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A numerical calculation procedure for the hydrodynamic inter-

ference effects between large multiple structures interacting with

linear ocean waves is presented in this study. Viscous effects are

neglected and the hydrodynamic pressure forces are assumed to be

inertially dominated. A finite element method which incorporates

radiation boundary dampers is adopted to calculate the wave forces

and other field variables in the direct interference model. Numeri-

cal solutions in the frequency domain are calculated for three cate-

gories of the boundary-value variational functional formulations:

two-dimensional horizontal plane, two-dimensional vertical plane and

three-dimensional problems.

The two-dimensional horizontal plane interference problems are

formulated by incorporating explicit integration in the vertical

direction, and applied to fixed, surface-piercing structures only.



Two types of radiation dampers, cylindrical and plane, are investi-

gated. The two-dimensional vertical plane interference problems in

finite water depth are formulated with flexural waves approximation

to treat oblique wave diffraction and radiation. Plane dampers are

used to model the radiation condition and permeable boundaries. Both

floating-floating and fixed-floating structural systems are investi-

gated. The three-dimensional interference problems have been formu-

lated by incorporating a fictitious bottom boundary in the finite

element functionals. Both cylindrical and plane dampers are used in

a variety of wave diffraction and radiation problems.

Isoparametric curved elements with quadratic shape functions are

used in this study to represent the structural geometries and the

inner fluid domain variables. A complex-valued Gauss elimination

technique is used to solve the symmetric, banded matrix equations

derived from the wave diffraction and radiation functionals. In the

three-dimensional algorithm, a blockform Gauss elimination technique

is employed to increase the solution capacity in treating complicated

system.

The validity of the present finite element algorithms, both in

two- and three-dimensional formulations, are studied extensively.

The effects of structural permeability, moorings and inter-structural

constraints are also investigated. The versatility of the present

three-dimensional finite element algorithm is clearly demonstrated in

the design analysis of a loading/unloading facilities, where important

interference phenomena are identified.
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FINITE ELEMENT ANALYSIS OF WAVE INTERFERENCE EFFECTS

BETWEEN LARGE STRUCTURES

1.0 INTRODUCTION

There are many offshore, coastal, and harbor operations which

involve combinations of closely-spaced or interconnected vessels,

wharfs, buoys, platforms, caissons and storage tanks. When two or

more structures are close to each other in an incident wave field,

the phenomena of wave interference always exist, whether the struc-

tures are large or small. For small, slender structures, there is

generally a significant interaction between them as the wake of one

influences the forces on another (58). When large structures adjoin

each other, the incident wave train is disturbed by each of the

structures. Wave sheltering by, and reflection from, neighboring

structures disturb the incident wave field further, and thus affect

the wave exciting forces on the structures. Also, for floating

structures, the hydrodynamic restoring forces due to the structures'

forced motions would be modified when the radiating waves are dif-

fracted and reflected by the neighboring structures. Their hydro-

dynamic responses will also be affected by such wave interference

phenomena.

Examples of systems involving interference between large fixed

bodies include caissons, offshore storage tanks, and neighboring

columns of gravity platforms (12,13,37,38,39). The most common
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interference phenomena for a mixture of fixed and floating bodies

occur in cases of vessels moored adjacent to a wall, wharf or off-

shore platforms (30). Systems involving floating bodies include one

or more vessels moored to a single-point-moor, storage tank or float-

ing platform; supply vessels stationed adjacent to barges, floating

causeways or other vessels (17,49,55,70,71); structural components of

integrated multi-hull vessels (catamarans) or semi-submersibles

(TLP's) (14,17,48,56). Examples of systems involving interference

between small structures include jack-type platforms and pile arrays.

The interference effects arising from compound structure geometry can

be calculated approximately by first applying diffraction theory

around the large component alone and then using the diffracted wave

kinematics in the Morison's equation (51) for the small components

(22,23,32,34).

The use of the finite element method in the analysis of wave

interference effects between large structures is the subject of the

present study. Ideal flow boundary-value problems will be posed to

solve the corresponding linear diffraction and radiation problems

where small amplitude waves and small responses are assumed. The

diffraction and radiation problems of a single structure will be

used to verify the accuracy of the proposed finite element model.

The wave interference effects between multiple structures will be

calculated using a direct interference method, where the structures

involved will be modeled in an inner finite element domain and the

wave field variables can be determined using a single generalized
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matrix for the system.

1.1 Review of Previous Studies

The calculation of wave forces on large offshore structures of

arbitrary shape is often performed using linear wave diffraction

theory. Only a few analytical solutions are available and are lim-

ited to problems with special structural geometries. To investigate

the interference effects between multiple large structures, it is

necessary to use numerical finite element or integral equation meth-

ods for the calculation of hydrodynamic forces and field variables.

The review of these two approaches will be followed by a description

of the available finite element solution procedures.

Analytical Approaches Using_Linear Diffraction Theory. The

scattering of linear waves by a fixed, vertical, circular cylinder

has been solved by MacCamy and Fuchs (47) in an analytical form.

Studies of groups of circular cylinders and their steady hydrodynamic

interference effects have been reported by Spring and Monkmeyer (63,

64) and by Chakrabarti (12,13) using a series expansion of wave po-

tentials. Their solution technique forms an extension of the work by

MacCamy and Fuchs (47): separable structural coordinates are re-

quired, and a direct system matrix solution is needed, in constrast

to the multiple, iterative, scattering method of Twersky (66).

The added mass coefficients of a two-dimensional horizontal

cylinder at a free surface have been calculated by Macagno (46) using
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conformal mapping techniques. Solutions were obtained for two-

parameter Lewis sections, three-parameter ship sections and higher-

order-parameter ship sections. Ohkusu (55) applied a two-dimensional

strip theory and was, therefore, limited to the study of interference

problems between parallel, slender structures in infinite water

depth.

Garrett (21) has solved the scattering of linear waves by a

floating vertical circular cylinder in an analytical form similar to

the fixed cylinder case of MacCamy and Fuchs (47). Ohkusu (56) has

applied an extension of Garrett's method and solved iteratively the

interference problem between three vertical cylinders equally spaced

from each other. Practically, it is difficult to prove the conver-

gence of the infinite series of velocity potentials given by the it-

erations.

Numerical Approaches Using Linear Diffraction Theory. In gen-

eral, there are three major classes of numerical methods applied to

free-surface flow problems involving structures of arbitrary shape:

Integral Equation Method, Finite Element Method and Finite Difference

Method (81). Finite difference with respect to time is used inevi-

tably in most methods for unsteady problems, however, in the spatial

domain it lacks flexibility in handling irregular grids associated

with Neumann or mixed-type boundary conditions (Yeung, 81). Only the

integral equation method and finite element method have been applied

extensively to the prediction of wave diffraction and radiation by

large structures. Both solution procedures have many variants and
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each possesses certain merits and limitations. Integral equations of

several forms have been reviewed (50,65,74,75,81). Examples of their

applications to single structure wave diffraction and radiation prob-

lems may be found in Refs. (16,24,25,52). For structural geometries

which have separable boundary coordinates, analytical methods have

been combined with numerical procedures which avoid the lengthy nu-

merical integrations required for non-separable structural coordi-

nates (20,35,37,38,39,49).

Integral equation solutions of wave diffraction by a circular

surface-piercing cylinder have been reported by Isaacson (37,38,39);

solutions of wave diffraction by other basic sections have also been

reported, such as those of square sections by Hobgen and Standing

(34) and by Isaacson (38). The case of interference between two

neighboring circular cylinders has been treated by Lebreton and Cor-

mault (43) using a point wave source representation. Solutions for

two neighboring circular cylinders and for two square cylinders have

been obtained by Isaacson (37,38,39) using a two-dimensional wave

source representation of the cylinders' horizontal contours, which

significantly reduced the computing effort.

There has been extensive research reported on the diffraction

and radiation problems of a two-dimensional horizontal cylinder with

zero forward speed.. Among these: Sayer and Ursell (60) have reviewed

the John's frequencies (40) and have calculated the added mass coeffi-

cient in heave using the integral equation method. Kim (41) has ap-

plied the multipole method to solve the horizontal cylinder diffrac-
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tion and radiation problems in beam seas. Bird and Shepherd (9) have

treated the diffraction problem of a submerged cylinder by using the

boundary element method (BEM), where the integral equation is applied

over the full boundary of the problem. The wave diffraction and ra-

diation problems of a horizontal cylinder in oblique seas have been

solved by Garrison (26) using the integral equation method, and by

Bolton and Ursell (10) using the wave source method. The wave field

is assumed to have a sinusoidal variation along the cylinder axis.

The studies of multiple horizontal cylinders originated from the

need to determine the hydrodynamics of catamarans and other multi-

hull vessels. These include Wang and Wahab (73), Ohkusu (56), Maeda

(48), and Wang (72). These results have been limited to the case of

only beam seas and infinite water depth. The hydrodynamic coeffi-

cients of catamarans with circular sections (14,73) and with bulbous

sections (48) have been calculated by using Frank's close fit method

(19). Sayer and Spencer (59) have applied a modified multipole meth-

od of Wang and Wahab (73) to calculate the interference problems be-

tween two freely floating cylinders.

Various designs of offshore structures have incorporated a per-

meable wall to reduce compression shocks and hammer effects from

breaking waves. Typical examples are the Ekofisk storage tanks em-

ployed in the North Sea which are surrounded by a perforated Jarlan

breakwater wall (28), rubble-mound breakwaters, and open quays (11).

The interference effects between a fixed, vertical, impermeable wall

and large floating structures have been investigated by Ho and Harten
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(30) using the boundary element method. To date, the interference

between permeable fixed and floating structures has not been studied.

Three-dimensional diffraction and radiation problems have been

studied by Garrison (22,24,25) using the Green's function integral

equation method. Hudspeth, et al. (35) have extended the axisymmet-

ric Green's function of Fenton (20) to treat the diffraction and ra-

diation problems of axisymmetric floating structures. Matsui and

Tamaki (49) have investigated the interference effects between groups

of vertical axisymmetric bodies. Solutions were obtained through a

distribution of two-dimensional wave sources over the structures'

submerged surfaces. Van Oortmerssen (71) has applied an exact three-

dimensional Green's function numerical model to calculate the hydro-

dynamic interference effects between two floating vertical cylinders

with simple geometries (one of circular section, one of square sec-

tion with rounded corners). The formulation of the mean drift forces

due to wave interference effects between multiple structures have

been reported by Van Oortmerssen (70) and by LOken (45) based on di-

rect integration of second order pressures as given by Pinkster (57).

So far, theoretical approaches to the determination of hydro-

dynamic interference effects have been based on frequency-domain de-

scription of linearly interacting structures. Inter-structural con-

straints with linear load-excursion characteristics are assumed in

the formulation of the structural restoring forces. Often, in off-

shore operations such as lightering, both rigid mechanical connectors

and compliant mooring constraints may be involved. Examples of rigid



8

type designs include taut mooring, yoke, turret (27,29,87). In most

cases, the inter-structural constraints are provided by multiple com-

binations of compliant steel or fiber moorings (77). The analysis of

mooring systems is complicated by the possibility of either material

or geometric nonlinearity (27,42,77). A numerical model taking into

account all inter-structural nonlinearities in the time-domain solu-

tions would be very expensive and complicated.

The time domain simulation of nonlinear interacting multiple

structures can be achieved by means of convolution integrals of the

linear hydrodynamic force coefficients based on Cumming's method

(15). Koman (42) has applied this solution technique to the design

of an open-sea shiploading berth. However, the hydrodynamic inter-

ference effects were not considered. Van Oortmerssen (70) has inves-

tigated the time-domain simulation of two floating vertical cylinders

in which the interference effects were included. Practical restric-

tions involved are such that the hydrodynamic force coefficients must

be known for all frequencies. However, most numerical methods for

obtaining these coefficients break down or are impractical at higher

frequencies; the convolution integrals have to be carried out over a

larger time interval for a system involving multiple structures.

Finite Element Approaches Using Linear Diffraction Theory. Ex-

tensive results for wave interference problems have been reported by

the integral equation method in the previous section. However, there

are three areas where the most common formulations have shown up po-

tential deficiencies: (1) irregular frequencies (2) the lack of flexi-
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bility for modeling complex structural geometries and (3) underesti-

mation of structural volume or area and, therefore, hydrodynamic

forces. The irregular frequencies, which arise for surface-piercing

or floating structures, are associated with non-unique solutions of

the integral equations at certain discrete frequencies corresponding

to the eigenvalues of the homogeneous boundary-value problem. This

phenomenon has been discussed by John (40) and by Ursell (67).

Structural irregularities, such as sharp corners, often induce nu-

merical difficulities in the integral equation method. Most formu-

lations use the point collocation approximation in the discretization

procedures and, therefore, curved geometries are modeled with flat

facets or straight line segments. This results in underestimation of

hydrodynamic forces. This limitation can only be compensated for by

using more refined facets or segments with increased computing effort.

An alternative solution technique based on the finite element ap-

proach is therefore of interest.

