
Oregon State University, TR 97-60-15, November 1997.

- 1 -

Similarity Inheritance: A New Model of Inheritance
for Spreadsheet Languages

Rebecca A. Walpole and Margaret M. Burnett
Department of Computer Science

Oregon State University, Corvallis, Oregon 97331
{walpolr, burnett}@cs.orst.edu (541) 737-2539

ABSTRACT

 Although spreadsheets can be argued to be the most

widely-used end-user programming languages today, they are

very limited compared to other programming languages,

supporting only a few built-in types and offering only

primitive support for code reuse. The inheritance

mechanisms of object-oriented programming might seem to

offer help for the latter problem, but incorporating these

mechanisms in a traditional way would introduce concepts

foreign to spreadsheets, such as message passing. In this

paper, we present a new approach to inheritance, similarity

inheritance, that is suitable for seamless integration into the

spreadsheet paradigm. We first explain the model

independently of any implementation, and then present a

prototype implementation for a research spreadsheet

language. We show that bringing inheritance functionality

to the spreadsheet paradigm supersedes previous support for

reuse in spreadsheets, and does so without sacrificing the

concreteness, flexibility, and directness that characterize

spreadsheets.

KEYWORDS: inheritance, spreadsheet languages,

visual programming languages, end-user programming

1. INTRODUCTION

Spreadsheets have proven to be a popular programming

paradigm, accessible even to non-programmers. Current

spreadsheets, however, suffer from some of the problems

that have been solved in other programming languages. For

example, in other programming languages, object-oriented

inheritance mechanisms have improved upon ad-hoc (cut-

and-paste) reuse of code, but spreadsheets still support only

ad-hoc reuse through copy/paste and formula replication.

Thus spreadsheet users must remember the reuse

relationships themselves and maintain them manually

whenever they change a reused formula. Some commercial

spreadsheets such as Excel® have a few additional

conveniences, such as automated formula adjustment when a

new copy of a linked spreadsheet is made. However, these

features are simply editing conveniences, and the user is still

left to manually maintain the reuse relationships.

It occurred to us that incorporating inheritance into

spreadsheets could result in stronger support for formula

reuse than is found in current spreadsheets. However,

existing models of inheritance do not seem suitable for the

spreadsheet paradigm because they introduce concepts foreign

to spreadsheets, such as message passing. Thus, we set out

to find an approach to inheritance suitable for spreadsheet

languages.

We use the term spreadsheet languages to refer to a

variety of systems that follow the spreadsheet paradigm,

from commercial spreadsheets to more sophisticated research

systems that follow the declarative, one-way constraint

evaluation model. The essence of the paradigm is

summarized by Alan Kay’s value rule for spreadsheets [Kay

1984], which states that a cell’s value is defined solely by

the declarative formula explicitly given it by the user.

In this paper we present a new approach to inheritance

suitable for spreadsheet languages, and an instantiation of

the approach in the research spreadsheet language Forms/3

[Burnett and Ambler 1994; Atwood et al. 1996; Gottfried

and Burnett 1997]. The approach, called similarity

inheritance, provides a concrete way of sharing behavior

among objects in a spreadsheet language. The unique

attributes of similarity inheritance are that:

• it provides a complete, explicit, representation of all the

object’s unique and shared behaviors, rather than leaving

some behaviors implied through parenthood;

• it is flexible enough to allow sharing at multiple

- 2 -

granularities and even allows mutual inheritance;

• it brings object-oriented concepts to spreadsheet

languages without using external languages or macros;

• it subsumes the current spreadsheet edit-based

mechanisms for formula propagation, unifying formula

reuse with inheritance.

2. RELATED WORK

2.1 Combining Spreadsheets with Object-

Oriented Programming

Spreadsheets and more advanced spreadsheet languages

have had little work to date on approaches to inheritance,

perhaps because there has been only a little work that

incorporates support for objects. Commercial spreadsheets

provide support only for a few built-in types—numbers,

Booleans, and strings—as first-class values, and do not

provide a formula-based mechanism allowing users to add

new types of objects. Although some spreadsheets gain

partial support for additional objects through the use of

macro languages and incorporation of other programming

languages (such as Visual Basic), these approaches do not

maintain a seamless integration with the spreadsheet

paradigm, because they use notions such as global variables,

state modification, and imperative commands in a language

different from the formula language of the spreadsheet.

