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THE STOKES PROBLEM OF FLUID MECHANICS, RIESZ

TRANSFORM, AND THE HELMHOLTZ-HODGE

DECOMPOSITION: PROBABILISTIC METHODS AND THEIR

REPRESENTATIONS

1 INTRODUCTION

The 3-dimensional Navier-Stokes equations governing viscous, incompressible fluid

velocity u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) for x ∈ R3, t ≥ 0, with initial data u(x, 0) =

u0(x), are mathematical description of the second law of Newton and mass conservation:

∂u

∂t
+ (u · O)u = ν∆u− Op+ f, O · u = 0, u(x, 0) = u0(x)

where O = ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

), u·O =
∑3

j=1 uj
∂
∂xj

, and ∆ = O·O =
∑3

j=1
∂2

∂xj2
(these operators

u · O and ∆ are applied component-wise to the velocities u(x, t)). The term p(x, t) is the

(scalar) pressure, f(x, t) represents external forcing, and ν > 0 is the kinematic viscosity.

The condition O · u = 0 is referred to as the incompressibility condition. See [11] for

details. If we assume that the flow is so slow(i.e., large viscosity) that (u · O)u can be

neglected, then the Navier-Stokes system reduces to the linear system, which is called the

Stokes equations,

∂u

∂t
= ν∆u− Op+ f, O · u = 0

In 1910 Oseen had suggested that the Stokes equations can be replaced and he formulated

what is now known as the Oseen equations as follows:

∂u

∂t
+ (U · O)u = ν∆u− Op+ f, O · u = 0
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This is also a linearization of the Navier-Stokes equations about U , whereas the Stokes

equations may be viewed as a linearization about 0. We thus would conjecture that Oseen

equations are a good approximation to the Navier-Stokes when the flow is close to the

velocity U far away from boundaries(the free stream velocity) and Stokes equations are

good where the velocity is 0(near boundaries). In particular, Stokes/Oseen equations are

important to understanding the motion of an object moving very slowly or steadily in

the fluid such as the swimming of microorganisms and the sedimentation, under the force

of gravity, of small particles and organisms, in water. See [16] for detail. It can also be

expected that open problems on the Navier-Stokes equations such as global existence in

time of strong solutions, uniqueness of weak solutions and asymptotic behavior of solutions

are closely related to the properties of solutions to the Stokes/Oseen equations.

It is well known that there is a deep relationship between the theory of partial

differential equations and probability theory which allows us to derive new results of

random processes and properties of the solutions of partial differential equations. It is

worth making an attempt to represent the solutions of the Stokes system in terms of

stochastic processes. In this dissertation we construct probabilistic solutions to Stokes

problems in the absence of boundaries, in the case of the half space, and we make some

observations for general domains. Also we explore probabilistic versions of the Helmholtz-

Hodge decomposition on domains with smooth boundary as well as the free space. In

addition, we obtain probabilistic representations of iterated Riesz transforms. Lastly, we

investigate the Neumann problem on the exterior domains as well as bounded domains.

1.1 Motivations and Main Results

In this section we are going to describe motivations and summarize briefly results

for each topic.
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1.1.1 Iterated Riesz Transforms

The Riesz transform on Rn, one of the most basic examples of the theory of singular

integrals, is defined by the principal value of the singular integral

Rjf(x) = p.v.cn

∫
Rn
f(x− y)

yj
|y|n+1

dy, j = 1, 2, · · · , n, (1.1)

where f ∈ Lp(Rn), p = 1, 2, cn is a constant that is chosen so that R̂jf(ξ) = i
ξj
|ξ| f̂(ξ),

and f̂ is the Fourier transform of f , see [37]. For a significant applications of the Riesz

transforms let us consider the Navier-Stokes equations of incompressible flows. See, for

example, [28]. Because there is no time derivative of the pressure, one might try to elimi-

nate the pressure. The so-called Leray projection operator P is defined by the orthogonal

projection of the Hilbert space L2(R3)3 into the closed subspace {u ∈ L2(R3)3 : O ·u = 0}

to project the Navier-Stokes equation on the space of divergence-free vector fields to re-

move the pressure term. The orthogonal projection property leads us to have P = I +R

where I is the 3 × 3 identity matrix and R = (RiRj), 1 ≤ i, j ≤ 3, is the matrix of it-

erated Riesz transforms. Applying the projection operator to the Navier-Stokes equation

to get the projected equation which can be thought of as a non-linear heat equation, we

have the solution of the projected equation in the form of the integral equation involving

the unknown term. Solutions to that integral equation with O · u = 0 are called mild

solutions. This is the Kato’s approach in which he proved existence of mild solutions for

initial data using Picard iterations. The pressure can be obtained from the velocity by

solving the Poisson equation. See, for example, [28]. So it is important to study Riesz

transforms in the context of incompressible fluid flow and we are, in particular, inter-

ested in probabilistic representations of them. There are at least two known probabilistic

approaches to define Riesz transforms. One is Gundy-Varopoulos-Silverstein’s approach

by using the background radiation process and conditional expectation, and the other

is Bass’ approach by the Doob’s h-path transform of Brownian motion and generalized

Cauchy-Riemann equations, see [21],[22], and [2]. The properties of the background radi-
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ation Θ = {Θt ∈ [0,∞) × R3 : −∞ < t < 0} give the following formula for the iterated

Riesz transforms of the functions f in Schwartz space

RjRkf(x) = (−1/2)E(

∫ 0

−∞
AjkOu · dΘt|Θt = (0, x)) (1.2)

where the matrix Aij = ei⊗ej , i.e. having 1 in location (i, j) and 0’s elsewhere, defines the

martingale transform in (1.2). The formula (1.2) gives the iterated Riesz transforms as a

martingale transform of the background radiation process Θ. The background radiation

process Θ must be defined on a path space having infinite measure, and therefore not

normalizable to a probability measure. Now, it is natural to ask the following questions.

Problem 1.1. Is there an explicit probabilistic representation of the iterated Riesz trans-

form different from G-V-S formula (1.2), i.e. the representation in terms of standard

Brownian motion defined on a probability space (of measure one) in place of the back-

ground radiation process?

We will see a new probabilistic representation of iterated Riesz transform in terms

of standard Brownian motion {Zt : t ≥ 0} extending an approach introduced by Bass in

[2] as follows.

Theorem 1.1. Suppose f ∈ C∞0 . Then there exists c independent of f s.t.

RiRjf(x) = c lim
s→∞

E(0,s)
hx

∫ τ

0
Yr

∂2u

∂xi∂xj
dYr = c lim

s→∞
E(0,s)
hx

∫ τ

0
(ed+1⊗ eiHej ⊗ ed+1 ·Zr)dZr

(1.3)

where H is the Hessian of the harmonic extension u of f and C∞0 is the collection of

smooth functions with compact support.

Comparing this formula (1.3) to the Gundy-Varapoulos-Silverstein’s formula (1.2) we

should note that the process Zt in Theorem 1.1 is a Brownian motion in the half space while

the process Θ in the Gundy-Varapoulos-Silverstein’s formula (1.2) is not itself Brownian

motion, but it belongs to the class of approximate Markov processes defined, as a collection
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of measurable functions, on a σ-finite measure space (Ω,F , P ). Also, as we mentioned in

Problem 1.1, the representation in Theorem 1.1 is no longer related to conditional expec-

tation (beyond the initial state) which is required in the Gundy-Varapoulos-Silverstein’s

representation of iterated Riesz transforms. In addition, the formula in Theorem 1.1 con-

tains the second order partial derivatives of the harmonic extension u of f rather than

the first order partial derivatives in the Gundy-Varapoulos-Silverstein’s representation.

Lastly, the matrix Ajk in the Gundy-Varapoulos-Silverstein’s formula defines the indi-

cated martingale transform while the matrix ed+1 ⊗ eiHej ⊗ ed+1 in the second formula

in Theorem 1.1 defines a new transform.

1.1.2 Neumann Problems

There is a different way to define Riesz transforms, which is related to a Neumann

problem. Let u be the solution to the Neumann problem in the upper half space Rn+1
+ ;

4Rn+1
+

u = 0 in Rn+1
+ ,

∂u

∂η
= f in Rn,

where f is a Schwartz function and ∂
∂η is the outward normal derivative to Rn+1

+ at the

boundary Rn, i.e., ∂u
∂xn+1

|xn+1=0 = −f . Then we have

Rjf =
∂

∂xj
(u|Rn)

or, formally,

Rjf =
∂

∂xj
(
∂

∂η
)−1f,

where ( ∂
∂η )−1f means the restriction to Rn of the solution u. It is very interesting to

investigate the Neumann problem on, more generally, unbounded domains as well as the

half space for the Riesz transforms because if we have stochastic representation of the

Neumann problem then we might have a chance to obtain a probabilistic representation of

the Riesz transform on unbounded domains as well as the Riesz transform on the Euclidean

space Rn. In the case of the half space Rn+1
+ , Ramasubramanian in [35] considered the
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Neumann problem with compatibility condition and several restrictions on the boundary

data f such as f has finite second moment and
∫
Rn |x|

r|f(x)| dx < ∞, r = 0, 1, 2. If the

domain is an unbounded Lipschitz domain in Rn, n ≥ 3, with compact boundary ∂D,

Chen, Williams and Zhao in [14] solved the Neumann problem and gave the probabilistic

representation of solution to the problem by constructing the Green-tight class for the

boundary ∂D which is the subset of the Kato class with Green-tightness. Now we ready

to pose questions.

Problem 1.2. What if we have the Neumann problem on an exterior domain which is

the complement of a compact set in Rn? Under what conditions on the boundary can we

solve the Neumann problem? i.e. Can we have weaker conditions on the boundary data

than the above two cases?

The probabilistic representation and properties of the Neumann function for the Neumann

problem on exterior domains enable us to present the same formula as in [35] and [14]

in more straightforward way. The following are the new probabilistic representations

of solutions to the Neumann problems on an exterior domain and the half space Rn+1
+ ,

respectively, that we will present in Chapter 3 in this thesis.

Proposition 1.1. Let u(x) =
∫
∂DN(x, y)f(y) dS(y) on the exterior domain D and f ∈

L1(∂D). Assume that ∂u
∂η |∂D = f . Then the solution to the Neumann problem on the

exterior domain D is given by

u(x) = − lim
t→∞

Ex
∫ t

0
f(Br

s) dLs (1.4)

where Lt is the local time process of reflecting Brownian motion Br
t on D̄ and N(x, y) is

the Neumann function with respect to Br
t .

Proposition 1.2. If u(x) =
∫
Rn−1 N(x′, y′, xn)f(y′) dy′, and the boundary data f ∈

L1(Rn−1), then

4u = 0,
∂u

∂η
|xn=0 = f
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and

u(x) = − lim
t→∞

E(x0,y0)

∫ t

0
f(Br

s) dLs (1.5)

where Lt is the local time process of reflecting Brownian motion Br
t on Rn+ and N(x, y) is

the Neumann function on the half space Rn+1
+ .

1.1.3 Helmholtz-Hodge Decomposition

According to the Helmholtz-Hodge decomposition, any smooth vector field F in Rn

which decays sufficiently fast at infinity may be uniquely represented as a superposition

of a gradient and a curl, i.e. F = G + Oφ where G = O × ψ for a scalar potential φ and

vector potential ψ obtained by solving a Poisson equation 4φ = O · F , 4ψ = −4 × F ,

O · ψ = 0. See [30], [18]. With this idea the Leray projection operator P suggests a

more general concept of decomposing vector fields into the divergence-free part and the

gradient part. Once we have a probabilistic representation of the iterated Riesz transform

on the free space, we might expect to obtain the probabilistic version of the Helmholtz-

Hodge decomposition on the free space. We will present the probabilistic representation

of the gradient part of a smooth vector field in Rn as the application of the iterated Riesz

transforms. Then we ask the following questions.

Problem 1.3. Is it possible to decompose any smooth vector field on general domains

such as exterior domains rather that Rn? What is the probabilistic representation of the

Helmholtz-Hodge decomposition on general domains?

In Chapter 2 and 3 we find new probabilistic representations of the scalar potential as

follows.

Proposition 1.3. Let F = (F1, F2, F3) be a smooth vector field in Rn which decays suf-

ficiently fast at infinity and F = G + Oφ where G = O × ψ for a scalar potential φ and

vector potential ψ. Then if vρ(x, y) =
∑3

i=0
∂uFi
∂xi

, where uFi is the harmonic extension of
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Fi, i = 1, 2, 3, and ρ := O · F , then for some constant c

∂φ(x)

∂xi
= c

3∑
j=1

lim
s→∞

E(0,s)
hx

∫ τ

0
Yr

∂uFj
∂xi∂xj

dYr (1.6)

or

∂φ(x)

∂xi
= c lim

s→∞
E(0,s)
hx

∫ τ

0
Yr
∂vρ
∂xi

dYr (1.7)

Also, we can define the Riesz transform of f on a domain D in terms of reflecting

Brownian motion from Chapter 3 in this thesis by

Rjf(x) =
∂

∂xj
(− lim

t→∞
Ex

∫ t

0
f(Br

s) dLs)|∂D. (1.8)

Thus through the Leray projection operator P we can decompose a smooth vector field

into the curl-free vector fields in terms of reflecting Brownian motion. This result, together

with the probabilistic representation of the iterated Riesz transform in Theorem 1.1, give

us one way to study the Helmholtz-Hodge decomposition on vector fields probabilistically.

1.1.4 Stokes problems on the Free space

We consider Stokes problem on R3:

∂u

∂t
= ν∆u− Op, O · u = 0 (1.9)

Then it follows from the relation between the Leray projection P and the Riesz transforms

in Chapter 2 that the fundamental solution of the Stokes equations can be written as

Γ(x, y, t) = −4yψ(x, y, t)I +Hessψ(x, y, t), (1.10)

where for each x ∈ R3, t > 0, ψ satisfies 4yψ(x, y, t) = −k(x, y, t) with the heat kernel in

R3, k(x, y, t) = 1
(4πνt)3/2

exp(− |x−y|
2

4πνt ), and Hessψ denotes the matrix of the second order

partial derivatives with respect to the y variable, and I denotes the 3× 3 identity matrix.

Oseen in [19] used the fundamental solution tensor for the steady problems in this form in

R2. In 3-dimensional case, Solonnikov in [38] had a similar expression in his analysis of the
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time dependent problem in R3. More recently Guenther and Thomann in [23] obtained

an explicit formula for the fundamental solution in terms of Kummer functions. Now, we

recall that for f ∈ S(R3), the Schwartz class,

RiRjf = − ∂

∂xi

∂

∂xj
4−1f.

See [37], pg243. Then we have Γ = (I + R)k where R is the matrix of iterated Riesz

transform RiRj and so if an initial data u(x, 0) = u0(x) is given, then we get

u(x, t) =

∫
R3

Γ(x− y, t)u0(y) dy =

∫
R3

[I +R]K(x, y, t)u0(y) dy, (1.11)

where K = kI. The probabilistic representation of the iterated Riesz transform (2.12) in

Chapter 2 allows us to have a new probabilistic representation of u = (u1, u2, u3) on the

free space as follows.

Proposition 1.4. Let u = (u1, u2, u3) be the solution to the Stokes problem with an initial

data u0 = (u1
0, u

2
0, u

3
0) on the free space. Then if v is the harmonic extension of u0 and

vρ = O · v then for some constant c

ui(x, t) = Ex[ui0(Bt)] + cEx[ lim
s→∞

E(0,s)
hBt

[

∫ τ

0
Yr
∂vρ
∂xi

dYr]] (1.12)

Then a more interesting and challenging question arises.

What is the probabilistic representation of the solution to the Stokes problem on a bounded

or exterior domain with smooth boundary?

1.1.5 Stokes Problems on Domains with Smooth Boundary

We consider the Stokes problem on a domain D with smooth boundary ∂D;

∂u

∂t
=

1

2
∆u− Op, (1.13)

O · u = 0, (1.14)

u(x, 0) = u0(x), u|∂D = a(x, t) (1.15)
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The incompressibility condition O · u = 0 leads us to the fact that the pressure p and

Op are harmonic. Hence Op is determined by its boundary data. We also note that the

equation (1.13) can be thought of as a nonhomogeneous heat equation if the boundary

data of Op is given. Then we can say that u is the solution to the heat equation with

forcing Op. The following is the probabilistic representation of the solution u to the heat

equation on a domain D with smooth boundary ∂D when Op is considered to be known

on the boundary.

Proposition 1.5. Assume that u and p are the solution to the Stokes problem (1.13),

(1.14), and (1.15). Let H = Op|∂D be given. Then then

u(x, t) = Ex[u0(Bt)1[t<τ ]]−Ex[

∫ t∧τ

0
EBs [H(Bτ , t− s)] ds] +Ex[a(Bτ , t− τ)1[τ<t]] (1.16)

where τ is the first hitting time of Bt on the boundary ∂D and Bt is Brownian motion

starting at x.

We will show that the boundary data H of Op can be obtained in terms of the initial

and boundary data of u in Proposition 1.5 so that u satisfies the incompressibility condition

O·u = 0. We notice that O·Q = 0 and O×Q = 0 on D, where Q = Op since p is harmonic.

In particular, on the half space D = R3
+, the conditions O · Q = 0 and O × Q = 0 are

the generalized Cauchy-Riemann equations. Hence h1 = −R1h3 and h2 = −R2h3, where

Rif is the Riesz transform of f , i = 1, 2, because ∂p
∂η = − ∂p

∂x3
|x3=0 = −h3 where ∂

∂η is the

outward normal derivative to the boundary R2. See [37].

For a general domain D in R3 such as a manifold with smooth boundary we define

the gradient of a differentiable function f on ∂D by a differentiable map

Õf : ∂D −→ R3

which assigns to each point x ∈ ∂D a vector Õf(x) ∈ Tx(∂D) ⊂ R3 such that

< Õf(x), v >x= dfx(v) for all v ∈ Tx(∂D), where Tx(∂D) is the tangent plane at x, <,>x
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is the inner product in Tx(∂D), and dfx(v) is the differential of f at x. See [17]. Let H

be a vector field on the boundary ∂D. Then

H = ΠTx(∂D)(H) + (H · η)η

where ΠTx(∂D) is the projection onto the tangent plane Tx(∂D).

If we have 4p = 0 on D and ∂p
∂η = H · η = h, then

H = ΠTx(∂D)(H) + (H · η)η = ΠTx(∂D)(H) + hη.

Thus we have

Õp|∂D = ΠTx(∂D)(H). (1.17)

In 1997 Arcozzi and Xinwei in [1] described three possible definitions of Riesz transform on

the sphere in Rn. One of them is that the Riesz transforms of f can be defined by solving

the Neumann problem with boundary data f , restricting the solution to the boundary,

and taking the tangential gradient of the restricted solution. With this definition if ∂p
∂η =

H · η = h, then the tangential part of H is the tangential gradient of pressure restricted

to the boundary from (1.17). Thus by the definition related to the Neumann problem

the tangential part of H is the vector of Riesz transforms of h. We can say that the

normal part of H determines the tangential part of H through the Riesz transformation.

Thus three unknowns of H go down to only one unknown. Therefore we have an integral

equation involving h = ∂p
∂η from O · u = 0. The existence of h in this integral equation

allows us to solve the Stokes problem.

In the case of the half space D = R3
+, h can be explicitly determined in terms of

the initial and boundary data of u.

Proposition 1.6. Let u be the solution to the Stokes problem on R3
+:

∂u

∂t
=

1

2
4u− Op, O · u = 0

u(x, 0) = u0(x), u|x3=0 = 0
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Assume that u0(x) ∈ C1(R3
+) satisfies the compatibility conditions O ·u0 = 0 and u0|x3=0 =

0. Then h = − ∂p
∂x3
|x3=0 is given by

h(x1, x2, t) =

∫ ∞
0

∫
R2

K̃(x′ − y′, y3, t)[O
′ · (R1u

3
0 − u1

0, R2u
3
0 − u1

0)] dy′dy3 (1.18)

where u0 = (u1
0, u

2
0, u

3
0), O′ = ( ∂

∂y1
, ∂
∂y2

), R′f = (R1f,R2f) with the Riesz transform of f

Rif , i = 1, 2, and

K̃(x′, x3, t) = k(2)(x′, t)
1√
2πt

(2)(
x3

t
) exp(−x

2
3

2t
).

