
AN ABSTRACT OF THE THESIS OF

Perng-Yi Ma for the degree of Doctor of Philosophy in

Electrical and Computer Engineering presented on October 27,

1978.

Title: OPTIMIZING THE MICROCODE PRODUCED BY A HIGH LEVEL

MICROPROGRAMMING LANGUAGE

Abstract approved:
Redacted for privacy

(Theodore G. Lewis)

The purpose of this research is to develop methods to

translate a certain machine independent intermediate

language (IML) to efficient horizontal microprograms for a

class of microprogrammable machines. This IML has been

developed by Malik (12) and is compiled directly from a

high level microprogramming language used to implement a

microprogrammed interpreter.

An IML-host machine interface design that allows

easy modification for language portability should be a

primary objective; i.e., the interface design must be of

sufficient power and versatility to generate efficient code

for a variety of host machines. Transportability is

accomplished by the use of a Field Description Model (FDM)

and Macro Table which are used to describe the most machine

to the translator system.

A register allocation scheme and control flow

analysis are employed to allocate the symbolic variables of

the IML to the general purpose registers of the host machine.

Again, with the aid of the FDM, a set of 5-tuple micro-

operations (MOP: OP, I/O, field, phase) is obtained. Then

an optimization algorithm is used to detect the parallelism

of MOPs, and generate efficient code for a horizontal

microprogrammable machine. This research terminated with

a study of the effects of the above methods upon the

quality of microcode produced for a specific commercial

computer.

Optimizing the Microcode Produced
by a High Level

Microprogramming Language

by

Perng-Yi Ma

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed October 27, 1978

Commencement June 1979

APPROVED:

Redacted for privacy

Associate Professor of Computer Science Department
in Charge of Major

Redacted for privacy

Head of Deparplent of Eledtrical and Computer Engineering

Redacted for privacy

Dean of Graduate School

Date thesis is presented October 27, 1978

Typed by Clara Homyer for Perng-Yi Ma

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION

1-1 Motivation 1

1 -1 Significance of the Research 4
1-3 Thesis IntrOduction 6

1-4 General Structure of the System 7

II THE FIELD DESCRIPTION MODEL 21

2-1 Introduction 21
2-2 Previous Research Review 22

2 -2 -1 Dasgupta Model 22
2-2-2 DeWitt Model 23

2-3 General Description of the Host Machine 25

2-3-1 Hardware Description 25
2-3-2 Software Description 27

2-4 Field Description Model 27

2-4.4 Definition of FDM 28
2-4-2 General Rule to Build the FDM 30

2-5 Di'scussion of the FDM 37

2-6 Conclusion 44

III PASS 1 46

3-1 Introduction 46
3-2 Problems Arising from the Differences

Between Machines 47
3-3 Information Supported by the User 50
3_4 Pass 1 52

IV PASS 2 68

4-1 Introduction 68.

4 -2 Definition and Terminology 72
4-3 Register Allocation/Deallocation Scheme 79

4-3-1 Replacement Priority Assignment 80
4,3-2 RA/D Algorithm 83
4-3-3 Tuple5 Scheme 83

Chapter Page

4-4 Problems Arising From the Control
Flow Interface 88

4-5 Initial State of SLC 94
4-6 Final State of SLC 96

4-6-1 Final State of the
Branch SLC

4-6-2 Next Initial State
4-6-3 Final State of the

Branch SLC

4-7 Conclusion

v PASS 3

Forward

of Sink SLC
Backward

5-1 Introduction
.

5-2 General Terminology
5 -3 The Parallelism and Invertibility

of MOP

5-3-1 I/O Resources
5-3-2 Timing Phase
5-3-3 Field Tuple

101
102

106

106

111

115

115
118
120

5-4 The Detection of Parallelism of MOPs 121
5-5 MOPs Allocation and Movement 126

5-5-1 Theoretical Constraints on
Optimization 126

5-5-2 Linear Order Compaction Algorithm 129

VI EXAMPLE AND CONCLUSION

6-1 Example
6-2 Performance Evaluation of Passes

6-2-1 Pass
6-2-2 Pass
6-2-3 Pass

6-3 Conclusion

BIBLIOGRAPHY

APPENDIX

1

2

3

135

135
137

137
138
143

145

148

150

LIST OF ALGORITHMS

Algorithm Page

2-1 General Rule to Determine the FDM 32

2-2 Selection of the Tuple "OP" in FDM 34

2-3 Selection of the Tuple "F" in FDM 34

3-1 General Structure of Pass 1 54

4-1 General Structure of Pass 2 71

4-2 RA/D Scheme 84

4-3 Label Table Determination 92

4-4 Initial State of a SLC 97

4-5 Final State of a Forward Branch SLC 102

4-6 Next Initial State of a SLC 107

4-7 Branch Final State of Backward Branch SLF 108

4-8 Sequential Final State of Backward
Branch SLC 110

5-1 General Structure of Pass 3 113

5-2 0(mn) Compaction Algorithm 131

5-3 Subroutine Movement 133

Figure

LIST OF FIGURES

Page

1-1 A Multi-level Computer System 2

1-2 General Structure of the Translation System 8

1-3 Partial IISG of PDP8 Emulator 10

1-4 Partial IESG of PDP8 Emulator 12

2-1 Functional Flow Chart of the Generation
of the FDM 31

2-2 Simple Diagram of PDP11/40E CPU 40

2-3 Use of the FDM 45

3-1 Functional Flow Chart of Pass 1 53

4-1 Simplified Flow Chart of Pass 2 70

4-2 Forward Branch and Backward Branch 89

4-3 Final States of Forward Branch SLC 99

4_4 Final States of Backward Branch SLC 100

5-1 Timing Conflidts in a Polyphase Micro-
instruction 119

5-2 PDP11/40E Processor Clock 124

6-1 General Structure of Example 6-1 136

6-2 The Variation of the Number of Codes in the
Whole System 138

LIST OF TABLES

Table Page

3-1 Virtual Machine Information from IISG 56

3-2 TAGs of the Variable 75

4_1 Components of SR(I,J) 75

4-2 Replacement Priority Assignment 82

4-3 Undetermined Field of PDP11/40E FDM 86

4-4 Label Table 91

5-1 I/O Intersection 117

5-2 --"*I,O,T > Conflict Detection 120

5-3 Possible Positions of MOPs in the Alloca-
tion Problems 127

6-1 Evaluation of Pass 2 (Number of registers
w.r.t. the length of code produced) 141

6-2 Testing 0(mn) Algorithm on the Husson's
Machine 142

6-3 Testing 0(mn) Algorithm on the PDP11/40E
Machine 144

GLOSSARY

Acronyms and symbols

ALU arithmetic logic unit of a computer

CPU central process unit of a computer

FDM Field Description Model

FS final state of a SLC

GPR general purpose registers of the host machine

IESG executable statement group of IML

IISG information statement group of IML

IML host machine independent intermediate language

IS initial state of a SLC

MDIL host machine dependent intermediate language

MET Macro Expansion Table

MI microinstruction

MOP microoperation

NR the number of general purpose registers in
the host machine

RAND scheme register allocation and deallocation scheme

SLC straight line code

MiAMi means Mi is data independent of

MWM means M. is parallelj
m n r Mj

M>< M means X is invertible with M.,

IMI/ the number of MOPs in MI

OPTIMIZING THE MICROCODE PRODUCED BY A HIGH
LEVEL MICROPROGRAMMING LANGUAGE

CHAPTER

INTRODUCTION

1-1 Motivation

Recent research in computer systems organization has

shown the need for microprogramming tools (1. 3, 5, 6, 19,

20, 21, 22). Such tools must be able to aid the develop-

ment of emulators and special purpose processors for high

speed applications. For example, the emulation of the IBM

370/158 instruction set is accomplished by a microprogram

resident in the control memory of the IBM 370 host.

A microprogram executes from the control memory of

a machine which is called the Yost computer in this re

search. The host computer emulates a virtual computer by

simulating a target instruction set. The terms "target"

and "virtual" are often used interchangeably, and desig-

nate the same level in a multi-level system as shown in

Figure 1-1.

The resident microprogram at the emulator level of

Figure 1-1 must be implemented in much the same fashion as

any other computer program. Therefore, it is only logical

to apply the lessons learned from software engineering to

this task. That is, the notions of structured programming,

high level languages, and machine independence directly

Users
language

Extended
machine --

Emulator

Hardware

High level application
language

Operating system

Virtual (target)
machine

microprogram

Host machine

Application
software.

System
software

Control
memory (ROM)

--Electroniccircuits

Figure 1-1. A Multi-level Computer System

apply to the problem of reliable, efficient microcode pro-

duction (15). However, software engineering is extremely

difficult to achieve when dealing with microprograms due

to the following problems:

Problem #1. Host machines widely vary in their archi-

tecture. They may be broadly classified as either

horizontal (more than one microoperation may be

simultaneously executed from one microinstruction)

or vertical (single microoperations per micro-

instruction typically encoded much like machine

code). See references 2, 12, 15) for a detailed

discussion of microprogrammable host machines.

Problem #2. Horizontal microinstruction formats offer

added speed of machine operation only if concurrent

microoperations can be detected and combined into a

single microinstruction. A microprogram is said to

be optimized if the resulting code is of minimum

length (length is equal to the number of micro-

instructions). DeWitt (7) has proven the NP-

completeness of code optimization for machines with

horizontal formats. Thus, the approach taken in

this research is to concentrate on fast, efficient

algorithms that compact the code, but do not

guarantee absolute minimum length of code sequence.

Problem #3. Portability. The production of portable, yet

compact code for a family of microprogrammable host

machines is a topic largely ignored by others. How-

ever, the time and effort needed to produce an

emulator should not be wasted when changing the host.

Indeed, the emulation should be transferable to a

number of different host machines with little added

effort. A portable emulator is one that can be

moved from one machine to another and, more import

antly, enables the host designer to work in parallel

with the firmware designer. Thus, the virtual

machine emulator and host machine hardware are

constructed in concert, rather than in an ad hoc

fashion.

These and other problems are solved in part by use

of a high-level programming language specifically designed

to write emulators. A proposed high-level language for

implementing emulators is described by Malik (12). Malik's

language is compiled into a portable intermediate form

called IML (see Appendix A). The IML version of a virtual

machine is then passed on to a translator-portability system

for retrofitting to a specific host machine. It is the

translation of the IML described by Malik (13) that concerns

this investigation.

1-2 Significance of the Research

Most recent research in microprogramming is concern-

ed with the quality of the code generation. Microprogram

optimization refers to either reduction of the size of

control store or reduction of the execution time of micro-

programs. Sizeable reductions in the execution time of

microprograms may be obtained for horizontal microinstruc-

tions. This is due to the ability of horizontal micro-

instructions to combine more than one microoperation into

a single microinstruction. All of the proposed algorithmS

detect parallelism of microoperations and then allocate

microoperations to the smallest number of microinstructions

possible. Two parallel microoperations are defined to be

any two microoperations that can be executed without

conflict. We discuss the kinds of conflicts that can arise

in Chapter V.

Early work in code optimization is reviewed by

Agrewala (1) with the conclusion that very few techniques

exist that can be applied in a practical environment. A

5

more recent overview in this area is given by Davidson (5),

who found that there have been no published results showing

the usefulness of any of these methods with large amounts

of production microcode.

DeWitt (7) examined some compilers and algorithms

proposed as "good" optimization algorithms (19, 21, 22) and

found that these algorithms fail to produce the optimal

sequence of microinstructions because they do not consider

the interaction between register allocation and micro-

operation concurrency. Furthermore, he found that micro,-

operation concurrency is sometimes determined by the format

of the control word as well as by the host hardware. The

importance of DeWitt's translating system is that the

elevated code generation to the level of symbolic variables

so that he could solve the combined problem of optimization

and register allocation. In addition he opened the door

to portability by supplying:

1) a model capable of describing a wide variety of,

microprogrammable machines, and

a register allocation/deallocation scheme

integrated with code generation.

DeWitt's methodology is too general to run on a real

machine, because his model does not define the host machine

microcode, and the control flow interface problem is not

taken into account.

The major significance of this research, then is

to extend the results of DeWitt, add new techniques for

solving the portability _problem, and reveal the effective-

ness of these methods when placed in use.

1-3 Thesis Introduction

The purpose of this thesis is to solve the problems

associated with the translation of a machine independent

intermediate lan u (IML into an efficient microcode for

a variety of microprogrammable machines. The IML defined

by Malik (12) is directly compiled from a high level machine

independent microprogramming language designed specifically

for the realization of some virtual machine. The goals of

the resulting system are:

A. Efficiency - The translator must produce the

smallest number of horizontal microinstructions

practical. This is accomplished by a compac-

tion algorithm described in Chapter V.

B. Portability - An arbitrary machine can be used

as the host. The system must be portable so

that it is easy to retrofit it to any machine.

This is accomplished by the Field Description

Model discussed in Chapter II.

To realize these goals the following tasks must be

done in this research:

1) Devise a model which describes all information

needed by the system about the host machine.

Design a portable interface to map the machine

independent IML into a machine dependent

symbolic intermediate language (MDIL).

3) Implement register allocation/deallocation

scheme to map symbolic variables in MDIL to

machine unit names.

4) Develop a compaction algorithm to detect con

currency of statements which have been register

allocated and to generate compact host binary

microcode.

