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Un the Sim1ifìcation of I3oolean o1ynomia1s 

1s a result of Shannon's application of Bc'olean 

algebra to relay and switching circuits (6,p.713-723) the 

problem of simplifying Boolean polynomials has become 

important in that branch of engineering which dels with 

the design of such circuits. The prob1e has both com- 

mercial and technical significance, for in simplifying 

the representation of a given Boolean polynomial, the 

designer is able to reduce the number of components which 

occur in the corresponding logical circuit. 

In a practical sense the hroblern is not solved. In- 

deed, if the number of indeendent variables is even 

moderate, for example, if the function is defined on ten 

independent variables, the tme recuired for a modern high 

Speed d.lgitol computer to determine a simplest reresenta- 

tion is prohibitive. (2,p.210-212) 

In the following pages, we first construct a rdel of 

a finite Boolean alyera of n indepeìdent variables. 

then define the problem in terms of the model. .e develop 

an algorithm which in theory will solve the problem. From 

the derivation of this algorithm we obtain methods which, 

for certain types of functions, lead to efficient solu- 

tions. In addition to giving a theoretical solution to the 

problem, the paper will reveal those difficulties which 

give explanation for the fact that, in the practical sense, 

the problem remains unsolved. 
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Our first goal is to construct a model of a finite 

Boolean algebra, of n inde, endent vriables. 

Definition 1. Let S denote the set whose elements are 

1, and O, where i and O are real numbers. 

efinition 2. We define two binary oeritions, + and 

, and one unary operation on S: 

+ s 

oj i lO 1 l'=O 
o o44 oJo o o'=i 
i ijij ib i 

S, along with the operations of Definition 2, is a boolean 

a 1g e bra. 

Definition 3. For each osit ive inteyer n, define a 

by n matrix as follows: 

D =(O 

Having defined D. define by: 

Dn+l = (e D\ 
where e is a by 1 column 

\I D0)' 

matrix, each element of which is O, and here I is a 

2 by 1 column ma+rix, each element of which is 1. 

Definition 4. For each positive integer n, let Dn 

denote that set whose elements are the row n-tupies of the 

matrix D. Let denote that class of functions f, 

such that is defined on 
, 

and f maps f into S. 



Lemma 1. 

Let A be any set of cardinality K, where K is 

any natural number. Let F denote that class of func- 

tions g, such that g mps A into S. Then the 

cardinality of F is 

Proof: For n 1, there are two admnis';ible functirns 

which map a singleton into S. If a is the element of 

the singleton, the two functions are a -+ O, and 

a -j 1. isume the proposition true for the natural 

number K. Let A be any set of cardinality K + 1, 

say A = l, 2, ... K, K + 1). For each function g 

defined on l, 2, ... K}, which maps .l, 2, ... K} 

into S, there correspond exactly two functions, h, 

and t, which map A into S. They are defined by: 

h(j) = g(i) if 1 < i < K + i 
h(K + 1) = O 

t j) = g(j) if i < j < K + i 
t K + i) = 1 

by the induction hypothesis there are such functions 

g, defined on l, 2, ... K}. Hence there are 

2 2K-fi 
functions defined on A which map A 

into S. 

Lemma 2. 

(2h1\ The cardinaity of B is 2 '. 

Proof: By induction, it follows that no t'\o rows of the 
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riatrix D are ide-tica1, Hence the cardinality of 

is Iy IJefinitirn 4, and Lemma 1, the cardinality of 
.- (2e) 
B is 2 

.LUflition . define two binary operations, +, and 

I. and a unary oeration ' on 

For each f and g in 8rì we define f + g by 

f + g (i;) = f (P) + g (P), for each P in 

.e define f g by f g (p) f (P) . g (P) for each ps 
e define f' by f' (p) = [f (p)]s for each P in 

n and f in 

Gominent; along with the operations of Definition 5, 

is a Boo1en algebra. The elements of are functions 

f whose e1ecìents are ordered pairs of the form (P, a), 

where P is a row of and here a is an element 

of S. Let us agree to the following convention: we 

number the rows of the matrix in the usual manner: 

, where each is a i by 

n row 
P 

To represent a function f in 
, 

we use the by 
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column matrix 

f(P1) 

. 

Definition 6. Let i be an integer, i < i < n. Ïhe 

independent variable X is that function of which 

for each P in 
, 

maps P onto the 
1th coordinate 

of P. Hence, by the above convention, the independent 

variable X corresponds to the th column of the matrix 

Un 

Definition 7. literal is a symbol X or X 

1 i n. 

Note that a literal always denotes a function in but 

not every representation of a function which admits a 

literal representation is a literal. For examle, X1 

is a literal. The function X1 is trie function X1 + X1. 

That is X1 = X1 + X, but the syboi X1 + X1 is not a 

literal. 

Definition 8. í clause is a symbol of the form 

k 

where 
i=l i 



i) 1<sn. 
2) y5 is a iiteri1 

3) 
ys = 

if and :y if i j. 
i i 

4) The roduct y Y Y5 does not 
i 2 k 

represent the zero e1eent in . 

Note that a clause de'otes a function in but not 

every representation of a function which can be rejresented 

by a clause is a clause. For example, X1X2' is a C ause. 

Further, the function X1X2' is the functi'n 

y ly + V V V 
l"2 ¿3 "l"2 A3 

but the symbol 

x1x2'x3 + x1x2'x3' 

is not a clause. 
k 

The dimension of the clause il y5 is the integer k. 
i=l i 

Theorem 1. 
In 

Let 11 y be a clause of dimension in, and 
1=1 i 

let f denote the functi'-'n in which is represented 

by this cause. hen there are exactly 2m elements 

P of such that f(P) = 1. 
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In order to prove the theorem, we need the following 

definition: 

We define the roduct set by induction. 

S1 = O, i }, (q,a) jq c a S } 

by induction, the cardinality of is since no 

two rows of the matrix are identical, it follows 

that 

Proof of Theorem 1. An ele:ent P of is mapped onto 

1 by f if aid only if: 

1) The 
51th coordinate of P j& i jf y5 is 

I 

X or 
2. 

2) The 
51th coordinate of P is O if y is 

V t 

s. 
3. 

With these m coordinates deterined, there are n - m 

coordinates nf P which are not determined. The car- 

. . -.0-rn . n-m n-m 
dinality of the product set S iS 2 But 

is in i - i correspondence with the set generated by 

holding fixed the m coordinates, and allowi'g the re- 

maining to take on ail possible values in S. ence, there 

are exactly 
2m 

elements in which have the m 

determined coordinates. These, and only these, are 

mapped onto 1 by f. 
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Corollry 1-l. Let i y. be a cLuse of dimension 
i=l - 

n, and let f be the function in B re;resented by 

the c1use. Then there is one and only one P in 

such that f (k ) 1. Conversely, let U. Then there 

is one and only one clause of dimension n, such that 

the function f represented by this ctause maps onto 

1. 

Proof, The first part of tne frroposition follows 

immediately from Theorem 1. Let P be a given element 

'-. 
n 

of U Crnstruct a clause J y of dimension n as 
i=l 

follows: 

if the 
th 

coordinate of P is 1, let y be 

xi. If the 
1th 

coordinate of 1 is O, let y be 

xi. . The function represented by the clause maps P onto 

1. No other clause of dimension n can represent a func- 
n 

tion which maps P onto 1. For let H z1 be any 
1=1 

n 

clause of dimension n. Write the clause ii y In the 
i=l 

n 

form 
' ... y , and w.rite II z as 

n 
i=l 

z1 z2 ..... z. uppose the two clauses differ in 

the 
th 

factor. Then either 

y = x and z x3 or y, x and z, = x. 
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In the first case, the 
th 

coordinate of i- must be 1; 

and jr the second case, the jtfl 
coordinate of i- must be 

o. In either event, the function represented by the clause 
n 

n . does not map P onto 1. That is, P uniquely 
i=1 

n 
determines the factors of II y1. 

i= 1 

Corollary :L:2' Let f be an element of such 

that f is not the zero element. Then f uniquely de- 

termines a nen-empty set of clauses, each clause of dirnen- 

Sinn n, such that the sum of these clauses represents f. 

Proof: Consider the by i column rnatrix which re- 

th presents f in Bns If 1 apears in the i row of 

this matrix, there is a unique clause of di ension n which 

maps P1, the 
1th row of D onto 1. This follows im- 

mediately from Cerollary 1-l. The sum of these clauses 

represents the function f. Wo clause ('f dimension n can 

be added to the collection of these clauses, for if one is 

added, then the sum of the clauses will represent a column 

matrix which for some row will have a i while O appears 

in that row of the matrix corresponding to f. No clause 

can be removed from the collection, since if one is re- 

moved, the sum of the renaming clauses vil1 represent a 

column matrix which for some row has O, while i appears 

in the corresponding row of the f-matrix. 

Definition 9. Let f e g. Lie rank of f, p(f), 

is the number of occurrences of 1 in the corresponding 
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f - matrix. 

Corollary l-2 provides a canonical form for each 

non-zero element of B. That is, if f is an element of 

with rank j, + O, then f can be unicuely, up to 

the order of addition among the clauses, and up to the 

order of the factors of each clause, reresented by the 

sum of j clauses, each clause of dimension n. 

Definition 10. Let f c 
, 

and assume that f can be 

represented as a sum of clauses, not necessarily all of the 

same dimension, where no clause appears more than once in 

the representation. This representation of f is called 

a normal formula. 

For example, a normal formula of the functirn X1 + iS 

X1 + Xj X2, as well as X1 + X2 itself. 

Comment: Every non-zero element of B has at least one 

representation which is a noral formula, This follows 

immediately from Corollary l-2. 

Le are nov in a position to define the implification 

pr o b i em. 

Definition 11. Let f be a non-zero elemnt of Let 

, denote the c1ass of normal formulas which represent f. 

Ccrreponding to eaci uleinent 4 of 'i-i, there is an 

integer oLt), where o(4í) is the sum of the number of 

occurrences of the oeratien. + in the reresentation '4í, 

and the number of occurrences of the operation . in the 
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representation 4i-. The nörmal formula 4 is a simplest 

normal representatir'n of tLe function f if and oniy if 

for every , 
g, °'' 

Example: Let f = X1 X2 + X1 . X + X X and let 

denote the representation X1X2 + X1X + 

Another representation of f is X1 X2 + X X. Lie- 

note this representition by *'2 hen = 5 and 

O(2) = We are not yet in a position to assert that 

is a simplest representtion of f, but it is clearly 

simpler than 

Nove the simplification problem c&n be stated in this 

manner: 

Given a function f in 
, 

such that f is riot the 

zero element, and such that f is not the identity ele- 

ment, determine the class of nori4al reresentations S, 

such that r if and only if 'r is a sicn1est nor- 

mal representation of f. 

