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In many geotechnical design situations involving tight right-of-way constraints, 

Mechanically Stabilized Earth (MSE) walls are often the most cost-effective and reliable 

earth retention technology among available alternatives. However, few well-documented 

case histories with detailed material testing, instrumentation programs and construction 

observation of performance are available in the literature. Despite the small number of 

case histories, empirical design methods are used in place of more theoretically-based 

methods. As a result, current design methods for MSE walls result in a large amount of 

inaccuracy, especially when their empirical calibration limits are exceeded.  

This study characterizes the constitutive behavior of a sandy gravel backfill soil and 

ribbed steel strip reinforcement material used in the construction of two very tall MSE 

walls constructed during the 3rd Runway Expansion Project at the Seattle-Tacoma 

International Airport (SeaTac). Tension testing was performed on coupons cut from the 

reinforcement material in order to measure its Young’s modulus and yield strength. 

Consolidated drained triaxial strength testing was performed to measure the stress-strain 

behavior of the loose, medium dense, and densely-compacted backfill materials. Then the 



frictional interaction between the reinforcement and densely-compacted backfill soil was 

evaluated by performing twenty full-scale single-strip laboratory pullout tests. 

Using the results from the material testing and in-situ reinforcement strain 

measurements taken at the SeaTac MSE walls, the accuracy of four reinforcement load 

prediction methods was evaluated. The pullout test results were used to develop a 

backfill-specific design model, as well as being combined with other pullout test results 

for gravels reported in the literature to develop a global gravel design model for 

predicting peak reinforcement pullout resistances. These newly developed pullout design 

models were compared to the current AASHTO design model and found to produce 

much more accurate predictions of peak reinforcement pullout resistance.  Walls 

designed and constructed with the kinds of backfill evaluated herein and with the new 

models generated will be more cost-effective than typically accepted design models. 
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1.0 INTRODUCTION 

1.1 Statement of Problem 

As densely populated metropolitan areas continue to grow, right-of-way available for 

public infrastructure development becomes constricted. These pressures from urban 

expansion have resulted in a dramatic increase in the number of retaining walls being 

constructed around the world. Of the various types of retaining wall technologies 

currently used, Mechanically Stabilized Earth (MSE) walls are often the most cost-

effective and reliable option, with thousands of walls being built since their introduction 

over 40 years ago (Christopher et al. 1990a). Surprisingly, few well-documented case 

histories with detailed material testing, instrumentation programs, and construction 

observation of performance are available in the literature. Despite the small number of 

case histories, empirical design methods are used in place of more theoretically-based 

methods. As a result, current design methods for MSE walls result in a large amount of 

inaccuracy, especially when their empirical calibration limits are exceeded. 

1.2 Purpose and Scope 

This study focuses on the internal stability of ribbed steel strip MSE walls used with 

gravels and sand-gravel mixtures by assessing: (1) the stiffness, strength, and volumetric 

response of a sandy gravel fill, (2) the reinforcement-backfill interaction developed 

during reinforcement strip pullout, and (3) the accuracy of reinforcement load and pullout 

resistance prediction methods assuming various soil failure envelopes and pullout 

resistance models. 

An extensive laboratory testing program was performed on sandy gravel backfill and 

steel reinforcement strips used in the construction of two very tall MSE Walls.  The 

purpose of the laboratory testing program was to understand the constitutive behavior of 

the soil backfill and the soil-reinforcement interaction. Once measured, the constitutive 

parameters of the reinforcements were used, in conjunction with the measured 

reinforcement strain measurements in two very tall MSE walls, to estimate the actual 
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reinforcement loads being generated within the walls.  These inferred reinforcement loads 

were then compared to the estimates of load from reinforcement load prediction models 

in order to assess the accuracy of these methods.   

The pullout resistance of single reinforcement strips was evaluated using a newly 

constructed pullout test apparatus.  Twenty pullout tests were performed on ribbed steel 

reinforcement strips embedded within sandy gravel to characterize the soil-reinforcement 

interaction behavior.  The effect of the relative compaction and vertical effective stress 

acting on the reinforcement strip was assessed using multiple linear regression modeling.  

A backfill-specific pullout resistance design model was generated for use in predicting 

pullout capacities of ribbed steel reinforcement strips in the backfill evaluated.  The 

pullout test results were then combined with data from other pullout tests results on 

gravels and sand-gravel mixtures found in the literature in order to create a global gravel 

pullout resistance model. The backfill-specific, global gravel, and standard pullout 

resistance models were used to assess the effect of model on pullout length calculations. 

Following a literature review on granular soil mechanics and internal stability of MSE 

walls (Chapter 2), and description of the research objectives and program (Chapter 3), the 

laboratory evaluation of the backfill and reinforcement (Chapter 4), the pullout testing 

(Chapter 5), and the application of the experimental work towards the evaluation of 

internal stability is presented (Chapter 6).  This thesis concludes with a summary of work 

performed, findings, and suggestions for future study (Chapter 7). 
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2.0 LITERATURE REVIEW 

The concept of modern Mechanically Stabilized Earth (MSE) walls with was first 

developed by Vidal (1969) and used steel reinforcements. Since Vidal’s initial work, 

which began over 50 years ago, the understanding of the behavior and design of MSE 

walls has grown extensively. As with many geotechnical design procedures, MSE wall 

design is based on empirical performance observations in consideration of soil mechanics 

principles. 

An understanding of the history and development of design procedures for MSE walls 

is necessary to identify those areas where improvements can be made. However, to gain a 

deeper understanding of the basic mechanics governing the behavior of MSE walls, a 

firm understanding of the soil mechanics principles at work is needed. MSE walls built 

with steel strip reinforcements rely significantly on frictional resistance and therefore are 

almost always designed using granular reinforced backfill. Therefore soil mechanics 

principles relevant to granular soil-reinforcement interaction will be reviewed in Section 

2.1, and general MSE wall design procedures will be covered in Section 2.2. 

2.1 Behavior of Drained Granular Materials 

The response of drained granular soils varies based on factors that include relative 

density, confining stress, gradation, angularity, surface roughness and boundary 

conditions, among others (Rowe 1962; Lee and Seed 1967; Cornforth 1973; Verdugo and 

Hoz 2007; Bareither et al. 2008; Hashash et al. 2009). The effects of relative density and 

confining stress are particularly important in the development of reinforcement loads and 

resistance, and therefore will be the focus of this Section. 

2.1.1 Mohr-Coulomb Failure Criterion 

The stresses on any plane within an element can be represented by a Mohr circle in 

stress-stress space as shown in Figure 2.1.  The points at which the Mohr circle crosses 

the normal stress axis represent planes of zero shear stress and are termed principal 

stresses. For the purpose of discussion it is convenient, and common convention, to refer 

to these stresses as the major principal stress, 1, the intermediate principal stress, 2, and 
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the minor principal stress, 3, where 1≥  2 ≥  3.  MSE walls are most typically 

constructed in long, linear geometries such that plane strain conditions exist and where 2 

>3, as shown in Figure 2.1. 

 
Figure 2.1. Mohr circle diagram in three dimensions. 

The shear strength, s, of a soil mass can be defined by the Mohr-Coulomb failure 

criterion (Rowe 1962): 

 

 tans c     (2.1) 

 

where ff is the normal stress on the failure plane at failure,  is the friction angle, and c 

is the apparent cohesion intercept associated with capillarity, and is typically neglected 

for granular materials because strength associated with seasonal moisture variations 

cannot be relied upon.  

Assuming equal shear resistance on any plane within a soil mass, the Mohr-Coulomb 

failure criterion can be defined as the shear stress where the Mohr circle becomes tangent 

to the failure envelope defined by Equation 2.1. Figure 2.2 depicts the failure criterion for 

the triaxial condition where 2 =3. 
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 Samples with initial void ratios less than the critical state void ratio tended to 

dilate during shearing, a peak friction angle, d, was reached, then the shear 

strength reduced to a residual value where a critical state friction angle, r, was 

observed.  

 Samples with initial void ratios larger than the critical state void ratio (looser 

specimens) tended to contract, and the shear strength would slowly increase, 

without reaching a peak, to a residual or critical state value of r, similar to dense 

specimens.  

 Samples with initial void ratios equal to the critical state void ratio did not change 

in volume during shearing. 

 
Figure 2.3. Stress-strain and volumetric response for both loose and dense sand in triaxial compression 

(after Taylor 1948). 
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Taylor (1948) and Bishop (1954) attempted to explain the observations of Casagrande 

(1940) by suggesting that the observed shearing resistance was not entirely due to inter-

granular sliding friction, but included a volume change component. The volume change 

component, as described by Bishop (1954), was quantified as the energy needed to 

overcome the confining pressure during expansion. Bishop proposed that the portion of 

the deviator stress required to produce the energy for sample expansion, e, could be 

calculated as:  

 

 3
1

v
e

d

d

 


   (2.2) 

 

where dv is the incremental change in volumetric strain, and d1 is the incremental 

increase in axial strain. Bishop (1954) derived the following expression for the friction 

angle with the dilation-induced portion removed, B: 

 

 
 
 

1 31

1 3

sin e
B

e

  


  
   

    
  (2.3) 

 

which implies that the difference between B and the peak friction angle, d, is equivalent 

to equivalent to the dilation angle. 

Rowe (1962) performed direct shear tests, shown in Figure 2.4, on quartz soil 

particles with the bottom half of the shear box replaced with a quartz block. This enabled 

Rowe (1962) to approximate the sliding friction between two particles, . Rowe 

observed that the friction angle calculated using Bishop’s expression to correct for 

dilation effects (Equation 2.3) was greater than the sliding friction, , measured. This led 

Rowe to the conclusion that the peak friction angle, d, is comprised of three 

components; the particle-to-particle sliding friction, a dilatant component, and a 

component related to the work performed by the soil particles as they rearrange and 
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pressures and therefore the initial curvature of the Mohr-Coulomb envelope cannot be 

seen. 

 
Figure 2.7. Mohr circles at failure showing the curvature of the failure envelope at high pressures (Hirschfeld 

and Poulos 1963). Note: 1 kg / sq cm = 98 kPa. 

The reduction in friction angle at moderate confining pressures was mainly attributed 

to the suppression of dilation; as the confining pressure increased, soil particles tended to 

reorient and contract rather than dilate. At extremely large confining pressures, the 

stresses induced in the soil particles exceed their compressive strength, and particles 

tended to break apart and fill voids. This crushing behavior resulted in densification and 

changes in particle characteristics such as surface roughness and angularity which can 

have complex effects on the Mohr-Coulomb failure envelope. These crushing effects are 

not discussed herein, because, even at the base of the tallest MSE walls, the compressive 

strengths of most reinforced backfill particles are not reached. 

Figure 2.8, exaggerated for clarity, presents the theoretical influence of dilation, 

sliding friction, particle crushing, and particle rearrangement on the drained shear 
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 1 3

1
tE

 


 



  (2.5) 

 

A typical measure of soil stiffness is the initial tangent modulus, Ei. As shown in 

Figure 2.9 Ei increases both with relative density, and confining pressure.  

 
Figure 2.9. Variations of initial tangent modulus with confining pressure and initial relative density for drained 

triaxial tests on silica sand (after Duncan and Chang 1970). 

2.1.5 Constitutive Modeling of Stress–Strain and Volumetric Response of Granular 

Materials 

One of the most widely used nonlinear constitutive models for soils was developed by 

Duncan and Chang (1970). Some of the advantages of the Duncan and Chang (1970) 

model over other nonlinear models includes the ability to measure parameters using the 

ordinary triaxial test, the ability to model the contractive response of soils incorporated 
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by Wong and Duncan (1974), and the availability of the database of parameters for over 

150 types of soils including index properties provided in Duncan et al. (1980). The 

following is a summary of the Duncan et al. (1980) calibration procedure: 

For a given drained triaxial test at a confining pressure of 3, the volumetric strain at 

any point, v,B, is determined, as well as the coinciding principal stress difference, (1 - 

3)B (i.e., at the same axial strain). From the principal stress difference-axial strain data, 

the following are determined: the principal stress difference at failure, (1 - 3)f and the 

axial strains corresponding to 70 and 95 percent of the principal stress difference at 

failure,1,70, and 1,95, respectively. The initial tangent modulus, Ei, is determined by: 

 

 

       1,70 1,95
1,70 1,95

1 3 1 3 1 370 95 ult

2

1
iE

 
 

     


 

       

  (2.6) 

 

where (1 - 3)70 and (1 - 3)95 are 70 and 95 percent of the principal stress difference at 

failure, and (1 - 3)ult is the ultimate principal stress difference defined by: 

 

  

   

1,95 1,70
1 3 ult

1,95 1,70

1 3 1 395 70

 
   

   


 


 

  (2.7) 

 

The stiffness of soil when considering only volumetric strains (i.e., bulk modulus), B, 

is determined by: 

 

 
 1 3

,3
B

v B

B
 




   (2.8) 
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Once the initial tangent and bulk moduli are determined for several confining 

pressures, the modulus number, K, and the modulus exponent, n, can be determined by 

fitting a curve to the initial tangent modulus-confining pressure data using the functional 

form of a power law: 

 3
n

iE K     (2.9) 

 

The bulk modulus number KB, and the bulk modulus exponent, m, can also be determined 

by fitting a power law curve to the bulk modulus-confining pressure data using: 

 

 3
m

BB K    (2.10) 

 

Refer to Duncan et al. (1980) for a more comprehensive discussion of the model 

calibration procedure. 

The main disadvantage of the Duncan and Chang (1970) model is that the volume 

change behavior of dilative soils cannot be adequately simulated. Figure 2.10 shows that 

the fitted hyperbolic model can simulate the initial contractive behavior of Monterey 

Sand, but does not model the reversal in volumetric response and subsequent dilation.  

Additionally, the Duncan and Chang model cannot capture the strain softening behavior 

of dense sands at low to medium confining pressures. However, in many design 

situations this strain softening behavior occurs well outside the expected working stress 

range (i.e., at large stresses) and therefore, may not need to be modeled. 
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2.2 Design of Mechanically Stabilized Earth Walls 

In general, the reinforced soil mass within a MSE wall is subdivided into an active 

zone and resistant zone. The active zone is the zone closest to the wall facing and tends to 

move outward and downward away from the resistive zone. However, this movement is 

resisted by shear forces developed between the reinforcement and soil in the resistive 

zone as shown in Figure 2.11. 

 
Figure 2.11. Development of shear forces between the backfill and reinforcement within an MSE wall (adapted 

from Schlosser 1990) 

The main design goals for MSE walls include checks for external and internal 

stability. This section mainly focuses on internal stability as it is the main focus of this 

study. A complete overview of MSE wall design may be found in Christopher et al. 

(1990a), Elias et al. (2001), and Berg et al. (2009).   

2.2.1 Design Methodology for Internal Stability 

Internal instabilities may arise from three possible mechanisms: the shear resistance 

of the panel-reinforcement connection may be locally exceeded, the tensile stress in the 

reinforcement strip can exceed the yield stress, resulting in large plastic strains (and 

associated wall movement) and leading to the eventual rupture of the strip, or the tensile 

reinforcement forces will exceed the frictional pullout resistance provided to the 
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reinforcement by the soil, resulting in movement relative to the surrounding soil. The 

three mechanisms of internal instability can result in large deformations and/or collapse 

of the wall depending on the degree of wall redundancy.   

Stability is determined by comparing the maximum predicted tensile load, Tmax, to the 

allowable reinforcement tension, Ta, and the maximum pullout resistance of the 

reinforcement, Pr, at each reinforcement level. The following criteria must be met for the 

wall to be considered stable: 

 

 max h tT A   (2.11) 

 max aT T   (2.12) 

 max rT P   (2.13) 

 

where h is the horizontal earth pressure, and At is the wall facing tributary area.  

2.2.1.1 Internal Loading 

Many design methods have been developed for predicting maximum reinforcement 

loads. The main differences between methods are the way in which the lateral earth 

pressure coefficient for the reinforced soil mass, Kr, is calculated, and the assumption on 

where the maximum tension is located behind the retaining wall. These methods include 

the Coherent Gravity method (Schlosser 1978), the Tieback Wedge method (Lee et al. 

1973; Bell et al. 1975, 1983), the FHWA Structure Stiffness method (Christopher et al. 

1990a; Christopher 1993), the working stress method by Ehrlich and Mitchell (1994), the 

American Association of State Highway Transportation Office (AASHTO) Simplified 

Method (Allen et al. 2001), and the K-Stiffness method (Allen et al. 2004). Stuedlein et 

al. (2012) provides a detailed discussion on the differences between many of these 

methods. Each of the design methods are summarized below. 
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Coherent Gravity Method (Schlosser 1978) 

The maximum tensile reinforcement load is typically used to define the failure 

surface in the reinforced soil mass, though these are not usually coincident. Early 

methods of determining this failure surface, such as that by Lee et al. (1973), neglected 

the influence of the reinforcements on the failure surface and assumed a wedge failure 

surface that started at the toe of the wall that extends upward at an angle of 45 + ϕ/2 from 

the horizontal plane. Juran (1977) outlines the theoretical shortcoming of this Rankine-

type failure plane. Using laboratory and full-scale testing, Juran and Schlosser (1978) 

concluded that the presence of inextensible reinforcements in an earth mass affects the 

failure surface, and that a log spiral-shaped failure surface starting at the toe of the wall 

and becoming vertical at ground surface would be more appropriate. Schlosser and Elias 

(1978) modified the work by Juran and Schlosser (1978) by approximating the log spiral 

surface as a bi-linear curve as shown in Figure 2.12.  
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Figure 2.12. Results from scale model tests with theoretical logarithmic spiral failure surface, Coulomb’s failure 

plane, and the coherent gravity design model (adapted from Juran and Schlosser 1978). 

Loading in MSE walls is controlled by the earth pressures from the retained soil mass 

acting on the back of the wall and the influence of wall stiffness, described below. 

Baquelin (1978) suggested that the at-rest lateral earth pressure would dominate near the 

top of the wall, and then decrease with depth until the active state was reached at 6 meters 

below the top of the wall; this was referred to as the coherent gravity distribution. Figure 

2.13 shows the design distribution for reinforced fill material with  = 45 deg. The lateral 

earth pressure coefficient decreased from an at-rest value, Ko, as defined by Jaky (1948), 

at the top of the wall: 

 

 1 sinoK     (2.14) 
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reinforcements (e.g. geo-synthetic), or bar mat type in-extensible reinforcements 

(Schlosser 1978).  

Schlosser and Segrestin (1979) summarized the Coherent Gravity method with 

assumed location of maximum tension (i.e., the bilinear failure surface) and the 

distribution of earth pressure coefficients. The maximum reinforcement load for a given 

reinforcement layer, Tmax, was determined as: 

 

 max r v v cT K S R   (2.16) 

 

where v is the vertical effective stress at the level of the reinforcement, Sv is the vertical 

reinforcement spacing and Rc is the reinforcement coverage ratio defined as: 

 

 c
h

b
R

S
   (2.17) 

 

where b is the width of the strip, and Sh is the horizontal reinforcement spacing as shown 

in Figure 2.14.  

 
Figure 2.14. Parameters for coverage ratio, Rc, calculation with steel strip reinforcements. 

The vertical effective stress at the level of the reinforcement of interest, v, was 

determined by assuming the reinforced fill to be a rigid block (Schlosser and Segrestin 

1979); then, the equations of static equilibrium were used to calculate vertical stresses. 
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For the case of level backfill (i.e. a slope angle, , equal to zero), the vertical effective 

stress is calculated as: 

 v r Z    (2.18) 

 

where r is the unit weight of the reinforced fill, and Z is the vertical distance from the top 

of the wall to the reinforcement layer of interest. However, when the back slope angle is 

greater than zero, as shown in Figure 2.15, the resultant of the reaction stress distribution 

(i.e., R in Figure 2.15) is assumed to become eccentrically located a distance e from the 

center of the reinforcement towards the wall. This assumed eccentricity can be 

determined algebraically by setting the sum of the moments about the center of bottom of 

the “rigid block” (i.e. point c  in Figure 2.15) equal to zero. Solving for the moment arm 

of the reaction force, e, produces the following expression: 

 

 2

1 2

(cos ) / 3 (sin ) / 2 ( / 6)

sin( )
T T r r

T

F z F L V L
e

V V F

 


 


 
  (2.19) 

 

where FT is the resultant force of the lateral earth pressure acting on the back of the 

reinforced soil mass, z is the vertical distance from the reinforcement layer of interest to 

the intersection of the back slope and the plane defined by the back of the reinforced soil 

mass, Lr is the total length of the reinforcement, V1 is the resultant of the pressure from 

the reinforced soil mass acting on the reinforcement layer of interest, V2 is the resultant 

force produced by the weight of the slope mass acting vertically at the top of the 

reinforced soil mass. The vertical stress acting on the reinforcement is then calculated as 

the sum of the vertical forces acting over the reinforcement length less two times the 

eccentricity: 

 1 2 sin( )

2
T

v
r

V V F

L e

  



  (2.20) 
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where e is the eccentricity of the reaction force, and Kr is the lateral earth pressure 

coefficient of the reinforced soil at the depth of the reinforcement of interest as described 

in Figure 2.16. 

 
Figure 2.15. Meyerhof vertical stress distribution in MSE walls (adapted from Allen et al. 2001 and AASHTO 

1999). 

The Coherent Gravity method assumes a bi-linear failure surface, as shown in Figure 

2.16. The failure surface, and thus the active zone, was defined by the vertical distance 

from the toe of the wall to the point where the failure surface exists the back slope, Hʹ, 

calculated as: 

 
0.3 tan

1 0.3tan

H
H H




  


  (2.21) 

 

where H is the vertical distance from the toe of the wall to the top of the wall face. The 

horizontal distance from the wall face to the point where the failure surface exists the 

back slope is assumed to be 0.3 Hʹ. For the top half of the length Hʹ the failure surface is 
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vertical, then, as shown in Figure 2.16, the failure surface exits the reinforced soil mass at 

the toe of the wall. 

