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Introduction

It is important to understand the behavior of the flow of saline fluids in non-

isothermal, unsaturated porous media. Understanding the effects of salt in such

systems is required in soil science, in the design of hazardous waste storage, and in

drying science (e.g., manufacturing and processing of materials). It has long been

known that vapor density is reduced above both curved interfaces and above saline

fluids. Relationships describing this vapor pressure reduction have been derived for

the curved interface and the salt effect separately (see for example Edlefsen and

Anderson, 1943), but to the authors' knowledge, no general derivation from first

principles of the synergistic effects of salt and the curved interface has been

accomplished prior to this work. However, relationships have been defined for

various purposes (Olivella et al. 1996; Bear and Gilman 1995; and Nassar and Horton

1989), but the detail and method of determination of these relationships has been

dictated by the level of detail necessary to accomplish specific tasks. A brief

comparison of the results of this paper to those listed above is accomplished in the

"Discussion" section below.

The goal of this work is to define a general analytic relationship that aids in the

conceptual understanding of the underlying physics, as well as allowing the use of

numerical approximation for computation. An example of such a numerical

approximation for NaCI is shown below, as well as an example of use of this

approximation to real data collected during laboratory experiments.
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Derivation of Constitutive Relationships

Preliminaries and Assumptions

In this section, the equilibrium relation between a saline solution and the overlying air

water vapor mixture is derived for a curved gas-liquid interface. First, the general

relations are developed; then, the often used dilute solution approximation is derived.

Finally, derivation of a method to compute non-dilute salt concentration effects is

completed.

During the derivation, several assumptions will be used. These assumptions are not

overly restrictive, so the results are quite general. The assumptions are stated

explicitly in an attempt to remove ambiguity over the applicability of the results. As a

generalization, the assumptions may be grouped naturally into three sets.

Assumptions 1 through 5 give sufficient (though not necessary) conditions to use

equilibrium thermodynamics.

Assumption 1: The total system is closed to mass transfer.

Assumption 2: The liquid-gas interface is thin and may be well-approximated by a

surface.

Assumption 3: The total system is bounded by rigid walls (i.e., the total system,

composed of one or more fluids, is constant volume).

Assumption 4: Equilibrium between the phases is reached much faster than changes

driven by external forcing.

Assumption 5: The system is adiabatically connected to an isothermal heat reservoir,

but is otherwise closed.
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The equations resulting from application of the first five assumptions are very general.

In fact they are so general that it is necessary to define the system of interest further

before computations may be made. Assumptions 6 through 12 describe some general

conditions that hold for saline fluids in an isothermal two-phase system.

Assumption 6: The mixture in each phase may be well described as a mixture of water

(w), dry air (a), and pure salt (h).

Assumption 7: The salt (h) is either a single salt species or may be well-represented

with effective parameters such that all salt chemical potentials (e.g., i?) and

mole numbers (e.g., N/IL) are well-defined as single-valued variables.

Assumption 8: The gas (G) is made up of air (aG; read as air in gas) and water vapor

(wG; water in gas).

Assumption 9: The liquid (L) is made up of water (wL) and salt (hL). Explicitly, the

air is considered to be negligibly-reactive with the liquid (i.e., negligible when

considering the thermodynamics of electrolyte solutions).

Assumption 10: All phase changes occur under isothermal conditions. This condition

may be relaxed later, but provides clarity during the derivation.

Assumption 11: The gas phase behaves like an ideal gas.

Assumption 12: There exists a unique single-valued function = V' (i'i' , N) such

that if any two of the values (VL N ,N) are known, then the third variable

may be computed.

Assumptions 6 through 12 narrow the scope of our relations further, and some very

nice results may be derived. Lastly, assumptions 13 and 14 narrow the scope of the

relations to a porous media. It is noted that while assumption 12 is grouped above, it

is not used until porous media are considered.



Assumption 13: Assume that the gas phase inside the porous media is connected with

a sufficiently large gas volume such that
f

__dPL
>> j N1

Assumption 14: Assume that o-' is a function of salt content and temperature only,

dA
LG

and is only a function of saturation.
dVL

Admittedly, assumptions 13 and 14 appear somewhat cryptic at this point, but during

the course of derivation, the relations arise naturally. They are listed at this point for

the sake of completeness. In the following derivations, the assumptions are

implemented sequentially, so that it is easy to see what limitations exist for use of the

resulting equations.

Derivations

Consider the super-system in the schematic diagram, Figure 1. The system is

composed of the liquid (L), the gas (G), and the liquid-gas interface (LG). This super-

system may be well approximated by two adjacent homogeneous sub-systems (i.e., a

liquid phase and a gas phase) with a thin transition zone between the phases. In order

to accurately describe the system thermodynamics it is necessary to account for the

liquid-gas interface explicitly. If assumptions 1 through 5 are satisfied, then the tools

provided by standard reversible thermodynamics may be used to provide a precise

fonnulation of the energy relations for each phase. For a reversible process in a

homogeneous system, the differential form of the conservation of energy equation is

given by the Gibbs relation (Callen, 1960):



5

(1) dU=TdHPdV+ji'dN1,

where the index i includes every chemical constituent in the homogeneous mixture,

and the symbols are defined in the "Notation" section of the appendices.

Gas

LG
Interface

Liquid

Figure 1: Schematic representation of a system composed of both a liquid and a gas.

Another well-known fact that may be used is that under the above conditions, the

Gibbs-Duhem relation also holds (Callen, 1960):

(2) 0=HdTVdP+Ndji'.

Equations (1) and (2) are the standard starting place for the use of equilibrium

thermodynamics. Equation (1) relates the differentials of the extensive variables.

Equation (2) relates the differentials of the intensive variables. Defining surface



tension in the usual way (i.e. o- = ), and writing the appropriate versions of

equation (1) for each phase and the interface yields:

(3a) dUL =TLdHL PLdVL +/LiLdNiL,

(3b) dUG =T_PGdVG+J1dN,and

(3c) dULG =T/GcTHG QLGdALG +/t'dN

Here, it is worthwhile to note that the sign convention for the pressure and surface

tension terms varies from author to author and discipline to discipline. Care must be

taken to use a consistent sign convention throughout application of the thermodynamic

results. The corresponding Gibbs-Duhem relations are:

(4a) O=HdTL _VLdPL

(4b) O=HdTG _VGdPG +Ndp , and

(4c) O=HdTw ALGdQLG +N'du"

Since the eventual goal is to use conservation equations to simplify the relations, it is

convenient to note here that:

(5) U =UL +UG +ULG,
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(6) H=HL+HG+Hw,

(7) V5 VL + VG + VLG, and

(8) NS = NIL + NiG + NILG for all i.

Recall that assumptions 1 through 5 are sufficient conditions to ensure equations (1)

through (8) describe the system in question, but they are not necessary. In fact, the

assumptions above are more restrictive than necessary, so re-iterating the assumptions

in mathematical form gives additional restrictions on the set of equations.

Assumption 1 ensures equation (8) is equal to a constant, which implies:

(9) dN' +dN +dN =0 for all i.

Assumption 2 allowed the use of surface tension in equations (3c) and (4c), and it also

implies that the volume of the interface is negligibly small. Equation (7) becomes:

(10) VsYs = +

Assumption 3 ensures equations (7) and (10) are equal to constants. This implies:

(11) dV.+dVG=0.

Assumption 4 implies that thermal and chemical equilibrium exists between the

phases, giving:



(12)

(13) ,1iL ,1iG 1LIi for all i.

Assumption 5 implies that the only energy flux into or out of the system is heat flux.

The heat flux is described by the imperfect differential, SQ. From Callen (1960),

SQ = TCIH. Combining this with equation (12) gives:

(14) dU =TcIH"5

Adding equations (3a), (3b), and (3c), and using relations described by equations (9)

and (11) through (14) yields the commonly accepted form of the mechanical

equilibrium condition across an interface:

(15) pG _pL LG
dALG

dVL

As a quick check of the validity of equation (15), Laplace's Equation may be derived.

For a meniscus with zero contact angle in a capillary tube, it is known that

ALG +4nr2 and VL hr3 (r radius of tube) from which it follows immediately

that:

CIALG2 LG2which results in Laplace's Equation: p' p'
dVL r r



Since the Gibbs-Duhem relations relate the differentials of the intensive variables, the

conservation conditions do not lead to immediate simplification. Instead, it is

necessary to make additional assumptions that adequately describe the real physical

system of interest. For this reason, assumptions 6 through 12 are used to describe

exactly what is assumed to be true for a saline liquid.

Assumption 6 implies:

(16) N! =N +N+N forall a.

