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On the Simplification of Boolean Polynomials

As a result of Shannon's application of Boolean
algebra to relay and switching circuits (6,p.713-723) the
problem of simplifying Boolean polynomials has become
important in that branch of engineering which deals with
the design of such circuits, The problem has both com=
mercial and technical significance, for in simplifying
the representation of a given Booleap polynomial, the
designer is able to reduce the number of components which
occur in the corresponding logical circuit.

In a practical sense the problem is not solved. In-
deed, if the number of independent variables is even
moderate, for example, if the function is defined on ten
independent variables, the time recuired for a modern high
speed digital computer to determine a simplest representa-
tion is prohibitive. (2,p.210-212)

In the following pages; we first construct a model of
a finite Boolean algebra of n independent variables. We
then define the problem in terms of the model. We develop
an algorithm which in theory will solve the problem. From
the derivation of this algorithm we obtain methods which,
for certain types of functions, lead to efficient solu-
tions. In addition to giving a theoretical solution to the
problem, the paper will reveal those difficulties which
give explanation for the fact that, in the practical sense,

the problem remains unsolved.



Our first goal is to construct a model of a finite
Boolean algebra, of n independent variables.
Definition 1. Let S denote the set whose elements are
l, and O, where 1 and 0O are real numbers.
Definition 2. We define two binary operations, + and

*y and one unary operation ' on S:

+ .

011 Bl . 1¥e 6
olol1 oloflo o'=1
TEYL 101

S, along with the operations of Definition 2, is a Boolean
algebra,
Definition 3. For each positive integer n, define a

i by n matrix Dn as follows:
Dy, =(0
1 %(9)
Having defined D,» define Dn+l bys
= (0| D

n+l rn) where 0 is a 2" by 1 column
]
n

D

matrix, each element of which is 0, and vhere I is a

21 by 1 column matrix, each element of which is 1.
Definition 4. For each positive integer n, let D,
denote that set whose elements are the row n=tuples of the

matrix Dn' Let Bn denote that class of functions f,

such that f is defined on 56. and f maps ﬁ; into S.



Lemma 1,

Let A be any set of cardinality K, where K is
any natural number. Let F denote that class of funce
tions g, such that g mgps A into S. Then the
cardinality of F is 2K,

Proof: For n =1, there are two admissible functions
which map a singleton into S, If a is the element of
the singleton, the ¢wo functions are a - 0, and

@ = 1. Assume the proposition true for the natural
number K, ‘Let A be any set‘of cardinality K + 1,
say A= {1, 2, ..o K, K + 1}« For each function g
defined on {1, 2, ... K}, which maps {1, 2, ... K}
into S, there correspond exactly two functions, h,

and t, which map A into S. They are defined by:

h%j) = ?(J) i YLK+ )
h(K # 1) =0

t{J) = ?(j) .l R |
tiK+1) =1

By the induction hypothesis there are 2K such functions
g, defined on {1, 2, ... K}. Hence there are

2. 2K« 2K+1 functions defined on A which map A

into S,

Lemma 2,

< (2")
The cardinality of Bn i ¥ .

Proof: By induction, it follows that no two rows of the
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Matrix Drl are identical., Hence the cardinality of Bn

is 2", By Definition 4, and Lemma 1, the cardinality of

2“
ﬁn is 202,

Definition 5. Ve define two binary operations, +, and

"~

*, and a unary operation ' on B,
For each f and g in ﬁn we define f + g by
f+qg(P)=¢f(P)+ g (P), for each P in 5&.

We define f * g by f « g (P) = f (P) » g (P) for each
P an 5n .

We define f' by £' (P) = [f (P)]' for each P in

Bn and f in gn‘

Comment B,» along with the operations of Definition 5,
is a Boolean algebra. The elements of En are functions
f whose elements are ordered pairs of the form (P, a),
where P 1is a row of D, , and where a 1is an element
of S, Let us agree to the following convention: we

number the rows of the matrix Dn in the usual manner:

D = P

n 1
Pa
. » where each P; is a 1 by
: n row matrix,
p2",

To represent a function f in B we use the 2" by 1

n'



column matrix

Definition 6. Let 1 be an integer, 1 < i < n. The
independent variable Xi is that function of §n which

ith

for each P in 5n’ maps P onto the coordinate

of P. Hence, by the above convention, the independent

variable xi corresponds to the column of the matrix

Do

Definition 7. A literal is a symbol X; or xi
i & 3 <A

Note that a literal always denotes a function in En' but

not every representation of a function which admits a

literal representation is a literal. For example, Xl
is a literal. The function Xy is the function X, + Xl.
That is X; = X; + Xy, but the symbol X, + X; is not a

literal.
Definition 8. A clause is a symbol of the form
k

Iy where
i=) ¢

i



1) lSsiSH.

2) ysi is a literal

3) Y¢. =Yg, Aif and only if i = j,
i J
4) The product Y’l . Vs2 bas Ysk does not

represent the zero element ﬁ in ﬁh .
Note that a clause denotes a function in ﬁh but not

every representation of a function which can be represented

by a clause is a clause. For example, xlxz' is a clause.
Further, the function X1X2' is the function
1 ' '
ol e o Mt L R

but the symbol
]
x1x2 x3 + xlxz'x3'

is not a clause.

The dimension of the clause iﬂ Y¢, is the integer k.
= ] i
Theorgg l.
m
Let 1111 ys1 be a clause of dimension m, and

let f denote the function in ﬁn which is represented

by this clawse. Then there are exactly 2™ elements

P of 5n such that f£(P) = 1.
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In order to prove the theorem, we need the following

definition:
We define the product set sh by inductione.

st=f{0,1}, 8" ef(qa)lqes® ass]} .
By induction, the cardinality of 8" is 2. Since no

two rows of the matrix Dn are identical, it follows
that ﬁ' = sl'l -

n
Proof of Theorem 1. An element P of D #s mapped onto

1l by f if and only if:

1) The Sith coordinate of P is 1 if ysi is

Xsi or
2) The Sith coordinate of P is 0 if ysi is

X;i .
With these m coordinates determined, there are n - m
coordinates of P which are not determined. The car-
dinality of the product set S™™ 4s 2™, gyt s"°°
is in 1 = 1 correspondence with the set generated by
holding fixed the m coordinates, and allowing the re=-

maining to take on all possible values in S. Hence, there

are exactly 2"™™ elements in ﬁn which have the m

determined coordinates. These, and only these, are

mapped onto 1 by f.
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n
Corollary 1-1. Let 1 y; be a clause of dimension

i=1 &
n, and let f be the function in Bn represented by

the clause. Then there is one and only one P in ﬁn

such that f (P) = 1. Conversely, let P e 5n‘ Then there

is one and only one clause of dimension n, such that
the function f represented by this clause maps P onto
1.

Proof. The first part of the proposition follows

immediately from Theorem 1. Let P be a given element

2 n
of D + Construct a clause Il Yy of dimension n as
i=1

follows:
if the 1P coordinate of P is 1, let y; be

1th

Xy¢ If the coordinate of P is 0, let Yy be

Xi « The function represented by the clause maps P onto

l. No other clause of dimension n can represent a func=-

n
tion which maps P onto 1. For let I z; be any
i=1

n
clause of dimension n. Write the clause Il ?i in the

i=1
n
form YO Ept ead Y ¥ and write 121 z; as

Z) * 25 % eeeee * Zoa Suppose the two clauses differ in
the jth factor. Then either

Y5 = X5 and 2y = x3 or y; = x3 and 25 = Xy
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coordinate of P must be 13
th

In the first case, the jth

and in the second case, the j coordinate of F must be
O+ In either event, the function represented by the clause
n

inl zZg does not map P onto 1l. That is, P uniquely
" n

determines the factors of 1II Yie
i=1

Corollary 1-2., Let f be an element of ﬁn. such
that f 1is not the zero element. Then f wuniquely de-
termines a non-empty set of clauses, each clause of dimen=-
sion n, such that the sum of these clauses represents f.
Proof: Consider the 2" by 1 column matrix which re-
presents f in gn' If 1 appears in the 1th row of
this matrix, there is a unique clause of di ension n which

maps Pi, the ith

row of Dn onto 1l. This follows im=-
mediately from Corollary l-1. The sum of these clauses
represents the function f. No clause of dimension n can
be added to the collection of these clauses, for if one is
added, then the sum of the clauses will represent a column
matrix which for some row will have a 1 while O appears
in that row of the matrix corresponding to f. No clause
can be removed from the collection, since if one is re-
moved, the sum of the remaining clauses will represent a
column matrix which for some row has 0, while 1 appears
in the corresponding row of the f-matrix.

Definition 9. Let f € B . The rank of f, p(f),

is the number of occurrences of 1 in the corresponding
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f - matrix.

Corollary 1«2 provides a canonical form for each
non=zero element of §n. That is, if f is an element of
En with rank j, j # 0O, then f can be uniquely, up to
the order of addition among the clauses, and up to the
order of the factors of each clause, represented by the
sum of j clauses, each clause of dimension n.
Definition 10. Let f ¢ ﬁn. and assume that f can be
represented as a sum of clauses, not necessarily all of the
same dimension, where no clause appears more than once in
the representation. This representation of f is called

a normal formula.
For example, a normal formula of the function Xy ¥ x2 is

xl + Xi Xos as well as Xy + x2 itself.

Comment: Every non=-zero element of En has at least one
representation which is a normal formula. This follows
immediately from Corollary 1-2,

We are now in a position to define the simplification
problem,

Definition 11. Let f be a non-zero element of ﬁn. Let
R denote the class of normal formulas which represent f.
Corresponding to each element ¥ of 'R, there is an
integer o{V¥), where o(¥) is the sum of the number of
occurrences of the operation. + in the representation V¥,

and the number of occurrences of the operation * in the
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representation V. The normal formula ¥, is a simplest
normal representation of the function f if and only if
for every v ¢ R, o(ﬁhJ < olV¥).
Examplet Let f = Xy ¢ X, # xl . Xé + xi . Xé y» and let

¥, denote the representation X1Xy + XX3 4 X3X3.
Another representation of f is Xy ¢ Xy # xé . Xé. De=-

note this representation by ¥,. Then o(tl) =5 and
o{¥,) = 3. We are not yet in a position to assert that
#2 is a simplest representation of f, but it is clearly
simpler than *1 .

Now the simplification problem can be stated in this
manner:
Given a function f in ﬁn, such that f 1is not the
zero element, and such that f is not the identity ele-
ment, determine the class of normal representations S,
such that ¥ e S5 if and only if ¥ is a simplest nore
mal representation of f.
Comment: The set S 4is non-void. For let & denote the
class of normal formulas which represent f, and let
C = {o(¥) | v & R}.
By Corollary 1-2, R is non-empty. Hence C is non-emp=
ty. By Definition 11, C is bounded below by 0O+ Since
& 1s well ordered, it follows that C contains a least

number, m. That is, there is at least one element *a
in R, such that o(y,) = m. Hence ¥, € 8
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We will now develop an algorithm which generates all

simplest normal representations of a function in ﬁh.