The next section provides an overview of the whole

system by showing the implementation of a PDP8 virtual

machine on a PDP11/40E host.

1-4 General Structure of the System

Based on the analysis of the goals and tasks propos-

ed in the last section, the general structure of a machine

independent translation system is described in Figure 1-2.

The system requires three passes over the source code to

produce compact host microcode. There are two inputs to

the system. One is the machine independent intermediate

language (IML) which is the realization of some virtual

machine. The other is the description of the host machine.

The output is the final version of a virtual machine ready

to be loaded into a host control store as an optimized

sequence of microinstructions which will execute some

IML tream

..._....._......

Macro Table

define6
each IML
statement

Pass 1

resolves differences between

host and target machine

MD IL

Pass 2
register a/location and

field assignment

MOPS

Pass 3

compaction of code, address

assignment (ROM)

Control store

emulator

target
test
prOgra

Main memory

benchmarks

FDM
defines
each MDIL
statement

verification
validation

Host machine

Figure 1-2. Structure of the Translation System

virtual machine program stored in the host's main memory.

Suppose a PDP8 emulator written in Malik's high-level micro-

programming language and translated into an IML stream is

input to the system. The IML stream input to pass 1 is

divided into two parts. One, called the intermediate

executable statement group (denoted by IESG), contains a

set of executable IML codes to describe the functional be-

havior of the target machine. This IML program is further

divided into blocks. Each block is a single entry-multiple

exit IML code. Variables defined in each block are either

global (universal to the whole emulator program) or local

(available only within the current block). The second

part of the IML input, called the intermediate information

statement group (denoted by IISG), describes the target

machine hardware information and lists the variables used

by each block.

For the PDP8 emulation, some typical parts of the

IISG appear as shown in Figure 1-3. It provides partial

hardware information of the target machine and lists one

block of variables. This block is used to calculate the

effective address of PDP8 target machine.

Note that in Figure 1-3, global variables are used

to simulate the registers of the PDP8. For example, the

PDP8 has a memory of 4096x12-bit words called MEM,

program counter called PC, and other registers, e.g.,

MAR, IR.

10

IML (IISG Section) Comments

00A PDP8 name of the emulator.

GOD ...12 target machine has 12-bit words.

00E TWO target machine is 2's complement.

221 target machine memory is 4096x12
bit words.

00G EFTADR block name for effective address
computation.

2p7 MEM

207 IR

207 PC

208 MAR

120 ADR,,7

120 PCTEMP,12

120 MART, 12

global variables used by the
emulation to simulate the
registers of .the PDP8 target
machine.

local variables with 7.12, and
12 bit precision, respectively

Figure 1-3. Partial IISG of PDP8 Emulator

11

The emulation also uses local variables such as the

temporary program counter, PCTEMP, and temporary memory

address register MART. These are used by the emulation to

calculate the effective address prior to an operand fetch

by the target PDP8 machine.

The executable IML codes of the "effective address

block" are partially illustrated in Figure 1-4. These

codes are given in quadruple notation.

The executable section of IML code is produced by

the high-level language translator in a form to aid in

optimization by pass 1, 2, and 3. For examples temporary

variables are tagged (+, -) to indicate whether use will

continue or not. This helps the register allocator.

The two-part IML stream is input to pass 1 as shown

in Figure 1-2. The Macro Table (provided by the user) is

consulted during pass 1 in order to expand each IML

statement into a host-machine dependent macro. This pro-

cess is illustrated for the PDP8 emulation by expanding

the first four executable IML statements of Figure 1-4.

IML Macro Table Comments

EXTR PGEADR IR +T.003 The first IML code of Figure 1-4.
The following three codes are
its macro expansion.

PUSH1 *1+IR TOS Copy the IR into the top of the
stack (TOS) of the PDP11/40E.
Pass 1 tags IR as a global sym-
bolic variable (denoted by sign
"1") that will be used later
(denoted by the sign "+").

IML *IESG Section) Comments

00G EFTADR

EXTR PGEADR IR

MOVE -T.003 ADR

CONDF .IR,7 TL.001

SUB PC

12

Name of executable block
for address calculation.

+T.003 Get PGEADR from IR, put
into temporary register
designated as T.003.

Copy to ADR. The "-" in-
dicates that T.003 will
no longer be used in this
block. (The "-" in the
previous line indicates
later use.) These tags
(+, -) are cues to be
used by the register
allocator.

Test bit 7 of IR, and
branch to label L.001 if
zero. The label is
designated "T" to indicate
a True/False branch.

PCTEMP Decrement PC by. constant
1, and store it in
PCTEMP.

EXTR CRNTPG PCTEMP +T.004 Extract CRNTPG (current
page number) from PCTEMP
and place into active
temporary variable T.004.

MOVE -T.004 PCTEMP Copy from temporary var-
iable T.004 (made inactive
"-ft) into PCTEMP.

OR PCTEMP ADR MAR Inclusive OR PCTEMP with
ADR and store into MAR.

Figure 1-4. Partial IESG of PDP8 Emulator

IML Macro Table Comments

RSMK TOS PGEADR

MOVES D

Right-shift and mask the
TOS word with PGEADR as a
mask and store into host
register D.

*2+T.003 Move host register D to
temporary variable T.003.
Pass 1 tags T.003 as a
local symbolic variable
(indicated by the "2")
that will be used later.

The macro expanded version of EXTR still uses

symbolic variables PGEADR, T.003, and IR. However, the

macro also introduces PDP11/40E host machine registers.

For example, the D register is the output from the ALU. The

TOS register is actually a 16-word pushdown stack in the

PDP11/40E host.

MOVE -T.003 ADR The second IML code of Figure 1

MOVE3 *2-T.003 D Copy from T.003 to host D. Pass 1
tags T.003 as a local variable that
will not be used subsequently in
this block (indicated by "-"). When
the MOVE3 is done, the register
allocated to T.003 may be reallocat-
ed to another variable.

MOVES D *2+ADR Copy from host D to symbolic ADR.
Pass 1 tags ADR as a local variable
that will be used later.

The macro above uses two different forms of MOVE

because the PDP11/40E microoperation for MOVE commands

when copying from D differ from those when copying to D.

14

CONDF . R,7 TL.001 The third IML code of Figure 1 -4.

PUSH1 *1+IR TOS Save symbolic IR to TOS.

RMASK1 TOS 7 EUBC Copy bit 7 of TOS word to host
register EUBC, bit zero.

NOOP XUPF P.001 Copy symbolic address P.001 into
base addresS register XUPF for
purposes of brandhing, later.

BRCH L.001 P.001 1 Branch depends upon the bit .7
of IR(0.1).

The CONDF code is performed by testing bit 7 of the

symbolic variable IR. If a "1" is placed in the EUBC (a

hardware register on the PDP11/40E host) the BRCH micro-

operation fails to cause a branch to L.001. On the other

hand, if a zero is placed in EUBC, the branch to P.001 is

taken. In pass 3, the actual value of P.001 is determined

along with L.001.

SUB PC cl PCTEMP The fourth IML code of Figure 1-4.

MOVE7 16

SUB *1-PC B D

Copy constant 16 to register B.
16 is obtained by shifting a
one by ,4 bits due to a 12-bit
target word on a 26-bit host.
Hence, c1=16, is put into B.

Subtract register B from PC and
put into register D. Pass 2
tags PC as a global symbolic
Variable that will not be used
subsequently in this block. When
the subtract is done, the re-
gister allocated to PC may be
reallocated to another variable.

SUB PC cl PCTEMP

15

The fourth IML code of Figure I-

MOVES D *2+PCTEMP Copy register D to PCTEMP. Pass
1 tags PCTEMP as a local variable
that will be used later, hence
the "+" sign. This register
may not be reallocated as per-
mitted by the PC variable, in
this block.

Register B is a host register for input to the ALU.

Thus, host registers A and B are used for binary micro-

operations on the PDP11/40E host.

The macro expansion above illustrates the use of

tags placed in the IML stream by pass 1 as well as the

macro expansion process.

Macro expansion of each block continues until the

IML stream is exhausted. The result is a set of host

machine dependent codes (MDIL) with partially symbolic

variable.

Several problems remain before the output from pass

1 can be used on the PDP11/40E. First, we must allocate

the symbolic variables to the general purpose registers of

the actual host machine. Then, we can assign the binary

microcode to each symbolic assembler code. Finally, we

must resolve addresses (L.001). This additional step is

done in pass 2.

In pass 2, the FDM (field description model) is used

to define each MDIL instruction. This yields executable

microoperations which will run on an actual host. FDM is

actually a set of primitiveopergtians_used

host machine control memory. Each primitive

defined by a 5-tuples in the form <OP, I, 0,

OP: operation code of this primitive

I/O: host machine resources used as the inputs and

outputs by this OP.

T: timing period of the machine needed to execute

the (OP,I,0).

F: a set of fields in the host machine micro-

instruction format used to execute the <OP, 1,0).

For example, one of the primitive operations in the

FDM of PDP11/40E is:

OP: SUB

I : One of the general purpose

gister B of PDP11/40E.

0 : register D of PDP11/40E.

T : pulse P2

F : Field RIF

describe the

operation is

F, P>.

operation.

Field SRX=1

Field SBM =O

registers and re-

Determined by register used by

variable.

Use RIF(0:3) as the address of

register. This tells the host

which register to use in the

subtraction.

Copy register B to B multiplexer

in preparation for the subtract.

This inputs B to the ALC.

17

Field SALU=6 The ALU is told to SUB.

Field DAD=8 The ALU is told to SUB.

Field CLK=2 The SUB is to occur during the

second clock pulse of the micro-

instruction.

Field XUPF Determined by the next address.

Field CD=1 Copy result from ALU to register

D.

The rest of the fields are not used.

This primitive operation can be used to define the

MDIL code:

SUB *1-PC B D ; subtract register B from PC

and store in register D.

The FDM of each primitive operation is stored in a

table and used by pass 2. Note that any host machine may

be described byan appropriate FDM table. Hence, the

portability of the system depends on the flexibility of

this table.

The remaining chapters give generalized algorithms

for producing compact, portable microprograms on a class of

horizontal microprogrammable machines (pass 3). The

PDP8/PDP11/40E example used throughout will illustrate that

the techniques are quite general and apply to other high-

level languages and host machines.

The results from pass 3 have been omitted from this

18

introduction, but a complete PDPB emulation is given in

Chapter VI. For results of the compaction and register

allocation algorithms see Chapter VI and Appendix E.

Chapter II develops the FDM (field description model)

to describe general host machines. The purpose of this

I model is to describe an arbitrary horizontal microprogram-

\
mable host machine to the IML translator. Thus, port-

)ability is obtained if any other machine is used as the

host, without altering the translation system. However,

code efficiency is obtained only if the model can support

sufficient host information to decode the IML and produce

"compact" microcode. Microcode efficiency is the subject

of Chapter V.

Chapter III solves problems that arise from the

architectural differences between the virtual machine

realized by the IML input stream and the host machine

described by the FDM model. These problems include differ-

ences in the word size, memory size, arithmetic mode,

hardware mismatch, and operation format mismatch. Port

ability and efficiency may be traded off in an attempt to

solve these problems.

The purpose of Chapter IV (pass 2) is to assign

binary microcode to each statement in the MDIL stream.

Before this process can be completed all symbolic variables

have to be allocated to the general purpose registers (GPR)

of the host machine. In general, the number of variables

19

in the program is greater than the number of registers of

the host machine. In this case, one of the "less active"

variables allocated to a register must be deallocated.

"Load" and "store" operations are used to move operands

between memory and the central processor's working

registers.

The block structure of the MDIL stream from pass 2

is divided into a set of straight line code segments (SLC).

The "state" of a GPR is defined for each SLC as the assign

ment of operands to the GPR. In loops, some extra load

and store operations are needed to force the states of the

GPRs equal to the initial state of the loop immediately

before a backward branch operation. In this Pass, an

efficient register allocation/deallocation scheme and

control flow interface scheme are developed to keep the

number of "load" and "store" operations as small as

possible.

After all symbolic variables have been allocated to

the GPR registers, the microinstruction field value and

timing phase are assigned to each statement. This produces

a set of microoperations (MOP) in a 5-tuple representation.

<OP, I, O. F. P>, for each SLC in each block of MDIL.

The 5-tuples obtained from pass 2 may be exchange-

able with one another due to their independence. This

fact is used to detect whether a particular MOP can move

toward the beginning of the SLC. Whenever a 5-tuple is

20

moved forward in the SLC possible concurrency is checked.

Chapter V (pass 3) examines the 5-tuples of each SLC to

detect and combine concurrent 5-tuples into fewer micro-

instructions. Thus, a compaction algorithm is developed to

allocate the sequences of microoperations into compact

concurrent microinstruction.

The optimization of microoperations produced from a

portable high level language is known to be an NP-complete

problem (7). Invertibility (defined as the situation where

two MOPs are data independent with each other) is the cause

of the NP-complete optimization problem, but data dependency

among MOPs limits their invertibility. After some

restrictions are put on the allocation of MOPs, as 0(mn)

algorithm is developed which may not produce optimum code,

but produces the "best" possible code when it applies to

the real machine.

In Chapter VI we explore the quality of the linear

time compaction algorithm and show that it is close to the

best that can be done with real machines.