Comment: The set § is non-void. k-or let denote the 

class of normal formulas which represent f, and let 

E = to(*) i 
c 

By Corollary 1-2, is non-empty. Hence ' is non-emp- 

ty. By Definition 11, E is bo nded below by O. ince 

is well ordered, it follows that ' contains a least 

number, m. That is, there is at least one element 

in , such that OL(a) = m. ence 
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e will now develop an algorithm wiCh generates au. 

sim1est normal representations of a function in 

Definition 12. Let f be a given function in and 

let '4í be a nornal representation of f. A clause p of 

is superfluous if the formula obtained by the 

deletion of p from r also represents the function f. 

A literal Yj f a clause E of 4í is su:erfluous with 

respect to f, if the formula obtained from by the 

deletion of y from also represents the functi'n 

f. The normal formula is irredundant if it has no 

superfluous clauses and 'none of its clauses has super- 

flunus literais. 

txam;le: Let f = X1X2 + X1X + The representation 

X1X2 + X1X + is not irredundant since the clause 

X1X is superfluous. 

Lxample Let f X1X2 + X1XX3 -f X X X . The repre- 

sentation X1X2 + X1XX3 + XfXX is n't irredudant 

since the literal X of the clause X1XX3 is suer- 

fluous. It is a simple matter to verify these statements 

with the ;.achinery which we have already developed. 

Now given a function f in f it might be reason- 

able tr' suppose that an irredu-'dant formula which repre- 

sents the function would be a simplest normal 

representation. This hwever, is n, t so. 
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Exam11e: Let f X1X + XjX2 + X2X + XX3 . The repre- 

setation X1X + XjX2 + X2X s- XX3 is irredundant. 

There are however two simpler representations: 

f = xlx + x>:3 + x2x 

f = xix2 + xix + xx3 

(wine (5, io159,p.521-531) has established a nec- 

cessary condition that a norna for. ula must satisfy if 

it is to be a simples+ normal represetatirn of a given 

function. e now state and xrnve (uine's condition of 

necessity. 

Definition 13. Let f and g be functios in 
s 

Let 

k; be that subset of í5 consisting of all P such that 
f(j)) = 1. Let G be that subset of consisting of 

all P such that g(P) 1. The function f is said to 

the function g if and only if F C G. 

Lemma 3. 

Let f = p y + í where 4 represetts some function 

in p is a clause, and y1 is a literal. Thén 

f = p + 4, if in only if p iín1ies y1 + 4,. 

Proof: Let F P e í 
J [ y1 - '1 (P.j = i} 

G= .PC Lin I [p+4,] (P) = 1} 

Let g = + 4,. Now f = g if and only if f(P) = g(P) 

for all P in 
. 

That is, f = g if and only if F = G. 
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will sho that F G if and only if cp implies 

Yj + 4r. 

First, suppnse p implies y + . Lt P C G. 

Then either cp(P) 1, or (inclusive), 4'(1) 1. if 

jí(P) = 1, then P e F. If '41.(P) = O, then p(k) 1. 

But q' implies y + 4í and '4í(r) O. Therefore 

y1 (P) = 1, q y (p) = i, ard P e F. Hence, if cp 

implies y + 4, then G CF. Let P F. Then either 

, Yj () = 1 in which case p (ii = 1 and P e G , or 

(inclusive), (P) 1 and P £G. Hence F C G. Thus 

if q im1ies y + 'Jj, then F G. Next, suppose F G 

Let cp ([s) 1. Then P e G and hence £ c F. But 

since P F, either cp y1 (P) 1, in which event 

y1 = 1 or, (inclusive), (i = 1, and in any event, 

q? implies q' y1 + 'd1. Therefore p y + c + lj if 

arid only if cp implies y + '4r. 

The above lemma prvides a test which determiries if 

a lite-a1 is superfluous in a clause of a given represen- 

tation. 

Definition 14, Let cp and be clauses. p is said 

to subsume if every literal whicL apears in also 

appears in p. 

kxamp1e: The clause X1X2 subsumes the clause X1. 

The clause X1X2 subsutes the clause X2. 

Definition 15. Let f be a function in g. Let p 
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be a c1ause. he clause q is a prime implicant of f if 
i) cp implies f and 

2) cp subsues no clauee of s atler di;nnsin than 
. P which also implies f. 

Theorem . ((uine's result) 
Let f be a function in f 4 , where is 

the zero e1eent in 
, Let j, denote a sirnlest rornta1 

representution of f. Then each clause which appears in 

'( is a prime implicant of f. 
Proof: Suppose one clause which apears in 4r is not a 

prime implicant of f. denote this clause by p. Denote 

the representation by cp + where is the for- 
mula obtained by the deletirn of p from 4s. Now every 

clause of r implies f. I- particular, q implies f. 
;ince p is not a ri.e implicant rf f, p subsumes a 

clause cp1 of sma1ler dimensir'n which also implies f. 
The'e is at least one literal y1 hich apj.ears in p and 

which does not appear in cpi. drite f = P2 

where p2 is the cause obtained by the deletion of y 

from p. tither p2 is or 2 subsumes cp and 

in either event, c2 implies p. Uut q implies f. 
Now implication as defined in Definition 13 is clearly 
transiti'e. Hence 

2 implies f. That is, p2 implies 

p2 "1 + 
by Leia 3, f = p2 + i. but 

+ d ° 2 y. + = o(4r), which contradicts the 
fact that fr is a simplest representation of f. This 
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contradiction establishes the theorem. 

Let S de»ote tnat representation consisting of 

the sum of all prime iínplicants of f. The representation 

s is called (uine's canonical form of the function f. 
It is clear that S represents f. For surely S implies 

f. But we have shown that f has at least one simplest 

representaticn r. Nov f implies 4r, and by Theorem 2, 

'( implies S. }ence f implies and imlies f. 
erefore S represents f. Note that is not neces- 

sarily a sirplest representation of f. o.ever, any 

simplest representation of f must cnnsist of a sum of 

clauses, each of which appears in i. 

Let K be any integer, where O ( K < fl. Ve will 

determine the number of clauses of diíiension K. 

Lemma 4. 

Let X1, X2, ..., X, be a 5eciuence of literals. 
Then exactly 2 clauses of dimension j can be yenerated 

by the literals X1, X2, ..., X, Xj, X ... X 

i-rof: If j = 1, there are exactly 2 admissible 

ciauses of diiension i w ich can be generated by the lite- 
rais X1 and Xj . They are X1 and X. Assume the 

propositinn holds for j. 1hen corresponding to each 

clause (y1 y2 ... y) which can be generated by the 

literais X1, X2, ..., X,. X1 X' ... X, there are 
2 3 
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exactly two clauses which cari be generated from the 

literais X1, X2, ... X,, X,j.,1, Ai' ... X3. X3.,1. 

ley are: (y1 y2 ... v4)x1 and (y1 y2 .. Yj)À3+1s 

By the induction hypothesis there are exactly 2' 

distinct clauses (y1 y2 ... y.). Therefore, there are 

exactly 2 . 2 = 
2j-Fl 

distinct clauses which can be 

generated by the literais 

'I V V V V? Vt V vi 
"2' ' "j' "j+l' "i' '2 '' "j' "j+l' 

Lemma 5. 

Let K be any integer where O < K < n. There are 

K exactly 2 (K) clauses of dimension K which represent 

functions in 

Proof: Consider the set X1, X2, ... X}. There are 

exactly (K) distinct sets X ... X5 J, each such 
1 

s2 
k 

set consisting of exactly K of the letters 

X, X2 ... X. By Lewrna 4, exactly clauses of 

dimension K can be generated from each set 

Xs Xs Xs J 
U , X ...X J. 

1 2 k 1 2 k 

Every clause of dimension K is generated in this pro- 

cess. Hence there are exactly 2 (K) clauses of dimen- 

sion K. 

Lemma 6. 

There are exactly 3n 
- 1 clauses which represent 
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functic'ns in 

i-Proof: Let deote the total number of clauses which 

represent functirns in í By Lemma 5, 

: = () + 
2n-1 

Çni)+ ... 21 () 
B ut 

3n 
(2 + 

1)fl 
i. Hence i = ¶' 

Let f C 
, 

f 4 . Let Q denote the set of prime 

impl cants of f. ( is clearly finite since the total 

number (f clauses wich re,resent functions in is 

finite. Once the set Q is determined, in theory it is 

a simple matter to determine the set of simplest represen- 

tations of f. For suppose ( = p1. ç2, m e 

next consider the class PL ) of all non-empty subsets 

of Q. P(Q) is just the power set of Q 'ithout the 

void set and therefore has cardinality 
2m 

1. te sum 

over each element of P(Q) to obtain 
2m 

representa- 

tirn, each of which implies f. We form the set 

Consisting of those representatinns of the 2m 

representationç wLich are im lied by f. Again, 
In 

is non-ema.ty since ' is an element of S' il 
Next, we determine the set : C = [o(r) I 

Again, is non-empty, and has a least element r 
The set = ' I o() = r} is the set of all 
simplest representations of f. 
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Given a representat1cn 4c of a function f in 

in theory it is a simple matter to determine the rime im- 

plicants of f. To do so, we need only follow the steps 

outlined below. 

step 1. ener e the atrix D. For each 

clause y of dimension 1, compute and save the 

corresponding y-matrix. From the forr.ula í, 

compute the f-matrix. 
Step 2. For eac.. clause y of dimension 1, 

compare the y-rnatrix to the f-matri.x. y implies 

f if and only if for every row of the y-matrix 

in which 1 appears, i also appears in the cor- 
respordiny row of the f-matrix. Tue clauses rf 
dimension i which imply f are the prime 1mph- 

cants of dimension 1. 

Step 3. Having determi'ìed the prime 1mph- 

cants of dimension K, consider all the clauses 
of dimersion K + h. Lor each clause b of dimen- 

sinn K + 1, compute and save the correspondi-"g 

b-matrix. (It is possible trat the b-matrix of 

a clause of dinension K + i might be conputed at 
Step i when the f-matrix is determined. In tJs 
event, there is no need to compute it again here.) 
i..himinate from consideration each clause of dLen- 
sion K + i v.hich subsu.es any clause of 
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dimension less than 1< + 1, if implies f. 

Again, ; implies f if and only if for every row 

of the -mairix in which 1 appears, 1 also 

appears in the corresponding row of the f-matrix. 

Those, and only those remainirg clauses p of 

diension K + i which imply f are the prime 

imlicants of diíiension K + 1. 

Stcp 4. If the clauses of dimension ri 

have riot been subjected to the rocess, rejeat 

itep 3. If the clauses of dimension n have been 

subjected to the rocess, terminate the algorithm. 

The clause so determined are the prime impicants 

of f. 