Moreover, a probabilistic representation of h in terms of reflecting Brownian motion

is given as

h(x′, t) = E(x′,0)[
∂g

∂y3
(Br

t )]

where g(y′, y3) = O′ · (R1u
3
0 − u1

0, R2u
3
0 − u1

0) and Br
t is reflecting Brownian motion.

Therefore a new probabilistic representation of the solution u to the Stokes problem

can be obtained using the stochastic formula for the Riesz transform Rj , j = 1, 2 of h, the

formula (2.11) in Chapter 2 to get H since H can be determined by Riesz transforms of

h: H = (−R1h,−R2h, h) and

Rjf(x) = c lim
s→∞

E(0,s)
hx

∫ τ

0
AOu(Zr) · dZr

where A = en+1 ⊗ ek, i.e., having 1 in location (n+ 1, k) and 0’s elsewhere.

Finally a solution of the Stokes problem can be given as

Theorem 1.2. Assume that u0(x) ∈ C1(R3
+) and a ∈ C1,1(R2 × (0,∞)) satisfy the com-

patibility conditions O · u0 = 0, u0|x3=0 = a|t=0, and a · η = 0. Let

h(x1, x2, t) :=

∫ ∞
0

∫
R2

K̃(x′ − y′, y3, t)[O
′ · (R1u

3
0 − u1

0, R2u
3
0 − u1

0)] dy′dy3

+4x′(R1a1 +R2a2) + 4

∫ t

0

∫
R2

(
∂

∂s
− 1

2
4′)

exp(− |x
′−y′|2
2s )

s3/2
(O′ · a′)(y′, t− s) dy′ds,
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u(x, t) := {−
∫ t

0

∫
R2

[
∂

∂z3
|z3=0

∫ ∞
0

E(x, z, t′ + s) dt′]H(z, t− s) dzds+

∫
R3
+

E(x− y, t)u0(y) dy

+

∫ t

0

∫
R2

∂

∂y3
|y3=0E(x, y, t)a(y′, t− s) dy′ds

and let p be the solution to the Neumann problem with boundary data h on the half space

R3
+. Then u and p satisfy the Stokes problem with the initial data u0 and the boundary

data a on the half space R3
+.

In 2010 Bikri, Guenther, and Thomann in [5] utilized repeatedly the Fourier trans-

forms in R2 together with the Laplace transforms with respect to x3 of a function defined

in R3
+ to obtain some results on the DtN map for Laplace and heat operators in R3

+. We

use one of results in [5] to find the explicit formula for the pressure on the boundary in

the Stokes problem as the following corollary shows.

Corollary 1.1. Let h = − ∂p
∂x3
|x3=0 in the Proposition (1.6). Then

p(x1, x2, t) =

∫ ∞
0

∫
R2

K̃(x′ − y′, y3, t)(u
3
0 −R1u

1
0 −R2u

2
0) dy′dy3

+O′ · a′ + 4

∫ t

0

∫
R2

(
∂

∂s
− 1

2
4′)

exp−( |x
′−y′|2
2s )

s3/2
(R1a1 +R2a2)

where a′ = (a1, a2).

In 1987, Ukai in [39] gave the explicit solution to the Stokes problem in terms of

Riesz operators, the heat operator, and the Laplace operator in the half space Rn+. If

we just follow the operators in [39] and compute the pressure, then we can see that the

integral representation of Ukai’s formula for the pressure is exactly the same as the formula

in corollary 1.1. However, Ukai’s approach is different; he used a differential equation to

remove the term involving the pressure in the Stokes equations. Then he found the velocity

to the Stokes problem in terms of the initial and boundary data and finally obtained the

pressure from the velocity. However, we focus on the pressure at the first place.
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More interestingly, pressure on the boundary R2 can be expressed in terms of a

special function, Kummer’s function(see [32]), when the pressure p is the solution to the

Neumann problem on R3
+

Op = 0,
∂p

∂z3
|z3=0 = h(z′) (1.19)

where h =
∫∞

0

∫
R2 K̃(x′ − y′, y3, t)g(y′, y3) dy′dy3 with g(y′, 0) = 0. Recall that

1F1(a; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
eztta−1(1− t)c−a−1 dt,

where Re(c) > Re(a) > 0.

Proposition 1.7. Let u and p be the solution to the Stokes problem in the half space R3
+

with u|t=0 = u0, u|x3=0 = 0 and satisfy compatibility conditions O · u0 = 0, u0|x3=0 = 0.

Then one has the restriction to the boundary of the pressure given by

p(x′, t) = c

∫ ∞
0

∫
R2

exp(−|y
′−x′|2
2t )

√
t

1F1(
1

2
, 1,
|y′ − x′|2

2t
)
exp−y23

2t√
t

∂g

∂y3
|(y′,y3) dy

′dy3. (1.20)

To summarize, looking at the probabilistic representation of the solution u to the

Stokes problem on a bounded or exterior domain, we conclude that the velocity u and

the pressure p can be determined by only information of the gradient of pressure on the

boundary of domain.

1.2 Organization of Thesis

This thesis is organized as follows. In chapter 2 we recall two different approaches

to define Riesz transforms and present a new probabilistic representation of iterated Riesz

transforms. Also we prove the Lp-boundednes of iterated Riesz transforms. In chapter 3

we obtain probabilistic representations of solutions to the Neumann problems on bounded,

unbounded domains such as an exterior domain and the half space. In chapter 2 and 3

we present probabilistic representation of the Helmholtz-Hodge decomposition theorem



15

on the free space and a domain with smooth boundary, respectively. In chapter 4 we give

the probabilistic representation of the Stokes problem and study the existence of solutions

to the Stokes problem in terms of the boundary data of the gradient of pressure. We

also obtain the explicit formula of the boundary data of the gradient of pressure on the

half space in terms of the initial and boundary conditions of the solution to the Stokes

problem. In chapter 5 we summarize briefly new results in this thesis and some remarks

for future work.
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2 PROBABILISTIC REPRESENTATIONS OF ITERATED RIESZ
TRANSFORMS IN RN

In this chapter, we explain the probabilistic representations of the Riesz transforms

on the Euclidean space Rn in the context of the incompressible Navier-Stokes equations

for a significant application of the Riesz transforms and present the probabilistic repre-

sentations of the Riesz transforms with two approaches, Gundy-Varopoulos-Silverstein in

[22] and Bass in [2]. As the main result in this chapter, we will give a new probabilis-

tic representation of the iterated Riesz transforms. As an application we will see the

Helmholtz-Hodge decomposition. Before going into sections, let us recall some known

results on Riesz transforms on Rn.

Riesz in [34] proved that the Hilbert transform on the real line R, defined by the

principal value of the singular integral

Hf(x) = p.v.
1

2π

∫
f(y)

x− y
dy,

is bounded in Lp(R) for all 1 < p <∞. In 1952, Calderón and Zygmund in [15] extended

it from R to Rn and developed the theory of singular integrals. In particular, Riesz

transforms on Rn are the most fundamental example of singular integrals and are defined

by

Rjf(x) = p.v.cn

∫
Rn
f(x− y)

yj
|y|n+1

dy, j = 1, 2, · · · , n,

where cn is a constant that is chosen so that R̂jf(ξ) = i
ξj
|ξ| f̂(ξ), and f̂ is the Fourier

transform of f . It is well known that the Riesz transforms Rj are bounded in Lp(Rn) for

all 1 < p <∞, see [37].

It is also well known that the relation between the theory of partial differential

equations and probability theory is deep and enables us to have new results of random

processes and properties of the solutions of partial differential equations. For the in-

compressible Navier-Stokes system, in particular, the iterated Riesz transforms play an
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important role and so it is natural to make an attempt to construct a probabilistic repre-

sentation of this iterated Riesz transform.

2.1 Riesz Transforms on Rn in the context of Incompressible Navier-
Stokes Equations

Recall the 3-dimensional Navier-Stokes equations governing viscous, incompressible

fluid velocity u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) for x ∈ R3, t ≥ 0, with initial data

u(x, 0) = u0(x), are mathematical description of the second law of Newton and mass

conservation:

∂u

∂t
+ (u · O)u = ν∆u− Op+ f, O · u = 0, u(x, 0) = u0(x) (2.1)

where O = ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

), u ·O =
∑3

j=1 uj
∂
∂xj

, and ∆ = O ·O =
∑3

j=1
∂2

∂xj2
(two operators

u · O and ∆ are applied component-wise to the velocities u(x, t)). The term p(x, t) is the

(scalar) pressure, f(x, t) represents external forcing, and ν > 0 is the kinematic viscosity.

The condition O ·u = 0 is referred to as the incompressibility condition. This incompress-

ibility condition and the Green formula give the following well-known lemma, see [30] for

proof.

Lemma 2.1. Let v be a smooth vector field in Rn with O · v = 0 and let q be a smooth

real valued function such that |v(x)||q(x)| = O(|x|1−n) as |x| → ∞.

Then v and Oq are orthogonal:

∫
Rn
v · Oq = 0. (2.2)

Therefore for the velocities u(x, t) and pressure p(x, t) in Navier-Stokes equations

the L2 orthogonality ∫
Rn
u · Op = 0 (2.3)



18

is obtained from (2.2). This orthogonality leads us to eliminate the pressure term by

projection on divergence-free vector fields as follows.

We define an operator P by the orthogonal projection of the Hilbert space L2(R3)3

onto divergence-free vector fields {u ∈ L2(R3)3 : O · u = 0}. The operator P is called the

Leray projection operator.

Lemma 2.2. Let f̂(ξ) be the Fourier transform of f ∈ L2(R3). Then for u = (u1, u2, u3) ∈

L2(R3)3

P̂u(ξ) = (I − ξ ⊗ ξ
|ξ|2

)û, ξ ∈ R3 (2.4)

where P is the Leray projection operator, I is the identity matrix and the tensor product ⊗

of two vectors a, b ∈ R3 is defined by the matrix a⊗ b = (aibj)1≤i,j≤3 with a = (a1, a2, a3)

and b = (b1, b2, b3).

Proof. See [40].

Applying the projection operator to Navier-Stokes equations with the incompress-

ibility condition and L2−orthogonality of u and Op, we obtain for initial data u0 ∈

L2(R3)3, the projected equation

∂u

∂t
+ P((u · O)u) = ν∆u+ P(f). (2.5)

Viewing the projected equation (2.5) as a heat equation, i.e.

∂u

∂t
= ν∆u+ P(f − (u · O)u) (2.6)

we have

u(x, t) =

∫
R3

u0(y)k(x−y, νt) dy+

∫ t

0

∫
R3

P(f−(u ·O)u)(y, s)k(x−y, ν(t−s)) dyds (2.7)

where k(x, t) = 1
(2π)3/2

exp− |x|
2

4πt is the fundamental solution of heat equation. Solutions

to (2.6) with O · u = 0 are called mild solutions. Using the equation (2.6) Kato proved

existence of mild solutions for initial data u0 ∈ L3(R3)3 in [27].
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From the projection onto the divergence-free vector field we recover the pressure as

follows: The elements − ξiξj
|ξ|2 in (2.4) can be thought of as iterated Riesz transforms RiRj

in Fourier symbols if we define the Riesz transform on L2(R3) by R̂jf(ξ) = i
ξj
|ξ| f̂(ξ). Thus

P = I +R where R(RiRj)1≤i,j≤3 is the matrix of iterated Riesz transforms. Taking the

divergence in Navier-Stokes equations, and assuming no external forcing f ≡ 0 we have

O · (u · O)u = −O · Op = −∆p (2.8)

because of incompressibility condition O · u = 0. Taking Fourier transforms and using

incompressibility we obtain

p =
∑

1≤i,j≤3

RiRj(uiuj). (2.9)

2.2 Probabilistic Representations of Riesz Transforms on Rn

In this section we introduce two kinds of probabilistic representations of Riesz trans-

forms on Rn even if it is well known that there are several equivalent methods to define

Riesz transform on Rn. One is obtained by Gundy-Varopoulos-Silverstein’s Background

radiation and the other is Bass’ probabilistic representation through the Doob’s h-path

transform. Also we present a new probabilistic representation of the iterated Riesz trans-

form with Bass’ approach and show the boundedness of the iterated Riesz transform with

that probabilistic representation.

2.2.1 Gundy-Varopoulos-Silverstein’s Background radiation on Rn

Given a function f in the Schwartz space S (or the space of rapidly decreasing

functions) we let u(x, t) denote its unique bounded harmonic extension to the half space

Rn+1
+ := {(x, y) : x ∈ Rn, y ≥ 0}. Gundy and Varopoulos in [22] had the probabilistic

interpretation of Riesz transforms with Brownian motion from infinity (or background
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radiation) by applying a martingale transform, and then taking the conditional expectation

with respect to the terminal position. We define first background radiation as follows.

Definition 2.1. The background radiation process Θ = {Θt = (Xt, Yt) : −∞ < t < 0} is

a continuous path process taking values in the half space Rn+1
+ and having the following

properties:

1. Y−∞ = limt→−∞ Yt =∞.

2. Y0 = limt→0 Yt = 0 and Θ0 = limt→0 Θt exists as a point on the boundary Rn.

3. If, for a > 0, we let T a = inf{t : Yt = a}, then Θa
t = ΘTa+t, 0 ≤ t ≤ −T a is a

copy of standard Browian motion on Rn+1
+ with initial distribution being Lebesgue

measure on the level {y = a} and which terminates upon hitting the boundary Rn.

From the third property 3 in the definition of background radiation Θ we can see

that the underlying sample space has infinite measure and hence Θ is not normaizable to

a probability measure. Also it is not hard from the first property 1 of Θ to see that Θ is

not itself Browian motion since a 1-dimensional standard Brownian motion is recurrent,

i.e., in one dimension, the sample path of Brownian motion sweeps back and forth in such

a way that

lim
t→∞

= −∞, lim
t→∞

= +∞,

and therefore, by continuity of sample path of Brownian motion, must visit every point

infinitely often.

The properties of the background radiation process were used to prove the following

formula for iterated Riesz transforms of a function f ∈ S, the Schwartz class,

RjRkf(x) = (−1/2)E(

∫ 0

−∞
AjkOu · dΘt|Θt = (0, x)) (2.10)

where the matrix Aij = ei ⊗ ej , i.e. having 1 in location (i, j) and 0’s elsewhere. See [40].

An expression like
∫ 0
−∞AjkOu · dΘt is called the martingale transform of

∫ 0
−∞Ou · dΘt by
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the matrix A. Hence the formula (2.10) gives the iterated Riesz transforms as a martingale

transform of the background radiation process Θ.

2.2.2 Bass Probabilistic Representation of Riesz Transforms on Rn

On the other hand there is another probabilistic representation of Riesz transforms

from Bass [2]. In what follows we will denote elements of Rn+1
+ by z = (x, y) with x ∈ Rn,

y ∈ [0,∞). Let X = {Xt : t ≥ 0} be a n-dimensional Browian motion, Y = {Yt : t ≥ 0} a

one-dimensional Browian motion independent of X, and Z = {Zt = (Xt, Yt) : t ≥ 0}. We

will write ∂ju for ∂u
∂xj

and ∂yu = ∂u
∂y . Given a function f ∈ Lp(Rn) for some p ∈ [1,∞) we

define the harmonic extension u of f by

u(z) = Ezf(Xτ )

where τ = τRn+1
+

= inf{t > 0 : Xt /∈ Rn+1
+ } is the first time that Xt leaves the half space

Rn+1
+ . We can also represent the harmonic extension u by the Poisson kernel for the half

space Rn+1
+ :

u(z) = u(x, y) =

∫
Rn
f(w)Py(x− w) dw

where Py(x) = cn
y

(|x|2+y2)(n+1)/2 , cn = Γ((n+1)/2)

π(n+1)/2 .

Let us introduce Doob’s h-path transforms which is an example of the use of change

of measure. The motivation of the Doob’s h-path transforms is that one would like to

consider a diffusion process X to exit from a domain D at a point z only, i.e., Brownian

motion conditioned to exit the domain at a point. Intuitively, if h is a positive harmonic

function that is 0 everywhere on the boundary of a domain D except at one point z, for

example we can take the Poisson kernel for the half space Rn+1
+ for h, then we have by

the Markov property at time t

Px(Xt ∈ dy|XτD = z) =
Px(Xt ∈ dy,XτD = z)

Px(XτD = z)
=

Px(Xt ∈ dy)Py(XτD = z)

Px(XτD = z)

and so we might expect the probability for Brownian motion conditioned to exit D at z

should be h(y)
h(x)p(t, x, dy) if p(t, x, dy) is the probability that Brownian motion started at
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x and killed on leaving D is in dy at time t. More precisely, let D be a domain and X̂t

Brownian motion killed on exiting the domain D. Let h be a positive harmonic function

that is 0 everywhere on the boundary of D except at a point z. Since h is harmonic, i.e.

4h = 0 in D, h(X̂t∧τD) is a martingale by the Itô formula where τD = inf{t > 0 : X̂t /∈ D}.

Setting Mt := h(X̂t∧τD)/h(X̂0), Mt is a positive continuous martingale with M0 = 1, a.s.

So we define the Doob’s h-path transform of Browian motion by

Pxh(A) = Ex[Mt;A] =

∫
A
Mt(w)P(dw), A ∈ Ft.

Before going further to a probabilistic interpretation of Riesz transforms we need to

have three lemmas, two of which are proved in [2].

Lemma 2.3. Suppose that F ≥ 0,
∫
Rn

∫∞
0 yF (x, y) dydx < ∞, and there exists c1 and

β > 0 s.t.

sup
(x,y)∈B((0,s),s/2)

F (x, y) ≤ c1s
−n−2−β, s ≥ 1.

Then there exists c2 not depending on F s.t.

lim
s→∞

snE(0,s)

∫ τ

0
F (Xt, Yt) dt = c2

∫
Rn

∫ ∞
0

yF (x, y) dydx.

Proof. See [2], p 244.

Lemma 2.4. Suppose either that f ∈ L1 and u is its harmonic extension or u is the

Poisson kernel for some point w ∈ Rn. Then

sup
z∈B((0,s),s/2)

|Ou(z)|2 ≤ cs−2n−2, sup
z∈B((0,s),s/2)

| ∂2u

∂xi∂xj
| ≤ cs−n−2

Proof. See [2], p 247.

Lemma 2.5. Let hx(w, y) := Py(w − x) be the positive harmonic function with pole at x

that is 0 on the boundary Rn of Rn+1
+ except for 0, u a harmonic extension of a function
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f ∈ L1(Rn) with |∂yu(x, y)| ≤ cy−1−n for some constant c, and Sy := inf{t : Yt ≤ y}.

Then

lim
y→0

E(0,s)

∫ Sy

0
∂yhx(Zr)∂yu(Zr) dr = E(0,s)

∫ τ

0
∂yhx(Zr)∂yu(Zr) dr

Proof. We recall that the Green function for D = Rn+1
+ , n ≥ 3, is given by

gD((x1, y1), (x2, y2)) = c{[(x1−x2)2 +(y1−y2)2]−(n−1)/2− [(x1−x2)2 +(y1 +y2)2]−(n−1)/2}

We also note that gDy0 ((0, s), (w, y)) ≤ gD((0, s), (w, y)) where Dy0 = {(x, y) : x ∈ Rn, y ≥

y0 > 0} since gDy0 ((0, s), (w, y)) = c{[w2 +(y−s)2]−(n−1)/2− [w2 +(s−2y0 +y)2]−(n−1)/2}

and distance between (w,−y) and (0, s) is bigger than distance between (w, 2y0 − y) and

(0, s). Then we have

|E(0,s)

∫ Sy0

0
∂yhx(Zr)∂yu(Zr) dr| ≤

∫
Rn

∫ ∞
0

∂yhx(w, y)|∂yu(w, y)|gDy0 ((0, s), (w, y))| dydw

≤
∫
Rn

∫ ∞
0

∂yhx(w, y)|∂yu(w, y)|gD((0, s), (x, y)) dydx

By dominated convergence, the proof is completed.