21

CHAPTER II

THE FIELD DESCRIPTION MODEL

2-1 Introduction

The purpose of this chapter is to develop a model

used to describe arbitrary microprogrammable host machines

in order to get both portability and efficiency from the

translation system when machine independent IML is trans-

lated to a host machine microcode. By portability we mean

that when other host machine is used, only this model is

changed. Effective translation can take place if the model

supplies all information about the host machine which will

be needed to translate the virtual machine into microcode

for a subsequent host machine. The following goals are

set up for designing this model:

1) The format of this model is machine independent

so that it easily fits other machines.

The model is comprehensive in that it includes

all host machine information needed in the

system and it can describe the IML well.

3) This model provides an easy way to detect the

conflicts between any two operations.

Section 2-2 surveys earlier research done in this

area. Section 2-3 gives a brief analysis of a microprogram-

mable machine used as an example. host. Section 2-4 describes

how the Field Description Model is developed to suit the

22

system. The use of this model is illustrated in section

2-5 and 2-6.

2-2 Previous research review

Two different models proposed by Dasgupta (3) and

DeWitt (6), respectively, have previously been used to

describe an arbitrary host machine and its corresponding

concurrency of microoperations.

2-2-1 Dasgupta Model

In DaSgupta's model (3), the host machine is des--

cribed in terms of a sequency Of microoperations. Each

microoperation is denoted by the 5-tuple.

m= (OP, SC, SK, U, V>

where

"OP" designates a primitive operation,

"SC," "SK" denote the data source and sink sets

respectively for "OP,"

"U" denotes the set of operational units and/or

paths required to execute m,

"V" is a timing period in which m is executed.

One criterion used to detect the concurrency of

microoperations iss If there is no source/sink conflict

and no operational unit conflict between two operations,

they can be combined into one microinstruction.

This model is hardware oriented. All necessary

machine units associated with the microoperation are given

23

in the 5-tuple. The model is inadequate as a portable

translator model for the following reasons:

1) Because of architectural complexity of the host

machines, it is not easy to display all physical

operational units which are used to execute the

operation.

Detection of the operational unit conflicts is

another complexity, if the model cannot display

all hardware units.

3) Some counter examples given by DeWitt show that

even if there is no hardware unit conflict

between two operations, they still cannot be

executed in one microinstruction.

2-2-2 DeWitt Model

DeWitt (6) found that the concurrency permitted by

microoperations is sometimes determinednot simply by the

hardware configurations but also by the format of the

control word chosen by the designer. This observation

motivated the control word model for determining parallel

operations. This model describes a host machine, a set

of blocks B, and a set of configurations C. Each block

(which corresponds to the first three tupies of the

Dasgupta Model) describes a set of microoperations or a

field in the microinstruction. Each configuration describes

a legal combination of microoperations. The set C contains

24

a description of all the legal microinstructions for the

machine. Thus, in order to determine whether two or more

microoperations can be executed concurrently, the corres-

ponding block for each operation is identified first and

the set C is examined to determine if a configuration

exists in such a way that each block is an element of Ci.

In conclusion, this model utilizes a logical approach for

describing the concurrency available in host machines

rather than a physical approach as in the Dasgupta Model.

The factor determining success of the Control Word Model

is whether this model can successfully describe all the

legal microinstructions a machine can execute.

This model provides a correct method to determine

the concurrency of microoperations, but there are still

some problems it does not solve. Among these problems are:

1) In using this model, one has to determine the

independent block first, then check for con-

currency of blocks in order to get a "legal"

configuration. DeWitt does not give a method

for finding concurrency of the blocks. This

might be a heavy burden for a user who is not

familiar with the host machine.

2) This model does not supply the binary microcode

of each microoperation.

3) The model in the DeWitt system is not used to

map the machine independent code to machine

dependent oode.

These two models fail to satisfy the needs of our

translation system, but lead to a modified model called

the Field Description Model described in the next section.

2-3 General Description of the Host Machine

To summarize all host information into a fixed format

model to suit the translation system is challenging work

because of the substantial architectural differences in a

variety of microprogrammable machines. In this section an

example host machine is briefly analyzed and critical

features extracted and used in the model.

2-3-1 Hardware Description

In order to describe the IISG of the IML, the follow-

ing hardware information of the host machine must be known:

1) Word size and memory size.

2) Arithmetic mode.

3) Status registers used to display flag settings,

e.g., carry, overflow.

4) Storage devices

a. Primary memory used to store virtual machine

executable programs,

b. Control memory used to store the final

version of virtual machine,

c. General purpose registers (GPRs) used to hold

the variables declared in the IISG,

26

d. Working registers used to perform ALU

operations (in most machines, working

register and the GPR are the same), and

e. Any other machine units.

5) Hardware configuration and stack. The IML will

supply information about a stack, if it exists

in the virtual machine.

6) The method used to determine the next micro-

address.

* Example 2-1:

The example host machine is the PDP11/40E, and the

following hardware information is extracted*

Items

word size

arithmetic mode

flags setting

Information

16 bits

2's complement

carry, overflow, negative and
zeros

storage devices

main memory

control memory 1024 words RAM, 256 words ROM
and 32 words PROM

general purpose 16 words

register (GPR)

working register GPR is used as the working
register

other machine registers EUBC, UPF, EUPF, TOS,
units names BA, B, D, etc.

Items Information

hardware configuration 16 words stack, processor
status register (used to
set flags), shifter,
masker, etc. 44

2-3-2 Software Description

From the functional behavior viewpoint, a micro-

programmable machine is simply a machine consisting of a set

of primitive operations encoded and stored in a control

memory. When one of these operations is executed, a set of

hardware units is activated to process the data during a

certain timing period with reference to the machine cycle.

This set of primitive operations is used to emulate the

statement inJESG of IML.

The efficient emulation of IML involves the follow-

ing questions:

1) How are primitive operations chosen to describe

the IML?

How is hardware unit information used in the

corresponding operation supplied?

3) How is the binary microcode associated with the

primitive operation?

2-4 Field Description Model

Each host machine has a unique microinstruction

format which consists of a set of fields. Each microopera-

tion has fixed fields in the MI format where binary

28

microcodes are assigned. The set of fields of each micro-

operation can be considered as the logical operational unit

and used as the residence in the execution of this micro_

operation. If the physical operational unit in Dasgupta's

model is replaced by this logical operational unit, the

shortcomings given in the last section to explain why the

illustrated models fail to satisfy the needs of our system

can be alleviated. This modified model can get the follow-

ing advantages immediately:

1) All the necessary fields used to execute the

microoperation are easily illustrated in the

microinstruction format.

The binary microcode is obtained directly from

the value of each field.

Further, in Chapter V, we successfully develop a

rule to detect the concurrency of microoperations given

this modified model. These enhancements motivated the

development of the Field Description Model that meets the

objectives proposed in the first section.

2-4-1 Definition of the FDM

The Field Description Model (FDM) represents the

host machine as a set of microoperations (MOPs).

FDM= (Mi,ltii ni

EaohYlOPYI.1, which is identified by a unique index.

i is denoted by a set of five tuples,

Mi = (OP, I, 0, F, PI

29

and each tuple is expanded by specifying its domain. Each

domain enumerates all the legal values which the component

can assume. The tuple componentS are:

OP: Designates the primitive operation. to be
performed.

I : Denotes the resources used as the input to
the OP.

Denotes the resource used as the output to
the OP.

F : Denotes the set of fields which are occupied
in the microinstruction format when OP,I,0
is executing.

Denotes the set of timing phases at which the
<0,1,0> is executing.

The following example will illustrate this idea.

1 Example 2-2:

One of the MOPS in the FDM of the PDP11/40E (7,8) is

described by:

where

M= (ADD, I, 0, F, P

The domain of I is register B and the set of the

general purpose registers.

2) The domain of output is register D.

3) The domain of timing is pulse 2.

4) The domain of field is as follows: (The meaning

of each field is described in Appendix B)

Field 1 specifies one register from the set GPR.

Field 13 specifies the next address.

5)

Field 6=9 (specifies the operation ADD).

Field 2=1 (allows Field 1 to be used as a source

of general register address).

Field 5=0 (B register-4B mux).

Field 12=2 (this MOP is activated in pulse 2).

Field 19=1 (allows clocking the ALU into D

register).

The remaining fields are not used in this MOP.

The,domain of OP is operation ADD. 44

A complete FDM of the PDP11/40E is described in

Appendix B. There are 41 MOPs in the model which are used

to describe the host machine and decode most statements in

IESG of IML. For each MOP, there are some items in tuples I,
.masteMorieeleveaMototawe

0, and F which cannot be determined when the model is built.

For instance, in example 2-2, one GPR is to be used as the

input, so field 1 is undetermined. The selection of the

register used as the input is determined from the register

allocation/deallocation scheme in Chapter IV. The deter-

mination of field 1 and field 13 are shown in Chapter IV

and Chapter V, respectively.

2-4-2 General Rule to Build the FDM

The general rule to determine the FDM is described in

Figure 2-1 and Algorithm 2-1 which implies the following

steps in the selection of the five tuples.

S-tp

collect all necessary "OP s ". which are
sufficient to describe the IESG of IML
and denoted by OPN= (0Pi 11 i t n

A

for each <OP.>, select the legal (I;, 0;?
such that thtre is no conflict in
he execution of OP1. I. 0.

, 1,

from the cortao s ore cyc e, 111Uthe
timing period, denoted by <Pi) , needed
to execute the (OP 0i)

from the microinstruction format, find
the fields used to store the (0P4

i'
D P> while it is executing ana

denoted by (F.>

'increment the index i

f i >n true

Figure 2-1. Functional Flow Chart
of the Generation of the FDM

'stop

31

32

Algorithm 2-1. General Rule to Determine the FDM

Comment: The Field Description Model (FDM) is built by the
user to supply the host machine primitive
operations.

BEGIN
CALL ALGORITHM 2-2 TO OBTAIN ALL NECESSARY "OPs" WHICH ARE
SUFFICIENT TO DESCRIBE THE IESG OF IML
SELECT THE LEGAL <I,O> ASSOCIATED WITH EACH "OP" SUCH THAT
THERE IS NO CONFLICT IN THE EXECUTION OF (OP,I,O)
IF THE RESOURCES USED AS <I,O> ARE THE MACHINE UNIT NAMES

THEN ASSIGN THE MACHINE UNIT NAMES TO (1,0> DIRECTLY
ELSE (These resources used as the (I,O> cannot be

determined now)
ASSIGN THE CORRESPONDING MNEMONIC VARIABLE TO <I,O>
(This variable will be determined in Chapter IV)

CALL ALGORITHM 2-3 TO DIVIDE LOGICALLY THE CONTROL STORE
CYCLE INTO A SET OF PHASES AND EACH cOP,I,O> IS ASSIGNED TO
THE CORRESPONDING PHASES(S)
FROM THE MICROINSTRUCTION FORMAT, FIND THE FIELDS USED TO
EXECUTE THE <OP,I,O> AND DETERMINED THE VALUE OF EACH FIELD
IF THE FIELD VALUE CAN BE DETERMINED FROM <OP,I,O>

THEN FIELD VALUE IS ASSIGNED TO THE CORRESPONDING
NUMERICAL VALUE

ELSE FIELD VALUE IS ASSIGNED TO AN ALPHABETIC VALUE
AND WILL BE DETERMINED IN PASS 2

BASED ON THE MACHINE CONSTRAINT, GET A RULE TO DETECT THE
CONCURRENCY OF MOPs (This idea is illustrated in Chapter V)
END.

33

OP,I,O Selection

The "OP" selection directly influences the efficiency

of the FDM. From the objective viewpoint, the basic

function of the model is to map the IML into machine de-

pendent code. This mapping is one-to-one for simple 'MI,

operations, and, one-to-many for complex IML operations.

The set of operations in the FDM must be able to. express

simple operations in the IML. The general rules for

choosing the "OP" used in the FDM are described in Algor-

ithm 2-2. The I/O resources must be selected so that there

are no conflicts in the execution of KOP,I,0 > . The follow

ing example will illustrate this idea.

p &Example 2-3:

In the PDP11/40E (7,8), addition is one of the ALU

operations. The input resources to the arithmetic logic

unit are BIN and AIN, respectively. The choice of an out-

put register must consider possible I/o conflicts if

register B and one register from the set of general purpose

registers (GPR) are used as inputs.

If one register from the set of GPRs is used as the

output resource, then conflict may occur within this MOP.

For example, the statement

R2 B R3 ; add R2 and register B to R3

is not allowed by the PDP11/40E host in one microinstruc-

tion due to the conflict between R2 and R3. In this case,

34

Algorithm 2-2. Selection of Tuple "OP" in 14DM

BEGIN
COMPARE THE OPERATIONS (OP s) IN THE MI FORMAT OF THE HM
WITH THE STMT IN IESG OF IML
CASE "OP" OF

IN IESG AND IN HM: THIS "OP" IS USED IN THE FDM
IN HM BUT NOT. IN IESG: THIS "OP"IS NOT USED IN THE
FDM
IN IESG BUT IN HM: BEGIN

*IF THIS "OP" IS NOT DECODED BY
PASS 1 (i.e. This "OP" is used
as the simple IML code)
THEN DECODE THIS "OP" INTO A

SET OF MACHINE OPERATIONS
AND PUT THEM IN THE FDM

END
END.

*Some complex IML stmts are decoded by the translation
system. The detail is in Chapter III.