Example 1: Let n = 3, and consider the function 

f = XX + + XX + XX3. V.e will determine the prime 

implicants of f. By Definition 3 we have: 

D1 = O , D2 = O O and D3 = O O O 
1 01 001 

10 010 
11 011 

100 
101 
110 
ill 

Here we omit the parentheses of the matrices for nota- 

tional convenience. 
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By Definition 6 we have: 

X10 , X20 , and X0 
o U I 

0 1 0 

o i i 

1 0 0 

£ 

i i o 

1 i i 

By Definitirn 5 we have: 

X=i, X=1, and Xl 
1 1 o 

i o i 

1 0 0 

0 1 1 

o 1 0 

o o i 

o o o 

Again, by Definition 5, 

XX'=O 12 i = 0, X1X =1 0 = O 
o i o i o o 

o o o i i i 

0.0 0 1 1 1 

i 1 1 0.0 0 
1 1 i o o o 

i o o o i o 

i o o o i. o 

X2X = O i = O , and XX3 = i O = O 

o o o i i i 

i i i o o o 

i 0 0 0 1 0 

0.1 0 10 O 

o o o 1 1 1 

1 1 1 0 0 0 

i o o o i O 

Note that these mu1tip1icaticns resemble the "logical and" 

instruction whic is founa ori most digital computers. 

Again, by Definition 5, 
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xx' +x'x +xx' +xx =0 12 12 23 3 
i- O + O + O = O = f 

, 

o o i i 

o i i o i 

o i o o i 

i o o o i 

i o o i i 

o o i o i 

o o o o o 

Note that these additions resemble the "logical or" 

instruction which is found on most digital computers. 

We have now completed Step i of the algorithm. 

According to step 2, we must row dei -rmine all clauses 

of dimension i which imply the functirn f. For con- 

venience of comparison, we vrite the fol1owig table: 

TABLE 1. 

X V V 
i "2 "3 x 

1 
X' 
2 

X' 
3 

f 

o o o i i i o 
o o i i 1 0 1 
o i o i o i 1 

o 1 1 1 0 0 1 

1 0 0 0 1 1 1 

1 o i o i o i 
i i o o o i i 
i i i o o o o 

We find that no clause of dimension i implies f; 

X1, X2, and X3 are e1rinate by the occurrence of O 

in row 8 of the f-matrix; Xj. X, and X are elimi- 

nated by the occurrence of O in row i of the f-matrix. 

Hence, no prime implicant of f is of dimension i. 

According to Step 3, we must first generate ail 

clauses of dimension 2. by Lemma 5, there are exactly 
(3' 

2'2)= 12 such clauses. Note that Lemmas 4 and 5 
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give constructive prnofs; tey describe how these 

clauses can be generated. 

According to Lemma 5, we deterrn ne all subsets of 

cardinality two of the set X1, X2, x3J. These are 

¿x1, x2}, .X1, X3} and x2, x3}. 

According to Lemiria 4, from each of these three sets we 

generate 22 = 4 clauses of dimension 2. For example, 

from the set x1, x}, we generate the clauses: 

Xl 

X1 
2 

Vt V 
"1 "2 
V, VI 
"1 "2 

Similarly, from tX1, x3J we generate 

generate 

Xl X 

X1 
vi y 
"1 "3 
Xi X 

, and from X3} we 

s 

According to Lemma 5, these are all the clauses of 

dimensinn 2. Next , we compute for each clause of dimen- 

sinn 2, its corresponding matrix. Of curse we have done 

this for the clauses X1X, XjX2, XX , and XX3. he 
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compute the refraining ma4 rices and for convenience of 

comparison, we write TABLE 2. 

Next, we must eliminate from consideration all 

clauses of dimension 2 which subsume any clause of 

dimension 1, if implies f. But, in this example, 

there is no clause of dimension i which implies f. There- 

fore, we must consider all clauses of dimension 2 which 

imply f. 

TABLE 2 

X1X2 X1X XX2 XjX f 

o o 0 1 0 
o o o i i 

O 
o 

O 
o 

i 

1 

o i 

0 1 

o 1 0 0 1 

o i 0 0 1 

i o o o i 

1 0 0 0 0 

V V V '1 VV 
/'l"3 

\'tVt 

o 0 0 1 0 
o o i 0 1 

o o o 1 1 

O O 1 0 1 

o 
i 

1 

o 
0 

o 
0 1 

o i 

o i 0 0 1 

1 0 0 0 0 

x2x3 x2X XX XX f 

O 
O 

O 
o 

O 

i 

i O 
0 1 

o 

1 

i 

0 
o 

0 
o i 

0 1 

o 

o 

O 
0 

0 
i 

1 1 

0 1 

0 

1 

i 

0 
0 

0 
0 1 

0 0 
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From TABLE 2 we imn.ediately determine all clauses 

of dimeflsion 2 which im1y f. Tey are: X1X, XjX2, 

XlX:, XjX3, X2X2, and XX3. These and only tnese are 

the prime imjUcants of dimension 2. Note that: We 

found that no clause of dicrension i imjlies f. From 

this v.e could ave im. ediately cnc1.uded, without fur- 

ther use of the a1goritm, that the given clauses were 

prime impi cants of f. For the given c lauses, X1X, 

xix2, x2x, and XX3, are all of dimension 2, and clearly 

no given clause can subsume a clause of dimension i 

which implies f, the latter set being em-ty. But in 

addition tothe given clauses, the algorithm has gene- 

rated other prime lin, licants of dimension 2, namiy, 

x1x.; and xx3. 

Conclusion: Once enough prime irnjlicants have been 

determined t recover the function, it does 'ot neces- 

sari follow that il of the prime implicants have been 

determined. In what follovis, when we refine the algo- 

rithm, we will prove a theorem whicL is concerned with 

this fact. 

At present however, we can not terminate the dlgorithm. 

Hnce we proceed vith step 4. According to Step 4, we 

we return to step 3. At this ,Mint, the index K of step 

3 has the value 2. ETence e must consider all clauses of 

dimension 3. According to Lemma 5, we consider the set 



x1, x2, x3}. According to Lecitina 'Ne consider, say, 

the clauses 

xix: 

From these e yenerate eight clauses: 

xl x X3 

i X2 X3 
V, V V 
"1 "2 "3 
V, Vt V 
"1 "2 "3 
V V Vt 
"1 "2 "3 
V Vt vt 
"1 "2 "3 
Vt V vi 
"1 "2 "3 
V' vt 'it 

1 "2 3 

According to Lemma 5, these are all the clauses of dimen- 

sirn 3 in . According to Step 3, we compute the fol- 

lowing matrices: 

TABLE 3 

xtxtx' 123 xtxIx 123 XX X' 123 X'X X 123 X XiVT 12"3 X X'X 123 X X X' 123 X X X 123 
i o o o o o o o 

o i o o f) O O O 

O O i o u O O O 
O O O i O O O O 
o o o o i o o o 
o o o o o i O O 

O O O O O O i O 

O O O O O O 0 1 

e novi eliminate each clause of di.ensi n 3 w:.ich subsumes 

any clause of dimension 1 if imlies f. But, 

as 'e have seen, no clause of dimension i icn1ies f, 
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and therefore we are 'eft wit! 11 eight clauses of 

dirrer'sion 3 Next, we eliminate each clause of dirnen- 

siort 3 which subsumes any clause t of dimension 2 if 
implies f. N.w we have already determined the clauses 

of dimension 2 which imply f. They are: X1X, 

X1X, X2X, and XX3. uf cnurse, in t::is articular 
example, the clauses of dimension 2 which imply f are 
the prime imp icants of dic.tension 2. However, in general, 
this villi not be true. e write the following table: 

TABLE 4 

Clauses of Dimension Three Clauses of uimension less 
Than Three .hich Imply f 

> X3 Xi 

l2 3 12 
V, V V V vt "l"3 
x'x'x 123 X'X 13 
V " 

1 
V 
"2 

Vt 1'3 V Vt 
2 13 

V "1"2"3 Vt Vt V V "2"3 y? 
"1 

y 
"2 

vi 
"3 y' 

"1 
vi 
"2 3 

From TAHLE 4 we see that the following clauses of dimen- 

sion 3 subsu;e clauses of dLensjon less than three which 

imply f: 
xl x x3 
xi X2 X3 

Xi X X3 

Xi X2 X 

X. X X 

i X2 
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Hence we eliwinate these from further consideratin. e 

are left with two clauses: X1 X2 X3, and Xf X X.. 

we write the following table for cnnvenince: 

', X X, '' X' Al 2"3 l'2 3 

o i o 

o o i 

o o i 

o o i 

o o 1 

o o i 

o o i 

i o o 

immediately see that the two remaining clauses do not 

impiy f, and according to Step 4 we terminate the pro- 

cess: ece the brime implìcants of f are: X1X, 

Xix2, Xjx, XX3. X2X: ad XX3. 

The a1goritcn as developed at ths point is complete. 

ihat is, we have developed sufficient machinery to exe- 

cute the four basic steps and generate the priie impli- 

cants of a gven function. However, as Example i 

illustrates, the algorithm is not particularly efficient. 

Therefore we vill next prove some tneorems whch will 

increase its efficiency. 

The followin, Lemma :ake it possible to by-pass tÁe 

recursive definition in the generaticn of D0. 

Lemma 7. 

th . 

The K column of the iatrix D0 can oe partitioned 

into 
2K 2n-K 

by 1 sub-atrices L1, where i is the 

row index, such that if i is odd, eaci'i elef ent of 
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is O, arid if i is even, eacn element of is 1. 

Proof: (O'\ 

D1 =ij' and the proposition holds for n = 1. 

Assume the proposition holds for D!, and consider Dn.fl 
By Definition 3, 

D1 = 
( .ere 

o is a 2 by i column matrix and I is a by 

i column matrix, Iherefore the proposition is true for 

column i of 

If i < K fl + 1, then the Kth column of 

is the K1 colun of (D . By the induction hypothesis, 

the K-1 column of Dn can be written as: 

2 

-1 

where each is a 2nl by i :.atrix sucn that if 
i is odd, each ele.ent of is O, and if i is 
even, each element of is i. Therefore the K1 
column of ( D \ can be written as 

)\ n 
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(.21 

. 

. 

-1 

L2 

-1 

This is the Kth celurnn of There are 2.21 
partitions of this matrix, and each sub-matrix has 

2+1) elements. Further, each element of the sub- 

matrix with rovi index i is O if i is odd, and 1 if 

i is even. This establishes the proposition. 

Let 
4, denote a normal representation of a function 

f in I3 The reresontation 
4, 

is called a develod 

normal forru1a if for each literal Yj which occurs in 

one clause of the rejresentation, the literal y or 

the literal y occurs in every clause of the representa- 

tion. Tnat is, for eacH letter w'icn nccurs in one clause 

of the represertation, we require that the letter oc.ur 

in every clause of the reresentation. For example, 

X1X2 + XX is a developed nora1 fr.uia. lt folows 

immediately from Corollary 1-2, that every function 

f e f + , has at least one developed noral 
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formula. 

ovJ one advantage of our algorithm is that ve are 

not required to start with a developed normal formula. 