 
Figure 2.16. Graphic summary of the geometry assumed for use with the Coherent Gravity Method (adapted 

from Allen et al. 2001 and AASHTO 1996). 

Bathurst et al. (2008) evaluated the accuracy of the Coherent Gravity method by 

comparing the ratio of measured to predicted maximum reinforcement load for walls with 

different backfill friction angles. For backfill soils with friction angles larger than 45 

degrees, the Coherent Gravity method consistently under predicted the maximum 

reinforcement load as shown in Figure 2.17. This raises concern as it is common practice 

in design to reduce the friction angle in order to increase the reliability of the structure. 

However, reducing the friction angle can have non-conservative effect due to “locking-

in” of compaction stresses near the top of the wall tending to be larger for soils with 

higher friction angles (Bathurst et al. 2008).  
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significantly stiffer, and it was proven that the displacements were minimized and the full 

development of an active wedge was not realized (Bell et al. 1983).  

The maximum reinforcement tensile load for the Tieback Wedge method is 

determined using Equation 2.16, where Kr = Ka for all values of Z, and the vertical 

overburden stress calculated as: 

  qv r Z S      (2.22) 

 

where S is the average surcharge from the soil above the wall (if any), q is the vertical 

traffic surcharge stress, and all other variables have been defined (Allen et al. 2001). 

FHWA Structure Stiffness Method (Christopher et al. 1990a; Christopher 1993) 

The Federal Highway Administration (FHWA) Structure Stiffness method was 

developed from an extensive effort by the FHWA to research and standardize the design 

of reinforced earth. The Structure Stiffness method was the first method to directly 

consider the combined effect of reinforcement spacing (i.e., reinforcement density) and 

the reinforcement stiffness referred to as the global reinforcement stiffness, Sr, and its 

effect on reinforcement stresses: 

 

 
 /

r r
r

r

E A
S

H n
   (2.23) 

 

where Er and Ar is the reinforcement modulus and the reinforcement area per unit width 

of wall, respectively, and nr is the number of reinforcement layers.  Christopher et al. 

(1990a) studied the behavior of eight 6 m tall instrumented walls with different facings, 

reinforcements, fill material, and geometries. The study of wall behavior lead to a design 

method that is applicable for both extensible and inextensible reinforcements. 

The location of the failure plane is determined using Figure 2.16, similar to the 

Coherent Gravity method. The maximum reinforcement tension, Tmax, is determined 
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using Equation 2.16, with the vertical overburden stress, v, calculated using Equation 

2.22, and Kr calculated as:  

 

 1 2

2

1 0.4 1      if Z 6 m
47880 6 6

                                                            if Z > 6 m

r
a

r

a

S Z Z
K

K

K

                 
 

  (2.24) 

 

where Sr is in units of kPa and 1 is an empirical fitting coefficient related to the 

reinforcement type defined as: 

 1

1.0  for strip and sheet reinforcements

1.5  for grids and welded wire mats   


  


  (2.25) 

 

and 2 is an empirical fitting coefficient related to the global reinforcement stiffness and 

defined as: 

 

 2
1

1.0         if S 47.88 MPa

        if S 47.88 MPa
r

r


   

  (2.26) 

Ehrlich and Mitchell (1994) 

Compaction-induced stresses should always be considered in fill-type walls. 

Compaction-induced stresses are especially important for the design of MSE walls as 

facing panels and reinforcement connections are extremely stiff, and develop stress 

concentrations at the connections. The method developed by Ehrlich and Mitchell (1994) 

is the only method developed to-date that addressed both compaction-induced 

reinforcement stresses and global reinforcement stiffness directly. The maximum 

reinforcement load for the Ehrlich and Mitchell (1994) method was calculated using 

plane strain soil properties as: 
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 maxT v h r zS S K     (2.27) 

 

where ʹz is the overburden stress corrected for eccentric loading and for case of no 

surcharge loading is defined as: 

 

 
  2

1 3
z

a r

Z

K Z L




 


  (2.28) 

 

where Lr is the length of the reinforcement. When comparing the overburden stresses for 

level ground calculated using Equation 2.28 to those using the Coherent Gravity method, 

the overburden stresses calculated using the Coherent Gravity method are slightly larger 

(7 percent greater at Z = 25 m), but appears suitable for substitution due to the relatively 

small difference in stresses. Ehrlich and Mitchell (1994) do not provide guidance on 

overburden stress calculations for the case of a back slope or surcharge. However, 

Equation 2.20 from the Coherent Gravity method can be used in calculating the 

overburden stress for these cases as it also considers overturning moment. 

The lateral earth pressure coefficient, Kr, is determined for each reinforcing layer 

iteratively using: 

 

 
     
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            
  (2.29) 

 

where Patm is atmospheric pressure, OCR = the overconsolidation ratio, kur is the modulus 

number for unloading, K is the modulus number for loading, and n is the modulus 

exponent, described previously in regard to the Duncan Chang (1970) hyperbolic model. 

The variables kur, K, and n can be found in Duncan et al. (1980) for various soils if soil-

specific test information is unavalible. The relative reinforcement-soil stiffness index, Si, 

was defined as: 
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 r r

i
atm v h

E A
S

kP S S
   (2.30) 

 

where the peak vertical stress during compaction, ʹZC, was defined as: 

 

 
 1

2o a

zc
o

QN
K

L
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where Q is the maximum compaction force produced during compaction, L is the length 

of the roller used to compact the back fill, and N is the bearing capacity factor for 

Rankine wedge theory. The Poisson’s ratio corresponding to K0 loading, 0, was defined 

as: 
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Poisson’s ratio for unloading, un, was given as: 
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where K2 is the “decremental lateral earth pressure coefficient” and defined as: 
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and the unloading coefficient,  = 0.7 sin(’PS). 

The lateral earth pressure coefficient considering compaction, Kc, must be determined 

iteratively using: 
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where the “equivalent active earth pressure coefficient”, Kaa was defined as: 

 

   
1 1

tan

a
aa

a
zc c

a
f

K
K

c
K

K
K

R

 


 

     

  (2.36) 

 

where cʹ is the effective cohesion intercept, and Rf is the failure ratio as defined by 

Duncan et al. (1980).  

The main advantage of the Ehrlich and Mitchell (1994) method is its ability to predict 

maximum reinforcement tension during construction. The Coherent Gravity method 

typical does fairly well estimating the reinforcement tension for the case of end of 

construction; however, for intermediate construction stages the measured tension loads 

are typically larger than those at the end of construction (Stuedlein et al. 2012).  Figure 

2.18 compares measured maximum tension to those predicted using the Coherent 

Gravity, and  Ehrlich and Mitchell (1994) methods. 
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Figure 2.18. Comparison of the Ehrlich and Mitchell (1994) method (proposed method) to the Coherent Gravity 
method (conventional design method) and field measurements at the VSL wall at Hayward (after Neely 1995). 

Because the Ehrlich and Mitchel (1994) method requires that the compaction 

equipment to be used during construction be known or estimated with some degree of 

certitude, it may be impractical to use this method in typical design situations. However, 

the Ehrlich and Mitchell (1994) method it is an extremely valuable tool for the analysis of 

wall behavior due its theoretical robustness and accuracy (Stuedlein et al. 2012).  

AASHTO Simplified method(Allen et al. 2001) 

The most common method for estimating reinforcement loads in the U.S. is the 

AASHTO Simplified method (Bathurst et al. 2009).  The Simplified method was 

developed with the goal of replacing the Coherent Gravity method, the Tieback Wedge 

method, and the FHWA Structure Stiffness method; however, the Coherent Gravity 

method is still widely used for design of walls with steel strip reinforcements and has 

recently been admitted back into AASHTO specifications. The three main goals for 

developing the Simplified method were (Allen et al. 2001):  

 to develop a Kr/Ka curve for each general type of reinforcement as shown in 

Figure 2.19,  

 to simplify calculations by excluding the rigid body assumption and associated 

overturning-induced stresses for internal stability calculations, and  

 To calibrate the method using a large dataset of full scale wall case histories.  
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The use of Kr/Ka curves unique to the reinforcement type indirectly allows for the 

consideration of the stiffness of the reinforced soil mass and some compaction stress 

history effects. However, the density of reinforcements is not taken into consideration, 

that is, as S and Sh change, the Kr/Ka curves remain constant, despite the potential for an 

increase or decrease in the “locking-in” of compaction stresses due to the increase or 

decrease in spacing, respectively. Research performed by Stuedlein et al. (2010) showed 

that the local reinforcement stiffness, Slocal, accounted for up to 81 percent of the 

measured reinforcement strains in two tall MSE walls. The rigid body assumption results 

in the application of an overturning moment to be assumed to be transmitted through the 

reinforced soil mass thus increasing vertical stresses. Removing this assumption greatly 

reduces computational effort and is arguably more accurate (Allen et al. 2001).  Neither 

the Tieback Wedge method, FHWA Structure Stiffness method, nor the K-Stiffness 

method (discussed subsequently) assumes a rigid body. On the other hand, the Coherent 

Gravity and the Ehrlich and Mitchell (1994) methods do assume a rigid reinforced mass 

(Stuedlein et al. 2012). 

Prior to the development of the Simplified method there was confusion in industry 

regarding which design method (mainly Coherent Gravity or Tieback method) was 

appropriate for different types of reinforcement material (e.g. inextensible or extensible). 

Typically, overly conservative designs resulted from the use of the Coherent Gravity 

method for extensible reinforcements. 

Similar to the Coherent Gravity method the Simplified method is empirically based 

and is therefore limited by the database to which it has been calibrated. The data base 

used to calibrate the Simplified method is limited to wall heights less than 18 m (Allen et 

al. 2001). 

The maximum reinforcement tension, Tmax, for the AASHTO Simplified Method is 

determined using Equation 2.16, with  determined using Equation 2.22, Kr is 

determined depending on reinforcement type using Figure 2.19. The active lateral earth 

pressure coefficient for use with Figure 2.19 is determined using a friction angle as 

measured in triaxial compression or direct shear test, but limited to 40 degrees. 
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Figure 2.19. Normalized lateral earth-pressure distributions for use with the AASHTO simplified method (after 

Bathurst et al. 2009) 

 

Bathurst et al. (2009) evaluated the accuracy of the Simplified method by comparing 

the ratio of measured to predicted maximum reinforcement load for walls with different 

backfill friction angles. For backfill soils with friction angles larger than 45 degrees, the 

Simplified method consistently under predicts the maximum reinforcement load as shown 

in Figure 2.20 and is similar to the Coherent Gravity method. 
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Figure 2.20. Predicted versus measured maximum reinforcement loads for the AASHTO Simplified method and 

steel reinforced MSE walls showing the influence of friction angle (after Bathurst et al. 2009). 

 K-Stiffness Method (Allen et al. 2003, 2004) 

The K-Stiffness method for steel reinforced walls developed by Allen et al. (2004) 

was intended to update the FHWA Structure Stiffness method by considering facing 

stiffness, wall batter, and local reinforcement stiffness. The method was also calibrated 

using an extensive dataset which included 19 full scale instrumented steel reinforced 

walls. Similar to the Coherent Gravity and Simplified methods, the K-Stiffness method is 

empirically based and is therefore limited by the database to which it has been calibrated. 

The same data base used to calibrate the Simplified method was used to calibrate the K-

Stiffness method; therefore the use of the method is also limited to wall heights of 18 m 

or less. Additionally, the K-Stiffness method utilizes plane strain soil properties; this is in 

contrast to the Coherent Gravity and Simplified methods which use shear strength 

parameters determined by triaxial or direct shear tests. 

The maximum reinforcement tension for the K-Stiffness Method is calculated as: 
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where ks and ks are dimensionless fitting parameters. The value of ks = ks =0.25 was 

used by Allen et al. (2004), though no further guidance was provided. The facing batter 

factor, fb, is calculated as: 
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where Kabh is the active lateral earth pressure coefficient considering the facing batter, 

Kavh is the active lateral earth pressure coefficient assuming the face batter is vertical, and 

d  is a dimensionless fitting parameter. A value of d = 0.25 is suggested by Allen et al. 

(2004). 

The improved accuracy of the K-Stiffness method, as shown in Figure 2.22, is not 

surprising since the method was developed to incorporate both primary and secondary 

factors (e.g., batter and facing stiffness) that influence the development of reinforcement 

load to improve its predictive ability. Because the K-Stiffness method is highly empirical 

in nature it should only be applied to those types of walls for which it was calibrated.  
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  1' tan 1.2tanPS DS    (2.41) 

 

However, a triaxial and direct shear friction angle, ’DS, TX = 40 degrees and a plane 

strain friction angle ’PS = 44 degrees were used in load calculations to conform to 

AASHTO specifications. 

Bias values, defined as the ratio of measured to predicted reinforcement loads, were 

determined for each of the reinforcement load prediction methods. It was observed that 

both the Simplified and Coherent Gravity methods tended to under-predict reinforcement 

loads during construction. The K-Stiffness method conservatively provided the best 

prediction of peak reinforcement stresses at intermediate construction stages where the 

backfill height was less than 20 m. The Ehrlich and Mitchell (1994) method provided the 

best overall prediction of reinforcement loads for both the North and West MSE wall as 

depicted in Table 2.1 by the bias values closest to one and low coefficients of variation 

(COV). Figure 2.23 compares the predicted distribution of reinforcement loads to those 

measured approximately 4 years after construction of the west wall was complete.  

Table 2.1. Summary statistics of the bias in reinforcement loads for the SeaTac North and West MSE walls 
taken in August 2009 with capped constant friction angles (’DS,TX = 40 deg., ’PS = 44 deg.) (Stuedlein et al. 

2012). 

  Mean bias Range in bias COV (%) 

North MSE wall (n = 6) 
Coherent Gravity method 1.47 1.19 2.04 23 

AASHTO Simplified method 1.27 1.03 1.72 21 

Ehrlich & Mitchell (1994) 0.93 0.80 1.05 11 

K-Stiffness method 0.73 0.58 0.85 15 

West MSE wall (n = 14) 

Coherent Gravity method 1.40 1.04 2.06 21 

AASHTO Simplified method 1.30 0.95 1.96 23 

Ehrlich & Mitchell (1994) 0.87 0.69 1.19 17 

K-Stiffness method 0.65 0.42 1.27 39 
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for smooth planar reinforcements where interface friction was responsible for a majority 

of the resistance (Schlosser 1990). Figure 2.24(a) describes the stress transfer mechanism 

for smooth planer reinforcements. 

Ribbed reinforcements were developed by the Reinforced Earth Company to increase 

the amount of pullout resistance of steel reinforcements. In addition to generating friction 

along the reinforcement, ribbed reinforcements generate passive failure zones due to 

bearing in front of the ribs (Christopher et al. 1990b) as shown in Figure 2.24(b). Since 

performing direct shear interface friction tests on ribbed strips could not capture the 

complex soil reinforcement interaction, measuring the pullout resistance directly with 

pullout tests became the standard of practice (Schlosser 1990). 

Schlosser and Elias (1978) conducted a parametric study on soil-reinforcement 

interaction and load transfer. Figure 2.25 presents the load- displacement data for pullout 

tests on a smooth and a ribbed strip at the same overburden pressure, each with the same 

plan dimensions. The following was concluded in light of the experimental data: 

 At most working stress levels, displacement sufficient to mobilize passive 

resistance was not developed and resulted in similar behavior between smooth 

and ribbed strips. 

 Once the ribbed strip displaced relative to the soil, passive resistance began to 

dominate the load displacement response, with significant gain in resistance as 

compared to the force-displacement curves for smooth strips.  
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The soil-reinforcement interaction shown by the ribbed strips prompted Alimi et al. 

(1978) and Schlosser and Elias (1978) to develop an empirical design parameter referred 

to as the apparent friction coefficient (or friction bearing interaction factor), f*. The 

apparent friction coefficient is determined using load-displacement pullout test data by: 

 

 max*
v s

P
f

A
   (2.42) 

 

where Pmax is the maximum load observed during the pullout test.  

Schlosser and Elias (1978) tested several factors hypothesized to affect pullout 

resistance, which included: 

 strip width and height, 

 surface characteristics (ribbed or smooth),  

 relative density,  

 embedment length, and 

 effective overburden pressure. 

Of these factors, overburden stress, ʹ, relative density, and reinforcement surface 

characteristics had the largest effects on the apparent friction coefficient. It was observed 

that f* decreases as  increases, this was mainly attributed to dilation effects; that is, as 

the overburden pressure increases, dilation is suppressed and thus the excess normal 

pressures provided by the dilation decreases. This accounts for the increased apparent 

friction coefficients typically observed at lower confining pressures as shown in Figure 

2.26.  Unfortunately, researchers rarely provide basic classification information (e.g., 

gradation and angularity) with f* data and therefore the effects of these variables usually 

cannot be aggregated and quantified. Additionally, the development and peak magnitude 

of f* can also be influenced by the testing conditions, as described subsequently. 
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Figure 2.26. Apparent friction coefficient verses height of fill data used to originally calibrate the pullout design 

procedure (after McKittrick 1978). 

2.2.1.3 Pullout Test Design Considerations 

Pullout tests are typically performed in the laboratory using a large box with the 

overburden stress applied through an air or water bladder or full-scale tests where a 

sacrificial strip is placed during construction and pulled out using a hydraulic jack. The 

overburden pressure is not typically measured; rather, it is assumed that the full vertical 

overburden stress (e.g. the bladder pressure for the laboratory or z for the full-scale 

method) acts on the surface of the reinforcement. For these tests, it is required that the 

reinforcement length or the overburden pressure be limited to prevent yielding at the 

connection to the reinforcement.  

Palmeira and Milligan (1989) describe the design of different pullout tests and the 

effects of boundary conditions on the resulting behavior. The three aspects considered by 

Palmeira and Milligan (1989) were:  

 the uniformity of load application or top boundary condition; 

 the manner in which the strip exits the soil mass during the test; and,  

 the reinforcement embedment length.  

The top boundary condition was found to have some effect on the load-displacement 

response for steel grid reinforcements as shown in Figure 2.27. For the rigid boundary 
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condition, a rough rigid plate attached to a hydraulic actuator was used to apply the 

overburden pressure. For the flexible condition, a water filled bladder was used to apply 

the overburden pressure.  As shown in Figure 2.27, the top loading boundary condition 

didn’t affect the initial response, but a rigid boundary condition, which deviates 

significantly from the field condition, resulted in approximately 10 percent larger peak 

pullout resistance. 

 
Figure 2.27. Effect of top boundary condition on pullout test results with steel grid reinforcements (after 

Palmeira and Milligan 1989). 

Palmeira and Milligan (1989) concluded that neither the strip length nor the load 

application (rough rigid plate or pressure bladder) had a significant effect on the 

measured pullout force, but the boundary condition where the strip exits the soil mass did 

have a large effect on measured pullout resistance. It was found that large passive-type 

resisting stresses built up at the front of steel grid reinforcements, and locally increased 

the normal stress on the reinforcements, resulting in artificially high pullout resistance. 

These stresses were reduced when the front wall was lubricated. Figure 2.28 shows a 

large increase in peak bond strength for grid reinforcements when the front wall was not 

lubricated. However, the use of longer strips causes the front wall friction effects to be 
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reduced since the ratio of the front wall friction load contribution to the load contribution 

of the soil-reinforcement interaction is smaller. No comparative study of the effect of 

front wall friction on the pullout load measured using ribbed steel strip reinforcements 

has been conducted. Some studies have chosen to have the strip exit the soil away from 

the cell wall  using an intruded slot or pipe (e.g. Schlosser and Elias, 1978) as shown in 

Figure 2.29, however, it is unclear as to what the effect of the pipe interacting with the 

strip and soil would have on the magnitude of measured pullout resistance. 

 
Figure 2.28. Bond strength versus displacement of a steel grid for different front wall friction conditions  (after 

Palmeira and Milligan 1989). 
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Figure 2.29. Boundary conditions for different pullout test presented in literature (after Larson 1992). 

2.2.1.4 Development of Design Procedures for Pullout Resistance 

For a given soil-reinforcement combination, most pullout studies observed that a 

constant value of f* is obtained approximately 6 m below the top of the wall. This is the 

basis of the Allowable Stress Design (ASD) method outlined in Christopher et al. (1990) 

and which remains the standard of practice for steel ribbed strips (Berg et al. 2009).  The 

pullout data used in calibrating this design procedure is presented in Figure 2.26. 

As stated in Christopher et al. (1990a), the distribution of f* can be obtained in two 

ways: either by performing pullout tests with the backfill and reinforcement to be used in 

construction, or by calculating f* at the top of the wall using the coefficient of uniformity, 

Cu, of the retained fill as: 
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 * 1.2 log uf C    (2.43) 

 

and reducing linearly to: 

 * tanf    (2.44) 

 

at a depth of 6 m with the qualifier that f* ≤ 2 for all depths. This procedure results in a 

bilinear or tri-linear design curve, depending on the backfill characteristics, intended to 

follow a 95% confidence limit. However, this design model was calibrated using data 

from a variety of soil types and thus the model tends to underestimate f* when dilative 

backfill soils such as dense gravels are used.  

Other design procedures that have been proposed include those by Huang et al. 

(2012) and Miyata and Bathurst (2012). Using the same database as used to calibrate the 

current design model Huang et al. (2012) reported a Load and Resistance Factors Design 

(LRFD)-calibrated method for the internal stability of steel strip reinforced MSE walls. 

The intent of LRFD is to separate the uncertainty in the load from that of the resistance 

and use partial reduction or increasing factors to accommodate differences in uncertainty.  