Definition 12, Let f be a given function in En’ and
let ¥ be a normal representation of f. A clause ¢ of
¥ is superfluous if the formula $ obtained by the
deletion of ¢ from V¥ also represents the function f,.
A literal Y3 of a clause & of V¥ is superfluous with
respect to f, if the formula obtained from ¥ by the
deletion of y; from & also represents the function

f. The normal formula ¥ is irredundant if it has no
superfluous clauses and none of its clauses has super=-
fluous literalss

Example: Let f = XX, + X,X} + X3X). The representation
13 2

xlxz + xlx5 + XéXé is not irredundant since the clause

x1x5 is superfluous.

Example: Let f = X)X, + x1x§x3 + X] X} X3 « The repre=-
sentation XX, + xlx5x3 + XiXéxé is not irredundant
since the literal Xi of the clause XIXéxa is super=-

fluous. It is a simple matter to verify thesé statements
with the machinery wh%ﬁh we have already developed.

Now given a function f in En it might be reason-
able to suppose that an irredundant formula which repre-
sents the function would be a simplest normal

representation. This however, is not so.
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]
Example: Let f = xlxé + Xix2 + x2x5 + x2x3 « The repre-

sentation X1X5 + Xixz + X2X§ + xixa is irredundant.

There are however two simpler representations:
f = Xy X5 + xix3 + X X3
£=X[Xp + X)X5 + X3X5

Quine (5,V0l159,p.521-531) has established a nec=
cessary condition that a normal formula must satisfy if
it is to be a simplest normal representation of a given
function, We now state and prove Quine's condition of
necessity,

Definition 13. Let f and g be functions in ﬁn. Let
F be that subset of Bn consisting of all P such that
f(P) = 1. Let G be that subset of D, consisting of
all P such that g(P) = 1. The function f is said to
imply the function g if and only if F C G,

Lemma 3,

Let f =g¢ Yy * ¥ where ¥ represents some function
in En' ¢ is a clause, and y; 1s a literal. Then
f=9+¥ if and only if @ implies y; + Ve
Proof: Let F = {PebD | [§y, +¥] (P) =1}

G={Ps¢ ﬁn | To + ¥] (P) = 1}
Let g=9+ V. Now f =g if and only if f£(P) = g(P)
for all P in D . That is, f =g if and only if F = G.
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We will show that F =G if and only if ¢ implies
yi-l-\}f.

First, suppose ¢ implies y; + ¥y« Let P e G,
Then either ¢(P) = 1, or (inclusive), ¥(P) = 1. If
¥(P) = 1, then P e F. If ¥(P) =0, then ¢(P) = 1.
But ¢ implies y; + ¥ and ¥(P) = 0. Therefore
y; (P) =1, gy; (P) =1, and P eF. Hence, if ¢
implies vy; + ¥, theﬁ GCF. Let P e F. Then either
? Yy (F) = 1, in which case ¢ (P) =1 and P €G, or
(inclusive), ¥ (P) =1 and P €G. Hence F C G. Thus
if ¢ implies y; + v, then F = G, Next, suppose F =G
Let @ (P) = 1. Then PeG and hence P & F. But
since P e F, either ¢y, (P) = 1, in which event
Yy (P) =1 or, (inclusive), ¥ (P) =1, and in any event,
¢ implies ¢ vy * Vo Therefore ¢ y; *+ V¥ =9+ ¥y . it
and only if ¢ implies y; + Ve

The above lemma provides a test which determines if
a literal is superfluous in a clause of a given represen=-
tation.
Definition 14. Let ¢ and & be clauses. ¢ is said
to subsume & if every literal which appears in £ also
appears in ¢.
Examplet The clause X1X2 subsumes the clause xl.

The clause Xlx2 subsumes the clause x2.

Definition 15. Let f be a function in B . Let ¢
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be a clauses ‘he clause ¢ is a prime implicant of f if
1) ¢ implies f and
2) ¢ subsumes no clayse of smaller dimension than
¢ which also implies f.
Theorem 2. (Quine's result)

Let f be a function in ﬁn' £f+Q, where § is
the zero element in ﬁn. Let ¢ denote a simplest normal
representation of f, Then each clause which appears in
¥ is a prime implicant of f.

Proof: Suppose one clause which appears in ¥ is not a
prime implicant of f. Denote this clause by ¢. Denote
the representation § by ¢ + ;, where $ is the for~
mula obtained by the deletion of ¢ from V. Now every
clause of  implies f. In particular, ¢ implies f.
Since ¢ is not a prime implicant of f, ¢ subsumes a
clause ¢; of smaller dimension which also implies f.,
There is at least one literal Yy which appears in ¢ and
which does not appear in ¢). Write f = ¢, Y; * ;;

where ¢, is the clause obtained by the deletion of vy,
from ¢@. Either 9o is ¢, or 9, subsumes Py ¢ and
in either event, ¢, implies 91+ But ¢, implies f.
Now implication as defined in Definition 13 is clearly
transitive. Hence ¥y implies f. That is, 9, dimplies
9 ¥; * ¥+ By Lenma 3, f=g9,+¥. But

o [y +¥] <o (op vy + ¥] = o(¥), which contradicts the
fact that ¥ 1is a simplest representation of f. This
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contradiction establishes the theorem.

Let S denote that representation consisting of
the sum of all prime implicants of f. The representation
S is called Quine's canonical form of the function f.
It is clear that S represents f. For surely S implies
f. But we have shown that f has at least one simplest
representation . Now f implies 1V, and by Theorem 2,
v implies S. Hence f implies S and S implies f.
‘herefore S represents f. MNote that S is not neces-
sarily a simplest representation of f. However, any
simplest representation of f must consist of a sum of
clauses, each of which appears in S.

Let K be any integer, where 0 < K { n. We will
determine the number of clauses of dimension K.
Lemma 4.

Let xl, x2. coey XJ be a sequence of literals.
Then exactly 2j clauses of dimension j can be generated
by the literals X;, Xp, e, XJ. Xi Xy eee Xj .
Proof: If j =1, there are exactly 2 admissible
clauses of dimension 1 which can be generated by the lite~-
rals Xl and Xi « They are X; and Xi. Assume the
proposition holds for j. Then corresponding to each

clause 0y1 Yo wee yj) which can be generated by the

literals Xio Xop eeey XJ. Xi.4X5 ces Xi, there- are

’ .
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exactly two clauses which can be generated from the
literals ch th cee Xj. Xj+1, Xin xé; ceoy xj' X3+10
Th‘y are: (yl'YZ ese Yj)xj+1 and- (Yl Y2 sen Yj)x5+1.

By the induction hypothesis there are exactly 2j

distinct clauses (y; y, s yj). Therefore, there are

exactly 2 . 2d = 23*1 distinct clauses which can be
generated by the literals

Xl. X2’ LN ] xj, Xj+l. Xi' Xé [N XJ. x5+10

% L’mma Da

Let K be any integer where 0 < K < n. There are
exactly 2K (E) clauses of dimension K which represent
functions in En'

Proof: Consider the set {xl. Xos ees xn}. There are

n
exactly (K) distinct sets {X_ X
$; sy

see Xs 3. each such
k

set consisting of exactly K of the letters

ST Xo eee X,+ By Lemma 4, exactly X clauses of

dimension K can be generated from each set

{xsl. x$2 xsk} U {x;l. x;z x;k}.

Every clause of dimension K 1is generated in this pro=
cess, Hence there are exactly 2K (2) clauses of dimen=-
sion K.
Lemma 6.

There are exactly 3" = 1 clauses which represent
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i~

functions in Bn'

Proof: Let Z: denote the total number of clauses which

represent functions in gn' By Lemma 5,
&) n = n n
) = 2" (n) e 2™ (o2 ... 22 ()
But
" =(2+1)"=) +1. Hence 3" -1=T,

Let f e ﬁn' f+§. Let Q denote the set of prime
implicants of f., Q is clearly finite since the total
number of clauses which represent functions in §n is
finite. Once the set 6 is determined, in theory it is

a simple matter to determine the set of simplest represen=
tations of f. For suppose Q = {wl. Pos e qm}. We
next consider the class P(Q) of all non-empty subsets

of Q. P(Q) is just the power set of Q without the
void set and therefore has cardinality 2™ = 1. We sum
over each element of P(Q) to obtain 2" =1 representa=
tions, each of which implies f. We form the set S,
consisting of those representations of the 2% = 1
representationg, which are implied by f. Again, St

m Ll
is non-empty since Z 93 is an element of S',
i=l

Next, we determine the set C: C = {o(y) | ¥ € 5'}.
Again, C is non-empty, and has a least element r .
The set § = {y € ' | o(y) = r} is the set of all

simplest representations of f.
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Given a representation V¥ of a function f in En'
in theory it is a simple matter to determine the prime im-
plicants of f. To do so, we need only follow the steps
outlined below.

Step 1. Generate the matrix D, For each
clause y of dimension 1, compute and save the
corresponding y-matrix. From the formula V¥,
compute the fe-matrix.

Step 2. For each clause y of dimension 1,
compare the y-matrix to the f-matrix. y implies
f if and only if for every row of the y-matrix
in which 1 appears, 1 also appears in the cor-
responding row of the f-matrix. The clauses of
dimension 1 which imply f are the prime impli-
cants of dimension 1.

Step 3. Having determined the prime impli=-
cants of dimension K, consider all the clauses
of dimension K #+ 1. For each clause & of dimen=-
sion K + 1, compute and save the corresponding
dematrix. (It is possible that the de-matrix of
a clause of dimension K + 1 might be computed at
Step 1 when the f-matrix is determined. 1In this
event, there is no need to compute it again here.)
Eliminate from consideration each clause of dimen~-

sion K + 1 which subsumes any clause £ of
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dimension less than K + 1, if & implies f.
Again, & implies f if and only if for every row
of the E-matrix in which 1 appears, 1 also
appears in the corresponding row of the f-matrix.
Those, and only those remaining clauses ¢ of
dimension K + 1 which imply f are the prime
implicants of dimension K + 1.
Step 4, If the clauses of dimension n
have not been subjected to the ,rocess, repeat
Step 3. If the clauses of dimension n have been
subjected to the process, terminate the algorithm.
The clauses so determined are the prime implicants
of £
Example 1t Let n = 3, and consider the function
£ = X;X5 + X{X} + X,X§ + X}X5. Ve will determine the prime
implicants of f. By Definition 3 we have:
Dl __ i s SN 02 = 00 and D3 =

1 01
10
XA

P s OO OO
FROOFMFOO
HFOHO~OM~O

Here we omit the parentheses of the matrices for nota-

tional convenience.
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By Definition 6 we have:

X, =0, Xo=0, and X, =0
10 20 3
0 1 0
0 1 1
1 0 0
1 0 1
) 1 0
1 1 1
By Definition 5 we have:
X=1, X2=1, and X =1
1 & % 30
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0
Again, by Definition 5,
XXX =0 l = 0, XiXa =1 0 = 0
12 "¢ 1 0 172 3 0 0
0 0 0 1 1 1
0. O 0 1 1 1
1 1 1 0 « B 0
1 1 ] 0 0 0
1 0 0 0 1 0
1 0 0 o) 1 0
XX = 0 1 = 0, and X _ A 0 = 0
230 o 0 23 1 1 1
1 1 1 0 0 0
1 0 0 0 1 0
0° 1 0 ] * @ 0
0 0 0 1 1 1
1 1 1 0 0 0
i | 0 0 0 1 0

Note that these multiplications resemble the "logical and"
instruction which is found on most digital computers.