Assumption 7 is used in this derivation to greatly simplify notation and to show the

utility of the results. The theory developed here extends naturally to multiple salts

(e.g., NL N but appropriate definitions of chemical affinities must be

made (c.f., DeHoff, 1993).

Assumptions 8 and 9 give:

(17) N=O,and

(18) NaLO.

Assumptions 8 and 9 are consistent with the notion that the change in chemical

potential of air in water (and salt in air) between any two thermodynamic states has a

negligible impact on the system. In a system where pH is important, it would become
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necessary to further subdivide the air into constituents that affect equilibrium values of

pH, though this is not considered here.

Assumption 10 is used to simplify the relations, and to preclude the need for defining

entropy. It is beyond the scope of this paper to show sufficient conditions for this

assumption to be valid, but instead, it is noted that isothermal conditions are expected

under many laboratory conditions. Also, during the drying of porous media,

isothermal conditions have been documented to persist for extended periods of time

(c.f., Luikov, 1975). This is true because the process of evaporation at a constant

atmospheric pressure implies that the process is occurring at the saturation

temperature. Assumption 10 implies:

(19) dT.=0.

Assumption 11 allows the use of the ideal gas law and Dalton's law of partial

pressures. This assumption is deemed valid for low gas pressures (e.g., atmospheric

pressure). By assumption 8, Dalton's Law gives:

(20) pG =pwG paG

Dividing equation (4b) by the total number of moles in the gas (NG), then substituting

in equations (16), (17), (19), and (20), and solving for the chemical potential of water

yields:
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wG 1 (idPG _XaG where XiG is the mole fraction.(21) d1u
XWG I\NG

Using the ideal gas law as it applies to the total and partial pressures yields the

following relation:

(22) XiGPG pG N°RT piG for all i.
NG

Equation (22) allows equation (21) to be written:

1 (RTdPGPaGdOG)(23) di

For gases at low pressure, the following relation holds:

(piG
iG iG(24) p = p0 + RTin' I for all i.piG)

It is more convenient here to write equation (24) in its differential form:

(25) dp = RTd(ln piG )= RT
dP

for all i.piG

Substituting equation (25) for the air constituent into equation (23), and using equation

(20) yields:
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(26) RT (dPG _dP)=RTUJ
pwG pwG

The result of this derivation is not surprising since it is the expected result of just

writing down equation (25) for the water vapor. What has been shown, however, is

that the chemical potential of the water vapor is independent of the air pressure (and

vice versa) when total gas pressures are sufficiently low such that the ideal gas law

and Dalton's law are obeyed.

Applying equations (18) and (19) to equation (4a) yields:

(27) d,L
wL

dP' du hL

NWL XWL

By definition, the appropriate version of equation (25) for aqueous solutions is:

(28) dp'1 = RTd(lnaiL), where a1" is the activity of constituent i for all i.

Now, all of the groundwork has been laid to derive some constitutive relations. This is

accomplished by using equation (13) for the water constituent. This yields the

following relation:

(29) çLd/l wL wL vL wG yG
=
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Note that it is critical that the limits of integration correspond to the same equilibrium

states, and that the integration path between the states must also be such that

equilibrium holds at all points along the path (also known as a quasi-static process).

In a more general sense, the integrals should be thought of as from one state to

another. The choice of integration limits shown here is possible because the integrand

may be written as functions of the variable of integration. In this case, it is the

constant function = 1, and this condition is trivially satisfied.

Using equations (26) through (29), the form of the equation to be used to derive

constitutive relations can be written:

(30) JRTdP =
pwG JNVL XWL

)

where the limits of integration are from some reference state to some final state. Now,

by imposing physical constraints, equation (30) may be used to develop constitutive

relations. In the following sub-sections, this is accomplished for several physical

constraints, starting with the simplest forms. First, the psychometric equation is

derived, followed by the dilute approximation for saline fluids. Since the thickness of

the interface is small with respect to the curvature, thermodynamic relations derived

for flat interfaces maybe extended to the curved interface case (Guggenheim, 1977).

For this reason, the thermodynamic relation for non-dilute salt content over a flat

interface is derived. This may then be extended to the general case of brine strength

saline solutions in porous media.
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Vapor pressure for zero-salt condition with a curved interface:

If there is no salt in the liquid, then the second term on the right hand side of equation

(30) is identically zero. If there is no salt, all of the volume of the liquid is made up of

water molecules. In this case, the integrand of the liquid pressure integral is

effectively the reciprocal of the density (it is exactly the reciprocal of the molar

density) of pure water. Assuming the liquid is virtually incompressible, the integrand

is essentially a constant. Noting that we are considering isothermal conditions,

equation (30) becomes:

dPG
(31) RTJ pwG NWL NW NWL

0 0

Now, it is apparent that the limits of integration are just the initial and final pressures

of water vapor and water, respectively. Evaluating the integral gives the well-known

psychometric equation:

NLRT (pWG
(32) pL =R+ lnl ,or pwG =PWGexpI_VL (PLPL

)V' pwGI-
0 )

NVLRT °

)

Vapor pressure for dilute solution approximation with a curved interface:

Now, assume there is some amount of salt in the solution. If the solution is

sufficiently dilute, the density change of the solution will be negligible; so again, the

integrand of the liquid pressure term is essentially constant, and it necessarily must be
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the inverse of the pure water molar density. The left hand side of equation (30) is

unchanged, so the immediate result is:

dP
(33) RTJ pwG NWL .1

0

For dilute strength solutions, a' = X'; and it is helpful to observe that:

(34) XwL + XhL = 1 = dXL = _dXh

Substituting these facts into equation (33) yields:

(35) RTJdP fdP'
CIXWL

+RTfpwG N1IL J x wL

0

where again the limits of integration become obvious. Noting that a X =1,

(35) may be evaluated to give:

(36)
( p1 " 1' VL

1n or pwG PWGXWL expi U (pL pL )
X1PG JV0 ) NLRT °°

By the second relation in (36), it is apparent that increased salt concentration has the

effect of lowering the vapor pressure. This is a well-documented fact, and Bear and

Gilman (1995) correctly note that, under some circumstances, the salt activity term (or
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mole fraction in this case) may dominate the vapor depression resulting in a negligible

effect of interface curvature.

According to Guggenheim (1977, pp. 50-52), as long as the thickness of the liquid-gas

interface is much smaller than the radius of curvature (assumption 2), "formulae

strictly derived for plane interfaces may be applied to curved interfaces with an

accuracy sufficient for experimental purposes." Therefore, an alternative formulation

of the activity for dilute systems pwa
/
pwG) may be used yielding an

alternative form of equations (36):

pwG
L

NLRT1
wG

l,or(37)
pLp

VL
pwG0

PWG
I

(DWG \
DWG - DVGI 1D I

VL
(pL _pL

. i01-----1ex
0 )

NLRT

Now, it becomes clear that the approximation is computed by taking the reference

condition, and correcting for salt and for interface curvature. The reason that these

corrections may occur independently is that the corrections are only weakly coupled

for dilute concentrations.

One notes that P pG, and since it is more convenient to measure the gas pressure,

it becomes instructive to see under what conditions this approximation is valid.
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Defining the specific volume (v -0L /N ), the first relation in equation (37) may

be written:

(38) pL_pL (pwG

OD wL1h1DwG
V0

or equivalently,

pwG ((pL f)v \ ((pL _pG)vwL'\ ((pwG _pwG )VwL
(39) p

RT
JexP

RT
Jexp

RT yD wG13

where the facts that pG = + pwG pwG and pG pL have been used.Oco O

Equivalently, (39) may be written:

R T (pwG'\ wG D wG

(40) pL pG = ml I
(pWG pwG) = X__ pwG in1 (pWG DVG

wLVL pwG) pwG) °

For a curved interface, it is known that for the vapor pressure 0 <P P0. For this

condition, it is a mathematical fact that:

I (p' ( pwG '\I(41) 1n II> --1
21 A

pwG Ii wG

This is true, because the two functions intersect only at the point P"' /pivG =1, and

the natural log function is concave down. Equation (41) implies that:
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(42)
RT

lnI
IvwP (PP) (pwG pwG) (pwG pwGI

owL
Ivo

(pWG_JJWG)

(P pwG)
- 1, and vG >> v0WL. This implies that the lastbecause pwG/pwG

(pWG _pwG)

term in equation (40) is dominated by the natural log term. So, to a very good

approximation, (37) may be rewritten:

(43)
L_GNQRT I pWG

1
ml

L ITDWG'\ii IPWG I

I

OD I I

(DWG'\
D wG DVGI J lexpi

VL
(pL pG

I

o I
NLRT

When desired, this same general procedure may be followed to substitute P1 for P

in other relationships developed in this document. Considering the case above, it

becomes instructive to examine the case where there is little or no curvature (i.e., the

pressure term in equation (30) is negligible), but the salt effect may be considerable.