Adaptations of the finite element method for fluid problems have

been reviewed by Shen (61) and applications to wave diffraction and

radiation problems by Mei (50) and by Zienkiewicz, et al. (85). A

variety of techniques have been adopted in the finite element method

to model the radiation conditibn at infinity in the three-dimensional

fluid domain: boundary dampers (2,54,62); matching analytical boundary

series solutions (BSM) (26,79,80); matching boundary integral equation

solutions (BIM) (17,82); and infinite elements (6,7,8,86). The use of

boundary dampers causes errors and a moderate to extensive part of the
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fluid domain must be idealized using finite elements. Techniques of

matching finite element inner domains with boundary solutions have

been developed using a consistent variational principle which results

in symmetric equation systems and guarantees convergence properties

(50,79). However, such matching procedures involve a broad front

linking between the finite element and the radiation boundary domains

and often result in an inconveniently large bandwidth for the equa-

tions. If a frontal type solution scheme is adopted, then the width

of the front will be governed to an even larger extent by the

matching and a reduction of boundary solution order may be necessary

(82). In general, such formulations are difficult and costly.

The infinite elements are defined such that their domains extend

to infinity and the decaying radiation condition is implicitly formu-

lated within the shape function. Newton-Coates type integration for-

mulas are necessary in the infinite direction to achieve computing

economy (7). A narrower front linking is achieved in this formula-

tion. The use of infinite elements also causes errors since an expo-

nential decay function is used to approximate the scattered wave

variation in the infinite direction. In the two-dimensional fluid

domain of vertical plane problem, the radiation condition at infinity

can be achieved by boundary dampers or by matching with boundary

solutions. No infinite element exists in the two-dimensional verti-

cal plane domain due to a non-decaying radiation condition.

Finite element solutions of a vertical circular cylinder dif-

fraction problem have been reviewed by Zienkiewicz, et al. (85).
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Both two-dimensional horizontal plane and three-dimensional formu-

lations have been incorporated with different matching techniques.

In the two-dimensional vertical plane approximation, Newton (54)

has applied the boundary damper method to calculate the hydrodynamic

coefficients of ship sections. Bai (3) has extended the boundary

damper method to treat the diffraction and radiation problems of a

horizontal cylinder in oblique seas. Eatock-Taylor and Zietsman

(18) have matched boundary series and boundary integral equation

solutions with finite element solutions to treat horizontal cylinder

diffraction and radiation problems in beam seas. Finite element

solutions of a floating dock in shallow water have been investigated

by Yue, et al. (79,80) using a boundary series method. To date,

there has been only one finite element work on the interference prob-

lem between multiple structures, reported recently by Eatock-Taylor

and Zietsman (17) using a boundary integral equation method (BIM).

1.2 Thesis Objectives and Scopes

The basic objective of this research is to study the feasibility

of using the finite element method to numerically predict the wave

interference effects between large multiple structures. In order to

investigate the hydrodynamic interference behavior of a multiple

structures system, a finite element fluid model is developed with

which the wave field variables can be calculated using a direct inter-

ference method. In this approach, the hydrodynamic exciting and
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restoring forces on each structure, and the hydrodynamic coupling

forces between the structures induced by interference effects are

determined using a single generalized system matrix. The structures

involved are modeled in an inner finite element domain. Isoparame-

tric curved elements are used to represent the structural geometries

and the inner fluid domain. 1-D line elements, 2-D quadrilaterals,

3-0 rectangular prisms of quadratic shape functions (83) are used in

this study. Different radiation condition matching techniques are

exploited to model the outer fluid domain. However, extensive

studies are limited to boundary dampers and infinite elements due to

their straight-forward formulations and narrow-banded symmetric ma-

trices. A direct method equivalent to the direct stiffness method

used in solid mechanics is employed in formulating the system matrix

(4,76).

The diffraction and radiation problems of a single cylinder ori-

ented, alternatively, in a vertical and horizontal plane are used to

verify the accuracy of the proposed finite element fluid model. Com-

parisons are made with existing finite element, integral equation and

analytical solutions (3,18,21,24,30,47,73,78,80). The numerical

simulation of a single structure is used to establish the necessary

modeling criteria, such as mesh size, boundary damper selection, dis-

tance of radiation condition, etc., to be used in subsequent studies

of multiple structure systems. The direct finite element interfer-

ence model is validated for multiple bodies by comparison of computer

simulation results to existing experimental results and to numerical
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results obtained from integral equation methods (37,38,39,59,70,71).

Parametric studies are performed to investigate the relative

importance of various diffraction parameters, wave incident angle,

spacing, etc. Consideration is also given to the interference

effects between permeable structures. Boundary dampers with ficti-

tious permeability parameters are used to model the permeable struc-

tures.

A compatible structure response model is also developed in this

study. Complex-valued Gauss elimination and Gauss-Seidel iteration

algorithms are used to predict the response of interconnected float-

ing structures. Only linearized inter-structural constraints and

moorings are considered in this study.

In Chapter 2, the wave interference effects between multiple

fixed surface-piercing structures are treated. Analytical methods

are combined with the two-dimensional horizontal plane finite element

model to reduce the computing effort. The vertical plane finite

element approximation of two-dimensional horizontal structures, in-

teracing with obliquely incident waves in finite water depth, is

considered in Chapter 3. Interference analysis between three-

dimensional structures is treated in Chapter 4. Chapter 5 summarizes

the important aspects of the present study. Detail derivations of

shape functions and integration schemes for infinite elements are

given in APPENDIX.
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1.3 Significance of Study

The hydrodynamic interference effects between large structures

have been calculated by using the localized finite element method.

Both two-dimensional horizontal and vertical plane approximations

and their applications have been identified. The effect of permeable

structures and linear inter-structural constraints have been calcu-

lated. In the three-dimensional interference problems, a fictitious

bottom boundary has been incorporated in the finite element formula-

tion. An example has been given for a design application of the

loading/unloading operations between two floating vessels adjacent

to a semi-impermeable, semi-permeable wharf.
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2.0 TWO-DIMENSIONAL HORIZONTAL PLANE PROBLEM

In this chapter, the linear diffraction of waves by multiple

surface-piercing structures is considered. A finite element method

which incorporates a cylindrical damper as radiation boundary condi-

tion is developed with which the wave field variables are calculated

for multiple structure systems. Numerical examples are given for a

single cylinder and for two cylinders where both circular and square

sections are considered. An alternative solution technique using

infinite elements to model the radiation condition is also treated.

Numerical results are given for a single circular cylinder only.

2.1 Theoretical Formulation

The scattering of a monochromatic linear wave of height, H, and

angular frequency, w ( =2i /T; T is the wave period), in water of

constant depth, d, by a group of large surface-piercing cylinders of

arbitrary shape is illustrated in Fig. 2.1. A Cartesian coordinate

system (x,y,z) with z measured positive upwards from the still water

level is adopted. Let t denote time and n the free surface elevation.

The direction of incident wave propagation is defined by the angle a

with respect to the x axis, as shown in Fig. 2.1. An ideal fluid is

assumed; and, thus, the fluid motion may be described by a scalar

velocity potential, cP, which satisfies the Laplace equation

2 2

v (1) = v (ID
I

+
s
) = 0 (2.1)
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Fig. 2.1. Definition sketch of two-dimensional horizontal plane problem
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2

in which a2( ) = a2( )/ax
2

a2( )/ay
2

'4' a2( )/az and the velocity

potential is given by the linear sum of an incident wave potential,

t
I'

and a scattered wave potential, t
s

. The incident wave potential

is specified by the real part of

Yx,Y,z,t)
cosh

2w cosh

K(

Kd

z+d)
4Tx,Y) exp -iwt (2.2)

in which g = gravitational acceleration,

4I (x
'

Y) = exp i(Kxcosa + Kysina) (2.3)

K = 2rr /L (L = wave length) is the wave number, which satisfies the

dispersion equation

2
w = gK tanh Kd (2.4)

The boundary conditions are given by

241 = 0 z = -d (2.5)
az '

2

a t at
--T + g = 0; z = 0 (2.6)

at

a t
57,) = 0 on Bj; j = 1,..M

c
(2.7)

in which n = inward unit normal to the body surface, Bj, and Mc

total number of bodies. The Sommerfeld radiation condition is

required for the scattered potential and is given by
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(m-1)/2 "s
Lim r

[ar OK = 0
r+.0

(2.8)

2 2.1/2
in which r = (x + y ) in Fig. 2.1 and m = number of horizontal

dimensions.

By separation of variables, the scattered potential is assumed

to have a hyperbolic cosine variation with depth of the form of the

real part of

1)s(x,Y,z,t)
I9H cosh K(z+d)
2w cosh Kd

os(x,y) exp -iwt (2.9)

which satisfies exactly the bottom and linearized free surface bound-

ary conditions, Eqs. (2.5) and (2.6). The governing field equation

now reduced to the Helmholtz equation

2 2

3 0
s

D .

+ --rs + K
2

0
s

= 0 (2.10)

ax ay

and the boundary conditions to

ads

an
+

an
4 0 on B.

a,
Lim

ar
' = (iK -

2
7) o

s

o

r+.

(2.11)

(2.12)

Eq. (2.12) is derived from the Sommerfeld radiation condition

which specifies an outgoing scattered wave with radial decay. In



cylindrical coordinates, the scattered potential may be expressed

approximately as

_ 1/2
r exp i(Kr-wt)
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(2.13)

and therefore Eq. (2.12) follows (vide Ref. 84). The plane wave case,

i.e., m = 1 without radial decay, may be obtained from Eq. (2.8) as

i

ar
(2.14)

As r ., both radiation boundary conditions given by Eqs. (2.12) and

(2.14) give the same result in the context of finite element discre-

tizations. However, if the radiation boundary is applied at a small

or moderate distance from the origin of the coordinate system, the

adoption of Eq. (2.12) should give improvement of numerical results

over the use of Eq. (2.14). This will be illustrated in a subsequent

section.

2.2 Finite Element Formulation

Solutions for Eqs. (2.10-2.12) are now formulated using the

standard finite element method where a cylindrical boundary damper

employing Eq. (2.12) is applied at a moderate distance rD from the

origin. The use of plane wave boundary dampers causes errors unless

an extensive part of the fluid domain is idealized by finite elements.

The development of finite element solutions in the two-dimensional

horizontal plane for the boundary-value problem described by Eqs.



(2.10-2.12) may conveniently be based on a variational functional

formulation in which a functional, n, is defined as

1 aOs 2 acPs 2
K2I1(4)s) fiD { (-5) K cPs2 IdD

1 1 2

M
c

Is 2- (iK 2r
) os dS +

1B an
0
s

dS

D jj=1

20

(2.15)

in which D = finite element fluid domain, S = radiation boundary

damper domain enclosing all the bodies, dD = differential area on the

finite element fluid domain; and dS denotes a differential line ele-

ment on the damper or body surface. It can be shown that if n(os) is

minimized with respect to os then the governing equations, Eqs. (2.10

-2.12), of the previous section obtain.

To discretize the problem in the standard finite element manner,

it is necessary to describe the unknown potential os in terms of

nodal parameters 0: and prescribed shape functions, N: ; in which

k = 1, NE, and NE = the number of nodal points for each element. A

superscript e is used hereafter to denote parameters or functions

within a single typical finite element. The functional in Eq. (2.15)

is now minimized with respect to the nodal unknowns olec This is

performed in the element stage as follows:

M
D

M
S

M
C

M

j
B

n = ni + E2 + n3 = z rte +Ez Iri + E z Tri (2.16)

e=1 e=1 e=1 j=1

in which MD = number of surface elements in D, Ms = number of damper



elements in S, M
B.

= number of line elements on body surface, BP and

2 e
e e e e

anl aN; aN; aN; aN;

= II KNe .N.)o
k

dx dy
De ax ax ay ay

a.k

an

= I (iK / ) N!Ne. oe dS

aO
k

2rD j k

an3

= fe -- Ne. dS

act)

e B. an
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(2.17)

(2.18)

(2.19)

The assemblage of the functional derivatives, Eqs. (2.17-2.19),

may be performed in the usual manner, as described in standard finite

element texts (vide Ref. 83). This may be arranged in matrix form as

([Al] [A2]){05} = (2.20)

in which [A1] is a real symmetric, N x N matrix assembled from the

integral Eq. (2.17), [A2] is a complex symmetric N x N matrix from

the integral Eq. (2.18), {P} is a complex N x 1 column vector form

the integral Eq. (2.19), and fosl is the complex N x 1 column vector

for the unknown scattered potentials at the N total nodal points.

The whole matrix is a symmetric, banded matrix which can be solved,

for example, by a Gauss elimination technique.