Again, by Definition 5,
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N

-

+*
+
]

h

X X2 # XjXg + X X3 # X3Kq

OCOFH~OOOO0
OCOO0OOHHOO
O~OO0OOKOO
CO~OOCO+O
OFFFHMEEEO

Note that these additions resemble the "logical or"
instruction which is found on most digital computers.
We have now completed Step 1 of the algorithm.
According to Step 2, we must now determine all clauses
of dimension 1 which imply the function f. For con=
venience of comparison, we write the following table:

TABLE 1.

>

>
et

>
N

>
w
W=

ot

N-

HH~O0000
HEHEOOF~OO
OO OKO
COO0OO i~
COFHFHOOKHK X
O-HOMOFOM
O =0 rh

We find that no clause of dimension 1 implies f;
Xl, Xpy and X4 are eliminated by the occurrence of 0
in row B of the f-matrix; xi, x&. and Xé are elimi-
nated by the occurrence of 0 in row 1 of the f-matrix.
Hence, no prime implicant of f is of dimension 1.

According to Step 3, we must first generate all

clauses of dimension 2, By Lemma 5, there are exactly

2{3) |
2 = 12 such clauses. Note that Lemmas 4 and 5



23
give constructive proofs; they describe how these
clauses can be generated.

According to Lemma 5, we determine all subsets of
cardinality two of the set {X;, X5, X3}. These are
{xl. X5} {xl. X5} and {X50 X3}

According to Lemma 4, from each of these three sets we

generate 22 o 4 clauses of dimension 2, For example,

from the set {Xl, x2}. we generate the clauses:
xl Xy
Xl Xé
X{ %o
X{ X5

Similarly, from ({X,, X3} we generate

Xy Xé , and from [xz. Xa} we

generate
X3 %3
1
X? X3
1 1
X5 X3
According to Lemma 5, these are all the clauses of
dimension 2. Next, we compute for each clause of dimen=

sion 2, its corresponding matrix. Of course we have done

this for the clauses xlxi. Xixz, x2x5 , and Xéxs. We



compute the remaining matrices and for convenience of
comparison, we write TABLE 2.

Next, we must eliminate from consideration all
clauses of dimension 2 which subsume any clause & of
dimension 1, if ¥ implies f. But, in this example,
there is no clause of dimension 1 which implies f. There~
fore, we must consider all clauses of dimension 2 which

TABLE 2
' ' 1yt

X1X2 X1X2 )_(1)(2 X1X2 f
0 0 0 1 0
0 0 0 1 ) |
0 0 p 3 0 3
0 0 1 0 1
0 1 0 0 1
0 1 0 0 1
1 0 0 0 1
1 0 0 0 0

1 L 1] 1

xlxs X1X3 xlx3 X1X3 f
0 0 0 1 0
0 0 1 0 1
0 0 0 1 h
0 0 1 0 1
(o] 1 0 0 1
1 0 0 0 1
0 1 0 0 1
1 0 0 0 0

]

XXy XX XXy oxxy f
0 0 0 1 0
0 0 % 0 1
0 1 0 0 1
1 0 0 0 1
0 0 0 1 1
0 0 ] 0 1
0 1 0 0 1
1 0 0 0 0
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From TABLE 2 we immediately determine all clauses
of dimension 2 which imply f. They are: XIXé, XiXQ,
X1Xé, xixs. X2X5. and Xéxs. These and only these are
the prime implicants of dimension 2, Note that: We
found that no clause of dimension 1 implies f. From
this we could have immnediately concluded, without fur-
ther use of the algorithm, that the given clauses were
prime,implicants of f. For the given clauses, X1Xé,
xix2, x2x5. and xéxa, are all of dimension 2, and clearly
no given clause can subsume a clause of dimension 1
which implies f, the latter set being empty. But in
addition to-the given clauses, the algorithm has gene~
rated other prime im_licants of dimension 2, namely,
XIXé and xixs.
Conclusiont Once enough prime implicants have been

determined to recover the function, it does not neces-

sarily follow that all of the prime implicants have been

determined. In what follows, when we refine the algo=-

rithm, we will prove a theorem which is concerned with

this fact.

At present however, we can not terminate the algorithm.
Hence we proceed with Step 4. According to Step 4, we
we return to Step 3. At this point, the index K of step

3 has the value 2. Hence we must consider all ¢lauses of

dimension 3. According to Lemma 5, we consider the set



26
[xl. X9 x3}. According to Lemma 4, we consider, say,
the clauses
xl x2
1
Xy X3
Xl x?
1
X) X2

From these we generate eight clauses:

According to Lemma 5, these are all the clauses of dimen=-
sion 3 in §3. According to Step 3, we compute the fol=-
lowing matrices:

TABLE 3
X]X3X3 X{X5Xq X]XoX3 X{XoXg XjX3X3 X X3X5 XyXoX3 X)XoXg

elslolslolialel
eolelolsloleol Jdo)
O000O0OrHOO
OOOOHO&)'O
OCOO0OOC OO
OO~OO0OO00O0
C:H-MDO.CDOC)OT
HFOOOOOO0OO

We now eliminate each clause of dimension 3 which subsumes
any clause & of dimension 1 if & implies f. But,

as we have seen, no clause of dimension 1 implies f,
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and therefore we are left with all eight clauses of
dimension 3, Next, we eliminate each clause of dimen-
sion 3 which subsumes any clause & of dimension 2 if
£ implies f. Now we have already determined the clauses
of dimension 2 which imply f. They are: X X2, X{Xos
XIX§, xix3. X2X5. and X§X3. Of course, in this particular
example, the clauses of dimension 2 which imply f are
the prime implicants of dimension 2. However, in general,
this will not be true. We write the following table:

TABLE 4

Clauses of Dimension Three Clauses of Dimension less
Than Three Which Imply f

iy Rg Xy Xy X3

%y X4 Xq x{ %»

X{ X Xg Xy X3

X1 X4 X X! X
i.%3

Xy Xo X4 X, X
3 5644 2 X3

Xy X3 X4 Kar¥s

1
X} %, xi
X %3 %3

From TABLE 4 we see that the following clauses of dimen-
sion 3 subsume clauses of dimension less than three which
imply f:

Xl x2 X3

X] X5 X3

xl x2 x?

|
xl x X
X] 2"3
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Hence we eliminate these from further consideration. We
are left with two clauses: X1 Xo X3. and Xi Xi x': Again

we write the following table for convenignce:

' 1 1
Xl Xo X3 Xl X5 X3 f
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
1 0 0

We immediately see that the two remaining clauses do not
imply f, and according to Step 4 we terminate the pro-
cess: Hence the prime implicants of f aret xlxé,
xixz, XiXé, Xixa, X2X5 and x§x3.

The algorithm as developed at this point is complete.
That is, we have developed sufficient machinery to exe-
cute the four basic steps and generate the prime impli-
cants of a given function. However, as Example 1
illustrates, the algorithm is not particularly efficient.
Therefore we will next prove some theorems which will
increase its efficiency.

The following lemma makes it possible to by-pass the

recursive definition in the generation of D e

Lemma 7.
The Kth column of the matrix D, can be partitioned
into 2K =K by 1 sub=-matrices Qi’ where i 1is the

row index, such that if i is odd, each element of Qq
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is 0, and if i is even, each element of Q1 is 1.

Proof: 0
D1 1/» @and the proposition holds for n = 1,

Assume the proposition holds for Dn and consider Dn+1‘

By Definition 3,

(e Dn)
D = . where
n+l JDn

L]
@ isa 2" by 1 column matrix and I is a 2" by
1 column matrix. Therefore the proposition is true for
column 1 of Dn+1.
If 1<K<n+1l, then the kth column of Dp41

is the Kel column of (Dn) « By the induction hypothesis,
D
n

the K-l column of Dn can be written as: Ql ’
Q
2

L
L]

Q
2k.1
where each Qy is a 2"'K+l by 1 matrix such that if

i 1is odd, each element of Q1 is 0, and if i is

even, each element of Qi is 1. Therefore the K=l

column of (Dn can be written as
En;
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This is the K'P column of Dryye There are 2e2K-1 _ 2K
partitions of this matrix, and each sube=matrix has

2("“')"K elements. Further, each element of the sub~

matrix with row index i is O if i 4is odd, and 1 if
i 1is even. This establishes the proposition.

Let ¥ denote a normal representation of a function
g In §n. The representation ¢ is called a developed
normal formula if for each literal yy Which occurs in
one clause of the representation, the literal yy or
the literal yi occurs in every clause of the representa~-
tions That is, for each letter which occurs in one clause
of the representation, we require that the letter occur
in every clause of the representation. For example,
X1X2 + x1x§ is a developed normal formula. It follows
immediately from Corollary 1=2, that every function

f e ﬁn. f # §, has at least one developed normal
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formula.

Now one advantage of our algorithm is that we are
not required to start with a developed normal formula.
Indeed, the method of the last example is completely
general, in the sense that ¥ need not even be a normal
formula, for given any representation of the function £,
we can determine the corresponding f-matrix by the methods
of the last example. But for this generality we pay the
price of computing the matrix of each literal which ap-
pears in V¥, in order to combine the matrices according
to V¥, and thereby determine tle matrix of the function
which ¥ represents. Now suppose that V¥ is, in fact,
a normal formula. We do not assume V¥ to be developed,
we just assume that ¢ is normal. Is there a more ef-
ficient way to determine the matrix of the function which
¥ represents?

Suppose (ysl ysz ¥ W st) is a clause of V.