A few research spreadsheet languages have also

incorporated external languages to support object-oriented

features. ASP (Analytic Spreadsheet Package) is a

spreadsheet language in which every cell can be any object,

and every formula is written in Smalltalk code [Piersol

1986]. Smedley, Cox, and Byrne have incorporated the

visual programming language Prograph and user interface

objects into a conventional spreadsheet for GUI

programming [Smedley et al. 1996]. Both of these

approaches add some of the power of object-oriented

programming, but do not enforce consistency with the value

rule, since global variables and state-modifying mechanisms

circumvent it.

C32 [Myers 1991] is a spreadsheet language that is part

of the Garnet and Amulet user interface development

environments [Myers et al. 1990; Myers et al. 1996]. C32

uses graphical techniques along with inference to specify

constraints in user interfaces. C32 does not itself feature the

graphical creation and manipulation of objects. Instead, this

function is performed by another part of the Garnet/Amulet

package. The combination of tools in the Garnet/Amulet

package features strong support for programming with built-

in GUI objects via visual techniques, but does not support

any other kinds of objects, which must be written and

manipulated in Lisp/C++.

Some research spreadsheet languages have moved toward

expanding the types of objects supported without the use of

external programming languages. One of the pioneering

systems in this direction was NoPumpG [Lewis 1990] and

its successor NoPumpII [Wilde and Lewis 1990], two

spreadsheet languages designed to support interactive

graphics. These languages include some built-in graphical

types that may be instantiated using cells and formulas, and

support limited (built-in) manipulations for these objects,

but do not support complex or user-defined objects.

Penguims [Hudson 1994] is a spreadsheet language for

specifying user interfaces. Penguims supports composition

of objects by collecting cells together, and formula

inheritance at the object level. Unlike our work, it employs

several techniques that do not conform to the spreadsheet

value rule, such as interactor objects that can modify the

formulas of other cells, and imperative code similar to

macros.

2.2 Prototype-Based Inheritance

Traditionally, object-oriented inheritance is a sharing

mechanism between a class and its subclass. The most

prevalent alternative to this class-based inheritance has been

prototype-based inheritance, and our approach is most like

this alternative.

Inheritance in prototype-based languages is based on

concrete parent objects rather than abstract classes. In most

prototype-based languages, inheritance is accomplished

through delegation. With delegation, if an object cannot

handle a message directly, it delegates it to its parent object,

which in turn handles it or delegates it to its parent, and so

on. Prototypes remove the need for the concepts of class,

- 3 -

formula ::= BLANK | expr
expr ::= CONSTANT | ref | infixExpr | prefixExpr |

ifExpr

infixExpr ::= subExpr infixOperator subExpr
prefixExpr ::= unaryPrefixOperator subExpr |

binaryPrefixOperator subExpr subExpr
ifExpr ::= IF subExpr THEN subExpr ELSE subExpr |

IF subExpr THEN subExpr

subExpr ::= CONSTANT | ref | (expr)
infixOperator ::= + | - | * | / | AND | OR | = | ...
unaryPrefixOperator ::= ROUND | CIRCLE | ...
binaryPrefixOperator ::= APPEND | ...

ref ::= CELL | MATRIX | ABS | ABS [CELL] |
MATRIX [subscripts] | ABS [MATRIX] |
ABS [MATRIX] [subscripts]

subscripts ::= matrixSubscript@matrixSubscript
matrixSubscript ::= expr
Table 1: The grammar for the formula language in this
paper. There are also 6 “pseudo references”—I, J,
NUMROWS, NUMCOLS, LASTROW, and LASTCOL—
that are used in matrix subscripts. Including these in the
grammar is straightforward but tedious, and we have omitted
them for brevity.

subclass and instance since any object can be used as the

basis for defining a new object. Self [Ungar et al. 1991] is

perhaps the best-known prototype-based language.

ObjectWorld [Penz 1991; Penz and Wollinger 1993] is a

prototype-based language that, like ours, uses visual

mechanisms to emphasize concreteness and does not use

delegation. However, unlike our approach, ObjectWorld does

not use any inheritance mechanism, instead achieving code

reuse through object composition combined with automatic

message propagation. An important difference between our

similarity inheritance approach and most prototype-based

languages (including Self and ObjectWorld) is that our

model does not use any sort of message passing.