Now we give a probabilistic representation of Riesz transformations as a corollary

of the following Proposition in [2].

Proposition 2.1. If f̂ ∈ L1(Rn) and there exists c s.t. |∂yu(x, y)| ≤ cy−1−n, then

lim
s→∞

E(0,s)
hx

∫ τ

0
∂yu(Zr) dYr = cf(x),

where E(0,s)
hx

is the expectation w.r.t the Doob’s h-path transform of Brownian motion

with the Poisson kernel hx for the half space Rn+1
+ .

Proof. See [2], p 249.

Before looking at the corollary let us introduce the generalized Cauchy-Riemann

equations. It is well know that the Riesz transforms and the theory of harmonic functions

are tied together closely as follows. See [37] for detail.
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Theorem 2.1. Let f and f1, · · · , fn all belong to L2(Rn), and let their respective harmonic

extensions be

u0(x, y) = Py ∗ f, u1(x, y) = Py ∗ h1, · · ·un(x, y) = Py ∗ fn

where Py(x) = cny

(|x|2+y2)
n+1
2
, cn =

Γ(n+1
2

)

π
n+1
2

is the Poisson kernel. Then a necessary and

sufficient condition that

fj = Rj(f), j = 1, · · · , n,

is that the following generalized Cauchy-Riemann equations hold:

n∑
j=0

∂uj
∂xj

= 0,

∂uj
∂xk

=
∂uk
∂xj

, j 6= k, x0 = y.

The generalized Cauchy-Riemann equations allows us to have the following corollary.

See [2] for the proof.

Corollary 2.1. Let f ∈ C∞0 , a smooth function with compact support. Then there exists

c independent of f s.t.

Rjf(x) = c lim
s→∞

E(0,s)
hx

∫ τ

0
AOu(Zr) · dZr (2.11)

where A = en+1 ⊗ ek, i.e., having 1 in location (n+ 1, k) and 0’s elsewhere.

We notice that
∫ τ

0 AOu(Zr) · dZr is the martingale transform of the martingale∫ τ
0 Ou(Zr) · dZr by a matrix A.

The main result of this chapter is the following.

Theorem 2.2. Suppose f ∈ C∞0 . Then there exists c independent of f s.t.

RiRjf(x) = c lim
s→∞

E(0,s)
hx

∫ τ

0
Yr

∂2u

∂xi∂xj
dYr = c lim

s→∞
E(0,s)
hx

∫ τ

0
(en+1⊗ eiHej ⊗ en+1Zr) ·dZr

(2.12)

where H is the Hessian of the harmonic extension u of f to Rn+1
+ .
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Proof. First we note that ∂2u
∂xi∂xj

=
∂2uij
∂y2

where uij is the harmonic extension of RiRjf

since ûij = P̂yR̂iRjf = −e−|ξ|y ξiξj|ξ|2 f̂ and
∂2ûij
∂y2

= −ξiξje−|ξ|yf̂ = ∂̂2u
∂xi∂xj

. Let hx(w, y) =

Py(w − x), the positive harmonic function with pole at x that is 0 on Rn − {x}. Set

Sy = inf{t : Yt ≤ y}. Then

E(0,s)
hx

∫ Sy

0
Yr

∂2u

∂xi∂xj
(Zr) dYr = E(0,s){hx(ZSy)

∫ Sy

0
Yr

∂2u

∂xi∂xj
(Zr) dYr}/hx(0, s)

By the Itô formula

hx(ZSy) = hx(Z0) +

∫ Sy

0
Ohx(Zr) · dZr.

Sine the stochastic integral is a martingale with mean 0,

E(0,s){hx(Z0)

∫ Sy

0
Yr

∂2u

∂xi∂xj
(Zr) dYr} = 0.

Since Xt is independent of Yt,

E(0,s){
∫ Sy

0
Ohx(Zr) · dZr

∫ Sy

0
Yr

∂2u

∂xi∂xj
(Zr) dYr = E(0,s){

∫ Sy

0
∂yhx(Zr)Yr

∂2u

∂xi∂xj
(Zr) dr}

Thus

E(0,s)
hx

∫ Sy

0
Yr

∂2u

∂xi∂xj
(Zr) dYr = c[hx(0, s)]−1E(0,s){

∫ Sy

0
∂yhx(Zr)Yr

∂2u

∂xi∂xj
(Zr) dr}.

Using the argument to justify the passage to the limit in the lemma 2.5 and letting y → 0,

we have

E(0,s)
hx

∫ τ

0
Yr

∂2u

∂xi∂xj
(Zr) dYr = csnE(0,s){

∫ τ

0
∂yhx(Zr)Yr

∂2u

∂xi∂xj
(Zr) dr}.
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By two lemmas 2.3 and 2.4 we mentioned earlier and the Plancherel identity

lim
s→∞

snE(0,s){
∫ τ

0
∂yhx(Zr)Yr

∂2u

∂xi∂xj
(Zr) dr}

= cn

∫
Rn

∫ ∞
0

y2∂yhx(w, y)
∂2u

∂xi∂xj
(w, y) dydw

= cn

∫ ∞
0

∫
Rn
y2∂̂yhx(ξ, y)

∂̂2u

∂xi∂xj
(ξ, y) dξdy

= cn

∫
Rn
e−iξ·x (

∫ ∞
0

y2|ξ|3e−2y|ξ| dy)︸ ︷︷ ︸
constant

R̂iRjf(ξ) dydξ

= cn

∫
Rn
e−iξ·xR̂iRjf(ξ) dξ

= cnRiRjf(x).

Remark : There are some remarks on this result we should note:

1. The process Z in Theorem 2.2 is a Brownian motion in the half space while the pro-

cess Θ in the Gundy-Varapoulos-Silverstein formula is not itself Brownian motion,

but it belongs to the class of approximate Markov processes defined, as a collection

of measurable functions, on a σ-finite measure space (Ω,F , P ).

2. The representation in Theorem 2.2 is no longer related to conditional expectation

which is required in the Gundy-Varapoulos-Silverstein representation of iterated

Riesz transforms.

3. The formula in Theorem 2.2 contains the second order partial derivatives of the

harmonic extension u of f rather than the first order partial derivatives in the

Gundy-Varapoulos-Silverstein representation.

4. The matrix Ajk in the Gundy-Varapoulos-Silverstein formula defines the indicated

martingale transform while the matrix ed+1⊗ eiHej ⊗ ed+1 in the second formula in

Theorem 2.2 defines a new transform.
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In addition, we also notice that the boundedness of iterated Riesz transforms can

be proved by the result of Theorem 2.2 with the polarization method and Burkholder-

Davis-Gundy inequality. We are going to see the proof of the boundedness of iterated

Riesz transforms. In order to get to the result we need the following lemma.

Lemma 2.6. Let Rif,Rjg ∈ C1
0 , C1 functions with compact support, where Rif,Rjg are

the Riesz transforms of f and g, respectively. Then
∫

(Rif)(Rjg) dx =
∫

(RiRjf)(g) dx.

Proof. By the polarization on Lemma 3.4 in [2] we have for a constant c∫
(Rif)(Rjg) dx = lim

s→∞
sdE(0,s)

∫ τ

0
∂yui(Zr)∂yvj(Zr) dr, (2.13)

where ui and vj are the harmonic extension of Rif and Rjg, respectively. The generalized

Cauchy-Riemann equations, Lemma 3.2 in [2], and the Plancherel identity allow us to

have the result as follows. From the equation (2.13)

lim
s→∞

sdE(0,s)

∫ τ

0
∂yui(Zr)∂vj(Zr) dr = c lim

s→∞
sdE(0,s)

∫ τ

0

∂u

∂xi
(Zr)

∂v

∂xj
(Zr) dr

= c

∫ ∫ ∞
0

y
∂u

∂xi
(x, y)

∂v

∂xj
(x, y) dydx

= c

∫ ∫ ∞
0

y
∂̂u

∂xi
(ξ, y)

∂̂v

∂xj
(ξ, y) dxdξ

= c

∫ ∫ ∞
0

y|ξ|e−|ξ|yi ξi
|ξ|
f̂ |ξ|e−|ξ|yi ξj

|ξ|
ĝ dydξ

= c

∫ ∫ ∞
0

y(e−|ξ|y|ξ|ξiξj
|ξ|2

f̂)(|ξ|e−|ξ|y ĝ) dydξ

= c

∫ ∫ ∞
0

y(∂yuij(x, y))(∂yv(x, y)) dydx

= c lim
s→∞

sdE(0,s)

∫ τ

0
∂yuij(Zr)∂uv(Zr) dr

=

∫
(RiRjf)g.

Finally we have the last new result in this section as follows.
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Proposition 2.2. If f ∈ C1
0 and 1 < p < ∞, then there exists c, independent of dimen-

sion, such that

‖RiRjf‖p ≤ c‖f‖p.

Proof. Suppose that g ∈ C1
0 . Then Lemma 2.6 and the proof of Theorem 3.5 in [2] give

the following. ∫
(Rif)(Rjg) = c lim

s→∞
sdE(0,s)

∫ τ

0
∂yui(Zr)∂yvj(Zr) dr

= c lim
s→∞

sdE(0,s)

∫ τ

0
∂iu(Zr)∂jv(Zr) dr

≤ c lim
s→∞

sdE[(

∫ τ

0
|∂iu(Zr)|2 dr)1/2(

∫ τ

0
|∂jv(Zr)|2 dr)1/2]

≤ c(lim sup
s→∞

sdE(0,s)[s(f)]p)1/p(lim sup
s→∞

sdE(0,s)[s(g)]q)1/q

where s(f) = (
∫ τ

0 |Ou(Zr)|2 dr)1/2. Using Doob’s inequality and Burkholder-Davis-Gundy

inequality, we have

sdE(0,s)[s(f)p] ≤ csdE(0,s)|f(Xτ )|p

and so we get

lim
s→∞

sdE(0,s)[s(f)p] ≤ c lim
s→∞

sdE(0,s)|f(Xτ )|p

= c lim
s→∞

sd
∫

s

(|x|2 + s2)(d+1)/2
|f(x)|p dx = c||f ||pp.

Similarly with g, and we have∫
(Rif)(Rjg) ≤ c||f(x)||p||g(x)||q.

Taking the supremum over gs with ||g||q ≤ 1 and Lemma 2.6 complete the proof.

Recently, Bañuelos and Méndez-Hernández in [8] presented a probabilistic represen-

tation of the iterated Riesz transforms in terms of the heat extension of a function to the

half space and the martingale transform of the extension in the weak sense. They used
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the formula of the iterated Riesz transform to estimate the iterated Riesz operator. The

heat extension of the function φ ∈ C∞0 (R2) to the upper half space R3
+ is defined by

Uφ(z, t) =

∫
R2

φ(w)Pt(z − w) dw,

where Pt(z) is the Green function for the half space. That is, this function is the solution

to the heat equation in the half space with boundary data φ on R2;

∂Uφ
∂t

(z, t) =
1

2
4Uφ(z, t), (z, t) ∈ R3

+

Uφ(z, 0) = φ(z), z ∈ R2.

Let Zt be two dimensional Brownian motion with initial distribution the Lebesgue mea-

sure m. Fix T > 0 and define the space-time Brownian motion Bt := (Zt, T − t), t ∈ [0, T ].

When t = 0 this process starts on the hyperplane R2×T with initial distribution m⊗ δT .

Let P T denote the probability density associated with this process and ET the correspond-

ing expectation. We define, for a 2× 2 matrix A, the martingale transform of Uφ(Bt) by

A ∗ Uφ =

∫ T

0
[AOzUφ(Bt)] · dZt

and its projection in R2 by

STAφ(x) = ET [A ∗ Uφ|BT = (x, 0)].

The following is a probabilistic representation of the iterated Riesz transform in the weak

sense in [8].

Proposition 2.3. Let i, j ∈ 1, 2 and Ai,j = (ai,jr,s) be the 2× 2 real matrix defined by

ai,ji,j = −1 and ai,jr,s = 0 if r 6= i or s 6= j.

Then for all φ ∈ C∞0 (R2)

lim
T→∞

∫
rtwo

g(z)STAi,jφ(z) dz =

∫
R2

g(z)RiRjφ(z) dz, (2.14)

for any g ∈ Lq(R2), 1 < q <∞.
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They used this result and properties of martingale transforms to show that

||RjRif ||p ≤
1

2
(p∗ − 1)||f ||p, j 6= k,

where f ∈ Lp(Rn), 1 < p <∞ and p∗ = max p, p/(p− 1).

Remark : We are closing this section with some remarks on the differences between

Bañuelos and Méndez-Mernández representation, Gundy-Varopoulos-Silverstein’s back-

ground radiation representation, and the formula in (1.3). In the Gundy-Varopoulos-

Silverstein’s background radiation representation the martingale transform is given in

terms of the harmonic extension of φ to the half space instead of the heat extension in the

Bañuelos and Méndez-Mernández representation. However, the matrix en+1⊗eiHej⊗en+1

in the second formula in (1.3) defines a new transform rather than a martingale trans-

form. Bañuelos and Méndez-Mernández representation contains the space-time Brownian

motion and Gundy-Varopoulos-Silverstein’s background radiation representation has the

background radiation process while we used the standard Brownian motion on the half

space to obtain the formula in (1.3). The natural question arises if we can use the standard

Brownian motion to improve the estimates on the iterated Riesz operators, or perhaps to

have the same estimates. This is one of nice issues for the future work.

2.3 Application: Probabilistic Representation of the Helmholtz-Hodge
Decomposition on Rn

In this section we apply the probabilistic formula of iterated Riesz transforms in

this chapter to the Helmholtz-Hodge decomposition. As we have already mentioned, the

Leray projection operator is the orthogonal projection of the Hilbert space L2(R3)3 onto

divergence-free vector fields {u ∈ L2(R3)3 : O · u = 0}. This operator suggests a more

concept of decomposing vector fields into divergence-free part and the gradient part, which

leads to the Helmholtz-Hodge decomposition. Let us look at another motivation for the
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Helmholtz-Hodge decomposition in terms of PDEs theory rather than operators. We

consider the Stokes problem, i.e.,

∂u

∂t
=

1

2
∆u− Op, O · u = 0, u(x, 0) = u0(x) (2.15)

where u0 satisfies the compatibility condition O ·u0 = 0. We have time derivatives of only

three out of the four unknown functions. Since there is no time derivative of the pressure

p we might want to eliminate the pressure in (2.15). In order to do that we need to take

the curl of (2.15) and set w = O× u to obtain the heat equation

∂w

∂t
=

1

2
∆w, w(0, x) = O× u0(x). (2.16)

We have the solution w by solving the heat equation. Next, we need to consider the

existence of a solution u which satisfies O× u = w,O · u = 0. So the following fact is very

useful for studying incompressible flows. Here is the statement of the Helmholtz-Hodge

decomposition on the vector fields, see [18] for the proof.

Proposition 2.4. Any smooth vector field F in Rn which decays sufficiently fast at infinity

may be uniquely represented as a superposition of a gradient and a curl, i.e. F = G+ Oφ

where G = O × ψ for a scalar potential φ and vector potential ψ obtained by solving a

Poisson equation 4φ = O · F , 4ψ = −4× F , and O · ψ = 0.

Roughly speaking, we can find the scalar potential φ of a smooth vector field F

by taking the Leray projection operator of F or by solving the Poisson equation. Then

it is also interesting to seek for the probabilistic interpretation of the Helmholtz-Hodge

decomposition. The following is a new probabilistic representations of the scalar potential

φ by using the probabilistic representation of the iterated Riesz transforms obtained in

Theorem 2.2 in Chapter 2 as follows.

Proposition 2.5. Let F = (F1, F2, F3) be a smooth vector field which decays sufficiently

fast at infinity and F = G + Oφ where G = O × ψ for a scalar potential φ and vector
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potential ψ. Then if vρ(x, y) =
∑3

i=0
∂uFi
∂xi

, where uFi is the harmonic extension of Fi, i =

1, 2, 3, and ρ := O · F , then for some constant c

∂φ(x)

∂xi
= c

3∑
j=1

lim
s→∞

E(0,s)
hx

∫ τ

0
Yr

∂uFj
∂xi∂xj

dYr (2.17)

or

∂φ(x)

∂xi
= c lim

s→∞
E(0,s)
hx

∫ τ

0
Yr
∂vρ
∂xi

dYr (2.18)

Proof. First, we are going to get the first probabilistic representation (2.17) of the gradient

of the scalar potential φ through the Riesz transformations. If we take the divergence of

F = G+ Oφ to obtain 4φ = O · F , formally, φ = (4−1)O · F . Hence we have

Oφ = O(4−1)O · F = RF

where R = [RiRj] is the matrix of the iterated Riesz transforms. The probabilistic formula

for the iterated Riesz transforms in Chapter 2 gives the first representation (2.17). For the

second representation (2.18) we use the argument in proof of Theorem 2.2 in the Chapter

2 as follows. By two lemmas 2.3 and 2.4 we mentioned in the Chapter 2 and the Plancherel

identity we have

c lim
s→∞

E(0,s)
hx

∫ τ

0
Yr
∂vρ
∂xi

dYr = lim
s→∞

snE(0,s){
∫ τ

0
∂yhx(Zr)Yr

∂vρ
∂xi

(Zr) dr}

= cn

∫
Rn

∫ ∞
0

y2∂yhx(w, y)
∂vi
∂y

(w, y) dydw

= cn

∫ ∞
0

∫
Rn
y2∂̂yhx(ξ, y)

∂̂vi
∂y

(ξ, y) dξdy

= cn

∫
Rn
e−iξ·x (

∫ ∞
0

y2|ξ|3e−2y|ξ| dy)︸ ︷︷ ︸
constant

ξi
|ξ|2

ρ̂(ξ) dydξ

= cn

∫
Rn
e−iξ·x

ξ̂i
|ξ|2

ρ̂(ξ) dydξ

=
∂

∂xi
(4−1)ρ =

∂φ(x)

∂xi
.

where vi is the harmonic extension of Riρ.
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3 PROBABILISTIC REPRESENTATION OF NEUMANN
PROBLEMS ON EXTERIOR DOMAINS - RELATION TO RIESZ
TRANSFORMS AND HELMHOLTZ-HODGE DECOMPOSITION

This chapter is concerned with giving probabilistic representations of solutions to

Neumann problems. We construct reflecting Brownian motion by introducing local times

and discuss the Neumann problems on bounded domains and exterior domains. Through-

out we will assume that the given partial differential equation has a solution, the solution

is unique, and the solution is sufficiently regular. We recall that the Riesz transform on

Rn is defined by the principal value of the singular integral

Rjf(x) = p.v.cn

∫
Rn
f(x− y)

yj
|y|n+1

dy, j = 1, 2, · · · , n,

where f ∈ Lp(Rn), p = 1, 2, cn is a constant that is chosen so that R̂jf(ξ) = i
ξj
|ξ| f̂(ξ), and

f̂ is the Fourier transform of f . It is well known that there are several equivalent methods

to define Riesz transforms on Rn. One of them is to use a Neumann problem on the

half space as follows. Let u be the solution in the upper half space Rn+1
+ of 4Rn+1

+
u = 0

in Rn+1
+ , ∂u

∂η = f in Rn, where f is a Schwartz function and ∂
∂η is the outward normal

derivative to Rn+1
+ at the boundary Rn, i.e., ∂u

∂xn+1
|xn+1=0 = −f . Then Rjf = ∂

∂xj
(u|Rn)

or, formally, Rjf = ∂
∂xj

( ∂
∂η )−1f , where ( ∂

∂η )−1f means the restriction to Rn of the solution

u. Since R̂jf(ξ) = i
ξj
|ξ| f̂(ξ), Rj = ∂

∂xj
(−4Rn)1/2. Let Rf := (R1f, . . . , Rnf) where Rjf is

the Riesz transform of f with respect to j-th component. Then we formally have

R = ORn(−4Rn)1/2. (3.1)

To summarize we can define Riesz transforms of f by solving the Neumann problem on

the half space with boundary data f , restricting the solution to the Neumann problem

to the boundary Rn, and taking the tangential gradient of restricted solution. This idea

suggests that we might define Riesz transforms on a general domain rather than the
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free space Rn. In 1992 Arcozzi and Xinwei in [1] introduced two nonequivalent possible

definitions of Riesz transform on the sphere Sn−1 in Rn, ball type and cylinder type, by

replacing ORn in (3.1) with the spherical gradient OSn−1 . We also have two ways to define

Riesz transforms on the free space. On the one hand, Riesz transforms on Rn can be

characterized by invariant properties with respect to dilations and translations. On the

other hand, the generalize Cauchy-Riemann equations can define Riesz transformations

on the free space. Recall the Hilbert transform, which is the Riesz transform on R,

Hf(x) = lim
ε→0

1

π

∫
|y|≥ε

f(x− y)

y
dy.