Vapor pressure for non-dilute solution with negligible interface curvature:

Using equations (27), (28), and (34), it is possible to write:

X'
(44) RTJ pwG

= RT Jd(1na)= _RTJ1
XIL

d(1na).
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The result of equation (44) is that vapor pressure may be expressed in terms of the

activity of water (second integral) or in terms of the mole fraction of salt plus the

activity of the salt (last integral). Clearly, the activity of a constituent is a function of

its concentration, which in this case is uniquely defined by the mole fraction. It

remains to define this relationship to evaluate the last integral. Since the activity of

water in the presence of an electrolyte is a commonly measured value, it will often be

easier to use this value for computation. Using the appropriate limits, equation (44)

becomes:

(45) pwG PWGWL(XWLPWG XhL

/ o expH 11_XIIL
d(ln(a1(X)))J.

Here it becomes apparent how chemists measure the water activity in the presence of a

salt. They simply measure vapor pressures at two different salt concentrations. It is

also obvious by equation (34) that either one of the activities and the integrand of the

integral above may be written in terms of either mole fraction.

Vapor pressure for non-dilute solution with non- negligible interface
curvature in an unsaturated porous media:

In order to determine a constitutive relationship for this more general case, it becomes

necessary to account for the effects of salt concentration on the integrand of the liquid

pressure integral in equation (30). To do this, it must be understood how a non-

negligible change in salt concentration (intensive property) affects the volume

(extensive property) and the density (intensive property) of the liquid, plus any other
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relevant changes to the physics of the problem. For this reason, the response to

changes in volume, density, and other relevant parameters must be known for both the

integrand and the variable of integration. This allows the appropriate choice of

integration limits. For this exercise, the physics imposed by porous media geometry

are used.

It is reasonable to suppose that for a homogenous water-salt mixture that the specific

volume (analogously, density) is uniquely defined by the salt to water ratio

(Motivation for the approach to be taken is developed here, but these statements will

be made precise below). In a porous media, it is also reasonable to suppose that when

the volume of liquid per volume of porous media is known, then the relationship

between liquid volume and liquid pressure is well-defined (e.g., pressure-saturation

curves). If the above two conditions are satisfied, then the moles of water and the

moles of salt in a fixed volume (larger than the representative elementary volume)

may act as state variables. It is known that integration over state variables is path-

independent. For this reason, any convenient integration path may be selected.

Invoking the proposition of Guggenheim (stated above immediately before equation

(37)), equation (30) is immediately reduced to:

pwG
dPL where B is the final state.(46) RTln wLpwG

N'
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Notice here that if the integrand is sufficiently close to constant, then the integrand

may be replaced by the zero salt value and moved outside the integral as before. The

integral is then trivial to solve. However, for the case of NaC1 at 25 C, Heyrovska

(1996) documents the fact that between zero and saturation (6.144 m [molal]), the

integrand changes by about 15%. This implies that there exist cases where high salt

concentrations may result in non-negligible effects.

In general, the integration must occur from an initial state A to a final state B.

Invoking the fact that integration is path-independent, it is convenient to integrate

along the path ACB (see Figure 2). Notice that path AC is a constant salt content path,

and the path CB is a constant water content path. Since A for equation (46) is the zero

salt, flat interface condition (i.e., 0cc), the integrand is again the zero salt case, which

may be assumed to be constant. Equation (46) may be rewritten as:

(pwa"\

(47) RT1n 1= RTlna JpL _pL
)
rYdPL

pwG
I

\ 0 O

0
NWL

Hereafter, the integral in equation (47) will be referred to as the volume correction

term, and the zero-salt liquid pressure term will be called the dilute approximation

term (since only considering this term is the dilute approximation). The activity term

is self explanatory, and the term on the left-hand side of the equality is the desired

resulting vapor depression term for which the constitutive relation is being

developed. This constitutive relation provides the vapor pressure used to compute
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vapor flow (diffusion) resulting from vapor pressure gradients, and by use of the ideal

gas law, may also be used to compute mass density of water in the gas phase.

NhL

NWL

Figure 2: Diagram showing the change in state between two arbitrary states A and B, and
another path AC followed by CB.

When considering the volume correction term, notice that it is a function of only liquid

variables. Further, it is observed that the liquid is a function of only salt content

(N"), water content (N), liquid volume (V'), and liquid pressure (pL) Volume

and pressure are already intimately related (classical thermodynamics gives

pL
= j-)' and water content is a constant for this term. This implies that if a one-to-

one relationship between salt content and volume or pressure can be developed, then

the integral may be written as a function of salt content only, and the limits of

integration are obviously from zero to the final salt concentration. This provides the

motivation for computations in subsequent sections.
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Liquid pressure correction for high strength salt solutions

In order to evaluate the volume correction term, it is necessary to estimate the effects

of salt on the liquid pressure. It is known that surface tension is affected by salt

concentration (see Figure 4), and the condition of mechanical equilibrium (Equation

15) shows that for relatively constant gas pressure, that the liquid pressure must

necessarily be a function of salt concentration. Taking the differential of the

mechanical equilibrium equation yields:

(48) dPG - dPL = da

Recall that assumption 13 is precisely:

>>I 18(49)
IJJOONwL

This assumption is just a formalization of the notion that gas pressure changes

negligibly in a porous media compared to the liquid pressure. To ensure the

assumption is satisfied, it is sufficient to consider the system shown in Figure 3 where

there is a unit volume of porous media in a closed container with a gas-filled head-

space. If there was no head-space, then since it has been assumed that air is insoluble

in water, any air in the system would be trapped air and the incompressibility of water

would require the gas pressure to fluctuate strongly. If the head space is sufficiently

large, then changes in air pressure will be small compared to changes in water
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pressure. Since the partial pressure of water vapor is small compared to the pressure

of the total gas, changes in vapor pressure do not cause a violation of the condition

(49). In a natural system, it is not necessary to assume that the system is closed. It is

sufficient that that vapor pressure at the soil surface is near equilibrium with the

porous media, and there is no significant gas pressure built up within the porous

media. Since it is beyond the scope of this paper to describe all conditions under

which this assumption is valid, this condition shall just be stated here, and it is noted

that this assumption is valid for a wide range of natural conditions occurring within

soils and sediments. For the derivations in this paper, application of assumption 13

coupled with equation (48), allows use of the following for evaluation of integrals:

CIALG

(50) dPL
dVL

To use this relation, apply assumption 14. When considering the validity of this

assumption, it is convenient to note that surface tension is a microscopic property that

can be shown to vary with temperature and salt concentration (see Figure 4 for the

NaC1 example). Also, the ratio of the change in liquid-gas surface area to a change in

liquid volume is clearly a function of liquid saturation. If assumption 14 is valid, then

it is possible to account for the effects of salt, temperature, and saturation explicitly.

In practice, it is only necessary that these functions are weakly coupled. This result

should be experimentally verified for the salts of interest.
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Gas

Porous

Media

Figure 3: Schematic representation of a partially saturated porous media overlain by a gas
filled space
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Figure 4: Surface tension as a function of NaC1(aq).
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Applying assumption 14, and considering the case of constant temperature and zero or

negligible salt concentration, it is known that pL is a hysteretic function of saturation.

This can be written:

(51) PL(SL)_LG CIALG
ISL

CIVL \ 0j

Notice that for porous media, equation (51) is simply the water content/pressure

relationship that is often experimentally determined. Define P' pL(SL) It is clear

that the functional form of pL depends only on geometric constraints. If the salt does

not strongly affect contact angles for a given liquid content, then the relation in

equation (51) is independent of salt concentration except for its effects on the volume

of the liquid. This implies that pL pL
(s'). Notice that pIL is not a true pressure,

but rather, it represents the pressure corresponding to an equivalent saturation of fresh

water. Changes to liquid pressure resulting from changes in surface tension are

accounted for separately. Since the relation in Equation (51) will be experimentally

determined, it is convenient to write Equation (50) as:

(52) PL(TN/ILSL)a(T,N )L(SL) a(T,N)(LG CIALG
(s9.

LG dVL

Notice that the decomposition above makes clear the assumption that the pressure-

saturation curve is not strongly coupled with the surface tension, and the surface
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tension is not affected by curvature of the interface. Again, such a decoupling should

be experimentally verified.

Noting that the integrand in the volume correction term in equation (47) is in fact an

intensive variable and that pressure is an intensive variable, it is recognized that total

pore volume of the porous media is arbitrary for this derivation. So, define V°° 1

(units to be chosen based on available empirical relationships). The saturation may be

defined as:

VL
(53) SL

vp0'

Since v pore is a constant, this relation allows the application of assumption 12 to the

saturation. Since it is possible to write V' as a function of salt concentration, it is also

possible to do the same for saturation, and in general: = S" (iv ,NIL). As a result,

for isothermal conditions it is possible to write the constant water content volume

correction term in terms of the function of the single variable, salt concentration.

