 

(6.4) 

Here, µcu and µ 0 are the chemical potentials for electrons on copper atoms and 

oxygen atoms, respectively. Similarly, Neu and N 0 are the number of copper atoms 

and oxygen atoms, respectively. The binding energies Ecu and c0 , are the energies 

required for an electron to occupy a site on a copper atom and an oxygen atom, 

respectively. Additionally, since the oxygen atom can have double occupancy, 

G) = (:). the on-site coulomb interaction, U
0

, describes the interaction energy of a 

second electron joining an electron of opposite spin already on the oxygen site. 

Using the least-biased approach described in Section 4.3, the average number of 

electrons on copper atoms and oxygen atoms can be found. These calculations yield 
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(6.5) 

(6.6) 

Next substitute (6.5) and (6.6) into the conservation equation describing the diffusive 

equilibrium process occurring within the material, given by (6.1), 

Additionally, the state of diffusive equilibrium, by definition, requires the chemical 

potentials of all carriers to be equivalent, 

(6.8) 

Thus, let µ be the chemical potential for all electrons in diffusive equilibrium. Making 

this substitution into (6.7) yields 

(6.9) 

Next determine the carrier concentration that is of interest. For the case of 

CuSc1_xMgxO2+y define the intercalated atom concentration parameter as follows, 

(6.10) 

Here, the concentration, p, is the ratio of the number of oxygen atoms to copper 

atoms. This parameter will have more meaning as a concentration once the Langmuir 

model of surface adsorption is examined in the next section, where it becomes evident 

that this parameter gives an indication of the ratio of oxygen adsorbed by the copper 

"surf ace." 

Applying the change of variables given by (6.10) yields 
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2e-/J(Ecu-µ) e-/J(Eo-µo) + e-f!Uoe-2/J(Eo-µo) 
----~+2p--------~-~=1 1 + 2e-/J(Ecu-1•) 1 + 2e-/J(Eo-/lo) + e-f!U 0 e-2f!(Eo-µo) • 

(6.11) 

To simplify (6.11), define the parameter E to be the difference of the copper binding 

energy and the oxygen binding energy, 

(6.12) 

Thus the binding energies are defined as follows, 

(6.13) 

At this point, continue with the least-biased approach and apply the following 

substitutions, 

which yields, 

(6.14) 

(6.15) 

(6.16) 

At this point, solving for J., = J.,(p) is a complicated calculation, but Mathematica 

makes it easy and a copy of this worksheet appears in Appendix F. Selecting an 

appropriate real root A= J.,(p), the equation for the Seebeck coefficient, (4.25), can be 

rewritten in terms of A instead of µ since µ = _!_ ln( A), 
/3 

(6.17) 

Substituting the numeric value for Boltzmann's constant and the electron charge yields 
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a Seebeck coefficient that is a function of p, E, U 
O 

and T, 

S = 86.2ln(A) µV/K. (6.18) 

The Seebeck coefficient given by (6.18) is then examined as a function of temperature 

for various values of p, E and U 
O

• 

S (microV/K) 

1400 

1200 

1 0 0 0 -------

8 0 0 -------------
600 

400 

200 

-----
----------------~---- ---

Figure 6.4 Example of Seebeck results 

■ p=0.l, £=0.4eV, V 0 =0 

■ p = 0.35, E: = 0.275eV, V
0 

= 0.0leV 

■ p=0.65, E:=0.22eV, V
0 

=0.leV 

Figure 6.4 examines the Seebeck coefficient for positive values of the onsite oxygen 

Coulomb interaction, U 
O

, as well as for the case where U 
O 

= 0. 

S (microV/K) 

140:1H---+-\--+----+---+----l-

12o~lHr---f-'-__._,_+----+----1------1-

100~-\...,.. ____ ~,--4,- --4---1------1-
\. ' 80:ttt-~r-1-----1--'~~----+---+-

------60:ttt---~,~----r----+------~-i----_-----..-+-
4 0 n \. "'··--~-

- ~ ...... '" 

20: --- -,__ 
---+------..I. _____ --

-L....~----''----......,_~~...L-...~--1-~----1- T (K) 
100 150 200 250 300 

Figure 6.5 Example of Seebeck results 

■ p=0.l, E:=0.4eV, V
0

=-0.36eV 

■ p = 0.35, f: = 0.275eV, V
0 

= -0.36eV 

■ p = 0.65, f: = 0.22eV, V
0 

= -0.36eV 

Figure 6.5 examines the Seebeck coefficient for the same values of p and E as m 

Figure 6.4, now with negative values of the onsite Coulomb interaction, U
0

• 

Figures 6.4 and 6.5 strongly suggest that the on-site Coulomb parameter for oxygen 
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sites has a significant effect on the temperature-dependent trend of the Seebeck 

coefficient. The point of Case A is to determine the likelihood of single occupancy. To 

do so, the theoretical data from Figures 6.4 and 6.5 is compared to experimental 

temperature-dependent Seebeck data for a set of CuSc,_xMgxOz+y samples [24]. 

Figure 6.6 is a plot of experimental results. 

1000 

• eSM16b ,-.. 900 ~ e SM16a ...... 
eSM17b > 800 0 .. 

u 700 • ·e • • 
'-' ... 600 
C 
QI 

500 • • 'ij 

E • • • • QI 400 
0 • • u • .:.: 300 • • I.I 
QI 

200 • • • .Q 
QI • • QI 

100 • II) • ., .... • 0 

0 50 100 150 200 250 300 350 

Temperature (K) 

Figure 6.6 Experimental data for CuSc 1_,Mg,O2+y samples 

The Seebeck coefficients in Figure 6.6 are all positive, thus the physical samples are 

all p-type. The theoretical data given in Figures 6.5 and 6.4 also yield positive results. 

However, only Figure 6.5 yields the sharp positive increase in the Seebeck coefficient 

as temperature decreases. Figure 6.5 corresponds to Case B, the case that excludes 

single occupancy because the on-site Coulomb interaction for oxygen sites is large and 

negative. The agreement between this case and the experimental data suggests the 

simplification of the problem to only include zero or double occupancy on the oxygen 

sites is valid. Thus, we will proceed by examining case B. 
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6.3.2 Case B 

Case B considers the on-site Coulomb interaction for oxygen sites, U
0

, to be large and 

negative, causing the double occupancy term in the oxygen grand partition function to 

dominate any single occupancy contribution. Applying the electron occupations for 

Case B yields the following grand partition functions, 

(6.19) 

(6.20) 

Variables are defined the same as in Case A. The average number of electrons on 

copper atoms and oxygen atoms is calculated using the least-biased approach, 

(6.21) 

(6.22) 

Substituting (6.21) and (6.22) into the conservation equation, (6.1), yields 

(6.23) 

Applying the same substitutions as in Case A, namely that of equivalent chemical 

potentials, µcu= µ0 - µ, the definitions for the binding energies and concentration 

parameter, yields 

2 -/Jµ -2/3{,-µ) 
e +2 e =1 

1 2 -/Jµ p 1 -2/J(,-µ) • + e +e 
(6.24) 

Applying the substitutions, ep,, - J.., and e-fJ, - x yields 

(6.25) 
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Solving for A= A(p) is examined in Mathematica and a copy of this worksheet 

appears in Appendix G. Assuming a solution A= A(p) is found, the equation for the 

Seebeck coefficient, ( 4.25), can be rewritten in terms of A instead of µ, according to 

(6.17). Substituting the numeric values for Boltzmann's constant and electron charge 

yields a Seebeck coefficient that is a function of p, E and T. A plot of this Seebeck 

coefficient as a function of temperature for various values of p and E is examined in 

Figure 6.7. 