Kevo [Taivalsaari 1993] is one of the few prototype-

based languages that does not use message passing. Kevo

emphasizes the concreteness and self-sufficiency of objects.

Operations can be marked as applying to individual objects

or to clone families which are groups of similar objects

automatically inferred by the system. Thus Kevo does not

require a designated parent prototype for a collection of

objects, but there are no change propagation mechanisms for

objects outside the clone family. Kevo approximates

multiple inheritance and fine-grained inheritance via a

cut/copy/paste metaphor, but changes to the original code do

not propagate, and must be recopied and pasted by the

programmer.

2.3 Fine-Grained Inheritance

Although most approaches to inheritance operate at the

granularity of entire classes or objects, there is some

research exploring inheritance at finer granularities. Mixins

[Bracha and Cook 1990] are a technique for providing

inheritance on a more fine-grained scale than whole classes.

Also known as abstract subclasses, mixins are partial classes

that exist only to be inherited by other, complete classes.

They usually define just a small piece of functionality and,

combined with multiple inheritance, can cut down on the

code duplication that arises when the language allows

inheritance only at the class level. Another approach to fine-

grained inheritance is found in the language I+ [Ng and Luk

1995]. I+ inheritance is not determined by subclassing, but

by explicitly listing the methods to inherit.

The fine-grained aspects of similarity inheritance are

closer to the I+ approach than to the mixin approach. Some

differences however, are that similarity inheritance allows

even finer-grained inheritance than methods, and is flexible

enough to allow mutual inheritance. Also, our approach is

particularly focused on maintaining attributes important to

spreadsheet languages, such as concreteness and immediate

visual feedback, attributes that are not present in I+.

3. BACKGROUND: INTRODUCTION TO

FORMS/3

We have created a prototype implementation of our

approach to inheritance in the spreadsheet language Forms/3,

and the examples in this paper are presented in that

language. This section provides the necessary background in

Forms/3 to understand the examples.

A Forms/3 programmer creates a program by using

direct manipulation to place cells on forms (spreadsheets)

and to define a formula for each cell using a flexible

combination of pointing, typing, and gesturing. A

program’s calculations are entirely determined by these

formulas (see Table 1).

Forms/3 has long supported an extensible collection of

- 4 -

Figure 1: The white primitiveCircle form is a built-in form
that defines a prototypical instance of type primitiveCircle.
The gray 392-primitiveCircle form is a copy that has been
modified to describe a different instance. The circle in cell
newCircle is defined by the other cells, which specify its at-
tributes. To refer to the circle elsewhere in the program, a
formula can reference 392-primitiveCircle:newCircle. The
programmer cannot view the formula (primitive
implementation) of newCircle, but can view and specify the
other cells’ formulas by clicking on their formula tabs ().
Radio buttons and popup menus (e.g., lineForeColor)
provide a way to reliably enter constant formulas when only
a limited set of constants are valid.

types. Attributes of a type are defined by formulas in cells,

and an instance of a type is the value of a cell, which can be

referenced just like any cell. For example, the built-in circle

object shown in Figure 1 is defined by cells defining its

radius, line thickness, color, and other attributes. One way

to instantiate a circle is to copy the circle form, changing

any formulas necessary to achieve the desired attributes (as

in the figure); another way is to graphically define its

attributes [Gottfried and Burnett 1997], such as by sketching

a new circle or by stretching an existing circle by direct

manipulation. The graphical way is a shortcut for the first

way, and we will use only the first way in this paper.

To implement a new user-defined type of object, the

Forms/3 programmer provides cells and formulas to

construct a prototypical object which, as one would expect

on a spreadsheet, responds with immediate visual feedback as

each new formula is entered. The formulas specify the

internal data of the object, how it should appear visually on

the screen, and any operations that it provides.

The internal data is defined by cells and matrices that

can be placed inside abstraction boxes, which are cells whose

formulas default to being the composition of their

components. For example, Figure 2 shows a stack

implemented by a one-dimensional matrix (inside abstraction

Figure 2: (Top): The user’s view of Stack hides the internal
implementation and displays stacks using the formula the
programmer has provided for the distinguished Image cell.
(Bottom): The stack implementor’s view of object Stack
with most of the cell formulas visible. (Matrices in Forms/3
are not required to be homogeneous.)

box Stack), in which the programmer has added the sample

value “hi”. Because cell Stack has a sample value, as soon

as the formula for cell top is entered, top displays Stack’s

top element (“hi”). The other formulas are also programmed

in this concrete way; they reference Stack and immediately

display their own results based on the sample. The sample

values on copies of form Stack can be replaced by references

to other cells in the program, which provides the

functionality of incoming parameters in traditional

languages.