Indeed, the method f the }ast exam1e is completely 

general, in the sense that 
fr 

need not even be a normal 

formula, for given any representation of the function f, 

we can deterrnie the corresponding f-matrix by the methods 

of te last example. But for this generality we ay the 

price of computing the matrix of each literal wh_ch ap- 

pears in 4t, in order to co.bine the matrices accnrding 

to and thereby determine t e ..atrix of t e Luction 

which 4v represents. Nov.' suppose that is, in fact, 

a normal formula. Vie do not assume '4, to be developed, 

we just assume that 4i is normal. Is there a more ef- 

ficient way to determine the airix of the function which 

\11 represents? 

Suppose (y 
. . . 

Y is a clause of r. 

i 2 j 

By Theorem 1, there are oactly rows of D which 

are aapped onto 1 by the function in represented by 

the clause y5 y . . . y5 . Hence there are exactly 12 j 

rows of the atrix of that function in which 1 

appears, and the row number of each such row can be 

determined by the matrix l). For example, consider 

the clause X1X w ich represents a function f in 83. 
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xl X2 X3 

1 000 
2 001 
3 010 
4 011 
5 100 
6 101 
7 110 
8 111 

The two ro\s of D3 which are aed onto 1 by X1X 

are row 5 arid row 7. Henìce i appears only in rows 5 and 

7 of the f-matrix arid we have 

f=0 
o 

o 

O 

1 

o 

1 

o 

Therefore, if we are given 4í as a normal foríndia, we 

can determine the matrix of the correspnndincj functirn 

in without computing the individual marrices of the 

clauses of . For example, consider, the representation 

X1X2 + X2X. e compute the matrix of the function of 

83 represented by X1X2 + XX3 as follows: 

x1 X2 X3 

1 000 
2 001 
3 010 Oil 
5 100 
6 loi 
7 110 
8 
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The two roy's of D3 wich are mapped onto i by X1X2 

are ros 7 and 8. T ? tv.r rows of D3 vihch are mapped 

onto i by X2X3 are rows 4 and 8. Hence the only 

rows of the matrix of the funct.on represented by 

xix2 + x2x3, in which i appears, are rows 4, 7, and 

8. Therefore this matrix is: 

i o 
2 0 

3 0 
4 1 

5 0 
6 0 
7 1 

8 1 

Now assumiog that 4i is given as aìy normal 

representation of the function f with the aid of 

Lemma 6 and the above method, we write Step i of the 

algorithm in the following manner: 

Step 1. Determine Dn From U and 
fr, 

compute the f-íarix. Comute p(f). (y Defini- 

tion 9, the rank of f, p(f), is the number of 

occurrences of i in the f-matrix.) 

- . n-K uppose f .s of rank m, where in < 2 

Since each cause of of dimension K has 

rank 2K , j follows that no clause of dimension 

less than or equal to K can imply f. Hence no 

clause of dimension less than or equal to K can 

be a prime implicant of f. Hence, in determining 

the rirne implicants of f, we can ignore all 



clauses of dimension less than r enual to K. 

Hence Step 2 of t e algorithm can be ritten: 
Step 2, Determine tie smallest integer j 

such that O < j < n, and 2 < p(f). Each 

clause cp of dirnensino j which impLes f is 
a prime implicant of f. The clauses so determined 

are all the rirrLe irnplicants of f of dimension 

i. No clause of diuension less than j is a prime 

implicant of f. 
There is one case in which the conditionsO < j < n 

and p(f) can not both be satisfied, If f is 

the identity element in then p(f) = Thus if 
2n-j 

< ( = 
2n, can not satisfy O < j < n. But 

in tis case, any reçresentation of the form X + X , 

(i = lip 2, ... n) will represent the identity element, 

and the case is trivial, since each such representation 

is a simlest reresentatirn of the identity element. 

:ow given the f-matrix, where p(f) = m, and given 

j such that 0< j< n and 2'' K p(f), we wish to 

determine all clauses of diension j which imly f, 
and yet avoid computing the individual matrices of the 

clauses, Further, we wish to íniicnize the number of 

candidates to be considered. 

By Corollary l-1 each row of D uniquely determines 

a clause of dimension n such that i appears in the 
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corresponding matrix f the functi"n which that clause 

reresents. For example, row 3 of D4 is (O, O, 1, 0) 

and this row determines the clause XXX3X . fence the 

marix corresponding to the clause XXX3X must have 

a 1 in its frurth row. 

¡'Ow given the rth row of D, let q be the clause 

of dimension n detcr:nined by that row, such that i 
appears in the rt row of the ç-matrix. N'w p sub- 

sun.es exactly U) clauses of dimension j, aid for 

each of these clauses i must appear in the rth row 

of its corresponding matrix. Hence, it follows that if 
i does not appear in the rth row of the f-. atrix, none 

of these clauses of dimension j imply f. 
Ho'.'.ever, if i does apear in the rth row of 

the f-matrix, each of these clauses is a candidate. 

Assuming then That 1 afr p ears in the rth row of the 

f-matrix, let denote one of the U) clauses of 

dimension i which are subsumed by p. Then i appears 

in the rth row cf the -rrLdtrix. rut, unless j = n, 

we can not assume from this that implies f, for 

there are rows of D which are rtapped by 

onto 1, and ence there are 2° corresponding rows 

of the -matrix in which i appears. Denotheir row 

numbers by S1, S2, . r, ... S .. Then implies 

f if and only if i appears in rows 1' ... r, 
S rf the f-matrix. 
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Hence v'e have the following process for determining 

the clauses of dimension j which irn1y f: 

Case I. p(f) 
2n-1 

In this event, we must start the 

proce;s at j 1. To determine the clauses of ditien- 

Sinn i which imply f we note that: 

If in each ro of column i of D in which i appears, 

i also appears in the corresponding ro. of the f-matrix, 

xi implies f; if not, X does not imply f. Assuming 

that f is not the identity element, if X implies f 

trien Xj does not imply f. If in each row of column 

of in which i appears, O appears in the correspon- 

ding row of the f-matrix, then Xj implies f; if not, 

xi does not imply f. 

Case II. p(f) = m and i < . 

1. Let S1, S2 ... Sm be an increcsing sequence 

such that i appears in rows S, S2, ... and Sm f 

the f-matrix. 

2. Ignore all rows of Dn except rows S, 
2' 

.. S. Let the index i have value 1. 

3. For the row S of D let denote the 

unicuely determined clause of dimension n which maps 

row S of D onto 1. For each clause r. 
n/n\ i,t 

(t = 1, 2, ... (j) ), subsumed by 
j 

deterrnne the 

2' rows of D which 
i,t 

maps onto 1. Denote 
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their row numbers by -,i' t,2' '' t,2° 

1 appears in roS 
] 

t 2' , of the 
t2°3 

f-matrix, then 
i,t 

implies f; if not, eliminate 

from considerdtion. 

t.ith i fixed, the above process is to be performed 
(n\ 

for t = 1, 2, ..... (i) 

4. If 3) has not been erforined for i = ni, 

increase i by i and repeat 3). If 3) has been 

performed for i = ni, terminate the roces. The clauses 

so determined are all the clauses of dimension j which 

imply f. 

It should be noted that for distinct v2iu?S of i, 

say 
i 

and 
2' 

it is possible that . and 
. t 
'2' 

can denote the same clause. Thus, if < i2 and 

and 
. 

denote the same clause, and . has bLen 
'2' 

1l,t 

found to either imply f or not imly f, it nf c' urse 

is not necessary to again test 
2 

Exam, le: Consider the function f in 83 which is 

represented by XjX2X3 + X1XX + X1X2X3. Suppose that 

we wish to determine all clauses of dimension 2 which 

imply f. 
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X1X2X3 f 

1 000 
2 001 
3 010 
4 011 1 

5 100 
6 101 
7 110 1 

8 111 1 

e immediatuly determine the f-matrix. Then fronL row 4, 

there are three candidates: XJX2, XjX3 and X2X3. 

(if these, XX2 is eliminated by row 3, and XX3 

is eliuri.inated by row 2. The rniaining clause X2X3 

imrlies f. From row 7 we obtain the candidates X1X2, 

x1x and X2X. X1X2 implies f; X1X and X2X 

a -e eliminated. From row 8, X1X2, X1X3 and X2X3 are 

candidates. We have determined already that X1X2 and 

x2x3 imply f. The remaining clause X1X3 is eliminated 

by rov 6. Hence the clauses of dimension 2 which imply 

f are: X1X2 and X2X3. 

According to Definition 15, a clause p is a prime 

implicant of the functinn f if p implies f, and 

does not subsume any clause of smaller dimension wtich 

also implies f. Thus in Step 3 of the algorithm, when 

we determine the rime implicants f dimension K + 1, 

for each clause q. of dimension K + 1 which im1:lies 

f, we must be assured that p subsumes no clause of 

smaller dimension which implies f. fence, in step 3, 
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we test p against every clause of dinension less 

tan K + 1, where irnìlies f. V.e then eliminate 

ç frrm consideration if q subsumes any such clause t. 
That this procedure cn be simplified is suggested by the 

fo lowing results: 
Lemma 8. 

The relation subsume is of a transitive nature: if 

P subsumes ; , and subswres b, then subsumes 

b. The proof is by direct ap1ication of Definitic'n 14. 

Lemma 9. 

Let f be a given function in 
, 

f + Let q 

be any clause of diírension j such that q implies f. 
Then p is a prime im'icañf of f li p subsuiues no 

prime implicant of f of dimension less than j. 
Proof: If p is of dimensinn 1, and if p implies f, 
then p is a crime implicant of f. Assume the proposi- 

tion holds frr dime'sinns 1, 2, ... K. Let q have 

di:r1ension K s 1, such that cp icn1ies f and p 

subsumes -o prime implicant of f of dicìension less than 

K + 1. Suppose p is not a rime implicant of f. 
Then cp subsumes srme clause of ditension less than 

K + 1, where implies f. But p subsufles no prime 

implicant of f of dimension less than K + 1. Now 

either is a prime implicant of f, in which case we 

have a contradict i n, or is not a prime implicant 



of f. But if is not a prime implicant f f, by 

the induction hypotheses, it fnllows that must 

subsuie a prime implicant b of f, where diiiension 

b < dimension . Then p subsumes t, and E subsumes 

). By Lemnta 8, cp subsues ô, and dimension 

dimension : < dimesion p, another cnntradiction. 

Combining i.)efiniticn 15 and Lemma 9, we have the follow- 

in9 theorem: 

Theorem 3: I 

Let f : 
, 

f . Let p be any clause of 

A necessary and sufficient condition that p is a prime 

imlicant of f is that: 

1. cp implies f and 

2. p subsumes no prime implicant of f with 

diuíension less than that of cp. 

Proof: Sufficiency is by Lemma 9, necessity is an iìnmedi- 

ate conseueice of Definition 15. 