...... 
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Figure 6. 7 Comparison of experimental data for CuSc1 .• Mg.02+y samples and theoretical 
data 

This comparison demonstrates that the theoretical representation of the physical 

material yields results in reasonable comparison to the experimental data. The oxygen 

binding energy, E, decreases as the intercalated atom concentration, p, increases. The 

increase in E is interpreted as the formation of an oxygen band. For example, the 

oxygen sites can be modeled as a periodic system, where each site is represented by a 

potential E, 
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Figure 6.8 Periodic system representation of oxygen atoms, with potentials £ 

As more oxygen atoms are introduced during intercalation, the intercalated atom 

concentration, p, increases, introducing overlap between potentials of neighboring 

sites and lifting the atomic degeneracy, i.e. £ - £±Ii. 

Figure 6.9 Overlapping potentials of neighboring oxygen atoms 

The further addition of oxygen causes the oxygen band to continue to widen, perhaps 

even to the point of overlapping the copper band. The following cartoons describe the 

band picture of the situations examined in Figures 6.8 and 6.9. 

0 0 
0 

Cu Cu 
Cu 

Figure 6.10 Cartoon of band picture 

Figure 6.10 shows how the increase in p causes the oxygen band to widen, thus 

decreasing £. 
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6.4 Langmuir's Model of Surface Adsorption 

The intercalation process examined in the previous section can be represented by 

Langmuir's surface model. The copper layer acts as a "surface" onto which the 

oxygen molecules are "adsorbed." Each of the physical samples shown in Figure 6.1 

was intercalated in oxygen at various pressures, to introduce different amounts of 

carriers into the system. Experimental results demonstrated that the room temperature 

Seebeck coefficient of each sample was inversely related to the oxygen pressure at 

which it was intercalated. This suggests that the Seebeck coefficient should have an 

oxygen concentration dependence, and that this concentration is correlated to the 

intercalation pressure. A plot of the physical samples' Seebeck coefficients at room 

temperature and corresponding intercalation pressures is given in the following plot. 
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Figure 6.11 Pressure data for CuSc1 .• Mg.02+y samples 
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Langmuir's model for surface adsorption considers the bound system (copper layer) 

and the free gas (oxygen) to be in thermal equilibrium. Thus, the thermodynamic 

model follows the same assumptions as examined in Chapter 4 for the least-biased 

model. An essential element of Langmuir's model is the definition of the parameter p, 
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representing the fraction of occupied sites, which is the fraction of gas particles out of 

the total number of available sites [23]. In our cases, this is precisely the concentration 

parameter, p = N0 / Neu. The key feature of Langmuir's model is that the fractional 

site occupation parameter is correlated to the pressure [23] at which the surface 

adsorption occurs, 

p 
p=--. 

II 0 +P 
(6.26) 

Here, P is the pressure and Il 0 is a temperature-dependent factor known as the 

Langmuir isotherm [23], defined as 

(6.27) 

Here E is a surface binding energy parameter of Langmuir's model, not to be confused 

with the binding energy c introduced earlier. The nQ parameter is the quantum 

concentration, a function of the mass of the oxygen gas molecule, m 

(6.28) 

Since II 0 depends on numerical constants as well as the mass of the gas molecule, 

which in our case is oxygen, one expects Il 0 to be constant for all samples. Thus, 

(6.26) is used to examine the correlation, Il 0 , between the oxygen interaction 

pressures and the theoretical parameter p plotted in Figure 6.7. 

Solving (6.26) for Il 0 as a function of pressure and the concentration parameter p 

yields 

(6.29) 

Using this equation, an estimate of Il 0 was calculated for each sample shown in 
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Figure 6.6. The results of these calculations are shown in the following table. 

Intercalation 
Sample Pressure (Torr) p IIo 
SM18d 120 0.563 93.1 
SM17b 50 0.350 92.9 
SM16c 2 0.021 93.2 

Table 6.1 Langmuir model results 

The Langmuir results demonstrate that the Il 0 parameter 1s m fact remaining 

amazingly constant. 

6.5 Conclusions 

There are two main conclusions to the problem examined in Chapter 6. The first 

conclusion results from the comparison of the theoretical data to the experimental data 

in Figure 6.7. This plot demonstrates that the binding energy, E, decreases as the 

intercalated atom concentration, p, increases. We conclude that this is due to the 

formation of an oxygen band. As the number of intercalated atoms increases, the 

energy levels of the oxygen atoms overlap causing the formation of an oxygen band. 

Thus the energy difference between the binding energy of the oxygen and copper 

atoms, which we defined as E, will decrease as the band widens. 

The second conclusion results from the analysis of the Langmuir model of surface 

adsorption applied to the copper layer in CuSc1_xMgxO2+y. This analysis demonstrates 

that the Langmuir isotherm parameter remains amazingly constant for the three 

theoretical cases examined in Figure 6. 7, identifying the correlation between the 

intercalation pressure of the samples and the intercalated atom concentration, p. This 

conclusion not only provides the context that gives p meaning, but also validates the 

numeric values calculated for p. 
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7 CONCLUSION 

This thesis examines the Seebeck coefficient in the high temperature limit, by first 

examining familiar thermocouple theory and Boltzmann theory to ease the transition 

between the common "engineering" interpretation of the Seebeck effect, and the 

computationally more intensive thermodynamic approach to the Seebeck effect. The 

latter is explored for narrow-band materials, with carriers whose transport mechanism 

is hopping, using an approach based on a grand partition function containing Hubbard 

Hamiltonian interaction terms. The motivation for this work is a publication by P. M. 

Chaikin and G. Beni that uses a combinatoric approach for calculating the Seebeck 

coefficient under these conditions. Their approach emphasizes the relationship 

between entropy and the Seebeck coefficient and yields results for the Seebeck 

coefficient as a function of a concentration parameter. 

Chaikin and Beni' s work is limited by a degeneracy calculation based on possible 

configurations of electrons on sites. Their approach does not contain any other 

physical parameters explicitly. Thus, I examined an approach for calculating the 

Seebeck coefficient for these narrow-band, hopping systems that is based on a grand 

partition function containing Hubbard Hamiltonian interaction terms. This method 

emphasizes (1) that the problem is one of maximizing entropy by considering the case 

of least-bias, and (2) the fundamental relationship between the Seebeck coefficient and 

the chemical potential. 

The transfer matrix approach is examined as an alternate method for obtaining the 

grand partition function. This method is used to consider both on-site and nearest

neighbor interactions for a Hubbard chain. Examination of results in limiting cases, 

specifically those of zero or infinite interactions, agree with those calculated in 

literature using a combinatoric approach. 