LRFD-based procedures require that a model that accurately represents the statistical 

distribution of a sample population, and thus the design model presented in Figure 2.30 is 

not appropriate for use with current ASD design procedures. 
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resistance factor; however, this should not be confused with friction angle. For LRFD 

pullout design, the following must be satisfied (Berg et al. 2009): 

 max

* 2R e
v c

T
L

f R



   (2.47) 

 

The resistance factors of for the static and seismic conditions are typically  = 0.40 to 

0.75 and  = 1.0, respectively (Bathurst et al. 2008a; AASHTO 2010) 

. 

 

2.2.2 Design Methodology for External Stability 

The reinforced soil mass is treated similar to a gravity wall for purposes of 

determining the external stability of MSE walls. As with gravity walls, four external, or 

global, failure mechanisms are typically considered (Christopher et al. 1990a). These 

mechanisms include sliding, limiting eccentricity (overturning), bearing failure, and deep 

seated instability and are summarized in Figure 2.32. Christopher et al. (1990a) provides 

an in-depth discussion on design procedures for each mechanism listed above; the most 

current design standards incorporate LRFD procedures and can be found in Berg et al. 

(2009).  Because the focus of this research is on internal stability of MSE walls, 

interested readers are referred to Christopher et al. (1990a) and Berg et al. (2009). 
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Figure 2.32. Global stability failure mechanisms for MSE walls (after Liang 2004). 

2.3 Summary of the Literature Review 

The state of practice for determining internal stability of MSE walls uses semi-

empirical and empirical design procedures, some of which were developed over 30 years 

ago.  This chapter reviewed the soil mechanics principles necessary to understand soil-

reinforcement interaction with particular focus on the behavior of dilative soils, such as 

the response anticipated for compacted granular fill which is the focus of this study.  The 

development of design procedures for internal stability has been discussed with regard to 

the development of reinforcement loads as well as the resistance. Six methods for 

determining reinforcement loads have been historically used in North America. Of these, 

two are commonly used in the design of ribbed steel strip reinforcements: the Coherent 

Gravity and Simplified methods. A disadvantage of these two methods is that they do not 

directly account for global reinforcement stiffness in determining reinforcement loads or 
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compaction induced loads during construction. Additionally, both of these design 

methods are empirically based and therefore limited in their use by the conditions in the 

database of case histories by which they were calibrated, such as their height or 

reinforcement density. An alternative method for determining reinforcement loads is the 

method developed by Ehrlich and Mitchell (1994). The Ehrlich and Mitchell (1994) 

method is theory-based and is therefore not bound by a case history database; also, this 

method explicitly accounts for compaction-induced stresses as well global reinforcement 

stiffness.  Nonetheless, all of the models suffer from the requirement that a single friction 

angle be used in the computation of internal stresses; this presents a limitation that may 

be responsible for some inaccuracy in reinforcement load predictions, particularly for tall 

MSE walls that exhibit large stress gradients. 

In contrast to load prediction methods, resistance prediction methods, particularly 

pullout resistance, have remained relatively unchanged over the history of modern MSE 

wall design. The pullout resistance is calculated using a frictional model, however, due to 

dilation effects and accumulation of passive resistance, a constant friction coefficient 

cannot be used with varying vertical effective stresses. This forces the designer to have to 

choose between using empirically based models or performing pullout tests on the 

specific reinforcement-backfill combination to be used in construction. It is not usually 

practical to perform pullout tests since the specific backfill to be used is not typically 

known prior to construction. However, the empirical model currently in use does not take 

into account soil type and consequently the apparent friction coefficient is often under-

predicted when high strength-dilative soils are used.  This apparent conservatism has not 

been evaluated for tall walls, and therefore this gap in the literature should be 

investigated. 
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3.0 RESEARCH OBJECTIVES AND PROGRAM 

3.1 Research Objectives 

The main objective of this study is to develop an improved understanding of the 

interaction between soil and ribbed steel reinforcements in MSE walls constructed using 

well-graded sandy gravel backfill and its role in providing internal stability to the 

reinforced soil system. Much of this research is performed using materials and data from 

two very tall MSE walls built during the SeaTac 3rd Runway Expansion Project. 

However, the intent of this study is not to focus on any specific wall, but add to the 

general knowledge of MSE wall design and performance. The specific objectives of this 

study include: 

1. Characterization of the stress-strain behavior of the reinforcement material; 

2. Characterization of the stress-strain response of the reinforced soil (i.e., backfill) 

material; 

3. Determination of the soil-reinforcement interaction and pullout resistance of the 

reinforcement at varying normal stress magnitudes; 

4. Development of a pullout resistance design model for well graded sand-gravel 

mixtures; and 

5. Application of the backfill soil-specific and general models to the prediction of 

reinforcement loads and pullout resistance for two very tall MSE walls 

considering curvature of the backfill soil failure envelope. 

3.2 Research Program 

The research program undertaken to achieve the objectives includes: 

1. Perform tension tests on coupons cut from steel ribbed strips in order to measure 

its constitutive properties (Chapter 4); 

2. Perform consolidated-drained axisymmetric triaxial strength tests at various 

effective confining pressures and relative densities on the reinforced backfill 

(Chapter 4); 
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3. Compare the results of the triaxial testing to results from similar soils reported in 

the literature (Chapter 4); 

4. Determine the curvature of the Mohr Failure Envelope for the backfill soil 

(Chapter 4); 

5. Design and construct a pullout test apparatus for single reinforcement strips 

(Chapter 5); 

6. Perform a series laboratory pullout tests at various normal effective stresses on the 

reinforced backfill and steel ribbed strip reinforcements (Chapter 5); 

7. Develop a load-displacement model to estimate the pullout behavior of the 

reinforcements (Chapter 5); 

8. Develop a new backfill-specific and global ultimate pullout resistance model for 

predicting the variation in apparent friction coefficient with normal effective 

stress for gravel backfills and steel ribbed strip reinforcements (Chapter 5); 

9. Using the measured constitutive properties of the reinforcement material and the 

strain measurements from the SeaTac 3rd runway project, calculate the maximum 

reinforcement loads and stresses, and compare them to those calculated using the 

constitutive properties assumed during design (Chapter 6). 

10. Compare the reinforcement load distributions that were determined using a 

constant friction angle assumed during design to those computed using  the 

backfill specific Mohr Failure Envelope (Chapter 6); and, 

11. Compare the measured pullout resistances to those computed using the accepted 

AASHTO design model, the global design model, and the backfill-specific design 

model (Chapter 6). 
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4.0 MATERIAL CHARACTERIZATION 

The characterization of soil-reinforcement interaction requires the measurement of 

index properties and strength of the soil and the reinforcement materials. This chapter 

presents the results of strength and index tests conducted on the ribbed steel strip 

reinforcements and the reinforced backfill materials, and discusses their role in the 

context of MSE walls. 

4.1 Reinforcement Material Property Characterization 

Generally speaking, the reinforcement strips manufactured by the Reinforced Earth 

Co. are 50 mm wide by 4 mm thick (Berg et al. 2009). However, the MSE wall 

reinforcements used in this study were galvanized ribbed steel strips 50 mm (2 in.) wide 

by 6 mm (0.24 in.) thick, because these were used in the construction of the SeaTac 3rd 

Runway Expansion Project (Stuedlein et al. 2010). The dimensions of the ribbed steel 

strip reinforcements are presented in Figure 4.1. In order to properly evaluate tensile 

stress-strain behavior of these reinforcement strips, tension testing was performed on the 

actual steel strips used in the 3rd Runway Project.  

 
Figure 4.1. Steel ribbed reinforcement dimensions (a) elevation view, and (b) cross-section. 

4.1.1 Tension Testing on Reinforcement Material 

The constitutive parameters of the steel reinforcements such as the Young’s modulus, 

yield strength, and ultimate strength, were needed to assess the internal stability of the 

MSE wall (presented in Chapter 6). Another motivation for studying the stress-strain 

behavior of the reinforcement material is the calibration of numerical models for use in 
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analyzing the behavior of tall MSE walls. However, detailed numerical model calibration 

is beyond the scope of this thesis and therefor will not be discussed herein.  

To measure the constitutive properties mentioned above, tension tests were conducted 

on steel coupons. Six dog-bone-shaped steel coupons, with dimensions shown in Figure 

4.2, were cut from a MSE wall reinforcement strip. All tests were performed on an 

Instron universal testing machine in accordance with ASTM standards E8-08 and A370-

12a. An extensometer with a gauge length of 50 mm (2 in.) and a 6 mm (2.5 in.) range 

was used to measure strain through yielding and strain hardening. Due to the limited 

range of the extensometer the tests were paused at 10 percent strain and the extensometer 

removed. A computer-controlled camera was used to measure strain for the remainder of 

the test. The specimens were designated S1 through S6. Samples S1 and S2 are not 

considered in this study because of software malfunctions that led to an inability to make 

extensometer measurements. 

The cross head (Figure 4.2) speed was set to 3.05 mm per minute for all specimens. 

Approximately two and a half minutes was required to rupture each specimen. The 

information obtained from the coupon testing program includes the Young’s modulus, the 

upper and lower yield strength, the yield point elongation, the ultimate tensile strength, 

the maximum elongation, and the area reduction. The yield strength was determined 

using the Autographic Diagram Method (ASTM 2008), and the elongation and area 

reduction were measured after rupture.  

The stress-strain behavior of each specimen was similar to one another and produced 

an average modulus of elasticity of 211 GPa, a mean yield stress of approximately 530 

MPa, a average yield point elongation of 0.92 percent, and a mean ultimate tensile 

strength of 700 MPa, summarized in Table 4.1 and Figure 4.3. The “representative” 

values listed in Table 4.1 were chosen using judgment in order to reduce the effect of 

possible outliers and were selected to model the strips in subsequent chapters.  
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Figure 4.2. Typical coupon dimensions. 

 

 

 

 

 

Table 4.1. Summary of MSE wall reinforcement material testing. 

Specimen ID 
Modulus of 
Elasticity UYSa LYSb YPEc 

Ult. Tensile 
Strength 

Max. 
Elongation 

Area 
Reductiond 

  (GPa) (MPa) (MPa) (percent) (MPa) (percent) (percent) 

S3 208.1 531 527 0.97 701 23 53 

S4 207.2 529 526 0.88 690 22 50 

S5 220.4 528 526 0.89 701 21 50 

S6 209.0 534 530 0.94 707 23 54 

Average 211.2 531 527 0.92 700 22 52 

Representative 208.0 530 526 - 700 - - 
aUpper Yield Strength,  bLower Yield Strength, cYield Point Elongation, darea reduction was measured post rupture. 

50 mm

12.5 mm

57 mm R 12.5 mm 3.25 mm

19 mm

3.5023

250 mm

CL
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Approx. cross head location
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Figure 4.3. Stress - strain behavior of steel coupons. 
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4.2 Index and Shear Strength Testing of Reinforced Backfill 

The reinforced backfill material used in the SeaTac MSE walls was quarried from a 

glacial outwash deposit located near Kanaskat, Washington at approximately 

N47°19’09”, W121°52’57”. The gravel particles ranged from sub-angular to well-

rounded, and the sand particles ranged from angular to sub-round as determined by visual 

inspection. Gradation analysis, modified Proctor, maximum void ratio, and consolidated 

drained triaxial compression tests were performed on the backfill material. The results 

from these tests are discussed below. 

4.2.1 Gradation Analysis 

Approximately five cubic meters of the reinforced backfill material was delivered to 

the OSU geotechnical research laboratory. Six 32 kg samples were randomly extracted 

from the backfill material. Gradation analyses were performed on each sample and 

presented in Figure 4.4. The Quality Assurance (QA) limits in Figure 4.4 and Figure 4.5 

plotted as bold solid black lines represent the rejection criteria for the reinforced backfill 

used in the SeaTac 3rd Runway Project, and indicate that the gradation of the soil used as 

reinforced backfill could not fall outside these lines. 

The maximum and minimum grain sizes for each sample were similar, however, the 

average grain sizes, D50 ranged from 2 mm to 8 mm. The grain size distributions of all 

samples showed a “gap” with significantly small portions of material having grain sizes 

between 7 and 1 mm. Due to this “gap” the coefficient of curvature, Cc, was calculated  

to be less than 1, where Cc is determined using: 

 

 
 2

30

10 60
c

D
C

D D



  (4.1) 

 

where D10, D30, and D60 are the grain sizes at which 10, 30, and 60 percent of material (by 

mass) are smaller, respectively. According to the Unified Soil Classification System, 

gravels and sands with coefficients of curvature less than one or greater than three 
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classify as poorly-graded. However, if the ratio of D60 to D10, the coefficient of 

uniformity, Cu, is greater than four, a gravel is considered well-graded. Though the 

coefficient of uniformity for the average sample gradation was 42, none of the samples 

classified as well-graded due to the Cc criterion. 

 
Figure 4.4. Individual gradations of six random samples of reinforced backfill material and the upper and lower 

bound gradation limits used for quality assurance (QA) during the SeaTac 3rd runway expansion. 

The target gradation for the axisymmetric CD triaxial strength tests shown in Figure 

4.5 was established in order provide a standard test gradation. The target gradation was 

developed by limiting the maximum grain size to 25.4 mm (1 in) and averaging the 

results of the six gradations. The target gradation had a D50 = 6 mm, a Cu = 42, and a Cc = 

0.46. In order to reproduce the target gradation for subsequent CD triaxial testing, the 

backfill material was separated into 12 grain size ranges and then carefully recombined to 

produce the required 17 kg samples as shown in Figure 4.6. 
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4.2.2 Modified Proctor Tests 

The specifications for the SeaTac MSE wall required that the reinforced backfill be 

compacted at ± 2 percent of optimum water content, and to a minimum of 92 percent of 

the maximum modified Proctor dry density (Stuedlein et al. 2010b).  In order to 

determine the maximum modified Proctor dry density, and thus be able to select a target 

relative densities for the CD triaxial test specimens, modified Proctor tests were carried 

out on the target gradation. The modified Proctor tests were performed by FEI Testing & 

Inspection of Corvallis, OR (FEI 2011), and verified by the OSU geotechnical lab. 

Method C as defined in ASTM D1557 (ASTM 2009) was used. Method C required 

oversized particles to be removed and a correction to be applied to the resulting 

compaction curve. Both the uncorrected and corrected proctor curves, as reported by FEI 

(2011), are presented in Figure 4.7. The maximum dry unit weight and optimum moisture 

content was determined equal to 22.4 kN/m3 and 6.5 percent, respectively. 

 
Figure 4.7. Corrected and uncorrected Modified – C Proctor curves as reported by FEI (2011). 
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4.2.3 Maximum and Minimum Void Ratio and Relative Density 

The state of compaction of soils can be described using many metrics such as the dry 

unit weight, dry density, relative compaction, porosity, and void ratio. However, the state 

of compaction for granular materials is typically referred to in terms of relative density, 

Dr, given by: 

 max

max min
r

e e
D

e e





  (4.2) 

 

where e is the void ratio, emax is the maximum void ratio or the void ratio at the loosest 

possible state of the soil, and emin is the minimum void ratio or the void ratio at a soil’s 

densest possible state prior to particle crushing.  Relative density, when compared to void 

ratio alone, typically provides the best correlation for strength (Cornforth 1973), and will 

therefore be the basis of discussion for this study.  

To determine the maximum void ratio of the backfill material, Method A, described 

in ASTM D4254 (ASTM 2006a) was performed with the following exception: a 

Modified-C Proctor mold with a volume of 2124 cm3 (0.075 ft3) was used instead of the 

specified 2830 cm3 (0.10 ft3) mold due to availability of testing equipment.  Seven tests 

were performed on the backfill design gradation and a mean maximum void ratio, e max, 

of 0.365 and a standard deviation of 0.003 was determined as shown in Table 4.2. 

Table 4.2. Results from maximum void ratio tests on backfill material. 

Test No. 
Measured Void 

Ratio, e 

1 0.365 

2 0.363 

3 0.368 

4 0.368 

5 0.360 

6 0.368 

7 0.364 

Mean 0.365 

St. Dev. 0.003 
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An effort was made to determine the minimum void ratio, e min, using the procedure 

outlined in ASTM D4253 (ASTM 2006b) in which a surcharge is placed on top of a 

cylinder filled with dry soil and then placed on a vibrating table. Densities obtained using 

method D4253 were significantly less than those obtained during the modified Proctor 

tests and thus did not represent 100 percent relative density. Following the 

recommendation of Duncan et al. (2007), the maximum dry unit weight was designated 

as the corrected maximum modified proctor dry unit weight of 22.4 kN/m3, 

corresponding to a minimum void ratio of e min = 0.182. 

4.2.4 Consolidated Drained Triaxial Compression Tests 

An extensive series of consolidated drained triaxial compression tests was performed 

on the target gradation at three different relative densities. A triaxial testing system was 

developed at the OSU Geotechnical Laboratory in order to perform these tests and in 

doing so a triaxial testing manual, that complies with ASTM (2011b), was developed for 

future research. The manual provides a detailed account of the methods used herein and 

is given in Appendix A. The results from the CD triaxial tests are presented below. 

4.2.4.1 Specimen Compaction Protocol and Test Program 

In order to measure the effect of relative density on the constitutive behavior of the 

reinforced backfill, three target relative densities were considered for the CD triaxial 

testing series. These target relative densities were, 35, 55, and 65 percent, with 

corresponding target unit weights of 20.3, 20.9, and 21.3 kN/m3
, respectively. Each 

cylindrical specimen was compacted in eight 3.81 cm (1.5 in.) thick lifts using a 

Modified Proctor hammer and a 152.4 mm (6 in.) diameter by 304.8 mm (12 in.) tall split 

compaction mold. The number of blows per lift was adjusted depending on the target 

relative density. Only specimens with initial relative densities that achieved +/- 2.5 

percent of the target relative density were sheared in the test program. 

The saturation of each specimen was determined by measuring the B-value as 

prescribed by ASTM (2011b). Black and Lee (1973) found that for very stiff soil 
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structures the B-value corresponding to 100 percent saturation can be as low as 0.91. 

Therefore, a minimum B-value of 0.90 was required for all triaxial shear strength tests. 

Each specimen was sheared using the same axial strain rate of d/dt = 0.25 percent 

per minute. This axial strain rate is in accordance ASTM D7181 if a time to 90 percent 

consolidation, t90, of 1.5 minutes is conservatively assumed.  

Each specimen was given a name indicating the effective confining pressure and the 

overconsolidation ratio (OCR) as well as the “test number” (e.g., ’3 in kPa – OCR – test 

number). For example the third specimen sheared at 100 kPa with and OCR = 1 would be 

labeled as specimen 100-1-3. Eight tests with varying confining pressures were 

performed at each target relative density for a total of 24 tests. The target confining 

pressures included 10, 20, 50, 100, 200, 300, 500, and 1,000 kPa. Table 4.3 summarizes 

the results from each CD triaxial test. 

4.2.4.2 CD Triaxial Results 

In this study, the two controlled variables of interest were relative density and 

confining pressure. Originally the effect of OCR was considered, however after initial 

testing and further review of the literature, the effect of OCR was found to be 

insignificant as compared to relative density. 

Since relative density affects the behavior of granular materials it is important to note 

that for a given specimen the relative densities before and after consolidation were 

typically not the same. It was observed that the magnitude of change in relative density 

depended on the consolidation confining pressure and the initial relative density. Table 

4.3 and Figure 4.8 summarize the change in relative density for all of the strength tests. 

The increase in relative density due to consolidation is larger for tests with higher 

confining pressures and lower initial relative densities. In order to replicate field 

conditions, the initial (i.e., before consolidation) relative density is used as the basis for 

comparison. 
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Table 4.3. Summary table of CD triaxial results. 

Test  
designation 

Initial void 
ratio, 

BCe  a 

Initial 
relative 
density, 

,r BCD  a 

Void ratio 
after 

consolidation 

ACe b 

Relative 
density after 
consolidation 

,r ACD b 

Peak friction 
angle (deg.) 

peak   

10-1-9 0.301 0.369 0.301 0.368 43.7 

20-1-5 0.305 0.346 0.303 0.356 41.3 

50-1-6 0.306 0.340 0.300 0.372 39.3 

100-1-5 0.305 0.347 0.295 0.399 38.7 

200-1-6 0.304 0.353 0.291 0.421 40.0 

300-1-4 0.305 0.347 0.285 0.451 38.3 

500-1-4 0.304 0.350 0.285 0.454 39.1 

1000-1-3 0.303 0.354 0.276 0.500 38.8 

10-1-11 0.261 0.581c 0.261 0.581 50.1 

20-2-3 0.266 0.554 0.265 0.556 48.4 

50-1-4 0.269 0.537 0.266 0.552 45.6 

100-1-2 0.264 0.566 0.258 0.595 45.9 

200-1-1 0.269 0.535 0.260 0.584 44.2 

300-1-3 0.267 0.548 0.255 0.610 43.2 

500-1-1 0.265 0.559 0.251 0.634 41.6 

1000-1-2 0.266 0.553 0.243 0.674 40.9 

10-1-5 0.251 0.633 0.251 0.633 54.3 

20-1-3 0.251 0.634 0.250 0.641 51.6 

20-1-4 0.245 0.663 0.244 0.668 54.1 

50-1-3 0.244 0.669 0.242 0.683 51.1 

100-1-3 0.246 0.662 0.240 0.692 47.1 

200-1-2 0.250 0.639 0.241 0.686 45.2 

300-1-1 0.247 0.655 0.237 0.705 44.6 

500-1-3 0.244 0.668 0.233 0.730 43.3 

1000-1-1 0.246 0.660 0.227 0.760 41.6 
a Before Consolidation (BC), b After Consolidation (AC),  c Test 10 - 1 - 11 did not meet density criteria by 0.6 percent.
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Figure 4.8. Relative density versus confining pressure for all test (BC = before consolidation, AC = after 

consolidation). 