By Theorem 1, there are axactly 2n=J rows of D, which
are mapped onto 1 by the function in §n represented by

the clause ysl y32 « ¢« o Y, « Hence there are exactly

J
2™J sows of the matrix of that function in which 1

appears, and the row number of each such row can be
determined by the matrix D + For example, consider

the clause XIXé which represents a function f in 53.
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Xy Xp X5
1 0 0 0
2 0 0 1
3 01 0
a 6" ife R
5 1 0 0
6 1 @}
7 1. 158
8 1045

The two rows of Dy which are mapped onto ‘1 by x1x5
are row 5 and row 7. Hence 1 appears only in rows 5 and
7 of the f-matrix and we have

f=0

OO~OOO

Therefore, if we are given ¥ as a normal formula, we
can determine the matrix of the corresponding function

in gn without computing the individual matrices of the
clauses of VY. For example, consider, the representation
XlX2 + X,X5. We compute the matrix of the function of

B, represented by x1x2 + x2x3 as follows:

X} Xo Xq
1 0 0o O
2 0 9 1
3 010
4 g% 3
S 1 o ©
6 R
7 S
8 RN L |
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The two rows of Dy which are mapped onto 1 by xlx2
are rows ‘;???and 8. The two rows of D3 which are mapped
onto 1 Ly X,X4 are rows 4 and 8, Hence the only
rows of the matrix of the function represented by
X1X2 + x2x3. in which 1 appears, are rows 4, 7, and

8« Therefore this matrix is:

O~ W
= OOMO OO0

Now assuming that ¥ is given as any normal
representation of the function £, with the aid of
Lemma 6 and the above method, we write Step 1 of the
algorithm in the following manner:

Step 1. Determine D+ From Dy and V,
compute the f-matrix. Compute p(f). (By Defini-
tion 9, the rank of f, p(f), is the number of
occurrences of 1 in the f-matrix.)

Suppose f is of rank m, where m < 2"°K,
Since each clause of En of dimension K has
rank 2M°K , it follows that no clause of dimension
less than or equal to K can imply f. Hence no
clause of dimension less than or equal to K can

be a prime implicant of f., Hence, in determining

the prime implicants of f, we can ignore all



clauses of dimension less than or equal to K.

Hence Step 2 of the algorithm can be written:

Step 2. Determine the smallest integer j
such that 0 < j < n, and on=J < p(f). Each
clause ¢ of dimension j which implies f is
a prime implicant of f. The clauses so determined
are all the prime implicants of f of dimension
je No clause of dimension less than j is a prime
implicant of f.

There is one case in which the conditionsO < j < n
and 2"J < p(£) can not both be.satisfieds If £ is
the identity element in B, then p(f) = 2". Thus if
on=J <plf) = 2" 3 can not satisfy 0 < j < n. But
in this case, any representation of the form Xy + Xi ’
(i =1, 2, oo n) will represent the identity element,
and the case is trivial, since each such representation
is a simplest representation of the identity element.

Now given the f-matrix, where p(f) = m, and given
j such that 0< j<n and 2"9 < p(£), we wish to
determine all clauses of dimension j which imply f,
and yet avoid computing the individual matrices of the
clauses. Further, we wish to minimize the number of
candidates to be considered.

By Corollary 1l-1 each row of Dn uniquely determines

a clause of dimension n such that 1 appears in the
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corresponding matrix of the function which that clause
represents. For example, row 3 of D, is (e, 8, 1, 0)
and this row determines the clause xix§x3x; +« Hence the
matrix corresponding to the clause xiXéXBXi must have
a 1 in its fourth row.

th

Now given the r~" row of Dn' let ¢ be the clause

of dimension n determined by that row, such that 1

appears in the £t row of the p-matrixe Now ¢ sub-
n

sumes exactly (j) clauses of dimension j, and for

each of these clauses, 1 must appear in the rth row

of its corresponding matrix. Hence, it follows that if

th

1l does not appear in the «r row of the fematrix, none

of these clauses of dimension j imply f.

th

However, if 1 does appear in the r row of

the f-matrix, each of these clauses is a candidate.
Assuming then that 1 appears in the rth row of the
f-matrix, let & denote one of the (?) clauses of
dimension j which are subsumed by ¢« Then 1 appears

in the rth

row of the &=-matrix. But, unless j = n,
we can not assume from this that & implies f, for
there are 27°J rows of D, which are mapped by &
onto 1, and hence there are 2n-j corresponding rows
of the E-matrix in which 1 appears. Denotetheir row
numbers by Sl,.82, ee Tp beo Szn-j' Then & implies

f if and only if 1 appears in rows Sl’ 52. adsl B

cee Szn-j of the f-matrix.
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Hence we have the following process for determining
the clauses of dimension j which imply f:
Case I. p(f) 2> 2"'1. In this event, we must start the
process at j = l. To determine the clauses of dimen=
sion 1 which imply f we note that:
If in each row of column i of Dn in which 1 appears,
1l also appears in the corresponding row of the f-matrix,
Xy dimplies f; if not, X; does not imply f. Assuming
that f is not the identity element, if Xi implies f
then Xi does not imply f. If in each row of column 1
of Dn in which 1 appears, O appears in the correspon-
ding row of the fe-matrix, then xi implies fj; if not,
Xi does not imply f.
Case II. p(f) =m and 1< j.
l. Let Sl. Sy eee Sm be an increasing sequence
such that 1 appears in rows Sl' 82, ees and Sm of
the f~matrix.
2., Ignore all rows of Dn except rows Sl’ 82.
eee S o Let the index i have value 1.
3. For the row Si of D, let ¢, denote the
uniquely determined clause of dimension n which maps
row 81 of D, non-to l. For each elause :i,t

PRI Yo 24 widk (j) )» subsumed by P40 determine the

2"'j rows of Dn which (i ¢ Mmaps onto 1l. Denote
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their row numbers by “t.l' “t.2' seee M v 1f

t,2""J

1 appears in rows By 10 By o0 cee B of the

t,2""3
fematrix, then Ei.t implies f; if not, eliminate

zi,t from consideration.

With i fixed, the above process is to be performed

for t =1, 2, sovee {g) .

4, If 3) has not been performed for i = m,
increase i by 1 and repeat 3). If 3) has been
performed for i = m, terminate the process. The clauses
so determined are all the clauses of dimension j which
imply f.

It should be noted that for distingt wvalues of i,

say i, and i,, it is possible that § and &
1 2 il.t 12,t

can denote the same clause. Thus, if i, < i and E
1 2 il.t

and E§ denote the same clause, and § has been
12.t il.t

found to either imply f or not imply f, it of course

is not necessary to again test :1 £ °
2

Exam let Consider the function f in §3 which is
represented by xix2x3 + XIX2X5 + xlx2x3. Suppose that

we wish to determine all clauses of dimension 2 which

imply f.
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Xy X5 Xq f
1 0 0 O
2 0 0 1
3 Q-9
o ' B P | 1
5 10 0
6 W e !
7 S 1
8 B e | 1

We immediately determine the fematrix. Then from row 4,
there are three candidates: xixz. Xix3 » and XoXnqe
Of these, X{Xo is eliminated by row 3, and X]'_X3
is eliminated by row 2, The remaining clause XoXg
implies f. From row 7 we obtain the candidates xlxz,
X1X3 and XoX3e X)Xy implies f; XX} and XoX3
are eliminated. From row 8, xlxz. x1x3 and X2X3 are
candidates. We have determined already that XX, and
XoXq imply f. The remaining clause X1X3 is eliminated
by row 6. Hence the clauses of dimension 2 which imply
f are: X1X2 and XoXqe

According to Definition 15, a clause ¢ is a prime
implicant of the function f if ¢ implies f, and
does not subsume any clause of smaller dimension which
also implies f. Thus in Step 3 of the algorithm, when
we determine the prime implicants of dimension K + §
for each clause ¢ of dimension K + 1 which implies
f, we must be assured that ¢ subsumes no clause of

smaller dimension which implies f. Hence, in Step 3,
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we test ¢ against every clause ¥ of dimension less
than K + 1, where &t implies f. We then eliminate
¢ from consideration if ¢ subsumes any such clause &,
That this procedure can be simplified is suggested by the
following results:

Lemma 8.

' The relation subsume is of a transitive nature: if
¢ subsumes & , and & subsumes b, then ¢ subsumes
. The proof is by direct application of Definition 14.
Lemma 9.

Let f be a given function in En' f+d. Let ¢
be any clause of dimension j such that ¢ implies f.
Then ¢ 1is a prime implicahbrof f if ¢ subsumes no
prime implicant of f of dimension less than J.
Proof: If ¢ is of dimension 1, and if ¢ implies f,
then ¢ is a prime implicant of f. Assume the proposi-
tion holds for dimensions 1, 2, ..« K¢ Let ¢ have
dimension K + 1, such that ¢ dimplies f and ¢
subsumes no prime implicant of f of dimension less than
K 4+ 1. Suppose ¢ is not a prime implicant of f.
Then ¢ subsumes some clause ¥§ of dimension less than
K+ 1l, where § implies f. But ¢ subsumes no prime
implicant of f of dimension less than K + 1. Now

either § is a prime implicant of f, in which case we

have a contradiction, or % is not a prime implicant
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of f. But if & 1is not a prime implicant of f, by
the induction hypotheses, it follows that & must
subsume a prime implicant & of f, where dimension
d < dimension &. Then ¢ subsumes &, and & subsumes
5, By Lemma 8, ¢ subsumes &, and dimension & <
dimension & < dimension ¢, another contradiction.
Combining Definition 15 and Lemma 9, we have the follow-
ing theorem:

Theorem 33 [

Let f ¢ En’ f4§. Let ¢ be any clause of gn‘
A necessary and sufficient condition that ¢ is a prime
implicant of f is that:

l. ¢ implies f and

2. ¢ subsumes no prime implicant of f with
dimension less than that of ¢.
Proof: Sufficiency is by Lemma 9, necessity is an immedi-
ate consequence of Definition 15.

The above results suggest that Step 3 should be
modified in the following manner: Assuming that all the
prime implicants of a function f have beendetermined
up to and including those of dimension K, we wish to
determine the prime implicants of dimension K + 1l. Now
for each candidate ¢, we immediately eliminate ¢ from

consideration if ¢ subsumes one of the prime implicants

of dimension less than K + 1, this step being justified
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by the second condition of Theorem 3, If ¢ does not
subsume any of the prime implicants of dimension less
than K + 1, we next determine if ¢ implies f. If
¢ then implies f, ¢ is a prime implicant of f.