The least-bias approach is applied to the two-atom system and a special case of the 
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material CuSc1_xMgxOz+y, yielding two important outcomes. First, it is determined 

that the binding energy, E, decreases as the intercalated atom concentration, p, 

increases, most likely due to the formation of an oxygen band. The second important 

outcome of this chapter is that the Langmuir model of surface adsorption can be 

applied to this problem, treating the intercalated oxygen atoms as free gas in thermal 

equilibrium with the copper layer ("surface"). This analysis demonstrates that a 

correlation exists between the intercalation pressure of the samples and the 

intercalated atom concentration. This conclusion provides a context for interpreting 

the concentration parameter, p, that originated in the least-biased approach. 

Additionally, the Langmuir analysis validates the numeric values calculated for p in 

Figure 6.7. 
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A. Seebeck Effect, Classical Argument 

In theory, a Seebeck voltage exists across any sample of material with a temperature 

difference maintained at the ends, as shown in Figure 2.2, repeated here as Figure A. I. 

/J.T -----l►• 

·~------101------'+ 

Figure A.1 Seebeck voltage, material 

The thermoelectric effect within a material such as that shown in Figure A. I is often 

described somewhat classically. Typically, the following discussion is used to describe 

the thermoelectric effect within metals, but it is also valid for semiconducting 

materials. As one end of the sample is heated, carriers with charge q on the hot end of 

the sample acquire energy. These charge carriers then diffuse toward the cold end of 

the sample for the following two reasons. One reason is the diffusion process itself, 

which, according to the second law of thermodynamics, causes the system to proceed 

to a state of higher entropy. The second reason the charge carriers diffuse toward the 

cold end is that this state is more energetically favorable. Figure A.2 shows this 

process for an n-type material, where by definition the charge carriers are electrons. 

Figure A.2 N-type example; Thermally energetic charge carriers diffuse toward the cold 
end of the sample 

This diffusion process results in an accumulation of charge carriers at the cold end of 

the sample, and an accumulation of oppositely charged ions at the hot end of the 
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sample. This establishes an electric field, which by definition is in the direction from 

positive charge to negative charge. This direction will either be hot - cold or 

cold - hot, depending on whether the charge carriers are electrons or holes, 

respectively. An example of this effect for an n-type material and a p-type material are 

shown in Figure A.3 and Figure A.4, respectively. 

E -. 

Figure A.3 N-type example. Electric field established 

Figure A.4 P-type example. Electric field established 

Thus, charge carriers urged to move due to the thermal gradient will also feel a 

repulsive effect from this electric field established within the sample, creating a state 

of "dynamic equilibrium" [8]. This means that the flux of carriers in both directions is 

equal. However, the charge carriers at the hot end will have higher velocities with 

respect to those at the cold end, which ensures that heat will continue to transfer [8]. 

This is the basis for the thermoelectric effect. The fact that there is no net flux of 

carriers means there is no actual charge transfer during this equilibrium state. The fact 

that the current is zero for this effect will be important for the first principles 

derivation of the Seebeck effect, discussed in Chapter 2. 

The voltage that is induced by the electric field is called the Seebeck voltage. The 

Seebeck coefficienrt, S, can then be calculated from 

1 
In practice, the symbols S and a are most commonly used to represent the Seebeck coefficient. 
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S = -( Vlwt - Vco/d ) ' 

T,,ot - T,,old 

(A.I) 

which is a modification of (2.1) [19]. Note that the denominator tiT = T,,
0
t -T,,

0
,d will 

always be positive since T,,
0
t > Tcotd, thus the sign of the Seebeck coefficient is 

determined by tiV = V,,
0
t -Vcow One usually sees (A.I) written in the following form 

without regard to the sign convention, S = ti V / tiT. 

As discussed in Chapter 2 of this paper, the Seebeck coefficient is positive if the 

carriers are holes and negative if the carriers are electrons. For example, consider 

measuring the Seebeck voltage for then-type sample shown in Figure A.5. 

Figure A.5 Measuring the Seebeck voltage 

Here, vhot > vcold so ti V = vhot - vcold > 0. Since the denominator of (A.1) is al ways 

positive, this means that the Seebeck coefficient given by (A.1) will be negative, thus 

verifying that the sample is n-type. 

In practice, the Seebeck voltage for this sample cannot be measured directly since a 

voltmeter and leads must also be attached to the material. This must be accounted for 

when calculating the Seebeck coefficient. In this case, the Seebeck coefficient 

determined by (A.1) would correspond to a total Seebeck coefficient for the sample

leads system, 

( 
Vhot - Vcold) 

a system = - T. _ T • 
hot cold 

(A.2) 
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The Seebeck coefficient for the sample alone may be calculated, assuming the 

composition of the leads is known. The Seebeck coefficient for the entire system is 

just the difference of the coefficient for the sample and leads, 

a system = asample - a leads' (A.3) 

In the case of the n-type example described earlier, suppose copper leads were used to 

measure the Seebeck voltage. The Seebeck coefficient for copper at room temperature 

is approximately 2 µ V / K, thus one would add 2 µ V / K to the system's Seebeck 

coefficient to determine the Seebeck coefficient for the sample [1]. One method for 

deriving the form shown in (A.3) is by examining the Seebeck coefficient of a 

differential thermocouple, as described in Appendix B. 

The form of (A.3) follows the convention of 

(A.4) 

which is usually used for Type AB differential thermocouples. 
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B. Differential Thermocouple 

The expression for the Seebeck coefficient of a system composed of a sample and 

leads is given in Appendix A, and repeated here 

a system = a sample - a leads· (B.1) 

The expression (B.1) follows the subscript convention, 

(B.2) 

The basis for this convention can be understood by examining the Seebeck coefficient 

of a differential thermocouple. One method for examining the theory of a differential 

thermocouple is to examine the addition of two single thermocouples, as follows. 

Tref 

+ 

v; - Vz 
Tref 

Figure B.1 Type BAB Differential Thermocouple 

Tref 

Here, the sum of the two single thermocouple schematics at the left of the figure 

represents the differential thermocouple schematic shown at the right of the figure. 

The two single thermocouple schematics represent a Type BA and a Type AB 

thermocouple, with junctions being heated to r; and Tz, respectively. The Seebeck 

voltages of each single thermocouple are measured at a reference temperature, T,.ef. It 

is assumed that I; > Tz > T,.ef • 
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Note that the schematic of the differential thermocouple is the same as that for a 

"material and leads" system shown in Figure A.5, where metal A represents the 

sample and metal B represents the leads. Metals A and B will have absolute Seebeck 

coefficients of aA and as respectively. Furthermore, the differential thermocouple 

used in experiment has some Seebeck coefficient avrc, and the corresponding 

Seebeck voltage, V, must be given by 

(B.3) 

The theory describing a differential thermocouple is derived from the addition of two 

single thermocouples, as shown in Figure B. l. This step follows because the voltage 

between two ends depends only on the difference in the end temperature and is 

therefore path independent. Thus, we can solve for the Seebeck voltage V in terms of 

"Vi and V2 in Figure B .1. Comparing this result with (B .3) should yield an expression 

for aDTC. 