Figure 4.9, Figure 4.10, and Figure 4.11 show the effective principal stress 

difference-axial strain behavior for tests at 35, 55, and 65 percent relative density, 

respectively. As shown in Figure 4.11, strain softening occurred at confining pressures up 

to and including 10 atmospheres (i.e., 1000 kPa) for specimens at a relative density of 65 

percent. The amount of strain softening and the initial slopes of the stress-strain curves at 

55 percent relative density, shown in Figure 4.10, were smaller than that observed at 65 

percent relative density, and was stronger for data at 35 percent relative density, shown in 

Figure 4.9, as expected from well-known soil mechanics described in chapter 2. See 

Appendix B for individual stress-strain plots. 
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Figure 4.9. Effective principal stress difference versus axial strain for tests at 35 percent relative density. 

 
Figure 4.10. Effective principal stress difference versus axial strain for tests at 55 percent relative density. 
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Figure 4.11. Effective principal stress difference versus axial strain for tests at 65 percent relative density. 

An important constitutive parameter for soil is the Young’s modulus defined as the 

ratio of the change in principal stress difference to the change in axial strain. Due to the 

non-linear stress-strain response of soil, Young’s modulus is typically reported as an 

initial tangent modulus, Ei.  Figure 4.12(a) presents the variation in initial tangent 

modulus with effective confining pressure for the 24 specimens evaluated. The initial 

tangent modulus was computed by dividing the principal stress difference at 

approximately 0.1 percent axial strain by the corresponding axial strain. In general Ei was 

found to vary with ’3 according to Equation 2.9 (Duncan et al. 1980): 
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where K is the modulus number, n is the modulus exponent, and Patm is atmospheric 

pressure. 
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The initial tangent modulus tended to be larger for specimens sheared at larger 

effective confining pressures and greater relative densities. Computed values of initial 

tangent modulus ranged from 18 to 165 MPa. Due to fluctuations in pressure supply, 

larger variability was observed in Ei for specimens sheared at lower confining pressures, 

consistent with other mechanical properties as described subsequently. Due to this 

variability the initial tangent modulus versus confining pressure was plotted again with 

only those specimens sheared at ’3 > 20 kPa and presented in Figure 4.12(b). With the 

specimens at lower confining pressure removed two general patterns became apparent: 

increasing the relative density caused K to increase and the modulus exponent n to 

decrease. 
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Figure 4.12. Initial tangent modules versus effective confining pressure normalized to atmospheric pressure for 

(a) all specimens and (b) excluding specimens sheared at ’3 ≤ 20 kPa.  
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For CD triaxial strength tests, failure is typically defined by the maximum principal 

stress difference (’1-’3)max, the maximum principal stress ratio (’1/’3)max, or at a 

predetermined amount of shear strain. For the present study, failure was defined as the 

maximum principal stress ratio as it provides a convenient way to visualize trends in the 

stress-strain response over a large range in confining pressures. Principal stress ratio 

versus axial strain for tests at 35, 55, and 65 percent relative density are presented in 

Figure 4.13, Figure 4.14, and Figure 4.15, respectively. The principal stress ratio 

increases gradually for tests sheared at ’3 = 1000 kPa to a maximum value at axial 

strains greater than 5 percent. For specimens sheared at ’3 < 1000 kPa, the principal 

stress ratio increases more rapidly, reaching a distinct peak before decreasing to a 

residual value approximately equal to that of the specimen sheared at ’3 = 1000 kPa. 

The rate of post-peak decay was greater for specimens sheared at lower confining 

pressures and higher relative densities. This behavior indicates that granular soil exhibits 

more dilatancy at lower confining pressures and higher relative densities, constant with 

values reported by Taylor (1948), Bishop (1954), Rowe (1962), Lee and Seed (1967), 

Rowe (1969), and Bolton (1986). Generally, the peak principal stress ratio tended to be 

larger at higher relative densities. Furthermore, the peak principal stress occurs at larger 

axial strains as the effective confining pressure increases, indicating that “failure” occurs 

at larger strains for specimens sheared at higher effective confining pressures. Figure 4.17 

presents the principal stress ratio and axial strain at failure for all test specimens. The 

previous observation that the peak principal stress ratio tends to be larger for specimens 

with higher relative densities is reinforced by presenting Figure 4.18 and Figure 4.19.  
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Figure 4.13. Principal stress ratio versus axial strain for tests at 35 percent relative density. 

 
Figure 4.14. Principal stress ratio versus axial strain for tests at 55 percent relative density. 
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Figure 4.15. Principal stress ratio versus axial strain for tests at 65 percent relative density. 

 
Figure 4.16. Principal stress ratio at failure versus axial strain at failure. 
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The volumetric behavior of dense granular materials is unique as it tends to increase 

in volume as it shears. Figure 4.17, Figure 4.18 and Figure 4.19 show the volumetric 

strain versus axial strain for specimens at 35, 55, and 65 percent relative density, 

respectively. Initially all specimens displayed contractive behavior (positive volumetric 

strain; note: expansion is considered negative in this thesis). For denser specimens (i.e. 

specimens with Dr = 55 or 65 percent) and for loose specimens sheared at lower 

confining pressures, the slope of the volumetric strain versus axial strain reversed, 

becoming progressively more negative until failure occurred corresponding to an 

inflection point on the volumetric strain-axial strain curve. For loose specimens sheared 

at higher confining pressures (i.e., tests 500-1-4 and 1000-1-3) the volumetric strain 

increased near-monotonically throughout the range in axial strains experienced. The 

volumetric strains recorded at large axial strains for relative densities of 55 and 65 

percent shows continued linear dilative behavior. This behavior does not agree with 

evidence  that suggests soil in a shear zone will reach a critical state where shearing can 

occur without volume change (Roscoe 1970). This observed linear dilation may be 

explained by considering that the deformed shape of the specimen progressively deviates 

from the assumed deformed shape due to membrane and end restraints (Bishop and 

Henkel 1962). The difference between the assumed and observed triaxial deformation is 

shown conceptually in Figure 4.20. Since the volumetric strains recorded at larger axial 

strains may be inaccurate, the volumetric behavior at these strains was not considered. 

As discussed in Chapter 2, the maximum rate of dilation is defined as the ratio of 

change in volumetric strain and change in axial strain during the dilative portion of 

shearing, (v/1)max. As shown in Figure 4.17, Figure 4.18, and Figure 4.19 the 

maximum dilation rate depended on the confining pressure and relative density. 

Specimens sheared at low confining pressures and higher relative densities tended to have 

larger dilations rates. Dilation rates ranged from 2.83 for the specimen sheared at 10 kPa 

with a relative density of 65 percent, to 0.14 for the specimen sheared at 1000 kPa with a 

relative density of 35 percent. 
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Figure 4.17. Volumetric strain versus axial strain for tests at 35 percent relative density. 

 
Figure 4.18. Volumetric strain versus axial strain for tests at 55 percent relative density. 
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Figure 4.19. Volumetric strain versus axial strain for tests at 65 percent relative density. 

 
Figure 4.20. Difference between the (a) assumed and (b) observed deformed shape of triaxial specimens.  
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4.2.4.3 Friction Angles 

Chapter 2 describes the basic behavior of granular soils and some typical strength 

parameters used to calculate the shear strength for different conditions. For each 

specimen, the friction angle was calculated twice using:  

 

 1 1 3

1 3

' '
' sin

' '

 
 

  
   

  (4.3) 

 

First, the friction angle was calculated using the principal stresses at failure (i.e., at the 

maximum principal stress ratio), defined as the effective peak friction angle, ’d, and then 

using the residual principal stresses to compute what is termed the effective residual 

friction angle, ’r.  

Figure 4.21 presents the variation in peak friction angle with effective confining 

pressure and the effective confining pressure normalized to atmospheric pressure (Patm = 

101.3 kPa = 14.7 psi). Generally, the peak friction angle decreases linearly with an 

increase in natural logarithm of effective confining stress as shown by coefficients of 

determination, R2, near unity. Peak friction angles ranged from 54° for the specimen 

sheared at 10 kPa with a relative density of 65 percent, to 39° for the specimen sheared at 

1000 kPa with a relative density of 35 percent. 

Similar to the dilation rate, it was observed that the peak friction angle was dependent 

on relative density. The log-linear rate of decrease of peak friction angle was greater for 

specimens sheared at higher relative densities. For specimens sheared at 65 percent 

relative density, a reduction of 7° per log cycle was observed, whereas a 2° reduction per 

log cycle was observed for samples sheared at 35 percent relative density. The smaller 

reduction in friction angles for specimens sheared at Dr = 35 percent may be due to the 

significant densification that occurred in specimens consolidated to ’3 > 100 kPa. The 

consolidation-based increase in relative density would tend to result in an increase in 

friction angle.  
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Figure 4.21. Peak friction angles as measured in triaxial compression versus (a) ’3 and (b) ’3/Patm. 
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Effective residual friction angles were computed for each test and are presented in 

Figure 4.22. The “residual” principal stresses were taken at 10 percent axial strain, or at 

the last recorded principal stresses prior to termination of the tests . 

Residual friction angles were fairly constant over the range of confining pressures 

tested. This behavior may indicate that the sheared region of the specimens reached a 

pseudo-critical state. When considering all 24 tests, the average residual friction angle 

was 39.5 degrees. However, based on an analysis of variance (ANOVA) F-test, the mean 

residual friction angle for specimens sheared at 35 percent relative density was found to 

be significantly different from those sheared at 55 and 65 percent with a 5 percent 

significance level (p-value = 0.0003).   

The average residual friction angles for specimens tested at relative densities of 35, 

55, and 65 percent are presented in Table 4.4. Specimens tested at low confining 

pressures produced considerably more scatter than those tested at higher pressures. This 

behavior may be due to small specimen imperfections being amplified by the lack of 

confinement, as well as the sensitivity to flucuations in supply pressure as discribed 

previusly. Two specimens in particular, 10-1-5 65 (Dr = 65 percent) and 20-2-3 (Dr = 55 

percent), were suspected of being outliers with residual friction angles differing by more 

than 2 standard deviations from their mean. 

Table 4.4. Average and standard deviation of residual friction angles for specimens sheared at 35, 55, and 65 
percent relative densities. 

Dr (%) 'r,avg (deg)  Standard Deviation (deg) 

35 38.2 0.89 

55 39.6 2.06 

65 40.4 1.64 

All 39.5 1.79 
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Figure 4.22. Residual friction angles as measured in triaxial compression. 
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Figure 4.23 presents the dilation angles calculated using the Rowe (1962) approach 

and the method by Tatsuoka (1987) for all tests with Dr = 65 percent; Table 4.5 presents 

dilation angles for each of the 24 specimens. The ratio of dilation angles calculated using 

the approach by Rowe (1962) to those computed using the method by Tatsuoka (1987) 

varies from 0.75 to 0.92 with mean and median of 0.83 and 0.84, respectively. 

 
Figure 4.23. Comparison of dilation angles calculated using Tatsuoka (1987) and Rowe (1962) for Dr = 65 

percent. 

Figure 4.24 presents the variation in peak dilation angle following Tatsuoka (1987) 

with effective confining pressure normalized to atmospheric pressure. Generally, the peak 

dilation angle decreases linearly with an increase in the natural logarithm of effective 

confining stress as shown by coefficients of determination, R2, near unity. Peak dilation 

 = -9.5ln('3/Patm) + 24.7
R² = 0.942

 = -8.6ln('3/Patm) + 21.1
R² = 0.931

0

10

20

30

40

50

0.1 1 10

D
ila

ti
o

n
 a

n
g

le
, 


(d
eg

.)

Normalized effective confining pressure, '3 /Patm

Tasuoka
Rowe

Tatsuoka (1987):  = sin‐1 [‐(dv /d1)/(2‐dv /d1)]
Rowe (1962): = ('d ‐ 'f)



83 
 

angles ranged from 40° for the specimen sheared at 10 kPa with a relative density of 65 

percent, to -0.2° for the specimen sheared at 1000 kPa with a relative density of 35 

percent. 

Similar to the peak friction angle, it was observed that the peak dilation angle was 

dependent on relative density and confining stress. The log-linear rate of decrease of peak 

dilation angle was greater for specimens sheared at higher relative densities. For 

specimens sheared at 65 percent relative density, a reduction of 9 degrees per log cycle 

was observed, whereas only a 6 degrees reduction was observed for samples sheared at 

35 percent relative density. 

 
Figure 4.24. Dilation angles calculated using Tatsuoka (1987) versus normalized confining pressure.
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Table 4.5. Summary table of dilation angles calculated using Tatsuoka (1987) and Rowe (1962). 

Test ID 
(σ'3 - OCR - Test #) 

Dr 

 BCa '3/Patm 


(Tatsuoka 1987) 

(deg.)  


(Rowe 1962) 

 (deg.)  

10-1-9 0.369 0.10 30.8 27.0 

20-1-5 0.346 0.20 25.3 23.1 

50-1-6 0.340 0.49 12.1 10.1 

100-1-5 0.347 0.99 11.7 9.8 

200-1-6 0.353 1.97 4.5 3.5 

300-1-4 0.347 2.95 2.9 2.3 

500-1-4 0.350 4.91 2.6 2.1 

1000-1-3 0.354 9.82 -0.3 -0.2 

10-1-11 0.581b 0.12 33.5 28.2 

20-2-3 0.554 0.19 26.7 22.1 

50-1-4 0.537 0.51 24.2 20.3 

100-1-2 0.566 0.99 18.0 14.2 

200-1-1 0.535 1.98 14.0 11.0 

300-1-3 0.548 2.97 8.7 6.8 

500-1-1 0.559 4.93 4.8 3.7 

1000-1-2 0.553 9.67 1.2 1.0 

10-1-5 0.633 0.10 40.6 35.1 

20-1-3 0.634 0.20 37.7 32.7 

20-1-4 0.663 0.20 46.0 42.2 

50-1-3 0.669 0.51 34.7 29.3 

100-1-3 0.662 1.00 28.4 23.9 

200-1-2 0.639 1.96 17.0 13.5 

300-1-1 0.655 2.95 15.3 12.0 

500-1-3 0.668 4.76 7.6 5.8 

1000-1-1 0.660 9.84 2.3 1.7 
a Before Consolidation (BC), b Test 10 - 1 - 11 did not meet density criteria by 0.6 percent.  
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To better visualize the combined effect of relative density and confining pressure on 

the volumetric response of the backfill soil, the three variables were plotted together to 

create what is typically referred to as a Peacock diagram (Holtz and Kovacs 1981). In 

Figure 4.25, a three dimensional surface presented as contour lines was created by 

plotting the relative density after consolidation on the y-axis, the normalized confining 

pressure on the x-axis, and the volumetric strains at failure on the z-axis. Because the 

relative density after consolidation is referenced in Figure 4.25, this diagram may best 

represent the global shearing response of the granular material investigated from a 

fundamental standpoint. In general, the most positive volumetric strains, indicating 

contractive behavior at failure, occur at high effective confining pressures and low 

relative densities. The most negative volumetric strains, indicating dilative behavior at 

failure, occur at lower confining pressures and higher relative densities. Additionally, the 

contour lines become more closely spaced at lower confining pressure indicating that the 

effect of dilation increases nonlinearly as the confining pressure decreases. This behavior 

reinforces the trends observed with the dilation angles in Figure 4.24. Using the Peacock 

diagram, the volumetric strain at failure may be easily estimated for any combination of 

effective confining pressure and post-consolidation relative density. 
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Figure 4.25: Peacock diagram showing the relationship between volumetric strain at failure (shown by the 

contour lines), relative density and confining pressure.  
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response in triaxial compression. Conclusions regarding the effect of volumetric response 

were not provided by Verdugo and Hoz (2007). Table 4.6 presents the index properties 

for the soils considered by Verdugo and Hoz (2007).  

Table 4.6. Gradation classification information for five of the soil gradations tested by Verdugo and Hoz (2007) 
and the present study. 

Soil D50 (mm) 
D60 

(mm) 
D30 

(mm) 
D10 

(mm) 
Cu Cc 

γmin 
(kN/m3) 

γmax 
(kN/m3) 

Dr 

A-1 12.7 15.8 6.6 1.9 8.3 1.4 17.6 20.2 0.80 

M-1 2.4 3.6 1.1 0.5 6.7 0.7 16.0 19.7 0.80 

M-2 3.8 5.4 1.2 0.3 16.1 0.8 17.8 21.3 0.70 

M-3 5.7 6.8 2.8 0.3 21.2 3.5 17.5 19.9 0.70 

P-1 2.4 3.7 0.7 0.1 28.8 1.1 17.1 21.6 0.80 
Present 
Study 

6.0 9.5 1.0 0.2 39.6 0.4 19.4 22.4 0.65 

 

By observing the gradations plotted in Figure 4.26, the soils with gradations most 

parallel to the target gradation used in the present study appear to be soils A-1 and M-2.  

The principal effective stress difference-axial strain and volumetric strain-axial strain 

data for soils A-1 and M-2 are compared to those of the backfill soil in Figure 4.27 and 

Figure 4.28, respectively.  



88 
 

 
Figure 4.26. Comparison of Grain size distributions from Verdugo and Hoz (2007) and the present study. 
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For soil M-2, shown in Figure 4.28, the initial stiffness of the specimens were less 

than those of the backfill soil, though the peak and residual principal stress differences 

for both soils were very similar. The maximum negative volumetric strains were similar 

for soil M-2 and the backfill, though the dilation rates appeared to be much lower for soil 

M-2. Additionally, the longevity of the initial contractive portion of the volumetric strain-

axial strain curves was much larger for soil M-2 than for the backfill soil. The 

discrepancies between these soils regarding the stress-strain and volumetric behavior 

were mainly attributed to variations in general soil characteristics such as surface 

roughness and angularity. However, differences in relative densities should be noted as 

well. The wide range in responses between these relatively similar soils emphasizes the 

need for soil-specific testing. 
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Figure 4.27. Deviatoric stress-axial strain and volumetric strain-axial strain comparison plots for soil A-1 

(Verdugo and Hoz 2007) and the present study. 
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Figure 4.28. Deviatoric stress-axial strain and volumetric strain-axial strain comparison plots for soil M-2 

(Verdugo and Hoz 2007) and the present study. 
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In order to compare the volumetric response of each soil type, the maximum dilation 

angles were calculated for each test using the Tasuoka (1987) method. The computed 

dilation angles are presented in Figure 4.29 along with the maximum dilation angles 

computed for the backfill soil at 65 percent relative density. For confining stresses of 200 

kPa and greater, the dilation angles for the present study are within the range presented 

by Verdugo and Hoz (2007). However, there were no data to confirm the higher dilation 

angles computed for confining pressures of 100 kPa and less.  

 
Figure 4.29. Comparison of dilation angle versus normalized confining pressure for Verdugo and Hoz (2007) 

and the present study with Dr = 65 percent (dilation angles calculated using Equation 4.4). 
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stress strain and volumetric strain versus axial strain data. Section 2.1.5 discusses the 

procedure used in calibrating this model. 

The fitting parameters for relative densities of 35, 55, and 65 percent are presented in 

Table 4.7. Figure 4.30 presents the initial tangent moduli and bulk moduli calculated for 

each specimen. Similar to the initial tangent moduli, Ei, presented in Figure 4.12, the 

initial tangent moduli calculated using Duncan and Chang (1970) have modulus 

exponents of approximately 0.4. However, the initial tangent moduli calculated using 

Duncan and Chang (1970) are significantly larger than those measured directly. This 

discrepancy arises from the hyperbolic relationship not having a theoretical basis, but 

rather an empirical one. The larger tangent modulus values simply provide a better fit 

over the full range in the data. 

The bulk moduli, B, have exponents of approximately 0.9. Although the bulk moduli 

are presented here, the hyperbolic model cannot predict the volumetric response of 

dilative soil beyond initial contraction phases as described in Chapter 2 and Duncan et al. 

(1980).  Figure 4.31 compares the fit of the Duncan and Chang (1970) hyperbolic model 

to the CD triaxial data for specimens sheared at a relative density of 65 percent. The 

Duncan and Chang (1970) model fits the general trend of the stress-strain behavior for 

working stress levels ranging from 0.5 to 3 percent axial strain for ’3 ranging from 10 to 

1000 kPa, respectively. However, as specimens approach or achieve failure, the predicted 

stress-strain curve deviates significantly from that observed. 

Table 4.7. Hyperbolic fitting parameters determined using the procedures outlined in Duncan and Chang 
(1970). 