- 5 -

4. SIMILARITY INHERITANCE MODEL

In this section we show how the preceding approach to

objects in spreadsheets can be extended to support

inheritance. We begin by describing our new model of

inheritance, independent of any language implementation. In

the model description, we will use object-oriented

terminology to facilitate comparison with other models of

inheritance, although it will later be demonstrated (Section

5.5) that the approach is not restricted to relationships

among objects, and can be used for relationships among

Excel-like spreadsheets as well.

We define the similarity inheritance model to be

comprised of a model of interaction (between the

programmer and the computer) and a semantic model. The

interaction model is defined by the tuple:

(χ, δ, λ, ρ)

where χ is the copy operation that creates a shared

definition, δ is the formula definition operation, λ is a

liveness level 3 or higher from Tanimoto’s liveness scale

[Tanimoto 1990] indicating that immediate semantic

feedback is automatically provided1, and ρ is a representation

mechanism that explicitly includes all shared formulas and

relationships in the representation of each object.

Two important points about the interaction model are:

(1) it separates the syntax with which the human

communicates to the computer about program semantics

from that used by the computer to communicate to the

human about program semantics (for example allowing

animations or graphical views) and (2) it does not

necessarily map to a static textual syntax (for example, it

allows dynamic syntaxes). Note that the elements of the

interaction model are not mere editing details of an

environment, but rather define the general characteristics

1At liveness level 1 no semantic feedback is available.
At level 2 the user can obtain semantic feedback, but it is
not provided automatically (as in interpreters). At level 3,
incremental semantic feedback is automatically provided after
each program edit, and all affected on-screen values are auto-
matically redisplayed (as in the automatic recalculation
feature of spreadsheets). At level 4, the system responds to
edits as in level 3, as well as to other events such as system
clock ticks.

upon which our semantics rest.

The semantic model can now be defined as follows.

Each object O in a program is a set of definitions

{Od1,Od2,...,Odn}. Each Odi is a formula residing in a cell.

The symbol → (pronounced “shares with”) indicates a shared

definition; the arrow points from the original version to the

copied one. The semantics of → are

Adi→Bdi ⇒ Adi=Bdi .

The operations χ and δ determine when → holds, as

summarized in the following table.

Operation Precondition Postcondition
(1) χ applied to

A
A is an existing object;
B does not exist

B is a new object
and ∀ i, Adi→Bdi

(2) χ applied to
Adi and B

A and B are existing
objects, A≠B

Adi→Bdi

(3) δ applied to
Bdi

B is an existing object ∀ A, Adi→/ Bdi

Row (1) defines large-grained similarity, and means that

if χ is applied to an object A, a similarity relationship will

be created between A and a new object B such that all of A’s

definitions share with B (this can be abbreviated A→B).

Row (2) defines fine-grained similarity, which allows a

single definition Adi to be copied to object B to create a

shared relationship between Adi and Bdi. Row (3) implies

that overriding removes any “upstream” sharing

relationships, but not “downstream” relationships

Due to element ρ of the interaction model, objects in

the similarity inheritance model have the property of self

sufficiency from the programmer’s perspective, meaning that

every supported operation for an object and every piece of

data it contains can be determined by examining the object

itself rather than also requiring the inspection of parent

objects or descriptive classes. The implication of the λ
element of the model is that the programmer creates and

manipulates live objects while constructing the program,

rather than abstract descriptions of objects.

From this model, differences between similarity

inheritance and other approaches become clear. For example,

the class-based model has a → relationship defined between

classes (not objects) and does not have an interaction model.

Prototype-based inheritance, on the other hand, may contain

part or all of the interaction model, but does not define the

- 6 -

Figure 3: A Queue created with similarity inheritance from a
Stack. Several names and one cell are unshaded to indicate
that they have been overridden. The image could also be
overridden to create a custom appearance for a Queue.