(54) 1
SL(N)VP0r0 d1a)P(SL(N)),

N LG
0

where the appropriate limits of integration are obviously from zero salt to the desired

final salt concentration. In order to clarify the meaning of all of the terms in equation

(54), an example calculation is accomplished below for NaC1.



Now, recognizing that equation (52) is a constitutive relation for P', leads to the

conclusion that equation (47) may be written as the constitutive relation for pwa

Suppressing the functional dependence of the variables, the constitutive relations may

be summarized as follows:

( 1 LSLVPOrC1JLG))(55a) P pWGWL ex1
VL (pL pL )Jex

f N a0L
NLRT

(55b) pL =?i where: pL _aLG
dALG

LG CIVL

Notice that since pIL is the equivalent pressure (equivalent to pure water) as a function

of liquid saturation, it is an implicit function of salt content because saturation may be

a function of salt concentration.

Derivatives

The constitutive relations (55a) and (55b) are used to couple differential equations of

flow, and in particular, they provide a constraint on the mass and momentum

conservation equations for water flow. For such governing equations, not only the

liquid and vapor pressures are important, but so are the gradients of the liquid and

vapor pressures (VP'S and VP4G respectively). During analysis of governing

equations, it is desirable to show when certain approximations are valid. Just because

certain terms in equations (55a) and (55b) may be shown to be negligible, this is no

guarantee that the derivatives of these terms are also negligible. For this reason,



analysis of the effect of approximations on the derivatives is also required. To provide

a general treatment, the general derivative, d / d, for fixed temperature is

considered. The "dot" may be replaced with any primary variable of interest.

Differential of water vapor pressure

The general derivative of equation (55a) is:

expi dP(56)
dPWG =[wGawLexp( VL (pLpL) ( 1 VL

L

d d NLRT ° RTN
))

where the notation of equation (47) is used for simplicity. Notice that pJG is a

constant, a" is only a function of salt concentration (i.e., salt density), the dilute

approximation term is only a function of St (water saturatioft), and the volume

correction term is a function of both salt concentration and St. For convenience

when applying the following to the NaC1 example, the measure of salt concentration

shall be in terms of molality (moles of salt per kg of pure water), and the variable is

defined as m. Equation (56) may be rewritten:

dP (apwcfldm (apdsL
(57) =1

d 3m )d. \3SOL ) d

with
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Ia1awL exp1-- -'--dP

=
exp[ ___

VL
(pL _pL)) RT NWL )

(58a) P
am NLRT 0 am

(58b) PwG a

Jexp1
VL

1\NORT RT NWL
)J

as0L

and

Recognizing that a exp(ln(a)) and differentiating (58a) and (58b) yields:

apwo
(59a)

PWGIa(lna)+a( dPL,and
am [ am amRT NWL

J)

a VL
)"I a ( 1

(59b) _pWG 0 (pL L

as [aSt[NLRT 0 JasRT NWL jj

Differential of liquid pressure

The general derivative of equation (55b) is:

(60) dPdIay5L
d

Recall that P' is a function of liquid saturation which is a function of salt

concentration. In Equation (55a), this term is only in the fixed water content integral.
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In general, water content can also vary, implying P is a function of both m and S.

Equation (60) may be written:

dPL (öpL dm (apL dS
(61) =I------I--+I----I----,d am)d. aSt) d

with

(62a)
i(L LG

&m am

(62b)
as0L aLG 8SOL

LO+0 i,and
öm)

It is noted here that equations (62a) and (62b) are the corrections to the coefficient of

conductivity that occur in Darcy' s Law if the law is written in terms of a gradient in

salt and water concentrations as opposed to pressure. The use of Darcy's Law and

these corrections will allow estimation of the coefficients that arise naturally in non-

equilibrium or process thermodynamics.

Approximations to the Constitutive Relations

The ultimate goal of developing the constitutive relations above is the solution of

coupled systems of partial differential equations describing flow and transport of

saline solutions in porous media. In order to solve the systems of equations, it is
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advantageous to make reasonable approximations. In order to rigorously show that

approximations to the above constitutive relations are valid, it is necessary to show

that there is a negligible impact due to neglecting one or more terms in equations

(55a), (55b), (59a), (59b), (62a), and (62b). In principle, this can be accomplished in

one of two ways: 1) it may be shown that one or more terms dominate the equation in

the region (i.e., state space) of interest, or 2) it may be shown that the error introduced

by the approximation is small. In general, "domination" or "small" are qualitative

terms, but for the discussions herein, two orders of magnitude difference shall be

considered sufficient. The example below will be an order of magnitude analysis of

the relevant terms.

As an example of "domination", it is convenient to consider the approximation of

equation (47) by:

('pwG \

(63) RTlnI =RTlna (pL _pL)
I I

2ywL \ 0 0

0

Equation (63) is essentially an extension of the dilute solution approximation

(equations shown in (36)) to the non-dilute case by using the activity of water. This

can be seen by recognizing that if the volume correction term is negligible, then

D'L and (63) becomes:I _.L0 ,

(pwG
(64) RT1nI -j- =RTlna1 Q(pL _pL

JVwL \
0
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This is a very natural extension, and a very similar constitutive relation is found in

Olivella et al. (1996). Since knowledge of the vapor depression (left-hand side of

(64)) is desired, the mathematically precise statement of the volume correction term

being negligible is:

rY__dpL

(65) I O.O1.
RTlna1L

V0L (pL pL
0 0oo,

0

Additionally, since it is known that both terms in the denominator are , if either

term can be shown to dominate the volume correction term, then the dilute

approximation is also valid.

In order to show that error is small, it is necessary to define the measure of the error.

Here error will be a relative error, and will be defined as:

[exact eqn] [approximation]!
(66) error=

[exact _eqn]

Using the vapor pressure as the example again, but this time solving for pG yields:

pwG _pwG (-1 V'
(67) error= eqn.47 dPUJO.Ol,

peqn.47 RT NWLi'G
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where the inequality is the condition to show the error in neglecting the volume

correction term is negligible. With the above notions of error and domination of

terms, it is now possible to do some computations for an example where brine strength

NaC1 solutions are considered.

Example: NaCl at 25C

As will be seen below, a substantial amount of experiments must be performed on the

basic physical properties of the salt of interest. Since such information is readily

available for NaC1, this salt is used in the example below. While there are a large

number of plots developed below, in general, the results show that the volume

correction term of equation (47) (or equivalent) is important only for low saturations

and is of increasing importance for finer textured soils.

Computation ofbrine strength salt effects in porous media

Heyrovska (1996) provides a suitable conversion between volume and salt

concentration for NaC1 at 25C, though some manipulation is necessary to get

consistent units. Heyrovska's empirical equations 13 and 14 (equation numbers are

from Heyrovska's paper) are:

(68) V' =1002.86+ni(26.8-1O.55a), and

-L
(69) V =1002.38+24.74am,
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where a 1 is the experimentally determined degree of dissociation. a is a function

of the molality (m), and it accounts for the incomplete dissociation of NaCl into ions

in a solvent. is the molal volume of liquid (cm3 of liquid per kg of water). The

reason that there are two equations is that due to the functional form of a , the van't

Hoff factor is minimum at m 2. Heyrovska recommends that this be used as the

dividing point for use of the two equations. Equation (68) holds to the left of the

minimum and equation (69) to the right.

For engineering purposes, it may be sufficient to approximate the entire range as a line

(see Figure 5), but for the purposes of evaluating volumetric effects on liquid pressure,

this is not done here. However, it is desired that the volume function used here be

continuous, so the intersection of the two curves (at m 0.1506) is used as the

transition point rather than Heyrovska's m 2. A plot of the data (not shown)

indicates that most of the departure from equation (69) occurs below the intersection,

so the formulation here still substantially captures the variation of volume with

molality.
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Figure 5: Integrand of the volume correction term as a function of NaC1(aq).

Examination of the integrand in equation (47) (equivalently (55 a)) reveals that the

desired integrand is the volume of liquid per mole of water. Simple multiplication of

L

by the molar weight of water (M'2O=.O18O15 kg/mol H20) gives the integrand as

a function of m only. Since it does not matter which units of salt concentration are

used, the integral may be written:

(70) dPL fMH20VL(m)d[U (m)L
(SL (m))J.

.LG

For consistency of units, V°0' 1 cm3 is chosen. With this choice of V°0', S'

given by:
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NWLM H20 VL (m)
(71a) S"(m)=

vpore
,for this path of integration (i.e., fixed NWL).