Following the convention that V = V+ -V_, both "Vi and V2 in Figure B.1 can be 

determined as follows, 

VI-= as(I'r -T,.ef) 

½+ = aA (i; -T,.ef) 

Vz_ = a A ( I; - T,.ef) 

v2+ = as(Tz -T,.ef) 

½ = ½ + - i,;_ = ( a A - a B )( I; - T,.ef) 

V2 = V2+ - V2_ = (as -aJ(I'z -T,.e1 ). 

Similarly, one can determine Vin terms of a A and as, 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

(B.9) 



V = v; + v2 = ( a A - a B )( I; - T,ef) + ( a B - a A )( ½ - T,ef) 

V = ( a A - a B )( I; - T,ef - Tz + T,ef) 

V = (aA -as )(I; - I;). 

Applying the convention given by (B.2), (B.12) simplifies to 

(B.10) 

(8.11) 

(B.12) 

(B.13) 

Thus, for a BAB differential thermocouple, avrc in (B.3) can be replaced by a AB. 
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This relates to the "sample and leads" problem as follows. Recall that the differential 

thermocouple, shown at the right of Figure B.1, is identical to the sample-leads 

system, shown in Figure A.5, where metals A and B have been replaced by the 

sample and leads, respectively. Thus, the following substitutions are made, 

a AB -;. a system 

(B.14) 

aB-;. aleads 

Using these substitutions, the convention shown in (B.2) becomes 

a system = a leads - a sample • (8.15) 

Additionally, (8.13) can also be used to validate (A.2). The Seebeck voltage measured 

for the differential thermocouple is V = V+ - V_. Applying this substitution to (B.13) 

and solving for the Seebeck coefficient for the system yields 

V -V a - + -AB -
i; -I; 

(B.16) 

Since I; > I; in Figure B.1, the following substitutions are made, 



T; -THot 

½ -TCold 

V_ -vHot 

v+ -vCold 

Applying these substitutions to (B.13) yields 

which precisely matches (A.2). 
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(B.17) 

(B.18) 
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C. Boltzmann's Equation 

The carriers of a system are typically described by a local occupation function, 

f (r,k,t), where r is the local spatial coordinate, k is the wavenumber of a quantum 

state and t is an explicit time dependence. The total differential of f with respect to t 

is given by 

df • • aJ -=V f ·r+V f·k+-. 
dt r k dt 

In equilibrium, the function does not evolve in time, thus 

df =O 
dt 

and J(r,k,t) is given by the Fermi distribution function f/c), 

(C.1) 

(C.2) 

(C.3) 

where c( k) = ti2 k2 /2m is the energy of the carrier, µ is the chemical potential, and 

/3 = 1/ks T where ks is Boltzmann's constant and T is temperature. In the non

equilibrium case where the distribution function does evolve in time, 

df ;cO. 
dt 

(C.4) 

The non-equilibrium case allows for carrier transport, defined by the net result of 

scattering processes. These scattering processes are caused by carrier interactions with 

other particles or potentials, and can be described by quantum transitions to and from a 

quantum state k, 

k-k' (C.5) 

(C.6) 



71 

Boltzmann theory describes the time evolution of f (r,k,t) by equating the right hand 

side of (C. l) to the change inf due to scattering, 

(C.7) 

• • aJ (df) VJ·r+Vd·k+-= - . 
at dt scattering 

(C.8) 

It is then assumed that scattering is weak, such that the rate at which the distribution 

function returns to the equilibrium position due to scattering is proportional to the 

deviation of f from f
0

• This is called the relaxation approximation and is described 

by [9] 

(C.9) 

where r is the relaxation time [25]. Substituting (C.9) into (C.8) yields Boltzmann's 

equation within the relaxation time approximation, 

VJ • ;+ V d • k+ aJ = _ f - fo • 
at -r 

(C.10) 

Although an exact solution to Boltzmann's equation is difficult to achieve, an 

approximate solution can be found by considering the following two approximations. 

First, only small deviations from equilibrium will be considered, i.e. weak scattering, 

such that If - f
0
I << f

0
, thusf ~ f

0
(c) [1]. Additionally, there is no explicit time 

dependence, thus ( ! ) = 0. Under these two assumptions, note that the following 

substitutions cans be made, 

• af • 
V f·k=- 0 VE·k 

k ac k 
(C.11) 



(C.12) 

Making the following substitutions, 

(C.13) 

(C.14) 

yields a revised expression for (C.12), 

• 1 iif. • iif. • 
V f • r = (c - µ)- - 0 V /3 • r- - 0 V µ • r. 

r /3 ac r ac r 
(C.15) 

Furthermore, note the following substitutions can be made, 

(C.16) 

(C.17) 

In this approximation however, only weak scattering is considered. Thus, for only 

small deviations from equilibrium, consider the fields to be negligible, nk - 0. 

Applying these substitutions yields an approximation for (C.10), 

(C.18) 

Note that the one-dimensional approximation for (C.18) is as follows, 

(C.19) 
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D. Method of Lagrange Multipliers Applied to Seebeck Problem 

The Lagrangian is formed according to the method of Lagrange multipliers. The 

function to be maximized is the "fairness" function, which represents entropy, as 

described in Chapter 4. According to the method of Lagrange multipliers, the 

constraints must be constructed such that they equal constant values. Thus, the second 

term of the Lagrangian is the constraint that the sum of the probabilities must equal 

one. Although it will not be evident until we are further into the method of Lagrange 

multipliers, the second term could equivalently be written as the following, without 

affecting the outcome: -A
0 

Lil'[ Es(N)]-1. The final term is the constraint that the 
N=0,I,2 ... 

expectation value for the thermodynamic Hamiltonian, which by definition is a 

measured observable, must be equal to a constant. Similar to the first constraint, this 

second constraint could equivalently be written as Ai\ ';ii)-c. Thus, there are two 

constraints and we let the Lagrange multipliers be A
0 

and Ai. Using these constraints, 

the Lagrangian is given by 

N=0,1,2, ... 
(D.1) 

Note that the last term in the Lagrangian is the expectation value for the grand 

canonical Hamiltonian, which can be put in terms of the expectation values of -;:II op 

and '1t op using ( 4.11 ). Making this substitution into (D .1) yields the Lagrangian 

-4 = -ks Lil'[ Es(N)]logil'[ Es(N)]-A 0 Lil'[ Es(N)] 
N=0,1,2,... N=0,1,2, ... 

-), { N.t·(N)~[ E,{N)]-µ NI~[ E,(N)]} 

(D.2) 
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E. Ising Model 

The purpose of the Ising model is to examine a system of interacting atoms. The one 

dimensional Ising model is called an Ising chain, and has an exact solution. This chain 

consists of N atoms, and can either have free ends, or periodic conditions such that a 

circular chain exists. Oftentimes, magnetic systems are modeled this way, and the 

interaction of the atoms' magnetic moments can be described in terms of the electron 

spin interactions [26]. 