Before presenting numerical results, it is necessary to point

out that the functional in Eq. (2.15) may easily be extended to that
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corresponding to slowly varying water depth as given by Berkhoff (5)

and by Bettess and Zienkiewicz (7) in the context of harbor reso-

nance and wave shoaling problems. Such a functional will be given

in the form of

4 2 4 2 2c

=
D 2

{C C
g
[(ax s) + s' 19---2-C

s1)
dD

I 1
1

C C (iK )0
2
dS+ z

aOT
C C dS (2.21)

S 2 g 2r s
J=1

B. g an s

in which C = w/K = wave celerity, Cg = 2 C{1+2Kdisinh(2Kd)} = group

velocity. Both C and Cg are now functions of local water depth, d.

The discretization of the boundary-value problem in Eqs. 42.10-2.12)

may also be accomplished by the Galerkin weighted residual process in

which the shape functions are chosen as weight functions and appli-

cation of the divergence theorem follows.

Two isoparametric finite elements with quadratic shape functions

will be used; these are the 8-noded quadrilateral and 3-noded line

elements. Gauss quadrature is used in the integrations of Eqs. (2.17

-2.19). Once the solutions for (ps are known, other field variables in

this two-dimensional horizontal plane problem may be derived from the

following analytical expressions:

1 a(1)

n Re {- 5 ..5-14 = Ref
2

dp(x,y) exp -iwt}

HR= -2- 101 on Bi

(2.22)

(2.23)
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1 cosh K(z+d)

p -PgZ -2-14H cosh Kd
Re{ 0(X,Y) exp -iwt} (2.24)

F. pgHd tanh Kd
j 2 Kd

Re{f
Bj

o n dS exp -iwt}

2

= pgHd ,Kd sinhiKd)+1-cosh(Kd) Re{f/3.0 n dS exp -iwt}
J 2 1

(Kd) cosh(Kd)

(2.25)

(2.26)

in which 0 = 0, + os, R = wave runup on body By p = fluid density,

p = pressure, Fj, Mj = horizontal wave force and overturning moment

th
about seafloor on the j structure, respectively.

2.3 Numerical Results

The finite element computer algorithm based on the methodology

described in the previous section has been developed and applied to

various geometries and arrangements of multiple surface-piercing

structures. Numerical results are here compared with available

results obtained from the integral equation method. The diffraction

problems of a single cylinder, both of circular and of square section,

are used to verify the accuracy of the present finite element model.

2.3.a Single Circular Cylinder

Finite element solutions for a single circular cylinder inter-

acting with linear water waves have been calculated for various values
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of diffraction parameter, Ka (in which a = cylinder radius), and

compared with the analytical solutions of MacCamy and Fuchs (47). As

would be expected, the accuracy of the finite element solution depends

not only on the extent of fluid domain discretization but also on a

suitable choice of boundary dampers. This is shown in Table 2.1.

Here the horizontal diffraction force coefficient, Ch, which is the

ratio of the maximum horizontal force to the Froude-Krylov force, is

tabulated for Ka = 0.5, 1 and 2 and a/d = 1 using either plane dampers

(which employs Eq. 2.14) or cylindrical dampers. The improvement of

solution accuracy using the cylindrical damper is clearly indicated.

Subsequent numerical calculations in this section are based on the

cylindrical damper approach.

Table 2.1 EFFECTS OF BOUNDARY DAMPER SELECTIONS FOR a/d = 1

Ka

Analytical
C
h

Plane Damper Cylindrical Damper

C
h

2 3
100%

Ch (2)- 5)
100%x

2 (2,
x

(1) (2) (3) (4) (5) (6)

0.5 2.070 1.951 5.7 2.001 3.3

1.0 1.557 1.349 13.4 1.497 3.8

2.0 0.9725 0.9647 0.8 0.9688 0.38

Prediction of the horizontal diffraction force coefficient, Ch,

over a range of Ka from 0 to 3 is illustrated in Fig. 2.2. Good

agreement between the finite element solutions and analytical
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Fig. 2.2. Horizontal diffraction force coefficient, forfor a single
circular cylinder (a/d = 1)
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solutions is obtained by using a coarse 3-ring, 8-segment finite

element model except for smaller values of Ka. It should be expected

that such a coarse fluid model would not predict the true variation of

the diffraction force coefficient for smaller values of Ka, in that

small Ka values imply longer waves and requires a more extensive fluid

domain discretization. Smaller values of Ka also imply that the

diffraction effects become relatively less important compared to

viscous drag effects.

The size of element selected directly affects the extent of fluid

domain discretization and solution accuracy. The selection of element

size can be determined by experience. It is pointed out by Smith (62)

that the size of element should be less than about 1/4 of the incident

wave length in the two-dimensional vertical plane problems. Such

criterion is also valid in the context of the two-dimensional horizon-

tal plane problems studied here. Another requirement in the discre-

tization procedure is that successive elements should change size

gradually. Similar requirements are also required in the discreti-

zation procedure of the integral equation method where element size

should be less than 1/8 of the incident wave length.

Another important variable in offshore design is the wave runup

around the cylinder, R(e) in which e = azimuthal coordinate. Fig. 2.3

presents the dimensionless runup profile, R(e) /H, around the cylinder

for the case of Ka = 1. Good agreement between the finite element

solutions and the analytical form is shown. The analytical solution

for the runup profile depends on higher order terms of a Fourier

series expansion and a more refined element discretization is
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Fig. 2.3. Runup profile for a single surface-piercing cylinder for
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necessary to predict the variation more accurately. This is essen-

tially the same if the integral equation method is employed where

the evaluation of runup requires at least 32 line segments to obtain

an estimate within 15% of the complete solution (vide Ref. 39)

2.3.b Single Square Cylinder

Numerical predictions for the case of linear wave diffraction of

a square cylinder are shown in Figs. 2.4-2.5 in terms of the diffrac-

tion force coefficient, Ch, and the dimensionless force coefficient,

Fax' = F
max

/pglibdItanh(Kd)/Kdl, versus the diffraction parameter, Kb

(in which b = cylinder width). Fmax is the maximum horizontal force

predicted by the finite element solution. A coarse finite element

model of 3-rings, 8-segments per ring with cylindrical dampers applied

at a radius of 1.1b was used in all the calculations. Although ana-

lytical solutions for a square cylinder are not available, numerical

results of the integral equation method exist and are used here for

comparison. The variation of the horizontal diffraction force coeffi-

cient, Ch, over a range of Kb from 0 to 5 and b/d = 2 are shown in

Fig. 2.4 for two orientations of the incident wave angle, a = 0° and

45 °. The two curves computed from the present finite element method

almost coincide with those calculated by Isaacson (39) in which a 48-

segment discretization was used for the integral equation. This

essentially confirms the validity of the finite element method in the

modeling of structure geometry with sharp variations.
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2.3.c Two Circular Cylinders

Lebreton and Cormault (43) have investigated the wave inter-

ference effects between two circular cylinders close to each other

in a wave field. Significant increases in the wave forces have been

calculated by using a point wave source diffraction program, espe-

cially when the cylinders were aligned in the direction of incident

wave propagation, a = 0°, where standing waves occurred between the

two cylinders. Numerical solutions for different spacings and align-

ment between the two cylinders have been reported by Isaacson (37)

using a two-dimensional wave source integral equation method. The

numerical solutions obtained using the finite element algorithm are

presented for the case of t/a = 3 in which t = the horizontal dis-

tance between the cylinder centers. The finite element fluid model

used in the calculations is shown in Fig. 2.6. Fig. 2.7 presents

the variation of Ch /Ch with Ka for various values of incident wave

angle of a = 0°, 45°, 90°, 135° and 180° where a and C;) are refer-

enced to cylinder 1 as shown in Fig. 2.6. Ch/Ch represents the ratio

of the horizontal diffraction force coefficient calculated for the

cylinder 1, Ch, to that predicted for a single cylinder, Ch. The

results from Ref. (37) are also presented in Fig. 2.7, where good

agreement between the finite element solutions and the integral equa-

tion solutions are clearly shown for the values of incident angle,

a = 0° and 45°. Smaller variations of Ch /Ch are predicted by the

present finite element solutions for the case of a = 90°, 135° and



x

Fig. 2.6. Finite element model for two circular cylinders with t/a = 3
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The wave interference effects are shown to be most severe for

a = 0° where the wave reflection from the downstream cylinder signi-

ficantly increases the wave loads on the upstream cylinder. Oblique

incident waves of a = 45° and 135° have less severe interference

effects on the cylinders due to partial wave reflection and partial

wave sheltering effects.

2.3.d Two Square Cylinders

The numerical solutions for the wave interference problem between

two square cylinders are presented for the case of 2./b = 2 over a

range of Kb from 0 to 3 and b/d = 2. The finite element model used in

the calculations is shown in Fig. 2.8. Results are represented by the

variation of Ch /Ch with Kb for values of a =
00,

45 °,
900, 135° and

180°, as shown in Fig. 2.9. The numerical solutions of Isaacson (38)

are also presented in Fig. 2.9. It is also seen that both numerical

predictions agree very well for the case of a = 0°. Smaller variations

of Ch /Ch are predicted by the present finite element solutions for the

case of a = 45°, 90°, 135° and 180°. The interference effects between

two square cylinders are similar to those between two circular cylin-

ders.

2.4 Summary of Boundary Damper Formulation

In the present finite element method, the fluid domain adjacent



Fig. 2.8. Finite element model for two square cylinder with t/b = 2
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to the structures is divided into a finite number of surface and line

elements. Only a small or moderate fluid domain is required to accu-

rately predict the interference effects between multiple structures.

This is demonstrated in Figs. 2.7 and 2.9 where comparisons between

the present solutions using coarse models and the integral equation

solutions are very good in general. The CPU time log for the finite

element algorithm indicates a large percentage of time was required

for the calculation of the element matrix from Eqs. (2.17-2.19).

Computer times are therefore reduced by using regular (i.e., same

size) finite elements whenever possible and replicating the element

matrices.

The alternative method of using the integral equation requires a

similar computing effort in which a full system matrix corresponding

to the discretization of the body surface rather than the fluid domain

is solved. In the integral equation method, the computer time and

storage are proportional to at least the square of the number of un-

knowns. Thus, if N segments are used to describe a cylinder contour,

the number of segments required to describe an M-cylinder system is

about MxN and the computing effort would be roughly of order (MxN)2.

However, employing the present finite element algorithm, the computer

storage would remain roughly the same and the computer time be roughly

of order (MxN). This is due to the fact that the number of unknowns

(or the size of fluid domain discretized) is approximately proportional

to the number of cylinders, if they are close to each other in a wave

field. As the distance between the cylinders increases, the wave
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interference effects become less important; the diffraction problems

of the cylinders can be treated either separately or by using coarse

finite elements in between the cylinders in a direct interference

model.

The present finite element interference model would be most

useful in the analysis of closely spaced multiple cylinders, such as

three-legged or four-legged offshore platforms as shown in Ref. (13).

2.5 Infinite Element Formulation

Solutions for Eqs. (2.10-2.12) can also be formulated by using

infinite elements to model the radiation boundary condition. The

development of finite element solutions adjacent to, and infinite ele-

ment solutions away from, the structures may also be based on a vari-

ational functional formulation. The fluid domain is separated into

finite and infinite domains. A finite element functional, nf, is

defined as

cl

Ilf(0s) = II rf (Tis --)
2 S 2

- K
2

o.2s) dD

D

M
a's

+ E f
B. an s

dS

j=1

(2.27)

in which the unknown potential Os is described in terms of nodal para-

meters and prescribed finite element shape functions. An infinite



element functional, ni, is defined as

1 90 2 90 2 2 2
Ei4s) = II -2- f(55---() K cPs1 dpi

Di
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(2.28)

in which D. = infinite element fluid domain, dD. = differential area

on the infinite element domain. The unknown potential in this domain

is described by nodal parameters and infinite element shape functions

which do not satisfy a priori the governing field equation. The con-

straint of continuity is automatically satisfied across the two do-

mains, therefore, the functional required for discretization is simply

of the form

114s) ni(os) (2.29)

For a typical infinite element, the special shape function chosen

in the infinite direction, s, is in general of the form

p(s) exp(-s/LD) exp(iKs); in which p(s) is a polynomial in s, LD is a

decay length and K is the wave number (vide Ref. 7). The first term

allows a change of shape for smaller s, the second term approximates

the radial scattered wave variation and the last term represents the

basic propagating wave form. The shape functions chosen in other

directions are conventional Lagrangian polynomials as used in the

finite elements. A special integration scheme in the infinite direc-

tion is necessary to calculate the functional integral. Detail dis-

cussions of the shape functions and Newton-Coates integration scheme
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are described in APPENDIX II.

Numerical solutions for a single circular cylinder diffraction

problem have been calculated over a range of Ka from 0 to 3, and

compared with the analytical solutions of MacCamy and Fuchs (47).

Fig. 2.10 illustrates the prediction of the horizontal diffraction

force coefficient, Ch, by using a single 8-segment ring of inner do-

main finite elements matched with 8 infinite elements. The size of

finite and infinite elements chosen were 0.2a and 10a, respectively.

The length of decay was chosen to be a wave length, LD = L, and 3-

to 6 Newton-Coates integration points at (2n-1)L/8 were used.