Algorithm 2 -3. Selection of Tuple "F" in FDM

BEGIN
IF THE CONTROL CYCLE IS PHYSICALLY DIVIDED INTO SEVERAL
PHASES AND ASSIGNED TO EACH MICROOPERATION

THEN THE LOGICAL PHASE=THE PHYSICAL PHASE
ELSE BASED ON THE SEQUENCE OF THE MICROOPERATIONS APPEAR

IN THE MICROINSTRUCTION, THE CONTROL STORE CYCLE IS
LOGICALLY DIVIDED INTO A SET OF PHASES AND EACH
PRIMITIVE OPERATION IS ASSIGNED TO THE CORRESPONDING
PHASE

END,

35

a set of GPRs cannot be used as the output resource. In-

stead, register D is used as the output resource to make

sure this MOP is executable and causes no conflict in

<OP, I, 0).ifi

Each (OP,I,07 is a primitive operation and from the

characteristics of horizontal microprogrammable machines,

more than one of these primitive operations may be executed

in the same microinstruction. In order to construct this

kind of microinstruction, we must consider "residence

conflicts" and possible "timing" conflicts.

Timing Tuple Assignment

The execution of a microinstruction is controlled

by the fixed control store cycle. Within this cycle, most

machines provide multiple phases (polyphases) of timing

periods for each microinstruction. In this research the

control cycle is logically broken into several distinct

phases and control signals are issued at each phase.

According to the sequence of the <OP,I,O> appearing in the

microinstruction, each primitive operation is assigned to

one or more logical phases. The general rule is described

in Algorithm 2-3. The following example will illustrate

this idea.

*Example 2-4:

In the Mathilda machine (18), the microinstruction

36

is implemented in a polyphase manner. The logical phases

of microinstruction execution are the following:

1) Performing data transport on the main data,path.

2) Executing shift and other operations.

3) Calculating the address of the next micro-

instruction to be executed.

Another example is the Microdata 3200 machine (16),

where each 135 nano-second clock is needed to get and

execute a single 32-bit microinstruction from control store.

This control cycle is logically divided into three phases,

which are:

P1: Test evaluation condition.

P2: Action of the current instruction.

P3: Branch, on the basis of the test value from P1.

Thus, all microoperations of these machines can be logical-

ly assigned to three phases.43,1

Field Tuple Selection

The choice of the set of fields associated with the

<OP,I,O> is obtained directly from the microinstruction

format of the host machine. The value of each field is

classified as one of two kinds. One is the commercial

value already defined. The other is the alphabetical

value determined later. The following example explains

this idea.

37

pExample 2-5:

In the PDP11/40E (7,8), the eighty bit microinstruc_

tion format is divided into 27 fields. The field tuple

associated with each <OP,I,07 uses these 27 fields directly.

In reference example 2-1, seven fields are used in the

field tuple of this MOP and classified into two kinds:

1) The field value has already been defined.

Field 2 is set to use the GPR as the input

resource.

Field 5 is set to use the register B.

Field 6 is set to use the OP ADD.

Field 12 is set to use clock 2.

Field 19 is set to clock register D.

2) The field has not yet been defined.

Field 1 is a function of GPR selection.

Field 13 is determined by the next micro-

address...4

2-5 Discussion of the FDM

The FDM is a modified Dasgupta model in which the

logical operational unit is a set of fields replacing the

physical operational unit referenced by the micro-

instruction format. The FDM overcomes the disadvantages

listed in section 2-2, and includes other important features

as follows:

1) The field tuple implicitlylimits the number

of MOPs in the MI. The fields associated with

38

each MOP, and the number of MOPs in one MI are

inherently constrained by the host machine.

When the number of MOPs in a MI is equal to the

length of the MI, all fields in MI are occupied,

making it impossible to add another MOP to this

MI. This feature is used to advantage in the

code compaction algorithm of Chapter V.

Because of the architectural complexity of host

machines, it is hard to display all physical

operational units for each MOP. This adds

difficulty to the detection of physical unit

conflicts. But in the FDM, all physical units

used in one MOP can be expressed in terms of

the logical operational unit. Then, all

physical operational unit conflicts between

MOPs can be detected from their logical opera-

tional unit.

**Example 2-6

In the PDP11/40E (7,8), the RD bus has three

potential resources: 1) GPR, 2) the processor status

word, and 3) the extension. Each of the three can

independently gate a word onto the RD bus. Usually two

resources gated onto the RD bus would result in an error.

When the following operations are involved.

Ml: 400--4D, P2 ; copy constant 400 to register D

39

; in pulse P2

M2: D-4R6, P3 ; copy register D to R6 in pulse P3.

R6 is set to a constant value, 400. With reference to

Figure 2-2, the physical operational units used in 11 are

the RD bus and AIN. In M2, it appears as if only the Bus

is used as the physical unit. If this assumption were true,

then M1 and M2 would be executed in one MI during clock

cycle 3, the I/O conflict being avoided by the timing

pulse. But, in fact the new value of R6 is its old value

with bit 8 set instead of 400. Why ?. This idiosyncrasy is

handled by the FDM by switching MI and M2 to the following:

MI (MOVE6, 400, D, Fl, P2> ; same actions as the

M2 <MOVE5, D, R6, F2, P3 > ; previous statements

Domain of Fl is Domain of F2 is:

Field 6=o
Field 14=1
Field 14=15
Field 16=25
Field 17=0
Field 18=400
Field 19=1

Field 1=6
Field 2=1
Field 4=2
Field 11=3

(The set of fields used in M1 or M2 is defined from

Appendix B.)

The logical operational unit of M2 is examined.

From the host machine manual as field 1 and field 2

are set and the corresponding register is being clocked,

the RD bus is activated again. This implies that the RD

bus is used as the physical unit in M2. Hence there is a

physical operational unit conflict so that the potential

40

concurrency cannot be permitted. As is seen, the fields

used in one MOP can express hardware characteristics of a

host computer.

BUS

)1 GPR

Register 110.

IExtension

BIN

ALU)

AIN

Register D 1

RD

Figure 2-2. Simple Diagram of
PDP11/40E CPU

bus.

Furthermore, the physical operational unit conflict can be

detected from the field tuples. In F2, as field 1 and

field 2 are set it implies that the RD bus is activated.

In F1, as field 14 is set it implies that the emit value

is sent to the RD bus. In the detection of RD bus con-

flicts, we only check these three fields by the following

rule:

IF (f(1,14)=1) and (f(2,1) are set)

THEN there is an RD bus conflict between MI
and M2

ELSE no conflict

41

where f(i,j) means field j in MOPi.ipir

3) Some field can be shared by more than one MOP in

one microinstruction (MI) and will not cause a

conflict. This feature can be used to detect

whether two MOPS can be executed in one MI even

if there is a physical operational unit conflict

in the same timing phase. To understand this

point, the fields in the MI format are grouped

into two categories first, then an example is

given to illuminate this feature.

There are two kinds of fields in the MI format

denoted by FA and FB, respectively.

FA ffi lif filis used by more than one MOP

in the same MI and the values assigned

to these fields are the same, it will

cause no conflict.

For example, the literal field can be used by

more than one MOP in the same MI only if the

value assigned to this field is the same.

obviously, if this kind of field is used by

more than one MOP and the field value is not

the same, it causes a conflict.

= (f1 j if fi is used by more than one MOP

in the same MI, it will cause a conflict

even if the field value is the samel

For example, when the machine has only one ALU

42

operational unit, if two MOPs try to execute the

same ALU operation, this field will cause a con-

flict in detection of parallelism.

spExample 2-7:

Case 1: Ml: R2 + B D, P2 ; add R2 and register B to

register D in pulse P2

M2: D R3, P3 copy register D to R3 in

pulse P3

Refer to Figure 2-2, the physical operational units used in

M1 are the RD bus and the ALU. Based on example 2-6, the

RD bus and BUS are used in M2. Because of the RD bus

conflict, the potential concurrency cannot be permitted.

Case 2: 3: R2 + B D, P2 ; add R2 and register B to

; register D in pulse P2

M4: D R2, P3 ; copy register D into R2

in pulse P3

For the same reason as in case 1, the conflict of RD bus

still exists between M3 and M4. But, the execution of M3

and M4 in one MI is permitted by the machine. This

permission can be obtained by examining the field tuples.

The field tuples used in each MOP are:

Fl and F3

f(1,1)=f(3,1)=2
T(1,1)=113,2)=1
f(1,5)=V3,5)=0
f(1,6)=V3,6)=9
f(1,19)=f(3,29)=1

F2

f(2,1)=3
1(2,2)=1
1(2,4)=2
f(2,11)=3

F4

f(4,1)=2
f(4,2)=1
f(4,4)=2
f(4,11)=3

43

(The set of fields used in each MOP is defined from Appendix

B.)

Further, field 1 and field 2 are classified as

the elements in set FA. As is seen in case 2,

f(3,1)=f(4,1), f(3,2)=f(4,2); i.e., there is no

logical operational unit conflict, so that con-

currency is allowed even if the physical unit

conflict exists. (The physical unit conflict on

RD bus still gets the correct result which is

from R2 ORed R2). An examination of case 1 shows

that f(1,1)=2, f(2,1)=3, so this logical opera-

tional unit conflict does not permit the con-

currency of M1 and M2. (The conflict on RD bus

gives a wrong result which is from R2 ORed

R3).44

4) The logical operational unit supplies the binary

microcode for each MOP so that the FDM tuple

can be used in the real machine instead of the

abstract machine.

From the above discussion, it is obvious that the

logical operational unit of the FDM has much potential to

detect the concurrency of MOPs. Based on the 5-tuple

format, a code compaction algorithm which is developed in

Chapter V can save up to 20% instruction count when it is

applied to the real machine.

44

2-6 Conclusion

Refer to Figure 2-3, a simple illustration of the

system, to show the use of the FUM. The FDM developed in

this chapter provides the following facilities for this

system:

1) In pass 1 (Chapter III), Tuple OP supplies the

basic host machine operations used to decode

the statements in IESG of IML.

In pass 2 (Chapter IV), Tuple F provides the

field value for each primitive operation and

Tuple P assigns the timing phase to this

operation. The output is mapped to a set of

MOPs in 5-tuple representation.

3) In pass 3 (Chapter V), the 5-tuple format

provides a very efficient way to perform the

optimization of MOPs.

IESG (machine independent

[pass 1] decode IESG

(bP,I,O
(machine dependent)

pass 2 14

FDM

assign field and timing
information to <OP,I,0

, I ,0 , F.P>

(Based on the 5-tuple format, a
concurrency detection rule is
developed)

Figure 2-3. Use of the FDM

CHAPTER III

PASS 1

3-1 Introduction

The purpose of this chapter is to present a solution

to the interface problems associated with the mapping of a

machine independent intermediate language (IML) to a host

machine dependent intermediate code (MDIL). The IML is

directly compiled from a high level machine independent

microprogramming language developed for the realization of

some virtual machine. 'The host machine information is

described in the Field DescriptionModel(FIM)Nhichwas

developed in the previous chapter.

A machine independent interface system is needed for

portability, but, because of the architectural differences

between the virtual machine and the host machine, such a

portable interface system can hardly take advantage of the

host machine to produce efficient object code. In order to

squeeze both of these goals into the system, the problems

arising from the mapping are solved by the system designer

and the user.

Section 3-2 discusses problems arising from attempt-

ing to handle different host machines. Section 3-3 makes a

suitable assignment of responsibility for solving these

problems to the user and the designer. Section 3-4 then

47

shows how these problems are solved.

3-2 Problems Arising from the Differences Between Machines

From a low level designer's viewpoint, all character-

istics of the virtual machine are described in the IML.

(The detail description of the IML is illustrated in

Appendix A.) The information statement group, IISG, of IML

describes the virtual machine hardware characteristics.

The executable statement group, IESG, of IML, which is used

to describe the virtual machine functional behavior, con-

sists of a set of blocks. Each block is a single entry_

multiple exit collection of host machine independent codes.

Variables defined in each block are either global (universal

to the whole emulator program) or local (available only

within the current block).

Virtual machine and host machine differences stem

from:

The word size and the memory size. These

differences influence machine performance.

2) Arithmetic mode used

The negative number representation and the

subtraction operation may cause incompatibility

between virtual machine and host machine.

3) Hardware configurations

If some hardware unit exists in the target

machine but not in host machine, an extra

48

mapping is needed.

toExample 3-1:

In the IML, if the statement

223.SI,S2,S3,S4

is given in the IISG, the tag indicates that a

stack pointer exists in the target machine. The

other information, Sl, S2, S3, S4 indicates the

push-pop sequence associated with the stack.

If the host machine does not support a hardware

stack, the code generation procedure must

provide a software routine to implement an

algorithm to simulate the stack operation.44

4) Operation format

The host machine operations defined by the FDM

are called the basic machine codes.

IML operations in IESG are divided into two

kinds. The operations in one group are called

the simple IML codes. The group of complex

IML codes is the IML codes which cannot direct-

ly map into the basic machine codes.

Example 3-2:

a) ADD *GPR B D

This is a basic machine code from the

FDM which means to add GPR and register

B to D.

49

ADD SRC1 SRC2 Dest

This is a simple IML code which means to

add SRC1 and SRC2 to Dest. There may be

different ways to implement this in

different host machines.

c) LOOP SRC1 SRC2 SRC3 ; loop for SRC1=
SRC2 to

SRC3 by 1.