To get SL (st, m) in general, recognize that VL(m) is only a function of m, and NWL

is a one-to-one function of only S. This implies that NWL = sv°' /(MH2oL)

where VL is the zero salt molal volume. Substituting back into (71 a) gives the more

general form:

(71b) SL(St,m)=
SVL(m)

v

Examination of Figure 4 shows that a good fit to the surface tension function is given

by:

(72) LG (m)= o + 1 .7m = 72 + 1.7m with units of dynes/cm.

For the purposes of this example, the non-hysteretic van Genuchten pressure-

saturation relationship is used (as written in Carsel and Parrish (1988)) with parameter

values taken from Carsel and Parrish for sand, silt, and loam. The values used are

shown in Table 1, and were chosen to represent a wide range of values that may be

encountered in natural porous media. The van Genuchten head was converted to

pressure by multiplication by the density of fresh water and the gravitational constant

yielding:



(73) L(SL())
_p0g(s _i)

Table 1: van Genuchten parameters (Carsel and Parrish (1988))

PARAMETER SILT LOAM SAND

0.016 0.036 0.145

N 1.37 1.56 2.68

Equations (71) through (73) provide a complete description of the differential in

equation (70) in terms of m. Now, there are two choices: either fit a function of m

to a so that the change of variables may be completed, or plot equation (55b) directly

and fit a function of m to it. After evaluation of both options for NaC1, equation

(55b) was found to be approximately linear for most fixed water contents, so this

option was used. To plot equation (5 Sb), for a given zero-salt saturation, NIL may be

calculated using equation (71a). Then this fixed value of N is used in equation

(71 a) to calculate saturation as a function of salt concentration. As an example, see

Figure 6 for three different water contents. There is nothing special about these three

values other than they have y-intercepts that allow them all to be plotted on the same

graph. In general, for all three sediment types, the plots are approximately linear, and

the slopes vary from one water-content to another. As will be seen later, the linear

approximation is good for a wide range of water contents.
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Figure 6: Liquid pressure as a function of molality for a silt for three different fixed water
contents.

For fixed water content, if water pressure may be written as a linear function of m,

then:

(74) PL(m)bm+c=dPL()bd

where b is clearly a function of water content (b = b(S )). It is also worth noting that

in general, b(S0L) is a hysteretic function, and is in fact the sole source of hysteresis in

equation (55b). Since b(St) is not a function of m, equation (70) may be reduced to:



(75) = b(S)fMF120VL(m)dm.

A plot of the integrand of equation (75) shows that a linear fit is a reasonable first

approximation (see Figure 5). Rather than using Heyrovska's equations, if a linear fit

to the integrand is utilized, the integral is trivial to evaluate, yielding:

(76) dPL = b(S)(O.19O8m2 + 18.04m).

Now, all required relations have been developed to allow an order-of-magnitude

analysis of the constitutive relations.

Evaluation ofapproximations to the constitutive relations

In order to determine when approximations to equations (55a), (55b), (59a), (59b),

(62a), and (62b) are valid and may be used, it is necessary to learn when the effect of

various terms are negligible. To do this, equations of the form shown in (65) and (66)

are used. Now that a complete set of relations have been developed for NaCl, this

may be accomplished.

Using the approximation given by equation (76), it is trivial to evaluate both the vapor

pressure (equation (55a)) and any desired approximations. The relations described by

equation (65) and (67) may then be used to evaluate the relative contribution of

various terms or the error induced by any approximations. Plots of the vapor pressure
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for the three example soil textures (Table 1) are shown in Figure 7. It is instructive to

consider the relative magnitude of the appropriate terms from equation (47):

(pwG
(77) RTII=RTlnawL+(PL

I
pwG NWL 0

_+b(s):Io.19o8m2+18.o4m).
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Figure 7: Plots of vapor pressure (equation (55a)) for silt (top), loam (middle), and sand
(bottom). Units are in kPa.
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The activity is computed using relationships from Heyrovska's paper where the input

parameters are tabulated values of m and a as a function of m. The density of the

tabulated values is sufficient for computations here, and when necessary, a simple

linear interpolation is used. Using the usual parameterization of the dilute

approximation term for computation, P =0 and using pure water density at 25 C,

gives:

(pwG M''2O
(78) RT1n I=RT1na(m)+ JfQ P(S)+b(S0.1908m2 +18.04m),pwG

' O' I P0

where

pL(SL)
LG(0)

LG
00

For the specific functional forms given in (78), Figures 8a through 8c show plots of

relative magnitudes of terms and the predicted values of b(S) for silt, loam, and

sand, respectively. The ratio given in the worked example (equation (65)) is shown in

plot (f) of each figure, and plots (c) through (e) show ratios of various other terms.

The relative maximum error between the computed pressure (equation (5 Sb)) and the

linear approximation (equation (74)) is shown in plot (b).

It is worthwhile to note that the plots are only for 0 < Sc 0.88. This is because the

addition of salt necessarily implies that liquid saturation increases (because specific
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volume of the liquid increases). The maximum pure water content that will result in a

liquid saturation of the maximum acceptable value 1 may be calculated as:

(79) (SL -_______OflnaxL 0.884.
V saturated =6. 144rn

By considering ratios of all possible combinations of the terms on the right hand side

of equation (78), it is possible to see which terms dominate for different salt

concentrations and water contents. The region with values below 0.01 on contour

plots (c) through (f) of each Figure 8 describes where the approximation given by

neglecting the term in the numerator in favor of the term(s) in the denominator is valid

with error under 1%. As previously stated, since both the dilute approximation term

and the activity term are always non-positive, there is never an instance when the

effects cancel. Comparison of plots (c), (d), and (f) shows where each term dominates

the volume correction term; and plot (e) shows that while the activity often dominates,

the dilute approximation term is often non-negligible.
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equation (47). (d) The absolute value of the ratio of the volume correction term to the
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absolute value of the ratio of the volume correction term to the sum of the dilute
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Note that the error (plot (b) of each Figure 8) is computed per equation (66) above,

and that the denominator goes to zero. This implies that even for small departures

from the linear fit, the error must go to infinity. It can be shown that even at high

water contents, where the linear approximation of the pressure function may be

suspect, the pressure is still a well-behaved function of salt concentration and not too

far from linear (see Figure 9 for an example). Since the activity term commonly

dominates in this region, even a doubling or tripling of the slope to some conservative

value shows that the departure from linearity is of small importance. For this reason,

the high error in plot (b) of each Figure 8 is of little concern for this analysis.
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Figure 9: Liquid pressure as a function of molality for a loam at three fixed water contents.
Notice this plot is at high saturation where the error function shown in Figure 8b(b) indicates
the pressure may not be well-represented as a straight line.



The conclusion that may be drawn from Figures 8a through 8c is that the volume

correction term is negligible in most cases. The exception to this is that for finer

textured soils under very dry conditions, this term may be non-negligible when

compared to the other terms.

An example of the algorithm used to calculate and plot Figures 8a through 8c is given

in Appendix 1. This algorithm may be used for any porous media for which the

appropriate van Genuchten parameters are known. It may also be easily altered to call

another pressure function (e.g., Brooks and Corey (1964)) if it is deemed that this

alternative pressure function yields better results in the range of water contents of

interest. Fit may especially be important in the dry region since this is the region

where non-negligible effect due to the volume correction term may occur. The

algorithm becomes unstable at non-physically realistic saturations (i.e., saturation

greater than 1).

Figures 1 Oa through 1 Oc show the error (defined by equation (66)) in computed vapor

pressure (equation (55a)) in a silt, loam, and sand, respectively, induced by neglecting

various terms or corrections. For each figure, plot (a) shows the error induced by

neglecting the volume correction term. This approximation appears to be quite good

for all three types of soils. However, in the silt, the approximation may have

appreciable errors under very dry conditions, and in general, the finer the texture of

the soil, the more influence of the volume correction term. Plots (b) through (c) show

the effect of neglecting various other terms. The (b) plots illustrate the well-known



fact that for most saturations, the water vapor pressure (analogously, the relative

humidity) remains very high relative to that encountered above a flat interface. If salt

is present in the porous media, a comparison of (b) to (c) shows that vapor pressures

may be easily dominated by salt content. In the absence of salt, even though the vapor

pressure lowering is relatively small, this may be the only source of vapor pressure

gradients that result in vapor diffusion.
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volume correction term); (c) only the activity term is neglected; and (d) only the dilute
approximation is neglected.
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Figures 11 a through lie show plots for liquid pressure (equation (55b)) in a silt, loam,

and sand, respectively. Plot (a) in each figure is the liquid pressure as a ftinction of

water and salt content, and plots (b) through (d) show the error in computed liquid

pressure induced by neglecting various terms or corrections. The error plots show that

there may be appreciable errors induced by neglecting any corrections except under

dilute conditions. Note that the error is smaller where both corrections are neglected.