For example, let J be the magnitude of the interaction between nearest-neighbor 

atoms in a chain of length N with free ends. For simplicity, only electron spin in the z 

direction is considered, thus let spin-up and spin-down be represented by a;= ±1. The 

sum of these interactions will then be the Hamiltonian of the system, H, 

N-1 

H = -J~api+t· 
i=l 

(E.l) 

The partition function for the system is found by substituting the Hamiltonian into the 

following equation [26] 

Z - ~ ~ -fJH 
N - _LJ ... _LJe . (E.2) 

Here, /3 = 1/ks T where ks is Boltzmann's constant and Tis temperature. Completing 

this summation yields a closed-form of the partition function, 

( )
N-1 

ZN = 2 2coshf3J . (E.3) 

Additional interactions present within the system are considering by including these 

terms in the Hamiltonian. For example, if this magnetic system were in the presence of 

a magnetic field proportional to h, the Hamiltonian for a periodic chain would be 

written as follows, 
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N N 

H=-J2a;0;+i-h2a;. (E.4) 
i-1 i-1 

Again, a partition function for the system is calculated by substituting the Hamiltonian 

into (E.2). Additional terms in the Hamiltonian complicate the sums in the partition 

function, and make it difficult to simplify to a closed-form solution. The transfer 

matrix method is often applied at this point to get the closed form of the partition 

function. 
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F. Mathematica Worksheet for Chapter 6 Calculations, Case A 

First, all variables are cleared and the graphics packages are loaded. 

C1ear[fl, flCU, flO. Jllo. Jllcu. Uo, A. /j, E, x, dg, rs. p, aYgJllcu. aYgJllox, aYgJllcu, 
8.YgJIIOU, y. tgrCu, tgrO. kBJ. rt] 

<<Graphics·Graphics· 
« Graphics·co1ors· 

Then the grand partition functions for electrons on copper sites and oxygen sites are 

defined, given in Chapter 6 by (6.3) and (6.4). 

!'grCu = (1 + 2 E - (/)ffCU)) -•cu 
tgrO = (1 + zE-(-ll (e -ffo)) + 1:- (-ll ((2 E - 2flo) + Uo)))-Jllo 

(i + 2 ,e/3µ,:u) Heu 

Next the average number of electrons on copper sites and oxygen sites are calculated 

using expression (4.26), (N) = _!_~logjg,• Note that the substitution µ0 = µcu is 
/3 aµ 

applied, since the chemical potentials must be equivalent in chemical equilibrium. 

Additionally, the substitution e-f3, - x is made to simplify the expression. 

aYgJllcu = (1 / ll) D[Log[fgrCu]. flCU] // Siap1ify 
aYgJllox = (1 / /j) D[Log[tgrO]. ffO] /. {flO ➔ ffCU, E ➔ (-1 //j) Log[x] } // Siap1ify 

2 No X (<1:.>/3(tro-µ,:u) + X) 

,e/3 (tro-2 µ,:u) + 2 ,r,/3 (tro-µ,:u) x + x2 

The substitution e13
µ - A is applied to simplify the above equations. 

8.YgJIIC'IM. = 8.YglrCU /. {flCU ➔ (1 / /j) Log [A]} 
8.YgJllou = 8.YgJIIOX /. {ffCU ➔ (1 / ,I)) Log [A]} 

2 Neu). 

1 + 2 J. 

' /3 (cro Log (;I.} ) l 
2No X 1-~ --/3- + X 

' I 

13(tro- 2 Log[;1,]) 13(tro-Log[;I,]) 
IE- /3 + 2 <P /3 X + x2 
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The conservation equation is then defined such that the root will be ). , and the 

substitution, e- 13u0 
- y, is made to simplify the expression. The intercalated atom 

concentration parameter, p, defined in Chapter 6 by (6.10) is also introduced in this 

step. 

dg = (avg:RcuA+avgHoxl.-Bcu) /. {Ho ➔ p:Rcu, UO ➔ (-1/tl)Log[y]} II Siaplify 

Neu (-1 + 2 x ,\ (-1 + p + Z ,\p) + x2 y )?- (-1 + (2 + 4 )..) p)) 

(1 + 2 ,\) (1 + 2 x).. + x2 y ).2) 

The conservation equation is to third order in A, thus three roots are expected. 

rt= .l. /. Solve[dg == 0, A] 

{ _ - x2 y + 4 x p + 2 x2 y p _ 

12 x2 y p 

( 24 2 < 2 2 • 2) ; ( 213 2 ( 6 3 48 s _.2 12 6 3 1 2 ◄ 2 x YP -X+Xp)-(-x Y+4Xp+2X YP) I 62 x YP 2x y + x y p- x Y p- 9 x YP + 

432 x◄ y2 p 2 -120 x5 y2 p 2 + 24 x6 y3 p 2 -128 x3 p 3 + 96 x◄ y p3 + 48 x5 y2 p3 - 16 x6 y3 ,o3 + 

-./{ (2 x6 y3 + 48 x5 y2 p -12 x6 y3 p-192 x ◄ y_o
2 + 432 x◄ y2 / -120 x5 y2 p 2 + 24 x6 y3 

p
2 -128 x3 p3 + 96 

◄ 3 5 _.2 3 6 3 3 2 ( 2 2 2 2) 3)) 1/3) x YP +48x y p -16x y p) +4 ,24x YP (-X+Xp)- (-x y+4Xp+2x yp) + 

1 (.( 6 3 5_.2 6 3 ◄ 2 ◄ . .2 2 5_.2 2 2 X y + 48 X y p -12 X y p - 192 X y p + 432 X y p - 120 X y p + 
12 2113 x2 y p 

24 x
6 y3 p 2 -128 x3 p3 + 96 x◄ y / + 48 x5 y2 p3 - 16 x6 y3 / + 

✓ ( (2 x6 y3 + 48 x5 y2 p -12 x6 y3 p -192 x◄ y p 2 + 432 x◄ y2 p 2 -120 x5 y2 p 2 + 24 x6 y3 p2 -128 x3 p3 + 

◄ 3 5 _.2 3 6 3 3 2 ( 2 2 2 2) 3}} 1131 96x yp +48x y p -16x y p) +4 24x yp (-x+xp)- (-x Y+4xp+2x yp) . ,· 

- x2 y + 4 x p + 2 x2 y p , ~ 2 2 2 2 ; 
--------+\(1+:i\13) (24x yp(-x+xp)-(-x y+4xp+2x yp) ·)i

1 12 x2 y p ' ' 

( 12 2213 x2 y p (2 x6 y3 + 48 xs y2 p-12 x6 y3 p -192 x◄ y p 2 + 432 x◄ y2 p 2 
-

120 x
5 y2 p 2 + 24 x'' y3 

p
2 

- 128 x3 p3 + 96 x◄ y / + 48 xs y2 p3 -16 x6 y3 p3 + 

✓ ( (2 x6 y3 + 48 x5 y2 p -12 x6 y 3 p -192 x◄ y p 2 + 432 x◄ y2 / - 120 x5 y2 p 2 + 24 x6 y3 
p

2 -128 x3 / + 96 

◄ 3 5 _.2 3 6 3 3 2 2 2 2 2)3))1/3) x YP +48x y p -16x y p) +4 (24x YP (-X+Xp) - (-x y+4Xp+2X yp) -