Good agreement between the 3- and 6-point formulations and the

analytical solutions is obtained over the whole range studied. How-

ever, numerical instabilities occur for solutions of 4- and 5-point

integration schemes. Such numerical instabilities are due to the

fact that the integration points chosen at (2n -l)L /8 coincide with

the zeros of the real and imaginary parts of exp(i2Ks) in the func-

tional.

Different solution characteristics have been obtained when the

integration points were chosen at (2n-1)L/16. The prediction of the

horizontal diffraction force coefficient, Ch, is shown in Fig. 2.11.

For the diffraction range Ka > 1, there is essentially no difference

among the analytical and the 3- to 6-point numerical solutions. The

differences are in general less than 1% in this range. For Ka < 1,

the 5-point integration formula gives slightly better prediction of

C
h.

No numerical instabilities are experienced by using these
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integration points.

Although the infinite element formulation provides good numeri-

cal predictions of wave diffraction problems in general, the Newton-

Coates integration scheme does not exhibit a well-behaved monotonic

converging property in approximation of the harmonic term in the

shape function. Other numerical integration schemes, such as the

Gauss-Laguerre formula, have been attempted by Bettess and Zienkiewicz

(7). However, up to 32 integration points were needed to approximate

the harmonic term as a polynomial in order to achieve reasonable accu-

racy . The infinite element formulation is, therefore, not extended

further to calculate the interference effects between multiple struc-

tures.
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3.0 TWO-DIMENSIONAL VERTICAL PLANE PROBLEM

In this chapter the hydrodynamic interference phenomena arising

from multiple two-dimensional horizontal cylinders interacting with

obliquely incident linear monochromatic waves are treated. A finite

element method incorporating radiation boundary dampers is employed

to solve the corresponding diffraction and radiation boundary-value

problems. Both extreme cases of a rigidly connected catamaran and

freely floating cylinders are studied in detail. Numerical results

of both cases are compared with those obtained by the method of

multipoles. Numerical prediction of interference effects between a

floating structure and a vertical wall are given and compared with

those obtained by the boundary element method. The effects of

moorings and inter-structural constraints on the structural response

are also calculated.

3.1 Theoretical Formulation

Consider the diffraction and radiation of monochromatic linear

waves by two-dimensional multiple horizontal cylinders parallel to

each other as shown in Fig. 3.1. A Cartesian coordinate system (x,y,

z) is employed in which the z coordinate is measured positive upwards

from the still water level and the y axis is directed parallel to the

horizontal cylinder axes. We assume that the fluid is inviscid,

incompressible, and the motion irrotational. Furthermore, the fluid

motion is assumed to be sinusoidal in time, t, as well as along the
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Fig. 3.1. Definition sketch of two-dimensional vertical plane problem
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y axis.

A monochromatic linear wave of height, H, and angular frequency,

w = 27/T (T = the wave period), propagates in water of constant

finite depth, d, and is obliquely incident upon the horizontal cylin-

ders. The direction of the wave propagation makes an angle a with

the x axis, as shown in Fig. 3.1. The cylinders move in response

with the same frequency as the incident waves with three degrees of

freedom in the sway, heave and roll modes. The response are also

assumed to vary sinusoidally in space along the cylinder axes.

Small body responses are assumed so that the body boundary

conditions are satisfied very close to the equilibrium positions of

the cylinders, which leads to the separation of the linear wave

diffraction and radiation problems. Ideal flow boundary-value

problems may therefore be posed corresponding to: 1) the scattering

of waves incident at an oblique angle upon fixed cylinders and 2) the

wave radiations caused by the forced sway, heave and roll oscillations

of the cylinders, respectively, in otherwise still water. The oscil-

lations are assumed to vary sinusoidally in both time and space along

the cylinder axes. For clarity, the wave diffraction, radiation

boundary-value problems and the body response problem are formulated

separately in the following.

3.1.a Wave Diffraction Problem

An incident wave which propagates at an oblique angle of a with

respect to the x axis may be represented by a velocity potential
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ill
(.

I
(x

'

y
'
z

'

cosh K(
= Ref

2 cosh Kd
z+d)

exp i(Kx cosa + Ky sing -wt)}

. H7= Re{- lw (pi(x,z) exp i(Ky sins - wt)}
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(3.1)

in which i = /71 , g = gravitational acceleration and K = 27r/L (L =

wave length) is the wave number, which satisfies the dispersion

equation, Eq. (2.4). The linear wave diffraction problem is described

by a scattered velocity potential which is assumed to vary sinusoidal-

ly in both time and space along the y axis according to

s
(x,y,z,t) = Re{- iw 111-

s
(x,z) exp i(Ky sins - wt)}

2
(3.2)

Both the incident and scattered potentials satisfy the Laplace equa-

tion given by

2
2 2 2

a a a
V ( (1.

I
4.

s
) = (7--7 + --2) (111

I
+ cl,$) =0

ax ay az

(3.3)

Substitution of Eqs. (3.1) and (3.2) into Eq. (3.3), reduces Eq. (3.3)

to the Helmholtz equation. The linear boundary-value problem posed on

the scattered velocity potential is therefore described by the fol-

lowing equations:

2 2

a Os a (Ps

(Ksina) = 0 (3.4)

3X2
az2
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and

a(i)s

DZ

ao

az

v os = 0 ; z = 0 (3.5)

s = 0 ; z = -d

ans

a(P

an.
0 ; on B., j = 1...M

c.

I

J J

aq's

ax
sgn(x) iK cosa os ; x ±.

(3.6)

(3.7)

(3.8)

2
in which v = w /g, nj = unit inward normal on cylinder surface, Bj,

which lies on the x-z plane, and Mc = number of cylinders.

by

3.1.b Wave Radiation Problem

Assume the response of the j
th

cylinder in the k
th

mode is given

=
kj ' "(x y z t) = Re{E

kj
(x

'

z) exp i(Ky sins - wt)} (3.9)

in which k = 1,2,3 corresponds to the sway, heave and roll modes,

respectively. Hereafter, the subscript j will be used to denote the

j
th

cylinder and subscript k the radiation mode. Each wave radiation

problem may now be described by a scalar radiation velocity potential

as
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(Dkj(x,y,z,t) = Re{- iw Ekj 0kj(x,z) exp i(Kysina - wt)} (3.10)

The linear radiation boundary-value problem is defined by the

following equations

and

2 2

a fid a kJ 2
---7 (KSina) 0

kJ
. = 0

ax az

a0

az

kJ
cPv = 0 ; z = 0

4az j
0 ; z = -d

a0
kj

an.
n
kJ

. = 0
'

on B.

30 .

0
an

; on Bm, m j

(3.11)

(3.12)

(3.13)

m,j = 1...Mc (3.14)

46
ax

4

sgn(x) iKcosa 0
kj

. = 0; x +.0 (3.15)

in which nkj = the x and z component of the unit inward normal on the

j
th

cylinder for k = 1,2, respectively, and

n = (x - x )n - (z - z
3j j cj 2j j cj

)n
lj

(3.16)
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where xcj and zcj are the coordinates of the center of rotation.

The generalized radiation problem statement in Eqs. (3.9-3.16)

describes a flexural wave which travels along the surface of the

cylinder and generates an oblique wave in the water.

If a = 0°, which corresponds to the special case of beam seas,

the generalized radiation problem reduces to the ordinary two-

dimensional radiation problem in the vertical x-z plane. For the

special case of head seas, a = 90°, the radiation boundary condition,

Eq. (3.15), reduces to that of a rigid wall boundary. This special

case has no immediate physical application, as described by Bolton

and Ursell (10). The assumption that the direction of incident wave

propagation remains parallel to the cylinder axes, corresponding to

the diffraction problem in the head seas situation, also breaks down

as shown by Ursell (68,69). Such waves cannot travel along a long

cylinder without refraction. This shortcoming can only be corrected

by using a three-dimensional wave diffraction and radiation theory,

as considered in Chapter 4, where the end effects are taken into

account.

3.1.c Body Response Problem

If the incident wave is assumed small in amplitude and the

cylinders are stable in the equilibrium positions, the resulting

responses will be proportionally small. The velocity potential for

the wave field may then be expressed by linear superposition of the
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incident, scattered and radiation potentials as

H Mc 3

()(x,y,z,t) = Re {- iw[(Oills) E E 01,4E0]exP i(Kysina-w01
j=1 k=1

The pressure at any point in the fluid follows from

p(x,y,z,t) = -p(il + gz) = Refpw2[(0I+0s) 1;

M
c 3

+ E E 00Ek.] exp i(Kysina-wt)} - pgz
j=1 k=1

(3.17)

(3.18)

in which p = fluid density. The hydrodynamic forces on the jth

cylinder can be determined by integrating the pressure over the wetted

surface B.. These hydrodynamic forces are usually separated into the

exciting forces associated with the diffraction problem, and the

hydrodynamic and hydrostatic restoring forces associated with the

radiation problem. Only the hydrostatic forces are not affected by

the interference phenomena from the presence of neighboring cylinders.

These physical quantities are discussed below.

The exciting force in the k
th

mode on j
th

body is expressed as

2
Fk.(x,y,z,t) = Re{pw

H
IB (0'44

s
)n

ki
dS exp i(Kysina-wt))

= Re{ fkj exp i(Kysina-wt)}

in which dS = differential line segment on a body surface. The

(3.19)
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.

hydrodynamic restoring force in the k
th

mode on the J
th

body is given

by

2
M
c 3

R
kJ
.(x' y" zt) = Re{pw E EE

tm kJ Jim
exp i(Kysina-oat)}

m=1 z=1 B.

M
c 3

= Re{ P
kjui

exp i(Kysina-wt)} (3.20)
m=1 z=1

in which Pkitm is the hydrodynamic restoring force coefficient in the

k
th

mode on the j
th

body due to the motion in the 2,th mode of the

m
th

body. It is common practice to separate Pkjim into real and

imaginary parts according to the following

2 2

P
kjun

= pw
B.

n
kj zm

dS = w p
kjkm

+ iw A
kjzm

(3.21)

in which and Akjui are the added mass and hydrodynamic radiation

th.
damping coefficients of the J body in the k

th
mode due to the motion

of the m
th

body in the 2.
th

mode. If j m these coefficients are

called the in-phase and out-of-phase interaction coefficients, respec-

tively {cf. Van Oortmerssen (71)}.

Certain symmetric relations between the hydrodynamic coefficients

may be obtained by applying Green's theorem to the radiation velocity

potentials. A closed contour, S, can be constructed which includes

the free surface, z = 0, the horizontal sea bottom, z = -d, vertical

lines at both infinites, x ± co, and the wetted surfaces of the



cylinders, B.. From Green's theorem

(1)*A1
irrl

S an tm an kj
) dS = 0 (3.22)

A relation between (pki and cpim may be obtained by applying the

boundary conditions given by Eqs. (3.11-3.16), as

I
Bi

n
kj tm

dS = I
Bm

n
tm kj

dS (3.23)

In terms of the hydrodynamic coefficients, Eq. (3.23) implies that

or

P
kj

= P
tm tmkj

Pkjtm utmkj ' xkjtm Atmkj '

j,m = 1...M

=
1...3c (3.24)
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th
which means that the hydrodynamic restoring force on the j body in

the k
th

mode due to motion of the m
th

body in the t
th

mode equals the

force experienced by the m
th

body in the
£th

mode due to motion of

th
the j body in the k

th
mode. The simpler and more well-known expres-

sion of the symmetry relations for a single isolated body may be

deduced from Eq. (3.24).

The response of the cylinders in waves, with their amplitudes

varying sinusoidally in time as well as along the cylinders, may now

be calculated by the following equations
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2

t
Z [-w (Mkjzj Pkjkj) iw Akjij Ckjkj Qkjkj3

1

M
C 2

mI
[ -w Akjkm Qkjkm] fkj=1

11#i

j = 1,...Mc, k = 1,..3 (3.25)

in which
MkjLj

and Ckjtj are the mass and hydrostatic restoring

jthcoefficients of the j body in the k
th

mode due to motion in the k
th

mode. These coefficients may be found in standard texts of naval

architecture, such as Newman (53). Qkj,jis the linear structural

restoring force of the jth body, Q
kjkm

is the linear inter-structural

restoring force between the j
th

and the m
th

body. These structural

restoring forces may be caused by mooring, anchoring or other type of

inter-structural constraints. In Eq. (3.25), it is understood that a

repeated index does not represent summation.

3.2 Finite Element Formulation

Solutions for the diffraction and radiation boundary-value

problems are now formulated using the standard finite element method

where plane boundary dampers are applied at moderate distances, x =

xR, from the cylinders. The use of plane dampers to model the

radiation boundary conditions, Eq. (3.9) and Eq. (3.16), causes errors

unless an moderate extent of the fluid domain is idealized by finite
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elements. Alternative techniques of adopting the boundary series

element method (BSM) or the boundary integral element method (BIM)

may also be used to model the radiation condition in these vertical

plane problems.