This is because the correction to surface tension tends to increase the magnitude of the
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pressure, while the volume correction tends to lower the pressure. This implies the

approximation is better if both are ignored rather than only one of the two.
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Figure 1 la: Plots for silt: (a) Plot of equation (55b) in units of MPa. Plots (b) through (d)
are of the error (equation (66)) induced by neglecting one or more terms in equation (55b):

I LG, LG\.(b) only the surface tension correction term / cr0 ) is neglected; (c) only the volume

correction to the saturation is neglected; and (d) both corrections are neglected (i.e., using the
pressure relationship for only water content).
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I LG, LG\.(b) only the surface tension correction term I O
)

is neglected; (c) only the volume

correction to the saturation is neglected; and (d) both corrections are neglected (i.e., using the
pressure relationship for only water content).
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are of the error (equation (66)) induced by neglecting one or more terms in equation (55b):

(b) only the surface tension correction term (a's /
aLa) is neglected; (c) only the volume

correction to the saturation is neglected; and (d) both corrections are neglected (i.e., using the
pressure relationship for only water content).

Plots for equation (59a) are shown in Figures 12a and 13a and 13b. In Figure 12a plot

(a) it is shown that for an order of magnitude analysis, that a linear fit to the activity is

reasonable. Plots (b) through (d) show where the differential with respect to the

volume correction term is dominated by the activity term. Again, the finer the texture

of soil, the larger the region where the volume correction term may cause appreciable

effects, and these effects are restricted to the dryer end of the soil moisture conditions.

In Figures 13a and 13b, plot (a) shows equation (59a) for silt and loam respectively.
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Since the volume correction term is commonly dominated in the differential, plot (b)

shows equation (59a) with the volume correction neglected in both the differential and

the vapor pressure calculation. Plot (c) shows the error induced by this approximation.

With plot (a) as motivation, plot (d) shows the error induced by approximating

equation (59a) with the constant value -0.124. No plots are shown for the sand

because the entire surface is so close to a constant value of -0.1244 as to be rendered

uninteresting.
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Figure 1 2a: (a) Linear fit to activity for order of magnitude analysis of terms in equation
(59a); (b) through (d) are plots of the magnitude of the volume correction term relative to the
activity term for silt, loam, and sand, respectively for equation (59a).
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Figure 13a: Plots for silt: (a) Plot of equation (59a); (b) plot of equation (59a), but
neglecting the volume correction terms; (c) error (eqn (66)) induced by neglecting volume
correction terms; (d) error (eqn (66)) induced by approximating equation (59a) with the
constant -0.124.
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neglecting the volume correction terms; (c) error (eqn (66)) induced by neglecting volume
correction terms; (d) error (eqn (66)) induced by approximating equation (59a) with the
constant -0.124.

Figures 12b and 14a through 14c show the results for equation (59b). Figure 12b

shows that only in the dilute case is it clear that the differential in the dilute

approximation term dominates the differential in the volume correction term. In

Figures 14a through 14c, plot (a) is of equation (59b), and plot (b) shows the effect of

neglecting the volume correction term in computation of both the vapor pressure and

the differential. The resulting error is shown in plot (c). In Figure 14a plot (b), it is

noted that accounting for the activity results in stronger influence of salt concentration

than is seen in plot (a). With this motivation, plot (d) shows the error as a result of
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also neglecting the activity. At first glance, it seems that this is a superior

approximation with improved performance in dryer regions, but examination of plot

(d) in Figures 14b and 14c show this is merely fortuitous, and not a robust

approximation.

6

5

0

0
z

0

6

5
>.'

0

0
CU2
z

n

(a)

0.2 0.4 0.6 0.8
Water Saturation

(c)

6

5

CU4
0

0
CU

z

I

0

6

5
>.,

0

0'U2
z

I,

(b)

5

0.2 0.4 0.6 0.8
Water Saturation

(d)

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Water Saturation Water Saturation

Figure 14a: Plots for silt: (a) plot of equation (59b); (b) plot of equation (59b) but
neglecting the volume correction terms in both the vapor pressure and the differential; (c)
error (eqn (66)) resulting from the approximation described in (b); (d) error induced by
neglecting both the volume correction and activity terms.
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Figures 1 5a through 1 5c show analysis of equation (62a) for silt, loam, and sand,

respectively. Plot (b) shows equation (62a) itself, and plot (a) shows that for all three

soils, the differential in terms of pressure (P') is almost always dominated by the

differential term for surface tension. Plot (c) shows that it is still necessary to account

for the volumetric effect in P' except in the dilute case. Plot (d) indicates that failure

to correct for changes in surface tension is never acceptable. Plot (e) shows that a very

good approximation to equation (62a) is:

apL L aaLG
- LSL(SL rn), where equation (72) was used.(80)

am o am 72
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Figure 15a: Plots for equation (62a) for silt: (a) ratio of the magnitudes of the pressure
differential term to the surface tension differential term; (b) plot of equation (62a); (c) error

(eqn (66)) induced by assuming is not a function of salt content (i.e., there is no
correction of saturation for salt content); (d) error induced by assuming the surface tension is

constant, but that saturation changes with salt content; (e) error induced by assuming the P L

derivative term is negligible compared to the surface tension derivative term (but still

allowing p' to be a function of m).
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(eqn (66)) induced by assuming P L is not a function of salt content (i.e., there is no
correction of saturation for salt content); (d) error induced by assuming the surface tension is

constant, but that saturation changes with salt content; (e) error induced by assuming the P L

derivative term is negligible compared to the surface tension derivative term (but still

allowing pL to be a function of m ).
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Plots for equation (62b) are shown in Figures 16a through 16c. Clearly, these show

that neither the volume correction nor the surface tension may be neglected except in

the dilute case.
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Figure 16a: Plots of equation (62b) for silt: (a) plot of the entire equation; (b) error induced
by neglecting the volume correction in the derivative; (c) error induced by neglecting the
surface tension.



6

5

2'

0
z

0

6

5

>'

0

0
z

0

6

5

2'
0

0
z

0

(a)
-

I I
I I

9

5

I I I I I

-0.1

-0.01

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Water Saturation

(b)

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Water Saturation

(c)
I I I

-0.1 0.1 0.1

0.05 0.05 0.05

p.01
I

0.01 0.01

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Water Saturation

Figure 16b: Plots of equation (62b) for loam: (a) plot of the entire equation; (b) error
induced by neglecting the volume correction in the derivative; (c) error induced by
neglecting the surface tension.
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It is tempting to consider the magnitudes of (59a) compared to (59b) or (62a)

compared to (62b), but without prior knowledge of the gradients in water and salt

content to be encountered during evolution of an initial boundary value problem, it is

impossible to do this here. Instead, it is noted that (59a), (59b), (62a), and (62b) will

provide the appropriate conversions from the dependent variables (pressures) to the

primary variables (water and salt contents) for solution of the differential equations.

Application to the data ofScotter

In a series of papers by Scotter and Raats (1970), Parlange (1973), and Scotter (1974),

the phenomenon of water condensation near salt crystals in a relatively dry porous

media is experimentally and mathematically analyzed. In the experiments, a pure

phase salt (in this case NaC1) was placed against an unsaturated soil at uniform

unsaturated moisture content. It was found that the moisture and salt profiles are

constant (for the same initial conditions) with respect to the transformed variable

17 = xlt"2. The reader is referred to the above papers for a more complete description

of the experiments.

Figure 17 shows the results of two experiments (same initial conditions) conducted by

Scotter (1974) in terms of the transformed variable and the gravimetric salt and water

contents (g NaCl and g water per 100 g dry soil respectively). The salt is at 17 = 0.

The conceptual model is that water moves from the dry region (to the right of the

dashed line) in the vapor phase to the wet region (to the left of the dashed line) where



it condenses due to vapor pressure lowering associated with the salt and saline water.

Once the water condenses, the moisture content is sufficiently high to allow water

flow back towards the dry region. It is sufficient to think of the right-hand side as the

vapor flow region (hereafter called the dry region), and the left-hand side as the

combined liquid-vapor flow region (hereafter called the wet region).
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Figure 17: Gravimetric water and NaC1 content from Scotter (1974). Pure phase NaC1 is at
17=0.