The order of the above two steps can be reversed. That
is, given the candidate ¢, we can first determine if ¢
implies f. If ¢ does not imply f, of course ¢ is
not a prime implicamt., If ¢ implies f; we determine
if ¢ subsumes any of the prime implicants of dimension
less than K + 1. If then ¢ does not subsume one of
the prime implicants of dimension less than K + 1, ¢
is a prime implicant. The significance of either method,
of course, is that in the process of determining the
clauses of dimension K + 1, as a result of the previous
steps in the algorithmiwhich determine all the prime
implicants of dimension less than K + 1, we are not
required to test each candidate ¢ against every clause
§ of dimension less than K 4+ 1 which implies f to
insure that ¢ does not subsume ¥; we are only required
to test ¢ against each prime implicant of dimension less
than K + 1,

Although it is not our specific purpose to develop
a computer-oriented algorithm, it is obvious that for

even a moderate number of independent variables, it would

be impractical to use the methods so far described
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without a computer. Now the algoritim so far developed
is at least partially computer-oriented. In particular,
the operations & , + , and ' of our model are easily
applied to a computer. However the basic definition of
subsumes has visual connotations. For example, the
clause x1x2x3 subsumes the clause xlxa. and we
determine this by actually observing that the symbols
Xl and Xq appear in the clause x1X2x3. Now it is
certainly true that computer systems in the present state
of the technology can distinguish and work with symbols.
But in general, the basic computer can not. Hence it is
necessary to convert a symbol, by some suitable code, to
a form with which the computer can work. But this form
is usually a sequence of the digits 1 and 0. Thus,
it would require extra programming for the computer to
determine that X1X2X3 subsumes X1X3. but this extra
programming would not be necessary for the computer to

determine that xlx2x3 implies xlxs. if the matrices

X1X2X3 X X2

P

HFOOOOO0OO0O
HHEODO00000

were stored in the memory of the computer. The following

theorem, Theorem 4, might therefore have practical
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applications, in addition to the theoretical applications
for which we will find it useful.

Lemma 10.

Let ¢ and & be clauses of §n' Then a necessary
condition that ¢ subsumes § is that ¢ implies E.
Proof: Let ¢ be a clause of dimension j, and let &
be a clause of dimension K, and assume that ¢ Ssubsumes
€. (We can assume that j > K, for if j = K, then
¢ = £ and there is nothing to prove.) Let ¢ be the

v oY+ Let Pe 5n such that o(P) =1.

clause y_Y
% k

Then the following condition is satisfied:

th

then the S1 coordinate of P

is 1. If y, is x;i then the S,*" coordinate of

P is 0. But this condition, since ¢ subsumes £, is
sufficient to insure that ¥§(P) = 1. By Definition 13,
¢ implies ¥,

The condition of Lemma 10 is also sufficient. That
is, if ¢ and & are clauses, and ¢ 4implies &, then
¢ subsumes E§. We state this in Theorem 4 below after
some preliminary lemmas.

Definition 16. Let P ¢ ﬁn and q € En' P and gq

are eguivalent by the deletion of X¢ if P and q

differ only in the gth coordinate. We write (P ~ q)
by XK to denote this relation.
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Definition 17. Let f ¢ B,» The function f is indepen=
dent of the variable K provided that for every P in

B,

£(P) = f(q) if (P ~aq) by X
Lemma 11,

Let 9 and & be clauses in B . Then a sufficient
condition that ¢ subsumes ¥ is that ¢ implies &.
Proof: Let ¢ have dimension K and let & have dimen=
sion j, and assume that ¢ implies &, Clearly K 2 j,
for if K < j, since there are 2"X p in 5; such that -
o(P) = 1, and 23 p in ﬁ; such 1tat &(P) =1, it
would follow that for some P for which ¢(P) = 1,

§(P) = 0. Hence K > j. Now if K=3j, ¢ =E and [
subsumes &. Suppose K > j. Now suppose that ¢ does
not subsume &£. Then either a literal Yo @ppears in ¥
and the literal y& appears in ¢, or a literal Yo
appears in & and neither Y & yé appear in 9. The
first case is clearly iﬁpossible since ¢ implies &. In
the second case, ¢ is indpendent of X+ Let o(P) =1,

th

Then Z(P) = 1, and hence the m'" coordinate of P is 1

if Yo is X or the mth coordinate of P is 0 if

m'
Y 48 Xn+ Consider the element q of ﬁ; such that
(P ~q) by Xo+ Then, since ¢ is independent of Xpo
9{q) = 1. But 4(q) = 0. Hence ¢ does not imply q.

This contradiction establishes the proposition.
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Comkining the Lemmas 10 and 11, we have the follow~
ing Theorem:

Theorem 4.

Let @ and ¥ be clauses of §n. Then a neces=
sary and sufficient condition that ¢ subsumes ¥ is
that ¢ implies &,

Remark: It must be emphasized that ¢ and & are
clauses in the statement of Theorem 4.

Lemma 12,

Let f e ﬁn, where f is not the identity element,
and assume that f 1is independent of Xy s l1 <K <£n.
Let ¢ be a clause which implies f such that the liter-
al y. (yK =X¢ or vy, =X!) appears in ¢. Then ¢
is not a prime implicant f.

Proof: @9 can not be of dimension 1. For suppose ¢ is
of dimension 1, Then ¢ is the literal yg.. Now f

is not the identity element, Therefore, there exists

P& ﬁn such that f(P) = 0. Now ¢ implies f and ¢
is yg. Hence vy (P) = 0. Let q be that element of

ﬁn such that (P ~ q) by Xgs Then o(q) = y(q) = 1.
But f is independent of Xy, and therefore f(q) = 0.
This contradicts the fact that ¢ implies f. Thus ¢
is not of dimension 1. Therefore let & be the clause

obtained by the deletion of the literal Yk from .

Then % is independent of X.. Let P e ﬁn such that



46
§P) =1, If yg(P) = 1, then ¢(P) =1, and, since ¢
implies f, f(P) =1, If y.(P) =0, let q be that
element of ﬁh such that (P ~ q) by Xgo Then §(q) = 1
since & in independent of X.. But y.(q) = 1, Hence
o(q) =1 and f(q) = 1. But f is independent of Xy s
and (P ~ q) by Xgo Hence f(P) = 1, Therefore if
§(P) = 1, then f(P) =1, That is, & dimplies f. Since
@ subsumes &, ¢ is not a prime implicant of f,

At this point, we again consider, Example 1. 1In
Example 1 we found that the prime implicants XIXé. Xixz,
X2X§ and Xéx3 were enough to recover the function f,
where one representation of f is:

f = XiXéXs + XiX2X5 + XiX2X3 + X1X5X5 + XIXéXS + X1X2X5.
We found in addition to XIXé, Xixz. and X2X§. two
other prime implicants of dimension 2 x1x5 and Xixa.
However we found that no clauses of dimension 3 were prime
‘implicants, and indeed, we were required to complete what
turned out to be extraneous work in order to verify the
latter remark. That thi8 work was unnecessary is shown by
the following theorem:

Theorem 5.

Let f be an element of En’ n > 2, such that f
is not the zero element and f is not the identity element.
Let P denote the set of all prime implicants of f of

dimension 2 or less. Then if _z ¢ =1£f, no
geP
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clause of dimension gpeater than 2 is a prime implicant
of f.
Proof: Let P = {9, 9ps o 9.} be the set of all
prime implicants of f of dimension 2 or less, and assume
that f = @) + 95 + eee + @ ¢« Let M be the set of all
integers j such that:

1) n>23>2 and

2) Every clause of 5; with dimension j which
implies f subsumes at least one clause in FP.
Let ¢ be a clause of dimension n such that ¢
implies f. By Corollary 1 = 1 there is exactly one
element P in ﬁn such that ¢(P) = 1. But ¢ implies
f=9 49+ «ec + g, and hence there is at least one
950 1 <1 <m such that ¢4(P) = 1. Therefore ¢
implies ¢4+ By Theorem 4, ¢ subsumes g3. Hence
n &€ M.

Let j be any integer such that n 2 j > 4, and
assume that j € M. Let ¢ be a clause of dimension
J - 1, such that ¢ implies f. Now n > j-1, and there~
fore not all n letters can appear in ¢. Then there is
some literal Xy s where XK does not appear in ¢ and
Xﬁ does not appear in ¢. Consider the clause ¢Xy.
The clause ¢Xg implies f and is of dimension j. By
the induction hypothesis, Xk subsumes some clause P4

of P. Next consider the clause ¢Xg+ The clause ¢X¢
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implies f and is of dimension j. Hence ¢X?! subsumes
some clause Py of P. Now clearly the literal xg
does not appear in P4 since ¢Xyg subsumes Py0 and
therefore PXy implies 94+ Therefore, if the literal
XK does not appear in ®y» every literal which does
appear in 9; appears in ¢, and ¢ subsumes Py

Suppose that the literal Xy does appear in Py
Then consider Py

Clearly the literal Xy does not appear in Pys
since ¢Xg subsumes 94» and hence @Xg implies ¢,
If then the literal xi does not appear in ¢,, every
literal which appears in ¢, appears also in ¢ and
@ subsumes Py ‘Suppose that the literal Xi does
appear in Py Then XK appears in P4 and xﬁ appears
in Py *
Claim: The dimension of ¢; is 2 and the dimension
of 94 1is 2. Indeed: It can not be that the dimension
of Py is 1 and the dimension of ? is 1l. For if so,
then ¢; =X and ¢, = Xg. But then ¢; + ¢, = I,
where I is the identity element. "But (¢; + ¢,) implies
f, and this would mean that f is the identity element,
contrary to the hypothesis. Also, it can not be that Py '
is of dimension 2 and Py is of dimension 1. For if so,
93 = YXg and @, = Xg. Then

?1 + Py = YXK-+ xi = xi + Y.
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But then the literal vy implies P; * 9, and g + g
implies f. Hence y implies f, and 9; 1is not a
prime implicant of f, another contradiction. Similarly,
it can not be that ¢y is of dimension 2 and 9y is
of dimension l. Therefore both ¢4 and ¢, are of
dimension 2, where XK appears in P4 and Xﬁ appears

in ¢
t
Write ¢, = y;X and Pp = YXE o

Then ¢Xg subsumes YiXg = P and

qxf'( subsumes Y2xi2 = Py e
Hence ¢ subsumes Yy and

¢ subsumes vy,
Then ¢ subsumes Y1Y2 .

Claim: vy;y, implies f. For suppose that vy y,(P) = 1.
Then y,(P) =1 and y,(P) = 1. Either Xg(P) =1, in
which case Qi(P) =1 and f(P) =1, or XK(P) = 0, in
which case Xg(P) =1, ¢ (P) =1 and f(P) = 1. Thus
Y1Yo implies f. Y, c¢an not imply f since ¢ = ylxK
is a prime implicant of f; similarly, Y, ¢an not imply
f. Hence Y1Y2 implies f and subsumes no clause of
smaller dimension which implies f. Thus, Y Yo is a
prime implicant of f of dimension 2. Hence y1Y, € s

and ¢ subsumes Y1Yp+ Therefore, in all eventualities,
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¢ subsumes some clause of P. Hence if Jj & M,
jeleM, for j=n,n=1, «ees 4, which completes
the proof.