Since most machines do not provide the

corresponding primitive operation to decode

the "LOOP" directly. This complex IML code

needs additional modification described in

subroutine EXPANS (section 3-4) before it

can be mapped into a machine code. i

The translation system must:

1) handle the problem of word size differences

and/or different arithmetic modes,

simulate the hardware units existing in

the target machine but not in the host

machine,

3) decode the complex IML code,

4) implement a mapping from the simple IML

code to basic machine code.

3-3 Information. Supplied by the User

Before going into more detail, two objectives pro-

posed in the previous chapter are to be traded-off here.

One is to get an efficient object code. The other is to

get a portable translation system. If all the tasks arising

from the differences between machines are implemented by the

translation system designer, the translation process can be

made machine independent, but it can hardly take advantage

of the host machine. The result may be production of

inefficient microcode. On the contrary, if all these tasks

are implemented in the host machine microcode by the user,

we can easily take advantage of the machine to get efficient

object code. But this is a tedious and error-prove

implementation methodology rejected at the outset because

portability is lost.

A Macro Expansion Table (MET) written in the basic

host machine code is built_by,thp user to simulate sina,

IML code. The target machine hardware units which do not

exist in the host must be simulated, also. The remaining

tasks, including the decode of the complex IML code and

the simulation of problems from the word size and arithmetic

mode differences, are done by the system designer in pass 1.

11.Example 3-3:

tADD SRC1 SRC2 Dest

This is a simple IML code to perform addition of SRC1 and

51

SRC2 to Dest and set the host machine flags, carry (C),

overflow (0), negative (N), and zero (Z). The correspond-

ing MET to do this IML code on a PDP11/40E is as follows:

MOVE1 SRC1 B ; move SRC1 to register B

ADD SRC2 B D ; add SRC2 and register B to

register D

MOVE 5 D pest ; move register D to Dest

Flag ; set host flags C,O,N, and Z

where register B and D are the PDP11/40E units. All four

codes and their corresponding format are defined in the FDM

(see Appendix B). SRC1, SRC2, and Dest are still symbolic

variables and are allocated into registers in Chapter IV.

Another example is:

MOVE .PS,0 varc

Where PS is a status register of the host machine which is

used to display flags carry, overflow, negative and zero

from the associated bits in PS. ".PS,0" means the bit 0

of register PS. This simple IML code moves the bit 0 in PS

to varc. The corresponding MET is:

PUSH PS TOS

RSMK TOS 0, 15, 0 D),9-

MOVE5 D varc

Where "0,15,0" is the constant to be shifted and/or masked.

The content in the top of stack, TOS, is masked out the

left fifteen bits (field LML=0, field RML=15) and shifted

zero bit (field SC=0). 0 AP

52

A complete example of MET of PDP11/40E is illustrat-

ed in Appendix C.

When the user decides which machine is to be the host

machine to the system, the following tasks must be accomp-

lished.

1) Build a FDM as described in Chapter II.

2) Build the MET for the corresponding simple IML

code.

3) Simulate all hardware units which exist only

in the target machine.

The remaining tasks will be done by the system in

Pass 1.

3-4 Pass 1

With the aid of user supplied host machine information,

pass 1 maps the machine independent IML into a machine de

pendent intermediate language (MDIL). The functional flow

chart and the general structure of this pass are shown in

Figure 3-1 and Algorithm 3-1, respectively. Refer to

Figure 3-1, the following paragraph is to illustrate the

detail function of each subroutine.

*** Subroutine IISG ***

This subroutine is used to collect the virtual

machine hardware information, and assign a main memory

location of the host machine to each variable declared as

either global or local variables in IML. The virtual

I IL

IISG.

u rou ine -"II.SG" analyzes
I SG and supplies the
irtual machine information
o decode the IESG

MET

built by the
user to supply
the host machine
codes for the
simple IML code

53

a set of IESG state-
ments (i. .IML codes)

Subroutine 'TX ART'
decodes the complex IML
codes into a set of
simple IML codes

a set of simple IML codes
with virtual machine word
size operands

Subroutine "WRDSIZE" is to simulate
the word size difference problem

a set of simple IML codes with
host machine word size operands

Subroutine "OPRATOR" links the
simple IML codes with the
corresponding host machine codes

a set of host machine codes
with partially symbolic
variable operands

Subroutines "CHANGE' and "SIGN"
are to tag these symbolic
variables to tell the difference
from the operands with machine
unit names

ste

host machine dependent
intermediate codes (MDIL)

Figure 3-1. Functional Flow Chart of Pass

Algorithm 3-1. General Structure of Pass

Comment: Pass 1 maps the machine independent IML code to

the host machine dependent code (MDIL). The host

machine information is included in the FDM. To

each simple IML code there is a corresponding set

of host machine codes in the Macro Expansion

Table (MET). Subroutines IISG, EXPANS, WRDSZE,

OPERATOR, CHANGE, and SIGN are used.

BEGIN
CALL SUBROUTINE IISG TO DECODE THE IISG TO GET THE VIRTUAL
MACHINE HARDWARE=PORMATION
READ A STATEMENT OF IESG AND DECIDE IT
IF IT IS A COMPLEX It CODE

THEN CALL SUBROUTINE EXPANS TO DECODE IT INTO,A SET OF
SIMPLE IML CODES

IF THERE IS A WORDSIZE DIFFERENCE BETWEEN VIRTUAL MACHINE
AND THE HOST MACHINE

THEN CALL SUBROUTINE WRDSIZE TO RESOLVE THE DIFFERENCE
IF THERE IS AN ARITHMETIC MODE DIFFERENCE

THEN MODIFY THE ASSOCIATED OPERATIONS
CALL SUBROUTINE OPRATOR TO LINK THE SIMPLE IML TO THE MET
AND DECODE IT INTO A SET OF BASIC MACHINE CODES
CALL SUBROUTINES CHANGE AND SIGN TO ADD THE SPECIAL SYMBOL
TO THE VARIABLES WHICH ARE TO BE REGISTER ALLOCATED
END.

55

machine information is collected in Table 3-1 and will be

used later.

1011Example 3-4:

Consider the following partial description of the

PDP8 target machine in IISG:

00A PDP-8 ; name of virtual machine

OOD ..,12 ; 12-bit words

00E TWO ; two's complement arith-
metic

221 MEM,4096,12 ; 4096x12-bit main memory

220 ACCM ;
accumulator is a global
variable

214 LNK ,1,1

005 OPCODE,,,9,11,-9

00G EFTADR

207 PC

120 ADR

120 MART

link bit register is one-
bit long

opcode is a field in bit
position

; 9 through 11 that is
shifted

; right 9 places (-9) when
used

56

Table 3-1. Virtual Machine Information
from IISG

Item Usage

PROGRAM program name

WDSZE word size

ARTH MOD arithmetic mode

MEMDIM
MEMSZE memory dimension x memory size

SUNA subblock name

EXNA external block name

FGNA, PGST flat name and its flag setting

IDNA, IDADR global and local variable name
and their location in host memory

CHAR, BALUE field variable name and its
associated constant

Block
Information block name, block index and the

global variables in this block

OTHERS stack information if it exists
in the target machine

57

In the partial PDP8 emulator above, the global variables

are MEM and PC; the local variables are ADR and MART.

The following vector is mapped into main memory

locations supplied by the user of the translation system:

Host memory
Variable name location Comment

ACCM 2000 PDP8 accumulator

PC 1000 PDP8 program counter

ADR 2003 PDP8 effective address

Corresponding
Flag name flag Comment

LNK carry PDP8 carry register

Field variable

OPCODE

Value range

9.11.9

Comment

PDP8 opcode field

*** Subroutine EXPANS ***

As was mentioned in the last section, most machines

do not supply the corresponding machine primitive opera-

tions to decode the complex IML code directly. In order

to reduce the burden from the user, an intermediate step

is needed to do the transformation from the complex IML

code into a set of simple IML codes. Then, the user

58

provides only the machine codes (MET) for the simple IML

code, not for this complex IML code. Refer to Figure 31,

where subroutine EXPANS is used to expand the complex IML

code into the simple IML codes.

sEx ample 3-5

LOOP SRC1 SRC2 SRC3 ; loop for SRC1=SRC2 to SRC3

by 1

This complex IML code "LOOP" is decoded into the following

set of simple IML codes:

MOVE SRC2 SRC1 ; copy (SRC2) to (SRC1)

L.001 COMP SRC3 SRC1 ; compare (SRC3):(SRC1) and

set host flags

CONDT N LL.002 ; if true, skip to L.002

INC SRC1 ; otherwise increment SRC1

BRCH FL.001 ; and jump back to L.001

L.002 (next IML code)

The user has only to provide the NiET for the above simple

IML codes instead of decoding the operation "LOOP."

Another example is the complex IML code "ADD" with

flag carry setting:

ADD SRC1 SRC2 Dest flag C

which is used to perform addition and set virtual machine

flag carry. This flag is declared as a variable name,

varc, in the IML emulator. In the host machine, the set

of carry flag can be shown from the bit 0 of PS register.

59

The corresponding set of simple IML codes is:

ADD SRC1 SRC2 Dest ; the comment is described

MOVE .PS,O varc ; in example 3-3.41

*** Subroutine WRDSZE ***

Refer to Figure 3-1, this subroutine is used to solve

the Problems of word size difference between virtual machine

and the host machine. This assumes that host microprogram-

mable computers can provide the facility to set flags.

In case the word size of the host machine is greater

than the word size of virtual machine, the host machine

flag-setting facilities can be used to set virtual machine

flags by left-justifying the host machine register, zero

filling the remaining bits of each register.

J10-Example 3-6:

Suppose the target machine is the PDP8 (12 bits),

and the host machine is the 16-bit PDP11/40E. All variables

declared in the IML emulator for the PDP8 are to be loaded

into the 12 most significant bits of each PDP11/40E

register. This is done by modifying the appropriate IML

codes. For example, the IML increment code,

INC SRC1 ; add one to SRC1

is expanded into,

ADD SRC1 c16 SRC1 ; add constant 16 to SRC1 and

put into SRC1

60

where the constant one has been shifted left four bits t

get 16. This is then mapped into machine code, as further

illustrated by the following examples:.

DEC SRC1 ; subtract one from SRC1

is expanded by

SUB SRC1 c16 SRC1 ; -subtract 16 from SRC1

and,.

NOT SRC1

is expanded by:

NOT SRC1

Dest ; one's compleMent SRC1

; one's complement the top
; 12 bits

AND Dest c65520 Dest ; and then fill-in the lower 4
; bits

In addition to arithmetic and logical modifications,

the operands may need to be changed.

Before;

CONDT .PC,7 L.001 ; test bit 7 of the variable

PC and after;

CONDT .PC,11 L.001 ; test bit 7+4=11 of PC

i.e., the 7th bit of PC is left shifted to the 11th bit in

host machine. Constants are modified by 2** (word size

difference).

Before;

MOVE c8 AB ; copy 8 into AB

and after;

MOVE c128 AB ; copy 24* (8) into AB

The other IML codes that need to be modified when conforming

to larger host machine words are;

SHR,' SHL, SLCT, and EXTR.44 4

If the host machine does not _provide a facility to

set flags, the problem of target-host mismatching must be__
solved by the user. Further, as a virtual machine program

is loaded into the host main memory, each 12-bit word must

be shifted before loading it into the 16-bit host machine

In case the virtual machine word size is an integer

multiple, n, of the host machine size, before the IML

variable can be mapped into either host memory or a host

register, this variable has to be bound into n segments.

Each segment is the host machine word size. Then, n re-

gisters and n memory locations for each variable are needed

when the load/store operation is used between the host

machine memory and GPR. When a statement in IML is taking

into account this kind of word size problem, we have to

1) decode the statement which includes each operand

in the virtual machine word size into a set of

IML statements which include each operand in the

host machine word size.

2) modify the load/store operation so that one IML

variable is associated with n host registers and

n host memory locations.

The following example will illustrate this point.

Example 3-7:

Assume the virtual machine wordsize is 32 bits and

the host machine is the 16 bit PDPi1 /'OE. Each variable

declared in the INIL emulator for the virtual machine is to

be loaded into two host registers. This is done by the

following steps.

For example the IML addition statement;

ADD SRC1 SRC2 Dest (stmt 1); add SRC1 and SRC2 to Dest,

;
and each operand is in the

; virtual machine word size

Step 1: Bind each variable into two segments. One is the

higher 16 bits of variable, denoted by HBVAR, the other is

the lower 16 bits of variable, denoted by LBVAR, i.e.,

variable in 32 bits

HBVAR LBVAR

Step 2: Decode stmt 1 into another set of INL statements

in which each operand is in the host machine word size.

Stmt 1 is expanded by:

ADD LBSRC1 LBSRC2 LBDest ; add lower 16 bits of SRC1

and SRC2 to Dest, and set

host machine flags

CONDF Carry L.001 (stmt 2); if no carry, go to

L.001

INC HBSRC1 ;.increment higher 16 bits

of SRC1 by one

63

L.001 ADD HBSRC1. HBSRC2 HBDest ; add higher 16 bits of

SRC1 and SRC2 to Dest

The above codes are another set of IML statements, and

each operand is in the host machine word size.

Step 3: The Macro Expansion Table is used to expand each

statement into a set of machine code (Here, we skip the

expansion of stmt 2).