Using the theory developed above, it is now possible to plot the vapor pressures and

water potentials for the Scotter data. Since Scotter measured gravimetric values of

water and salt, it is necessary to compute liquid volumes, water volumes, molal salt
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concentrations, etc. in order to plot the desired results. Figure 18 shows Scotter's

measured values for water content versus soil water pressure for fresh water (assumed

here to be zero or negligible salt), along with a fit to the data of the van Genuchten

relationship (van Genuchten, 1980). The fit of the model is sufficient for the purposes

of this example, and the values of the van Genuchten parameters used are ä =

0.0003295 73 and N = 1.483. This relationship is the required functional form for

equation (73) above.
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Figure 18: Fit of the van Genuchten relationship to the experimental data of Scoffer. The
data is for very low strength or pure water.
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Since Scotter's experiments were all conducted at 25 C (298.15 K), it is assumed that

the straight line in Figure 4 is sufficient for this example. For the remaining estimates

and conversions from the gravimetric data of Scotter, a porosity of 0.3 and a density

for the dry soil of 2.65 g/cm3 were used. Equation 6 of Heyrovska (1996) was used to

compute awL (using linear interpolation of a from the closely spaced tabulated

values), providing the last required information. If desired, the method of Pitzer

(Pitzer and Peiper 1984) could be used to get all information computed from the

Heyrovska relations. The method of Heyrovska was selected for superior full range

performance at 25 C, and because the underlying physics proposed by Heyrovska

appears to be more likely correct. The Pitzer theory supposes that the salts completely

dissociate even at high strength, then correct for this error with an activity coefficient.

Equation (78) may again be employed to perform an order of magnitude analysis and

to plot vapor pressure. Figure 19 shows that the linear approximation is valid for

Scotter's soil. The remaining plots in Figure 19 are analogous to those shown in

Figures 8a through 8c for comparison. Figure 20a shows that the liquid saturations

and the equivalent water saturations are different in the wet region, and Figure 20b

shows the resulting liquid pressure profiles (computed using equation (55b)). Figure

21 shows the resulting vapor pressure profile for the Scotter data (i.e., equation (78)

solved for vapor pressure). The vapor pressure of pure water over a flat interface is

available in any chemistry handbook, and the vapor pressure over a saturated salt
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solution is an approximate value taken from the compilation of Appeiblat and Korin

(1998).
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Figure 19: Plots for Scotter's soil: (a) The slope of the linear approximation(bSoL)) to the

pressure function. (b) The error (eqn (66)) between the linear fit and the computed pressure.
(c) The absolute value of the ratio of the volume correction term to the dilute approximation
term for equation (47). (d) The absolute value of the ratio of the volume correction term to
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Clearly, there is a large effect of the salt content on the vapor pressure. To emphasize

this, the vapor pressure is plotted in Figure 22 with various terms assumed to be

negligible. There appears to be little effect due to neglecting the volume correction

term. In Figure 19, the data points have been plotted in (s , m) space, and Figure

18(f) shows that the point 17 2.9 is the point expected to be most dramatically

influenced. A blow-up detail of the wet region (Figure 23) shows that this is the case,

but that the effect is still relatively small. Figure 24 shows the errors (analogous to the

errors plotted in Figures 1 Oa through 1 Oc) for comparison. From Figures 19 and 24, it

is likely that the volume correction term may be neglected for computation of vapor
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pressures, with only one data point falling in a region where the error is >1%. As

expected, in the dry region, it may be allowable to neglect the activity term (due to

low salt content); and in most of the wet region, interface curvature may be neglected

(due to high salt content).
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Figure 22: Computed vapor pressure (equation (55a)) from experiment 1 for four cases: 1)
the full equation, 2) neglecting only the volume correction term (equation (57) or more
specifically equation (66)), 3) neglecting the activity term (activity = 1), and 4) neglecting
the entire exponential term (curved interface correction).
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Figure 25 (analogous to Figure 12a plots (b) through (d) for comparison) shows that

the volume correction term needs to be accounted for when computing equation (59a).

This is further supported by Figure 26 (analogous to Figures 13a and 13b).

Examination of Figure 12b shows that the volume correction tenn will need to be

accounted for when computing equation (59b) for Scotter's soil. This implies that

accounting for the volume correction term is necessary when computing the

conversions between gradients in vapor pressure and gradients in water and salt

contents.



Examination of Figure 27 (analogous to Figures 15a through 15c) shows that equation

(80) is a good approximation for equation (62a) for the Scotter data. Examination of

Figures 1 6a through 1 6c makes it obvious that neither the volume correction nor the

surface tension correction may be neglected for equation (62b).
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Figure 25: Plot of the magnitude of the volume correction term relative to the activity term
for Scotter's data for equation (59a).
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constant -0.123. Asterisks are data from experiment 1.
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allowing pL to be a function of in). Asterisks are data from experiment 1.



Discussion

Constitutive relationships have been defined for various purposes by Olivella et al.

(1996), Bear and Gilman (1995), and Nassar and Horton (1989), but the detail and

method of determination of these relationships was dictated by the level of detail

necessary to accomplish specific tasks. None of the relationships presented in the

aforementioned papers were completely derived from first principles, but there are

many similarities to certain results from this paper.

Olivella et al. (1996) use a very similar functional form to the dilute solution

approximation equations derived in this paper (equation (64)). In the references they

cite, the relationships for salt and for curvature are derived separately, so it seems

likely that Olivella et al. combined the functional forms in a reasonable way, getting

the form they use in their model CODE_BRIGHT.

Bear and Gilman (1995) state that for their problem, the effects of a curved interface is

negligible, and so write down a functional form of the vapor pressure relationship

using Raoult's Law and the Clausius-Clapeyron equation. Certainly such an

approximation is likely reasonable for cases where salt gradients dominate in the

region of interest. The resulting equation is similar to the one derived here for dilute

solutions in that it takes a reference vapor pressure and multiplies it by colTection

terms. Their salt correction term uses the mole fraction of water in the liquid as an

approximation for the activity of the water, and so is comparable to the salt correction

in equation (36). There is also a temperature correction term that includes the latent



heat of vaporization. Olivella et al. and Nassar and Horton both compensate for

temperature with empirical relations, but energy conservation equations are used to

account for latent heats and other energy transfers.

Nassar and Horton (1989) find that the total relative humidity is equal to the relative

humidity due to the matric potential multiplied by the osmotic relative humidity.

Functional forms of these humidities are taken from the literature. The osmotic term

has the expected exponential form, but Nassar and Horton also use an exponential

approximation for the osmotic relative humidity.

None of the papers reviewed presented a methodology for handling non-dilute effects

on the integrand in equation (46). The methodology developed herein results in the

general relations equations (55a) (equivalently (47)) and (55b). These results are very

general, and the fourteen assumptions leading to their derivation are broadly satisfied

in natural unsaturated porous media.

The relations developed herein are applicable for high-strength contaminants that may

be well-represented by a single concentration parameter (NIL or m are used here).

When it becomes necessary to use multiple concentration parameters (i.e., for multiple

independent salts), the above derivations will yield results in terms of affinities (c.f.

DeHoff (1993)). Since the goal of this paper was to describe the method and to show

that non-dilute effects are appreciable under some circumstances, the single

concentration derivation was used for clarity.



Examination of the NaC1 example above shows that non-dilute effects are generally

more profound in dryer, fine textured soils. For dryer soils, the approximation scheme

above provides a simple and effective first-order correction for the volumetric effects.

The slope function, b(S), appears to be a well-behaved function that would be easy

to approximate analytically for any fixed soil type of interest.

When considering flow in a porous media, it should also be noted that at high

saturations, vapor flow due to vapor pressure gradients will be negligible due to a

negligibly small diffusion coefficient resulting from lack of connection between gas

filled voids. Also, any water mass in the vapor state is negligible compared to the

liquid water mass (due to low volumes of gas and low specific volumes of water in the

gas phase), so errors introduced by the departure from linearity at high saturations

should have a negligible effect on water flow in a porous media. For this reason and

the fact that the activity term dominates at high saturations, it is postulated that the

linear approximation for NaC1 given by equation (76) is sufficient for modeling flow

and transport of saline fluids in many porous mediums.

As a final note, one becomes interested in the extension of the above derivation to an-

isothermal conditions (where changes in temperature occur via a quasi-static path).