There is an immediate generalization of Theorem 5
which comes to mind, but which, unfortunately, is not
true. Let f ¢ ﬁ;. f not the zero element, and f
not the identity element. Let P denote the set of all
the prime implicants of f of dimension K or less.

Now suppose that 2‘ ¢ = f. Then if K < n, a reasonable
9P

question is: "Is every prime implicant of f an clement
of P?" The answer is, "not necessarily." The proof of
Theorem 5 is almost applicable in this cases For if
K < n, by the argument of Theorem 5 we can show that no
clause of dimension n is a primé implicant of f. How=
ever, the trouble arises when we attempt to get from n
ton=-1. Let ¢ be a clause of dimension n - 1
which implies f. Then, as in Theorem 5, we determine
two clauses ¢; and g9, of dimension n such that -
¢X Subsumes @ and
QX& subsumes P4 .
Now if X, appears in ?; and xﬁ appears ?n th, we
have ¢; = §;X, and ¢, = L Xy « And again we have
that ¢ subsumes ¥,%,. However we can not conclude

that (152 is of dimension K, nor can we conclude that
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5152 is not a prime implicant of f. It is at this
point that the proof of Theorem 5 fails.
"Example: Let f = xlxzxé + XX, Xge
Then x1x2x5 and‘ x3x4x5 are prime implicants of f,

and these are all the prime implicants of f of dimen=
sion 3 or less. But X X X3X, is also a prime implicant
of €

There is however, one immediate Corollary of Theorem 5@
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Corollary 5-1., Let f ¢ gn. f not the identity element,
and f not the zero element. Let P be the set of all
the clauses of dimension 1 which imply £, and suppose

1

that Zﬁ y = f. Then every prime implicant of f is an
Y& .

element of P,

Proof: By Theorem 5, no clause of dimension greater than
2 can be a prime implicant of f. Let YKYJ be a clause
of dimension 2 which implies f.

If either of Yk or Y; is in 5, then kY3 is not

a prime implicant of f. Suppose that Yk ¢ P and

?j ¢ P. Then yﬁ ¢ F. For if yi € ﬁ. then since

yﬁ + YkYy = Yg * Yir Yy would imply £, and would there-
fore be an element of P. Hence Yy and yﬁ are not

in P, Hence f is independent of Yo and by Lemma

12, YKY; is not a prime implicant of f.

Therefore no clause of dimension 2 is a prime impli-
cant of f. It follows that every prime implicant of £
is an element of P,

Theorem 5 and Corollary 5«1 justify the following
termination criteria:

Let f e B, where f is not the identity element, and
f is not the zero element. Then,
1) If P 1is the set of all the clauses of dimen-

sion 1 which imply f, and if the sum over P
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represents f, then every prime implicant of f
is an element of 5, and the algorithm can be ter-
minated once these clauses have been determined.
2) If P is the set of all the prime implicants
of f of dimension 2 or less, and if the sum over
P represents f, then every prime implicant of f
is an element of 5, and the algorithm canlbe
terminated once these clauses have been determined.
3) If P is the set of all the prime implicants of
f of dimension n-l or lgss. and if the sum over
P represents f, then every prime implicant of
f is an element of P, and the algorithm can be
terminated once these clauses have been determined.
We can now write the modified algorithm in this
manner: Given the representation ¢ of the function
£ in En' where f 1is not the zerc.olement,
Step 1, From ¥, determine the fematrix, If f is

the identity element, terminate the algorithm. Each

representation xi + xi, 1'wm Y5 2, edvs N I A
simplest representation of f. If f 1is not the
identity element, compute the rank p(f) and proceed
to step 2.

Step 2. Determine the smallest integer j such that
0<3 < n.. and 2""J < p(f). Each candidate ¢,

of dimension j which implies f 1is a prime implis
cant of f. The clauses so determined are all of



the prime implicants of f of dimension j. No
clause of dimension less than j is a prime impli-
cant of f. If j =1, proceed to A):s If j = 2,
proceed to B). If j > 2, let the index K of
Step 3 have value j and proceed to Step 3.

A) j = 1. Each clause ¢ of dimension 1
which implies f 4is a prime implicant of f. If
the sum of the clauses of dimension 1 which imply
f represents f, terminate the algorithm. The
clauses so determined are all of the prime implicants
of f. If the sum of the clauses so determined does
not represent f, consider the candidates of dimen=-
sion 2, Eliminate from consideration each candidate
of dimension 2 which subsumes a prime implicant of
dimension 1. The remaining candidates of dimension
2 which imply f are all of the prime implicants
of dimension 2, If the sum of all of the prime
implicants of dimension 1 and all the prime impli=-
cants of dimension 2 represents £, then every
prime implicant of f is of either dimension 1 or
dimension 2. Hence all prime implicants have been
determined. Terminate the algorithm. If the sum of
all the prime implicants of dimension 1 and all
prime implicants of dimension 2 does not represent
f, let the index K of Step 3 have value 3, and

proceed to Step 3.
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B) j = 2. Each clause of dimension 2 which
implies f 1is a prime implicant of f. If the sumo
of the clauses of dimension 2 which imply f repre-
sents f, termi ate the algorithm. Every prime
implicant of f 1is of dimension 2, and has been
determined. If the sum of the clauses of dimension
2 which imply f does not represent f, let the
index K of Step 3 have value 3 and proceed
to Step 3.
Step 3. Consider the candidates of dimension K.
Eliminate from consideration each candidate of
dimension K which subsumes a prime implicant of
dimension less than K. The remaining candidates
which imply f are all of the prime implicants
of dimension K. Proceed to Step 4.
Step 4. If the value of j of Step 2 is n,
or if the clauses of dimension n - 1 have been
subjected to the process, proceed to C). If the
value of the index j of Step 2 is.not n, and the
clauses of dimension n « 1 have not been subjected
to the process, increase the index K of Step 3
by 1 and proceed to Step 3.

C) If the clauses of dimension n have been

subjected to the process, proceed to E). If the

clauses of dimension n have not been subjected to

the process, proceed to D).
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D) If the sum of the prime implicants already
determined represents f, terminate the algorithm,
No prime implicant has dimension n. Hence all
prime implicants have been determined. If the sum
of the prime implicants already determined does not
represent f, let the index K of Step 3 have
value n, and proceed to Step 3.
E) Terminate the algorithm. All prime impli-
cants have been determined.
Example 2. We again consider the function of Example 13
f=XX3 + Xix2 + xzx:; + X5Xqe
We first compute the f-matrix:

1 g .08 0
2 v O} 1
3 Q"1 1
4 (N R 1
5 AR ol 1
6 | WL e 1
7 ¥ 8D 1
8 PR 20 0

From this, we have p(f) =6, and j in Step 2 is

1, for 23°1 - 4 < 6. We proceed to A). We see that

no clause of dimension 1 implies f, Xy» X5s and Xq

are eliminated by row 1; xi. Xé s and Xé are eliminated
by row 8. Next, we determin:> the clauses of dimension 2
which imply f. These are: xixa. xaxs, xixz. X2X§. X1X§.
and xlxé. These surely recover the function, and we

terminate the algorithm.
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Comparing Example 2 with Example 1, it is evident that
the refined algorithm does indeed possess some advantages
over the original version.

It is perhaps appropriate here to examine briefly
the theory from the view=point of attual application.
The basic concept of the algorithm is simply thiss The
algorithm determines a sequence of tests by which certain
clauses are eliminated. The remaining clauses are the
prime implicants of the given function. Now one of the
main difficulties in the application of the theory can
be attributed to the number of tests which must be com=
pleted in nrder that the process can be terminated.
And in general, the time required, even for a high speed
computer, to complete the sequence of tests is prohibitive.

In computer applicaticns there is a certain type
of problem, the so-called real-time problem, in which
the time required to solve the problem is critical.
Now quite often in the solution of a real~time .roblem,
the computing system is programmed to function not only
as a computing unit, but also as a library system. For
example, in a given trajectory problem, it might be
necessary to perform some type of arithmetical computa-
tion involving the number sin Xo. Now given the number

X the computer can surely compute an approximation to

ol
the number sin Xo+ However, it might not be expedient

for the computer to actually compute the number.
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Instead, the following alternative might very well be
used:

Before the computations begin, a table of pairs
(X, sin X) is stored in the memory of the computer.,
Thus, given the number Xo. the computer performs a table
look=up and an interpolation to determine the approximation
to sin Xoe

Is it possible to apply a similar table look=-up
procedure in our simplification problem? Consider the
following possibility:
We first determine one simplest representation for each
function in En. We index each function in ﬁn. so that
for each such function there corresponds exactly one
integer i, 1< i« (2)2n. We sequence the representa=-
tions of the functions according to the index of each
function. The representations are then stored, in their
sequential order in a memory device of a computing
system., We program the computer in a manner such that:
Given a representation ¥ of a function in En. we
in=put ¥ to the computer. The computer determines from
¥, say, the corresponding function matrix. From this
matrix, the computer determines the index of the function,
and from this index, the computer determines the location
in memory where the representation is stored. This
representation is printed as out-put.

For what order n of the algebra ﬁn would the above
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procedure be workable?Y The cardinality of 54 is 65,
536, and the procedure would probably be workable for
By But the cardinality of By is 4, 294, 967, 296.
Thus, with the existing state of computer technology, it
is improbable that a complete table look-up procedure
would be workable for any higher algebra than §4. And
this of course means that the individual functions will
have to be simplified as the need arises.

There is a restricted class of functions in §n
whose prime implicants can be determined without subject-
ing the functions to the algorithm. Before considering
these functions we state the dualization laws:

If feB and ge B, then

(f + g)!' = £ « g' ,
We also need the law of involution:
(£')' = £,
It is easily verified that these relations are true in
the model with which we are working, since they clearly
hold in the algebra of Definition 1.

Suppose that we are given a function f in ﬁn such
that p(f) = 1. By Theorcm 1, no clause of dimension less
than n implies f. By Corollary 1-2, there is exactly
one clause of dimension n which implies f. This clause
is therefore the only prime implicant of f. Further,

by Corollary 1l-1, the row of Dn which corresponds
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to the row of the f-matix in which 1 appears determines
this one prime implicant of f.

Now suppose that f has rank 2" - 1. In this event,
there is only one row of the fematrix in which 1 does not
appear: Hence there is exactly one row of the f'-matrix
in which 1 appears. That is, the rank of f' is 1.
Thus there is exactly one prime implicant of f'. Again,
this prime implicant of f' is of dimension n, and is
determined by the row of D, which corresponds to the
row of the f'-matrix in which 1 appears. Denoting this
clause by (y; * Yy s Yi eee y,) we have

f' = Yy * Yo e+ Y4 eee * Y.+ Using the
dualization laws, we have
(£9)' = (y) * yp son yg eeey )t =y] + y5 + ¥] e + ¥ o
Next, by the involution law (f')' = f, and therefore
f= yi + yé + eee yi + ces + ya.