MOVE1 LBSRC1 B (stmt ; move LBSRC1 into
register B

ADD LBSRC2 B D ; LBSRC2+B-4D

MOYE5 D LBDest ; move the result into
LBDest

FLAG

CONDF carry L.001 ; check carry flag

INC HBSRC1 (stmt 4) ; increment HBSR01 by one

L.001 MOVE1 HBSRCI B

ADD HBSRC2 B D

MOVES D HBDest

The above codes are a set of machine codes and each

operand is either a machine unit name (for example, register

B or D) or a symbolic variable in the host machine word

size (for example, LBSRC1, LBDest, or HBSRC2).

Step 4: The load/store operation which is used to transfer

the variable between host memory and GPR must have the

following function:

"As the variable LBVAR is to be loaded into GPR, the

load operation will load LBVAR into Rh and HBVAR into Rhil.

64

together. Similarly, either Rh or Rhil. is to be deallocated.

Both the contents of Rh and Rhil. will be stored in the

memory." For example, in stmt 3 of step 3, as LBSRC1 is to

be allocated into the GPR, we allocate LBSRC1 into Ro and.

HBSRC1 into Ri. In stmt 4, as the variable HBSRC1 is first

read, we know it is in R already. Later, if either Ro or

R
1
is to be deallocated, both the contents of R

0
and R

1
will

be stored back in host machine memory. The other examples

are illustrated in Appendix D. ir rl

*** Subroutine OPRATOR ***

Refer to Figure 3-1, this subroutine is used to map

the simple IML code to a set of basic host machine codes.

To each simple IML code, there is a corresponding set of

machine codes which are stored in MET as provided by the

user. This subroutine provides a link to connect them.

'Example 3-8:

In the second case of example 3-5, a complex IML

code is decoded into two simple IML codes. Then, as shown

in example 3-3, each simple IML code as defined by its

associated set of basic machine codes stored in MET, is

mapped into the basic codes of the host machine by Macro

Expansion Table. For example, an IML addition corresponds

tqaayenbasismachine codes. When the proper variable

names are substituted into the codes, we get the following

65

MDIL code:

Before expansion we have;

ADD ACCM MDR ACCM C ; IML addition and set virtual
; machine carry flag

which becomes after expansion:

MOVE1 ACCM B ; move from ACCM to host machine
; register B

D ; add MDR and register B to
register D

MOVE5 D ACCM ; move from register D to ACCM

FLAG ; set carry flag

PUSH3 PS TOS ; move register PS to the top
; of stack

RSMK TOS 0,15,0 D ; see example 3-3

MOVE5 D LNK ; move from register D to UNK444

ADD MDR

In the above example, registers B, PS, TOS, and D

are the machine unit names. Symbols ACCM, LNK, and MDR

are the variables declared in IML which are to be allocated

to the general purpose registers in pass 2.

4** Subroutines CHANGE and SIGN ***

In order to tell the difference between variables

declared in IML and host machine unit names, these two

subroutines of Figure 3-1 assign the symbol (*) (1 or 2)

(+ or -) to the IML variables which need be register

allocated. Each block which is defined in section 3-2-is

used as the basic unit when the assignment is processed.

66

A detailed definition of this symbol is shown in Table 3-2.

Table 3-2. TAGs of the Variable

()()(sign)(variable) Explanation

*1+variable It is a global variable and
will be used later in this block.

*1-variable This global variable will not
be used in the current block,
but it may be used in the next
blocks.

*2+variable

*2-variable

It is a local variable and will
be used later in this current
block.

This local variable will not
be used any more.

.Code '4" means the variable is to be register allocated.

.Code 'n' is either 1 or 2.

.Code 'sign' is either '+' or

.Code 'variable' is the variable name to be processed.

IlExample 3-9:

Assuming that codes of example 3-8 consist of a

single block. ACCM and LNK are global variables, and MDR

is a local variable, then the final result of pass 1 yields:

MOVE1 *1+ACCM B ; for comments see

ADD *2-MDR B D ; example 3-8

MOVE5 D *1-ACCM ;

FLAG

PUSH3 PS TOS

RSMK TOS 0.15,0 D ;

MOVE5 D *1-LINK

67

Each statement described above is a host machine code

defined directly from the FDM model. Operand tagged with

symbol "*" is the symbolic variable which will be allocated

into the general purpose registers in pass 2. 44

With the aid of the Macro Expansion Table supplied

by the user, pass 1 produces a set of host machine dependent

intermediate codes (MDIL) consisted of a set of blocks that

can be the input of pass 2.

68

CHAPTER IV

PASS 2

4-1 Introduction

Pass 2 accepts a set of single entry-multiple exit

segments called control blocks which are directly from the

output of pass 1. Each block is a collection of MDIL state-

ments consisting of machine dependent, executable statements

with partially symbolic operands. The purposes of pass 2

are to allocate the symbolic operand to one of the general

purpose register (GPRs) of the actual host machine and

assign the corresponding host binary microcode to each

statement of MDIL.

In general, the number of symbolic variable operands

in a given program is greater than the number of registers

in the host machine. Thus, the register must be shared by

more than one symbolic operand. Register allocation/de-

allocation is a major factor in producing efficient code.

"Active" operands are held in the registers and swapped to

main memory when they become latent or "passive." As the

number of swaps increases, the efficiency of the executable

code decreases.

Within the block, more than one branch statement may

jump to the same label statement. Thus, different

symbolic variables may use the register at the same time

69

which in turn involves the control flow interface problem

(see section 4-4). This interface problem can be made less

burdensome by structuring the blocks of MDIL code. Each

block is analyzed for its flow of control governed by two

legal control structures--the branch statement and the label

statement. These two statements divide the block into a

set of straight line codes (SLC) which are sets of single

entry-single exit statements.

We define the "state" of a SLC as the assignment of

operands to GPRs for the given SLC. Upon entry to the SLC

we must define an initial state IS1 for SLCi, and we define

the final state FSi as the state of SLCi when register,

allocation is completed.

When the RA/D scheme is applied, the SLC is used as

the basic unit of program segment. At the end of each SLC,

this scheme will continue with the next SLC after the

initial state of the following SLC is determined. During

the execution of the RA/D scheme on each statement, the

host machine field values and their timing phase are

assigned to each MOP.

The functional flow chart and the general structure

of pass 2 are described in Figure 4-1 and Algorithm 4-1,

respectively, which tell how each branch statement and

label statement separate the block into SLC segments and

lead to the associated tasks with each SLC.

The general terminology of pass 2 is described in

Start

read the next MDIL statement

from this statement, deter-
mine the boundary of the SLC,
i.e., the label statement
opens a SLC and the branch
statement closes the SLC.

Determine the initial state-
ment of the SLC when the label
statement is met. Determine
the final state of the SLC
when the branch statement is met.

Based on the initial state of
the SLC, perform the RA/D
scheme on each statement and
assign the field value and
timing period to it.

go to start

Figure 4 -1. Simplified Flow Chart
of Pass 2

71

Algorithm 4-1

Program: General Structure of Pass

Data: I is index of SLC.
IS(I) is the initial state of SLC(I).
FS(I) is the final state of SLC(I).

Pseudo code:

BEGIN
(START) FETCH NEXT STMT

IF THE CURRENT STMT IS A LABEL STMT (the beginning
of SLC(I)
THEN BEGIN

FILL THE LABEL TABLE (see Algorithm 4_3)

IF THE PREVIOUS STMT IS NOT A BRANCH STMT
THEN DETERMINE FS(I-1) (see Algorithm

4-5, 4-7, 4-8)
DETERMINE 15(1) (see Algorithm 4-4)
GO TO AA
END

ELSE BEGIN
IF THE PREVIOUS STMT IS A BRANCH STMT (the

end of SLC(I-1)
THEN DETERMINE IS(I)

(AA) IF THE CURRENT STMT IS A BRANCH STMT (the
end of SLC(I))
THEN BEGIN

FILL THE LABEL TABLE
BASED ON THE POINTER TO DETERMINE
FS(I) (see Algorithm 4_3)
END

ELSE BEGIN
PERFORM RA/D SCHEME ON THE ,STMT -(see
Algorithm 4-2)
ASSIGN FIELD AND PHASE TUPLES TO THE STMT
END

GO TO START
END

END.

72

section 4-2. The details of the register allocation scheme

and field value computation are given in section 4-3. The

control flow interface problem is discussed in section 4-4.

The initial state and the final state of a SLC are described

in section 4_5 and section 4-6, respectively.

4-2 Definitions and Terminology

Some general components of pass 2 are introduced

first, and other special terms are explained in more detail

when they are used in later sections.

1) OPND= fOPND1, OPND2) is a set of operands, where

OPND1 is a set of machine unit names, and OPND2

is .a set of symbolic variables to be register

allocated.

2) GPR= fR(1), R(2).... R(NR)i is a set of host

machine general purpose registers used to hold

the operand values during execution of the

statement. R(J) is defined as jth register in

the set of GPRs, where le-JNR.

3) VML is a set of variable memory locations which

are in the host machine main memory and are

used to hold the variable values when deallocated

from the general purpose registers.

A program consists of a set BK= BK1, BK1....

BKBNK
of blocks. Each block starts with a

special code BKS, and is a single entry-multiple

73

exit collection of straight line codes.

5) A straight line code, SLC, is a single entry-

single exit set of statements. There is an

index I to each SLC, denoted by SLC(I), which

orders the SLC in the program. SLC(I) and

SLC(K) are said to be in sequential order.

I4K, we say SLC(I) precedes SLC(K).

6) Each statement of a SLC segment is given as:

LB(I), OP(I), ODA(I,1), ODA(I,2), ODA(I,3)

where I is the index of the statements in the

program, and LB(I) is the label of the statement.

OP(I) is the MOP name which can be found from

Field Description Model.

ODA(I,1) and ODA(I,2) are the elements of set

OPND and are used as the source inputs of

OP*I).

OPA(I,3) is from set OPND and used as the output

destination of OP(I).

Symbolic variables can be used as operands of

SLC statements.

7) The label statement is defined if LB(I) is not .

empty. The branch statement is defined if OP(I)

is a branch operation and ODA(I,1) is a label

name. Branches are either forward or backward

branches depending on the direction of the branch.

The state of register GPR(J) during the execution

of SLC(I) is denoted by:

SR(I,J)= SA(J), ST(J), TY(J), PT(J)

R(J) is the jth register in the GPR.

SA(J) is the variable name currently held in R(J).

ST(J) is the status of the variable in R(J).

TY(J) is the type of this variable.

PT(J) is the position of the variable in the

statement.

The detailed description is shown in Table 4-1.

The states of GPR in SLC(I), denoted by S(I),

are a set of states of R(J), where J=1 to NR,

and are represented by:
NR

S(I)= 1:311 SR(I,J)

9) The operation which is used to load and store

variables between main memory and the central

processor exists both in the original IdIL and

pass 2 level, but they are processed in differ_

ent ways.

In the IML level, operation RMOVE and MOVE

are used for reading and writing into the

variable memory of the virtual machine (VM) .

The format is:

RMOVE SRC1 SRC2 Dest ; Destk.Mem(SRC2)

VIVIOVE SRC1 SRC2 Dest ; Mem(SRC2) eDest

SRC2 is the address value of the memory,

and Mem. (SRC2) is the content of this

75

Table 4-1. Components of SR(I,J)

Status ST(J)

Active

Passive

Position PT(J)

Source

Dest

Type TY(J)

1

none

Reference

Action

The value of the variable in R(J) is
different from the content of the
same variable stored in VML.

The value of this variable is the
same between the VML and the register.

This variable is used as source in
the statement.

This variable is used as destination
in the statement.

This global variable will be used
later in this current block.

This globalvariable will not be
used in the current block.

This local variable will be used
later in this current block.

This local variable will not be
used in the current block.

SLC(I-1) and SL(I) are in sequential
order, if SLC(I-1) has an uncondi-
tional branch then the final state
of SLC(I-1) cannot be used by SLC(I),
but can be considered as a reference
state. In this case, such variables
are assigned to type reference which
means the register does not really
contain the variable.

76

address.

In pass 2, the variable memory of virtual

machine is mapped into the host main memory

and the operations RMOVE and WOVE are

decoded into a set of basic machine codes.

The following example will illustrate how

the RMOVE and WMOVE are implemented by the

set of PDP11/40E microcodes.

ibExample 4-1:

RMOVE Mem PC IR ; IR-Mem(PC)

This means the memory content of PC is read

into a register IR (instruction register)..

The corresponding DIL codes are:

MOVE8 *1 +PC BA ; copy the address of
; PC to Bus address
register, set

; DATI, and then turn
; off processor clock

MOVE4 unibus *1-IR; copy the value of PC
to IR

This means the address of PC is moved tc

the bus address register (BA), and then the

memory content of this address is moved to

the register which holds the IR. In the

statement MOVE8, the first operand is the

address value of the variable instead of

its content.

77

Similarly, an example of a WMOVE operation:

MOVE Mem MAR -T.00I ; Mem(MARe.-T.001

The corresponding DIL codes are:

MOVE2 *1+MAR BA ; copy the address of
; MAR to register. BA

MOVES *2-T.001 D ; copy the value of
; (-T.001) to register
D, set DATO, and then

; turn off processor
; clock

NOOP ; no operation.