Relative density, 
Dr (percent) 

Average failure 
ratio, Rf(average) 

Bulk Modulus, 
Kb 

Bulk modulus 
exponent, m 

Modulus, 
K 

Modulus 
exponent, n 

65 0.644 114.3 0.980 1200.0 0.475 

55 0.673 103.3 0.961 893.1 0.525 

35 0.719 104.6 0.861 725.7 0.383 
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Figure 4.30. Normalized tangent modulus verse normalized confining pressures for relative densities of (a) 35, 

(b) 55, and (c) 65 percent. 
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Figure 4.31. Comparison of test data to hyperbolic fit for 65 percent relative density. 
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The Duncan and Chang (1970) procedure uses only three points per triaxial test in its 

calibration. In an attempt to improve the hyperbolic fit, a least sum of squared errors 

(LSSE) procedure was applied to the part of the stress-strain curve prior to the onset of 

strain-softening. Since these models are only calibrated to working-level stresses, they 

are only applicable to a limited range of axial strains of approximately one to four percent 

depending on the confining stress. Figure 4.32 and Figure 4.33 compare the measured 

deviatoric stress-axial strain response of specimens 200-1-1 and 1000-1-1, respectively, 

and the fit of their hyperbolic models calibrated using the LSSE and the Duncan and 

Chang (1970) procedures. For specimen 200-1-1, both calibration procedures produced 

similar results which closely fit the measured data up to axial strains of approximately 1.5 

percent. For the specimen 1000-1-1, the LSSE procedure produced a fit closer to the 

measured response, though the difference was small. To further compare the two 

methods, the initial tangent modulus was determined for each of the specimens sheared at 

65 percent relative density using the LSSE Procedure and plotted against those calculated 

using the Duncan and Chang (1970) procedure and presented in Figure 4.34. Though 

some variation is observed, the modulus number and modulus exponents determined 

using both methods are similar. Overall, the LSSE procedure did not show a large 

advantage over the Duncan and Chang (1970) procedure besides being slightly more 

accurate over small strains. 
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Figure 4.32. Comparison of  hyperbolic fit using the LSSE procedure, and the Duncan Chang (1980) procedure 

to the principal stress difference-axial strain measurements from test 200-1-1. 

 
Figure 4.33. Comparison of  hyperbolic fit using the LSSE procedure, and the Duncan Chang (1980) procedure 

to the principal stress difference-axial strain measurements from test 1000-1-1. 
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Figure 4.34. Comparison between the LSSE and Duncan and Chang (1970) fitting procedures showing 

normalized tangent modulus verse normalized confining pressures for tests with Dr = 65percent. 

4.5 Summary 

In this chapter the material characteristics for the ribbed steel strip reinforcements and 

reinforced backfill materials were presented along with a discussion on the testing 

procedures used to measure the material properties. Tension testing was performed on 

coupons of the reinforcement material to provide the yield strength and modulus of 

elasticity, which were determined equal to 700 MPa and 208 GPa, respectively. Axial 

symmetric triaxial compression tests were performed on 15 cm diameter specimens of the 

reinforced backfill material compacted to relative densities of 35, 55, and 65 percent and 

tested at effective confining pressures ranging from 10 to 1,000 kPa. Peak friction angles 

D&C (1970): Ei /Patm  = 1200(σ'3/Patm)0.475

LSSE: Ei /Patm = 1188(σ'3/Patm)0.472

100

1000

10000

0.01 0.1 1 10

E
i /

P
at

m

Normalized effective confining pressure, '3 /Patm

Duncan and Chang (1970) Procedure LSSE procedure



99 
 

ranging from 54 to 39 degrees were measured. The dilation angles were calculated using 

the methods by Rowe (1962), and Tatsuoka (1987) and resulted in dilation angles ranging 

from 45 to -0.3 degrees with ratios of dilation angles calculated using the method by 

Rowe (1962) to those computed using the method by Tatsuoka (1987) varied from 0.75 

to 0.9.  

The stress-strain and volumetric behavior of the reinforced backfill material was 

compared to the behavior of two soils reported by Verdugo and Haz (2007) and found to 

behave relatively similar. Finally, the Duncan and Chang (1970) hyperbolic model was 

calibrated to the stress-strain and volumetric behavior recorded during triaxial testing. 

Modulus numbers ranging from 726 to 1200, and modulus exponents ranged from 0.385 

to 0.525 were observed. The appropriateness of the Duncan and Chang (1970) stress 

strain model was visually analyzed and determined acceptable at working stress levels 

from approximately one to four percent depending on the effective confining stress. In 

the following chapter the interaction between the reinforced backfill material and the 

ribbed steel strip reinforcements is discussed and data from laboratory pullout tests are 

presented. 
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5.0 SOIL-REINFORCEMENT INTERACTION 

In-situ and laboratory pullout tests are usually performed to measure the apparent 

friction coefficient, f*, between a MSE wall reinforcement strip and the surrounding 

backfill (as discussed in Section 2.2.1.3). In current MSE wall design, conservative 

design models for f* are typically used rather than performing pullout tests on specific 

backfill-reinforcement combinations as this can make up for poor field quality control on 

compaction. The f* design models were calibrated with a wide variety of soils including 

fine sands with friction angles as low as 35 degrees and therefore under-predict the 

apparent friction coefficient when high strength sand-gravel mixtures are used as backfill.  

Since a major focus of this study is to accurately measure the interaction between a 

specific backfill and specific reinforcement, it was deemed necessary to perform pullout 

tests and produce specific f* design models for the backfill under consideration. This 

chapter discusses the design of a laboratory pullout test apparatus, the methods used in 

conducting the pullout tests, and the observed interactions between the backfill soil and 

the ribbed reinforcement. Additionally, two new f* design models will be presented: one 

calibrated to the specific backfill being tested, and a second calibrated using all available 

data from pullout tests on gravels and sand-gravel mixtures.  

5.1 Pullout Test Apparatus for Single Reinforcement Strips  

A pullout test apparatus was designed to measure the load-displacement behavior of 

single reinforcement strips. This system consisted of a pullout box, air bladder, hydraulic 

actuator, reaction frame, two load cells, string potentiometer, and data acquisition system 

(DAQ). 

The pullout test box was designed to accommodate a 2 m long segment of 

reinforcement strip within a compacted rectangular prism of backfill soil with dimensions 

of 0.356 m (14 in.) in height, 0.456 m (17.75 in.) in width, and 2.16 m (84 in.) in length. 

Refer to Appendix C for a full set of pullout box design schematics. The pullout box was 

designed to house an air bladder capable of applying 300 kPa (gauge) uniform pressure to 

the top of the backfill. The structure of the box consists of MC 4 x 13.8 channel sections, 

9.5 mm (3/8 in.) thick steel plates and 12.7 mm (1/2 in.) A354 (fu = 150 ksi) threaded 
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rods configured as shown in Figure 5.1 and Figure 5.2. The design calculations are 

presented in Appendix D which were performed using AISC (2010). 

 
Figure 5.1. Schematic of the pullout box with dimensions in mm. 
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The air bladder used consisted of a common queen size inflatable mattress with a 

modified valve capable of being attached to a pneumatic regulator. The integrity of the 

air bladder was checked periodically throughout each test by momentarily shutting off the 

air supply while still being able to measure the pressure inside the bladder.   

All tests were performed in a displacement controlled manner with a displacement 

rate of 1 mm (0.04 in) per minute. The displacement of the reinforcement strip was 

independently measured using a string potentiometer (M/N: LX-PA-15-P10K; S/N: 

38120817), shown in Figure 5.5  secured to the reaction beam. 

5.2 Test Program 

The two main motivations for performing these single strip pullout tests were: 

 to expand the current pullout test database for high strength reinforced gravel 

backfill; and, 

 to produce baseline results for comparison with subsequent multi-strip pullout 

tests (not included in this thesis). 

Currently, the number of well documented pullout tests for high strength sand-gravel 

mixtures using ribbed steel strip reinforcements is small. By combining the results from 

the present study with those reported in the literature, new f* design models for use with 

gravels and sand-gravel mixtures were able to be developed. 
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The present study is a part of a larger group of research projects aimed at analyzing 

the behavior of tall MSE walls. Due to the large stresses developed in tall MSE walls, 

small reinforcement spacing, both vertical and horizontal, is required to develop 

sufficient resistance. However, the effect of reinforcement spacing on the backfill-

reinforcement interaction is not well understood. Research is currently being carried out 

that employs a larger pullout apparatus used to perform tests with multiple reinforcement 

strips at varying horizontal and vertical spacing. In subsequent research, the results from 

the present study will be used as a baseline in the analysis of these multi-strip pullout test 

results. 

The test program for the present study included 20 pullout tests at vertical effective 

stresses ranging from 10 to 300 kPa. All tests had the same target relative density of 65 

percent corresponding to a relative compaction of 95 percent and a dry unit weight of 

21.3 kN/m3 (135.6 pcf). Each of the twenty pullout test specimens were given a unique 

designation consisting of the vertical effective stress the specimen was subjected to, and a 

subset chronologic indication number. For example, the fourth test performed at a vertical 

effective stress of 100 kPa was given the designation of 100-4. Table 5.1 provides the 

designations of each test considered in the present study. 

Table 5.1. Pullout tests considered in the present study. 

Single strip pullout test designations 

10-1 100-5 

20-1 100-6 

50-1 150-1 

50-2 150-2 

50-3 150-3 

75-1 150-4 

100-1 200-1 

100-2 200-2 

100-3 250-1 

100-4 300-1 
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Compaction verification was completed with a Nuclear Density Gauge (NDG) on the 

first test specimen. The initial NDG testing was performed by FEI (2012a) by taking 3 

measurements: one approximately 0.3 m (1 ft.) from the north end of the box, one at 

approximately the center and one approximately 0.3 m from the south end of the box. 

The average relative compaction was found to be 94 percent which corresponded to a dry 

unit weight of 21.03 kN/m3 (133.9 pcf). After reviewing the initial NDG test results it 

was decided that no further density verification was needed as long as the same 

compaction procedure was strictly followed for the remaining tests. However, after 

observing relatively high variability in the peak pullout load between tests with the same 

vertical effective stress, as described subsequently, it was suspected that variations in 

density were possible 

In order to frequently measure the dry unit weight of each specimen, a lower cost 

alternative to the NDG was required. Due to the availability of testing equipment, the 

Balloon Density Apparatus (BDA) shown in Figure 5.7 was selected. The dry unit 

weights of two more specimens were measured with both the NDG (FEI 2012b; c) and 

the BDA. In order to test the same soil mass with each device, the balloon density tests 

were conducted between where the source rod of NDG was driven and where the photon 

sensor was located as shown in Figure 5.8.  

 
Figure 5.7. Balloon density apparatus (BDA). 
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Figure 5.8. Location of balloon density excavation relative to the nuclear density gauge (modified from Holtz et 

al. (2011) and Troxler Electronic Laboratories Inc.). 

On average, the dry unit weight was 0.55 kN/m3 (3.5 pcf) higher when measured with 

the BDA. Since the NDG test is the standard test used in industry, the average difference 

(0.55 kN/m3) was subtracted from the dry unit weights of subsequent test specimens 

measured with the BDA. Figure 5.9 shows the variation in the measured relative 

compaction within and between specimens. The maximum and minimum recorded value 

was 103 and 88 percent, respectively, with a global median and global mean was 95.5 

and 96.1 percent, respectively. The consequences of these variations are discussed in 

Section 5.4. 

5.4 Single Reinforcement Strip Pullout Resistance 

As mentioned previously, each pullout test was conducted at a specific vertical 

effective stress ranging from 10 kPa to 300 kPa. The vertical effective stress was the 

single controlled variable for the pullout test program.  
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Figure 5.9. Variation in corrected relative compaction for pullout test specimens measured with the BDA. 

5.4.1 Interpretation of Pullout Tests 

In general, the load-displacement behavior was categorized into three different parts: 

initial non-slip resistance, monotonic accumulation of resistance, and a transition to the 

development of reinforcement slip with a reduction in resistance (Figure 5.10). Initially, 
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relative to the soil was initiated was referred to as the initial non-slip resistance and is 

shown in Figure 5.10(b). The initial non-slip resistance develops from the passive rib 
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As the reinforcement strips began to displace under the applied loading, the resistance 

increased monotonically until slippage between the reinforcement and the surrounding 

soil occurred. The initial of the reinforcement strips evaluated in this study slippage 

typically occurred between 8 and 16 mm of displacement. 

After the initial slippage occurred, the pullout resistance generally continued to 

increase with small sporadic reductions as slipping continued. Larger cycles of reductions 

followed by gradual increases in resistance were also observed in many of the tests. 

These resistance cycles were attributed to larger particles being overridden or crushed by 

the reinforcement ribs resulting in losses of passive resistance and dilation-induced 

confining pressures. Figure 5.11 shows a broken gravel particle found near a 

reinforcement rib subsequent to testing. Pullout resistance typically decreased noticeably 

with continued local variations at approximately 60 mm of displacement.  
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Figure 5.10. Pullout resistance vs. reinforcement strip displacement curve for test 200-2 showing (a) the full 

range in displacement, and (b) an expanded view of the initial load-displacement and non-slip resistance. 
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Figure 5.12 shows the load-displacement measurements for specimens tested at ’v = 

10 and 20 kPa. The 10 kPa increase in ’v produced an increase of 15 kN in the peak 

reinforcement pullout resistance. The load-displacement curves for tests conducted at ’v 

= 50 and 75 kPa are shown in Figure 5.13; it should be noted that the vertical effective 

stress for specimen 50-1 was 57.2 rather than its intended target value of 50 kPa and 

therefore should not be directly compared to tests 50-2 and 50-3 based on effective 

vertical stress. Pullout test specimen 50-3 (d = 21.3 kN/m3) produced the smallest 

maximum pullout resistance of 38.5 kN, specimen 50-2 initially exhibited significantly 

stiffer behavior than observed for specimen 50-3 suggests a denser specimen. However, 

unit weight was not measured for specimens 50-1, 50-2, nor 75-1. Figure 5.14 shows the 

load displacement measurements for tests performed at ’v = 100 kPa. Peak pullout 

resistance values ranging from 54.6kN for specimen 100-6 (d  = 21.3 kN/m3) to 80.3 kN 

for specimen 100-4 (d  = 22.4 kN/m3) were observed. The peak reinforcement load for 

specimen 100-5 was 9.3 kN less than that observed for specimen 100-4 despite having 

the same measured unit weight of 22.4 kN/m3. The measured pullout resistances and 

reinforcement displacements for specimens tested at ’v = 150 kPa are shown in Figure 

5.15. Specimen 150-4 behaves much stiffer than specimens 150-3 and 150-2 despite 

having a lesser unit weight. Figure 5.16 presents the load-displacement measurements for 

specimens tested at ’v = 200, 250, and 300 kPa. The peak reinforcement load measured 

for Specimen 200-1 was 12.2 kN larger than that measured for specimen 250-1 (d = 22.7 

kN/m3), and 28 kN larger than that measured for 200-2 (d  = 21.3 kN/m3) suggesting that 

over-densification may have occurred during the compaction of specimen 200-1. 

The initial non-slip resistance varied between 0.9 and 14.7 kN as shown in Figure 

5.17.  From basic knowledge of frictional behavior, it was speculated that the initial non-

slip resistance would correlate with ’v. Using the Spearman-Rank test with the initial 

non-slip resistance effective confining pressure data, the null hypothesis of non-

correlation was rejected at a significance level of five percent (p-value = 0.021) 

suggesting the presence of a correlation. However, the significant variability of the 

relationship between initial non-slip resistance and ’v can be seen in Figure 5.17. The 
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cause of this variability was suspected to be local density variations within the soil 

specimens. 

In order to exclude the effect of the initial non-slip resistance, the initial stiffness was 

determined by measuring the rate of load accumulation between 0.25 mm and 1 mm of 

displacement. Values of initial stiffness ranged from 4.9 to 23.0 kN/mm.  

Generally, peak reinforcement load, Pmax, increased with increases in ’v (Figure 

5.18).  However, variations in Pmax of up to 26 kN were observed between tests with 

equal effective vertical stresses. 

  Table 5.2. Summary of pullout test results. 

Test 
Designation d RC 'v 

Initial  
Non-Slip 

Resistance 

Meas. Initial 
Stiffness, 

(0.25 – 1.0 mm) 
Pmax f* 

(kN/m3) (%) (kPa) (kN) (kN/mm) (kN) (-) 
10-1 N/A N/A 10 N/A N/A 18.6 9.92 

20-1 21 94 23.7 4.6 10.7 33.5 7.56 

50-1 N/A N/A 57.2 N/A N/A 53.1 4.96 

50-2 N/A N/A 50 5.7 12.4 45.7 4.89 

50-3 N/A N/A 50 0.9 12.5 38.5 4.11 

75-1 N/A N/A 75 N/A N/A 57.3 4.09 

100-1 N/A N/A 100 11.2 12.1 71.2 3.81 

100-2 N/A N/A 100 7.1 12.4 63.3 3.38 

100-3 N/A N/A 100 7.5 13.4 65.1 3.48 

100-4 21.85 98 100 6.0 18.0 80.3 4.29 

100-5 21.35 95 100 7.4 14.4 71.0 3.80 

100-6 20.75 93 100 5.0 16.8 54.6 2.92 

150-1 N/A N/A 150 5.8 17.2 80.1 2.86 

150-2 22.25 99 150 7.6 7.5 66.4 2.37 

150-3 22.25 99 150 4.1 4.9 61.9 2.21 

150-4 21.25 95 150 9.2 15.6 69.4 2.47 

200-1 N/A N/A 200 N/A N/A 92.8 2.48 

200-2 20.75 93 200 14.7 13.7 64.8 1.73 

250-1 22.15 99 250 8.2 9.7 80.6 1.72 

300-1 N/A N/A 300 7.5 23.0 N/A N/A 
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Figure 5.12. Pullout resistance versus reinforcement displacement for tests with vertical effective stresses of 10 

and 20 kPa. Note, the unit weight of 10-1 was not measured. 

 
Figure 5.13. Pullout resistance versus reinforcement displacement for tests with vertical effective stresses of 50 

and 75 kPa. Note, the unit weight of 50-1, 50-2, and 75-1 was not measured. 
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Figure 5.14. Pullout resistance versus reinforcement displacement for tests with vertical effective stresses of 100 

kPa. Note, the unit weight of 100-1, 100-2, and 100-3 was not measured. 

 
Figure 5.15. Pullout resistance versus reinforcement displacement for tests with a vertical effective stress of 150 

kPa. Note, the unit weight of 150-1 was not measured. 
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Figure 5.16. Pullout resistance versus reinforcement displacement for tests with vertical effective stresses of 200, 

250 and 300 kPa. Note, the unit weight of 200-1, and 300-1 was not measured. 

 
Figure 5.17. Initial non-slip resistance versus effective confining stress. 
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Figure 5.18. Maximum pullout resistance versus effective confining stress. 

The uncertainty in the computed apparent friction coefficient, f*, values reported in 

Table 5.2 were quantified using the procedure outlined in Kline and McClintock (1953). 

The 95 percent uncertainty intervals for each f* input variables (w’v, wPmax, wb, and wL) 

were estimated and used to compute combined f* uncertainty intervals, wf*, for each test 

using the first order-second moment approach: 
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  (5.1) 

 

The uncertainty interval for the vertical overburden stress, w’v, was estimated to be        

± 0.4 kN/m2 based on the fluctuation in airbladder pressure recorded by the pressure 

transducer. The uncertainty interval for the maximum pullout resistance, wPmax, was 

estimated to be ± 0.01 kN based on the manufacture’s specifications for the 100 kN load 

cell. The uncertainty intervals for the width and embedded length of the reinforcement, 
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wb = ± 0.0005 m and wL = ± 0.02 m, respectively, were estimated using the author’s 

judgment.  

As shown in Figure 5.19, the f* uncertainty interval is larger for tests conducted at 

lower effective vertical confining pressures and smaller for tests conducted at larger 

vertical confining pressures. The computed f* uncertainty interval values ranged from 

0.76 at ’v = 10 kPa to 0.05 at ’v = 250 kPa with a mean and median values of 0.15 and 

0.10, respectively. 

 
Figure 5.19. Average estimated f* uncertainty intervals for various effective vertical stresses. 
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on Figure 5.20, the MLR modeling was performed using the natural logarithm of vertical 

effective stress.  The effect of dry unit weight, a proxy for relative compaction and 

relative density, should influence the maximum pullout resistance; however, the results of 

the two-parameter MLR model shows that the dry unit weight is not statistically 

significant at the significance level of 5 percent, as shown in Table 5.3.  This could be 

due to the lack of data compounded with the small variation in dry unit weight associated 

with relative compaction values largely greater than 93 percent.  If the relative 

compaction, and therefore relative density, varied over a larger range, it would be likely 

that the dry unit weight would be a statistically significant parameter.  Despite the use of 

a statistically insignificant prediction variable, the global p-value and adjusted R2 of the 

two-parameter model was 0.01 and 0.653, indicating moderately strong predictive power.  

Table 5.3 Summary of multiple linear regression (MLR) modeling on maximum pullout resistance. 

Model Parameters Fitted 
Estimate 

Standard 
Error 

t  
statistic 

p-value 

Two-parameter MLR; global p-value = 0.010; global adjusted R2 = 0.653 
Intercept                  [kN] -155.42 110.47 -1.41 0.2023 

Ln(’v)                    [kPa] 7.05 5.66 1.24 0.2534 

Dry unit weight,    [kN/m3] 13.53 5.39 2.51 0.0404 
     
One-parameter MLR; global p-value = 0.004; global adjusted R2 = 0.629 
Intercept                   [kN] -20.21 20.64 -0.98 0.3560 

Ln(’v )                    [kPa] 17.67 4.38 4.03 0.0038 

 

Nonetheless, removal of the dry unit weight to form the one-parameter MLR model 

appeared warranted, and resulted in a strengthening of the significance of the vertical 

effective stress variable, as shown in Table 5.3. Figure 5.20 shows that the effective 

predictive power is essentially the same between the one and two-parameter MLR models 

as compared to data that represent those pullout tests with and without dry unit weight 

measurements. However, the one-parameter model clearly shows improved generality 

with respect to all of the pullout test data (i.e., the model predicts all of the data equally 
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well), despite the use of training data that were associated with known dry unit weights, 

only.  Figure 5.21 compares the measured maximum pullout resistance and those 

predicted using the two MLR models; based on this comparison, it appears that the use of 

the one-parameter MLR model is most appropriate for use with this specific backfill 

gradation until additional pullout resistance data with a larger variation in dry unit weight 

can be obtained. 