1 '( ~. ( 6 3 5 . .2 6 3 ◄ 2 ◄ . .2 2 ----1 1 - Ji.._,, 3) 2 X y + 48 X y p - 12 X y p - 192 X y p + 432 X y p -
24 21/3 x2 y P \ 

120 x5 y2 / + 24 x" y3 / -128 x3 p3 + 96 x◄ y p3 + 48 x5 y2 p 3 -16 x6 y3 p3 + 

,f ( (2 x6 y3 + 48 x5 y2 p -12 x6 y3 p - 192 x◄ y / + 432 x◄ y2 / - 120 x5 y2 / + 24 x6 y3 / -128 x3 p3 + 96 

◄ 3 5 . .2 3 6 3 3 2 / 2 2 2 2) 3, ) 1/3) x YP +48x y p -16x y p) +41,24x yp(-X+Xp)-(-X Y+4Xp+2x yp) ) , 



- x
2 

y + 4 x p + 2 x
2 

y p I r;:: 2 2 2 2 / 
--------+ 1(1-:ii.v 3) /24x yp (-x+xp) - (-x y+4xp+2x yp))) 

12 x2 y p • ' 

[12 z213 
x

2 
YP 

(2 x6 y3 + 48 x5 i p -12 x6 y3 p - 192 x◄ y p2 + 432 x◄ i p2 -120 x5 i p2 + 

24 x
6 

y 3 p2 -128 x
3 

p3 + 96 x◄ y p3 + 48 x5 i p
3 

- 16 x6 y3 p 3 + 
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.j ( (2 x6 y 3 + 48 x5 i p -12 x6 y 3 p - 192 x ◄ y p2 + 432 x◄ i p2 
- 120 x5 i p2 + 24 x6 y3 p2 -128 x3 p3 + 96 

◄ 3 5 _J! 3 6 3 3 2 { 2 . 2 2 2) 3)) 1/3) x YP +48x y p -16x y p) +4 24X YP (-X+Xp)- (-x y+4Xp+2x yp) , -

1 l' r . r:::) ( 6 3 s _J! 6 3 ◄ 2 ◄ _J! 2 1+nv3 2x y +48x y p-12x y p-192x yp +432x y p -
24 2113 x2 YP ' 

120 x5 i p
2 

+ 24 x
6 y3 p 2 

- 128 x3 / + 96 x◄ y p 3 + 48 x5 i p3 -16 x6 y3 p3 + 

../ ( (2 x6 y3 + 48 x5 i p -12 x6 y3 p - 192 x◄ y p2 + 432 x◄ i p2 - 120 x5 i p2 + 24 x6 y3 / -128 x3 p3 + 96 

◄ 3 5 _J! 3 6 3 3 2 ( 2 • 2 2 2) 3)) 1/3)} x YP +48x y p -16x y p) +4 24x YP (-X+Xp) - (-X y+4xp+2x yp) 

One of the three solutions is real, and the other two solutions are complex. The 

appropriate solution is determined as follows. The Seebeck coefficient is given by 

S = -µ/qT. Therefore, in terms of J.., the Seebeck coefficient is defined as 

S = --
1
-(..!_ log J..l = - k8 log J... The natural log of a complex number will not yield a 

qT /3 q 

real solution for the Seebeck coefficient. Since the Seebeck coefficient is a 

measurable, the correct J.. solution must be real. Thus, J.., is defined as a real function 

of the concentration parameter as follows. 

rs= rt[[1]] 

- x2 y + 4 x p + 2 x2 y p 

12 x2 y p 

(24 x2 y p (-x + x p) - (-x 2 y + 4 x p + 2 x2 y p/) / ( 6 2213 x2 y p (2 x6 y3 + 48 x5 i p - 12 x6 y 3 p - 192 x◄ y p2 + 

432 x◄ i p2 -120 x5 i p2 + 24 x6 y3 p2 -128 x3 p3 + 96 x◄ y p3 + 48 x5 i p3 -16 x6 y3 p3 + 

✓ ( (2 x
6 

y3 + 48 x5 i p -12 x6 y3 p - 192 x◄ y p2 + 432 x◄ i p2 -120 x5 i p
2 + 24 x6 y3 / -128 x3 p3 + 96 

◄ 3 5 _J! 3 6 3 3 2 2 2 2 2) 3), 1/3) x y p + 48 x y p - 16 x y p ) + 4 ( 24 x y p (-x + x p) - (-x y + 4 x p + 2 x y p) J _ + 

1 1'( 6 3 5_J! 6 3 ◄ 2 ◄ _J! 2 5_J! 2 2x y +48x y p-12x y p-192x yp +432x y p -120x y p + 
12 2113 x2 y p '· 

24 x
6 

y3 p2 -128 x3 p3 + 96 x◄ y p3 + 48 x5 i p3 - 16 x6 y3 p3 + 

.j ( (2 x6 y
3 

+ 48 x5 i p -12 x6 y3 p - 192 x◄ y / + 432 x◄ i p 2 
- 120 x5 i p2 + 24 x6 y3 p 2 -128 x3 p3 + 

◄ 3 5 _J! 3 6 3 3 2 ( 2 2 2 2) 3)) 1/3) 96x YP +48x y p -16x y p) +4 ,24x YP (-X+Xp)- (-x y+4Xp+2x yp) 

At this point, the substitutions e-ffa _, x, ef3µ _, J.., and e-f3u" _, y are removed so that 

the solution is in terms of the original parameters. Additionally, numerical values for 

Boltzmann's constant are applied so that a numerical solution of the Seebeck 

coefficient can be examined. Since electron occupations are considered in this 

problem, q is defined as the charge of an electron. Parameters are chosen in the 
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appropriate units such that the binding energy and on-site Coulomb energy are given 

in units eV, and the Seebeck coefficient solution is given in units µV /K. The oxygen 

binding energy is defined relative to the copper binding energy, as given by the 

expression (6.12) in Chapter 6. 

:z: = E:z:p[-e / (kB T)] 
y = E:z:p[-Uo / (kB T)] 
kB = 8. 6 10" - 5 
kBJ = L 38062 10" (- 23) 
q = -1. 6021910" (-19) 
S = -(kBJ 10" 6 / q) Log [rs]; 

0.000086 

1. 38062 X 10- 23 

-1. 60219 X 10-l 9 

kB 1 The above step also defines the function for the Seebeck coefficient, S = --log,1-. 
q 

Numeric results for the Seebeck coefficient can then be plotted for various values of 

E, p and U
0

• 

<< Graphics'Legend • 
pi=Plot[S/_ {e ➔ 0_4, Uo ➔ -0_36, p ➔ 0-1}, {T, 50,300}, PlotStyle ➔ {Red}, 

PlotRange ➔ {O, 1500}]; 
p2 = Plot[S / _ {E ➔ 0. 275, Uo ➔ -0_ 36, p ➔ o_ 35}, {T, 50, 300}, PlotStyle ➔ {Green}, 

PlotRange ➔ {0, 1500}]; 
p3=Plot[S/_ {E ➔ 0.22, UO ➔ -0_36, p ➔ 0_65}, {T, 50,300}, PlotStyle ➔ {Blue}, 

PlotRange ➔ {0, 1500}]; 
ti = Shov[p1, p2, p3, GridLines __. Auto-tic, Az:esLabel ➔ { •T fl:)•, • S (aicroV /1:) •}] 

S (microV/K) 

140:o+---l------+---I------+---~ 
·, ___ _ 

120~ :- ·· ... 
lOO~u+-l\_.,.__1-----~ "•1-,----+---1------1-

S0:1+-+---1----+-·-··•-------t----+---~ 

60:G+---.---+.,-----+----+-r~_------=--1-=---+ 
40~ ·,_, . '•··-.. __ ----

20:u+---· -.----P.,. ______ =-.-. t--_-___ -__ -t-··_-_--_--_-~t-- ==---~ 

--" - -- -· -- --- --~."--• _.__ _ _._._ __ __._. _ _._._ __ __._. _ ___,_ T (K) 

100 150 200 250 300 
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The Seebeck coefficient was also examined for positive values of the oxygen on-site 

Coulomb interaction. 