This means the address of MAR is moved to

BA. Then the content of -T.001 is moved

to register D, and the machine stores the

content of D into the address which is

in BA. 4-4

In the register allocation/deallocation

scheme (the level of pass 2), MEMREAD and

MEMWRITE statements are used to communicate

between a GPR and the main memory of the

host machine. In the most general case,

the host machine cannot implement these

statements in one machine cycle. However,

the execution procedure is different in

various machines. The general format of

the MEMREAD statement used in this chapter

is:

MEMREAD variable register ; register 44
; Mem(variable)

78

This means the content of the variable is

loaded into the register. The variable is

declared in the IML level and is assigned

a host memory address. This statement is

decoded into the PDP11/40E microcodes:

MOVEll variable BA ; copy the address
; of "variable" to
; BA register, set
DATI, then turn
off processor

; clock.

MOVE4 unibus register

; copy the value of
; "variable" to
"register"

It is useful to compare the difference

between the operation RMOVE and the state-

ment MEMREAD as given above. One is from

the IML level; the other is from the pass

2 level. The first operand of statement

MOVE8 is stored in the register, but, in

statement MOVE11, it is displayed by an

emit value.

In the example 4-1, MEmREAD statement

cannot be used when the address value of

PC is loaded into the register. The

statement:

MEMREAD PC register ;registerigLMem(PC)

means to load the contents of PC into a

register. This feature should be carefully

79

considered in the scheme and field value

computation. The general format of the

MEMWRITE statement is:

MEMWRITE register variable ; Mem(re-
; gister)
variable

and the corresponding PDP11/40E microcodes

are:

MOVE12 variable BA ;

;

copy the address
of "variable" to
register BA

MOVE9 register D ; copy the value of
;

;

"register" to
register D, set

;

;

;

DATO, and then
turn off processor
clock

NOOP ; no operation

For the same reason, the reader may com-

pare the difference between WOVE in IML

and MEMWRITE in the pass 2 level.

4-3 Register Allocation/Deallocation Scheme

The input to pass 2 from pass 1 of the translation

system is a set of machine dependent, executable statements,

in which some operands still reference symbolic variables.

Before the Unary microcode can be completely assigned to

any one statement, the symbolic variable operands must be

allocated to the general purpose registers of the actual

host machine. In general, the number of GPRs in the host

machine is less than the number of variables in the program.

80

That means these variables cannot stay in the GFR forever,

and some variables must be stored in the hobt machine

memory and loaded into the GPR when they are recalled,

There need to be some extra MEMREAD or MEMWRITE.statements

to move operands between the GPR and host machine memory..

These "extra" memory references influence the efficiency

of object code.

The general idea of the RA/D scheme is to keep the

variables in the corresponding registers as long as

possible until no available register is free for the next

new variable. When the set of general purpose registers

is full of variables, the register deallocation process is

used to free a register for the new variable. A decision

must then be made as to which old variable in the registers

should be replaced first so that the number of IVIEMREAD or

MEMWRITE statements is kept as small as possible. The

efficiency of the RA/D scheme is highly dependent on the

priority assignment of variables.

4-3-1 Replacement Priority Assignment

The replacement priority is determined by the status

and type of each variable. When an "active" status variable

is to be deallocated, a M51WRITE statement is needed to

store this variable in the host machine memory. However,

an extra MEMWRITE statement is not necessary for a

"passive" status variable. Combinations of status and

81

type, and the replacement priority of variables are des-

cribed in Table 4-2.

There is one kind of variable which cannot be de-

allocated, regardless of the priority of the variable. The

register which holds the first operand of a statement can-

not be deallocated until the second operand of this state-

ment is register allocated. The following example will

illustrate this idea:

iExample 4-2:

This statement

ADD *2-AB *1+BC *1+BC ; AB+BC-4BC

is to be register allocated. In the worst case, assume

that after R1 is allocated to variable AB, all registers

are full, and R1 containing the variable AB has the highest

priority to be deallocated. If R1 is not protected, the

output will be

MEMREAD AB R1 ; Rlf-Mem(AB)

MEMREAD BC R1 ; R14-Mem(BC)

ADD R1 R1 R1 ; R14-R1-R1

In the third statement both the first and second R1 hold

the value of variable BC and this gives an incorrect

result. Thus, it is necessary to protect the register

which holds the first operand of one statement from

deallocation. This restriction can be dismissed after the

second operand of this statement is register allocated.

82

Table 4-2. Replacement Priority Assignment

*priority type status action

1 none passive Local variable with passive
status will not be used in
the rest of the current block.

ref do not This variable does not actually
care exist in the register..

none active Same as (1) but with active
status.

passive Global variable with passive
status will not be used in
the rest of the current block,
but may.be used in the next
blocks.

active Same as (4) but with active
status.

2 passive Local variable with passive
status will be used in the
rest of the current block.

Passive Global variable with passive
status will be used in the
rest of the current block.

active Same as (6)- but with active
status.

active Same as (7) but with active
status.

*The smaller value in this column has the higher priority
to be deallocated.

This limitation will be good for any machine as long as

the number of GPRs is greater than one.. 411

Refer to Algorithm 4-1, the RA/D scheme is divided

into the following Algorithms.

4-3-2 RA/D Algorithm

The whole process which is described in Algorithm

4-2 can be described by the variation of the state of GPR

when the operand is register allocating. Each SLC is

treated independently of other SLCs when the RA/D scheme

is applied. Within the SLC, the scheme is performed

operand by operand; then, statement by statement.

4-3-3 Tuple5 Scheme

83

When the FDM is given by a user, the microinstruc-

tion format is divided into separate fields, and the value

of the field which is assigned to each MOP is classified

in two ways. One is by the numerical value which has

already been defined. The other is by the alphabetical

value which will be determined in this section.

Now, we use-the FDM of PDP11/40E (Appendix B) and

some examples to illustrate the function of Tuple5. The

set of undetermined field values in FDM are described

in Table 4_3,

84

Algorithm 4_2

Program RA/D Scheme
Data: ODA(M,K) is the kth operand of stmt M in SLOW and

is decoded by:
SY(1) is the first character of the operand.

SY(2) is the second character of the operand.

SY(3) is the third character of the operand.
SY(4) are the remaining characters of the operand.

R(J) is the jth register in GPR, 1!L-JeNR.

SA(J) is the variable name held by R(J)

ST(J) is the status of SA(J).
TY(J) is the type of SA(J).
(The detail definition and function of these

program parameters are described in section 4-2.)

Pseudo code:
BEGIN

(FETCH) FETCH NEXT OPERAND, ODA(M,K)
IF ODA(M,K) IS A MACHINE UNIT NAME

THEN GO TO FETCH
ELSE BEGIN (This symbolic operand is to be

allocated to GPR)
CALL ALGORITHM 4_6 TO. DETERMINE NS
IF ODA(M,K) IS IN THE GPR ALREADY, SAY

R(J)
THEN BEGIN (Determine the state

variable SA(J), ST(J),
TY(J))

SA(J) IS NOT CHANGED
CALL SUBROUTINE TYPE TO DETER-
MINE TY(J)
IF K=3 (This operand is destin-
ation)

THEN ST(J)=ACTIVE
ELSE ST(J) IS NOT CHANGED

END
ELSE BEGIN (This operand is not in

the set of GPR)
IF THERE IS A FREE REGISTER,

R(J), IN GPR

(FREE) THEN BEGIN
IF K=3 (This operand is destination)

THEN BEGIN
SA(J) =ODA(Ni,K)
ST(J)=ACTIVE
CALL SUBROUTINE TYPE TO SOLVE TY(J)

END

Algorithm 4-2 (continued)

END
END

END.

85

ELSE BEGIN (This operand is source)
MEMREAD ODA(M,K) R(J)
(load the operand into R(J)
SA(J)=ODA(M,K)
ST(J)=PASSIVE
CALL SUBROUTINE TYPE TO SOLVE TY(J)
END

END

ELSE BEGIN (There is no free register in GPR)
FROM TABLE 4-2, DEALLOCATE THE HIGHEST
PRIORITY VARIABLE IN GPR, SAY R(J)
IF ST(J)=ACTIVE

THEN "MEMWRITE R(J) SA(J)
IF ST(J)=ACTIVE
THEN "MEMWRITE R(J) SA(J)*

(store the content of R(J) into
memory)

GO TO FREE
END

Subroutine TYPE

BEGIN
SEPARATE ODA(ivi,K) INTO SY(1), SY(2), AND SY(4)
IF SY(3)="+" (ODA(M,K) will be used later in the block)

THEN TY(J)=SY(2)
ELSE BEGIN (ODA(M,K) will not be used any more)

IF SY(2)="2" (ODA(ivi,K) is a local variable)
THEN TY(J)=NONE
ELSE TY(J)="3"

END
END.

86

Table 4.3. Undetermined Field of PDPII/40 FDM

Case Format in the FDM/Field value determination

OP SRC1(GPR) SRC2 Dest(*GPR)
Field(1)=function (the register used in the

operand *GPR)

OP *emit Dest
Field(18)=function (the constant used in *emit)

OP SRCI, $CT Dest
or OP B TOS,CT D
Field(15), Field(16), or Field(17) is a function
of CT.

OP SRC1 $FF,LL,CT Dest
Field(15) , Field(16), and Field(17) are a
function of FF, LL, and CT.

OP variable Dest
Field(18)=function (address value, of the variable)

Field(13)=function (next MOP address)

87

?PExample 4-2:

In case 3 of Table 4-3, one MOP in FDM is:

OP:RMASK

Input: TOS $CT

which means to mask out the right (16-CT) bits of TOS.

Now, in pass 2, the following MOP is to be field

value assigned:

MASK TOS 5 B

CT=5, field 16=GT-1=4.44
)

b.tuExample 4-3:

In case 4 of Table 4-3, the format of MOP RSivK in

LL

9/ I),
FDM is:

OP :RSMK

I : TOS $FF,LL,CT

field 15=LL-CT

field 16=15-FF+CT

field 17=CT

which means to right shift TOS CT bits, and then mask.

In pass 2, the following MOP is to be field value

assigned:

RSMK TOS PGEADR 1)

Where PGEADR is a variable name which is associated with a

bits range to be shifted or masked, the bits range

associated with this variable is 0,6,0. Comparing PGEADR

in pass 2 with FF,LL,CT in the format of the FDM, we have

88

FF =O, LL=6, and CT=0. The following field values are

assigned to this MOP:

field 15=6, field 16=25, field 17-0.-4 4

Example 4-4:

In case 5 of Table 4-3, the field value of the

following MOP is to be assigned:

MOVE10 PC D

and the address value of PC is allocated to a fixed value

in YML, say, PC=1000, then field 18=1000.A 4

4-4 Problems Arising from the Control Flow interface

Before describing the RA/D scheme entering the next

SLC or the next block, the interface problems are first

considered.

1) The interface problems within the block

Figure 4-2 illustrates two typical examples.

One is the forward branch case. The other is

the backward branch case.

The forward branch case:

The final states (FS) of SLC(Ik), SLC(Im),

and SLC(In) have been determined already and

will influence the initial state (IS) of

SLC(I). Which state of GFR can be used as

the IS of this SLC?

b) The backward branch case:

The IS of SLC(I p) has been determined already.

89

1. Each circle means a SLC.

2. IS(I) is to be determined.

3. Fs(i) is to be determined.

4. Each character, Ik, Im

I, or, I is a SLC index.

Figure 4 -2. Forward Branch and Backward Branch

90

The FS of the SLC(I q) is to be determined

and depends on the IS(Ip) This backward

branch region may be executed many times.

How do we get the efficient interface to

determine this FS?

Interface problems between blocks

Each block has a single entry point which is

the first statement of the block and a set of

its own local variables. When the interface

occurs a problem arises in addition to the

problems mentioned in condition (1). This is

insuring that the local variables in FS of one

block must not be used as the IS of the other

block.

From the above analysis, it is evident that the

interface problems can be solved by correctly finding the

initial state and the final state of a SLC.

In order to find the initial state, the label state-

ment has to record all SLCs which support the forward

branch to this label. To find the final state, the direc-

tion of the branch statement has to be determined. There

is a label table, described in Table 4-4, which is set up

by the label statement and the branch statement in Algorithm

4-3, and used to record all information associated with

each label. Based on this label table, the initial state

and the final state of SLC are determined in the

ComponentS

Label
vector
LBL

SQ(I)

SB(I)

BS(I,J)
J=1 to

SB(I)

BWL(I)

BWLB(I,J)
J=1 to

BWL(I)

BI(I)

SLCD(I)

91

Table 4-4. Label Table

Functions

This' is a label name vector which is

used to record all labels according
to the sequence in which the label
appears in the whole program. LBL(I)
is a label name with index I in the

label vector.

it is assigned to zero if the label
appears in the label statement, and
it is assigned to one if the label
appears in branch statement. From
this vector, the direction of branch
statement can be determined.

It is used to count the number of
.forward branch statements to this
label.

It is a matrix which is used to
record the indexes of SLCs which
support the forward branch statement
to this label.

It is used to count the number of
backward branch statement to this
label.

It is used to record the indexes of
SLCs which support the backward
branch statement to this label.

If the label name is a block name
then it is used to record the
block index.

lt is an index of the SLC which
contains the label statement with
label name LBL(I).

Algorithm 4-3.

Program: Label Table Determination
Data: LBL(J) is the label name.