We notice that if δ > 0,

H[f(δx)] = lim
ε→0

1

π

∫
|y|≥ε

f(δx− δy)

y
dy

= lim
ε→0

1

π

∫
|y|≥ε

f(δx− y)

y
dy = [Hf ](δx).

Hence the Hilbert transform is invariant with respect to dilation. Similarly, we observe

the reflection property as follows.

H[f(−x)] = lim
ε→0

1

π

∫
|y|≥ε

f(−x+ y)

y
dy

= lim
ε→0

1

π

∫
|y|≥ε

f(−(x− y))

y
dy = −[Hf ](−x).

Obviously, we see the translation invariance of the Hilbert transform. These consideration

of invariant properties characterize the Hilbert transform as follows. See [37] for proof.

Proposition 3.1. Suppose T is a bounded operator on L2(R) which is invariant with

respect to translations, positive dilations with the reflection property. Then T is a constant

multiple of the Hilbert transform.

This idea extends to Rn to define Riesz transforms. For definition of Riesz transform

through the generalized Cauchy-Riemann equations we consider the Poisson integral of a



35

function f given on Rn. The relation of theory of harmonic functions, in particular, Poisson

integral and the Riesz transforms allows us to define Riesz transforms on Rn. Namely,

let u be the harmonic extension of a function f on Rn and suppose that u1, · · · , un, u are

functions in Rn+1
+ which satisfy the generalized Cauchy-Riemann equations,

n+1∑
j=1

∂uj
∂xj

= 0,
∂uj
∂xk

=
∂uk
∂xj

, for j 6= k, j, k = 1, · · · , n+ 1

where u = un+1, and are such that u1(0) = · · · = un+1(0) = 0. Then uj |Rn = Rj(f), j =

1, · · · , n. See [37] for details. In this chapter we consider the approach to solve the Neu-

mann problem rather than to use invariant properties or the generalized Cauchy-Riemann

equations to define Riesz transforms on general domain with smooth boundary. Hence it

is very interesting to investigate the Neumann problems on more general bounded and un-

bounded domains because if we have stochastic representation of the Neumann problems

on general domains then we might have a chance to obtain probabilistic representation of

the Riesz transform on the domains as well as the Riesz transform on the Euclidean space

Rn. Let us start our discussion with the Neumann problem on bounded domains.

3.1 Neumann Problems on bounded Domains

First of all, we need to introduce local times. Credit for the discovery of local time

should go to P. Lev́y. Intuitively, the local time is a method for measuring the density

of the time spent by the 1-dimensional Brownian motion around a point x ∈ R. P.Lev́y

introduced the following stochastic process

Lt(x) = lim
ε→0

1

4ε
|{0 ≤ s ≤ t : |Bs − x| ≤ ε}|, t ≥ 0, x ∈ R,

where | · | is the Lebesgue measure, and showed that this limit exists and is finite, but

not identically zero, see, for example, [26] . This concept also extends the Itô formula

from C2-functions to convex functions, see [33]. Specifically, the Itô formula showed that
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if f : R → R is C2 and X is a semimartingale, then f(X) is also semimartingale. This

property extends to convex functions, and leads the important notion of local times. We

are about to see local times in the extension of the Itô formula from C2 to convex functions

as follows.

Theorem 3.1. Let X be a continuous semimartingale and let f be convex. Then there

exists a continuous increasing process Af such that

f(Xt) = f(X0) +

∫ t

0
f
′
−(Xs) dXs + (1/2)Aft (3.2)

where f
′
− is the left-hand derivative of f .

Proof. See, for example, [36]

For x, y real numbers, let x+ = max(x, 0) and x− = −min(x, 0).

Corollary 3.1. Let X be a semimartingale. Then |X|, X+, and X− are all semimartin-

gales.

Let B = {Bt : t ≥ 0} be one-dimensional Brownian motion starting at 0. By

the above corollary it can be written as a martingale plus an increasing process. Since

B is itself a martingale, the increasing process grows only at times when the Brownian

motion is at 0. This increasing process is known as local time at 0. We give the explicit

decomposition of B and then define reflecting Brownian motion which is useful in studying

the Neumann problems. For each ε > 0, define a gε on R by

gε =


|x|, if |x| ≥ ε

(1/2)(ε+ x2

ε ) if |x| < ε.

(3.3)

We note that the function gε(x) is not C2-function since the second derivative g′′ε(x) is

discontinuous at x = 0. However, we can still apply Itô formula to the function gε due to

the following known result.
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Proposition 3.2. Assume that g : R→ R is C1 everywhere and C2 outside finitely many

points z1, . . . , zN with |g′′(x)| ≤M for x ∈ {z1, . . . , zn}. Then

g(Bt) = g(B0) +

∫ t

0
g′(Bs) dBs +

1

2

∫ t

0
g′′(Bs) ds. (3.4)

For the proof of Proposition 3.2 see, for example, [31]. Therefore, we get the equality

gε(Bt) = gε(B0) +

∫ t

0
g′ε(Bs) dBs +

1

2

∫ t

0
g′′ε (Bs) ds (3.5)

= gε(B0) +

∫ t

0
g′ε(Bs) dBs +

1

2ε
|{s ∈ [0, t] : Bs ∈ (−ε, ε)}| (3.6)

where | · | denotes the Lebesgue measure.

Moreover, applying the Itô isometry to E
∫ t

0 g
′
ε(Bs)1Bs∈(−ε,ε) dBs,

we have
∫ t

0 g
′
ε(Bs)1Bs∈(−ε,ε) dBs =

∫ t
0
Bs
ε 1Bs∈(−ε,ε) dBs → 0 in L2 as ε→ 0.

Thus letting ε→ 0 we get the equality

|Bt| = |B0|+
∫ t

0
sgn(Bs) dBs + lim

ε→0

1

2ε
|{s ∈ [0, t] : Bs ∈ (−ε, ε)}| (3.7)

Note that the equality implies implicitly that the limit in L2 exists.

Definition 3.1. The local time of a Brownian motion Bt at 0 is defined to be the random

variable

Lt = lim
ε→0

1

2ε
|{s ∈ [0, t] : Bs ∈ (−ε, ε)}| in L2 (3.8)

From the equation (3.8) we have the Tanaka’s formula as follows.

Theorem 3.2. Let Bt be a Brownian motion on the real line starting at 0. Then for any

a ∈ R,

|Bt| = |B0|+
∫ t

0
sgn(Bs) dBs + La(t), (3.9)

where La(t) = limε→0
1
2ε |{s ∈ [0, t] : Bs ∈ (−ε, ε)}|.

We note that by the conditional Jensen’s inequality, the stochastic process |Bt| is a

submartingale. Thus the Tanaka’s formula gives the Doob-Meyer decomposition of |Bt|.
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Moveover, the stochastic process

Mt :=

∫ t

0
sgn(Bs) dBs

is a Brownian motion by the Levy’s characterization theorem, i.e. P(M0 = 0) = 1, Mt is a

continuous martingale with respect to the filtration F = σ{Bs : s ≤ t} and the quadratic

variation of Mt is given by

< M >t=

∫ t

0
|sgn(Bs)|2 ds =

∫ t

0
1 ds = t.

Therefore we conclude that if Bs is a Brownian motion on the real line, then the

Tanaka’s formula says that

|Bt| = Wt + Lt, (3.10)

where Wt is another Brownian motion and Lt is a continuous non-decreasing process that

increases only when |Bt| is at 0.

We call Xt =: |Bt| reflecting Brownian motion and Lt the local time (at 0) of Xt as

the previous definition of local time. Let’s look at an interesting example of the reflecting

Brownian motion on the half space.

Example 3.1. (A diffusion in Rn with reflection, n ≥ 2)

Let D be the upper-half space, let Yt = (Y 1
t , . . . , Y

n
t ) be standard n-dimensional Brownian

motion, and let Lt be the local time of |Y n
t |. Then Xt = (Y 1

t , . . . , |Y n
t |) is reflecting

Brownian motion with normal reflection in D. If |Y n
t | = W̃t +Lt, then Xt solves the SDE

dXt = dWt + η(Xt)dLt, Xt ∈ D̄, (3.11)

where Wt = (Y 1
t , . . . , Y

n−1
t , W̃t) is a n-dimensional Brownian motion, η(x) = (0, . . . , 0, 1)

is the inward pointing unit normal vector, and Lt is continuous nondecreasing process that

increases only when Xt is on the boundary of D.

The equation (3.11) is an example of what is known as the Skorokhod equation.

Let D be a domain, σ be a matrix, b a vector, Wt a standard d-dimensional Brownian
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motion, and v(x) defined on ∂D such that v(x) · η(x) > 0 for all x ∈ ∂D. Here η(x) is the

inward pointing unit normal vector at x. Then the Skorokhod equation is the stochastic

differential equation

dXt = σ(Xt)dWt + b(Xt)dt+ v(Xt)dLt, X0 = x0 (3.12)

where Xt ∈ D̄ for all t, x0 ∈ D̄, and Lt is a continuous nondecreasing process that increases

only when Xt ∈ ∂D. In 1984 P. L. Lions and A. S. Sznitman in [29] proved the uniqueness

and existence of the solution to the Skorokhod equation as follows. See [29] for detail.

Theorem 3.3. Let D be a bounded smooth domain and let σ and b be uniformly bounded

real-valued functions on Rd satisfying a uniform Lipschitz condition: there exists K > 0

such that

|σij(x)− σij(y)| ≤ K|x− y|, |bi(x)− bj(x)| ≤ K|x− y|, i, j = 1, 2, · · · , d.

Also let v(x) ∈ C2
b (Rd) be satisfy v(x) · η(x) > 0 for all x ∈ ∂D. Then there exists a

solution to the Skorokhod equation (3.12). If Xt and X ′t are two solutions to (3.12), then

Xt = X ′t a.s. for all t.

Now we are ready to look at the Neumann problem. Suppose D is a bounded smooth

domain. The Neumann problem for D is the following: Find u ∈ C(D̄) such that u is

C2 on D and 4u = 0 in D, ∂u
∂η = f on ∂D, where η(x) denotes the inward pointing unit

normal vector at x ∈ ∂D. In order for the Neumann problem to have a solution we need

side conditions such as compatibility conditions. For example, by the Green’s identity, we

have 0 =
∫
D 14u +

∫
D O1 · Ou =

∫
∂D 1∂u∂η dσ =

∫
∂D f dσ where dσ is surface measure on

∂D.

In this section, we want to derive a representation for the solution to the Neumann

problem in terms of reflecting Brownian motion on smooth bounded domains. Such a

probabilistic representation was dicussed in [20], [6] and [3]. Following Bass’ approach in
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[3] let us get the probabilistic representation in terms of reflecting Brownian motion. To

avoid dealing with side conditions for the Neumann problem, let us introduce a smooth

compact subset K of D and find u ∈ C(D̄) such that u ∈ C2 on D and

4u = 0 in D −K, ∂u

∂η
= f on ∂D, u = 0 on K. (3.13)

Suppose Xt satisfies

dXt = dWt + η(Xt)dLt (3.14)

where Wt is d-dimensional Brownian motion (d ≥ 3), Lt is a nondecreasing continuous

process that increases only when Xt ∈ ∂D, D is a bounded C2 domain. By the Itô formula

we get the probabilistic representation of solution to the Neumann problem on a bounded

domain D as follows.

Theorem 3.4. Suppose τK , the hitting time to K, is finite a.s. and ExLτK < ∞ for all

x. The solution to the problem (3.13) is given by

u(x) = −Ex
∫ τK

0
f(Xs) dLs. (3.15)

Proof. By the Itô formula,

u(Xt∧τK ) = u(X0) +

∫ t∧τK

0
Ou · dBs +

∫ t∧τK

0
4u(Xs) ds

+

∫ t∧τK

0
(Ou · η)(Xs) dLs.

We take expectation and then let t→∞. Since u = 0 on K and Ou = 0 in D, we obtain

u(x) + E
∫ τK

0
f(Xs) dLs = 0.

3.2 Neumann Problems on Unbounded Domains

In this section we investigate the Neumann problems on an exterior domain D ∈ Rd,

which is the complement of a compact domain in Rd, and the half space Rd+, i.e., we
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consider u ∈ C(D̄) s.t. u is C2 on D and 4u = 0 in D, ∂u
∂η = f on ∂D where η(x)

denotes the outward pointing unit normal vector at x ∈ ∂D. In the case of the upper

half space, Ramasubrammnian in [35] considered the Neumann problem on the half space

with compatibility condition and several restrictions on the boundary data f such as

the boundedness of f , finite second moment and
∫
Rn |x|

r|f(x)| dx < ∞, r = 0, 1, 2. He

extended the probabilistic representation of solutions to the Neumann problem in bounded

domains, which was investigated by ergodic theory, to the case of the half space. If a

domain D is an unbounded domain in Rd(d ≥ 3) with compact Lipschitz boundary ∂D,

Chen, Williams and Zhao in [14] solved the Neumann problem on that domain and gave

the probabilistic representation of solution to the problem by constructing the Green-tight

class for the boundary ∂D which is the subset of the Kato class with Green-tightness and

a function space Γ that we will explain just below. The following is the precise definitions

of Green-tightness and of the class Γ.

Definition 3.2. A function w is Green-tight on D if w is a real-valued Borel measurable

function defined on D such that the family of functions {w(·)/|x − ·|d−2, x ∈ D} defined

on D is uniformly integrable in the sense that w satisfies

lim
m(A)→0,A⊂D

{sup
x∈D

∫
A

|w(y)|
|x− y|d−2

dy} = 0,

and

lim
M→∞

{sup
x∈D

∫
|y|>M,y∈D

|w(y)|
|x− y|d−2

dy} = 0,

where m denotes Lebesgue measure on Rd.

It is known [13] that a Borel measurable function w is Green-tight on D if and only

if 1Dw ∈ K∞d , where

K∞d = {v ∈ Kd : lim
M→∞

[ sup
x∈Rd

∫
|y|>M

|v(y)|
|x− y|d−2

] = 0}.
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Here Kd denotes the Kato class for Rd which consists of all real-valued Borel measurable

functions v defined on Rd such that

lim
r→0

[ sup
x∈Rd

∫
|x−y|≤r

|v(y)|
|x− y|d−2

] = 0

For the Neumann boundary data they introduced the class Γ which is an analogue of the

Green-tight class but for the boundayr ∂D in place of D.

Definition 3.3. A function w is in the class Γ = Γ(∂D) if w is a real-valued Borel

measurable function defined on ∂D such that the family of functions {w(·)/|x− ·|d−2, x ∈

∂D} is uniformly integrable with respect to the surface measure σ on ∂D, i.e.,

lim
σ(A)→0,A⊂∂D

{ sup
x∈∂D

∫
A

|w(y)|
|x− y|d−2

σ(dy)} = 0, (3.16)

.

We notice that if w is in the class Γ then w satisfies:

lim
r→0
{ sup
x∈∂D

∫
∂D∩B(x,r)

|w(y)|
|x− y|d−2

σ(dy)} = 0.

and so w satisfies:

lim
σ(A)→0,A⊂∂D

{sup
x∈D̄

∫
A

|w(y)|
|x− y|d−2

σ(dy)} = 0.

where B(x, r) denotes the open ball in Rd centered at x with radius r. Hence x ∈ ∂D in

(3.3) can be replaced by x ∈ D̄. Finally we can say that if w ∈ Γ,

sup
x∈D̄

∫
∂D

|w(y)|
|x− y|d−2

σ(dy) <∞.

Since ∂D is compact, we have∫
∂D
|w(y)|σ(dy) =

∫
∂D

|w(y)|
|x− y|d−2

(|x− y|d−2)σ(dy)

≤ c
∫
∂D

|w(y)|
|x− y|d−2

σ(dy) ≤ c sup
x∈D̄

∫
∂D

|w(y)|
|x− y|d−2

σ(dy) <∞
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and so Γ ⊂ L1(∂D, σ). In [14] it is shown in Proposition 2.2 that Γ contains all functions

in Lp(∂D, σ) for p > d− 1. To summarize they solved weakly the Neumann problem with

the boundary data in Γ which is the subset of the Kato class with Green-tightness.

The aim in this section is to get a probabilistic representation of the solution to

the Neumann problem in terms of reflecting Brownian motion with more straightforward

method when we assume the existence of the solution. Before our new main theorem, we

need the following result which was proved in [13].

Proposition 3.3. The transition density function (t, x, y)→ p(t, x, y) of reflecting Brow-

nian motion Br
t exists as a continuous function on (0,∞) × D̄ × D̄, where D is an un-

bounded Lipschitz domain in Rn(n ≥ 3) with compact boundary ∂D. Furthermore, there

exist constants c1 = c1(D) > 0 and c2 = c2(D) such that

p(t, x, y) ≤ c1

tn/2
exp(−|x− y|

2

c2t
) (3.17)

for all t > 0, x, y ∈ D̄.

Let N(x, y) =
∫∞

0 p(t, x, y) dt, the Neumann function with respect to Br
t . Then N(x, y)

is finite and continuous on D̄ × D̄, except on the diagonal. Furthermore, there exists a

constant c = c(D) such that N(x, y) ≤ c
|x−y|n−2 for all x, y ∈ D̄.

With the above Proposition 3.3 we are going to show the following lemma which is

necessary to prove the main result. Recall that N(x, y) =
∫∞

0 p(t, x, y) dt is the Neumann

function with respect to reflecting Brownian motion Br
t .

Lemma 3.1. Let u(x) =
∫
∂DN(x, y)f(y) dS(y) on the exterior domain D and f ∈

L1(∂D). Then limt→∞ Ex[u(Br
t )] = 0.

Proof. If p(t, x, y) is the probability density of reflecting Browian motion Br
t on D, then the

Fubini-Tonelli theorem, semi-group property of transition density and change of variables
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give the boundedness of Ex[u(Br
t )] as follows. First, we note that

Ex[u(Br
t )] =

∫
D
u(x′)p(t, x, x′) dx′ =

∫
D

[

∫
∂D

N(x′, y)f(y) dS(y)]p(t, x, x′) dx′

=

∫
∂D

∫ ∞
0

[

∫
D
p(s, x′, y)p(t, x, x′) dx′] dsf(y) dS(y)

=

∫
∂D

[

∫ ∞
0

p(t+ s, x, y) ds]f(y) dS(y) =

∫
∂D

[

∫ ∞
t

p(s, x, y) ds]f(y) dS(y).