<<Graphics'Legend' 
p4 =Plot[S /. {E ➔ 0.4. Uo ➔ 0. p ➔ 0.1}. {T. 200. 300}. PlotStyle ➔ {Red}. 

PlotRange _. { 0. 1500}]; 
p5 = Plot[S /. {E ➔ 0. 275. Uo ➔ +0. 01. p ➔ 0. 35}. {T. 200. 300}. PlotStyle ➔ {Green}. 

PlotRange ➔ { 0. 1500}]; 
p6 = Plot[S /. {E ➔ 0. 22. Uo ➔ +0.1. p ➔ 0. 65}. {T. 200. 300}. PlotStyle ➔ {Blue}. 

PlotRange-+ {0. 1500}]; 
t2 = Shov[p4. p5. p6. A:r:esLabel ➔ { •T (I:)•. • s (aicroY /1:) •}] 

S (microV/K) 

1400 

1200 

1000 

800 
------------------------------------600 -. ----------

400 --------- ------~--

200 

~~---~-~-~~-~-- T (K) 
220 240 260 280 300 

Data sets can also be generated in this Mathematica worksheet, for use in Excel. Data 

tables are defined and exported as comma-separated-value files. 

data=Table[S/. {E ➔ 0.i. Uo .... -0.36. p ➔ 0.1}. {T. 50. 300. 5}] 
E:r:port["red. csv•. data. "CSV"] 
data=Table[S/. {E ➔ 0.275. Uo ➔ -0.36. p-+ 0.35}. {T. 50. 300. 5}] 
Export["green. csv•. data. "CSV"] 
data =Table[S /. {E ➔ 0.22. Uo ➔ -0.36. p .... 0.65}. {T. 50. 300. 5}] 
!:Iport["blue. csv•. data. "CSV"] 

{2965. 48, 2698. 28, 2475. 62, 2287. 21, 2125. 72, 1985. 76, 1863. 29, 1755. 24, 1659.19, 1573. 25, 1495. 9, 
1425. 92, 1362. 3, 1304. 21, 1250. 97, 1201. 98, 1156. 76, 1114. 89, 1076. 02. 1039. 82, 1006. 03, 
974.429, 944. 798,916.963, 890. 765, 866.064, 842. 734, 820.665, 799. 757. 779.92, 761.075, 
743.148, 726.074, 709. 794, 694.253, 679.402, 665.196, 651.594, 638. 559, 626.054, 614.05, 
602. 515, 591. 424, 580. 75, 570. 472, 560. 566, 551. 015, 541. 798. 532. 898, 524. 3, 515. 988} 

red.csv 

{1259. 52, 1144.14, 1047. 99, 966. 63, 896. 894, 836. 457, 783. 575, 736. 914, 695. 439, 658. 329, 624. 931, 
594. 714, 567. 245, 542. 165, 519. 176, 498. 027, 478. 506, 460. 432, 443. 65, 428. 027, 413. 447. 
399. 808, 387. 023, 375. 015, 363. 714, 353. 06, 342. 999, 333. 483, 324. 47, 315. 92, 307. 799, 
300. 075. 292. 72, 285. 708, 279. 016, 272. 623, 266. 508, 260. 655, 255. 046, 249. 667, 244. 504, 
239. 544, 234. 775, 230.187, 225. 77, 221. 513, 217. 41, 213. 45, 209. 627, 205. 935, 202. 365} 

green.csv 

{506. 938,458.349, 417. 855,383.587, 354. 209,328.743, 306. 455,286.784, 269. 294,253.639, 239. 546, 
226.789, 215.188, 204.592, 194.875, 185.931, 177.671, 170.02, 162.913. 156.292, 150.11, 
144. 325, 138. 898, 133. 798, 128. 996, 124. 466, 120.186, 116.135, 112. 296, 108. 652, 105.189, 
101. 893, 98. 7524, 95. 7567, 92. 8958, 90.1607, 87. 5434, 85. 0362, 82. 6323, 80. 3253, 78.1096, 
75.9796, 73.9304, 71.9575, 70.0566, 68.2238, 66. 4554, 64. 748, 63. 0984, 61. 5038, 59.9613} 

blue.csv 
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G. Mathematica Worksheet for Chapter 6 Calculations, Case B 

This worksheet follows the same steps as Case A examined in Appendix F. The 

difference is that Case B eliminates the option of single occupancy on the oxygen site, 

thus there is no on-site Coulomb interaction U
0 

in the oxygen grand partition function. 

C1ear[µ, µcu, µo, Ro, Heu, Uo, A, /J, e, x, dg, rs, p, avgRcu, avgRox, avgRcu, 
avgRou, y, ,C'grCu, ,C'grO, kBJ, rt] 

« Graphics'Graphics· 
« Graphics· Co1ors • 

tgrCu = (1 + 2 E- (IJµcu)) -•cu 
,C'grO = (1 + E- (-2 /J (e - µo))) -Ro 

avgRcu = (1 //J) D[Log[,C'grCu], µcu[) // Siap1ify 
avgRox = (1 / /J) D [Log [,C'grO], µo] /. {µo ➔ µcu, e ➔ (-1 / /J) Log [x] } / / Siap1ify 

2 >F,/3µ,:u Neu 

1 + 2 IE:/3µ,:u 

2No 

1 + ,p-2 (/3µ,:u+Log [xi) 

avgRcu = avgRcu /. {µcu ➔ (1 / /J) Log[A]} 
avgRou = avgRox /. {µcu ➔ (1 / J) Log[A]} 

2Neu). 

1 + 2). 