→ relationship between copied objects. Similarity

inheritance is also different from both models in that it

allows not only multiple inheritance but also mutual

inheritance. Multiple inheritance occurs in cases such as

A→B, Cd1→Bd1, Cd2→Bd2 and Cd3→Bd3. Mutual

inheritance occurs in cases such as Bd2→ C d2 and

Cd3→Bd3.

5. SIMILARITY INHERITANCE IN FORMS/3

5.1 Interaction Model

The interaction model is instantiated in the research

spreadsheet language Forms/3 as follows. An object in

Forms/3 is a form. Operation χ is supported by a copy form

button, which copies the form selected in a scrolling list,

and by a paste button on each form, which pastes selected

cells onto the form. Operation δ is supported by allowing

the programmer to edit any formula that is visible. Liveness

level λ is level 4, so after every formula edit, immediate

visual feedback is given about the edit’s effect on the

program. In Forms/3’s representation ρ, each definition

(cell), whether copied or not, is visible, which allows it to

be edited by operation δ. Shading indicates whether a form

or cell is copied. Section 6 explains additional features of

Forms/3’s representation.

5.2 Large-Grained Inheritance

The Stack in Section 3 is an example of an object

created from scratch. Multiple Stack objects can be created

with the copy operation χ, as was illustrated by the circle

example. But suppose the programmer wants not another

stack but something else that is similar to a stack, for

example, a queue. Taking advantage of that similarity, the

programmer can start with a copy of Stack, then modify the

behavior using operation δ. A change to the push operation

and some renaming of cells is all that is required to turn the

copy into a Queue (see Figure 3). In this prototype,

inheritance and overriding of cell names as well as of cell

formulas are allowed.

Note that using similarity inheritance, the programmer

simply identifies that two objects are similar in

implementation or purpose. In contrast to this, in a class-

based language, the programmer may spend extra time

wondering what the “right” relationship is between a stack

and a queue. One is not a subtype of the other, and yet they

are similar. In fact, extra work to reorder the inheritance

hierarchy may be needed in some cases just to add one new

class. As we saw above, however, similarity inheritance

allows the programmer to create a similarity relationship

without implying “is-a”, subtype or subclass relationships.

Instead, it defines a “like-a” relationship. For example, a

queue is like a stack except that new items are inserted at the

opposite end.

Because of the → relationship between Stack and

Queue, changes to formula definitions on Stack will

propagate to Queue unless they have been overridden. For

example, a fix to the push operation on Stack would not

have any affect on Queue, but a fix to the pop operation

would propagate to the dequeue on the Queue form. Most

prototype-based languages lose this ability to propagate

changes to groups of objects because of their emphasis on

object individuality; instead, shared parts are abstracted out

of the objects.

5.3 Fine-Grained and Multiple Inheritance

As noted in the discussion of the model, the

combination of large-grained and fine-grained similarity

- 7 -

Figure 4: A Deque in progress made by copying the Queue
form and the push operation from Stack.

Figure 5: Mutual inheritance between Stack and Queue. The
new cells size and empty? appear white on the Queue form
where they originated and shaded on the Stack form.

allows multiple inheritance. For example, in Forms/3

suppose a new form Deque is created via large-grained

similarity from Queue. (A deque is a double-ended queue.)

This new object needs to allow items to be added to either

end of the queue. The programmer may notice that Stack’s

push is exactly the required behavior for Deque and can use

fine-grained similarity, copying push, to allow Deque to

inherit just that one operation from Stack. Because of the

interaction element ρ, the programmer now sees the new

cells as part of the definition of Deque also (Figure 4).

Multiple inheritance in other languages can lead to

conflicts when more than one method of the same name are

unintentionally inherited. By providing inheritance on the

level of cells, the similarity model allows the programmer

to select only the operations that are actually needed,

avoiding unintentional inheritance. (If the programmer does

accidentally attempt to introduce a conflict, the system

provides options for resolving it at the time of the edit.)

5.4 Mutual Inheritance

Suppose, as in Figure 5, someone added the new

operations size and empty? to Queue. Another programmer

might find those operations useful for Stack as well and

copy them to the Stack form. Stack and Queue now both

inherit from each other. Like multiple inheritance, mutual

inheritance is a feature of the flexibility of similarity

inheritance, not a new concept in the language, which makes

mutual inheritance straightforward. To the best of our

knowledge, similarity inheritance is the first model to

support mutual inheritance.