The above results suggest that Step 3 should be 

modified in the following manner: Assuming that all the 

prime implicants of a function f have been determined 

up to and including those of dimension K, we wish to 

determine the rirne implicants of dií.ension K + 1. Now 

for each candidate p, we immediately eliminate from 

consideration if p subsumes one of the prime im1icants 

of dimension less than K + 1, this ste bei'g justilied 
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by the seCrnd condition of Theorem 3. If p does not 

subsume any of the prime imp1icaìts of di:.ension less 

than K + 1, we next determine if irnlies f. If 
cp then implies f, q is a prime im1icant of f. 
The order of the above two steps can be reversed. That 

is, given the candidate cp, we can first determine if p 

implies f. If p does not im1y f, of course p is 

not a rime im1icatht. If p implies f, we determine 

if subsumes any of the prime imj1icants of dirensicn 

less than K + 1. If then p does not subsume one of 

the LJrime implicants of diension less than K + 1, p 

is a prime implicant. The significance of either method, 

of crirso, is that in the process of deterrniing the 

clauses of dimension K + 1, as a result of the previous 

steps in the algorithm which determine all the prime 

implicants of diension less than K + 1, we are not 

required to test each candidate p against every cjause 

: of dîíne'ìsion less than K + 1 .hich implies f to 

insure that p does not subsume ; we are only reoulred 

to test p against each prime ilicant of din.ension less 

than K + 1. 

Aitnough it is not our specific purpose to develop 

a computer-orieited algoritht, it is obvious that for 

even a moderate number of independent variables, it w uld 

be impractical to use the methods so far described 
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without a computer. Now the algoritLm so far developed 

is at least partially computer-oriented. In particular, 

the operations ' , + , and ' of our mr'del are easily 

aplied to a computer. However the basic definition of 

subsumes has visual connotations. For example, the 

clause X1X2X3 subsumes the clause X1X3, and we 

determine t is by actually observing that the symbols 

xl and X3 appear in the clause X1X2X3. No. it is 

certainly true that computer systems in the present state 

of the technology can distinguish and work with symbols. 

But in general, the basic computer can nöt. Hence it is 

necessary to convert a symbol, by some suitable code, to 

a fon.. with which the computer can work. Eut t. is form 

is usually a sequence of the di4ts 1 and O. Thus, 

it would require extra programming for the computer to 

determine that X1X2X3 subsumes X1X3, but this extra 

programming would not be necessary for the computer to 

determine that X1X2X3 implies X1X3, if the matrices 

x1x2x3 xix2 

o o 
o o 
o o 
o o 
o o 
o n 

o i 

i i 

were stored in the memory of the computer. The following 

theorem, Theorem 4, might therefore have practical 
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applications, in addition to the theor2tica1 apJications 

för which we will find it useful. 

Lemma 10. 

Let cp and ; be clauses of 
s 

Then a necessary 

condition that p subsumes is that p iuriplies . 

Proof: Let p be a clause of dimension j, and let 

be a clause of dimension K, and assume that cp subsumes 

;. (. e can assume that j > K, for if j K, then 

C? = ; and there is nothing to prove.) Let p be the 

clause 
y y . . . 

y5 . 
Let - such that p(P) 1. 12 k 

Then the fo11wing condition is satisfied: 

If is X51 then the sth coordinate of P 

is 1. If y is X' then the S. coordi-ate of 
si s1 i 

P is 0. But this condition, since p subsunes , is 

sufficient to insure that (P) = 1. By uefinition 13, 

P implies . 

The condition of Lemma 10 is also sufficient. That 

is, if q and are clauses, and cp iuiik.ilies . then 

subsumes . e state this in Theorem 4 below after 

sorne preliminary lemmas. 

Definition 16. Let P and q e P and q 

are enuivalent the deletirn í >K if P and q 

differ only in the Kth coordinate. Ve write (P q) 

by XK to denote this relation. 
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Definition 17. L3t f The furction f is indepen- 

dent of the variable XK prDvided that for every P in 

3, f(P) = f(q) 1f ( q) by XK. 

Lemma li. 

Let p and be cìuses in 
s 

Then a sufficient 

condition that subsumes is that implies . 

Proof: Le q have di'nsion K ao ie have dimen- 

si.on j, and assume that p implies . Clearly K > j, 

n-Y - for if K < i, since there are 2 ' P in D0 Such that 

cp(i) = 1. and 
2fl-3 p j i5 such .at (P) = 1, it 

would follow that for some P for which p(P) 1, 

i;(P) = o. Hence K > j. Now if K j, c and 

subsumes . Suppose K > j. Now suppose that q ooes 

not subsume . Then either a literal y appears in 

and the literal y appears in qi, nr a literal 

appears in and neither 
m or y appear in p. The 

first case is clearly impossible since p implies . In 

the second case, is indpendent of X. Let c(P) = 1. 

Then P) = 1, and hence the mth coordinate of P is i 

if 
'm Xml or the mtI coordinate of P is O if 

'>'m 
S X. Consider the element q of such that 

(P q) by Xm Then, since p is independent of Xm 

y(q) = 1. But «q) = 0. Hence p does not iírp1y q. 

This contradiction establishes the propositirn. 
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Combir5.ng the Le .. as 10 and 11, we have the follow- 

ing Theorem: 

Theorem . 

Let p and be clauses of Then a neces- 

sary and sufficient condition that c subsumes is 

that q implies . 

Remark: It must be emphasized that p and are 

clauses in the statement of Theorem 4. 

Lemma 12. 

Let f c Bn where f is not the identity elen:ent, 

and assume that f is indeendent of XK, 1 < K < n. 

Let cp be a clause w ic implies f such that the liter- 

al Yy XK or 
Y< = x) appears in p. Then rp 

is nnt a prime implicant f. 

Proof: p can not be of dimension 1. For suose is 

of dimension 1. Then p is the literal 
K' 

Now f 

is not the identity element. Therefore, there 3xists 

P e such that f(P) = O. Now cp implies f and p 

is 
K 

Hence 
= 

Let q be trat ele:eit of 

í5 such that (P - q) by XK. Then cp(q) = y() = 1. 

But f is indeendent of XK. and therefore f(q) = O. 

This contradicts the fact that p im1ies f. Thus p 

is not of dimension 1. Therefore let be the clause 

obtained by the deletirn of the literal from p. 

Then is independent of XK. Let P e such that 
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p) = i. If 
= 

then p(P) = 1 and. since cp 

irìp1ies f, f(j.;) = 1, If 
= 

let o be that 

e1eiient of fì such that (P - q) by XK. Then (q) 

Since in independent of XKs But y() i. Hence 

p(q) = i and f(q) = 1. But f is independent of XK, 

and (p q) by XK. Hence f(P) i. Therefore if 

;(p) = i, then f(i) = 1. That is, implies f. 3ince 

cp subsumes ¿, cp is not a prime implicant of f. 

At this point, we again consider, Example i. in 

Example i we fond that the ricre implicants X1X, XjX2, 

X2X: and XX3 were enough to recover the functinn f, 

where one representation of f is: 

f = xfxx3 + XjX2X:! + XjX2X3 + XlXX: + XiXX3 + Xix2X3. 

Ve found in addition to X1X, XjX2, and X2X, two 

other prime implicants of dimension 2: X1X and XfX3. 

However we found that no clauses of dirnensiön 3 were prime 

implicants, and indeed, we were required to complete what 

turned out to be extraneous work in order to verify the 

latter remark. That this work was unnecessary is shown by 

the following theorem: 

Theorem 5. 

Let f be an element of 
1n' 

n > 2, such that f 

is not the zero element and f is not the identity element. 

Let denote the set of all prime implicants of f of 

dimension 2 or less. Then if f, no 

P 
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clause of dimension great'er than 2 i a prime implicant 

nf f. 

rrof: Let ' = cp1, p2' s.. be the set of all 

rie imlicants ef f of dimension 2 or less, and assume 

tLat f = cp1 + 
2 m' 

Let M be the set of all 

integers i such that: 

1) n j > 2 aid 

2) Every clause of with dimension j which 

implies f subsumes at least one clause in P. 

Let p be a clause of diuension n such that 

implies f. By Corollary i - 1 there is exactly one 

element P in such that (P) = 1. L-ut p implies 

f = pl P2 s. + 
m' 

and hence there is at least one 

cp1, i < i < m, such that p(P) 1. Therefore cp 

implies p1 By T«eorem 4, p subsumes cpi. Hence 

n e 

Let j be any integer such that n j > 4, and 

assume that i L M. Let q be a clause of dimension 

j - 1, such that p iraplies f. Now n > j-1, and there- 

fore not all n letters can appear in cp. Tnen there is 

some literal XK, where XK does not appear in p and 

X does not appear in p. Consider the clause PXK. 

The clause PXK implies f and is of dimension j. By 

the induction hypothesis, PXK subsumes sorne clause 

of P. Neyt consider the clause pX. The clause cpY 
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implies f and is of dimension j. Hence pX subsumes 

some clause of 1. Now clearly the literal X 

does not appear in cp since cpX subsuies cpi, and 

therefore qX implies cp Thereiore, if the literal 

XK does not appear in q, every literal which does 

appear in p appears in cp, arid p subsumes 

Suppose that the literal XK does appear in 

Then consider 

Clearly the literal XK does not appear in 

since pX suhsunes and hence implies q 
If then te literal XJ does not appear in every 

literal which appears in 
t 

appears also in ç and 

P subsumes 
t' 

Suppose that the literal X does 

appedr in 
t' 

Then XK appears in cp and X appears 

in 

Claim: The dimension of cp is 2 and the dimension 

of 
t 

is 2. Indeed: It can not be that the dimension 

of 
t 

is i and the dimension of p is 1. For if so, 

then p1 XK and = X. But then 
+ t 

= I, 

where I is the identity element. But (ç + p) implies 

f, and this would mean that f is the identity element, 

contrary to the hypothesis. Also, it can not be that cp 

is nf dimension 2 and is of dimension 1. For if so, 

pi = YXK and = X. Then 

cp. 
+ = YXK + = X + y. 
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But then the litera y implies pj + 
and 

+ 

implies f. Hence y implies f, and p is not a 

prime implicant of f, anotì'er contradiction. Similarly, 
it can not be that is of dimension 2 and p1 is 
of dimensIon 1. Therefore both p1 and are of 

dimension 2, where XK appears in and X appears 

in 

brite p1 = Y1XK and t = 
y2X 

Then (PXK subsumes Y1XK pi arid 

qxF subsumes y2X t 
Hence p subsumes y1 and 

p subsumes y2 

Then p subsucies y1y2 

Claim: y1y2 implies f. For suppose that y1y2L = 1. 

Then y1() = i and y2(P) 1. dither xK(k) 1, in 
which case p1(F) i and f(P) 1, or XK(: ) O, in 
which case X(t; 1, p.(P) = i and f(P) = 1. Thus 

''1"2 implies f. y1 can not imply f since q1 Y1XK 

is a prie implicant if f; similarly, y2 can not imply 
f. f'ence y1y2 implies f and subsumes no clausL of 

smaller dimension which implies f. Thus, y1y2 is a 

prime implicant 0f f of dilnenEion 2. Lence y1y2 

and p subsumes y1y2. Therefore, in all eventualities, 
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Ç) subums some c1ase of î. !Tence f i M, 

j 1. r M, for j = n, n - 1, .... 4, wh.'ch completes 

the ;rcf. 
There is an immediate generalization of Theorem 5 

which comes to mind, but hich, unfortunately, is not 

true. Let f c f not the zero element, and f 

not th identity element. Let denote the set of all 
the prime implicants of f of dimensiin K or less. 