Hence we have

|Ex[u(Br
t )]| ≤

∫
∂D

N(x, y)|f(y)| dS(y)

Since f ∈ L1(∂D) and the Neumann function N(x, y) is finite, by the Dominated Conver-

gence Theorem, we have limt→∞ Ex[u(Br
t )] = 0.

Now we ready to present and prove the main result.

Proposition 3.4. Under the same assumption in Lemma 3.1 and assuming that ∂u
∂η |∂D =

f the solution u to the Neumann problem on the exterior domain D is given by

u(x) = − lim
t→∞

Ex
∫ t

0
f(Br

s) dLs (3.18)

where Lt is the local time process of reflecting Brownian motion Br
t on D̄.

Proof. By the Itô formula with dBr
t = dBt+η(Br

t )dLt or (dBr
t )
i = (dBt)

i+(η(Br
t ))

idLt, i =

1, 2, · · ·n, we have

u(Br
t ) = u(Br

0) +

∫ t

0

n∑
i=0

∂iu(Br
s) (dBr

s)
i +

1

2

∫ t

0

n∑
i,j=1

∂iju(Br
s) d < (Br)i, (Br)j >s

= u(x) +

∫ t

0

n∑
i=0

∂iu(Br
s) (dBs)

i +

∫ t

0

t∑
i=1

∂iu(Br
s)(η(Br

s)
i) dLs +

1

2

∫ t

0
4u(Br

s) ds

= u(x) +

∫ t

0
Ou · dBs +

∫ t

0
Ou · η(Br

s) dLs +
1

2

∫ t

0
4u(Br

s) ds.

We take expectation on both sides and then let t→∞. By the Lemma 3.1 we obtain our

result.
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Let us make a remark on the decayness of the solution to the Neumann problem.

Remark : For the decayness of the solution u to the Neumann problem on unbounded

domains let us look at the solution u to the Neumann problem on the half space R3
+ with

boundary data f ∈ L1(R2):

u(x) = u(x′, x3) = c

∫
R2

1

(|x′ − y′|2 + x2
3)

1
2

f(y′) dy′ (3.19)

If x3 6= 0, then the Neumann function 1

(|x′−y′|2+x23)
1
2

is bounded and so L1 boundary data

gives us the boundedness of u. Also, we notice that the normal derivative of the Neumann

function is the Poison kernel and hence by the approximation of identity −∂u
∂3
|x3=0 = f(x′).

Thus u in (3.19) is well defined for each x ∈ R3
+. However, we can not guarantee that u

vanishes uniformly at infinity as the following counterexample shows.

Example 3.2. Let f(y′) =
∑

k 6=0 akχB(k,rk)(y
′), where k is an non zero integer and

B(k, rk) is the ball centered at k with radius rk. If ak = k2 and rk = 1
k2

, then we have∫
R2

|f(y′)| dy′ = π
∑
k 6=0

ak(
1

k2
)2 = π

∑
k 6=0

1

k2
<∞.

Let x′ = m. Then for x3 = 0 in (3.19)

1 = amrm =
1

2π
am

∫
|y′|<rm

1

|y′|
dy′ ≤ 1

2π

∫
R2

1

|y′|
f(x′ − y′) dy′.

Therefore u does not vanish at infinity.

Even if we take f ∈ Lp(R2), p < 3/2, in the above Example, u is still greater than

2π at infinity. However, if f is in the Green-tight class Γ on the boundary, then u decays

uniformly as x goes to ∞ because

|u(x)| = |u(x′, x3)| = c

∫
R2

1

(|x′ − y′|2 + x2
3)

1
2

|f(y′)| dy′ ≤ c
∫
R2

1

|x′ − y′|
|f(y′)| dy′

≤
∫
|y′|≤M

1

|y′|
|f(x′ − y′)| dy′ +

∫
|y′|>M

1

|y′|
|f(x′ − y′)| dy′
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and
∫
|y′|>M

1
|y′| |f(x′−y′)| dy′ ≤ 1

M ||f ||L1(R2). That means the Green-tight condition on the

boundary is a sufficient condition for us to have the solution to the Neumann problem van-

ishing uniformly at infinity. Natural questions arise such as what sufficient and necessary

condition on the boundary data f is for uniform decayness of u as well as the existence

of u or at least what are the weaker conditions for that rather than the Green-tightness.

These questions are not easy to answer right away.

The key idea of the main proposition (3.4) on the exterior domain can be applied to

the Neumann problem on the upper half space Rn+, n ≥ 3, which is not an exterior domain

itself. Let us obtain a probability representation of the solution to the Neumann problem

on the half space Rn+. For the next Lemma and Proposition we introduce the Neumann

function

N(x′, y′, xn) = (
2

n(n− 2)α(n)
)

1

(|x′ − y′|2 + x2
n)

n−2
2

, x′ ∈ Rn−1, xn > 0

for Laplace equation on the half space Rn+

Lemma 3.2. If u(x) =
∫
Rn−1 N(x′, y′, xn)f(y′) dy′, and the boundary data f ∈ L1(Rn−1),

then

lim
t→∞

E(x0,y0)[u(Br
t )] = 0.

where Lt is the local time process of reflecting Brownian motion Br
t on Rn+.

Proof. We note that

1

(|x− x′|2 + y2)(n−2)/2
= cn

∫ ∞
0

1

sn/2
exp (−|x− x

′|2 + y2

2s
) ds.

Using semi-group property of the transition probability density and change of variables
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we have

E(x0,y0)[u(Br
t )] = cn

∫ ∞
0

∫
Rn−1

∫
Rn−1

∫ ∞
0

1

s(n−1)/2
exp (−|x− x

′|2

2s
)

1√
s

exp (−y
2

2s
)

×f(x′)
1

t(n−1)/2
exp (−|x− x0|2

2t
)

×[
1√
t

exp (−(y − y0)2

2t
) +

1√
t

exp (−(y + y0)2

2t
)] dsdx′dxdy

= cn

∫
Rn−1

f(x′)

∫ ∞
0

1

(t+ s)(n−1)/2
exp (−|x

′ − x0|2

2(t+ s)
)

×
∫ ∞

0

exp (−y2/2s)
√
s
√
t

[exp (−|y − y0|2

2t
) + exp (−|y + y0|2

2t
)] dydsdx′

= cn

∫
Rn−1

f(x′)

∫ ∞
0

1

(t+ s)(n−1)/2
exp (−|x

′ − x0|2

2(t+ s)
)

× 1√
t+ s

exp (− y2
0

2(t+ s)
) dsdx′

= cn

∫
Rn−1

f(x′)

∫ ∞
t

1

sn/2
exp (−|x

′ − x0|2 + y2
0

2s
) dsdx′

Therefore we have

E(x0,y0)[u(Br
t )] = cn

∫
Rn−1

f(x′)[
1

(|x− x′|2 + y2)(n−2)/2
−
∫ t

0

1

sn/2
exp (−|x

′ − x0|2 + y2
0

2s
) ds] dx′.

Letting t→∞, we have the result.

Proposition 3.5. If u(x) =
∫
Rn−1 N(x′, y′, xn)f(y′) dy′, and the boundary data f ∈

L1(Rn−1), then

4u = 0,
∂u

∂η
|xn=0 = f

and

u(x) = − lim
t→∞

E(x0,y0)

∫ t

0
f(Br

s) dLs (3.20)

where Lt is the local time process of reflecting Brownian motion Br
t on Rn+.

Proof. By the Itô formula we have

u(Br
t ) = u(Br

0) +

∫ t

0
O′u · dBs +

∫ t

0

∂u

∂y
dBr

s +
1

2

∫ t

0
4u ds
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= u(x) +

∫ t

0
O′u · dBs +

∫ t

0

∂u

∂y
sgnBs dBs +

∫ t

0
f dLs

We take expectation on both sides and then let t→∞. By the Lemma 3.2 we obtain our

result.

3.3 Application: Probabilistic Representation of the Helmholtz-Hodge
Decomposition on General Domains

In this section we apply the probabilistic representation of solution to the Neumann

problem on general domains such as exterior domains in this chapter to the Helmholtz-

Hodge decomposition. We have studied probabilistic representation of the Helmholtz-

Hodge decomposition on the free space in Chapter 2. In this section we are going to have

another probabilistic representation of Helmholtz-Hodge decomposition on a domain D

with smooth boundary ∂D. Let us recall that the Helmholtz-Hodge decomposition on a

domain D with smooth boundary ∂D, which states that any vector field u on D can be

uniquely decomposed in the form

u = G+ Oϕ (3.21)

where G has divergence zero and is parallel to ∂D, i.e., G · η = 0 on ∂D. From the fact

that G is parallel to ∂D, we obtain ∂ϕ
∂η = Oϕ · η = u · η and if we are going to take the

divergence of (3.21), then we have indeed the Neumann problem

∆ϕ = O · u inD,
∂ϕ

∂η
= u · η (3.22)

We already had the probabilistic representation of solution to the Neumann problem

(3.22) in this chapter in terms of reflecting Brownian motions. This gives us another new

probabilistic representation of the Helmholtz-Hodge decomposition. We summerize this

discussion as

Proposition 3.6. Let u be a smooth vector field on a domain D with smooth boundary
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such as a bounded domain or an exterior domain with smooth boundary. If a domain D

is an exterior domain, then we need to have the property that u decays sufficiently fast at

infinity. Suppose u = G +4ϕ where G has zero divergence and is parallel to ∂D. Then

if O · u = 0 then we have

ϕ(x) = − lim
t→∞

Ex
∫ t

0
(u · n)(Br

s) dLs (3.23)

where Lt is the local time process of reflecting Brownian motion Br
t on D̄.

we recall again that if f ∈ L1(Rn), then

Rjf(x) = p.v.cn

∫
Rn
f(x− y)

yj
|y|n+1

dy, j = 1, 2, · · · , n, (3.24)

where f ∈ Lp(Rn), p = 1, 2, cn is a constant that is chosen so that R̂jf(ξ) = i
ξj
|ξ| f̂(ξ),

and f̂ is the Fourier transform of f . There is a different way to define Riesz transforms,

which is related to a Neumann problem. Let u be the solution in the upper half space

Rn+1
+ of 4Rn+1

+
u = 0 in Rn+1

+ , ∂u
∂eta = f in Rn, where f ∈ L(Rn) and ∂

∂η is the outward

normal derivative to Rn+1
+ at the boundary Rn. Then Rjf = ∂

∂xj
(u|Rn) or, formally,

Rjf = ∂
∂xj

( ∂
∂η )−1f , where ( ∂

∂η )−1f means the restriction to Rn of the solution u. Since

R̂jf(ξ) = i
ξj
|ξ| f̂(ξ), Rj = ∂

∂xj
(−4Rn)1/2.

Therefore we can define the Riesz transform of f in terms of reflecting Brownian motion

from Chapter 3 by

Rjf =
∂

∂xj
(− lim

t→∞
E
∫ t

0
f(Br

s) dLs)|Rn . (3.25)

Through the Leray projection operator P we can decompose a smooth vector field

into the curl-free vector fields in terms of reflecting Brownian motion.

This result, together with the probabilistic representation of the iterated Riesz transform

in Chapter 2, give us a way to study of the Helmholtz-Hodge decomposition on vector

field probabilistically.



50

4 OSEEN AND STOKES PROBLEMS - LINEARIZATION OF
NAVIER-STOKES EQUATIONS

In this chapter we consider the 3-dimensional linearized Navier-Stokes equations,

Stokes and Oseen equations, on bounded and exterior domains with smooth boundaries

in R3. The aim is to study existence of solutions to Stokes and Oseen problems and to

give probabilistic representations of the solutions in terms of stochastic process. This

representation uses absorbed Brownian motion and boundary data on Op, which can

be determined by the initial and boundary data of the solutions. We recall that the

3-dimensional Navier-Stokes equations on R3 are given by

∂u

∂t
+ (u · O)u = ν∆u− Op+ f, O · u = 0, u(x, 0) = u0(x) (4.1)

where O = ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

), and u · O =
∑3

j=1 uj
∂
∂xj

, ∆ = O · O =
∑3

j=1
∂2

∂xj2
are ap-

plied component-wise. The term p(x, t) is the (scalar) pressure, f(x, t) represents external

forcing, and ν > 0 is the kinematic viscosity. In general, there are two common lineariza-

tions of the Navier-Stokes equations. One is the Stokes equation and the other is the

Oseen equation. Suppose that the Reynolds number is very small. Then the very small

Reynolds number implies slow velocity, large viscosity, or small bodies enough to ignore

the convective term (u · O)u in (4.1), i.e.,

∂u

∂t
= ν∆u− Op+ f, O · u = 0, (4.2)

which are the Stokes equations for incompressible flow. In 1910 Oseen suggested that

Stokes equations can be expressed by

∂v

∂t
+ (U · O)v = ν∆v − Op+ f, O · v = 0, v(x, 0) = v0(x) (4.3)

where U is a constant vector. This is the linearizaiton of the Navier-Stokes equations

about U , while Stokes equations may be viewed as a linearization about 0.
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Let us get started by considering Stokes problem on R3.

∂u

∂t
= ν∆u− Op+ f, O · u = 0, u(x, 0) = u0 (4.4)

Then it follows from the relation between the Leray projection P and the Riesz transforms

in Chapter 2 that the fundamental solution of the Stokes equations can be written as

Γ(x, y, t) = −4yψ(x, y, t)I +Hessψ(x, y, t), (4.5)

where for each x ∈ R3, t > 0, ψ satisfies 4yψ(x, y, t) = −k(x, y, t) with the heat kernel in

R3, k(x, y, t) = 1
(4πνt)3/2

exp(− |x−y|
2

4πνt ), and Hessψ denotes the matrix of the second order

partial derivatives with respect to the y variable, and I denotes the 3× 3 identity matrix.

Oseen in [19] used the fundamental solution tensor for the steady problems in this form in

R2. In 3-dimensional case, Solonnikov in [38] had a similar expression in his analysis of the

time dependent problem in R3. More recently Guenther and Thomann in [23] obtained an

explicit formula for the fundamental solution in terms of Kummer functions. Now, recall

that for f ∈ S(R3), the Schawrtz class,

RiRjf = − ∂

∂xi

∂

∂xj
4−1f.

See [37], pg243. Hence we have Γ = (I + R)k where R is the matrix of iterated Riesz

transform RiRj and so if f = 0 and u(x, 0) = u0(x) in the Stokes problem, then we get

u(x, t) =

∫
R3

Γ(x− y, t)u0(y) dy =

∫
R3

[I +R]K(x, y, t)u0(y) dy, (4.6)

where K = kI. If we want to give a probabilistic representation to the solution u, then

we need to find an appropriate stochastic process to explain the behavior of particles in

slow-flowing fluid. If we, in particular, use the standard Brownian motion and the iterated

Riesz transform formula (2.12) in Chapter 2, then we have probabilistic representation of

u = (u1, u2, u3) as follows.
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Proposition 4.1. Let u = (u1, u2, u3) be the solution to the Stokes problem with an initial

data u0 = (u1
0, u

2
0, u

3
0) on the free space. Then if v is the harmonic extension of u0 and

vρ = O · v then for some constant c

ui(x, t) = Ex[ui0(Bt)] + cEx[ lim
s→∞

E(0,s)
hBt

[

∫ τ

0
Yr
∂vρ
∂xi

dYr]] (4.7)

Proof. From (4.6) properties of Fourier transforms and Riesz transforms allow us to com-

pute

ui(x, t) =

∫
k(x, y, t)ui0(y) dy +

∫ 3∑
j=1

(RiRjk)uj0 dy

=

∫
k(x, y, t)ui0(y) dy +

∫ 3∑
j=1

(RiRju
j
0)k dy

Letting wi :=
∑3

j=1(RiRju
j
0), the probabilistic representation of the iterated Riesz trans-

forms of (2.12) in chapter 2

RiRjf(x) = c lim
s→∞

E(0,s)
hx

∫ τ

0
Yr

∂2u

∂xi∂xj
dYr = c lim

s→∞
E(0,s)
hx

∫ τ

0
(ed+1⊗eiHej⊗ed+1 ·Zr)dZr,

(4.8)

where H is the Hessian of the harmonic extension u of f , gives

ui(x, t) = Ex[uj0(Bt)] + Ex[wi(Bt)]

= Ex[uj0(Bt)] + Ex[

3∑
j=1

lim
s→∞

cE(0,s)
hBt

[

∫ τ

0
Yr

∂2vj
∂xi∂xj

dYr]]

where vj is the harmonic extension of uj0. Letting vρ = O · v completes the proof

Then a more interesting and challenging problem is to consider probabilistic repre-

sentation of the solution u on a bounded or exterior domain with smooth boundary. We

will investigate the initial-boundary value problems of Stokes equation on a domain with

smooth boundary as follows.
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4.1 A Priori

We recall the Stokes problem on a domain D with smooth boundary ∂D;

∂u

∂t
=

1

2
∆u− Op, (4.9)

O · u = 0, (4.10)

u(x, 0) = u0(x), u|∂D = a(x, t) (4.11)

The incompressibility condition O · u = 0 leads us to the fact that the pressure p and Op

are harmonic. In particular, Op is determined by its boundary data, say, H = (h1, h2, h3),

i.e. ∂p
∂xi
|∂D = hi, i = 1, 2, 3, and so we can obtain Op by solving the following Dirichlet

problem:

4qi = 0, qi|∂D = hi, i = 1, 2, 3,

where Q = (q1, q2, q3) := ( ∂p
∂x1

, ∂p∂x2 ,
∂p
∂x3

) = Op. We note that the equation (4.9) can be

thought of as a nonhomogeneous heat equation if Op is given, more precisely, the boundary

data H. Once we have H in terms of initial and boundary data of the solution u in the

Stokes problem, u is just the solution to the heat equation with forcing Op. In the next

section we will show that H is determined by the initial and boundary data of the solution

to the Stokes problem. The following is the probabilistic representation of the solution u

to the heat equation on a domain D with smooth boundary ∂D when Op is considered to

be known.

Proposition 4.2. Assume that u and p are the solution to the Stokes problem (4.9),

(4.10), and (4.11). Let H = Op|∂D. Then

u(x, t) = Ex[u0(Bt)1[t<τ ]]−Ex[

∫ t∧τ

0
EBs [H(Bτ , t− s)] ds] +Ex[a(Bτ , t− τ)1[τ<t]] (4.12)
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where τ is the first hitting time of Bt on the boundary ∂D and Bt is absorbed Brownian

motion starting at x.

Proof. First of all, we solve the Dirichlet problem: given the boundary data of H of Op

4qi = 0, qi|∂D = hi, i = 1, 2, 3.

By the Itô formula for the Brownian motion started at x we have

qi(x) = Ex[hi(Bτ )]

if τ <∞ a.s. Hence we have the probabilistic representation of the gradient of pressure

Op(x, t) = Ex[H(Bτ , t)].

We fix t0 > 0 and let v(x, t) := u(j)(x, t0− t), 0 ≤ t ≤ t0, where u = (u(1), u(2), u(3)). Then

∂v

∂t
+

1

2
4v = −∂u

(j)

∂t
(x, t0 − t) +

1

2
4u =

∂p

∂xj
(x, t0 − t)

By Itô formula and optional stopping time theorem, for all t < t0

v(Bt∧τ , t ∧ τ) = v(B0, 0) +

∫ t∧τ

0

∂v

∂t
(Bs, s) ds+

∫ t∧τ

0
Ov dBs +

1

2

∫ t∧τ

0
4v(Bs, s) ds

= v(B0, 0) +

∫ t∧τ

0
Ov dBs +

∫ t∧τ

0

∂p

∂xj
(Bs, t0 − s) ds.