Development of finite element solutions for the diffraction and

radiation boundary-value problems in the two-dimensional vertical

plane, Eqs. (3.4-3.8) and Eqs. (3.11-3.16), may conveniently be based

on a variational functional formulation in which a functional, n, is

expressed as

1 a0e 2 4S 2 2 2
11(0s) = fID + ( + (Ksina)

s
dD

1 2 1 .
2

- I -fry
s

dS - I sgn(x) -211(cosa cps dS

z=0 x=±xR

M
c

+

jz 1

/Bj
an. s

dS

= j

for the diffraction problem, and

2 2
1 {(2J-(1)2 (9211)2 + (KSina)

kj
1 dD

ax BZn(4)1(j)

1 2 1
2

- I -2-v okj dS - sgn(x) ylK Cosa okj dS

z=0 X= X
R

(3.26)

ID. n" oki dS
j=1,...M

c'
k=1,2,3 (3.27)
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for the radiation problem. D = finite element fluid domain, dD =

differential area on the fluid domain; and dS denotes a differential

line element on the plane boundary dampers, x = ± xR, free surface,

z = 0, or body surface, Bi.

The fluid domain is now discretized into 2-D area and 1-D line

elements. The minimization and assemblage of the functional deriva-

tives may be performed in the usual manner as described in Section

2.2. This may be arranged in matrix form as

[A] {cps} = {Ps}

[A] cpkj} = {Pkj}

for the diffraction and radiation velocity potentials, respectively.

(3.28)

The system matrix A, which is symmetric and banded, is identical for

the diffraction and radiation problems. Therefore, it need be formu-

lated only once in a computer program and can then be solved, for

example, by the Gauss elimination technique for different system

vectors, P
s

and P
kj'

Two isoparametric finite elements with quadratic

shape functions are used in this study to formulate the system matrix

and vectors: these are the 8-noded quadrilateral and 3-noded line

elements. Numerical results based on the above formulations have been

calculated for several single cylinder and multiple cylinder systems.

These results are discussed in the next section.
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3.3 Numerical Results

3.3.a Single Cylinder

In order to compare the accuracy of the present finite element

method with various solution techniques, numerical results were

obtained for several single cylinder test cases. The hydrodynamic

coefficients for a semi-submerged rectangular cylinder (d/a = 2, a is

the half beam) using the meshes in Fig. 3.2 were calculated for the

case of beam seas (a = 00). Numerical results for both the added mass

and damping coefficients in the sway mode (1.1
11'

x
11

) and in the heave

mode (u22, x22) are given in Fig. 3.3, where the added mass and

damping coefficients are nondimensionalized by pAx and wpAx, respec-

tively, Ax being the submerged area. These results may be compared

to those obtained by Eatock-Taylor and Zietsman (18) using the more

complicated techniques of boundary series element method (BSM) and

boundary integral element method (BIM). The differences between the

present results and BIM, BSM results are less than 1.5% over the

frequency range of va = 0.1 to 4.

The added mass coefficient for heave of a semi-submerged circular

cylinder (d/a = 2) was calculated for the case of beam seas using the

meshes shown in Fig. 3.4. Numerical results from this study, together

with those obtained by Eatock-Taylor and Zietsman (18), are presented

in Table 3.1. Good agreement over the whole frequency range was

obtained. The differences are in general less than 0.3%, except at

va = 1 and 5 where a 1% difference exists.
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Fig. 3.4. Mesh for semi-submerged circular cylinder (d/a = 2)
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TABLE 3.1 COMPARISONS OF HEAVE ADDED MASS OF A SEMI-
SUBMERGED CIRCULAR CYLINDER (d/a = 2) OBTAINED
IN THIS STUDY WITH THE RESULTS OF EATOCK-TAYLOR
AND ZIETSMAN (18)

Eatock-Taylor and Zietsman

va BIM BSM Present Results

(1) (2) (3) (4)

0.01 0.49894 0.49869 0.49736

0.05 0.50164 0.50139 0.50004

0.1 0.50523 0.50499 0.50362

0.2 0.51327 0.51302 0.51164

0.3 0.52255 0.52230 0.52091

0.4 0.53325 0.53300 0.53158

0.5 0.54548 0.54523 0.54374

0.6 0.55936 0.55911 0.55748

0.7 0.57491 0.57466 0.57296

0.8 0.59206 0.59183 0.59014

0.9 0.61607 0.61047 0.60905

1.0 0.63048 0.63035 0.62905

1.822 0.80058 0.80053 0.80009

2.5 0.90670 0.90522 0.90678

5.0 1.0767 1.0764 1.0642
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The hydrodynamic coefficients for a semi-submerged circular

cylinder in deep water (d/a = 10) were calculated for Ka = 0.25, 1.25

and 2.25, and for the angle of oblique waves generated by oscillating

the cylinder in flexural modes of a = 5°, 45°, and 85°, respectively.

The present results of heave added mass and damping coefficients were

calculated using the meshes similar to those shown in Fig. 3.5, and

are compared with the results of Bai (3) in Table 3.2. Agreement is

in general good, except for the damping coefficient at Ka = 2.25 and

a = 85°. The added mass and damping coefficients shown in Table 3.2

2 2
are nondimensionalized by 2pa and 2wpa , respectively, in order to

be consistent with the results presented by Bai (3), and by Bolton

and Ursell (10)where infinite water depth was assumed. For large

values of Ka (i.e., small values of wave length), finer meshes are

necessary to calculate the hydrodynamic coefficients accurately: such

a modification is discussed by Bai (3). The hydrodynamic coefficients

and the cylinder responses over a range of va = 0.1 to 2 are indicated

in a subsequent section together with the results of two free floating

cylinders.

3.3.b Single Cylinder With Moorings

Various kinds of moored floating structures, such as floating

bridges and breakwaters, have been employed in the coastal and harbor

waters. The analyses of motions, wave attenuation and moorings have

been investigated by Adee, et al. (1) and by Yamamoto, et al. (78)
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Fig. 3.5. Mesh for semi-submerged circular cylinders (d/a = 10)
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TABLE 3.2 COMPARISONS OF HEAVE ADDED MASS AND DAMPING
COEFFICIENTS OF A SEMI-SUBMERGED CIRCULAR CYLINDER
(d/a = 10) IN OBLIQUE WAVES OBTAINED IN THIS STUDY
WITH THE RESULTS OF BAI (3)

Ka
ao

Added Mass

Present
Bai Results

Damping

Bai

Present
Results

(1) (2) (3) (4) (5) (6)

0.25 5 0.6912 0.6960 1.012 0.9498

45 0.9307 0.9026 1.3423 1.2816

85 3.7331 3.7629 0.9425 1.0164

1.25 5 0.4864 0.4838 0.2272 0.2241

45 0.4390 0.4375 0.2055 0.2036

85 0.7249 0.6874 0.1028 0.0651

2.25 5 0.5605 0.5556 0.0720 0.0725

45 0.3225 0.3202 0.0488 0.0503

85 0.3728 0.3141 0.0520 0.0003
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using the two-dimensional integral equation methods.

Finite element solutions were obtained for a semi-submerged

rectangular cylinder cross-spring moored to the seafloor in the case

of beam seas. The geometry of the structure, arrangement of moorings

and the meshes used in the finite element solutions are shown in Fig.

3.6, where the moorings are characterized by dimensionless spring

constant of Q/pgd = 0.018 and initial tension of f/pgd = 0.0037.

Numerical results of sway and heave responses from the present study

are compared with the experimental and numerical results of Yamamoto,

et al. (78) in Figs. 3.7-3.8. The numerical technique used by

Yamamoto, et al. (78) is implemented by using Green's second identity

and a fundamental solution to form a boundary integral equation (BEM)

which is then discretized numerically over the full boundaries of the

problem. Numerical results from Yamamoto, et al. (78) are based on

using imaginary radiation boundaries taken one wave length from the

structure, and using a segment size of L/15 to L/20. Good agreement

over a range of diffraction parameter, Ka, from 0 to w was obtained

between the finite element and BEM solutions.

3.3.c Single Cylinder Close To A Wall

The standing wave effects between a fixed, vertical, impermeable

wall and large floating structures have been investigated by Ho and

Marten (30) using the BEM technique. Their technique also incorpo-

rated the fitting of bi-cubic splines for the discretization of the
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integral equation. The hydrodynamic coefficients for a semi-

submerged rectangular barge oscillating adjacent to a vertical wall

with varying permeability were also calculated by using the present

finite element method, where the functional integral due to boundary

dampers at the wall were multiplied by a fictitious permeability

parameter, s.

Numerical results of the heave added mass and damping coeffi-

cients (nondimensionalized by pAx and wpAx, respectively) from this

study with s = 0, 0.05, 0.25, 0.5 and 0.75; together with those

obtained by Ho and Harten (30), are shown in Figs. 3.9-3.10 for the

case of beam seas. These results are shown over a wave period range

of T from 5 sec to 40 sec (or Ka from 9.82 to 0.66), in order to be

consistent with the results presented by Ho and Harten (30). Close

agreement over the whole wave range was obtained between the present

results and BEM solutions for the case of an impermeable wall (8 = 0).

Heave resonance corresponding to T = 27.5 sec was predicted, as shown

in Figs. 3.9-3.10. Large negative values of added mass coefficient

are predicted near the resonance period by both solution methods.

Numerical results of the sway added mass and damping coefficients are

also seen to have resonance near T = 27.5 sec for the case of imper-

meable wall; as shown in Figs. 3.11-3.12.

At would be expected, the resonance phenomena become less severe

with increasing permeability of the wall. It is shown in Figs. 3.9-

3.12 that permeability of the wall has a strong effect on the standing

waves system. Numerical results for the case of s = 0.1 and 0.15 are
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also illustrated in Fig. 3.9 to show the trend of this effect: the

resonance period decreases with increasing permeability and the rate

of its influence also decreases with increasing permeability. The

resonance phenomena are nearly suppressed for the case of 8 = 0.25,

where only a small value of negative added mass coefficient was pre-

dicted.

3.3.d Catamaran

The hydrodynamics of catamaran type vessels are of particular

interest to the naval architect. Numerical solutions of the hydro-

dynamic coefficients have been reported by Wang and Wahab (73) for a

semi-submerged catamaran with circular sections, and by Wang (72) for

a fully-submerged catamaran. A method of wave sources and multipoles

was employed. Other solution techniques have also been reported by

Ohkusu (56) and by Maeda (48).

The hydrodynamic coefficients of a semi-submerged catamaran with

two identical circular sections separated by a distance of one cylin7

der radius in finite water depth (d/a = 10) were calculated using the

meshes shown in Fig. 3.5. The sway added mass and damping coeffi-

cients (nondimensionalized by pAx and wpAx, respectively) for the case

of beam seas are illustrated in Fig. 3.13. The heave added mass and

damping coefficients for the case of beam seas are illustrated in

Fig. 3.14 and Fig. 3.15, respectively, together with those results of

of Wang and Wahab (73) where an infinite water depth was assumed.

Good agreement over the frequency range of va = 0.1 to 2 is obtained,
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except at the low frequency range where the finite depth finite ele-

ment solutions differ from the infinite depth solutions. The phenom-

enon of wave resonance between the two sections, which happens in a

discrete set of characteristic frequencies as shown by Wang and Wahab

(73), is predicted using the present finite element method. For the

particular case studied, the first resonance corresponds approximately

to va = 0.65.

3.3.e Two Freely Floating Cylinders

The case of two freely floating cylinders with identical sec-

tions, in constrast to the other extreme case of two rigidly connected

cylinders of a catamaran, has also been studied. The finite element

meshes employed are identical to those used for the case of a catamaran

as shown in Fig. 3.5. The hydrodynamic coefficients were calculated

for the case of beam seas over a frequency range of va = 0.1 to 2.

The added mass and damping coefficients are the same for both cylin-

ders since identical sections are used (i.e., p
klkl Xklkl =

x
k2k2'

k = 1,2). These coefficients are illustrated in Figs. 3.16-

3.19, together with the coefficients corresponding to a single iso-

lated cylinder. The phenomenon of wave resonance is also shown in

Figs. 3.16-3.19 to occur approximately at integer multiples of va =

0.65. Large negative values of added mass are calculated across the

first resonance frequency where the standing wave system between the

two cylinders changes its phase about 180 degrees. The hydrodynamic

response of cylinders will be significantly affected due to the 180
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degree out-out-phase relative motions.

The absolute and relative responses of cylinders in beam seas

are illustrated in Figs. 3.20-3.21 for the sway and heave modes, res-

pectively, together with the responses of a single isolated cylinder.

In general, the absolute responses of the cylinder on the downwave

side are less than the responses of the cylinder on the upwave side

due to wave sheltering effects. The absolute response curves of the

upwave cylinder, in both the sway and heave modes, are seen to be

oscillating around the response curves of a single isolated cylinder.

This is due to the effects of wave reflections from the downwave

cylinder, in contrast to the sheltering effects. The relative motions

between the adjacent cylinders are seen to have resonance peaks around

a discrete set of characteristic frequencies where the motions are 180

degree out-of-phase. These large relative motions should be identi-

fied in the design of facilities and operations in offshore and harbor

waters, e.g., cargo transfer between adjacent vessels.