;O. suppose tnat f. Then if K < n, a reasoab1e 

question is: tus every prime irnplicant of f an u1ecient 

of 'ì" The answer is, "not iecessarily." The proof of 

Theorem 5 is almost applicable in this case, or if 
K < n, by the arqument of Theorem 5 we can show that no 

clause of dimension n is a prime implicant of f. How- 

ever, the trruble arises when we attempt to get froan n 

to n - 1. Let q be a clause of di;.ensin n - I 

w;ich implies f. Then, as in Theor2m 5, we determine 

two clauses qj and of dimension n such that 

çX sjbsues cp1 and 

t sumes 
Now if X1.. appears in and X aears in p, we 

have = 1XK and = . And a am we have 

that p subsures However we can not conclude 

that l2 is of dimension K, nor cari we cjnclude that 
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is not a prime implicant of f. It is at this 

point that the proof of Theorem 5 fails. 

Example: Let f = X1X2X, + X3X4X5. 

Then X1X2X and X3XX5 are prime implicants of f, 

and these are all the prime implicants of f of dimen- 

sion 3 or less. But X1X2X3X4 is also a prime im1icant 

of f. 

There is nowever, one immediate Corollary of Theorem 5: 
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Corollary 5-1. Let f e f not the identity element, 

and f not the zero element. Let P be the set of all 

the clauses of dimension i which imly f, and sue, ose 

that 
¿r. Y = f. Then every prime implicant rf f is an 

yeP 

element of i. 

iroof: By Theorm 5, no clause of dimension greater than 

2 can be a prime implicant of f. Let Kj be a clause 

of dimensin 2 which implies f. 

If either of 
K 

or y is in , then Kj is not 

a prime implicant of f. Supose that 
K 

and 

yi î. Then 
Yi:: 

î:. For if 
i: 

then since 

i: Kj = Yl + Yj, Y would irnly f, and would there- 

fore be an elenent of î. Hence 
K 

and y are not 

in î. Hence f is independent of 
K' 

and by Lemma 

12, 
'K'j 

not a priie itnplicant of f. 

Therefore no clause of dimension 2 is a prime impli- 

cant of f. It follows tat every prime implicant of f 

is an element of 1. 

Theorem 5 and Corollary 5-1 justify the following 

termination criteria: 

Let f c where f is not the identity element, and 

f is not the zero element. Then, 

1) If is the set of all the clauses of dimen- 

sinn i which imply f, and if the sum over 
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represents f, then every prime implicant of f 

is an element rf î, and the algorithm can be ter- 

minated once these clauses have been determined. 

2) If is te set cf all the prime implicants 

of f of dimension 2 or less, and if the sum over 

' represents f, ten every prime iiplicant of f 

is an element of , and the algorithm can be 

terminated once these clauses have been determined. 

3) If is the set of all the prime implicants of 

f of dimension n-1 or less, and if the sum over 

' represents f, ten every prime implicant of 

f is an ele;:.ent of T, and the algorithm can be 

termirated once these clauses have been determined. 

We can now write the modified algorithm in this 

manner: Given the representation í of the function 

f in 
, 
where f is not the zerc element, 

tep 1. From , determine the f-matrix. 1f f is 

the identity element, terminate the algorithm. each 

representation X + X, i 1, 2, .... n, is a 

simplest reresentation of f. If f is nrt the 

identity element, compute the rank p(f) and proceed 

to step 2. 

step 2. Determine the smallest integer j such that 

O < j < n, and 2' < p(f). Each candidate p, 

of dimension j which imp1i.s f is a prime impli 

cant of f. The clauses so determined are all of 
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the rime irnplicants of f of dimension j. o 

clause of di:ension less than j is a prime impli- 

cant of f. If j = 1, roceed to A). If j 2, 

proceed to B). If j > 2, let the index K of 

Step 3 have value j and proceed to itep 3. 

A) i = 1. Each clause p of dimension i 

which implies f is a prime imlicant of f. If 

the sum of the clauses of dimension i which imply 

f represents f, terminate the algorithm. The 

clauses so determined are all of the prime im1Jicants 

of f. If the sum nf the clauses so determined does 

not represent f, consider the candidates of dimen- 

sion 2. Elininate from consideration each cdndidate 

of dimension 2 which subsur.es a prime implicant of 

dimension 1. The remaining candidates of dimension 

2 which imply f are all of the prime implicants 

of di:ension 2. If the sum nf all of the prime 

implicants of dimension i and all the prime 1mph- 

cants of dimension 2 represents f, then every 

prime implicant of f is of either dimension i or 

dimension 2. Hence all prime implicants have been 

determined. Terminate the algorithm. If the sum of 

all the ¿rime imphicants of dimension i and all 

prime implicants of dimension 2 does not represent 

f, let the index K of Step 3 have value 3, and 

proceed to itep 3. 
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B) i = 2. Each clause of dimension 2 which 

implies f is a prime implicant of f. If the sum 

of the clauses of dimension 2 which imply f repre- 

sents f1, termi ate the algorithm. Every rime 

implicant of f is of dimension 2, and 'rias been 

determined. If the sum of the clauses of dimension 

2 which imply f does not represent f, let the 

index K of Step 3 have value 3 and proceed 

to Step 3. 

step 3. Consider the candidates of dimension K. 

Eliminate from consideration each candidate of 

dimension K which subsumes a prime implicant of 

dimension less than K. The remaining candidates 

which imply f are all of the prime implicants 

of dimension K. 1roceed to Step 4. 

Step 4. If the value of j of Step 2 is n, 

or if the clauses of dimension n - 1 have been 

subjected to the process, proceed to C). If the 

value of the index j of Step 2 is not n, and the 

clauses of dirension n - i have not been subjected 

to the process, increase the index K of Step 3 

by i and proceed to Step 3. 

C) If the clauses of dirension n have been 

subjected to the process, proceed to E). If the 

clauses of dimension n have n-t been subjected to 

the process, proceed to L). 
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D) If the sum of the prime implicants already 

determined represents f, terminate the algorithm. 

N0 prime implicant has dimensinn n. Hence all 

prime implicants have been determined. If the sum 

of the prime implacants already determined does not 

represent f, let the index K of Stej 3 have 

value n, and proceed to Step 3. 

E) Tertniiate the algorithm. All prime impli- 

cants have been determined. 

Example 2. e again consider the function of Example 1: 

f = xlx + xx2 + X2X: + XX3. 

e first compute the f-matrix: 

xl x2 x3 f 

1 0 0 0 0 
2 0 0 1 1 

3 0 1 0 1 

4 0 1 1 1 

5 1_ O O i 

6 1 0 1 1 

7 1 1 0 1 

8 1 1 1 0 

Fro this, ve have p(f) = 6, and j in Step 2 is 

1, for = 4 < 6. We roceed to A). see that 

no clause of dimension i implies f, X1, X2, and X3 

are eliminated by row 1; Xj. X and X are eliminated 

by row 8. :ext, we determ1.' the clauses of dimension 2 

which imply f. These are: XX3, XX3, XjX, 

and X1X. These surely recover the function, and we 

terminate the algorithm. 
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Comparing Example 2 with Example 1, it is evident that 

the refined algorithm does indeed £ossess soi.e advantages 

over the original version. 

It is perhaps appropriate here to examine briefly 

the theory from the view-point of actual application. 

The basic concept of the algcrithm is simply this The 

algorithm determir-ìes a equence of tests by which certain 

clauses are eliminated. The renaiing clauses are the 

prime implicants of the given function, Now one of the 

main difficulties in the application of the theory can 

be attributed to the nuciber of tests which must be corn- 

pleted in 'rder that the roces can be terminated. 

And in general, the time required, even for a high speed 

cornuter, to complete the sequence of tests is .rohibitive. 

In computer applications there is a certain type 

of problem, the so-called real-time problem, in which 

the time recuired to solve the problem is critical. 

N.w quite often in the solution of a real-time roblem, 

the computing system is prograíed to function not only 

as a computing unit, but also as a library system. Lor 

example, in a given trajectory problem, it might be 

necessary to per orm some type nf arithmetical computa- 

tion involving the number sin X0. Now given the number 

X0, the computer can surely compute an aproximation to 

the number sin X,.. However, it might not be expedient 
'J 

for the computer to actually compute the number. 
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Instead, the following alternative might very well be 

used: 

F3efore the ct-mputations begin, a table of ars 

( x sin X) is stored in the memory of the computer. 

Thus, given the number X0, the computer performs a table 

look-up and an interpolation to determine the approximation 

to sin X0. 

Is it possible to apply a similar table look-up 

procedure in our simplification prob1em' Uonsider the 

fol1o.ing possibility: 

We first determi-'e o'e simplest representation for each 

function in 
8n' 

Ve index each function in 
, 

so that 

for each such function there corresponds exactly one 

integer i, i i < (2) . he senuence the representa- 

tions of the functions according to the index of each 

function. The representations are then tored, in their 

sec'uential order In a rneíiory device nf a computing 

system. Ve program the comuter in a manner such that: 
Given a representation 4í of a function in 

, 
we 

in-put 
4' 

tn the computer. The computer determines from 

4c, say, the corresponding function matrix. From this 

matrix, the computer determines the index of the function, 

and from this index, the computer determines the location 

in memory where the representation is stored. This 

representation is printed as out-put. 

For what order n of the algebra í would the above 



procedure be workab1e The cardinality nf §4 is 6, 

536, and the procedure would robab1y be ...orkab1e for 

g4 But the cardinality nf is 4, 294, 967, 296. 

Thus, with the existing state of computer technology, it 

is improbable that a cornlete table look-up procedure 

would be workable for any higher algebra than And 

this of course means that the individual functions will 

have to ce simplified as the need arises. 

'here is a restricted class of functions in 

whose prime implicants can be determined without subject- 

ing the functions to the algorithm. Before considering 

these functions we st.te the dualization laws: 

If f s and g c 
n' 

then 

(f+g)'f' g' 
Vde also need the law of involution: 

(f')' = f. 

It is easily verified that these relations are true in 

the model with which we are working, since they clearly 

hold in the algebra of Definition 1. 

Suppose that we are given a function f in such 

that p(f) = 1. By Theor m 1, no clause of dimension less 

than n implies f. By Corollary l-2, there is exactly 

one clause of dimension n which implies f. This clause 

Is therefore the only prime Iplicant of f. Further, 

by Corollary l-1, the row of which corresponds 
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to the row of the f-matix in which i appears determines 

this one prime implicant of f. 