Taking the expected value gives us the following

Ex[v(Bt∧τ , t ∧ τ)] = Ex[v(B0, 0)] + Ex[

∫ t∧τ

0

∂p

∂xj
(Bs, t0 − s) ds]

Since

Ex[v(Bt∧τ,t∧τ )] = Ex[v(Bt0 , t0)1[t0<τ ] + v(Bτ ,1[τ<t0])]

we have

u(j)(x, t0) = Ex[v(Bt0 , t0)1[t0<τ ]] + Ex[v(Bτ , τ)1[τ<t0]]− Ex[

∫ t0∧τ

0

∂p

∂xj
(Bs, t0 − s) ds]

= Ex[u(Bt0 , 0)1[t0<τ ]] + Ex[u(Bτ , t0 − τ)1[τ<t0]]− Ex[

∫ t0∧τ

0

∂p

∂xj
(Bs, t0 − s) ds].

Substitution of initial data u0 and boundary data a completes the proof.
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Remark : For a general domain D in R3 such as an exterior domain with smooth boundary

we define the gradient of a differentiable function f on ∂D by a differentiable map Õf :

∂D −→ R3 which assigns to each point x ∈ ∂D a vector Õf(x) ∈ Tx(∂D) ⊂ R3 such that

< Õf(x), v >x= dfx(v) for all v ∈ Tx(∂D), where Tx(∂D) is the tangent plane at x, <,>x

is the inner product in Tx(∂D), and dfp(v) is the differential of f at x. See [17]. Let H be

a vector field on the boundary ∂D. Then H = ΠTx(∂D)(H)+(H ·η)η where ΠTx(∂D) is the

projection onto the tangent plane Tx(∂D). If we have 4p = 0 on D and ∂p
∂η = H · η = h,

then H = ΠTx(∂D)(H) + (H · η)η = ΠTx(∂D)(H) + hη. Thus we have

Õp|∂D = ΠTx(∂D)(H). (4.13)

4.2 A Posterior

In this section we show that H can be obtained in terms of the initial and boundary

data so that u given by Proposition 4.2 satisfies the incompressibility condition O · u = 0.

We notice that O ·Q = 0 and O×Q = 0 on D, where Q = Op since p is harmonic.

In particular, on the half space D = R3
+, the conditions O ·Q = 0 and O×Q = 0 are the

generalized Cauchy-Riemann equations. We recall the equivalent relation of the general-

ized Cauchy-Riemann equations and Riesz transforms; let u be the harmonic extension to

Rn+1
+ of a function f defined on Rn and suppose that u1, · · · , un, u are functions in Rn+1

+

which satisfy the generalized Cauchy-Riemann equations,

n+1∑
j=1

∂uj
∂xj

= 0,
∂uj
∂xk

=
∂uk
∂xj

, for j 6= k, j, k = 1, · · · , n+ 1

where u = un+1, and are such that u1(0) = · · · = un(0) = 0. Then uj |Rn = Rj(f), j =

1, · · · , n. Hence h1 = −R1h3 and h2 = −R2h3, where Rif is the Riesz transform of f ,

i = 1, 2, because ∂p
∂η = − ∂p

∂x3
|x3=0 = −h3 where ∂

∂η is the outward normal derivative to

the boundary R2. For a general domain D in R3 such as an exterior domain with smooth
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boundary, we recall the identity (4.13) in the previous section, i.e.,

Õp|∂D = ΠTx(∂D)(H).

If we also recall the definition of Riesz transforms through the Neumann problem in Chap-

ter 3, i.e., the Riesz transform of a function f is the tangential derivative of restriction to

the boundary of the solution to the Neumann problem with boundary data f , then the

tangential part of H is the Riesz transforms of h. Thus three unknowns of H go down

to only one unknown. We will try to find the one unknown h of the boundary data H so

that the solution to the Stokes problem in Proposition 4.2 satisfies the incompressibility

condition. Therefore we have an integral equation involving h from O · u = 0. The exis-

tence of h in this integral equation allows us to solve the Stokes problem.

Remark : Let us look at the integral equation of the solution containing h on a domain

D with smooth boundary ∂D. We recall the equations in Proposition 4.2.

∂u

∂t
=

1

2
4u− Op,

u(x, 0) = u0(x), u|∂D = a(x, t)

and

4p = 0, Op|∂D = H

where H is the boundary data of the gradient of pressure, and D is a bounded domain or

an exterior domain with smooth boundary ∂D. Then we have

u(x, t) = −
∫ t

0

∫
D
KD(x− y, s)Op(y, t− s) dyds+

∫
D
KD(x− y, t)u0(y) dy

+

∫ t

0

∫
∂D

∂

∂η
|∂D[KD(x′ − y′, s)]a(y′, t− s) dy′ds,

where KD is the Green function of the heat equation on a domain D. Solving the Dirichlet

problem

4qj = 0 qj |∂D = hj ,
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where qj = ∂p
∂xj

, j = 1, 2, 3, we have

qj(y, t) = −
∫
∂D

∂

∂η(z)
ED(y, z)hj(z, t) dz.

where ED is the Green function of the Laplace equation on a domain D. Since ED(x, z) =∫∞
0 KD(x, z, s) ds, the semi-group property of heat kernels gives us the following.∫

D
KD(x, y, s)

∂

∂η(z)
ED(y, z) dy =

∂

∂η(z)

∫ ∞
0

∫
D
KD(x, y, t)KD(y, z, t′) dydt′

=
∂

∂η(z)

∫ ∞
0

KD(x, z, s+ t′) dt′

Therefore we have the solution u involving H as follow.

u(x, t) =

∫ t

0

∫
∂D

[
∂

∂η(z)

∫ ∞
0

KD(x, z, t′ + s) dt′]H(z, t− s) dzds+

∫
D
KD(x− y, t)u0(y) dy

+

∫ t

0

∫
∂D

∂

∂η
|∂D[KD(x′ − y′, s)]a(y′, t− s) dy′ds. (4.14)

If we apply the incompressibility condition O · u = 0, then we have the integral equation

for H;

O · {
∫ t

0

∫
∂D

[
∂

∂η(z)

∫ ∞
0

KD(x, z, t′ + s) dt′]H(z, t− s) dzds+

∫
D
KD(x− y, t)u0(y) dy

+

∫ t

0

∫
∂D

∂

∂η
|∂D[KD(x′ − y′, s)]a(y′, t− s) dy′ds} = 0 (4.15)

In the case of the half space D = R3
+, h3 can be explicitly determined in terms of

the initial and boundary data of u. We will use h of H rather than h3.

Before proceeding, we introduce some well-known notations that will be used in the

following results. First we define the Laplace transform of a function f(t) with t > 0 to

be

L(f)(p) =

∫ ∞
0

e−ptf(t) dt.

Also, in this section we denote by F(f)(ξ) the Fourier transform of a function f : R2 → R

defined by

F(f)(ξ) =

∫
R2

e−i(x
′·ξ)f(x′) dx′.
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In addition, we define two functions for the following results. One is the n-dimensional

heat kernel

k(n)(x, t) =
1

(2πt)n/2
exp(−−|x|

2

2t
),

where n = 1, 2, 3, and the other is

K̃(x′, x3, t) = k(2)(x′, t)
1√
2πt

(2)(
x3

t
) exp(−x3

2t
).

We note that K̃ is inward normal derivative of the Green function K for the heat equation

on the half space R3
+. In this section we always denote the normal derivative by the

outward normal derivative. Let us start with a lemma concerning the Laplace and Fourier

transform of K̃.

Lemma 4.1. With notations we already introduced

LF(K̃)(ξ, x3, p) = exp(−
√

2p+ |ξ|2x3) (4.16)

Proof. Consider the heat equation on the half space with zero initial data and boundary

data a.

∂u

∂t
=

1

2
4u, (4.17)

u(x, 0) = 0, u|x3=0(x, t) = a(x′, t), x′ ∈ R2.

Then

u(x, t) =

∫ t

0

∫
R2

∂

∂y3
|y3=0[K(x, y, s)]a(y′, t− s) dy′ds

=

∫ t

0

∫
R2

K̃(x, y, s)a(y′, t− s) dy′ds.

Taking Laplace and Fourier transforms on (4.17) we have

2pLF(u)(ξ, x3, p) + |ξ|2LF(u)(ξ, x3, p) =
∂2

∂x2
3

LF(u)(ξ, x3, p) (4.18)

Solving the ordinary differential equation (4.18) we have

LF(u) = LF(K̃)LF(a) = exp(−
√

2p+ |ξ|2x3)LF(a).
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The above identity completes the proof.

With this lemma we will obtain h in terms of the initial and boundary data of the

solution to the Stokes problem. For simplicity, the following result is the case of non-zero

initial data and zero boundary data.

Proposition 4.3. Let u be the solution to the Stokes problem on R3
+:

∂u

∂t
=

1

2
4u− Op, O · u = 0

u(x, 0) = u0(x), u|x3=0 = 0

Assume that u0(x) ∈ C1(R3
+) satisfies the compatibility conditions O ·u0 = 0 and u0|x3=0 =

0. Then h = − ∂p
∂x3
|x3=0 is given by

h(x1, x2, t) =

∫ ∞
0

∫
R2

K̃(x′ − y′, y3, t)[O
′ · (R1u

3
0 − u1

0, R2u
3
0 − u1

0)](y′, y3) dy′dy3 (4.19)

where u0 = (u1
0, u

2
0, u

3
0), O′ = ( ∂

∂y1
, ∂
∂y2

), and Rif is the Riesz transform of f , i = 1, 2.

Proof. Recall the solution u invoving H on a general domain D from (4.14) when a = 0;

u(x, t) =

∫ t

0

∫
∂D

[
∂

∂η(z)

∫ ∞
0

KD(x, z, t′ + s) dt′]H(z, t− s) dzds+

∫
D
KD(x− y, t)u0(y) dy

Since we consider D = R3
+ we have

u(x, t) = −
∫ t

0

∫
R2

[
∂

∂z3
|z3=0

∫ ∞
0

K(x, z, t′+s) dt′]H(z, t−s) dzds+

∫
R3
+

K(x−y, t)u0(y) dy,

whereK is the Green function of the heat equation on the half space R3
+. Since ∂

∂z3
|z3=0[K(x, z, t)] =

2(x3t )k(1)(x3, t)k
(2)(x′, z′, t)(= K̃(x, z′, t)), we have

u(x, t) =

∫ t

0

∫
R2

∫ ∞
0

2(
x3

s+ t′
)k(1)(x3, s+ t′)k(2)(x′, z′, s+ t′) dt′]H(z, t− s) dzds (4.20)

+

∫
R3
+

K(x, y, t)u0(y) dy. (4.21)
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Noting that H = (−R1h,−R2h, h) and using F(k(2)(x′, t)) = exp (− |ξ|
2

2 t) and F(Rjf) =

iξj
|ξ|Ff we have the Fourier transform of (4.20) given by

F(4.20) =

∫ t

0

∫ ∞
0

exp(−|ξ|
2

2
(t′ + s))

2√
2π

x3

(t′ + s)3/2
exp(− x2

3

2(t′ + s)
) dt′

×(− iξ1

|ξ|
,− iξ2

|ξ|
, 1)F(h)(ξ, t− s) ds

or, by change of variable of t′ + s,

F(4.20) =

∫ t

0

∫ ∞
s

exp(−|ξ|
2

2
t′)

2√
2π

x3

t′3/2
exp(−x

2
3

2t′
) dt′(− iξ1

|ξ|
,− iξ2

|ξ|
, 1)F(h)(ξ, t− s) ds

(4.22)

We are going to take Laplace transform of (4.22) with respect to s. First of all, we compute

the following.

L[

∫ ∞
s

exp(−1

2
(|ξ|2t′ + x2

3

t′
))

1

t′3/2
dt′](p)

Using the fact from the definition of Laplace transform that

L[

∫ ∞
t

f(w) dw](p) =
1

p
(

∫ ∞
0

f(w) dw − L[f ](p))

we have

L[

∫ ∞
s

exp(−1

2
(|ξ|2t′ + x2

3

t′
))

1

t′3/2
dt′](p)

=
1

p

∫ ∞
0

exp(−1

2
(|ξ|2t′ + x2

3

t′
))

1

t′3/2
dt′ − 1

p
L[exp(−1

2
(|ξ|2t′ + x2

3

t′
))

1

t′3/2
](p). (4.23)

Recall that the modified Bessel function of order ν is given by

Kν(z) =
1

2

∫ ∞
0

t−(1+ν) exp−(
z

2
(
1

t
+ t)) dt

and that in particular

K1/2(z) = (
π

2z
)1/2e−z.

See [32] for basic properties of these functions. Let us look at the first term of (4.23). By

the change of variables, t = |ξ|t′
|x3| , and the modified Bessel functions we have

1

p

∫ ∞
0

exp(−1

2
(|ξ|2t′ + x2

3

t′
))

1

t′3/2
dt′
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=
1

p

∫ ∞
0

exp (−|ξ||x3|
2

(
|ξ|t′

|x3|
+
|x3|
|ξ|t′

)
1

t′3/2
) dt′

=
1

p

|ξ|1/2

|x3|1/2

∫ ∞
0

exp−(
|ξ||x3|

2
(t+

1

t
))t−3/2 dt

=
1

p

|ξ|1/2

|x3|1/2
K 1

2
(|ξ||x3|) =

1

p
(

√
π√

2x3

) exp (−|ξ||x3|).

Similarly, with change of variables and the modified Bessel function in (4.23), we have the

Laplace and Fourier transform of
∫∞
s exp(− |ξ|

2

2 t′) 2√
2π

x3
t′3/2

exp(− x23
2t′ ) dt

′;

LF(

∫ ∞
s

exp(−|ξ|
2

2
t′)

2√
2π

x3

t′3/2
exp(−x

2
3

2t′
) dt′) =

1

p
[exp(−

√
|ξ|2 + 2px3)− exp(−|ξ|x3)]

Now we are going to use the incompressibility condition O · u = 0 to get h;

O · [−
∫ t

0

∫
R2

[
∂

∂z3
|z3=0

∫ ∞
0

K(x, z, t′ + s) dt′]H(z, t− s) dzds] (4.24)

= −O · [
∫
R3
+

K(x− y, t)u0(y) dy]. (4.25)

Since (iξj)LF [Rjh] = (iξj)(i
ξj
|ξ|)LF [h] = − ξ2j

|ξ|LF [h], we finally have the Laplace and

Fourier transform of (4.24);

(iξ1, iξ2,
∂

∂x3
) · (1

p
[exp(−

√
|ξ|2 + 2px3)− exp(−|ξ|x3)])(LF(−R1h),LF(−R2h),LF(h))

= |ξ|1
p

[exp(−
√
|ξ|2 + 2px3)− exp(−|ξ|x3)]LF(h)

+
1

p
[−

√
|ξ|2 + 2p exp(−

√
|ξ|2 + 2px3) + |ξ| exp(−|ξ|x3)]LF(h)

=
|ξ| −

√
|ξ|2 + 2p

p
exp(−

√
|ξ|2 + 2px3)LF [h]. (4.26)

For the computation of the right side (4.25) we have

F(4.25) = −(iξ1, iξ2,
∂

∂x3
)·
∫ ∞

0
exp(−−|ξ|

2t

2
)(

1√
2πt

)[exp(
−|x3 − y3|2

2t
)−exp(

−|x3 + y3|2

2t
)]



62

×F(u0)(ξ, y3) dy3 (4.27)

By the compatibility condition O · u0 = 0, one has

−iξ1F(u1
0)− iξ2F(u2

0) =
∂F(u3

0)

∂y3
.

Using this in (4.27) and integration by parts we have

F(4.25) =

∫ ∞
0

exp(−−|ξ|
2t

2
)(

1√
2πt

)[exp(
−|x3 − y3|2

2t
)− exp(

−|x3 + y3|2

2t
)]

× ∂

∂y3
F(u3

0)(ξ, y3) dy3

−
∫ ∞

0
exp(−−|ξ|

2t

2
)(

1√
2πt

)
∂

∂x3
[exp(

−|x3 − y3|2

2t
)− exp(

−|x3 + y3|2

2t
)]

×F(u3
0)(ξ, y3) dy3

= −
√

2√
π

∫ ∞
0

(x3 + y3) exp(−1

2
(|ξ|2t+

|x3 + y3|2

t
))

1

t3/2
F(u3

0)(ξ, y3) dy3

Using the change of variables and the modified Bessel functions again for Laplace transform

we have

LF(4.25) = −
∫ ∞

0
exp(−|x3 + y3|

√
|ξ|2 + 2p)F(u3

0)(ξ, y3) dy3. (4.28)

From (4.26) and (4.28) we, therefore, have the Laplace and Fourier transform of h

LF(h)(ξ, p) =
p√

|ξ|2 + 2p− |ξ|

∫ ∞
0

exp(−y3

√
|ξ|2 + 2p)F [u3

0](ξ, y3) dy3

=
1

2

∫ ∞
0

(
√
|ξ|2 + 2p+ |ξ|) exp(−y3

√
|ξ|2 + 2p)F [u3

0](ξ, y3) dy3

=
1

2

∫ ∞
0

(
√
|ξ|2 + 2p) exp(−y3

√
|ξ|2 + 2p)F [u3

0](ξ, y3) dy3

+
1

2

∫ ∞
0
|ξ| exp(−y3

√
|ξ|2 + 2p)F [u3

0](ξ, y3) dy3

The compatibility condition u3
0|x3=0 = 0 and integration by parts gives

LF(h)(ξ, p) =
1

2

∫ ∞
0

exp(−y3

√
|ξ|2 + 2p)

∂

∂y3
F [u3

0](ξ, y3) dy3
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+
1

2

∫ ∞
0

exp(−y3

√
|ξ|2 + 2p)

|ξ|2

ξ
F [u3

0](ξ, y3) dy3

=
1

2

∫ ∞
0

exp(−y3

√
|ξ|2 + 2p)(F [

∂

∂y3
u3

0](ξ, y3)) + LF(O′ ·R′(u3
0)) dy3

Noting that LF(K̃) = exp−(
√
|ξ|2 + 2py3) completes the proof.

Similarly, we have the explicit formula for h in terms of initial and boundary data

of u as follows.

Corollary 4.1. Let u be the solution to the Stokes problem on R3
+:

∂u

∂t
=

1

2
4u− Op, O · u = 0

u(x, 0) = u0(x), u|x3=0 = a(x′, t), x′ ∈ R2.

Assume that u0(x) ∈ C1(R3
+) and a ∈ C1,1(R2× (0,∞)) satisfy the compatibility conditions

O · u0 = 0, u0|x3=0 = a|t=0, and a · η = 0. Then h = − ∂p
∂x3
|x3=0 is given by

h(x1, x2, t) =

∫ ∞
0

∫
R2

K̃(x′ − y′, y3, t)[O
′ · (R1u

3
0 − u1

0, R2u
3
0 − u2

0)] dy′dy3

+4x′(R1a1 +R2a2) + 4

∫ t

0

∫
R2

(
∂

∂s
− 1

2
4′)

exp(− |x
′−y′|2
2s )

s3/2
(O′ · a′)(y′, t− s) dy′ds

where u0 = (u1
0, u

2
0, u

3
0), O′ = ( ∂

∂y1
, ∂
∂y2

), and Rif is the Riesz transform of f , i = 1, 2.

Proof. From Lemma 4.1, Equation (4.26), and Equation (4.28) in the proof of Proposition

4.3 we have, taking Laplace and Fourier transforms of (4.15),

|ξ| −
√
|ξ|2 + 2p

p
exp(−

√
|ξ|2 + 2px3)LF [h]

= − exp(−
√
|ξ|2 + 2px3)

∫ ∞
0

exp(−y3

√
|ξ|2 + 2p)F [u3

0](ξ, y3) dy3

− exp(−
√

2p+ |ξ|2x3)(iξ1LF(a1) + iξ2LF(a2)).

and so the Laplace and Fourier transform of h is

LF [h] =
1

2
(
√
|ξ|2 + 2p+ |ξ|)

∫ ∞
0

exp(−y3

√
|ξ|2 + 2p)LF [u3

0](ξ, y3) dy3
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+(
√
|ξ|2 + 2p+ |ξ|)(iξ1LF(a1) + iξ2LF(a2)). (4.29)

We will compute the terms in (4.29) involving boundary data a,
√
|ξ|2 + 2p(iξ1LF(a1) +

iξ2LF(a2)) and |ξ|(iξ1LF(a1) + iξ2LF(a2)). First, we notice that

|ξ|(iξ1LF(a1) + iξ2LF(a2)) = |ξ|2(
iξ1

|ξ|
LF(a1) +

iξ2

|ξ|
LF(a1)) = LF [4x′(R1a1 +R2a2)].