 
Figure 5.20. Comparison of measured and predicted maximum pullout resistance as a function of vertical 

effective stress. 
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Figure 5.21. Predicted maximum pullout resistance verses measured maximum pullout resistance. 
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near future. Hyperbolic curves were fit to the pullout load-displacement data in order to 

provide a general working stress displacement estimation method. 

To calibrate the model, a least sum of squares regression was used on the general 

hyperbolic model, given by: 

    

1 2

1
P

a a





       (5.2) 

 

where P is the pullout resistance at displacement , a1 is a coefficient related to the initial 

stiffness of the soil-reinforcement interaction (initial slope of the load-displacement 

curve), and a2 is the asymptotic coefficient related to the maximum pullout resistance.  

The variation of coefficients a1 and a2 with vertical effective confining pressure are 

shown in Figure 5.22 and Figure 5.23, respectively. The variation of the coefficient a1 

with vertical effective stress appears to be relatively random when considering all data as 

shown in Figure 5.22(a). However, upon removing those test data for which compaction 

data was either unavailable or did not meet requirements, a linear relationship was 

observed and was characterized with a coefficient of determination of 0.47 (Figure 

5.22b). The relationship used to correlate the initial stiffness coefficient to vertical 

effective can be expressed as: 

 

 1 0.053 ' 30.8va      (5.3) 

 

As shown in Figure 5.23(a), a much stronger relationship exists between a2 and 

vertical effective stress such that a log increase in vertical confining stress results in a 51 

kN increase in maximum the maximum resistance coefficient. However, in order to 

capture the load-displacement behavior at the relative density of interest the same subset 

of pullout tests used to calibrate the initial stiffness coefficient, a1, was used to calibrate 

the maximum resistance coefficient, a2. Figure 5.23(b) shows the fitted logarithmic 

relationship along with the reduced dataset of a2 coefficients. The models  produced by 
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the full dataset and the reduced dataset are fairly similar, though a reduction in 

logarithmic slope was observed; that is, for every log cycle increase of vertical effective 

stress resulted in a 44 kN increase in maximum reinforcement coefficient. The calibrated 

relationship for a2 can be described using: 

 

  2 44.3 ' 29.2va Log     (5.4) 

 

In order to compare the calibrated model to measured behavior, the measured load-

displacement data was compared to the load-displacement predicted using Equations 5.2, 

5.3, and 5.4. As shown in Figures 5.23 through 5.26, the model does relatively well at 

approximating the measured behavior at displacements greater than 2 mm. However, it is 

difficult for the hyperbolic relationship to capture the initial non-slip portion of the 

measured load-displacement curve.  
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Figure 5.22. Variation of the initial stiffness coefficient, a1, with effective vertical stress for (a) all test data, and 

(b) data meeting density requirements. 
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Figure 5.23. Variation of the maximum pullout resistance coefficient, a2, with effective vertical stress for (a) all 

test data, and (b) data meeting density requirements..  
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Figure 5.24. Comparison of measured pullout load-displacement behavior and the hyperbolic model prediction 

for ’v = 20 kPa. 

 
Figure 5.25. Comparison of measured pullout load-displacement behavior and the hyperbolic model prediction 

for tests conducted at ’v = 100 kPa. 
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Figure 5.26. Comparison of measured pullout load-displacement behavior and the hyperbolic model prediction 

for tests conducted at ’v = 150 kPa. 

 
Figure 5.27. Comparison of measured pullout load-displacement behavior and the hyperbolic model prediction 

for tests conducted at ’v = 200 and 250 kPa. 
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5.5 Pullout Resistance Design Models for Gravel and Sand-Gravel Mixtures 

The apparent friction coefficient, f*, is an empirical design parameter used in 

determining the pullout resistance of MSE wall reinforcements as discussed in Section 

2.2.1.2. Since the introduction of the apparent friction coefficient into accepted MSE wall 

design procedures, the same design model has been used to determine f* as a function of 

depth.  As specified by AASHTO (2010), values of f* are not permitted to be taken as 

larger than 2. This limit applies to all soils types, even highly dilative soils such as 

gravels and sand-gravel mixtures. As shown in Figure 2.26, values of f* well above the 

current design model have been measured for gravels and sand-gravel mixtures.  

In order to better represent the relationship between the apparent friction coefficient 

and vertical effective stress for gravels and sand-gravel mixtures, a new gravel-specific 

design model was developed. Apparent friction coefficients of five soils were used in the 

calibration of the new model and are presented in Figure 5.28. The soils reported by 

McKittrick (1978) consisted of two gravels (G-1 and G-2) and a sand-gravel mixture 

(SG-1). Specific gradation information for each of these soils were not provided, 

however, the friction angles were reported equal to 47, 46, and 37 degrees, respectively. 

The soil taken from Boyd (1993) is a poorly graded gravel with the gradation presented 

in Figure 5.29. Though a friction angle of 35 degrees was assumed for the design of the 

wall, the results of strength tests were not reported by Boyd (1993). 
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Figure 5.28. Apparent friction coefficient versus effective vertical stress for pullout tests with gravel and sand-

gravel mixtures. 

A new gravel-specific f* model was calibrated using the pullout resistance data 

reported for the five different soils. An ordinary least squares regression with the form of 

an assumed function was used in the calibration. The model is presented in Figure 5.30(a) 
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Figure 5.30. f* design models for (a) general gravel and sand-gravel backfills, and (b) specific design model for 

backfill tested during the present study. 
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Overall, the sample biases ranged from 0.20 to 4.96 with an average sample bias between 

0.97, and 2.45. The AASHTO design model produced the highest average biases for both 

datasets, indicating the under-prediction of f* values and thus a more conservative model. 

For Dataset B, the global gravel and backfill-specific models produced similar f* 

predictions, though the backfill-specific model produced a smaller average bias. For 

Dataset A, the global gravel model produced biases ranging from 0.20 to 1.65 with an 

average bias of 1.01, whereas AASHTO model bias values ranged from 0.45 to 4.96 with 

an average of 2.23, indicating more conservative and less accurate predictions of f*. For 

the global gravel model and Dataset A, a coefficient of variation (COV) of 36 percent and 

coefficient of determination, R2, of 0.66 were computed, indicating a better fit to the data 

when compared to the AASHTO model, which produced a COV and R2 of 44 percent 

and 0.40, respectively. The use of the AASHTO model in predicting the f* values for 

Dataset B resulted in biases ranging from a minimum of 1.37 to a maximum of 4.96, a 

COV of 32 percent, and a R2 value of 0.65. In comparison, the global gravel and backfill- 

specific models produced biases ranging from 0.97 to 1.57, coefficients of variation of 

approximately 15 percent, and coefficients of variation of 0.94 and 0.96, respectively, 

indicating much more accurate and precise predictions of f* when compared to the 

AASHTO model. 

Table 5.4. Summary statistics on the performance of different f* design models considered in the present study. 

Dataset/Design Model Mean bias Range in bias COV (%) R2 

A: General gravel data base      

   AASHTO 2.23 4.96 0.45 44 0.40 

   Global gravel 1.01 1.65 0.20 36 0.66 

B: Present study (all tests)     
   AASHTO 2.45 4.96 1.37 32 0.64 

   Global gravel 1.17 1.57 0.90 15 0.94 

   Backfill Specific 0.97 1.28 0.75 14 0.96 
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5.6 Summary 

This chapter presented the results of twenty pullout tests on MSE wall ribbed steel 

strip reinforcements embedded in the sand-gravel backfill analyzed in Chapter 4. The 

primary conclusions and contributions of this chapter include:  

 

1. A new apparatus was design and constructed for performing full scale 

laboratory pullout tests on ribbed steel strip reinforcements; 

2. Twenty pullout tests were performed on the steel ribbed strips and backfill 

discussed in Chapter 4;  

3. The effects of compaction and vertical effective stress on maximum pullout 

resistance was quantified statistically; 

4. Hyperbolic coefficients were fit to the load-displacement data from pullout 

test results for future possible use in a working stress displacement prediction 

model. 

5. A database of ribbed steel strip pullout tests in gravels and sandy gravels was 

developed by combining available data in literature with the pullout results 

from the present study;  

6. Two new pullout resistance design models for use with gravels were 

calibrated:  

a. using all of the available pullout tests data for gravels in the literature; 

and 

b. using the pullout test results from the present study exclusively to form 

a backfill-specific design model. 

7. The performance of the two new pullout resistance models were compared to 

the current AASHTO design model and found to produce much more accurate 

and precise predictions of the apparent friction coefficient. 
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6.1 North and West MSE Wall Design Geometry 

Details of the design geometry and instrumentation program, as they apply to internal 

stability, were taken from Stuedlein et al. (2007), Lindquist (2008), and Stuedlein et al. 

(2010b, 2012), and are summarized here. The interested reader is directed to these papers 

for a more comprehensive overview of the design and instrumentation program. The 

reinforced zone of the North MSE wall is 25.9 m (85 ft.) high at its tallest section with an 

exposed height of 23.6 m (77 ft.). The top half of the North wall is set back 2.4 m (8 ft.) 

from the bottom creating two separate tiers. The North wall has a level back surface.  The 

West MSE wall has a 45.7 m (150 ft.) tall reinforced zone with a maximum exposed face 

height of 41.9 m (137 ft.). The West wall is separated into four tiers, each set back 2.4 m 

(8 ft.) from the previous tier. The West MSE wall has a sloped surcharge of structural fill 

with an average height of 3.8 m.  

In order to account for the horizontal offsets of these tiers in design calculations (e.g., 

earth pressures), both walls were assigned an equivalent face batter. The equivalent face 

batter was determined using the total tier spacing and the total wall height (including the 

unexposed section) resulting in wall inclinations of 9.1 and 5.4 degrees for the West and 

North MSE walls, respectively. As shown in Figure 6.3, the reinforcement layers 

terminated at the same horizontal distance from the toe of the wall. The reinforcement 

lengths in each tier ranged from 18.9 (62 ft.) for the top tier of the North wall to 35.4 m 

(to 116 ft.) for the bottom tier of the West wall. All reinforcing layers were greater or 

equal to 70 percent of the overlying height as required by AASHTO. Table 6.1 presents 

the reinforcement geometry for both walls including the reinforcement lengths and 

average vertical and horizontal spacing for each tier. The values of reinforcement spacing 

reported in Table 6.1 are averaged over large wall areas, when in reality the west wall had 

local vertical reinforcement spacing as small as 0.24 m (0.79 ft.) with as many as 28 

reinforcing strips per 2.25 m2 panel. 
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Figure 6.3. Sections of the (a) West and (b) North MSE walls showing the location of instrumentation (after 

Stuedlein et al. 2012). 

Table 6.1. Reinforcement geometry for the North and West MSE walls (after Stuedlein et al. 2012). 

Length of 
strip (m) 

Mean vertical 
spacing (m) 

Mean horizontal 
spacing (m) 

West MSE wall 

Tier 4 28.0 0.74 0.74 

Tier 3 30.5 0.74 0.63 

Tier 2 32.9 0.70 0.39 

Tier 1 35.4 0.42 0.18 

North MSE wall 

Tier 2 18.9 0.75 0.71 

Tier 1 21.3 0.66 0.43 

 

6.2 Instrumentation of Steel Strip Reinforcements 

An extensive instrumentation program was implemented for the North and the West 

MSE walls to monitor wall performance during following construction. These 

instrumentation programs included two identical sections of instrumented reinforcing 

strips installed approximately 4 m (13 ft.) apart in each wall. Each instrumented 

reinforcement strip was given a designation that consisted of a wall identifier (SN for the 

North wall, and SW for the West wall), and an identification number that increased with 
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elevation (odd numbered reinforcements were in section one, and evens numbered 

reinforcements in section two). The number of strain gauge pairs used along the length of 

each instrumented reinforcement strip ranged from 13 to 16. In order to increase the 

resolution, strain gauges were more densely situated where the wall manufacturer (i.e., 

Reinforced Earth Co.) expected the maximum reinforcement strains to occur. Both the 

elevation of each instrumented reinforcement, as well as the distribution of strain gauge 

pairs for the North and West MSE walls are shown in Figure 6.3.  

6.3 Reevaluation of Inferred Loads Using Measured Reinforcement Properties 

The measured peak reinforcement strains reported in Stuedlein et al. (2012) were 

used to reevaluate the maximum reinforcement loads and stresses in the North and West 

MSE walls. As reported in Section 4.2, a representative value of the Young’s modulus 

was equal to 208 GPa for the actual reinforcement strips used in the SeaTac MSE wall 

and corresponds to a four percent increase over the assumed nominal design value of 200 

GPa. Because Young’s modulus and load are directly proportional, a four percent 

increase in the Young’s modulus corresponded to a four percent increase in computed 

reinforcement load for all reinforcement layers. In the present study, the maximum 

reinforcement loads were divided by the horizontal reinforcement spacing to show the 

increase in unit reinforcement load with depth, which allows easier visual comparison of 

loads for such tall MSE walls. The reinforcement loads reported in Stuedlein et al. 

(2012), which used an assumed Young’s modulus of 200 GPa, as well as those computed 

using the measured Young’s modulus of 208 GPa are provided in Table 6.2 and Table 6.3 

for the North and West MSE walls respectively. The maximum reinforcement loads 

computed using the measured reinforcement Young’s modulus will be the basis for all 

further comparisons. 

Owing to the larger value of measured yield strength (taken as the representative 

value from Section 4.1) than the nominal value originally used, apparent net reductions in 

stress as a percent of the non-factored yield strength of 2.3 and 3.3 percent was observed 

for the North and West walls respectively.  
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Table 6.2. Comparison of maximum reinforcement loads and stresses for the North MSE wall computed using 
the measured material properties and those assumed for wall design (strain measurements taken August 2009). 

Designation  
Load per 

reinforcement strip (kN) 
Load per unit 

width of wall (kN/m) 
Stress as a 

percent of yield strength 

Assumed Measured Assumed Measured Assumed Measured 

  SN-1 34.7 36.1 81.9 85.2 25.8 22.9 

  SN-2 31.4 32.6 73.9 76.9 23.3 20.7 

  SN-3 30.5 31.7 51.3 53.4 22.7 20.1 

  SN-4 35.4 36.8 59.6 62 26.3 23.3 

  SN-5 29 30.1 39 40.6 21.6 19.1 

  SN-6 23.6 24.5 31.7 33 17.5 15.5 

Avg. percent change 4.0 4.0 -2.6 
a Assumed material properties: E = 200 GPa, fy = 448 MPa 
b Measured material properties: E = 208 GPa, fy = 526 MPa 

Table 6.3. Comparison of maximum reinforcement loads and stresses for the West MSE wall computed using 
the measured material properties and those assumed for wall design (strain measurements taken August 2009). 

Designation 
Load per 

reinforcement strip (kN) 
Load per unit 

width of wall (kN/m) 
Stress as a 

percent of yield strength 

 Assumed Measured Assumed Measured Assumed Measured 

  SW-1 44.3 46.1 238.3 247.9 33 29.2 

  SW-2 47.7 49.6 256.5 266.8 35.5 31.5 

  SW-3 40.8 42.4 164.3 170.9 30.3 26.9 

  SW-4 41.3 42.9 166.4 173.1 30.7 27.2 

  SW-5 42.5 44.2 114.5 119.1 31.6 28 

  SW-6 38.5 40 103.6 107.8 28.6 25.3 

  SW-7 40.6 42.2 81.9 85.2 30.2 26.7 

  SW-8 39.8 41.4 80.3 83.6 29.6 26.2 

  SW-9 31.7 33 53.4 55.6 23.6 20.9 

  SW-10 34.2 35.6 57.6 59.9 25.4 22.5 

  SW-11 48.7 50.6 65.8 68.4 36.2 32.1 

  SW-12 36.8 38.3 49.7 51.7 27.4 24.3 

  SW-13 30.4 31.6 41.1 42.8 22.6 20.1 

  SW-14 26.9 28 36.4 37.9 20 17.8 

Avg. percent change 4.0  4.0 -3.3 
a Assumed material properties: E = 200 GPa, fy = 448 MPa 
b Measured material properties: E = 208 GPa, fy = 526 MPa
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6.4 Selection of Parameters for Use with Reinforcement Load Prediction Methods 

As discussed in Section 2.2.1, research performed by Allen et al. (2001) observed that 

the Coherent Gravity and Simplified Methods significantly under predict reinforcement 

loads when friction angles greater than 40 degrees were used on walls with steel 

reinforcements. The research performed by Allen et al. (2001) was the basis for the 

current stipulation by AASHTO that the use of friction angles greater than 40 degrees is  

not permitted when steel reinforcements are used (Berg et al. 2009; Stuedlein et al. 2012). 

Additionally, Allen et al. (2004) limited plane strain friction angles to PS = 44 degrees 

for the calibration of the K-Stiffness method in order to be consistent with the empiricism 

in the Coherent Gravity and Simplified methods as well as AASHTO guidelines. 

The distribution of maximum reinforcement load with depth as predicted by the 

Coherent Gravity, Simplified, Ehrlich and Mitchell (1994), and K-Stiffness methods were 

compared to the measured maximum reinforcement loads. For each of these methods, 

four different Mohr-Coulomb failure envelopes were used to determine a total of 16 load 

distributions for each wall; these included: 

 Case 1: the failure envelope assumed for wall design; 

 Case 2: the failure envelope capped to the appropriate value of ' per 

AASHTO;  

 Case 3: the curved failure envelope as measured in triaxial compression; and, 

 Case 4: the curved failure envelope transformed to plane strain. 

The motivation for considering Case 1 was to assess the sensitivity of each method to 

more conservative input parameters as well as to provide a baseline for further 

comparisons. A constant “direct shear” friction angle of 37 degrees was used for design 

as this was a minimum requirement for the reinforced backfill to be used in constructing 

the wall (Stuedlein et al. 2010b). Contractors were required to perform strength testing 

prior to and periodically throughout construction in order to ensure the strength 

requirements of the backfill were being met. Because the Ehrlich and Mitchell (1994) 

method was not considered during design, the Duncan and Chang (1970) hyperbolic 



142 
 

fitting parameters were chosen based on “conservative” recommendations by Duncan et 

al. (1980). For sands and gravels at a relative compaction of 95 percent, Duncan et al. 

(1980) recommends values of modulus number, modulus exponent, and failure ratio of K 

= 300, n = 0.4, and Rf = 0.7, respectively. However, in order to reduce the number of 

parameters being varied, the modulus exponent and failure ratio were set equal to those 

values reported in Chapter 4 for all four failure envelopes. 

The results from the CD triaxial strength test program and the Duncan and Chang 

(1970) calibration reported in Chapter 4 were used in Case 3 (without modification) to 

calculate reinforcement loads using the Ehrlich and Mitchell (1994) method. However, 

because the Ehrlich and Mitchell (1994) method calls for plane strain soil parameters, 

both the friction angles and modulus numbers were increased from their measured or 

assumed value to an equivalent plane strain value for all other cases. The following 

empirical relationship was used to transform friction angles measured in triaxial 

compression to plane strain (Lade and Lee 1976): 

 

 1.5 17PS TX      (6.1) 

 

To determine an equivalent plane strain modulus number, the modulus number 

determined using triaxial strength test data was multiplied by a factor of 2.25 as 

suggested by Hatami and Bathurst (2005) based on their experimental evidence on a 

granular soil. Consequently, the modulus number reported in Section 4.4 for a relative 

density of Dr = 65 percent (K = 1200), was transformed to an equivalent plane strain 

value of 2700. In order to assess the appropriateness of this assumption, plane strain 

friction angles were determined using the Duncan Chang (1970) hyperbolic stress-strain 

model using the equivalent plane strain modulus number, and compared to those 

computed using Equation 6.1. Figure 6.4 shows the plane strain and triaxial hyperbolic 

curves for effective confining stresses of 100, 200 and 300 kPa as well as the stress-strain 

behavior measured for the corresponding CD triaxial strength test specimen. Unlike the 

stress-strain behavior of the CD triaxial strength test specimens, the hyperbolic curves do 



143 
 

not show an obvious point of “failure” (e.g., peak principal stress ratio or peak principal 

stress difference) for determining the friction angle. For simplicity, failure was assumed 

to coincide with the equivalent triaxial test specimen’s peak principal stress ratio (i.e., 

failure of the triaxial specimen as defined in Section 4.2.4). As shown in Figure 6.5, 

friction angles determined from the modified hyperbolic model are in agreement with the 

values of plane strain friction angles estimated using Equation 6.1 with an average bias, 

defined as the ratio of measured and predicted values, of 1.06 and a coefficient of 

variation of 4.2 percent. Regrettably, plane strain data is neither available for this specific 

backfill nor for a similar backfill material with which a more in-depth comparison could 

be made at this time.  

 
Figure 6.4. Comparison of stress-strain curves generated using the Duncan and Chang (1970) hyperbolic model 

with plane strain and triaxial modulus numbers. 
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Figure 6.5. Comparison of plane strain friction angles determined using the empirical correlation recommended 

by Lade and Lee (1976) and those determined from the Duncan and Chang (1970) hyperbolic model with the 
modulus number increased by a factor of 2.25. 

In addition to the hyperbolic parameters, the energy and dimensional specification of 

the compaction equipment were needed to perform the Ehrlich and Mitchell (1994) 

method. For both the North and West MSE walls, a Caterpillar model CS-563D vibratory 

roller with a smooth 10,875 kg (24 kip) drum was used to compact the reinforced 

backfill. The drum had a diameter of 1.55 m (61 in.), a width of 2.13 m (84 in.), and 

delivered static and dynamic compaction forces of 26.4 and 127.5 kg/cm (148 and 714 

lb/in.), respectively (Stuedlein et al. 2010b).  