Hence, f can be represented by a sum of clauses of
dimension 1. It is clear that no other clause of dimen-
sion 1 can imply f, for if, say, y; also implies f,
we would have

f = yi oyt oeess yi + echa * ya ¥y 4
and |

f' = Y1 Y see Vi see ¥, yi =%,
and hence f would be the identity element, contrary to

the hypothesis that p(f) = 2" = 1. We then have the
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following lemma:
Lemma 13,

Let f e ﬁn such that f has rank 2" = 1, Then
there are exactly n clauses of dimension 1 which
imply f. Further, the sum of these clauses represents
f.

From Lemma 13 and Corollary 5-1, we have:

Theorem 6.

A function f in §n with rank 2"- 1 has exactly
n prime implicants. Each of these prime implicants is
of dimension 1.

Example: Let f = xix5 + Xixz + xix3 + X X5 Then we have

1 0 0 O 1
2 0O 0 1 1
3 0, X0 1
4 8.1 2 1
5 i 0 0 0
6 x .9 3 1
; ; T SN 1
8 1 % 3 1

From row 5, the prime implicants of f are xi, X and
Xqe

The method of the last example is also applicable to
functions of rank 2" - 2, For let f ¢ ﬁn’ such that f
has rank of 2" - 2. Then there are exactly two rows of
the f-matrix in which 1 does not appear. Hence, the
function f' has rank 2 and can be represented as the

sum of two clauses of dimension n. Denote these clauses
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by y¥p ees ¥, and 2325 eees z,. Then
f' = (yi . Y2 ® 2000 * Yn) + (zl . 22 ® vesw @ zn)

Hence f = (y] + y3 + «.us yﬁ) (2] + 25+ 00 2)) =

n n
o Ly visl

Hence we have the following lemma:
Lemma 143

Every function f in §n with rank 2" = 2 can be
represented as the sum of clauses, each clause of dimen=-
sion 2 or less.
Combining Lemma 14 and Theorem 5, we have:
Theorem 7:

Let f be a function in §n such that f has
rank 2" « 2, Then no prime implicant of f has dimension
greater than 2,
Theorem 7 suggests the following method of determining
the prime implicants of a function f of rank 2" - 23
Consider the two rows of the fematrix in which 1 does
not appear. Let Pl and P2 denote the corresponding
rows of D . From Pl and P, we first determine the
clauses of dimension 1 which imply f. We next deter-
mine, again from P1 and P2. the clauses of dimension
2 which do not imply f. From the 22(2) = 2n(n-1)

clauses of En of dimension 2, we first eliminate those
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clauses which do not imply f. Next, we eliminate those
clauses which subsume clauses of dimension 1 which imply
f. The remaining clauses, along with the clauses of dimen=-
sion 1 which imply £, are the prime implicants of f.
Example 3, Consider the function f of 34 where

> A Xl)(é x:;_:.:x‘; + Xl X2 Xa X4.
Now f' has rank 2, Hence f has rank 1l4. Conéider the
two rows of §4.
Xl X2 X3 X4 - 7
1 0 @ © 0
& K 0
From this, we see that the only clause of dimension 1
which implies f |is xi. Also, the only clauses of dimen-
sion 2 which do not imply f are: XIXé, X1X5, X1X20 X5X3»
XéX&, XéX‘", X1X2, X1X3. X1X4' X2X3. X2X » and X3X « We
immediately determine all of the prime implicants of f:
¥1X2 X1X3 X1X4 X2X3 X2X4 X3X4
Xl)(é XIX:'; xlx‘; Xz)(é XQX:J, X3X5
XXy X{Xs X{Xa XPg X34 X3,
XXE XXy X KBS XBG X
The remaining clauses of dimension 2, along with xi are
the prime implicants of f. That is, the prime implicants
of f are Xi. szé, Xéxa, X2X5. x5x4. X3X&, and X§X4.
There is another type of function in §n whose prime
implicants can be determined under a reduced number of

tests., By Lemma 12, if f ¢ ﬁn. such that f 1is not the
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identity element, and if f is independent of Xy r
1 <K £n, then no clause in which Xy or Xy appears
is a prime implicant of f, Jhe next theorem might be
useful in working with such functions.
Theorem 8.

Let n be an integer, n > 1 and let % be that
subset of elements of En consisting of all the funce
tions in §n which are izdpendent of the variable XK.
where 1 <K < n. Then B, as embedded in ﬁ; is iso-
morphic to Bhay®
Proof: For every P ¢ ﬁn there is exactly one q ¢ 5n
such that (P ~ q) by Xg+ There are then 2"/2 = on=1 such
equivalent pairs in ﬁn‘ Denote the set of these equivas=

lent pairs by ﬁn-l = [(P.q)l. (P,q)z, S (P'q)zn-l}'

Note that 56_1 and Bn-l are in l-1 correspondence. Let

r; be the (n-1)-tuple obtained from (P,q)i € 5n-1 by

the deletion of the K'P coordinate of P. Every function
in § associates with each element of 5“-1 an element of
s = {0,1}, For if TeB and (P,q) ¢ D,_.;» then T asso-
ciates with (P,q) the element f(P) = f(q) in S.

Conversely, any mapping of ﬁn-l into S corresponds

to a function in B. Hence E can be considered as the

set of all functions which map D into 5. By Lemma 2

n=1

s} ] |

n=1
)2 and

the cardinality of B is (2 « Hence
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gn-l are in 1l-1 correspondence . To determine the iso-
morphism, we associate with each function f in E
which maps (P,q)1 onto a € S, the functien f in
§n_1 which maps ry onto a, for i=1, 2, «ee n-l.
Denote this correspondence by F« Then F is the desired
isomorphism. To prove this last statement, first note '
that % is closed under the operations +, °*, and ' in

§n. For let a and P be elements of B. Then for each

ﬂ'tuple (bl .e bK. .o bn) in 5n.

a (bys oo By oo b ) = o (byy oo By oo b,) and

F (bl. ' bK. ' bn) = F (b1, e b&' .e bn){ Hence

[a + E] (bl. se bK' .e bn) =

E (bl’ ve bK. o bn) + F (bl, o hK. o bn) =

E (bl' e b&, s bn) ; 3 (bl' e bé. . bn) =

[a + B] (bl' . bls oo bn). and a + B are independent
of Xgs Hence B is closed under the multiplication and
addition of B .
Further,

ﬂ' -

a (b1. .o b\. .e bn)

[Ef(blg ee bK' ee bn)]' = [E ibl’ e bi, e bn)]' =

a! (bl. oo bi. .o bn). and B is closed with respect

& ~

to the operation in Bn+1'

Let F(a) = a and F(B) =B .
Let (bl’ oo by 1 bK*l' .o bn) € 5n-1' and suppose that
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albys oo by 10 By 1s oo b,) =a and
Blbys oo by_1s Bgypr ¢+ b ) = b.
Then [a + B) (bys o b 4 Beyys oo b ) =2 + b
But @ (bys es be_q0 bes Beyyy oo b ) =a and
B (bys oo be gy by, bysps ++ by) = be
therefore, [T + F] (by, .. Beoys Pgo Beyys oo by) = a + b,
and hence [F(a + B] (bl. oo by_1s Bryqe eo b ) =a + b=
albys «o b ye beyqs oo b ) + Blbys oo B 10 beyge oo b))
= [F(G)] (bys o0 By 1o Bgyys oo b))
+ [F(B)] (bys oa Be_1s byyse oo b )e
Hence F(a) + F(B) = F(3 + B). Similarly,
F(a) « F(F) = F(T - B).
Further, let
[F(3*)] (by, o« Byys Beyys 4o b)) =Co Then
C = A (byy we by yu By Beyys oo By) =
(@ (byy oo B s by Byyye oo b)]" =
[ [F(@)] (bys oo By_y0 Beyys oo by) 1' =

(F(a)]* (bys es by_ys By 10 o+ b ) « Hence
F(a') = [F(a)]' . Hence E as embedded in gn’
is isomorphic to ﬁn-l .
Note that a implies B if and only if F(a) implies
F(B) « For if a implies B, let Y= a'B. Then :(EE
and @ +Y =a+a'F=a+F=F . Hence
F(a +y) = F(B) = F(a) + F(7) and Flg) implies F(B).

Next, if F(T) implies F(P), then there exists F(v) such
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that F(a) + F(¥) = F(B). Hence
FX[F(T) + F(7)] =F =T 47 and G implies B.
: Theorem 9.
Let T be a function in ﬁn, n>1, where f is not
the zero element and f not the identity element. Denote

the independent variables of ﬁn by Ei i=1, 2, «ee Ne

Assume that T is independent of ik. Let B be that
subset of ﬁn consisting of those functions in ﬁn which
are independent of ?K. Let F: g -+ gn-l be the iso-
morphism of Theorem 8. Let F(F)= f. Then:
1) Every prime implicant of T is an element of
E and
2) If ¢ is a clause of En-l' then ¢ is a
prime implicant of f if and only if F'l(q) is
a prime implicant of ¥.
Proof:
1) Every prime implicant of ¥ is an element of E.
f is not the identity element. Since f is inde-
pendent of ﬁk. it follows from Lemma 12 that the
literal X, does not appear in any prime implicant
of ¥, and the literal X! does not appear in any
prime implicant of T. Hence every prime implicant
of ¥ is independent of ik. and is therefore an
element of E.