For the other one we see that

√
|ξ|2 + 2p(iξ1LF(a1) + iξ2LF(a2)) = [

∫ ∞
0

(|ξ|2 + 2p) exp(−
√
|ξ|2 + 2py3) dy3]LF [O′ · a′]

=

∫ ∞
0
LF [(−4+ 2

∂

∂t
)K̃(y, t)] dy3LF [O′ · a′].

Since
∫∞

0 K̃ dy3 = 2
t3/2

exp(− |y
′|2

2t ), we have

√
|ξ|2 + 2p(iξ1LF(a1) + iξ2LF(a2))

= LF [4

∫ t

0

∫
R2

(−1

2
4+

∂

∂s
)]

exp(− |x
′−y′|2
2s )

s3/2
(O′ · a′)(y′, t− s) dy′ds.

This computation completes the proof.

Finally the above a priori and a posteriori argument allows us to solve the Stokes

problem as follows.

Theorem 4.1. Assume that u0(x) ∈ C1(R3
+) and a ∈ C1,1(R2 × (0,∞)) satisfy the com-

patibility conditions O · u0 = 0, u0|x3=0 = a|t=0, and a · η = 0. Let

h(x1, x2, t) :=

∫ ∞
0

∫
R2

K̃(x′ − y′, y3, t)[O
′ · (R1u

3
0 − u1

0, R2u
3
0 − u1

0)] dy′dy3

+4x′(R1a1 +R2a2) + 4

∫ t

0

∫
R2

(
∂

∂s
− 1

2
4′)

exp(− |x
′−y′|2
2s )

s3/2
(O′ · a′)(y′, t− s) dy′ds,

u(x, t) := {−
∫ t

0

∫
R2

[
∂

∂z3
|z3=0

∫ ∞
0

E(x, z, t′ + s) dt′]H(z, t− s) dzds+

∫
R3
+

E(x− y, t)u0(y) dy

+

∫ t

0

∫
R2

∂

∂y3
|y3=0E(x, y, t)a(y′, t− s) dy′ds
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and let p be the solution to the Neumann problem with boundary data h on the half space

R3
+. Then u and p satisfy the Stokes problem with the initial data u0 and the boundary

data a on the half space R3
+.

4.3 Pressure on the Boundary

In this section we will represent the pressure on boundary in the Stokes problem.

In 2010 Bikri, Guenther, and Thomann in [5] utilized repeatedly the Fourier transforms

in R2 together with the Laplace transforms with respect to x3 of a function defined in R3
+

to obtain some results on the DtN map for Laplace and heat operators in R3
+. The DtN

map is a common tool in the analysis of inverse problems in electrical exploration and

impedance tomography, see [25] for a modern treatment. Consider the Laplace operator.

The following is one of results in [5].

Proposition 4.4. Assume that φ(x) ∈ C2(R3
+) and it satisfies 4φ = g(x). Then the

Laplace-Fourier transform of φ satisfies

Lx3(Fg(ξ, x3))||ξ| = −|ξ|F(φ)(ξ, x3)|x3=0 −
∂F(φ)(ξ, x3)

∂x3
|x3=0.

Using the Proposition 4.4 we have the pressure on the boundary as follows.

Corollary 4.2. Under the same assumption in the Proposition (4.3) the boundary of p is

given by

p(x1, x2, t) =

∫ ∞
0

∫
R2

K̃(x′ − y′, y3, t)(u
3
0 −R1u

1
0 −R2u

2
0) dy′dy3 (4.30)

+O′ · a′ + 4

∫ t

0

∫
R2

(
∂

∂s
− 1

2
4′)

exp−( |x
′−y′|2
2s )

s3/2
(R1a1 +R2a2)

where a′ = (a1, a2).
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Proof. We note that 4p = 0, − ∂p
∂x3
|x3=0 = h. From Proposition 4.4 with g = 0, φ = p,

we have

F(p)(ξ, x3, t)|x3=0 =
1

|ξ|
F(h)(ξ, t).

Recall h from Corollary 4.1;

h(x1, x2, t) =

∫ ∞
0

∫
R2

K̃(x′ − y′, y3, t)[O
′ · (R1u

3
0 − u1

0, R2u
3
0 − u2

0)] dy′dy3

+4x′(R1a1 +R2a2) + 4

∫ t

0

∫
R2

(
∂

∂s
− 1

2
4′)

exp(− |x
′−y′|2
2s )

s3/2
(O′ · a′)(y′, t− s) dy′ds.

Thus p on the boundary R2 in the Fourier side is given by

1

|ξ|
F(h) =

∫ ∞
0
F(K̃)(ξ, y3, t)

iξ

|ξ|
· ( iξ1

|ξ|
F(u3

0)−F(u1
0),

iξ2

|ξ|
F(u3

0)−F(u2)) dy3

+
|ξ|2

|ξ|
(
iξ1

|ξ|
,
iξ2

|ξ|
) · (â1, â2) +

1

|ξ|
4

∫ t

0

∫
R2

(
∂

∂s
− 1

2
4′)

exp−( |x
′−y′|2
2s )

s3/2
((iξ1, iξ2) · (â1, â2)).

This completes the proof.

In 1987, Ukai in [39] gave the explicit solution to the Stokes problem in terms of

Riesz operators, the heat operator, and the Laplace operator in the half space Rn+. To

understand his formula let us introduce several well-known operators. First, we define two

kinds of Riesz operators, Rj , j = 1, · · · , n, and Sj , j = 1, · · · , n− 1, which are the singular

integral operators with the symbols

σ(Rj) = i
ξj
|xi|

, j = 1, · · · , n,

σ(Sj) = i
ξj
|ξ′|

, j = 1, · · · , n− 1,

where ξ = (ξ′, ξn) is the dual variable to x ∈ Rn. Thus Rj is the Riesz transform with

respect to x ∈ Rn and Sj is the Riesz transform with respect to x′ ∈ Rn−1. In our notation,

particularly, in the boundary data h of the gradient of pressure Op, Sj = Rj because we

have Riesz transforms on the boundary in R2. Set

R′ = (R1, R2, · · · , Rn−1),
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S = (S1, S2, · · · , Sn−1),

and define the operators V1 and V2 by

V1u0 = −S · u′0 + un0 ,

V2u0 = u′0 + Sun0 .

Further, we define the operator U by

Uf = rR′ · S(R′ · S +Rn)e

where r is the restriction operator from Rn to the half space Rn+, that is,

rf = f |Rn+

and e is the extension operator from Rn+ over Rn with value 0:

ef =


f for xn > 0,

0 for xn < 0.

Also, we define the operators E(t) and F , respectively, by

E(t)f =

∫
Rn=
{k(n)(x− y, t)− k(n)(x′ − y′, xn + yn, t)}f(y) dy,

Fb =

∫ t

0

∫
Rn−1

∂nk
(n)(x′ − y′, xn, t− s)b(s, y′) dsdy′,

which are the solution operators to the heat equation in the half space Rn, i.e.,

ut = 4u

u|t=0 = u0, u|xn=0 = b(x′, t).

Thus E(t)u0 is the solution to the heat equation for the case b = 0 while Fb is the solution

for u0 = 0. Finally, we define the Poisson operators D and N by
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Db =

∫
Rn−1

∂nG(x′ − y′, xn)b(y′) dy′,

Nb =

∫
Rn−1

G(x′ − y′, xn)b(y′) dy′

where

G(x) =


cn|x|−(n−2) for n ≥ 3,

−(2π)−1 log |x| for n = 2,

is the Newton potential with cn = 2(n − 2)−1πn/2Γ(1
2n). Obviously, D and N are the

solution to the Dirichlet and Neumann problem with boundary data b, respectively. With

all operators we just defined, let us present his formula as follows.

Theorem 4.2. Suppose a = 0. Then the solution to the Stokes problem can be expressed

as

un = UE(t)V1u0,

u′ = E(t)V2u0 − SUE(t)V1u0,

p = −Dγ∂nE(t)V1u0. (4.31)

where γz = z|x3=0.

Theorem 4.3. Suppose u0 = 0. Then the solution to the Stokes problem is

un = Dan + UFV1a,

u′ = FV2a− S(Dan + UFV1a),

p = |O′|DV1a−Dγ∂nFV1a−Nan, (4.32)

where |O′| is the pseudo-differential operator having the symbol |ξ′|.

Remark : If we just follow the already-defined operators in [39] and compute the pressure,

then we can see that the integral representation of the Ukai’s formula for the pressure is

exactly the same as the formula in corollary 4.2. For simplicity we check the case of a = 0
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and n = 3 in his paper with (4.30) in Corollary 4.2. We use a superscript of U to denote

quantities relating to Ukai’s formula. For example, RUi in Ukak’s is different from Ri in

this section. Suppose a = 0. Then from Ukai’s formula

pU = −DUγ∂nE
U (t)V U

1 u0.

Noting that

V U
1 u0 = −(SU1 u

1
0 + SU2 u

2
0) + u3

0 = −(R1u
1
0 +R2u

2
0) + u3

0,

and

γ∂nE
U (t)V U

1 u0 =
∂

∂x3
[EU (t)V U

1 u0]|x3=0

=

∫ t

0

∫
R2

K(2)(x′ − y′, t)(2)(
y3

t
)K(1)(y3, t)[−(R1u

1
0 +R2

0) + u3
0] dy′dy3,

we have the pressure p on the boundary in corollary 4.2 is the same as γ∂nE(t)V1u0, i.e.,

p = γ∂nE
U (t)V U

1 u0.

Since DU is the harmonic extension operator to the half space R3
+, the pressure p on the

boundary in corollary 4.2 is the same as the boundary of pU . However, Ukai’s approach

is different. Let us look at his argument briefly as follows. For simplicity, we set n = 3.

Ukai used the fact that the pressure is harmonic and the Fourier transform with respect

to the tangential variable x′ to obtain the following ordinary differential equation

(∂n− |ξ′|2)F(p) = 0.

Assuming that p is bounded, such solution has the form

F(p) = exp (−|ξ′|x3)h,

where h is the boundary data of the pressure p. Even if h is undetermined, p satisfies

(∂n + |ξ′|)F(p) = 0.
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This is the key in his argument. he used this equation to remove the term involving the

pressure in the Stokes equation. And he found the velocity to the Stokes problem in

terms of the initial and boundary data and finally obtained the pressure from the velocity.

However, we focus on the pressure at the first place. After we have the boundary data h

of the gradient of the pressure in terms of the initial and boundary data of the velocity,

we find the gradient pressure and solve the nonhomogeneous heat equation to obtain the

velocity to the Stokes problem.

More interestingly, pressure on the boundary R2 can be expressed in terms of special

function, Kummer’s function, when the pressure p is the solution to the Neumann problem

on R3
+

Op = 0,
∂p

∂z3
|z3=0 = h(z′) (4.33)

where h(z′) =
∫∞

0

∫
R2 K̃(z′− y′, y3, t)g(y′, y3) dy′dy3 with g(y′, 0) = 0. Kummer’s function

1F1(a; c; z) is defined by the infinite series
∑ (a)n

(c)n
zn

n! , i.e.,

1F1(a; c; z) =
∞∑
n=0

(a)n
(c)n

zn

n!
, c 6= 0,−1,−2, · · ·

=
Γ(c)

Γ(a)

∞∑
n=0

Γ(a+ n)

Γ(c+ n)

zn

n!

where a, c and z are complex numbers. This Kummer’s function has the following integral

representation, see [32] for detail.

1F1(a; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
eztta−1(1− t)c−a−1 dt,

where Re(c) > Re(a) > 0. The following is the explicit formula for p on the boundary R2

in terms of Kummer’s function.

Proposition 4.5. Let p be the solution to the Neumann problem in (4.33). Then

p(z′, t) = c

∫ ∞
0

∫
R2

exp(−|y′ − z′|2)√
t

1F1(
1

2
, 1,
|y′ − z′|2

2t
)
exp−y23

2t√
t

∂g

∂y3
|(y′,y3) dy

′dy3. (4.34)
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Proof. First of all, we notice that the solution p to the Neumann problem on R3
+ is

p(z, t) = c

∫
R2

1

(|x′ − z′|2 + z2
3)1/2

h(x′, t) dx′.

Since ∫ ∞
0

exp− |x
′−z′|2+z23

2s

(2πs)3/2
ds = c

1

(|x′ − z′|2 + z2
3)1/2

and

h(x′, t) = c

∫ ∞
0

∫
R2

k(2)(x′, y′, t)(
y3

t
)
exp−y23

2t√
2πt

g(y′, y3) dy′dy3,

the semi-group property of probabilistic densities allows us to have

p(z′, t) = c

∫ ∞
0

∫
R2

[

∫ ∞
0

exp (− |y
′−z′|2/2(s+t)

s+t )

s+ t
(
exp (− z23

2s )
√
s

) ds](
y3

t
)
exp (−y23

2t )√
t

g(y′, y3) dy′dy3.

The first change of variables λ = 1
s+t gives us

∫ ∞
0

exp (− |y
′−z′|2/2(s+t)

s+t )

s+ t
(
exp (− z23

2s )
√
s

) ds =

∫ 1/t

0
e−
|y′−z′|2

2
λ(
e−

z23
2λ

(1−λt)
√

1− λt
)
√
t
dλ

λ
.

By the second change of variables λt = u we have∫ 1/t

0
e−
|y′−z′|2

2
λ e
− z

2
3

2λ
(1−λt)

√
1− λt

√
t
dλ

λ
=
ez3t√
t

∫ 1

0
e−
|y′−z′|2

2t
u e−

z23
u
t

√
1− u

du√
u
.

The last change of variables u = 1−u′ leads us to have the expression involving Kummer’s

function as follows.

ez3t√
t

∫ 1

0
e−
|y′−z′|2

2t
u e−

z23
u
t

√
1− u

du√
u

=
e−
|y′−z′|2

2t

√
t

∫ 1

0
e
|y′−z′|2

2t
uu−1/2(1− u)−1/2 du

=
e−
|y′−z′|2

2t

√
t

1F1(
1

2
; 1;
|y′ − z′|2

2t
).

Letting z3 = 0 we finally have the pressure on the boundary

p(z′, t) = c

∫ ∞
0

∫
R2

e−|y
′−z′|2/2t
√
t

1F1(
1

2
; 1;
|y′ − z′|2

2t
)(
y3

t
)(
e−y

2
3/2t

√
t

)g(y′, y3) dy′dy3

= c

∫
R2

e−|y
′−z′|2/2t
√
t

1F1(
1

2
; 1;
|y′ − z′|2

2t
)[

∫ ∞
0

∂

∂y3
(
e−y

2
3/2t

√
t

)g(y′, y3) dy3] dy′

The integration by parts completes the proof.
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Moreover, in the case of zero boundary condition, a = 0, we have a probabilistic

representation of h in terms of reflecting Brownian motion as the following proposition

shows.

Proposition 4.6. Let h be given as in Proposition 4.3;

h(x1, x2, t) =

∫ ∞
0

∫
R2

K̃(x′ − y′, y3, t)g(y′, y3) dy′dy3 (4.35)

where g = [O′ · (R1u
3
0 − u1

0, R2u
3
0 − u1

0)] with g(y′, 0) = 0. Then

h(x′, t) = E(x′,0)[
∂g

∂y3
(Br

t )]

where Br
t is reflecting Brownian motion.

Proof. Consider the heat equation on the half space R3
+ with initial data g;

∂u

∂t
=

1

2
4u

∂u

∂x3
|x3=0 = 0, u|t=0 = g

Then the solution u is given by

u(x′, x3, t) =

∫
R3
+

KN (x′ − y′, x3 − y3, t)g(y′, y3)

where KN (x′, y′, x3, y3, t) = k(3)(x′− y′, x3− y3, t) + k(3)(x′− y′, x3 + y3, t). Then we have

a probabilistic representation of u in terms of reflecting Brownian motion, see [26], as

follows.

u(x′, x3, t) = E(x′,x3)[g(Br
t )].

Reordering integration in (4.35) we have

h(x1, x2, t) =

∫ ∞
0

∫
R2

K̃(x′ − y′, y3, t)g(y′, y3) dy′dy3

∫
R2

[

∫ ∞
0

2
∂

∂y3

exp−(
y23
2t )√

2πt
g(y′, y3) dy3]k(2)(x′ − y′t). (4.36)
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Using the condition g(x′, 0) = 0 and integration by parts in (4.36) we have∫
R2

[

∫ ∞
0

2k(2)(x′ − y′t)k(1)(y3, t)
∂g

∂y3
(y′, y3) dy′dy3

Noting that

KN (x′, y′, x3, y3, t)|y3=0 = 2k(2)(x′ − y′, t)k(1)(y3, t)

completes the proof.

4.4 Remarks

What we have studied for the Stokes problem can be applied to the Oseen problem.

Let us consider the Oseen problem on the half space R3
+.

∂v

∂t
+ (U · O)v =

1

2
4v − Op, O · v = 0

v(x, 0) = v0(x), v|x3=0 = a(x′, t), x′ ∈ R2

Assuming U · η = 0 with the outward unit normal η and using the change of variables we

have the boundary data hU of Op in the Oseen problem in terms of h0, the boundary of

Op in the Stokes problem, the Oseen problem with U = 0.

Proposition 4.7. Let v be the solution to the Oseen problem with U = (U1, U2, U3):

∂v

∂t
+ (U · O)v =

1

2
4v − Op, O · v = 0

v(x, 0) = v0(x), v|x3=0 = a(x′, t), x′ ∈ R2.

Then if U · η = 0, then

hU = h0(x′ − tU, t)

where h0 is the boundary condition of Op in the Stokes problem, the Oseen problem

with U = 0.
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Proof. Let w(x, t) := v(x1 + U1, x2 + U2, x3, t). Then we have the Stokes problem of w

∂w

∂t
=

1

2
4w − Op̃, O · w = 0

w(x, 0) = v0(x), w|x3=0 = a(x1 + U1, x2 + U2, t), x′ ∈ R2.

where p̃(x, t) = p(x′ + tU ′, x3, t). The change of variables completes the proof as follows.

h0(x, t) =
∂p̃

∂x3
|x3=0(x, t) =

∂pU

∂x3
|x3=0(x+ tU, t) = hU (x+ tU, t).

To summarize, looking at the probabilistic representation of the solution u to the

Stokes/Oseen problem on a bounded or exterior domain, we conclude that the velocity u

and the pressure p can be determined by only information of the gradient of pressure on

the boundary of domain.

In 2008 Constantin and Iyer in [9] derived a probabilistic representation of the three-

dimensional Navier-Stokes equations on the free space R3 based on stochastic Lagrangian

paths. First of all, let us define the particle-trajectory mapping Xt(·) or X(·, t). Given a

fluid velocity v(x, t), X(a, t) : a ∈ Rn → X(a, t) ∈ Rn is the location at time t of a fluid

particle initially placed at the point a at time t = 0. The following nonlinear ordinary

differential equation defines particle-trajectory mapping:

dX

dt
(a, t) = v(X(a, t), t), X(a, 0) = a. (4.37)

The parameter a is called the Lagrangian particle marker. The above differential equation

can be thought of the relation between the Lagrangian description of fluid flow and the

Eulerian one. Through this Lagrangian formulation we can say that an initial domain

D ∈ Rn in a fluid evolves in time to X(D, t) = {X(a, t) : a ∈ D}, with the vector v

tangent to the particle trajectory. We recall the incompressible Navier-Stokes equations

with no forcing term

∂u

∂t
+ (u · O)u = ν4u+ Op (4.38)
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O · u = 0 (4.39)

describe the evolution of the velocity field u of an incompressible fluid with kinematic

viscosity ν > 0 and pressure p. If ν = 0, then (4.46) and (4.47) is known as the Euler

equations. This equations describes the evolution of the velocity field of an inviscid incom-

pressible fluid. We can easily notice that the difference between the Euler equations and

the Navier-Stokes equations is the term involving the Laplacian and viscosity ν > 0. Their

idea of a stochastic representation of the Navier-Stokes equations is a proper expectation

of inviscid dynamics from the Euler equations and Browian motion since the Laplacian is

the (infinitesimal) generator of a Brownian motion. They started with consideration of

the stochastic Lagrangian formulation of the incompressible Euler equations and provided

the following a probabilistic representation of the incompressible Navier-Stokes equaition

on the free space.