2No 

1 + >F,-2 (Log[x]+Log[.l.]) 

dg = avgRcu + avgRou - Heu/. {Ro ➔ pRcu} // Siap1ify 

I
' 2). 2p ) 

Neu -1+-+-
1+2). 1+-1-

'· ,2 ;i.2 

Again, since the equation is to the third order in A, there will be three roots for the 

above expression. Just as for Case A, there are two complex solutions and one real 

solution. 
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rt=A/. Solve[dg==D. A] 

{ 
-x 2 +2x 2 p 

- + 
12 x2 

p 

(-x2 + 2 x2 p)2 

r;::: 1/3 
12 x2 p (x 6 - 6 x6 p + 216 x<f p 2 + 12 x6 p 2 - 8 x6 p3 + 12 v .:1 ,,/ x 10 p 2 - 6 x 10 p3 + 108 x8 p◄ + 12 x 10 p◄ - 8 x 10 ps} 

r;::: 1/3 
( x6 

- 6 x6 
p + 216 x◄ p

2 + 12 x6 p 2 - 8 x6 p3 + 12 V ,:i V x 10 p 2 - 6 x 10 p3 + 108 x8 p◄ + 12 x10 p◄ - 8 x 10 PS ) 

+----------------------------------
12 x2 

p 

24 x2 
p (x6 - 6 x6 

p + 216 x◄ .o2 + 12 x6 .o2 - 8 x6 p 3 + 12 -J'3 ,j x10 
p

2 - 6 x 10 p3 + 108 x8 .o◄ + 12 x 10 p◄ - 8 x 10 ps) 
113 

1 
1 ( .. ,~ i r 6 6 ◄ 2 6 2 6 3 - -- 1- :a. v 3 X - 6 X p + 216 X p + 12 X p - 8 X p + 

24 x2 .o , , 

24 x2 
p ( x6 - 6 x6 

p + 216 x◄ p

2 + 12 x6 
p

2 - 8 x6 p3 + 12 13 ,J x 10 
p

2 - 6 x 10 p3 + 108 x8 p◄ + 12 x 10 p◄ - 8 x 10 
ps ) 

113 

- -
1
- ((1+ :i 13) 

24 x2 .o , 

The real solution is selected since this will yield a real expression for the Seebeck 

coefficient. 

rs= rt[[1]] 

-1-=--2-:x2::-p---;-(x-=-6----:6--:x-:-6-p-+--:2--:1-:-6-x◄:-p-:2::-+-1_2_x-:-6 -p:-2 ---=-8-x:-6 -:p3::-+-12-v-;~=3-v-;:::::::;x1::;0 =p;:::2 =-=6=x:;:;;10=.o::;3 =+=1=08=x:::;8;::.o:::;:◄ =+=1=2=x::;:;10;::p:::;:◄=_=8=x::;:10;;::p:::;s;:-;)-i-1 ,133 + 

( x6 
- 6 x6 

p + 216 x◄ p 2 + 12 x6 p 2 - 8 x6 p 3 + 12 13 ·../ x 10 p 2 - 6 x10 p3 + 108 x8 p◄ + 12 x 10 p◄ - 8 x 10 PS ) 
113 

12 x2 
p 

Numeric values for Boltzmann's constant and the electron charge are inserted, and the 

equation for the Seebeck coefficient is formed. 



X = Exp[-e / (kB T)] 
kB = 8 _ 6 10 A - 5 
kBJ = L 38062 10A (-23) 
q = -L 60219 10 A (-19) 
S = -(kBJ 10A6/q)Log[rs]; 

11627 .9 e 
T 

0.000086 

1. 38062 10- 23 

-1. 60219 10- 19 

The results are plotted for values of £ and p. 

« Graphics'Legend' 
p1 = Plot [S /. { e ➔ 0. 2, p ➔ 0. 021}. {T. 50. 300}. PlotStyle ➔ {Red}. 

PlotRange ➔ {O. 1500}]; 
p2:Plot[S/_ {e ➔ 0_085. p ➔ 0.35}. {T. 50. 300}. PlotStyle_. {Green}. 

PlotRange ➔ {O. 1500}]; 
p3=Plot[S/. {e ➔ 0.031, p ➔ 0_563}. {T. 50,300}. PlotStyle ➔ {Blue}. 

PlotRange ➔ {O. 1500}]; 
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t1 = Shov[p1. p2. p3. GridLines ➔ Auto-tic. A:r:esLabel ➔ { •T (I:)•. • S (aicroV /1:) •}] 

S (microV/K) 

140:, ...... ------1.----+---+---+-

120n<>+---+-''...,._--1.----+---+---+

' 100n<t+-
1
,----+--'-'~'v-----+----I---+-

so: 
60 

··--
40n 

20-
-.._,_...__ __ 

~-------- ~-
.l....--L--1.~.......:.:c==::!==:::L T (K) 

100 150 200 250 300 

Data tables are generated and exported as .csv files. 



dataRed =Table[S /. {e ➔ 0.2, p ➔ 0.021), {T, 50, 300, 5)] 
E:i::port[•red. csv•, dataRed, •csv•1 
dataGreen=Table[S/. {e ➔ 0.085,p ➔ 0.35}, {T, 50,300, 5)] 
E:i::port["green. csv•, dataGreen, "CSV"] 
dataBlue = Table[S /. {e ➔ 0. 031, p ➔ 0. 563}, {T, 50, 300, 5)] 
E:i::port[•blue. csv•, dataBlue, •csv•] 
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{2743.11, 2500. 2, 2297. 78, 2126. 5, 1979. 69, 1852. 46, 1741.12, 1642. 89, 1555. 57, 1477. 44, 1407.13, 
1343.51, 1285.68, 1232. 87, 1184. 46, 1139. 93, 1098. 83, 1060. 76, 1025.42, 992. 516, 961.806, 
933.077, 906. 144,880.844, 857.034, 834.585, 813.385, 793.332, 774.336, 756.316, 739.199, 
722. 919, 707. 417, 692. 639, 678. 536, 665. 062, 652.178, 639. 845, 628. 03, 616. 702, 605. 83, 
595.39, 585.355, 575. 704,566.416, 557. 47, 548.85, 540.537, 532.516, 524. 774, 517.295) 

red.csv 

{1125. 92, 1022. 68, 936. 656, 863. 862, 801. 467, 747. 393, 700. 077, 658. 329, 621. 22, 588. 018, 558.137, 
531.103, 506.527, 484.09, 463.524, 444.604, 427.142, 410.974, 395.963, 381.989, 368.949, 
356. 751, 345. 318, 334. 579, 324. 474, 314. 948, 305. 953, 297. 446, 289. 388, 281. 746, 274. 487, 
267. 584,261.012, 254. 747,248.768, 243. 056, 237. 595, 232. 367,227.359, 222. 556,217.947, 
213. 52, 209. 265, 205.171, 201. 231. 197. 435, 193. 775, 190. 245, 186. 838, 183. 548, 180. 368} 

green.csv 

{390.819, 353.159, 321. 772, 295.21, 272. 438, 252.699, 235.424, 220.177, 206. 622, 194.49, 183.568, 

173. 685, 164. 697, 156. 488, 148. 962, 142. 036, 135. 641, 129. 718, 124. 216, 119. 093, 114. 31. 
109. 834, 105. 637, 101. 693, 97. 9808, 94. 4795, 91.172, 88. 0425, 85. 077, 82. 263, 79. 589, 
77.045, 74.6216, 72.3105, 70.1039, 67.995, 65.9774, 64.0453, 62. 1933, 60.4166, 58. 7107, 
57. 0714, 55. 4948, 53.9775, 52.5162, 51.1078, 49. 7494, 48.4385, 47.1727, 45.9495, 44. 767} 

blue.csv 