Obviously, it is possible to conduct the experiments necessary to repeat the above for

other temperatures. If sufficient other temperatures are used, a functional form for the

temperature dependence may be derived. In this way, a constitutive relation for mass

exchange between the phases may be developed for an-isothermal conditions.
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Conclusion

A very general relationship describing the equilibrium vapor content in the gas phase

above a saline liquid and across a curved interface has been developed. Also, a

method to compute the appropriate salt corrections to the constitutive relation is

derived. The resulting equations are valid for salt concentrations between zero and

saturation, and for any temperatures that nominally occur in near surface geologic

materials. High strength salt effects are most profound in fine textured soils that are

very dry. If it becomes necessary to account for high strength salt effects for NaC1,

equation (76) may be used as a first-order approximation. This approximation is

trivial to use with numerical models.
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Appendices



Appendix 1 - Notation

Variables

U the internal energy
H = entropy
T = absolute temperature
P = pressure
V = volume
S = saturation
m = molality

= chemical potential of the i-th constituent in phase a

= chemical activity of the i-th constituent in phase a
= number of moles of the i-th constituent in phase a

specific volume of the i-th constituent in the liquid phase (ratio of liquid

volume to moles of water in the liquid)
.LG = surface tension at the gas-liquid interface

ALG = area of the gas liquid interface
= the gas-liquid interface area to liquid volume ratio (or the density of gas-liquid

interface)
pL (SL) = equivalent liquid pressure neglecting changes in surface tension (see

discussion following Equation (51)).
= volumetric liquid content (volume of liquid divided by total volume of soil,

liquid, and gas in porous media).
= xIt" = transformed variable for data analysis.

Differentials

d = total differential
= partial differential

S = imperfect differential

Superscripts

L, G = liquid and gas phase respectively
wL, wG = water in liquid and water in gas respectively
hL = salt in liquid
aG = air in gas
LG = gas-liquid interface



sys = system total
a = an arbitrary phase or sub-system

Subscripts

co = reference condition of flat gas-liquid interface (i.e., infinite radius of curvature)

o = reference condition corresponding to known salt content (generally zero or
negligible amount of salt)

Appendix 2- Sample Matlab code that shows methodof computing the
volume correction term.

Sample Matlab code for plot 7a:

clear

% List constants and parameters.

% Molecular weight of water in g/mol.
MW=18.015;
% density of pure water at 25C in g/cubic cm
rho=.997044;
% R is gas constant. Units=J/mol*K. T is temp in K.
R8.314;
T=298.15;
% van Genuchten parameters for the pressure-saturation relationship for silt.
% vGalpha has units of 1/cm.
vGalpha=.O 16;
n= 1.37;

% Data for NaC1 from Heyrovska [1996]: Tabulated values of Heyrovska's alpha as a
% function of molality (m).
ml=[.00l .002 .005 .01 .02 .05 .1];
rn2=[.2 .3 .4.5 .6.7.8 .9 11.2 1.4 1.6 1.8 22.5 3 3.5 44.5 5 5.5 66.144];
m=[ml m2];
alphal=[.976 .968 .952 .935 .916 .884 .858];
alpha2=[.832 .818 .807 .801 .797 .795 .792 .79 .789 .788 .788 .788 .791 .794 .802
.812 .825 .837 .847 .855 .863 .865 .865];
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alpha=[alphal alpha2};

% Compute the activities using Heyrovska's equation.
activity=55.5 1-3 .348*m;
denominator=alpha. *m;
denominator=5 5.51-2 .348*m+denominator;
activity=activity./denominator;

% Compute the "molal volumes" (units of cubic cm/kg water) using Heyrovska's
functional fits. The exception to Heyrovska's methodology is that
% Heyrovska changes the calculation at 2 molal, while we choose 0.1506
% because this is where the curves cross. This ensures V is continuous.
V1=1002.86+26.8*m110.55*alpha1 .*ml;
V21 002.3 8+24.74*alpha2.*m2;
Vz4V1 V2];

% So is the water saturation assuming zero salt. The following creates a
% vector of saturations for looping the calculations and subsequent contour
% plots. Notice that 0.884 is the maximum value allowed since the addition
% of salt to 6.144 m (saturation) will increase saturation to 100%.
So=.001 :.001 :.88;

% The following is a linear fit of surface tension as a function of m
% divided by the zero salt surface tension at 25 C (i.e., 72 dynes/cm).
surf=m* 1.7/72+1;

% Loop over the water contents.
M=length(So);
for i=1:M

% Call the function "saturation" that computes the change in saturation
% that results by adding salt.
s=saturation(So(i),V);

% Call the van Genuchten Pressure function for set values of van
% Genuchten's alpha (vGalpha) and n. This function returns the change in
% pressure with s.

P= -vQpress(s,vGalpha,n);

% Correct for surface tension effects.
P=surf.*;

% This performs a linear fit to P as a function of m, then computes the



% relative maximum error defined as the difference between the line and the
% computed pressure divided by the computed pressure.
fit = polyfit(m,P,l);
slop e(i)=fit( 1);
y=fit(1)*m+fit(2);
B=P-y;
B=B./P;
B=abs(B);
H(i)=max(B);

% error is the value of the salt correction integral. error4 is this
% value divided by the dilute solution approximation plus the activity term.
% errorl is only divided by the dilute approximation. error2 is only
% divided by the activity term. The salt correction
% integral is the integral of a linear function (i.e., a quadratic term)
% times the slope of the linear fit above (which is only a function of
% water content which is constant in the correction integral).
error(i,:)=(m/'2)*0.38 151/2;
error(i, :)=error(i, :)+( 18.043 *m);
error(i, :)=slope(i)*error(i,:);
denominator=-vGpress(So(i),vGalpha,n);
denominator=MW*denominator/rho+R*T*log(activity);
error4(i, :)=abs(error(i, ) ./denominator);
denominator=-vG_press(So(i),vGalpha,n);
denominator=MW*denominator/rho;
errorl (i, :)=abs(error(i, :)./denominator);
denominator=R*T*log(activity);
error2(i, :)=abs(error(i, :)./denominator);

end

% Loop over the molal strengths, and compute the dilute approximation
% divided by the activity term.
N=length(m);
for i1:M

for j=1 :N
error3 (i,j)
error3 (i,j)
denomina
error3(i,j)

end

end

=-vGpress(So(i),vGalpha,n);
=MW* error3 (i,j )/rho;
Lor=R*T* log(activity(j));
=abs(elTor3(i,j) ./denominator);
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% Plot the results.

% Plot (a) is a plot of the slopes of the linear fit as a function of water
% (pure) saturation.
subplot(3,2,1); plot(So,slope)
xlabel('Water Saturation'); ylabel('Predicted Slope');
xlim({0 .88]);
ylim([0 1]);
title('(a)');

% Plot (b) is a plot of the error of the linear fit as a function of water
% (pure) saturation.
subplot(3 ,2,2); plot(So,H)
xlabel('Water Saturation'); ylabel('Max Error');
xlim([0 .88]);
ylim([0 .5]);

title('(b)');

% Plot (c) is a contour plot of the salt correction integral divided by the
% dilute approximation. It shows the relative magnitude of the salt
% correction compared to the dilute approximation.
v=[.01 .05 .1 .5 1];

subplot(3 ,2,3); [C,h] = contour(So,m,errorl ',v);
clabel(C,h)
xlabel('Water Saturation'); ylabel('NaCl Molality');
title('(c)');

% Plot (d) is a contour plot of the salt correction integral divided by the
% activity term. It shows the relative magnitude of the salt
% correction compared to the activity term.
v=[.001 .01 .11];
subplot(3 ,2,4); [C,h] = contour(So,m,error2',v);
clabel(C,h)
xlabel('Water Saturation'); ylabel('NaCl Molality');
title('(d)');

% Plot (e) is a contour plot of the dilute approximation term divided by the
% activity term. It shows the relative magnitude of the dilute
% approximation term compared to the activity term.
v=[.001 .01 .11];
subplot(3 ,2,5); [C,h] = contour(So,m,error3 ',v);
clabel(C,h)
xlabel('Water Saturation'); ylabel('NaCl Molality');



title('(e)');

% Plot (f) is a contour plot of the salt correction integral divided by the
% dilute approximation plus activity terms. It shows the relative magnitude of the salt
% correction compared to the other terms that may dominate.
v=[.001 .01 .1];
subplot(3 ,2,6); [C,h] = contour(So,m,error4',v);
clabel(C,h)
xlabel('Water Saturation'); ylabel('NaCl Molality');
title('(f)');

The code for the function "saturation ":

% This function takes any saturation between zero and one, plus the molar
% volume from Heyrovska [1996] to compute the change in saturation as salt
% is added to pure water.

function [s] = saturation(So,V)

% Molecular weight of water.
MW= 18.015;

% Number of moles of water in 1 cubic cm.
NwL=.0555 1;

% Corrected saturation for salt content.
sV* So*NwL*MW/1 000;

The code for the function "vGpress ";

function [P] = vGpress(s,alpha,n)
% s is saturation, alpha is van Genuchten alpha in 1/cm, n is unitless.
% This function calculates the water pressure (in positive MPa) of a soil using the van
% Genuchten relationship.

% density of pure water at 25C in kg/cubic meter
rho997.044;

% gravity constant in mlsquare sec
g=9.80665;

% van Genuchten pressure in MPa
P=s.'(nI(ln));
P=P-1;
P=P.'(1/n);
pp*rho*g/alphajl e8;