When using a curved Mohr-Coulomb failure envelope in earth pressure calculations, 

the variation of friction angle with depth must be determined iteratively due to the 

friction angles interdependence with effective confining pressure and the lateral earth 

pressure coefficient. For the case of no surcharge load and Rankine active earth pressure 

theory, the iterative process to determine the friction angle at a given depth below the top 

of the wall, Z, can be summarized by:  

40

45

50

55

60

65

40 45 50 55 60 65

'
P

S
(K

P
S

=
 2

.2
5K

T
X
) 

(d
eg

.)

'PS = 1.5'TX - 17 (deg.)

 = 1.06 
COV = 4.2%



145 
 

 

2 1

1

tan 45
2

log

n

n atm
atm

Z

P


  

        
 
 
 

  (6.2) 

 

where n is an improved guess of the friction angle to be used in the following iteration, 

1atm is the friction angle measured at a confining pressure of one atmosphere (gauge 

pressure), and  is the change in friction angle over one log cycle of effective confining 

pressure. Typically seven iterations were sufficient to achieve convergence of the friction 

angle for any given depth.  

 

 

Table 6.4. Constitutive parameters used with each design case investigated. 

Case No. 
TX, DS  

at 1 atm 
(deg.)

PS  
at 1 atm 

(deg.)

 per  
Log10 ('3/Patm) 

cycle (deg.)

Modulus 
number, K 

Coherent Gravity and Simplified methods 

Case 1 37 N/A 0 N/A 

Case 2 40 N/A 0 N/A 

Case 3 47.9 N/A 6.4 N/A 

Case 4 N/A 54.9 6.4 N/A 

Ehrlich & Mitchell (1994) 

Case 1 N/A 38.5 0 675 

Case 2 N/A 44 0 2700 

Case 3 47.9 N/A 6.4 1200 

Case 4 N/A 54.9 6.4 2700 

K-Stiffness method 

Case 1 N/A 38.5 0 N/A 

Case 2 N/A 44 0 N/A 

Case 3 47.9 N/A 6.4 N/A 

Case 4 N/A 54.9 6.4 N/A 
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6.5 Comparison of Predicted and Measured Reinforcement Loads 

The accuracy of the reinforcement load distributions for the North and West MSE 

walls were analyzed using two approaches. First, the measured maximum reinforcement 

loads were plotted alongside the predicted maximum load distribution from each case and 

visual comparisons made. Second, a statistical analysis of the accuracy of the predicted 

reinforcement loads was performed by computing the bias and their variation. 

6.5.1 North MSE Wall 

Large variations in the predicted loads were observed between the prediction methods 

and the cases investigated. As shown in Figure 6.6(a), the Simplified method produced 

the most accurate predictions of reinforcement loads for Case 1. However, for the 

Coherent Gravity and Simplified methods, reinforcement loads were under-predicted near 

the top of the wall with an increase in accuracy with decreases in elevation. The Ehrlich 

and Mitchell (1994) method agreed with the measured reinforcement loads closest to the 

top of the wall, but over-predicted the loads in the lower elevations. The K-Stiffness 

method produced overly conservative estimates at all three comparison depths. 

For Case 2 (Figure 6.6b), the Coherent Gravity and Simplified methods both under-

predicted the reinforcement loads at all elevations, whereas the Ehrlich and Mitchell 

(1994) method produced accurate predictions at the top, but slightly under-predicted the 

loads in the bottom two thirds of the wall. In the upper-most reinforcement layers, the K-

Stiffness method predicted smaller loads than the Ehrlich and Mitchell (1994) method. 

However, at the elevation of the top instrumented reinforcement strip, the K-Stiffness 

predicted load distribution became conservative and remains conservative for all 

remaining elevations.  

The K-Stiffness method best predicted the reinforcement loads with Case 3 near the 

top of the wall, although the predictions were slightly non-conservative. Near the top of 

the wall, the Ehrlich and Mitchell (1994) distribution produced the best reinforcement 

load estimates, but became non-conservative at lower elevations. Both the Coherent 

Gravity and Simplified methods produced highly non-conservative load distributions for  
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Figure 6.6. Observed and predicted peak reinforcement loads for the North MSE wall using (a) the soil 

properties assumed during design (Case 1) , and (b) the actual soil properties capped per AASHTO (Case 2). 
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Figure 6.7. Observed and predicted peak reinforcement loads for the North MSE wall using (a) triaxial 

properties with a curved failure envelope (Case 3), and (b) plane strain properties with a curved failure envelope 
(Case 4). 
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Case 3. As shown in Figure 6.7(b), all of the load prediction methods produced non-

conservative estimates of reinforcement load at all wall elevations for Case 4. 

Figure 6.8 and Figure 6.9 show the effect of using different Mohr-Coulomb failure 

envelopes on the accuracy of each reinforcement load prediction method. As shown in 

Figure 6.8a, the Coherent Gravity method under predicts the reinforcement loads for each 

of the four failure envelopes considered with the “design” failure envelope producing the 

least amount of error. The Simplified method performs fairly well when utilizing 

conservative strength parameters as shown in Figure 6.8(b) consistent with Bathurst et al. 

(2009). However, when using the plane strain and triaxial curved failure envelopes, the 

Coherent Gravity and Simplified methods produce large, non-conservative errors. In 

contrast, the K-Stiffness method generally produced conservative predictions of 

reinforcement load, as shown in Figure 6.9(a), especially when more conservative 

strength parameters were used. 

The Ehrlich and Mitchell (1994) method (Figure 6.9b) produced the most variation in 

shape between each failure envelope, demonstrating its flexibility and analytical power. 

With visual inspection of Figure 6.9(b) it is apparent that none of the selected 

combinations of input parameters (K and ) provided the best possible fit when using the 

Ehrlich and Mitchell (1994) method; however, this method still produced the best 

“overall” prediction of maximum reinforcement load for the North MSE wall despite its 

lack of optimization. 

In order to quantify the visual fit in Figures 6.6 through 6.9, the average bias for each 

case was computed; the statistics are presented in Table 6.5. Due to the low number of 

data points, the COV was calculated using the small sample standard deviation method 

(Lacasse and Nadim 1996). The minimum average bias, corresponding to the most 

conservative distribution, of 0.61 was computed for the K-Stiffness method using a 

constant friction angle of ’PS = 38.5 degrees. The maximum average bias, corresponding 

to the least conservative distribution, of 3.94 was computed for the Coherent Gravity 

method using the plane strain curved failure envelope. This was expected as the Coherent 

Gravity method is an empirically based method calibrated using triaxial and direct shear 
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Figure 6.8. Observed and predicted peak reinforcement loads for the North MSE wall using (a) Coherent 

Gravity method, and (b) the AASHTO Simplified method. 
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Figure 6.9. Observed and predicted peak reinforcement loads for the North MSE wall using (a) Ehrlich and 

Mitchell (1994), and (b) the K-Stiffness method. 
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friction angles which are typically 10 to 15 percent smaller than plane strain friction 

angles. The K-Stiffness method with the triaxial curved failure envelope produced an 

average bias of 1.08, corresponding to the most accurate method. However, with a COV 

= 21 percent, this was not the most precise distribution produced. When considering both 

precision and accuracy, the best overall prediction was made by the Ehrlich and Mitchell 

(1994) method with the friction angle capped at 44 degrees with an average bias of 1.13 

and COV = 12 percent.  

Table 6.5. Summary statistics of the bias in reinforcement loads calculated for the North MSE wall. 

       Case No. Mean bias Range in bias COVa (%) 
Coherent Gravity method 
          Case 1 1.31 1.82 1.06 23 
          Case 2 1.53 2.12 1.24 23 
          Case 3 2.33 3.60 1.70 32 
          Case 4 3.94 6.27 2.76 35 
AASHTO Simplified method 
          Case 1 1.13 1.53 0.92 21 
          Case 2 1.32 1.78 1.07 21 
          Case 3 2.00 3.03 1.51 30 
          Case 4 3.38 5.27 2.47 33 
Ehrlich & Mitchell (1994) 
          Case 1 0.77 1.00 0.64 19 
          Case 2 1.13 1.30 0.94 12 
          Case 3 1.22 1.34 1.03 10 
          Case 4 1.89 2.05 1.63 9 
K-Stiffness method 
          Case 1 0.61 0.71 0.48 15 
          Case 2 0.76 0.89 0.60 15 
          Case 3 1.08 1.42 0.83 21 
          Case 4 1.79 2.43 1.34 24 
a Estimated using small-sample standard deviation method (Lacasse and Nadim 1996). 

 

6.5.2 West MSE Wall 

Many of the trends observed for the North MSE wall were also observed in the West 

MSE wall. As shown in Figure 6.10(a) and Figure 6.10(b), the Coherent Gravity and 

Simplified methods produced good estimates of reinforcement load at the top of the West 
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MSE wall for Cases 1 and 2; however, at lower elevations large non-conservative errors 

were observed. In contrast, the K-Stiffness method greatly over-predicted the loads 

except at the very lowest elevations for both Cases 1 and 2.  

For Case 1, the Ehrlich and Mitchell (1994) method produced large conservative 

errors at all but the lowest reinforcement levels. For Case 2, the Ehrlich and Mitchell 

(1994) method agreed with the measured reinforcement loads throughout most of the wall 

height, but under-predicted the reinforcement loads near the base of the wall.  The 

Coherent Gravity and Simplified methods both under-predicted the reinforcement loads 

at all evaluations for the triaxial curved failure envelope, whereas the Ehrlich and 

Mitchell (1994) method produced precise and accurate predictions in the top and middle 

sections of the wall, but under-predicted the loads in the bottom third. Once again, the K-

Stiffness method produced conservative estimates for load except at the very lowest 

reinforcement layers. 

For the curved plane strain failure envelope (Figure 6.11a), the K-Stiffness method 

best predicted the reinforcement loads overall, but under-predicted the load both near the 

top and in the lower half of the wall. Near the top of the wall, the Ehrlich and Mitchell 

(1994) distribution produced fairly good, but non-conservative reinforcement load 

estimates; however, it became non-conservative at lower elevations. The Coherent 

Gravity and Simplified methods produced highly non-conservative load distributions for 

Case 1. 
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Figure 6.10. Observed and predicted peak reinforcement loads for the West MSE wall using (a) the soil 

properties assumed during design, and (b) The actual soil properties capped per AASHTO. 
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Figure 6.11. Observed and predicted peak reinforcement loads for the West MSE wall using (a) triaxial 
properties with a curved failure envelope, and (b) plane strain properties with a curved failure envelope. 
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Figure 6.12. Observed and predicted peak reinforcement loads for the West MSE wall using (a) Coherent 

Gravity method, and (b) the AASHTO Simplified method. 
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Figure 6.13. Observed and predicted peak reinforcement loads for the West MSE wall using (a) Ehrlich and 

Mitchell (1994), and (b) the K-Stiffness method. 
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Biases in reinforcement load estimates were also computed for the West MSE wall, 

similar to the North wall. The statistics summarizing the prediction method accuracy for 

the West wall are presented in Table 6.6. Similar to the North wall, the load prediction 

methods that produced the largest average bias, corresponding to the least conservative 

methods, were the Coherent Gravity and Simplified methods. The K-Stiffness method 

produced the lowest mean bias, suggesting that it is the most conservative method 

evaluated, with average bias values ranging from 0.54 for Case 1 to 1.41 for Case 4. Once 

again, the Ehrlich and Mitchell (1994) method performed the best overall, however, for 

the West wall, Case 3 performed comparably to Case 2 shown with average biases of 

1.11 and 1.05, respectively.  

On average, the coefficient of variation for the West wall was much higher than for 

the North wall. This is largely attributed to the large loads measured in the lowest set of 

instrumented reinforcement strips. The cause of this load is not well understood, though it 

is suspected to be due to the extremely large local soil-reinforcement stiffness caused by 

the close reinforcement spacing (Stuedlein et al. 2012). However, the investigation of this 

effect is outside the scope of this thesis. 
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Table 6.6. Summary statistics of the bias in reinforcement loads calculated for the West MSE wall. 

      Case No. Mean bias Range in bias COVa (%) 

Coherent Gravity Method 
          Case 1 1.23 1.81 0.92 21 
          Case 2 1.45 2.13 1.08 21 
          Case 3 1.70 2.22 1.29 16 
          Case 4 2.82 3.89 2.11 19 
AASHTO Simplified method 
          Case 1 1.14 1.73 0.84 23 
          Case 2 1.35 2.04 0.99 23 
          Case 3 1.58 2.12 1.18 18 
          Case 4 2.62 3.54 1.93 18 
Ehrlich & Mitchell (1994) 
          Case 1 0.70 0.97 0.54 18 
          Case 2 1.05 1.37 0.85 15 
          Case 3 1.11 1.44 0.91 14 
          Case 4 1.69 2.43 1.18 22 
K-Stiffness Method 
          Case 1 0.54 1.05 0.35 38 
          Case 2 0.68 1.33 0.44 38 
          Case 3 0.86 1.52 0.58 32 
          Case 4 1.41 2.40 0.97 30 
a Estimated using small-sample standard deviation method (Snedecor and Cochran 1964; Lacasse and Nadim 1996). 

 

6.6 Sensitivity of the Ehrlich and Mitchell (1994) Method to Modulus Number and 

Friction Angle  

As discussed in Section 6.3.1, the Ehrlich and Mitchell (1994) method produced the 

most variation in shape between each failure envelope assumed and showed the 

sensitivity of the method to the friction angle and modulus number. However, because 

both  and K were being varied simultaneously, it was difficult to assess the effect of 

each variable on the predicted load distribution. In order to visualize the effect of friction 

angle and modulus number on the predicted load distribution, a parametric analysis was 

performed where the friction angle was varied between 37 and 48 degrees while holding 

the modulus number constant at values of 1200 and 2700. 

Figure 6.14(a) shows the sets of load prediction distributions computed for modulus 

numbers of 1200 and 2700. For two soil with the same friction angle, the use of the 
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smaller modulus number resulted in increases in load. These increases were smaller near 

the top then becoming larger with decreases in elevation with maximum a maximum 

observed increase of 14.8 kN/m.  

The effect of friction angle on computed load prediction distribution is shown in 

Figure 6.14(b). Similar to the modulus number, the use of lower fiction angles caused 

large increases in predicted load (up to 20.6 kN/m) at lower wall elevations, however, for 

lower vertical effective stresses (near the top of the wall), the use of lower friction angles 

resulted in a reduction in the predicted load. This is a result of the Ehrlich and Mitchell 

(1994) method employing the Duncan and Seed (1986) hysteretic compaction induced 

stress model which accounts for the “locking-in” of compaction stresses at shallow wall 

depths and which is typically greater for soils with larger friction angles. 
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Figure 6.14. Parametric analysis of the Ehrlich and Mitchell (1994) method varying (a) friction angle only with 

the modulus number at held constant at K = 2700 and (b) the friction angle with the modulus number held 
constant at K = 1200 and K = 2700 (North MSE wall). 
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6.7 Pullout Performance 

The internal stability of a MSE wall is determined by comparing the maximum 

predicted reinforcement load to the allowable reinforcement tension with respect to 

rupture, and pullout resistance at each reinforcement level as discussed in Section 2.2.1.  

The allowable reinforcement pullout resistance in steel strip reinforced MSE walls is a 

function of vertical effective stress, embedded reinforcement length and apparent friction 

coefficient: 

 

 '  2  *r v eP L b f  (2.46) 

 

In this Section, the required embedment lengths with respect to pullout are 

determined by setting the pullout resistance from Equation 2.46 equal to maximum 

reinforcement load multiplied by the factor of safety against pullout, FSPO  (note:  Tmax is 

on a per-strip basis rather than a per unit width of wall as used in previous sections). The 

equation for required embedment length, Le,req’d, can be expressed as: 

 max
, '

T

 2 *e req d PO
v

L FS
f b

   (6.3) 

 

where the factor of safety with respect to pullout is taken as 1.5. 

Figure 6.15 and 6.16 show the variation in required embedment lengths when using 

the four different load prediction methods for the North and West MSE walls, 

respectively, with Case 2 as described in Table 6.4 and the backfill-specific f* design 

model presented in Section 5.5. For both walls, the largest embedment lengths were 

required when considering the K-Stiffness method with maximum required embedment 

lengths of approximately 4 m corresponding to a 230 percent increase over the other 

methods. The Coherent Gravity, Simplified and Ehrlich and Mitchell (1994) methods 

produced maximum required embedment lengths of approximately 1 m. For the West 

MSE wall, the same general shape is maintained for each distribution, however, for the 



163 
 

North wall, the distribution of required embedment lengths produced by using the Ehrlich 

and Mitchell (1994) method is more conservative at the top of the wall than the 

distributions produced by the other methods, and can be attributed to the hysteretic 

compaction stress model used by Ehrlich and Mitchell (1994). For the West wall, the 

influence of the compaction induced stresses is not as prominent due to the presence of 

the 3.8 m high surcharge load which causes a vertical effective stress at the upper-most 

reinforcement layer of approximately 100 kPa.  Appendix F provides similar plots with 

the AASHTO and global gravel f* models. 

Figure 6.17 and Figure 6.18 show the variation in required embedment lengths for the 

North and West MSE walls when using the current AASHTO f* design model discussed 

in Section 2.2.1.4, and the global gravel and backfill specific design models developed in 

Chapter 5. Near the top of the wall, the embedment lengths computed using the different 

f* design models had the largest variation were the backfill specific model required the 

smallest embedment lengths and the AASHTO model required the largest lengths (as 

much as 200 percent greater than those computed using the backfill-specific model). The 

difference in required embedment lengths decreased with increases in effective vertical 

stress. 

Typically in MSE wall design pullout resistance controls near the top of the wall 

where vertical effective stresses are low. However, the pullout resistance in tall walls is 

not likely to control due to the AASHTO requirement that the total reinforcement length 

be at least 70 percent of the design height, Lr ≥ 0.7H. With such large embedment 

lengths, the allowable yield strength is reached well before pullout can occurs. Although 

the use of the global gravel and backfill-specific f* models would not affect the design of 

the North or West MSE walls using the current AASHTO design procedure, their use in 

smaller walls would provide significant reductions in the amount of reinforcement 

material required. 
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Figure 6.15. North MSE wall required embedment lengths for pullout using different load prediction methods 

and the proposed backfill specific f* design model. 
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 Figure 6.16.  Embedment lengths required for pullout using different load prediction methods and the proposed 

backfill specific f* design model. 
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Figure 6.17. Embedment lengths required for pullout resistance in the North MSE wall computed using the two 

proposed f* design models and the AASTO standard model with reinforcement loads calculated using the 
Ehrlich and Mitchell (1994) method. 
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Figure 6.18. Embedment lengths required for pullout resistance in the West MSE wall computed using the two 

proposed f* design models and the AASTO standard model with reinforcement loads calculated using the 
Ehrlich and Mitchell (1994) method. 
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6.8 Summary 

The internal stability of an MSE wall design is determined by predicting 

reinforcement loads, then comparing the predicted loads to an estimated allowable 

pullout resistance and reinforcement yield strength. In this Chapter, the internal stability 

of two very tall MSE walls was analyzed and the following contributions and conclusions 

were made: 

1. The reinforcement loads previously inferred from reinforcement strain 

measurements were reevaluated using the representative Young’s modulus 

reported in Chapter 2; an apparent increase in load of 4 percent was observed. 

2. The reinforcement stresses as a percent of yield strength inferred from 

reinforcement strain measurements and nominal values of yield strength were 

revised using the yield strength measured in Chapter 2; an apparent reduction of 

2.6 and 3.3 percent were observed for the North and West MSE walls, 

respectively.  

3. Using four different reinforcement load prediction methods and four sets of 

constitutive parameters, 32 reinforcement load distributions were generated and 

compared to the measured reinforcement loads by computing bias values; the 

Ehrlich and Mitchell (1994) method used with the constitutive parameters 

determined for the backfill in Chapter 4 produced the most precise and accurate 

predictions for both the North and West MSE walls. 

4. Required pullout embedment length distributions were determined using the 

different load distributions from the four prediction methods analyzed above; the 

K-Stiffness method was found to be the most conservative, producing required 

embedment lengths of up to 230 percent greater than other prediction methods. 

5. Required pullout embedment length distributions were determined using the 

global gravel and backfill-specific f* design models developed in Chapter 5 as 

well as the AASHTO standard f* design model discussed in Chapter 2; visual 

comparisons of the resulting distributions showed the AASHTO model to be 
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much more conservative, producing required embedment lengths up to 200 

percent greater than the global gravel and backfill-specific design models.  
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7.0 SUMMARY AND CONCLUSIONS  

7.1 Summary of Research Investigation 

The main objectives of this thesis were to characterize the constitutive behavior of a 

sandy gravel backfill material used in two very tall MSE walls, to develop a better 

understanding of the soil-reinforcement interaction between the sandy gravel backfill and 

the ribbed steel strip reinforcements used in two very tall MSE walls, and to assess the 

effect of the backfill and the soil-reinforcement interaction on internal stability of these 

two walls.  Laboratory tests were performed on the backfill and reinforcement materials 

separately to determine their constitutive properties. Full-scale laboratory pullout tests 

were performed and the results used to produce a backfill-specific design models that can 

be used to predict peak reinforcement pullout resistance.   

7.2 Conclusions 

7.2.1 Laboratory Test Program  

The following summarizes the findings of the laboratory testing program: 

1. Tension testing was performed on coupons cut from the ribbed steel strip 

reinforcements and the following representative constitutive properties 

determined: yield strength, fy = 526 MPa; and, Young’s modulus, E = 208 GPa 

2. Consolidated drained axisymmetric triaxial strength tests were performed on the 

reinforced backfill material compacted to 35, 55 and 65 percent relative density.  

The friction angles of the material at a confining pressure of one atmosphere were 

found equal to 47.9, 45.3 and 40.0 degrees, respectively. The reduction in peak 

friction angle with a log-cycle increase in confining pressure was equal to 2.1, 

4.7, and 6.8 degrees for relative densities of 35, 55, and 65 percent, respectively. 