5.5 An End-User Example

In the previous sections, we have discussed our

approach from the standpoint of how it can be used to share

behavior among objects. However, as has been noted

earlier, the approach is general enough to allow sharing of

other pieces of programs, even when there is no relationship

among the types of objects involved. This allows the same

approach to be used for simple formula reuse as for object

inheritance, instead of prior approaches, which relied on

copy/paste and “replicate” options. The advantage to using

inheritance for reusing spreadsheet code is that the

relationships among originals and copies are maintained,

supporting automatic propagation of bug fixes and explicit

depiction of relationships.

- 8 -

Figure 6: A spreadsheet to compute grades. The cells in the
total column are grouped into a matrix and thus need only
one formula (shown) to define their values. The formula
computes the course grades via a weighted average.

For example, consider Figure 6, which shows a

spreadsheet (written in Forms/3) to compute course grades.

Suppose the user teaches several sections of the course, and

keeps each section in a separate spreadsheet for convenience.

There are two reuse situations in this example: the reuse

of the formula for the top row down through the remaining

rows of this section, and the reuse of these formulas in other

sections. In the first case, traditional spreadsheets use a

“replicate” mechanism (copy down the rows). Our system

does not apply inheritance to this case; instead, like some

other spreadsheets, it has a way to group cells with a

common formula. It is the second case in which we apply

similarity inheritance. In the second case, traditional

spreadsheets use a “copy/paste” mechanism (copying into

other sections), and then if the weights need to be changed,

the user would have to remember to do all of the

copy/pasting again. However, if a system implements

copying using similarity inheritance to make the

relationships explicit, as does Forms/3, then a change to the

weights in the first section can automatically propagate to

all the other students.

As this example demonstrates, similarity inheritance

can be used not just to maintain relationships among

objects, types, and operations, but also among pieces of any

sort of code. An attractive feature of this generality is that it

affords a gradual migration path for users to move from

using only simple numbers and strings in their formulas to

using more complex objects with inheritance as they gain

expertise, since the same mechanism for inheritance is

employed for reusing code in both situations.

6. EXPLICIT REPRESENTATION

The fourth element of the interaction model, ρ, requires

the existence of an explicit representation exists, but does

not specify the form it should take. In the process of

designing the representation for Forms/3, we used a set of

design benchmarks [Yang et al. 1997] that are a concrete

application of several of the cognitive dimensions for

programming systems by researchers from the field of

cognitive psychology [Green and Petre 1996]. The cognitive

dimensions provide a foundation for considering the

cognitive issues of representing programs, and provide an

increment in formality over previous ad-hoc methods. We

were able to use the benchmarks to iteratively improve

earlier drafts of this design. For brevity, we will discuss

only the benchmarks that had the greatest influence on the

final design.

The visibility of dependencies benchmark is the ratio of

program dependencies that are explicitly visible to the

programmer. Green and Petre noted hidden dependencies as a

severe source of difficulty in understanding programs. The

dependencies of interest in the similarity inheritance model

are those created by the → relationship. The dependencies

can be at either the form or cell level. For each, the

programmer may be interested in both “what affects this?”

and “what does this affect?” for a total of four kinds of

dependencies. Because of the importance of explicit

representation to the similarity inheritance model, it was

important that all four kinds of dependencies be explicitly

represented.

- 9 -

Figure 7: Superimposed legends and copy dependency arrow.
The Deque form on the left has a form legend at the top
indicating it is copied from Queue which in turn was copied
from Stack. (If there were intermediate forms, the legend
would take the form “Queue...3...Stack” and the programmer
could click on the 3 for a full list.) Deque’s front cell
illustrates a formula legend. Copy dependencies among cells
can also be explicitly depicted with arrows such as the one
from Stack’s top cell.

Stack

Queue

Deque

cell copies
form copies

Figure 8: An example summary view displaying the
relationships among the Stack, Queue and Deque forms.

The two “what affects this” questions are handled by

legends. A legend under each formula lists the cell that it

was directly copied from. If that cell was in turn copied from

another, ellipsis follow and the name of the original cell is

also given (see Figure 7). The same legend mechanism is

used for explicit representation at the form level (also in

Figure 7).