Theorem 4.4. Let ν > 0, W be an n-dimensional Wiener process, k ≥ 1, and u0 ∈ Ck+1,α

a given deterministic divergence-free vector field, where Ck,α is the Hölder space consisting

of functions on Rn having derivatives up to k and such that the kth partial derivatives are

Hölder continuous with exponent α with 0 < α ≤ 1. Let the pair u and X satisfy the

stochastic system

dX = udt+
√

2νdW (4.40)

A = X−1 (4.41)

u = EP[(OTA)(u0 ◦A))] (4.42)

with initial data

X(a, 0) = a, (4.43)

where P denotes the Leray-Hodge projection onto divergence free vector fields, the notation

OT denotes the transpose of the Jacobian, and for any t ≥ 0, At = X−1
t is the spatial

inverse of the map Xt, i.e., AtXt(a) = a for all ainRn and Xt(At(x)) = x for all x ∈ Rn.
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Boundary conditions is that u and X − I are either spatially periodic or decay sufficiently

at infinity. Then u satisfies the incompressible Navier-Stokes equations

∂u

∂t
+ (u · O)u = ν4u+ Op (4.44)

O · u = 0 (4.45)

with initial data u0.

For example, we consider the Oseen problem with the steady velocity U

∂u

∂t
+ (U · O)u = ν4u+ Op (4.46)

O · u = 0 (4.47)

with initial data u0. Then the stochastic differential equation in (4.40) of the particle

trajectory map Xt is dX = Udt+ dWt and so we have Xt = U + a+Wt. Let Xt(a) = x.

Then the spatial inverse of Xt is At(x) = x− Ut−Wt since the domain is the free space.

Also, the transpose of Jacobian OT is the identity matrix. Thus, by the above theorem,

the stochastic Lagrangian representation of the solution to the Oseen problem is

u = EP[A(u0 ◦A)]

where At(x) = x− Ut−Wt.

However, in case of a domain with boundary, some trajectories of the stochastic

Lagrangian flow X will leave the domain and the spatial inverse At of Xt may not exist

if we use the argument in a free space. Recently, Constantin and Iyer in [10] obtained a

stochastic representation of the the 3-dimensional incompressible Navier-Stokes equations

on a domain with boundary similar to the probabilistic representation on the free space in

[9]. One of main differences between two cases in stochastic Lagrangian formulations in [9]

and [10] is that in case of a domain with boundary the vorticity is created on the boundary

and has the influence of the fluid velocity. Comparing Constantin-Iyer’s representation to

our formula for the Stokes problem on a domain with boundary, we focus on the pressure

on the boundary rather than the vorticity on the boundary.
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5 CONCLUSIONS AND FUTURE WORK

In this thesis we, first of all, solve the Stokes problem in the absence of boundaries,

in the case of the half space, and we make some observations for general domains. In

particular, we provide the explicit formula for the boundary data of the gradient of pressure

in the Stokes problem on the half space in terms of initial and boundary data of the velocity

in the Stokes problem. Also, we construct probabilistic solutions to Stokes problems. In

addition, we give probabilistic representation of the Helmholtz-Hodge decomposition on

domains with smooth boundary as well as the free space. Moreover, we obtain probabilistic

representations of iterated Riesz transforms in terms of standard Brownian motion. Lastly,

we investigate the Neumann problem on the exterior domains as well as bounded domains

probabilistically.

The following are the principal new results in this thesis:

1. The probabilistic representation of the iterated Riesz transform in terms of standard

Brownian motion

Theorem 5.1. Suppose f ∈ C∞K . Then there exists c independent of f s.t.

RiRjf(x) = c lim
s→∞

E(0,s)
hx

∫ τ

0
Yr

∂2u

∂xi∂xj
dYr = c lim

s→∞
E(0,s)
hx

∫ τ

0
(ed+1⊗eiHej⊗ed+1·Zr)dZr

(5.1)

where H is the Hessian of the harmonic extension u of f .

2. The probabilistic representations of solutions to Neumann problems on unbounded

domains.

Proposition 5.1. Let u(x) =
∫
∂DN(x, y)f(y) dσ(y) on the exterior domain D and

f ∈ L1(∂D). Assume that ∂u
∂η |∂D = f . Then the solution u to the Neumann problem
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on the exterior domain D is given by

u(x) = − lim
t→∞

Ex
∫ t

0
f(Br

s) dLs (5.2)

where Lt is the local time process of reflecting Brownian motion Br
t on D̄ and N(x, y)

is the Neumann function with respect to Br
t .

Proposition 5.2. If u(x) =
∫
Rn−1 N(x′, y′, xn)f(y′) dy′, and the boundary data f ∈

L1(Rn−1), then

4u = 0,
∂u

∂η
|xn=0 = f

and

u(x) = − lim
t→∞

E(x0,y0)

∫ t

0
f(Br

s) dLs (5.3)

where Lt is the local time process of reflecting Brownian motion Br
t on Rn+ and

N(x′, y′) is the Neumann function of the half space Rn+1
+ .

3. The probabilistic representation of the Helmholtz-Hodge decomposition

Proposition 5.3. Let F = (F1, F2, F3) be a smooth vector field in Rn which decays

sufficiently fast at infinity and F = G+ Oφ where G = O× ψ for a scalar potential

φ and vector potential ψ. Then if vρ(x, y) =
∑3

i=0
∂uFi
∂xi

, where uFi is the harmonic

extension of Fi, i = 1, 2, 3, and ρ := O · F , then for some constant c

∂φ(x)

∂xi
= c

3∑
j=1

lim
s→∞

E(0,s)
hx

∫ τ

0
Yr

∂uFj
∂xi∂xj

dYr (5.4)

or

∂φ(x)

∂xi
= c lim

s→∞
E(0,s)
hx

∫ τ

0
Yr
∂vρ
∂xi

dYr (5.5)

4. The probabilistic representation of solution to the Stokes problem on the free space

Proposition 5.4. Let u = (u1, u2, u3) be the solution to the Stokes problem with an

initial data u0 = (u1
0, u

2
0, u

3
0) on the free space. Then if v is the harmonic extension

of u0 and vρ = O · v then for some constant c

ui(x, t) = Ex[ui0(Bt)] + cEx[ lim
s→∞

E(0,s)
hBt

[

∫ τ

0
Yr
∂vρ
∂xi

dYr]] (5.6)
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5. The Stokes problem on the half space in R3
+

Proposition 5.5. Let u be the solution to the Stokes problem on R3
+:

∂u

∂t
=

1

2
4u− Op, O · u = 0

u(x, 0) = u0(x), u|x3=0 = 0

Assume that u0(x) ∈ C1(R3
+) satisfies the compatibility conditions O · u0 = 0 and

u0|x3=0 = 0. Then h = − ∂p
∂x3
|x3=0 is given by

h(x1, x2, t) =

∫ ∞
0

∫
R2

K̃(x′ − y′, y3, t)[O
′ · (R1u

3
0 − u1

0, R2u
3
0 − u1

0)] dy′dy3 (5.7)

where u0 = (u1
0, u

2
0, u

3
0), O′ = ( ∂

∂y1
, ∂
∂y2

), R′f = (R1f,R2f) with the Riesz transform

of f Rif , i = 1, 2, and

K̃(x′, x3, t) = k(2)(x′, t)
1√
2πt

(2)(
x3

t
) exp(−x

2
3

2t
).

Moreover, a probabilistic representation of h in terms of reflecting Brownian motion

is given as

h(x′, t) = E(x′,0)[
∂g

∂y3
(Br

t )]

where g(y′, y3) = O′ · (R1u
3
0 − u1

0, R2u
3
0 − u1

0) and Br
t is reflecting Brownian motion.

Theorem 5.2. Assume that u0(x) ∈ C1(R3
+) and a ∈ C1,1(R2 × (0,∞)) satisfy the

compatibility conditions O · u0 = 0, u0|x3=0 = a|t=0, and a · η = 0. Let

h(x1, x2, t) :=

∫ ∞
0

∫
R2

K̃(x′ − y′, y3, t)[O
′ · (R1u

3
0 − u1

0, R2u
3
0 − u1

0)] dy′dy3

+4x′(R1a1 +R2a2) + 4

∫ t

0

∫
R2

(
∂

∂t
− 1

2
4′)

exp(− |x
′−y′|2
2s )

s3/2
(O′ · a′)(y′, t− s) dy′ds,

u(x, t) := {−
∫ t

0

∫
R2

[
∂

∂z3
|z3=0

∫ ∞
0

E(x, z, t′ + s) dt′]H(z, t− s) dzds+

∫
R3
+

E(x− y, t)u0(y) dy

+

∫ t

0

∫
R2

∂

∂y3
|y3=0E(x, y, t)a(y′, t− s) dy′ds
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and let p be the solution to the Neumann problem with boundary data h on the half

space R3
+. Then u and p satisfy the Stokes problem with the initial data u0 and the

boundary data a on the half space R3
+.

6. Pressure on the boundary in the Stokes problem in R3
+

Corollary 5.1. Let h = − ∂p
∂x3
|x3=0 in Theorem 5.2. Then

p(x1, x2, t) =

∫ ∞
0

∫
R2

K̃(x′ − y′, y3, t)(u
3
0 −R1u

1
0 −R2u

2
0) dy′dy3

+O′ · a′ + 4

∫ t

0

∫
R2

(
∂

∂s
− 1

2
4′)

exp−( |x
′−y′|2
2s )

s3/2
(R1a1 +R2a2)

where a′ = (a1, a2).

For the future work we have the following suggestions:

• In view of the definition of Riesz transform through the Neumann problem on the

half space, it is natural question to ask: ”What are the properties of that local

time process for Riesz transformations?”. We might want to get the explicit rep-

resentation of Riesz transform containing a local time process without the gradient

operator.

• Also, it is worth to consider the case n = 2 rather than n ≥ 3.

• As one of applications of the probabilistic representations of Neumann problem, we

can investigate the regularity of the Helmholtz-Hodge decompostion using local time

process.

• Daniel Strook and S.R.S Varadhan developed the theory of diffusion processes in

the form of their martingale problem, making the appropriate family of probability

measures on function spaces the centerpiece. So it is also interesting to formulate a

martingale problem for the Stokes problem and find the solution to the martingale
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problem, which gives us another probabilistic interpretation through a family of

probability measures on function spaces.

• When we look at the explicit formula for h in the Stokes problem on the half space

we have the conjecture that the h in a general domain D such as an exterior domain

might be obtained by two processes: one is Riesz transforms of the initial data and

then take tangential derivative of Riesz transformed initial data and the other is

Riesz transforms of boundary data and a certain differential operator of boundary

data.
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A APPENDIX Mathematical Background

In this appendix we give some preliminaries on probability theory. We will follow

some introductory textbooks, for example, [31], [2] and [7].

Definition 0.1. If Ω is a given set, then a σ-algebra F on Ω is a family F of subsets of

Ω with the following properties:

• ∅ ∈ F

• If F ∈ F then FC ∈ F , where FC = Ω \ F is the complement of F in Ω

• If A1, A2, · · · ∈ F then ∪∞i=1Ai ∈ F

The pair (Ω,F) is called a measurable space. A probability measure P on a measurable

space (Ω,F) is a function P : F → [0, 1] such that

• P (∅) = 0, P (Ω) = 1

• if A1, A2, · · · ∈ F and {Ai}∞i=1 is disjoint then

P (∪∞i=1Ai) =

∞∑
i=1

P (Ai)

The triple (Ω,F , P ) is called a probability space. Elements of F are called events. Mea-

surable functions from Ω to R are called random variables and are usually denoted X or

Y instead of f and g. The integral of X with respect to P is called the expectation of X

or the expected value of X, EX =
∫
X(ω)P (dω), and E[X;A] :=

∫
AX(ω)P (dω).

If an event F occurs with probability one, P (F ) = 1, we say ”almost surely” instead

of ”almost everywhere” and write a.s. The notation 1A, the indicator of the set A, is the

random variable that is 1 on A and 0 on the complement.

The law or distribution of X is the probability measure PX on R, given by

PX(A) = P (X ∈ A).
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Proposition 0.6. If f ≥ 0 or f is bounded,

Ef(X) =

∫
f(x)PX(dx).

Two events A, B are independent if P (A ∩ B) = P (A)P (B). A σ-algebra F is

independent of a σ-algebra G if each A ∈ F is independent of each B ∈ G. Two random

variables are independent if the σ-algebras generated by X, Y are independent. Note that

if X and Y are independent and f and g are Borel measurable functions, then f(X) and

g(Y ) are independent.

Proposition 0.7. If X,Y , and XY are integrable and X and Y are independent, then

EXY = E(X)E(Y ).

Definition 0.2. If F ⊆ G are two σ-fields and X is an integrable G measurable random

variable., the conditional expectation of X given F , written E[X|F ] is any F measurable

random variable Y such that E[Y ;A] = E[X;A] for every A ∈ F .

If Y1, Y2 are two F measurable random variables with E[Y1;A] = E[Y2;A] for all

A ∈ F , then Y1 = Y2, a.s., or conditional expectation is unique up to a.s. equivalence.

Note that limit theorems such as monotone convergence theorem and dominated conver-

gence theorem have conditional expectation versions, as do inequalities like Jensen’s and

Chebyshev’s inequalities.

Proposition 0.8. If X is integrable, then E[X|F ] exists.

A stochastic process is a collection of random variables with a parameter t {Xt}t∈T

defined on a probability space (Ω,F , P ) and assuming values in Rn for n ≥ 1. The

parameter t might be usually in the half line [0,∞), or an interval [a, b], the non-negative

integers and even subsets of Rn for n ≥ 1.

Definition 0.3. A stochastic process Xt is a one-dimensional Brownian motion started

at 0 if
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• X0 = 0 a.s.;

• for all s ≤ t, Xt−Xs is a mean zero Gaussian random variable with variance t− s;

• for all s < t, Xt −Xs is independent of σ(Xr; r ≤ s);

• with probability 1 the map t→ Xt(ω) is continuous.

where σ(Xr; r ≤ s) is the smallest σ-field with respect to which each Xr, r ≤ s, is measur-

able.

To define d-dimensional Brownian motion, let X1
t , · · · , Xd

t be independent one-

dimensional Brownian motions. Then

Xt = (X1
t , · · · , Xd

t )

is d-dimensional Brownian motion. If you want to consider Brownian motion started at

x ∈ Rd, we can get this just by looking at x+Xt. Let F = σ(Xr; r <∞). Now define P x

to be the probability measure on (Ω,F) given by

P x(Xt ∈ A) = P (x+ Zt ∈ A), x ∈ Rd, A ∈ F

where Zt is d-dimensional Brownian motion as defined above.

We next define stopping times. Suppose we have a stochastic process Xt and a

filtration Ft, which is an increasing collection of σ-fields. We suppose each Ft is right

continuous (i.e., Ft = Ft+ for each t, where Ft+ = ∩ε>0Ft+ε). We also suppose that Xt is

adapted to Ft: for each t, Xt is Ft measurable.

Definition 0.4. A random mapping T from Ω to [0,∞) is called a stopping time if for

each t, (T < t) ∈ Ft.

Proposition 0.9. (a) T is a stopping time if and only if (T ≤ t) ∈ Ft for all t.

(b) Fixed times t are stopping times.
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(c) If S and T are stopping times, then so are S ∧ T and S ∨ T .

(d) If Tn is a nondecreasing sequence of stopping times, then so is T = supn Tn.

(e) If Tn is a nonincreasing sequence of stopping times, then so is T = infn Tn.

(f) If S is a stopping time, then so is S + T .

Stopping times we are interested in are the first times that Xt hits a set A. Let

TA = inf t > 0 : Xt ∈ A

τA = inf t > 0 : Xt /∈ A.

Proposition 0.10. (a) If A is an open set, then TA is a stopping time.

(b) If A is a closed set, then TA is a stopping time.

Proposition 0.11. P x(Xτ(B(x,r)) ∈ dy) is normalized surface measure on ∂B(x, r) where

B(x, r) is the ball centered at x with radius r.

If follows that if f is a function defined on the boundary of B(x, r), then

Exf(Xτ(B(x,r))) =

∫
∂B(x,r)

f(y)σ(dy),

where σ is normalized surface measure on the boundary of B(x, r).

We consider martingales. Let Fn be an increasing sequence of σ-fields. A sequence

of random variables Mn is adapted to Fn if for each n, Mn is Fn measurable. Similarly a

collection of random variables Mt is adapted to Ft if for each t, Mt is Ft measurable. We

assume that the filtration Ft is right continuous and complete (i.e., Ft contains all P -null

sets).

Definition 0.5. Mn is martingale if Mn is adapted to mathcalFn, Mn is integrable for

all n, and

E[Mn|Fn−1] = Mn−1, a.s., n = 2, 3, · · · .

Similarly, Mt is martingale if Mt is adapted to mathcalFt, Mt is integrable for all t, and

E[Mt|Fs] = Ms, a.s., ifs ≤ t.



90

If Mt is Brownian motion, then it is a martingale using independent increments.

By the definition of martingale and induction EMn = EM0. One of important theorems

in probability theory is Doob’s optional stopping time, which says that the same is true

if we replace n by a stopping time N . There are various versions, depending on what

conditions one puts on the stopping times. We will give a version of discrete martingales.

Theorem 0.3. If N is a bounded stopping time with respect to Fn and Mn a martingale,

then EMn = EM0.

The first interesting consequences of the optional stopping theorems are Doob’s

inequalities. If Mt and Mn are martingales, denote M∗t = sups≤t |Ms|, and similarly M∗n.

Theorem 0.4.

P (M∗n ≥ a) ≤ E|Mn|/a

Theorem 0.5. If p > 1, there exists c depending only on p such that

E(M∗n)p ≤ cE|Mn|p.

The same results hold for Mt if Mt is a martingale or positive submartingale with

right continuous paths.

The martingale convergence theorems are another set of important consequences of

optional stopping. The main step is the upcrossing lemma. The number of upcrossings of

an interval [a, b] is the number of times a process crosses from below a to above b.

Theorem 0.6. If Xt is a submartingale such that supn EX+
n <∞, then Xt converges a.s.

as n→∞.

The Doob-Meyer decomposition says that , under mild hypotheses, a supermartin-

gale can be decomposed into a martingale minus an increasing process. If Mt is a continu-

ous square integrable martingale, then M2
t is a submartingale and −M2

t is a supermartin-

gale. By the Doob-Meyer decomposition there exists a continuous increasing process,
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denoted < M >t, the quadratic variation of M , such that M2
t − < M >t is a martingale.

If we have two martingales M , N , we define < M,N >t by polarization:

< M,N >t=
1

2
(< M +N >t − < M >t − < N >t).

The most important fact about stochastic integration is the change of variables

formula or Itôs formula.

Theorem 0.7. Let Xt ba a semimartingale with continuous paths. Suppose f ∈ C2. Then

with probability one we have

f(Xt) = f(X0) +

∫ t

0
f ′(Xs) dXs +

1

2

∫ t

0
f ′′(Xs) d < X >s, t ≥ 0.