There exist relatively few reports in which the responses of a

single cylinder or multiple cylinders are calculated. Numerical re-

sults of Lee (44) for heave response of a single circular cylinder

semi-submerged in an infinite water depth have been compared with the

present results. Close agreement to two decimal places was obtained

for the frequency range studied. Numerical results of the two-

cylinder case by Sayer and Spencer (59), based on a modified method

of multipoles similar to that of Wang and Wahab (73), compare fairly

well with the present results as shown in Figs. 3.20-3.21. However,
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Sayer and Spencer (59) erroneously reported that the linear super-

position of diffraction and radiation problems, as employed in the

present method, is inadequate for solving the interference problem

between adjacent cylinders. The phase difference between the motions

needs to be solved explicitly in the method of Sayer and Spencer in

contrast to the present method.

The case of two cylinders has also been studied for the case of

obliquely incident waves of a = 45°. The absolute and relative res-

ponses of cylinders are illustrated in Figs. 3.22-3.23 for the sway

and heave modes, respectively. The heave response curves are similar

to those of beam seas. However, the large sway response is shifted

to a higher resonance frequency.

3.3.f Two Floating Cylinders With Inter-Structural Constraint

In order to study the effect of inter-structural restoring force

on the structural responses, numerical results were calculated for

two floating circular cylinders shown in Fig. 3.5 with varying hori-

zontal linear constraints. Table 3.3 presents the absolute and rela-

tive responses of cylinders for the case of beam seas and va = 0.5,

with different values of dimensionless spring constant for the inter-

structural sway constraint, Q1112/Pga'

For this particular case studied, it is shown that, although the

absolute responses oscillate around those of the freely floating case,

the relative sway response decreases as the constraint becomes stiffer.
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This is consistent with the increase of in-phase constraint in the

sway motion.

TABLE 3.3 EFFECTS OF INTER-STRUCTURAL CONSTRAINT ON RESPONSES

Q1112/Pga

Upwave Cylinder

Absolute
Response

Sway Heave

Downwave Cylinder

Absolute
Response

Sway Heave

Relative
Response

Sway Heave

(1) (2) (3) (4) (5) (6) (7)

O. 0.686 1.173 0.677 1.188 0.878 1.758

0.0264 0.696 1.165 0.679 1.195 0.871 1.757

0.264 0.827 1.084 0.722 1.261 0.808 1.742

2.64 0.489 1.231 0.385 0.941 0.455 1.550

26.4 0.043 1.017 0.050 1.201 0.081 1.692

3.4 Summary

The linear boundary-value problems have been formulated for a

multiple two-dimensional structures system interacting with oblique

waves in finite water depth. The hydrodynamic interference effects

between floating structures and between fixed and floating structures

have been calculated using a localized finite element method incor-

porating plane boundary dampers. Numerical results indicate that:

1) The localized finite element model provides accurate results
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over a wide range of frequencies, even when a moderate extent of fluid

domain is discretized, when compared with the more exact solution

techniques of matching with analytical boundary solutions. This has

been validated by comparing the numerical results of the diffraction

and radiation problems of a single cylinder with alternative solutions,

both in beam seas and in oblique seas.

2) Numerical results of both extreme cases of a catamaran and of

two freely floating cylinders compare closely with those obtained by

the method of multipoles. Important interference phenomena, such as

wave resonance and large relative motions, are identified over a wide

range of frequencies. Numerical solutions can therefore be extended

to more complicated geometries and arrangements, where numerical diffi-

culties exist and the phenomenon of irregular frequencies are not

clearly differentiated from resonance phenomenon in the integral equa-

tion method.

3) The interference effects between a mixture of fixed and

floating structures have been extended to the case of a permeable

wall. Permeability of the wall has a dominant effect on suppressing

the wave resonance.

4) Numerical results of taut-moored floating breakwater responses

compare closely with those obtained by the boundary element method and

by experimental works. The effect of inter-structural restoring force

on the responses has been given by varying the magnitude of in-phase

linear constraint between two floating cylinders.

Although the numerical results obtained are limited to infinitely
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long cylinders, they do provide useful information for incorporation

with the semi-empirical strip theory (vide Ref. 10). The hydro-

dynamic coefficients are estimated by two-dimensional calculations

integrated along the cylinder axis without accounting for the three-

dimensional end effects. In oblique seas, the hydrodynamic coeffi-

cients can be calculated using the present finite element method and

applied in the strip theory. This would be more appropriate in com-

parison to the usual procedure wherein the hydrodynamic coefficients

corresponding to beam seas have been used even when the incident

waves are oblique (vide Ref. 10). For the case of head seas, an

exact three-dimensional model, such as formulated by Van Oortmerssen

(71), would be necessary in order to simulate the wave refraction

along the cylinder axes.
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4.0 THREE-DIMENSIONAL GENERAL PROBLEM

The calculation of hydrodynamic interference between multiple

three-dimensional structures interacting with linear waves is treated.

A finite element method incorporating radiation boundary dampers and

a fictitious bottom boundary is employed to solve the corresponding

boundary-value problems. Numerical results are given for the diffrac-

tion and radiation problems of a single structure, both fixed and

floating, and of two floating vessels adjacent to a semi-impermeable,

semi-permeable wharf.

4.1 Theoretical Formulation

Consider the diffraction and radiation of monochromatic linear

waves of height, H, and angular frequency, 63, by three-dimensional

multiple structures adjoining each other as shown in Fig. 4.1. The

problem formulation follows closely that of Chapter 3, without a

flexural wave approximation in the three-dimensional case.

A Cartesian coordinate system (x,y,z) is employed in which the

z coordinate is measured positive upwards from the still water level.

An ideal fluid is assumed. Thus the velocity potential, for linear

wave theory, may be expressed by linear superposition of the incident,

scattered and radiation potential as

M
c 6

0(x,y,z,t) = Re{-i4(0.+ 0 )
1.1

+ 06;6;] exp -iwt)
s 2

j=1 k=1 "J "J

(4.1)
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in which M
c
= number of structures. The spatial velocity potential

of the incident wave is expressed as

1 cosh K(z+d)
ex p i(Kx cosa + Ky since )

PI v cosh Kd
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(4.2)

2
in which v = w /g and a = incident wave angle. cps = spatial velocity

potential of the scattered wave, cpki = velocity potential of the

radiated wave due to unit amplitude motion in the k
th

mode by the j
th

structure in which k = 1,...6 corresponds to the surge, sway, heave,

roll, pitch and yaw modes, respectively.
kj

= response amplitude of

th
the j structure in the k

th
mode. K is the wave number which satis-

fies the dispersion equation, Eq. (2.4).

The individual velocity potential satisfies the Laplace equation

2
V Oz = 0 ; St = I, s , kj (4.3)

and the following free-surface and bottom boundary conditions:

;z
v0 = 0 ; = 0, = I, S , kj (4.4)

a4)2,

az -0 ; z = -d, t = I, s , kj (4.5)

The scattered and radiated potentials satisfy the radiation boundary

condition of

Lim r
1/2

[
ar

(iK - 327) 0Q] = 0 ; t = s , kj (4.6)



in which r = (x
2

+ y
2

)

1/2
, and the body boundary conditions of

ans an.

acbI
B= 0 on ., j = 1,...M

c

ankJ
n
kj

= 0 on B.,
.

acp .

= 0
anm

on Bm, m ¢ j
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(4.7)

m,j = 1,...Mc (4.8)

in which nj = unit inward normal on structure Bj, and nkj = the x, y

th
and z components of the unit normal on the j structure for k = 1,2,

3, respectively; and

= (yj - ycj)n3j - (zj - zcj)n2j

nu = (zj - zcpnij - (xj xcj)n3j (4.9)

nu = (xj - xcj)n2j - (yj - ycj)nij

where xcj, ycj and zcj are the coordinates of the center of rotation.

The physical wave field quantities of pressure, exciting forces

and hydrodynamic restoring forces may be expressed by

2
M
c 6

p(x,y,z,t) = Reipw [(0
I
+0

s

%H
01,44.0 exp -iwt} - pgz

j=1 k=1 "

(4.10)
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(4.11)

(4.12)

in which p = fluid density and dD = differential area of the immersed

body surface. The property of symmetry between the hydrodynamic

coefficients Pkikm is still valid in the three-dimensional formulation

and may be expressed by Eqs. (3.21-3.24) where it is understood that

area integrations are now performed.

The responses of the structures in waves may be calculated by

Eq. (3.25) with the mode indices of z, k = 1,...6.

4.2 Finite Element Formulation

Solutions for the three-dimensional diffraction and radiation

boundary-value problems are now formulated using the standard finite

element method where boundary dampers are applied at moderate dis-

tance, r = rD, from the structures. Cylindrical and plane dampers

are used here to model the radiation boundary condition. In the case



of deep water or infinite water depth, a slight modification of the

bottom boundary condition is necessary to avoid extensive fluid

domain discretization. A bottom boundary condition of

az
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K tanh K(z+d) c1)2, = 0 ; £ = s , kj (4.13)

is assumed at a fictitious water depth of z = -df. The true bottom

boundary condition for arbitrary water depth, Eq. (4.5), may be

obtained from Eq. (4.13) by extending the fluid domain down to z =

-d. Finite element functionals may then be expressed as

2
2 2

1 act 34'
IItno,$) {(5 7) + (57 -) + (5 7-) }dV

1
1

II Tv0
s

2

2
dD - II tanh K(z+d) 0

s

2
dD

z=0 z=-d
f

Mc
1

(4 2rD s
dD + E IIK 1 ) 02

j=1
.r=rD 133

an.
0
s

dD

1 4kj 2 NJ 2 aqj 2
IIIliNj) Tr( ax ) ( ay ) ( az ) dV

II
v

dD - If tanh K(z+d) (1).

2
. dD

z=0
q2

1

j kJz = -d
f

1 1
2

If 2- (-11( 2r ) (Pk dD II dD

r=r
D

D B. KJ KJ

(4.14)

(4.15)
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for the diffraction and radiation problems, respectively, by using

the cylindrical dampers. V = finite element fluid domain, dV =

differential area on the free surface, z = 0, body surface, Bi, or

cylindrical boundary dampers, r = rp. The functionals in the plane

damper approach may be obtained from Eqs. (4.14-4.15) by assuming

rD co.

The fluid domain is now discretized into 3-D rectangular prism

volume elements and 2-D quadrilateral area elements. Two isopara-

metric finite elements with quadratic shape functions are used in

this study: these are the 20-noded prisms and 8-noded quadrilaterals.

The minimization and assemblage of functional derivatives to formu-

late the system matrix and vectors follow closely those of Sections

2.2 and 3.2, and will not be repeated here. The system matrix,

although symmetric and banded, is in general very large for three-

dimensional problems. An efficient Gauss elimination solution tech-

nique with blockform using secondary computer storages (vide Ref. 76)

is adopted in this study to solve the diffraction and radiation pro-

blems.

Numerical results based on the above formulations have been

calculated for a variety of problems. These results are discussed

in the next section.

4.3 Numerical Results

A three-dimensional finite element computer algorithm incorpo-
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rating a blockform solution technique has been developed and applied

to several example problems. The diffraction problem of a fixed,

surface-piercing circular cylinder is again used to verify the accu-

racy of the present finite element model.

4.3.a Single Fixed Vertical Circular Cylinder

Finite element solutions of a fixed circular cylinder diffraction

problem have been calculated for the case of a/d = 1 (in which a =

cylinder radius) over a range of Ka from 0 to 3, using cylindrical

damper formulation. Both 1-ring, 8-segment and 2-ring, 8-segment

finite element models with a radial size of 0.2a were used in this

study. Numerical prediction of the horizontal diffraction force

coefficient, Ch, together with the analytical solutions of MacCamy

and Fuchs (47), are illustrated in Fig. 4.2. As would be expected,

the 2-ring model gives more accurate predictions over the whole dif-

fraction range. In general, good agreement between the finite ele-

ment solutions and the analytical solutions over the range of Ka >

0.5 is obtained. The three-dimensional finite element solutions

overestimate the diffraction forces below the range of Ka = 0.5 ( or

2a/L = 0.16) where the hydrodynamic pressure forces are less inertial-

ly dominated. Similar predictions are also indicated in the two-

dimensional formulation, as shown in Fig. 2.2.

The runup profile around the cylinder is illustrated in Fig. 4.3

for the case of Ka = 1 by using the 2-ring, 8-segment finite element
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model. Good agreement between the present results and the analytical

form is shown. The three-dimensional finite element solutions under-

estimate runups at the leeside, similar to the prediction by using

the two-dimensional formulation as shown in Fig. 2.3.

4.3.b Single Floating Vertical Circular Cylinder

The scattering of linear waves by a floating vertical circular

cylinder has been solved in an analytical form by Garrett (21).

Numerical solutions have also been calculated for a particular geome-

try shown in Fig. 4.4 (with d/a = 0.75, d1/a = 0.5, d1 = draft of

cylinder) by Yue, et al. (80) using the boundary series method (BSM).