The two “what does this affect” questions are answered

by copy dependency arrows (Figure 7) and by a summary

view (Figure 8). The summary view represents each form as

a node labeled with its name. Arrows between nodes make

different kinds of relationships explicit. Our current design

has three kinds of arrows indicating form copies, dataflow,

and cell copies. Only dataflow arrows are implemented so

far. The summary view is part of a package of “live” views

we previously implemented that address other, non-

inheritance oriented, reuse issues [Walpole and Burnett

1997].

Visibility of program logic is another benchmark that

influenced our design. The program logic of interest here is

the logic of the inherited code. The current design makes

inherited code visible in the place where it is inherited. This

is a significant improvement over the “yo-yo problem”

encountered in class-based languages where to see the

program logic for a subclass, the programmer may need to

visit several classes up and down the class hierarchy. The

yo-yo problem is also exhibited in most prototype-based

languages, where instead of class definitions, the

programmer must examine multiple levels of parent object

definitions to view inherited code.

Whenever features are added to a visual programming

language’s representation, the limited amount of screen real

estate available must be taken into account. Our

representation is designed to fit into a small portion of the

programmer’s screen. The display of form-level inheritance

takes up just one line on the form no matter how long the

list becomes because intermediate forms are elided.

Likewise, for cell-level inheritance feedback takes only one

line per formula. These legends can also be hidden to

conserve screen real estate when needed.

7. DISCUSSION AND FUTURE WORK

The similarity inheritance model was devised as a way

to bring inheritance particularly to spreadsheet languages,

but it may be suitable for other interactive VPLs as well,

provided that they support the interaction model. We do not

expect the approach to be used in strictly textual languages,

which are usually defined apart from any environment,

because this feature would seem to prevent any guarantee

that the required elements of the interaction model would be

present.

Our research prototype runs on Sun and Hewlett-Packard

color workstations using Harlequin’s Liquid Common Lisp

and the Garnet user interface development environment

[Myers et al. 1990]. The prototype currently includes all the

features described except some of the representation features

described in the previous section and the user interface with

which the programmer resolves name conflicts.

When the rest of the prototype is completed, we plan

empirical work to learn whether users make fewer reuse

errors or reuse code more often under similarity inheritance.

- 10 -

Two other questions that we would like to explore are

whether users are as comfortable with similarity inheritance

as with copy/paste/replicate, and whether the explicit

representation succeeds at making the flexibility inherent in

the approach manageable. Finally, we would like to gather

empirical data about whether and how people use mutual

inheritance.

8. CONCLUSION

In this paper, we have presented a new model of

inheritance for spreadsheet languages. The model supports

large-grained inheritance, fine-grained inheritance, multiple

inheritance, and mutual inheritance. The prototype

implementation shows that the model can be incorporated

into the spreadsheet paradigm, using only cells and

declarative formulas, without violating the value rule or

requiring users to learn other programming languages or

macro languages.

Since the flexibility of the approach would be unwieldy

without strong support by the representation scheme, the

approach includes a representation that explicitly depicts the

reuse relationships, eliminating the need for the user to

remember and manually track these relationships. Further,

because the representation is explicit, the yo-yo problem is

avoided.

Finally, we have shown that the approach to inheritance

can be used to improve the way reuse relationships among

cells are managed even in simple formula reuse, which has

been traditionally supported only by copying or replicating a

formula to other cells. This flexibility not only improves

the support for this kind of operation, it also allows for a

straightforward path for a user to progress from simple

formula copy/paste to more advanced applications of the

technique such as inheritance among user-defined types.

ACKNOWLEDGMENTS

We would like to thank the members of our research

group for their work on the Forms/3 design and

implementation and for their feedback on this research. This

work was supported in part by Hewlett-Packard, by

Harlequin, by the National Science Foundation under grant

CCR-9308649 and an NSF Young Investigator Award, and

by a NASA Graduate Student Researcher Award.

REFERENCES
[Astudillo 1996] Astudillo, H., “Reorganizing Split

Objects,” OOPSLA ‘96, 138-149, 1996.
[Atwood et al. 1996] Atwood, J., M. Burnett, R. Walpole,

E. Wilcox, and S. Yang, “Steering Programs via Time
Travel,” 1996 IEEE Symposium on Visual Languages, 4-
11, 1996.

[Bracha and Cook 1990] Bracha, G. and W. Cook, “Mixin-
Based Inheritance,” OOPSLA ‘90, 303-311, 1990.