2) If ¢ is a clause of gn-l' then ¢ is a prime
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implicant of f if and only if F'l(v) is a prime
implicant of T¥.
Suppose ¢ 1is a clause of En-l and assume that ¢ is
a prime implicant of f. Denote F'l(q) by 9« Then ¢
must be a prime implicant of f. For suppose not. Clearly
9 implies T, since ¢ dimplies £, and F~L is an
isomorphism. Then ¢ subsumes some clause T of -smalier
dimension, where % implies f. Now g9 = F'l(¢), and
9 € §. Horce 9 is independent of X¢e Thus T is
independent of X, since ¢ subsumes ¥, Then T ¢ 5.
Hence F(%) 4is defined. Let F(%T) = & Then ¢ implies
T and T implies f. Hence

F(p) = ¢ implies F(T) = § implies F(T) = f.
By Theorem 4, ¢ subsumes &, But dimension ¢ = dimen=
sion ¢ and dimension T = dimension &, Hence ¢ is
not a prime implicant of f, Contradiction,
Next, suppose that ¢ is a clause of gn-l such that
F-l(cp) is a prime implicant of ¥. Denote F'l(q;) by
9. Then ¢ must be a prime implicant of f. For suppose
not. Then ¢ subsumes a clause § of smaller dimension
which implies f. Denote F 1(%) by %. By Theorem 4, ¢
implies &. Hence by the isomorphism F-l, 9 implies T
and ¥ implies f. By Theorem 5, g subsumes % and § is not
a prime implicant of f. Contradiction, Thus, ¢ is a

prime implicant of f if and only if F'l(q) is a prime
implicant of F.
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Example 4., Consider the function f in ﬁ;

f = xl 4 xix2x3x4 - xix2x3x5 + xix2x5x4 + xix2x5x5 +
X{XX X4 + X]X9X3X4

Xl X2 X3 X4 f
Q58" 0% 0 0
g .0 R.E 1
Q 8k 0
0 0 1 1 1
0. . “EING 0 1
IR Tf S PN | T
7 Ry Wl STRE 1
- R T ARG 1
1 0 0 0 1
PO e 1
ST A R 1
| R B R 1
1. % 290 1
LA SN, A 1
TR I 1
P A b SRS 1
From D, we see that f is independent of X3. By the
isomorphism of Theorem 8, we have:
Xl X2 X4 f
0 0 © 0
0 0 3 1
9 348 1
N Y X
SR  §
SR - S ¢ 1
3 418 1
3 3, & 1

and from this image, we have

X1 + X2 Ty ™ f

Hence the prime implicants of f are Xye Xoo and X,
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The following results lead to a theorem which might be
useful in determining if a function is independent of
an independent variable.
Lemma 15.
Let P = (8;7s 8400 eees ain) be the iMrow of
Dy Let g = (bjs byyy eeee by ) be the 3*P row of D

n

1 + Z gnne a;, and
i

Let W(P)

n

' phe=r
1+ f;l 2"by,

let W(q)

Then P = q if and only if W(P) = W(q).
Proof: If P = q, then clearly W(P) = W(q).
Suppose that W(P) = W(qg). Then

n n
\'  HN=r \"  An=r

We proceed by induction on the index r.
First, a4y = bjl « For suppose not. Assume without
loss of generality that a;; = 0 and bjl = ls Then

= £ . s
P, w g z@ i) T
ke ¥R & T
The maximum value of the left side of the above equation
is the sum of a geometric series of n~l terms with
first term 1 and common ratio 2. That is, the maximum

value of the left side is 2! = 1. But the minimum
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"1 Contradiction.

value of the right side is
Hence a;, = bjl‘ Suppose a;. = bjr for all r such

that 1 < r <K <n. Then a; = b,

n n
For since rLi peye 3, " rLﬁ o™ bjr '

n n
E‘ n-r - E: n-r
then ok 2 air L 2 bjr' By the same argument

as above, ap = biK‘ Hence T R bir 2 Y, 2, ves By
which establishes the proposition.
Lemma 16.

Let i be any integer such that 1 <i<2% .
Then there is exactly one row P = (ajl' ajor e ajn)

of D such that W(P) = i, where

n
W(P) = 1 + rzl gt
Proof: Clearly, min{W(P) | P is a row of Dn}

is 1 and max {W(P) | P is a row of Dn} 1s 2 D,
has exactly 2" rows, and by Lemma 15, W is 1le=l on
the set of these rows. Hence W is 1-1 on the set of
rows of D_ and onto {1, 2, «se 2"}, Hence if

1 €% < o y» there is exactly one row P of D = that
W(P) = i,

Lemma 16 states that if 1 < i < 2" , then there is

some row P of D such that W(P) = i. Lemma 17 states



that this in fact is the TOW,

Lemma 17.
th )
The i row, P = (ail' 312’ soe ain

row of Dn such that:

n
g BT Br T T
[ 5 2 a]
Proof is by induction on n.
=(0
3 (1) :
For row 1: 2l=l 5 4 1 = )
For row 2t 2l=l 1 41 = 25
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is the only

Hence the statement holds for Dl' Assume that it holds

for Dno

Let i be any row number of any row of D

o | o,
By Definition 3, D ., =[7 D,

Case 1. i < 2", Then the i*h

the form (O, 800 Ag3s eeee ain+1)' where

EBgae. Sgan vores Sgngpl VA8 he

D_. By the induction hypothesis,

n
n
[ jzl 2% ayyq] ¥ 1=

n
0+ jzl 2 aij+1] A et B

n+l*

1th

row of Dn+l is of

row of
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Case 2, 2" < 1 ¢ 2"
Let i -2"=r. Then the i'® row of D_,, is of the
form (1, a5, a_ g) eeee arn+l) where (2,5, 2,3,

LR arn+l)

th

is the r* row of Dn' By the induction hypothesis,

n
[ jz; on=J arj+l} 41 =71, Hence

n
" .14 jza 2n=J arj+1] tlessuy,

Hence the ith row P = (ailg ai2. sese ain) is such that

n

-

1+ 21 "% a, =1i. By Lemma 16, the i*" row is
r=

is the only row with this property.

Theorem 10.

Let P be the th

ith row of Dn' Then if the 5

coordinate of P is O, the row number of the row g,

where (P~ a) by X, is 1+ i

Proof: q is obtained from P by changing the Kth
coordinate of P to 1 and leaving fixed all others.

Let P = (ail’ cee Bipgs 0'31K+1' s ain)' Then

L (ail. so aiK-l. 1,31K+1, ;.o ain)o

n
[ jLﬁz“'j aij] + 1=t
P

By Lemma 17,
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n
Hence [j;l on=J aij] O L I L
q

Now 1< 4+ 2"K ¢on
By Lemma, 16, there is exactly one row of bn such that
2
1+ é on=J 334 = i+ 2"K  and by Lemma 17,
J=1
a
this is row i + 2K |
Once the prime implicants of a given function have
been determined it is still necessary to determine the
simplest representations of the function. In order to
do this, we first construct a new model, For each func-
tion f in En' let the f=sét be that set of integers

1th row of the f-matrix.

i such that 1 appears in the
Now the collection of ihese sets is simply the power set
of {1, 2, v«esse 2"}. This power set forms, of course,
a Boolean algebra, and the correspondence f -+ f=-set,
fe ﬁn, is an isomorphism. It is clear that the follow=
ing relations hold:

f +g + f-set (g-set

f+g ++ f-set U g-set

f' ++ The complerent of the feset with
respect to {1, 2, ... 2“}.
f implies g ++ (f-set) C (g-set)

Now once the prime implicants of the function f have been
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determined the simplification problem is essentially
that of determining the most efficient covering of the
f-set with those seis which correspond to the prime impli~
cants.
Examplet Again consider the function f of Example 13

fo= XX+ X]Xy + X X3 + xéx3

We first compute the f=-set:

Xy X5 Xg f
1 0 0 % 0
2 e . @ 31 1
3 P T 1
4 R W 1
5 i, Q8 1
6 g P | 1
7 R RRE. 1
8 : TR T | 0

In the new model, we have f = {2, 3, 4, 5, 6, 7}
The prime implicants of f have been determined. 1In
the new model they are:
X,X5 = {5, 6}
X{Xo = {3, 4}
XX = {5, 7}
X{X3 = {2, 4}
XXy = {3, 7}
X3Xq = {2,06}
Applying the technique of page 67 , we find that:

1) No union of two of the above sets covers f.
2) {2, 3, 8, 8, 6; 7} = {2, 60 [3; 4} V{5 7]
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{2 3, 4, 8, 67 w2, 4} Ui{3, 7] v {5, 6}
We see that these are the only two ways in which
{2, 3 4, 5, 6, 7} can be covered by a union of three
of the above sets.
Hence there are exactly two simplest representations of
f. They are:

XXy + X{Xy + X X3 and

XjX3 + XoX3 + X,X3 .
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APPENDIX

In the set-theoretic model any function f of gn’
with the exception of the zero element can be considered
as a sequence of natural numbers. This sequence is ob-
tained by ordering the elements of the f-set by its natu-
ral ordering. A literal then corresponds to a sequende

th

on-1 elements. The m term of the sequence

of exactly
corresponding to the literal y; can be determined as
follows® Let a be the row number of the first row of
the yj-matrix in which 1 appears. The yJ-matrix is
partitioned into 2j, 2"'3 by 1 sub matrices, where each
sub matrix has elements either all zero, or all 1l. Con=-
sider those sub matrices in which the elements are all

l. The first row of the first such sub matrix has row
number a with respect to the Yrmatrix. The first row
of the second sub matrix, whose elements are all 1, has
row number a + 27731 Lith respect to the y; matrix.
The row numbers, with respect to the yjomatrix. of the
first rows of the 29-! sub matrices in which only 1
appears, form an arithmetic progression with first term
2n-j-l-l

a and common difference « Hence the first row

of the rth

sub matrix in which only 1 appears has
row number a + (r-1)2""3*1 Litn respect to the

yj-matrix. Now given the integer m such that 1
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write m = my * 2"'j + Moy where 0 < m, < 2"'j « The

integers my and m, are, of course, uniquely determined
by the division algorithm.

Case 1. m, = O. In this event, the L term of the
yj-sequence is the row number, with respect to the yJ-
matrix, of the last row of the sub matrix Q, where Q

is the mlst matrix of those sub matrices in which only

1 appears. Hence the mth term of the Y5 sequence is

a + (ml - 1) on=J+l , on=j _ ) i

th

Denote the m term of the yj sequence by yj(m].

Now in this case, m = m; - on=J, Therefore,

yj(m) =a+ 2(m1 NPt D R SN PR Lo S
a+2m-2"J .1,

If Y; is Xj' then a = 2" 4 1.

If Yj is X}, a=1.

Hence if m is a multiple of 23, the mtP term of the

xj-sequence is 2m, and the mth

is o2m - 2",

Case 2, m = my * i m,, where m, $# 0. In this
th

term of the x;-sequance

event, the m™" term of the Y; sequence is the row num=
ber, with respect to the yj-matrix. of the m2°d row of
the matrix Q, where Q is the (m1 i+ l)th matrix of
those sub matrices in which only 1 appears. Hence

Yj(m) =a+ (m) o on=J+l , my, = 1
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Therefore, if Y3 is Xj.
= on=J < . on=J o o
xj(m) 2 +142¢2m 2 tmy,-1=

"=J(1 + 2m1) + my, and x;( m) = my =3+l , my .

We summarize these results as follows:
The mth term of the sequence corresponding to XJ

of ﬁn is given by: xj(m) =2n if m is a multiple of

=3, Xy(m) = 2" (14 2m) +my, if m= my + "4 m,,
where 0 < m, < 2"7J,

The mh

term of the sequence corresponding to x;.of §n
is given by:

X}(m) = 2me2""J 1 = is & multiple of 29,

Xj(m) = my 2n=3+1 my, if 0 < m, < 7