Now suppose that f has rank 1. in this event, 

there is only one row of the f-matrix in which i does not 

appear. Hence there is exactly one row of the f'-matrix 

i, which i appears. That is, the rank of f' is 1. 

Thus there is exactly one prime implicant of f'. Again, 

this prime implicant f f' is of dimesion n, and is 

determined by the row of D which corresponds to the 

row of the f'-;atrix in which i appears. Denotin'j this 

clause by (y1 . y2 ... y ... y) we have 

f' = y1 . y2 .. y ... s ri 
Using the 

dualization laws, we have 

(f')' = (y1 . y2 ... y ...y)' = Yj + Y+ Yj ... + y1; 

Next, by the invohition law (f')' f, and therefore 

f = Yj + Y + .. Yj + .. + Y. 

Hence, f can be represented by a sum of clauses cf 

dimension 1. It is clear that no otner clause of dimen- 

sion i can imply f, for if, say, y1 also implies f, 

we would have 

f = yj + y+ .... y1 + ... + y -f y1 

and 

= yi Y2' i ... Y Yj 

and hence f would be the identity element, contrary to 

the hypothesis that p(f, - 1. e then have the 
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Lemma 13. 

Let f c such that f has rank 1. Then 

there are exactly n c1uses of dimension i which 

im1y f. Further, the sum of these clauses represents 

f. 

From Lemma 13 and Corollary 5-1, we have: 

Theorem . 
A function f in 

n 
with ran i has exactly 

n prime implicants. Each of these crime implicants is 

of dimension 1. 

Example: Let f XjX + XjX2 4 XX3 + X1X2. Then we have 

x1x2x3 f 

1 000 1 

2 001 1 

3 010 1 

4 01 1 1 

5 100 0 

6 101 1 

7 1 10 1 

8 1 1 1 1 

From row 5, ttìe prime irnF.licants of f are Xj, X2, and 

X3. 

The method of the last e:an.1e is also applicable to 

functions of rank - 2. For let f e such that f 

has rank of 
2r 

- 2. Ihen ter are exactly two rows of 

the f-matrix in which 1 does not appear. Fence, the 

function f has rank 2 and can be represented as the 

sum of two clauses of dimension n. Denote these c1auss 
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by y1y2 ... y and z1z2 .... z. Then 

f' = (y1 ' y2 .... . y) i- (z1 s 2 '' . z) 
Hence f = (Yj + Y ... y) s- (zj i- z + .... z) 

;1 [ ;1 Yj zj] 

Hence we have the following leama: 

Lemma 14: 

Every function f in witn rdnk 2 can be 

represented as the su nf clauses, each clause of dimen- 

Sinn 2 or less. 
Combining Lemma 14 and T eorem 5, we have: 

Theorem 7: 

Let f be a finction in such that f has 

rank 2 2. Ten no prime Implicant of f has dimension 

greater than 2. 

Theorem 7 suggests the following method of determi Ing 

the prime implicants of a function f of rank 2: 

Consider the two rows of the f-matrix in which i does 

not a,pear. Let P1 and P2 denote the corresponding 

rows cf Dns From Pi and P2 we first determie the 

clauses of dimensio- i which imply f. e next deter- 
mine, again from P1 and 2' the clauses of diiïension 

2n 
2 which do not imply f. From the 2 (2) = 2n(n-i) 

clauses of of dimension 2, we first eliminate those 
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clauses whicr do not imJy f. Next, we eliminjte those 

clauses which subsume clauses of dimension i which imply 

f. The remaining clauses, along with the clauses of dimen- 

sion i which imply f, are the prime implicants of f. 

Example 3. Consider the function f of rere 

f' = Xx xX + X1 X2 X3 X4. 

ow f' as rank 2. Vence f has rank 14. ConSider the 

two rows of 134, 

Xl 
"2 X3 X f 

1 000 0 1111 0 

From this, we see that the only clause of dimension i 

which implies f is X. Also, the only clauses of dimen- 

si'n 2 which do not imply f are: X1X, X1X, X1X, 

X:'3XL;, Xix2, X1X3, X1X4, X2X3 X2X4, and X3X4. Ve 

immediately determine all nf the prime implicants of f: 

Xix2 Xix3 XiX X2X3 X2X4 X3X4 

' 't V V V Vt V V V V V '.1 A1 
2 "1"3 "1"4 "2"3 "2"4 "3'4 

V,v V,v V,, 'l'y y,v V,V 
"1"2 "1"3 "1"4 "2"3 "2"4 "3"4 
V,',, V'V' VfVf vvt vv? 
"1'2 "1"3 'l"4 "2"3 "2"4 3'4 

The remaining clauses of dimension 2, along with Xj are 

the 1rime imlicants of f. That is, the prime implicants 

of f are X, XX3, XX4, X3X, and 

There i another type of function in whose prime 

imp1cants can be determined under a reduced number of 

tests. y Lemma 12, if f e 
, 

such that f is not the 
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i K n, then no clause in which X or X appears 

is a prime implicant nf f. 1he next theorem might be 

useful in working with such functions. 

Theorem . 
Let n be an integer, n > i and let be that 

subset of elements of B0 consisting of all the func- 

tions in Bn which are indpendent of the variable X, 
where 1 K 

L 'hen g, as embedded in is iso- 

morphic to En_l 

Proof: For every P c [) there is exactly one q 

such tr.at (P - q) by XK. There are then 2n/2 2n-1 
such 

ecuivlent pairs in D. Denote the set if these equiva 

lent pairs by Dnl {(P,q)1, (P,q)2, s... (,c0_11. 

Note that Dn_l and 'n-1 are in l-1 correspondence. Let 

r1 be the (n-l)-tule obtained from (P,q) e nl ' 

the deletion of tne Kth coordinate of P. Every function 

in associates with each element of 5 an element of 

s = o,i}. For if T and (,q) 
un-l' then T asso- 

dates with (P,q) the element fU = f(q) in . 

Cnnversely, any mapping of n1 into S corresponds 

to a fucticn in . Hence cai be considered as the 

set of all functions which map n1 into . By Lemma 2 

- 2n-1 
the cardinality of is (2) . ence B and 
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Bn1 are in 1-1 correspondence . To determine the iso- 

morphism, we associate with each function ? in 

which maps (P,q)1 onto a e S, the functien f in 

en-i 
which majs rj onto a, for i = 1, 2, ... n-1. 

Denote this correspondence by F. Then F is t desired 

isornorphism. To prove this last statement, first note 

that g is closed under the o1 ' erations +, ., and ' in 

g For let and be elements of . Then for each 

n-tule (h1 .. b. .. b) in 

x (b1. .. bK, .. b) = a (b1, .. b, .. b) and 

p(b1, .. bK .. b) = (b1, .. b, .. bn). Hence 

[ + ] (b1, s. .. b) 

'X (b1, .. bK, 1 b) (b1, .. bK, b) = 

c (b1, .. b1, .. bnl (b1, s b, bn) 

[u - t3] (b1, bF' s. ba), and i 4 3 are independent 

of Xe.. }!ence is c osed under the multiplication and 

addition of 

Further, 

T' (b1, .. b}Z bn) = 

[ (b1, .. bK, .. b0))' = [ (b1, .. b, .. b0)]' = 

' (b1, .. b, .. b0), and g is closed with respect 

to the operatirn * in 

Let F() a and F() f3 

Let (b1, .. bK_i, bK+l, b) 
n-1' 

and suppose that 



a(b1, .. bKl. bK+l, .. b1) = a and 

(b1, .. bK_i, bK+l, I. b) = b. 

Then [a f J (b1, .. bK_il bK+l. s. b) a + b 

But (b1. .. bK_i, bK. bK+l, .. b) a and 

(b1, .. bK.l, bK bK+l, . b1,) = b. 

therefore, [ + ] (b1, .. bKl, bK, bK+l, . 
b,) a + b, 

and hence [F( + ] (b1, .. bK_i. bK+l, b1) = a + b = 

a(b1, .. bK1..1, bK+l, .. b) + (b1, .. bK_i. bK+l, .. b) 

= [FÇ)] (b1, .. bi. bK+l, . 
b) 

+ [F()J (b1, .. bKl, bK+lP ba). 

Hence F() + F() = F( + ). Similarly, 

F() s F() = FÇ . 

Further, let 

[FÇ!)J (b1, .. bKl, bK+l, b1.) = C. Then 

C = ' (b1, .. bK_il bK bK+l, . 
b) = 

L.a (b1, 'i bKl, bK, .. bfl' 

t: [F()J (b1, 'i bK_i, bK+l, s. b) J' = 

[F()]' (b1, .. bKl, bK+l, .. b) . Hence 

= [FÇ)J' . Hence g as embedded in 

is isomorphic to B_1 

Note that implies ' if and only if F() implies 

F() . For if implies , let ' Then g 

and a + = + = . Hence 

F( +) = F() = F(a) + F( and F(&) implies F(). 

Next, if F() implies F(), then there exists F() such 
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that F'() + F() = F(). Hence 

F[F() + p()j = = : + and implies 3. 

Thenrem 9. 

Let r be a functicn jr > 1, 'ihere is not 

the zero element and ? not the identity element. uenote 

the independent variables of by i 1, 2, ... n. 

»ssume that ? is independent of 5K Let be that 
subset of g consisting of tnose functions in which 

are independent of K' Let F: - nl be the iso- 
morphism of Theorem 8. Let F(T)= f. Then: 

i) Every prime implicant cf T is nfl element of 
g and 

2) If is a clause nf g11 then q is a 

pri.ïìe implicant of f if and only if F(p) is 
a prir:e implicant cf T. 

Proof: 

1) Every prime implicant nf T is an element of 

T is not the identity element. Since T is inde- 
pendent of K' it follows from Lemma 12 that the 
literal does not appear in any prime imlicant 
of T, and t«.e literal does not appear in any 

prime implicant of T. Hence every prime imlicant 
of T is independent of and is therefore an 

element of . 

2) If cp is a clause of then is a prime 



inp1icant of f if and only if F(p) is a prime 

implicant of 1. 

Supprse p is a clause of n-1 and assume that q is 
a prime implicant íf f. L)ennte F(p) by . Then 

must be a prime ií1jicant r'f T. or suppose not. Clearly 

. 
implies f, since p implies f, and F is an 

isornorphism. Then subsumes some clause of salier 
dimension, where implies T. Now F(q4, and 

P 
g Hence is independent of XKU Thus is 

independent of since subsumes L Then c 

Hence ) is defined. Let F() E Then implies 

. and implies L Hence 

F() = , implies tC) = implies F(?) = f. 
By Theorem 4, q subsuues . But dimension dimen- 

siort p and dimension dimension . Hence q. is 
not a prite implicant cf f. Contradiction. 