3. Duncan and Chang (1970) Hyperbolic stress-strain models were calibrated for the 

material at relative densities of 35, 55, and 65 percent.  The modulus number 

ranged from 725 to 1200, whereas the modulus exponent ranged from 0.385 to 

0.525.  
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4. A large, single strip pullout test apparatus was designed and constructed in order 

to evaluate the soil-reinforcement interaction of ribbed steel strip reinforcements. 

5. Twenty pullout tests were performed at effective vertical stresses ranging from 10 

to 300 kPa resulting in peak reinforcement loads ranging from 18.6 to 93.8 kN. 

6. Multi-linear regression was used to quantify the combined effect of vertical 

effective stress and compaction on the maximum pullout resistance.  Although 

both variables control the peak pullout resistance, the effect of dry unit weight 

was found to be statistically insignificant, likely due to the small range in dry unit 

weight evaluated and experimental error.  A regression model requiring the use of 

the vertical effective stress as the single independent variable was recommended 

for use until further tests could be obtained. 

7. New backfill-specific and gravel models for the prediction of the apparent friction 

coefficient with normal effective stress were developed for use with ribbed steel 

strip reinforcements. 

8. The performance of the proposed f* design models were compared to the current 

AASHTO design model and found to produce significantly more accurate 

predictions of  the apparent friction coefficient 

7.2.2 Analysis of Internal Stability  

The internal stability of the 25.9 m tall North MSE wall and 45.7 m tall West MSE 

walls were analyzed using various combinations of design models and constitutive 

properties and the following conclusions were obtained: 

1. The reinforcement loads previously inferred from reinforcement strain 

measurements were reevaluated using the representative Young’s modulus 

reported in Chapter 2; an apparent increase in load of 4 percent was observed. 

2. The reinforcement stresses as a percent of yield strength inferred from 

reinforcement strain measurements and nominal values of yield strength were 

revised using the results from the tension testing; an apparent reduction of 2.6 and 

3.3 percent were observed for the North and West MSE walls, respectively.  



172 
 

3. The accuracy and uncertainty of four different reinforcement load prediction 

methods with four sets of constitutive parameters was evaluated.  The Ehrlich and 

Mitchell (1994) method used with the constitutive parameters determined for the 

backfill in Chapter 4 with the fiction angle capped at 40 degrees produced the 

most precise and accurate predictions for both the North and West MSE walls. 

4. Required pullout embedment length distributions were determined using the 

different load distributions from the four prediction methods analyzed above; the 

K-Stiffness method was found to be the most conservative, producing required 

embedment lengths of up to 230 percent greater than other prediction methods. 

5. Required pullout embedment length distributions were determined using the 

global gravel and backfill-specific f* design models developed in Chapter 5 as 

well as the AASHTO standard f* design model discussed in Chapter 2. Visual 

comparisons of the resulting distributions showed the AASHTO model to be 

much more conservative, producing required embedment lengths up to 200 

percent greater than the global gravel and backfill-specific design models. 
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Testing Procedure: 
Consolidated-Drained Axisymmetric Triaxial Tests 
6” Diameter, Remolded Granular Soil Specimens 
ASTM D7181 

A. Specimen Preparation  

1. Prepare a sample of material at the specified gradation to be tested.  
 

2. Record the dry mass of the prepared sample. 
 

3. Compute the mass of water that must be added to the prepared sample to facilitate 
compaction to the specified density (i.e., the target void ratio). The optimum water 
content derived from a modified Proctor test (ASTM D 1557) may typically be used 
for preparing dense specimens; the water content to be used will depend on specific 
project requirements.  Be sure to obtain the advisor’s approval of the selected water 
content prior to testing. 
 

4. Add the mass of water required to achieve the desired water content and mix 
thoroughly. The specimen should be covered prior to and during compaction to 
prevent moisture loss. 
 

5. Assemble the compaction mold and place it on a level surface. Compact lifts using 
a modified proctor hammer (for preparing dense specimens; loose specimens may 
require different approaches). Evenly distribute each lift of soil prior to compaction. 
 

6. Mix the remaining sample in the pan before each lift to maintain even grain size 
distribution and water content. 
 

7. Continue compacting lifts of equal height until the top of the compacted specimen 
is level with the top of the mold.  
 

8. Smooth and level the specimen surface to ensuring the top of the specimen is level 
with the top of the compaction mold (use a # 4 sieve to obtain sand to use in 
leveling the sample). 
 

9. Measure and record the mass of the mold and sample (mmold + soil) with the bottom 
plate still attached to the mold. 
 

10. Compute the estimated initial void ratio and check it against the target range. If 
estimated initial void ratio is within the target range, continue to the mounting 
procedure, if not, start over with new soil (do not reuse previously compacted soil). 
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platen respectively, then record the average of 3 measurements from the top of the 
measuring plate to the bottom of the bottom platen using the calipers depth probe as 
shown in Figure 0.14 below.  Then remove the measuring plate, top platen, top 
porous stone, and top filter paper. 
 

  
Figure 0.2: Combined measurement of platens, porous stones and filter paper during step B-2. 

3. Ensure that porous stone and filter paper are aligned with the bottom platen and that 
the stone sits flat on the platen and does not wobble. Stones can become warped and 
should not be used if they no longer lie flat on the platen.  
 

4. Plug the holes in the bottom of the triaxial chamber base plate with ear plugs prior 
to mounting the sample. This is to prevent material from becoming trapped in the 
holes.  
 

5. Loosen the wing nuts on the bottom of the compaction mold and carefully remove 
the mold from the bottom plate by sliding the two top pieces of the mold (which 
contain the specimen) off of the bottom plate. Caution: do not lift the specimen 
strait up off the bottom plate. 
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Figure 0.4: Placing the membrane and membrane applicator over the specimen during step B-9. 

 
Figure 0.5: Blowing air into the applicator tube to secure the membrane to the sides of the specimen during step 

B-9. 
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Figure 0.7: Sliding the O-rings off the membrane and on to the membrane applicator during step B-11. 

12. Carefully roll the bottom O-ring off the membrane applicator and onto the specimen 
base.  Ensure that the O-ring is seated in the groove on the bottom platen. 

 
Figure 0.8: Rolling the bottom O-rings of the applicator and on to the membrane and bottom platen during step 

B-12. 
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Figure 0.10: View of specimen after the membrane has been applied and the top drainage hoses connected after 

step B-14. 

15. Connect the vacuum regulator to a bubble bottle, and connect the bubble bottle 
intake to top drainage valves on the cell base. Apply ~ 3 in Hg (10 kPa) vacuum 
and slowly evacuate air from the specimen until the bottle stops bubbling (Figures 
11 and 12). Do not exceed 15 kPa of confining pressure at any time prior to the first 
B-value check (described below). 
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Figure 0.11: View of specimen, vacuum regulator and bubble bottle prior to evacuation of the specimen during 

step B-15. 

 
Figure 0.12: View of the bubble bottle during the evacuation of the specimen in step B-15. 
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Figure 0.17: View of the cell prepared to be filled with water during step B-23. 

24. Ensure that the cell pressure oil-water interface has sufficient water (see Figure 0.18 
below).  Make sure the cell pressure control valve is set to manual and the manual 
cell pressure regulator is set to zero. Connect the cell pressure hose from the back of 
the panel to the triaxial cell.  
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C. Saturating the Specimen 

1. Release the vacuum on the specimen by opening the top drainage valves (3) on 
the cell base.  

 
2. Make sure the back pressure regulator is set to zero, and then close the cell valve 

on the cell base.  
 

3. Rotate the cell pressure control valve to automatic. 
 

4.  Check that the bias is set to an appropriate value (typically 15 kPa). 
 

5.  Open the cell valve on the cell base. 
 

6. Connect CO2 tank and regulator to bottom drainage valve. Open top drainage and 
run CO2 through the specimen so that is flows through the specimen, out the top 
drainage, and into the bubble bottle at a rate of ~ three bubbles per second for 
approximately 20 minutes. 
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Figure 0.22: View of the specimen during CO2 saturation (step C-6). 

 
7. Turn off flow of CO2 to the cell (close tank valve), then close bottom valve, then 

top valve to the specimen and remove CO2 tank and regulator. Leave the bubble 
bottle connected to the top drainage valve. 

 
8. Connect de-aired water hose to bottom drainage valve (Note: Always control flow 

through the specimen from the bottom drainage valve). Turn knob on de-aired 
water tank to “Draw” and slowly open the valve on the de-aired water hose to 
allow water to saturate the specimen from the bottom up. Monitor the rate that air 
is pushed out of the specimen by watching the bubble bottle. Once bubbles no 
longer form in the bubble jar, close bottom drainage, then top drainage, remove 
the bubble bottle, and open top, then bottom drainage valves to allow water to 
drip slowly from the top drainage valve into 5 gallon bucket. Run water through 
the specimen for at least 20 minutes. Once desired amount of water has passed 
through the specimen, close bottom, then top drainage valves and disconnect de-
aired water hose.  
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6. Check that the cell pressure is being controlled with the positive bias relay 

("Automatic"). 
 

7. Slowly increase the back pressure {500 kPa} (watch the cell and back pressure in 
LabView to make sure the back pressure is keeping up with the cell pressure). 
 

8. Wait 4 min. 
 

9. Take Initial B-value back pressure and cell pressure readings. 
 

10. Close the cell valve on cell base. 
 

11. Rotate the cell pressure control valve to "manual". 
 

12. Increase the manual cell pressure regulator to 30 kPa greater than that of the back 
pressure {530 kPa}. 
 

13. Close drainage valve B (note that you are still able to measure pore pressure). 
 

14. Open the cell valve on cell base. 
 

15. Take final B-value back pressure and cell pressure readings, and calculate the B-
value. 
 

16. Close off the cell valve on cell base. 
 

17. Rotate the cell pressure control valve to "automatic". 
 

18. Open the cell valve on the cell base. 
 

19. Open drainage valve B. 
 

20. If the B-value is greater than or equal to 0.90, then move to consolidation, If not, 
repeat steps 7 through 20 at a higher pressure. 
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9. Decrease the manual cell pressure regulator to the test-effective pressure (back 
pressure + σ'3) and wait 5 minutes. 

 

F. Shear 

1. Check that LabView is still recording data.  
 

2. Turn on the load frame controller 
 Press Enter 
 Select English 
 Verify displacement rate (ASTM D7181 section 8.4.2, typically 0.02 

in/min for cohesionless soil) and push Enter 
 Push Test => Now ready to start 

 
3. Record the back pressure for 10 seconds, and then rotate the pressure transducer 

valve to cell. 
 

4. Push Start on load frame controller. Shearing will commence immediately. Note: 
The VCD is very sensitive. Avoid touching the table that the VCD rests on 
during testing. 

 
5. Monitor progress of shear by observing plots in LabView and the specimen in the 

cell. 
 

6. Once displacement has reached 2.4 inches (20 percent axial strain), stop 
recording, and then push stop on load frame controller. 

 
G. Disassembly 

1. Lock the piston into place 
 

2. Close the top and bottom drainage, and cell valves on the base of the cell. 
 

3. Rotate the cell pressure control valve to automatic. 
 

4. Decrease the back pressure regulator to zero. 
 

5. Decrease the manual cell pressure regulator to zero. 
 

6. Unhook the cell pressure line from the cell valve on the cell base. 
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7. Unhook and re-plug the top and bottom drainage lines one at a time. 
 

8. Slowly open the bottom drainage valve on the cell base until a stable drip 
develops. 
 

9. Allow the specimen to drain for 5 minutes, and then close the bottom drainage 
valve. 

 
10. Connect a drainage hose to the cell valve on the cell base to drain the cell into a 5 

gallon bucket. 
 

11. Disconnect the back pressure hose from quick connect on the top of the VCD and 
connect it to the vent on top of the chamber with the quick release extension. 

 
12. Pressurize the chamber lightly by increasing the back pressure regulator. 

 
13. Once the chamber has drained completely, disconnect hoses from the cell. 

 

14. Place cart and metal pan to collect the sample next to the load frame. 
 

15. Transfer the entire triaxial apparatus to the cart. 
 

16. Unbolt the chamber. Loosen and remove the piston, and carefully remove the 
chamber from the base plate.  

 

17. Disconnect top drainage lines from top platen and carefully the sample and 
membrane into the pan. Save all material. Be careful when removing specimen 
from the membrane.  

 

18. Wash the membrane with water and store the used membrane in water for reuse. 
 

19. Oven-dry the sample. 
 

20. Determine the actual initial void ratio of the sample by measuring the dry mass of 
the specimen after testing. 
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APPENDIX B 
 

Principal Stress Difference-Axial Strain Curves 
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Figure 0.1. Effective principal stress difference versus axial strain for tests at an effective confining pressure of 

10 kPa. 

 

 
Figure 0.2. Effective principal stress difference versus axial strain for tests at an effective confining pressure of 

20 kPa. 
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Figure 0.3. Effective principal stress difference versus axial strain for tests at an effective confining pressure of 

50 kPa. 

 
Figure 0.4. Effective principal stress difference versus axial strain for tests at an effective confining pressure of 

100 kPa. 
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Figure 0.5. Effective principal stress difference versus axial strain for tests at an effective confining pressure of 

200 kPa. 

  
Figure 0.6. Effective principal stress difference versus axial strain for tests at an effective confining pressure of 

300 kPa. 
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Figure 0.7. Effective principal stress difference versus axial strain for tests at an effective confining pressure of 

500 kPa. 

 
Figure 0.8. Effective principal stress difference versus axial strain for tests at an effective confining pressure of 

1000 kPa.
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APPENDIX C 
 

Volumetric Strain-Axial Strain Curves 
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Figure 0.1. Effective principal stress difference verses axial strain for tests at an effective confining pressure of 

10 kPa. 

  
Figure 0.2. Effective principal stress difference verses axial strain for tests at an effective confining pressure of 

20 kPa. 
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Figure 0.3. Effective principal stress difference verses axial strain for tests at an effective confining pressure of 

50 kPa. 

  
Figure 0.4. Effective principal stress difference verses axial strain for tests at an effective confining pressure of 

100 kPa. 
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Figure 0.5. Effective principal stress difference verses axial strain for tests at an effective confining pressure of 

200 kPa. 

 
Figure 0.6. Effective principal stress difference verses axial strain for tests at an effective confining pressure of 

300 kPa. 
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Figure 0.7. Effective principal stress difference verses axial strain for tests at an effective confining pressure of 

500 kPa. 

 
Figure 0.8. Effective principal stress difference verses axial strain for tests at an effective confining pressure of 

1000 kPa. 
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APPENDIX D 
 

Pullout Box Design Schematics 
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Figure D-1. Front, back, and perspective views of assembled pullout box.
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Figure D-2. Side and top view of assembled pullout box.
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Figure D-3. Schematic of pullout box part L1, quantity = 1.
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Figure D-4. Schematic of pullout box part R1, quantity = 1.
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Figure D-5. Schematic of pullout box part L7, quantity = 1.
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Figure D-6. Schematic of pullout box part R7, quantity = 1.
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Figure D-7. Schematic of pullout box part R2-R6 and L2-L6, quantity = 10.
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Note: All Plates are 3/8" thick
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Figure D-9. Schematic of side plate and bottom plate.
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APPENDIX E 
 

Pullout Box Design Calculations 

  



 Tensile strength of threaded rod:

Required tensile strength of threaded rod:

P 300kPa 43.511 psi Pressure 

At 9in 13.25 in 119.25 in
2

 Tributary area

Pr P At 5.2 kip Tensile Load

Allowable tensile strength in threaded rod: 1/2
in

Fu 150ksi

d 0.5in

Pn

0.75 Fu
π d

2

4










2
11 kip

Since: Pn Pr  ,   1/2 in, high strength threaded rod will work (Fu > 150 ksi).  

 Shear strength of threaded rod:

Required shear strength of Threaded Rod:

Rr Pr 5.2 kip

Allowable shear strength in threaded rod: 1/2
in

Fn 0.4Fu 60 ksi

d 0.5in

Ab
d

2
π

4
0.196 in

2


Rn Fn Ab 11.8 kip

Since: Rn Rr  ,   1/2 in, high strength threaded rod will work (Fu > 150 ksi).  
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 Bearing strength at bolt holes: 

Required Strength: Pr 5.2 kip

Allowable Bearing Strength: 3/8 in thick Plate with 3/4 in hole
clearance

Fu 58ksi Lc 0.75in

t 0.375in
Ωto 2 ...... (J3.10)

d 0.5 in

Rn 1.2Lc t Fu  1.2Lc t Fu 2.4 d t Fuif

2.4 d t Fu  otherwise


.......... Equation J3-6a (AISC 13)

Rn 19.575 kip Rn

Ωto
9.8 kip

,  3/8 in thick Plate with 3/4 in
 hole clearance will work.

Since 
Rn

Ωto
Pr
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 Shear strength in top channel:

Required Shear Strength of top channel: 

w 13.25in 43.5 psi

L1 22in

Vr

w L1

2
6.34 kip

Where L1 is the center to center channel spacing, w is the expected shear force, and Vr

is the Required shear strength.

Allowable shear strength in the top channel:  MC 4 x 13.8

bf 2.5in 0.064 m

tf 0.5in 0.013 m

tw tf

E 2900ksi

Fy 36ksi

Ωv 1.67

kv 1.2 16.1 Chapter (G 7)

Aw 2bf tf 2.5 in
2

 (use 2 because there are two shear resisting members)

b bf

h b

h 0.064 m

Cv 1.0 (G2 - 3)
Since :

h

tw
1.10

kv E

Fy
  , 

Vn 0.6Fy Aw Cv 54 kip (G2 - 1)

Vn

Ωv
32.335 kip

Since 
Vn

Ωv
Vr ,  MC 4 x 13.8 will work.
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 Flexure in top channel:

Required Flexural Strength:

Mr

w L1
2







8
34.871 kip in

w and L1 from Required shear strength calculations.

Allowable Flexural strength in top channel: MC 4 x
13.8

Fy 36ksi

Zy 2.40in
3



Sy 1.29in
3



Ωb 1.67

Mn Fy Zy  Fy Zy 1.6 Fy Syif

1.6 Fy Sy  otherwise



Mn 74.304 kip in

Mn

Ωb
44.493 kip in Since 

Mn

Ωb
Mr ,  MC 4 x 13.8 will work.
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 Tension in top channel

Required Tensile Strength:

Pr 5.189 kip

Allowable flexural strength in top Channel:

U 1 Ωt 1.67

Ag 4.03in
2



An Ag d
1

16





in





0.5 in 3.749 in
2



Ae An U 3.749 in
2



Pn Fu Ae  Fu Ae Fy Agif

Fy Ag  otherwise

 .......Rupture 

.......Yielding

Pn 145.08 kip (Yielding
Controls)

Pn

Ωt
86.874 kip

Since 
Pn

Ωt
Pr ,  MC 4 x 13.8 will work.
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 Weld Strength at side channel ends:

(J2 - 3)
Required Weld Strength:

Rreq Pr 5.189 kip

Weld area
l 2in 2in 2in 2in 8 in ......weld length in inches

D 4 .......weld size in sixteenths of an inch

FEXX 70ksi ....... Fu of welding material

Available
Strength: Ω 2.0

Rn 0.6 FEXX
2

2










D

16





in l 59.397 kip Pg. 8-8 (AISC - 12)

Rn

Ω
29.698 kip

Since 
Rn

Ω
Rreq ,  8 in of 4/16in welds will work.
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 Support spacing for top plate flexure:

Plate thickness:

Ωb 1.67

b 17in

w P b 739.7
lbf

in
 Iplate

b t
3



12
0.075 in

4
 y

t

2


Mn

Fy Iplate

y
14.344 kip in

Mn

Ωb
8.59 kip in

Try:

sfl 9.5in Mapp

w sfl
2



8
8.34 kip in

Mapp

Mn

Ωb
 1

 Flange to flange distance must be limited to 9.5".
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APPENDIX F 
 

Required Reinforcement Embedment Lengths 
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 Figure 0.1. North MSE wall required embedment lengths for pullout using different load prediction methods 

and the current AASHTO f* design model. 
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Figure 0.2. North MSE wall required embedment lengths for pullout using different load prediction methods 

and the proposed global gravel f* design model. 
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Figure 0.3. Embedment lengths required for pullout resistance in the North MSE wall computed using the two 

proposed f* design models and the AASTO standard model with reinforcement loads calculated using the 
Coherent Gravity method 
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Figure 0.4. Embedment lengths required for pullout resistance in the North MSE wall computed using the two 

proposed f* design models and the AASTO standard model with reinforcement loads calculated using the 
Simplified method. 
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Figure 0.5. Embedment lengths required for pullout resistance in the North MSE wall computed using the two 
proposed f* design models and the AASTO standard model with reinforcement loads calculated using the K-

Stiffness method.  
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 Figure 0.6. West MSE wall required embedment lengths for pullout using different load prediction methods 

and the current AASHTO f* design model. 
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Figure 0.7. West MSE wall required embedment lengths for pullout using different load prediction methods and 

the proposed global gravel f* design model. 
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Figure 0.8. Embedment lengths required for pullout resistance in the West MSE wall computed using the two 
proposed f* design models and the AASTO standard model with reinforcement loads calculated using the 
Coherent Gravity method 
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Figure 0.9. Embedment lengths required for pullout resistance in the West MSE wall computed using the two 

proposed f* design models and the AASTO standard model with reinforcement loads calculated using the 
Simplified method. 
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Figure 0.10. Embedment lengths required for pullout resistance in the West MSE wall computed using the two 
proposed f* design models and the AASTO standard model with reinforcement loads calculated using the K-

Stiffness method. 
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