Specifically, the finite element model chosen by Yue, et al. (80) has

a total of 99 boundary series terms, 56 volume elements and 435 nodes

with greater node density near sharp edges. Numerical solutions have

also been calculated for this particular case by using the cylindrical

damper finite element formulation. The finite element model chosen in

this study has a total of 28 volume elements and 219 nodes. The

meshes used in this study are shown in Fig. 4.4, together with those

of Yue, et al. (80).

Accurate prediction of the hydrodynamic pressure (or velocity

potential) distribution is necessary to evaluate second-order wave

drift forces by direct integration of pressures on the submerged sur-

face of floating structure. Details of pressure distribution are

often poorly resolved in the integral equation method since a uniform
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distribution of source strength is usually assumed (vide Ref. 17).

It is therefore of interest to compare the pressure of velocity

potential distribution between different solution methods. Numerical

results of the total velocity potential distribution at the dock's

bottom plate from Yue, et al. (80) and this study are shown in Fig.

4.5, for the case of Ka = 1. Good agreement between the two numeri-

cal techniques is obtained. It is important to note that a relatively

coarse mesh is employed in this study.

Numerical results of both the horizontal and vertical exciting

force coefficients, C
Fx

and C
Fz'

over a range of Ka from 0 to 6 are

given in Fig. 4.6, where the exciting forces are nondimensionalized

by pgrad1H /2. Both the analytical solutions of Garrett (21) and the

BSM solutions of Yue, et al. (80) are also illustrated in Fig. 4.6.

Close agreement among these three studies is obtained with slight

discrepancy at Ka = 6, where the present study underestimates the

horizontal exciting force. Finer meshes are necessary to improve the

solution accuracy in the range of very short waves.

The diffraction and radiation problems of a floating vertical

circular cylinder have also been studied by Garrison (22,24,25) using

the three-dimensional integral equation method with point source dis-

tribution, and by Hudspeth, et al. (35) using the axisymmetric Greeh's

function integral equation method. Finite element solutions for the

case of d/a = 1, di/a = 0.5 have been calculated over a frequency

range of va from 0 to 3 in this study using the two meshes shown in

Fig. 4.7. Meshes 1 and 2 employed cylindrical and plane dampers,
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respectively, to model the radiation boundary condition. Numerical

results of the added mass and damping coefficients in surge (M11,

N11), heave (M33, N33) and pitch (M55, N55) are given in Fig. 4.8,

together with the results of Garrison (22). Close agreement has been

obtained between the two integral equation solutions for this particu-

lar case, except that Hudspeth, et al. (35) have predicted smaller

surge added mass coefficient in the long wave range. Therefore, the

results of Hudspeth, et al. (35) are not shown in Fig. 4.8. The

3
added mass and damping coefficients are nondimensionalized by pa and

wpa
3

, respectively, in the surge and heave modes. In pitch mode,
5 5

they are nondimensionalized by pa and wpa , respectively.

Agreement between the present Mesh 1 results and solutions based

on the integral equation is found to be generally good, the greatest

discrepancies arising in the heave mode: the present results appear

to be converging to different lines from the integral equation solu-

tions. Smaller added mass coefficients, M33, and larger damping

coefficients, N
33' are predicted by the finite element method.

Smaller surge added mass coefficient,
M11' are also predicted by the

finite element solutions. The variation of pitch added mass coeffi-

cient, M55, varies from 0.206 to 0.192 as va varies from 0.5 to 3,

slightly smaller than the integral equation solutions. A constant

value of pitch damping coefficients, N55 = 0.01 is predicted, this is

consistent with the integral equation solutions. Slightly different

hydrodynamic coefficients have been obtained by using the Mesh 2

finite element solutions. In general, the discrepancies in these
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coefficients are relatively irrelevant to the computation of first

order response, although they are likely to have greater influence

on drift forces.

Numerical results of the dimensionless surge and heave exciting

i

forces, Cr,,
Flmax/Pg

2 a
2
H and CF3 = 2F3max/pga

2
H, and pitch excit-

ing moment, CF5 = 2F5max/pga
3
H, are given in Fig. 4.9. Good agree-

ment between the present Mesh 1 results and the axisymmetric Green's

function integral equation solutions of Hudspeth, et al. (35) is ob-

tained. Garrison (22) only reported the results of surge exciting

force coefficient, which are slightly larger than the results of this

study and Hudspeth, et al. (35). In general, smaller surge forces

and larger heave forces are predicted by using the Mesh 2 finite ele-

ment solutions.

Numerical calculations of the hydrodynamic responses are based

on taking the center of gravity at the still water level and the

pitching radius of gyration as 0.691a, which corresponds to a pitch

5
moment of inertia of 0.75pa . These responses are shown in Figs.

4.10-4.12 for the surge, heave and pitch modes, respectively, toge-

ther with those obtained by Garrison (22). Good agreement between

the two results is obtained for all the responses, except at the

heave resonance approximately at va = 0.83. Smaller heave resonance

is predicted by the present Mesh 1 finite element solution probably

due to a smaller heave added mass calculated. The pitch response has

a very large peak at resonance because of the very small damping.

Finite element solutions for the case of infinite water depth (
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d/a = di/a = 0.5) have also been calculated over a frequency range

of va from 0 to 3 by using a fictitious water depth of df/a = 1 and

the two meshes shown in Fig. 4.7. Numerical results for added mass

and damping coefficients are given in Fig. 4.13, where they are seen

to converge to different lines from the results of Garrison (22).

The pitch damping coefficient varies from 0.005 to 0.007 over the

whole frequency range. Numerical results of the exciting forces and

moment are shown in Fig. 4.14 which indicate smaller finite element

surge force predictions near the peak, compared with Garrison's (22)

results. The hydrodynamic responses of the cylinder are calculated

and illustrated in Figs. 4.15-4.17. These responses compare fairly

well with those obtained by Garrison (22) except at the heave reso-

nance. Smaller heave resonance is again predicted by the present

Mesh 1 finite element solution, larger heave resonance is predicted

by Mesh 2 finite element solution. No experimental work has been

reported for this particular case to compare with different numerical

predictions.

4.3.c Floating Disc Buoy

Hoffman, et al. (31) have published their experimental results

for a large shallow-draft disc buoy. The geometry of the disc buoy

is shown in Fig. 4.18. Numerical computations of the buoy heave and

pitch responses have been reported by Garrison (22). Detail calcula-

tions have also been performed by Hudspeth (36) using the axisymmetric
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Green's function formulation. The finite element solutions have been

calculated by using the meshes shown in Fig. 4.18, where cylindrical

dampers and a fictitious bottom were applied at 1.3a and la, respec-

tively. The exciting forces calculated from this study are compared

with those of Hudspeth (36) in Fig. 4.19. Close agreement between

the two studies is obtained, except for the heave force in the low

frequency range. The hydrodynamic coefficients from these two studies

are compared in Figs. 4.20-4.24 where some discrepancies are illus-

trated. The hydrodynamic responses are shown in Fig. 4.24, where good

agreement between Hudspeth's results (36) and the present finite ele-

ment solutions is obtained. The discrepancy between the two forms of

integral equation method (the axisymmetric and three-dimensional

Green's functions) at the pitch resonance is not clear.

4.3.d Three-Dimensional Catamaran

The interference effects between the two hulls of a catamaran

have been calculated in Chapter 3 by using a two-dimensional approxi-

mation, where a strong heave resonance phenomenon at va = 0.65 was

shown. For the three-dimensional study of the end effects, a length

of 5a and infinite water depth have been used in the calculations.

Finite element solutions for this case have been calculated by using

the meshes shown in Fig. 4.25, where plane dampers and a fictitious

bottom were applied at 3a and 2a, respectively. Numerical solutions

have been calculated for the case of beam seas only, and compared
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with the two-dimensional solutions to illustrate the end effects of

a three-dimensional catamaran. The hydrodynamic coefficients in the

sway mode are shown in Fig. 4.26, where end effects are shown to be

small. The heave added mass and damping coefficients are shown in

Figs. 4.27-4.28 where the end effects are clearly demonstrated. The

standing waves between the two hulls become smaller as a result of

flow around the ends of the catamaran. The heave resonance frequency

also increases to approximately va = 0.9. Similar prediction has

been calculated recently by Eatock-Taylor and Zietsman (17) by using

the boundary integral method (BIM). Numerical results of the sway

and heave exciting forces are shown in Figs. 4.29-4.30, together with

those results obtained from the two-dimensional approximation. The

end effects are again illustrated by sharp decrease of the heave

forces near the two-dimensional resonance frequency and an increase

of three-dimensional resonance frequency.

4.3.e Loading/Unloading Facilities

One concept for cargo loading/unloading operations under consid-

eration by engineers is that of a floating derrick barge moored be-

tween a vessel and a wharf connected by a long causeway to shore.

The wharf and causeway would be supported by piles or some other per-

meable structures. An understanding of the wave interference phenom-

ena between the two floating vessels, the wharf and the supporting

structures are essential to the design of moorings and other forms of
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inter-structural constraints.

For purpose of illustration, the interference phenomena in such

a system have been calculated for the case shown in Fig. 4.31. A

permeability of 0.75 was assumed for the supporting pile structure.

The geometries and spacing of the two vessels are identical to the

three-dimensional catamaran studied previously. Numerical solutions

have been calculated for the case of beam seas, by using the meshes

shown in Fig. 4.31. The predictions of the sway and heave exciting

forces are illustrated in Fig. 4.32. Sharp variations of exciting

forces, in both vessels and in both modes, are predicted near va =

0.9, the resonance frequency of the three-dimensional catamaran.

The sway forces are larger than the heave forces near va = 0.9. As

would be expected, large exciting forces are exerted on vessel 1

near the resonance frequency, since vessel 1 is stationed in the

standing wave system between the wharf and vessel 2. One important

interference phenomenon exists for this particular case: the sway

resonance is more pronounced than the heave resonance, due to the

effect of the permeable supporting structure under the wharf. As

studied earlier in a two-dimensional structure adjacent to a perme-

able wall, the heave and sway resonance phenomena are strongly sup-

pressed by increasing the permeability of the wall. For this parti-

cular case of a highly permeable supporting structure under the wharf

, the transmitted waves provide a suction effect on both vessels,

therefore, large sway responses.

The hydrodynamic coefficients calculated form the radiation
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problems are illustrated in Figs. 4.33-4.36. The resonance phenomena

near va = 0.9 are also clearly demonstrated. The coupled sway-heave

restoring forces, induced by each vessel's own motions and the neigh-

boring vessel's motions, are shown in Figs. 4.35-4.36. It should be

pointed out here that these coupled restoring forces only exist in a

multiple structures system. An important interference phenomenon

exists for this case: negative added mass and very small damping

coefficients are predicted in the range of va > 1.2, especially in

the sway mode. This is in contrast to the catamaran problems studied

earlier (both two-dimensional and three-dimensional formulations, as

shown in Fig. 4.26) The hydrodynamic responses of the vessels are

strongly affected by these coefficients, large responses are associ-

ated with small fluid resistance (small damping) and water pressure

force acting in the same direction as the vessel's motion (negative

added mass). These responses are shown in Figs. 4.37-4.38. Large

sway responses are predicted near va = 1.3-1.4 for both vessels. The

relative sway motions between the two vessels are also seen to have

resonance peak at va = 1.4 where the motions are 180 degrees out-of-

phase. The relative heave response is seen to have a small resonance

peak near va = 1.4.

4.4 Summary

The linear diffraction and radiation of waves by multiple three-
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dimensional structures have been considered. A finite element method

which incorporates radiation dampers, permeable boundary dampers and

a fictitious bottom boundary has been developed with which the wave

field variables are calculated for multiple structures system. The

validity of the finite element model has been demonstrated for a

variety of examples. This is summarized below:

1) For a structure floating in shallow water, the fluid domain

is extended to the true bottom in the finite element discretization.

Comparisons between the present diffraction solutions and analytical

solutions, and boundary series method (BSM) solutions are very good

in general. Comparisons between the present solutions and the inte-

gral equation solutions indicate some discrepancies in the diffraction

and radiation calculations. However, the hydrodynamic responses are

not greatly affected -- comparisons are generally good. Similar pre-

dictions have also been indicated by Eatock-Taylor and Zietsman (17)

using the boundary integral method (BIM).

2) For a structure floating in deep water or infinite water, a

fictitious bottom is constructed in the diffraction and radiation

functionals. In numerical experiments on different choices of the

distance of this fictitious bottom below the structure, it was found

that its effects on the numerical solutions are very small, except in

the range of very long waves. In this range, the solution accuracy

is more dominated by the extent of fluid domain in the radial direc-

tions.