Next, sup1ose that cp is a clause f n-1 such that 
F 1(q) is a prime implicant f L Ùenote F() by 

;. Then qì ust be a prime implicant of f. For suppose 

not. Then q. subsumes a clause f of smaller dimension 

which implies f. Denote by L by Theorem 4, p 

implies . Hence by the isomorphism F1, implies t 
and t .L:.plies L By Theorem 5, subsumes t and is not 

a prime impl cant of T. Contradiction. Thus, p is a 

prime implicant of f if and only if F(q) is a prime 
implicant of E. 



txarnple 4. Consider the functi.n f in 84 : 

f = X1 + XX2X3X4 + xX2X3x + xX2xX4 + xjx2xx + 

X,x,v V + XtXtvtV i 2"3'4 i 2"3"4 

x1 X2 X3 X4 f 

o o o o o 
o o o i i 

o o i o o 

o o i i i 

o i o o i 

o i o 1 1 

o i i o i 

o i i i 

i o o o i 

i o o i i 

i o i o i 

i o i i i 

i i o o i 

i i o i i 

i i i o i 

i i i i i 

From 1)4 we see that f is independent of X3. Uy the 

isomorphism of Theorem 8, we have: 

X1 X2 X4 f 

O O O O 

o o i i 

o i o i 

o i i i 

i o o i 

i o i i 

i i o i 

i i i i 

and from this image, ve have 

X + X2 + X4 = f 

Hence the prime implicants of f are X1, X2, and X4. 
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The following results lead to a theorem which might be 

useful in determining if a functic'n is independent of 

an independent variable. 

Lemma 15. 

Let P = (a1. a7 .... a1) be the 
jth 

of 

D. Let q = (b1 b2 .... b,) be tlìe 
th row of D. 

Let (P = 
+ rl 

2n-r 
air and 

let c(q) = 1 + 2n_rbjr 
r1 

Then = 
q if and only if (P) W(q). 

Proof: If P = q, then clearly w(P) = 

Suppose that w(p) = W(q). Then 

n n 

2n_rair = t 2b1. 
r=l r1 

.e proceed by induction on the index r. 

First, a1 = b1 . For suppose not. i-ssuì'le without 

loss of generality that a11 = O and b1 = 1. Then 

n 

2"a 
r=2 

The maximum value 

is the SUm of a g 

first term 1. and 

value of the left 

2n1 
r2 

20_rbjr . 

nf the left side of t;ie above ecivatir'n 

eoí.etric series f n-1 terms with 

common ratio 2. That is, the maximum 

side is 21 1. But the minimum 
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value of the right side is 2ml. Contradiction. 

Lence a1 = b.1. upose air = bjr for all r such 

that i < r < K < n. Then a1. = biK 

For since 
r1 

2n-r 
air 

= r1 
2n-r 

bjr 

then 
r 

air 
= r 

2n-r 
bin By the same argunent 

as above, a. = biK. Hence air bir r = 1, 2, ... n, 

which establishes the proposition. 

Le: ma 16. 

Let i be any integer such that i i 

Then there is exactly one row P = (a1. a2. .... a0) 

of Dn such that Y.(k-) = i, where 

n 

' -I n-r 
(P) i .4 

L 
2 a 

r1 jr 

Proof: Clearly, min[W(P) 
I 
P is a rov' of D} 

is i and max [() 
J 

P is a row of D} is 
2n 

has exactly rows, and by Lemma 15, '. is 1-1 on 

the set of these rows. Hence W is l-i. on the set of 

rows of Un and onto [i, 2, ... 
2fl}, Fence if 

i < i < , there is exactly one row P of lJ that 

= i. 

n 
Lemía 16 states that if 1 < i < 2 , tren there is 

some row P of D0 such that (i- = i. Lemma 17 states 
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that this in fact is the 
th 

row. 

Lemma 17. 

The 
1th 

row, i (aa. a2. ... a) is the only 

row of such that: 

[ il 
a1J + i = j 

Prcof is by induction on n. 

D =(). 

For row 1: 2l 1. 

For row 2: 211 i + i = 2. 

Hence the statenent holds for D1. Assume tiat it holds 

for D. 

Let i be any row number of any row of 

By Definition 3, D1 
= ( 

Case 1. i < 2'. Then the 1th row of is of 

the form (O, a12, a13, .... a1+i). vJhLr 

(a2, a13, .... a1+i) s the 
1th rov of 

D. By the induction hypothesis, 

23a.1J+l=i 

2r.O+L 2°a.. 
J 
+1=1. 

jl ij+l 
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(;ase 2. 2 < < 
2n+1 

Let i = r. Then the row of D01 is of the 

frm (1, ar2, ar3, SS where (ar2, ar3, 

arofi) 

is the rth row of L) . Hy the induction hypothesis, 
n 

n 

¿ 2° arj+lj + i = r. Hence 
L 

n 

2° .1 
+ [ L 

an-j 
arj+1J + i +r = i. 

j=i 

Hence the 
1th row p = (a1, a2 .... a) is such that 

i + 

ri 
2n-r 

air i. Uy Lenma 16, the 
1th row is 

is te only row with this roperty. 

Theorem 10. 

P be the 
th row of D. Then if the Fth 

coordinate of P is 0, the row number of the row q, 

, ' . . n-K 
where q) by XK, is i + 2 

Proof: q is obtained from P by changing the Kth 

coordinate of P to i and leaving fixd ali others. 

Let P 
= 

(a11, .. alKi, 0,a1/1, ... a). Then 

q = (a11, s.. alK_l, l,alK+l, ... a). 

By Lemma 17, n 

L 
¿2° a.» 
j=l iJi 

p 
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n 

n-j i Hence [ ¿ 2 ajJ + 
j =1 
q 

i = 
zn-K 

i <i 2nK< 2" 

By Lemrna 16, there is exactly one rovi' of such that 

n 

i 
+ ¿ a = 

2n-K 
and by Lemma 17, 

j=i 
ii 

q 

tis is row . + 2n-K 

Once the rinie imlicants rf a given function have 

been determi-ed it is still necessary to determine the 

simplest representations rf the function. In order to 

do this, we first construct a new model. F0r each func- 

tion f in 
, 

let Ute f-set be that set of integers 

i such that 1 appears in the 
th 

row of the f-matrix. 

ow tne collection nf these sets is simply the power set 

of [i, 2, ..... 2}. This power set forms, of c urse, 

a Boolean algebra, and the correspondence f f-set, 

f C Is an isomorphism. It is clear that the follow- 

ing relations hold: 

f g 4-' f-set I i g - set 

f + g 4-lp f-set g-set 

f' l-' The compie ent of the f-set with 

respect to Li, 2, .. 
f implies g 4- (f-setj C (g-set) 

Now once the prime imlicants of the function f cave been 
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determined the simplification problem is essentially 

that of determining the most efficient covering of the 

f-set with those se.s which correspond to the prime impli- 

cants. 

Example: Again consider the function f of iixanple 1: 

f = XX + XX2 + XX + XX 

We first compute the f-set: 

X1 X2 X3 f 

i o o o o 

2 0 0 1 1 

3 0 1 0 1 

4 0 1 1 1 

5 1 0 0 i 

6 1 0 1 1 

7 1 1 0 1 

8 1 1 1 0 

In the new model, we have f = 2, 3, '1, 5, 6, 7} 

The prime irnplicants of 

the new model they are: 

X1X = 5, 6} 

XjX = ¿3, 4.1 

X1X = t. i} 

XX3 = 2, 4} 

Xx = 3, 7} 

XX3 = 2, 6J 

f have been determined. In 

Applying trìe technique of page 67 , we find that: 

i) ¡o union of two rf the above sets Covers f. 

2) t2, 3, 4, 5, 6, 7} = t2, 6} u 3, 4j L) L5, 7} 
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2, 3, 5, 6, 7} = 2, 4} U 3, 7} U 5, 6} 

Ve see that t:ese are the only two ways in which 

t2, 3, 4, 5, 6, 7} can be covered by a union of three 

of the aove sets. 

Hence there are exactly two simplest representations of 

f. They are: 

XX + XjX2 + X1X and 

xix3 + x2x + x1x 
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,1] 

AJ LDIX 

In the set-theoretic model any functinn f of 

with the exception of the zero element can be considered 

as a sequence of natural numbers. This sequence is ob- 

tamed by orderiîg the elements of the f-set by its natu- 

rai ordering. A literai then corresponds to a sequence 

of exactly 2n-1 
eleí:ìents. The mth term of the sequence 

corresponding to the literal y can be determined as 

follows: Let a be trie row nuuber of the first row of 

the Y-matrix in which i appears. The -matrix Is 

partitioned into 2, by i sub matrices, where each 

sub matrix has elements either all zero, or all 1. Con- 

sider those sub matrices in which the elements are all 

1. The first row of the first such sub matrix has row 

number a with respect to the ymatrix. The iirst row 

of the secnnd sub matrix, w:ose elements are all 1, has 

row number a + 
2flJ+l 

with respect to the y matrix. 

The ro.\ numbers, with respect to the y-matrix, of the 

first rows öf the 23_l sub matrices in which only 1 

appears, form an arithmetic progression with first term 

a and common diffe ence 23+1. Hence the first row 

of the rth sub matrix in which only i appears has 

n-j+1 
n row number a + (r-1)2 with resect to tne 

Y-marix. Now given the integer m such that 1 m 

2n-1 
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rite [ri = m1 
2r 

m2, where O < m2 < The 

integers m1 and m2 are, f cnurse, uninuely determined 

by the divisirn algorithm. 

Case 1. m2 O. In this event, the mh term of the 

y-sequence is tte row number, with respect to tìe y 

matrix, of te 'ast row of the sub niaLrix (, where Q 

is the m1st matrix nf those sub matrices in which only 

i appears. Hence the mth term of the y sequence is 

a + (in1 - 1) 
2n-j+l 2n-j 

Denote the 
th 

term of the y sequence by 

Now in this case, m m1 2. Therefore, 

a + 2(m1 . 
2flJ) 

2 . -F i = 

a + 2m - 1. 

if y is X, then a = -F 1. 

If y is a = 1. 

Fence if m is a multiple of the mth term of the 

X_sePu:nceis 2m, and the mth term of the X3-seouence 

Case 2. m = m1 2 + m2, where m2 O. In this 

event, the 
th term of the y seouence is trie row num- 

ber, with resect to the -matrix of the m20d row of 

the matrix Q, where Q is the 
1)th 

matrix of 

those sub matrices in which only 1 appears. Hence 

(rn) a + (m1) 
2n-j+l 

+ m2 - i 



Therefore, if y is X,, 

X(m) + 1 + 2 
' 

+ In2 - i = 

2°(l + 2m1) + m2, and m j = m1 
2n-jii 

+ 

Vie summarize these results as follows: 

The mt tern of the seouence corresponding to X 

of is given by: x(rn) = 2m if m is a multiple of 

2°. x(-) 2n-j 
(1 + 2m + 

2' 
if m = ml 2+ m2, 

where O < m2 < 

th 
. The m term of the sequence corresponding to X, of B 

is given by: 

x(m) = 2m-23 1f IT is a mul.ti1e of 

X(rn) m1 2n-j+1 
+ if Q < m < 

2n-j 