[Burnett and Ambler 1994] Burnett, M. and A. Ambler,
“Interactive Visual Data Abstraction in a Declarative
Visual Programming Language,” Journal of Visual
Languages and Computing, 29-60, 1994.

[Gottfried and Burnett 1997] Gottfried, H. and M. Burnett,
“Graphical Definitions: Making Spreadsheets Visual
through Direct Manipulations and Gestures,” 1997 IEEE
Symposium on Visual Languages, 246-253, 1997.

[Green and Petre 1996] Green, T. and M. Petre, “Usability
Analysis of Visual Programming Environments: A
‘Cognitive Dimensions’ Framework," Journal of Visual
Languages and Computing, 131-174, 1996.

[Hudson 1994] Hudson, S., “User Interface Specification
Using an Enhanced Spreadsheet Model,” ACM Trans. on
Graphics, 209-239, 1994.

[Kay 1984] Kay, A., “Computer Software,” Scientific
American, 53-59, 1984.

[Lewis 1990] Lewis, C., “NoPumpG: Creating Interactive
Graphics with Spreadsheet Machinery,” in Visual
Programming Environments: Paradigms and Systems (E.
Glinert, ed.), IEEE CS Press, 526-546, 1990.

[Myers 1991] Myers, B., “Graphical Techniques in a
Spreadsheet for Specifying User Interfaces,” CHI ‘91, 243-
249, 1991.

[Myers et al. 1990] Myers, B., et al., “Garnet:
Comprehensive Support for Graphical, Highly Interactive
User Interfaces,” Computer, 71-85, Nov. 1990.

[Myers et al. 1996] Myers, B., R. Miller, R. McDaniel, and
A. Ferrency. “Easily Adding Animations to Interfaces
Using Constraints,” ACM Symposium on User Interface
Software and Technology, 119-128, 1996.

[Ng and Luk 1995] Ng, K. W. and C. K. Luk. “I+: A
Multiparadigm Language for Object-Oriented Declarative
Programming,” Computer Languages 21(2), 81-100,
1995.

[Penz 1991] Penz, F., “Visual Programming in the
ObjectWorld,” Journal of Visual Languages and
Computing 2(1), 17-41, 1991.

[Penz and Wollinger 1993] Penz, F. and T. Wollinger, “The
ObjectWorld, a Classless, Object-Based, Visual
Programming Language,” OOPS Messenger 4(1), 26-35,
1993.

[Piersol 1986] Piersol, K., “Object Oriented Spreadsheets:
The Analytic Spreadsheet Package," OOPSLA ‘86, 385-
390, 1986.

[Smedley et al. 1996] Smedley, T., P. Cox, and S. Byrne,
“Expanding the Utility of Spreadsheets through the
Integration of Visual Programming and User Interface

- 11 -

Objects,” Advanced Visual Interfaces ‘96, 148-155, 1996.
[Taivalsaari 1993] Taivalsaari, A., “A Critical View Of

Inheritance and Reusability in Object-Oriented
Programming,” Ph.D. Thesis, University of Jyvaskyla,
1993.

[Tanimoto 1990] Tanimoto, S., “VIVA: A Visual Language
for Image Processing,” Journal of Visual Languages and
Computing 2(2), 127-139, 1990.

[Ungar et al. 1991] Ungar, D., C. Chambers, B. Chang, and
U. Hölze, “Parents Are Shared Parts of Objects:
Inheritance And Encapsulation In Self,” Journal of Lisp
and Symbolic Computation 4(3), 1991.

[Walpole and Burnett 1997] Walpole, R. and M. Burnett,
“Supporting Reuse of Evolving Visual Code,” 1997 IEEE
Symposium on Visual Languages, 68-75, 1997.

[Wilde and Lewis 1990] Wilde, N. and C. Lewis,
“Spreadsheet-Based Interactive Graphics: From Prototype
to Tool,” CHI ‘90 Conference on Human Factors in
Computing Systems, 153-159, 1990.

[Yang et al. 1997] Yang, S., M. Burnett, E. DeKoven, and
M. Zloof, “Representation Design Benchmarks: A
Design-Time Aid for VPL Navigable Static
Representations," Journal of Visual Languages and
Computing, 1997 (to appear).