3) Two different meshes (one with cylindrical dampers and the
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other with plane dampers) have been used in the study of vertical

circular cylinder diffraction and radiation problems. The meshes

with plane dampers gave better resonance comparisons with the inte-

gral equation prediction, probably due to the larger extent of fluid

domain discretized in this formulation. In general, the selection

of different dampers in the three-dimensional problems has less

effect on the solution accuracy than it has in the two-dimensional

horizontal plane problems of surface-piercing structures (discussed

in Chapter 2). The water waves are allowed to flow beneath, and to

diffract around, the three-dimensional structures; in contrast to

the surface-piercing cases where the waves are forced to scatter

around the structures only.

4) Numerical results of disc buoy responses compare fairly

well with the axisymmetric Green's function results. Both techniques

gave larger pitch resonance predictions than the experimental results,

due to the fact that viscous damping is neglected in the numerical

analyses.

5) The end effects and interference phenomena of a three-

dimensional catamaran are clearly demonstrated; i.e., an increase of

heave resonance frequency and sharp decrease of standing wave system

between the two hulls.' Again, the water waves are allowed to flow

around the ends of catamaran. Similar predictions have been reported

recently by Eatock-Taylor and Zietsman (17) using the Boundary Inte-

gral Method. Good agreement is obtained between the present finite

element algorithm and the Boundary Integral Method where extensive
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use of explicit integration on the boundary is performed to achieve

computational efficiency. No irregular frequencies are experienced

using the present algorithm and, therefore, the same meshes can be

used for a wide range of frequencies to be studied.

6) A design example of floating vessels loading/unloading

facilities has been studied, where the interference effects between

multiple floating vessels and an adjacent wharf, part impermeable

and part permeable, were considered. The effects of impermeable and

permeable wharfs are easily incorporated with the present finite ele-

ment formulation. It is seen that the heave resonance between the

two vessels (corresponding to the heave resonance frequency when no

wall is present) is suppressed, while the sway resonance is strongly

excited at a higher frequency. This finding is essential in future

design of moorings and assessment of the supporting pile structures

to avoid collisions of vessels.
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5.0 CONCLUSIONS

A numerical calculation procedure for the hydrodynamic inter-

ference effects between large multiple structures interacting with

linear ocean waves has been presented in this study. Viscous effects

were neglected and the hydrodynamic pressure forces assumed to be

inertially dominated. A finite element method which incorporates

radiation boundary dampers was adopted to calculate the wave forces

and other field variables in the direct interference model. Numeri-

cal solutions in the frequency domain were calculated for three cate-

gories of the boundary-value formulations: two-dimensional horizontal

plane, two-dimensional vertical plane and three-dimensional problems.

The two-dimensional horizontal plane interference problems were

formulated by incorporating explicit integration in the vertical

direction, and applied to fixed, surface-piercing structures only.

Two types of radiation dampers, cylindrical and plane dampers, were

investigated. The cylindrical damper formulation gives better predic-

tion of the scattered wave field variables. The two-dimensional

vertical plane interference problems in finite water depth were formu-

lated with a flexural waves approximation to treat diffraction and

radiation of oblique waves. Plane dampers were used to model the

radiation condition and permeable boundaries. Boti floating-floating

and fixed-floating structures systems were investigated. The effects

of structural permeability, moorings and inter-structural constraints

were also investigated. In general, good predictions of the wave
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interference effects were obtained in both the horizontal- and the

vertical-plane problems. Structural permeability is seen to have a

strong effect in suppressing wave resonance phenomena.

The three-dimensional interference problems have been formulated

by incorporating a fictitious bottom boundary and radiation dampers

in the finite element functionals. The fluid domain discretization

was minimized by using this technique. Both cylindrical and plane

dampers were used in a variety of single structure wave diffraction

and radiation problems. In general, the selections of different

radiation dampers and a fictitious bottom do not have a very strong

effect on first-order structural responses. This is due to the fact

the water waves are allowed to flow beneath, and to scatter around,

the structures. Interference effects are shown to be strongly sup-

pressed and shifted to shorter waves region in three-dimensional multi-

ple structures where end effects are considered. The versatility of

the present three-dimensional finite element algorithm was clearly

demonstrated in the analysis of a loading/unloading facilities, where

important interference phenomena were identified.

Isoparametric curved elements with quadratic shape functions were

used in this study to represent the structural geometries and the

inner fluid domain variables. Regular finite elements (i.e., same

sizes) were used whenever possible to replicate the element matrices

and, therefore, to reduce the computing effort. A Gauss elimination

technique was used to solve the symmetric, banded matrix equations
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derived from the wave diffraction and radiation functionals. In the

three-dimensional algorithm, a blockform Gauss elimination technique

was employed to increase the solution capacity in treating compli-

cated systems.

In summary, this study provides an alternative frequency domain

solution technique for the study of steady hydrodynamic interference

effects between large multiple structures. The validity of the pres-

ent finite element algorithms, both in two-dimensional and in three-

dimensional formulations, were studied extensively.

Extensions of the present finite element algorithm are suggested

for the following areas:

1) Incorporation of a ship hydrostatic calculation pre-processor

(such as Bonjean's curves) into the present computer program to treat

vessel interference problems;

2) Incorporation of linearized viscous damping into the present

computer program to treat interference problems where the structures

are very close to each other;

3) Experimental verification of the effect of permeable struc-

tures on interference phenomena, and quantitative determination of the

permeability parameter;

4) Development of a nonlinear time domain solution method to

treat large structural displacements and nonlinear inter-structural

restoring forces;

5) Development of a nonlinear second-order diffraction algorithm
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using a perturbation procedure and the present finite element formu-

lation to treat nonlinear interference problems for steep waves;

6) Development of a wave-structure-foundation-soil interaction

model wherein coarse aggregate foundation may be simulated by perme-

able boundary dampers, a fictitious bottom may be used to model the

wave-soil interface, and the infinite elements may be used to model

the homogeneous, isotropic soil half space; and

7) The present finite element formulation may be easily combined

with the existing boundary element (integral equation) computer algo-

rithms to improve their representation of the structural geometry.
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APPENDIX -- INFINITE ELEMENT

The following details the infinite element shape functions and

Newton-Coates integration scheme which originated from Ref. (7).

For a two-dimensional infinite element shown in the parent shape

in Fig. A.1, a long but finite strip is constructed to approximate

the infinite element. This finite strip has 3 reference points in

both the n and E directions. Therefore, a total of 9 reference points

is given for which the global x, y coordinates can be specified and

Lagrangian interpolations in both n and E directions can be used in

the quadratic isoparametric representation. The coordinates in the

E direction can be arbitrary; they are chosen as shown in Fig. A.1 to

be consistent with those chosen in Ref. (7).

reference

point x

nodal

point 0 -1

2 30

(Fig. A.1)

For each n integration coordinate, the Jacobian matrix is calcu-

0

lated at the three E coordinates to define a new infinite direction,

s, as s = E s' where

3
!cis\ 1 1.1(A2 AY. 2 1/2

SI (d )mean
1.6

dc
1=1

(A.1)
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The s coordinates of the reference points are therefore 0, 2s' and

30s'. This representation allows shape variation in the n-E plane

but restricts the element to be stretched or telescoped in the E

direction.

The shape function in the 'n direction, can be expressed by

a real Lagrangian polynomial. In the s direction, the shape function

th
of the i nodal point is expressed as

s. - s n-1 s
k
-s

L. = exp ( ) exp (iKs) n ( ) ; i = 1,...n-1
s - si

k=1 k 1W
(A.2)

in which n = number of nodal points in the s direction, LD = decay

length and K = wave number. The shape function for the nodal point

at infinity is calculated by

n-1

L
n
= exp (iKs) - E Li

1=1

(A.3)

These complex-valued shape functions in the s direction have the pro-

perty that they have absolute values of 1 or 0 at nodal points (ex-

th
cept at the n nodal point, where they have absolute values, approxi-

mately, of 1 and 0). They also approximate the Sommerfeld radiation

condition of outgoing waves with radial decay.

The shape functions, forfor the 9-noded infinite element are

expressed explicitly by the following equations:
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N.. =
j

; i,j = 1,2,3
ij

2
L
1

(

2s'-s
) exp (-s/L

D
) exp (iKs) ; M

1
= (n -n)/2

2s'

(A.4)

22S
L
2

= (

2s D

SN
exp exp (iKs) ; M2 = 1 - n

L3 = exp (iKs) - L1 - L2 ; M
3

= 1 - M
1

- M
2

When minimized with respect to the nodal unknowns, the functional

integral in Eq. (2.28), Section 2.5, has two parts which are propor-

tional to the quadratic terms of the shape functions and their deriva-

tives, respectively. At each integration point within the infinite

element, the derivatives can be found by transforming them from the

n, s coordinates to the x, y coordinates, using the Jacobian matrix

based on the finite-strip Lagrangian interpolation. The Gauss-

Legendre integration formulas can be used in the n direction. In the

s direction, a Newton-Coates integration scheme is necessary because

of the harmonic terms in these shape functions.

The Newton-Coates formula evaluates integrals of the form

f
o
p(s)exp(-as)exp(i$s)ds by choosing the integration points to be at

(2n+1)/8 multiples of the harmonic wavelength (=21r/0), such that the

zeros of real and imaginary parts of the exp(i0s) term can be avoided.

It should be pointed out that $ = 2K (K is the wave number) because

of the quadratic terms in the functional integral. The term p(s) is
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further expressed as Lagrangian polynomials of these integral points

such that for a n-points integration scheme, the integral can be

evaluated by

n

p(s)exp(-as)exp(i0s)ds = z p(s.) I" q.(s)exp -as exp(i$s)ds
0 .I J 0

n

= z p(s.) W.

j=1

(A.5)

For example, the first Lagrangian polynomial in a 4-points formula

would be given by

- )(r - S ) (LIY- - S )
48 4$

(s ) -si )(t -si ) -s1)

in which s
1

= w/4$. The equality

(A.6)

I s
m-1

exp (- ) exp (ins) ds = ym (m-1)! (A.7)

2 2
in which ' = (a+i$)/(a +0 ) is now used to evaluate the integral

weight W1 as

W1 = I q (s) exp(-as) exp(iBs) ds
1 0 1

35 71 2 2 3 3 4

16 x 12 XY
lOxy 8x7 (A.8)
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in which x = 8/7r. A series of Newton-Coates integration weights

from 3- to 6-points scheme is listed in Table A.1.

The assemblage of the functional derivatives may now be performed

in the usual manner. In the formulation in Ref. (7), a decay length

L
D
was chosen by ensuring that in the region close to the area of

diffraction, the decay of exp(-s/LD) matched roughly the decay of

H
0
(ks), the first term of the analytical series solution. The 2eroeth

Hankel function of the first kind is defined as H0(Ks) = J0(Ks) +

i Y
0
(Ks) and is shown in Fig. A.2.

Numerical results of the present study are based on using LD =

L, the wave length. This gives approximately the same decay rate of

J0(0)/J0(Ks1=7) = exp(0)/exp(-s2/LD) = 10/3 with sl = 1.114L and s2 =

1.204L. The decay rate of the Y0(Ks) term is about the same order as

the J0(Ks) term.

0.5

-0.5

(Fig. A.2)



TABLE A.1. ABSCISSAS AND WEIGHTS FOR NEWTON-COATES INTEGRATION FORMULA
n

p(s)exp(-ms)exp(i0s)ds = E p(s.)W.; with
0 j=1

Y = (a+i0)/(a2+02) and x = Obt

3-points formula 4-points formula

s. W. W.

1 15

4x
gy 4xy2 4x2y3

43
3 _ -y5 6xy2 8X2y3

5 3

4x
8y 2xy2 4x2y3

7

4x

35,
12
Ilyy2 + 10x2y3 80)(416'

-el
35 + 47 2 26x2y3 24X3Y4

21
34X,2 22x2y3 24X3Y4

5 23 ,2 - 6x2Y3 8 x3Y4IT°



TABLE A.1. (Continued)

5-points formula

sS. W.

1 315 93 2 4. 1912,3 - 24x3y4 16)(4)(5
4x 1-2" 6 A I

3.1,4 - 64X4Y53 315 229 2 164
2y3 + 88x-Y . -12xY -Tx Y

5 189 75 y2 + 65x2y3 120x3y4 + 96x4Y5
4x --6-4Y --WX,

7 1351' 111 2 104 2 3 + 72x3y4 - 64x4y5
4x

-Tr -12-XY --1--X Y

9 35 11 2

+
43 2 3

16 Y3 4 16x4y 5
4x --61 X



TABLE A.1. (Continued)

6-points formula

s . W
.1 .1

1 693 3043X12 +
'

47x3y4 + 56x4y5 - 32x5y6
4x --10" 24A

3 1155 5353 2 377 2 3 264x4y5 160x5Y6
4x -111-1 2°301'4

5

47(
693 1163 2 865

213 - 350x3y4 + 496x4y5 320X5Y6
1.26Y -Sr" -121 Y

7 495 859 683
+ 3020y4 464x415 320x5Y612gY

9 385 2041 2 4.561 2 3 - 314 + 216x415 160x516E4x -r 752" 24x Y
131x

11 63
+

563 2 _2.12,3 4- 23 3 4 - 40x415 32x516
X Y4x "f6761' --376" 24A '