SB(J) is the forward branch(f,b) counter of LBL(J).
BS(J,I) records all f.b. SLCs to LBL(J).
BWL(J) is the backward branch (b.b) counter of LBL(J).
BWLB(J,I) records all b.b. SLCs to LBL(J).
BI(J) tells if LBL(J) is a block name or not.
SQ(J) tells the direction of the branch.
SLCD(J) is the index of a SLC which contains LBL(J).

(The details are described in Table 4-4.)

Pseudo code:

BEGIN
IF THE LABEL NAME IS FROM THE LABEL STMT

THEN BEGIN
IF THIS LABEL IS IN THE LABEL TABLE

THEN GO TO ASSIGN
ELSE BEGIN

STORE THIS LABEL IN LBL(M)
IF LBL(IVI) IS A BLOCK NAME

THEN BI(M)=BLOCK INDEX
ELSE BI(M)=0

SB(M)=0 (set f.b. counter)
(ASSIGN) SQ(M)=1 (label name appears in the label

position)
BWL(M)=0 (set b.b. counter)
SLCD(M)=CURRENT SLC INDEX
END

ELSE BEGIN (it is from the branch stmt)
IF THIS LABEL IS IN THE LABEL TABLE
THEN GO TO TEST
ELSE BEGIN.

STORE THIS LABEL IN LBL(J)
SET Sc(J) =0, SB(J)=0
IF LBL(J) IS A BLOCK NAM

THEN BI(J)=BLOCK INDEX
ELSE BI(J)=0

(TEST) IF SQ(J)=0 (it is a forward branch)
THEN BEGIN

SB(J) 1 (INC the f.b. counter)
BS(J,SB(J))=CURRENT SLC INDEX
END

93

ELSE BEGIN
BWL(J)=BWL(J)+1 (INC the b.b. counter)
BWLB(J,BWL(J))+CURRENT SLC INDEX
END

SET POINTED TO TELL THE. BRANCH STATUS
(ref. to Algorithm 4-1, this pointer is
used to determine FS)

END

94

next sections.

4-5 Initial State of SLC

The initial state of SLC(I), denoted by IS(I), is

defined as the state of GPR immediately before entering

this SLC(I). The IS of a SLC is actually determined from

the FS of other SLCs, and used as the basis to perform the

register allocation/deallocation scheme on the current SLC.

To get a reliable IS is extremely important for pass 2.

Based on the above discussion, the IS(I) can be

determined as follows:

From the label table, vector SB(label) tells the

number of forward branches to this SLC(I), and the matrix

BS(I,J), J=1, SB(label), lists all indexes of SLCs which

supply the forward branch to this SLC. Now, with the

assumption that:

SB(label=n,

and the indexes in BS are 11, 12.... In.

Case 1 if n=0 which means no forward branch to this SLC or

SLC(I) is not a label SLC then 1S(I)=FS(I-1).

Case 2:if n/O, and SLC(I-1) is not an unconditional branch

SLC then IS(I) can be expressed by IS(I)=f1(FS(11)

....FS(In), FS(I-1)).

if SLC(I-1) is an unconditional branch SLC, then

IS(I)=f2(FS(I1)....FS(111)).

95

To simplify the description, we have

IS(I)=f(FS(10. ..FS(1m)) (1)

Where the number of m is n or n+1.

Each FS or IS is a state of GPR. The further analy-

sis follows:
NR

IS(I)=1-.) ISR(I,J)
J=
NR

FS(K) L.) FSR(K,J)
J=

Where FSR(K,J) is the state of the jth register in

the FS of SLC(K) and can be expressed by:

FSR(K,J)= (FSA(K,J), FST(K,J), FTY(K,J)1

FSA(K,J) is a variable name which is in the register

J of the FS of SLC(K).

FST(K,J) is the status of the variable FSA(K,J).

FTY(K,J) is the type of the variable FSA(K,J).

Similarly, we have

ISR(I,J)=- fISA(I,J), IST(I,J), ITY(I,J)1

and the same explanation for each component of

ISR(I,J).

Now, equation (1) is abbreviated as:

IS(I) = f(?!._1 FS(Ik)) (2)

ISR(I,J)= fj(ir:1 FSR(Ik,J))

The IS(I) of register J is determined by all the FSs

of register J. The problem in finding the IS(I) is

to solve the function .f, Algorithm 4-4 is used to

solve function f..

96

4-6 Final State of SLC

Refer to Figure 4-3 and 4-4. The branch statement

which is the last statement of a SLC will bring a state to

the sink SLC and leave a state to the next SLC . The se two

state s may not be the same. The FS problem is actually to

find the se two state s at the end of the current SLC. Some

terminology will be used in thi s section.-

1) The state immediately before the branch occurs

in SLC (I) is deno ted by CS(I) .

After the branch statement, the state which will

be brought to the sink SLC is called branch

final state and denoted by FS(I) . The state

which will enter the next SLC is called the

sequential final state and denoted by S(I)

3) Forward branch SLC is defined as a SLC in which

the last statement of the SLC is a forward

branch statement,

4) Backward branch SLC is defined as a SLC in

which the last statement of the SLC is a back-

ward branch statement.

The final state of a SLC may be from either the

forward branch SLC or the backward branch SLC. They are

determined as follows:

97

Algorithm 4_4

Program: Initial State of SLC(I)
Data: 1) There are m SLCs with indexes I k=1 to m,

forward branch to SLOW. ISA(T,J), IST(I,J),
ITY(I,J), FSA(Ik,J), FST(I

k'
J), and FTY(1 ,J)

are defined in section 4-5.

A null state of register means no variable is
assigned to this register and all information
of this register is marked out.

3) Type means the complement of the type of the
variable. If this variable is global variable,
then type 1 = type 3, and type 3 = type 3. If
this variable is a local variable, then type 2 =
type none, and type none = type none, and the
type reference does not have the complement
operation.

Operator -0 is defined as:

,r/A. passive, if all Ai's are passive.

1 active, if one of Ai is active.

5) Vector VAR(L), where L=1 to VA, is defined in:
each block. 'VAR(L) to SLC(I)' means the
vector stores all the variables which will not
use any more from the SLC(I) to the end of the
block.

Pseudo code:

BEGIN
IF ALL FSA (It,J), lsk=m, ARE EQUAL (All variables in R(J)

froM the different SLCs, I1, I2,...and Im, are the same)

THEN BEGIN
ISA(I,J)=FSA(I

k'
J) (Determine the variable in R(J)

of IS(I))
IST(I,J)= FST(Ik,J) (Determine the status of this

Variable)
THEN ITY(I,J)=1.TY(1 ,J)

ELSE ITY(I,J) =FTY(Ik,J)

END.

Algorithm 4-4 (continued) 98

ELSE BEGIN (One of the variables in R(J) from SLCs,

I. is different from others)
IgR(I,J) IS SET TO BE A NULL STATE

FOR ALL k, 1"-s..ksm

IF FST(Ik,J) = ACTIVE

THEN "MEMWR1TE R(J) FSA(I ,)" 1S INSERTED

AT THE END OF SLC(Ik)

END

IF SLC(I) IS THE FIRST SLC OF A BLOCK (Local variables of

the previous block are not available here)

THEN BEGIN
IF ITY(I,j)=TYPE NONE (Reset the R(J) holding the

local variable)
THEN ISR(I,J) IS SET TO BE A NULL STATE

ELSE BEGIN
IF ISA(I,J) WILL BE USED IN THIS BLOCK

THEN ITY(I,J)=TYPE 1
END

END
END.

99,

CS(I)

PS(I BRCH label 1 (the end of SLC(I))

r
S(I)

label 1 UP OPERAND (beginning of SLC(K))

1. Each circle means a statement.

2. SLC(I) is a forward branch SLC.

3. SLC(K) is a sink SLC to SLC(I).

4, CS(I), FS(I), and S(I) are defined in section 4-6.

Figure 4_3. Final State of Forward Branch SLC

100

label 2 OP Opnd (beginning of SLC(K))

1

(end of SLC(K))

label statement (beginning of SLC(I))

CS(I)

BRCH label 2 (end of SLC(I))

S(I)

1. Each circle means a statement.

2. SLC(I) is a backward branch SLC.

3. SLC(K) is a sink SLC to SLC(I).

4. CS(I),
4-6.

FS(1), and S(I) are defined in section

Figure 4-4. Final States of Backward Branch SLC

101

4-6-1 Final State of the Forward Branch SLC

The method used to determine the FS of the forward

branch SLC (Figure 4-3) does not depend on the sink and can

come directly from the current SLC. Algorithm 4-5 is used

to describe the determination of this FS.

4_6-2 Next Initial State of Sink SLC

When a SLC(I) backwards branches to a SLC(K) (Figure

4_4), the state immediately before the branch statement must

be the same as the initial state of the sink SLC, and the

state just after the branch statement will go to the

SLC(I=1).

The first problem to be determined is what initial

state of SLC(K) will be used as a reference state by CS(I).

From the last section, IS(K) is the state right before

entering the SLC(K), but it does not involve any RA/D

action about the SLC(K). The next initial state of SLC(K

denoted by NS(K), is introduced here.

When the R(J) is first allocated in the whole pro-

cess of the RA/D scheme performed on SLC(K), the operand

assigned to R(J) and its associated information is denoted

by NSR(K,J) and expressed by:

NSR(K,J)= NSA(K,J), NST(K,J), NTY(K,J), NPT(K,J)

and NS(K) is defined as the set of NSR(K,J), J=1 to NR and
NR

expressed by NS(K)= NSR(K,J). (For details see item 8

in section 4-2).

102

Algorithm 4_5

Program: FS of a Forward Branch SLC

Data: (Refer to Figure 4-3 and section 4-6)
1) I is the index of SLC(I).
2) J is the index of GPR,
3) FS(I),. CS(I), and S(I) are the states associated

with SLC(1). (see section 4-6)
4) "a null state" is defined in Algorithm 4-4.
5) FSR(I,J), CSR(I,J), SR(I,J) are defined in. section

4-2 and section 4-5.

Pseudo code:

BEGIN
IF THE SLC FORWARD BRANCHES TO THE SAME BLOCK
(Determining the branch final state)

THEN FS(I)=CS(I) (FS is the same as the state before
the branch statement)

ELSE BEGIN (branches to other block)
FOR ALL J, 1AT4NR
IF CTY(I,J)=TYPE 1 or TYPE 3

THEN BEGIN
FSA(I,J)=CSA(I,J)
FST(I,J)=CST(I,J)
FTY(I,J)=TYPE 3
END

ELSE FSR(I,J) IS SET TO BE A NULL STATE (Local
variable only goOd within the current block)

END
IF THE NEXT SLC IS IN THE SAME BLOCK (Determine the sequen_

tial final state)
THEN BEGIN

FOR ALL J, 115,J`.NR

IF CTY(I,J)=TYPE 3
THEN SR(I,J)=CSR(I,J)
ELSE SR(I,J) IS SET TO BE A NULL STATE

END

END

101

Some MEMREAD and MEMWRITE statements are needed in

the generation of NS(K) from IS(K). This is simply des-

cribed as follows:

Case a: if NSA(K,J)=ISA(K,J) then no MEMREAD/WRITE state-

ment is needed.

Case b: if NSA(K,J) ISA(K,J), the Possible conditions

are:

IST(K,J) NPT(K,J) Condition

active source 1

active dest 2

Passive source 3

passive dest 4

The statements that may be used are

MEIVIWRITE R(J) ISA(K,J) (a)

MEMREAD NSA(K,J) R(J) (b)

In condition 1, statements (a), and (b) are used.

In condition 2, statement (a) is used

In condition 3, statement (b) is used.

In condition 4, none of the statements is used.

In the worst case, statements (a) and (b) are used

to generate NSA(K,J) from ISA(K,J). If CS(I) uses the

IS(K) as the reference state, these two statements cannot

be moved out of the branch region. In the case of a loop,

it will waste much time to execute these statements. If

NS(K) is used as the reference state, these two statements

do not need to be executed when the backward branch occurs.

104

However, if the statement (a) is still in the region, it

will destroy the content of ISA(K,J) in the host machine

memory. The conclusion is that if the MEMWRITE statement

used to generate the NSA(K,J) from the ISA(K,J) can be

moved out of the branch region, then NS(K) can be used as

the reference state in the determination of FS(I). "A

statement can be moved out of the region" means that this

statement is data independent of all those statements

ahead of it in the region. If we can prove that all the

statements ahead of statement (a) do not contain R(J),

ISA(K,J), this statement can be moved out of the region.

The following paragraph will illustrate this point..

If NSA(K,J)=ISA(K,J), no MEMREAD or MEMWRITE is

needed. Now, in the worst case of NSA(K,J)/ISA(K,J),

statements (a) and (b) are used. The basic idea of the

RA/D scheme is that when it is performed on a variable

which has been assigned to a register already, the same

register is used by this variable. If ISA(K,J) has been

used before it is deallocated, it must be the same as

NSA(K,J). Our assumption, however, is that NSA(K.J)/

ISA(K,J), so that ISA(K,J) in statement (a) is used for

the first time in SLC(K). From the definition of NS(K),

R(J) is first used when NSA(K,J) is assigned, R(J) and

ISA(K,J) are both used for the first time in statement (a).

It can be moved out of the region.

In statement (b), NSA(K,J) cannot be moved out

105

unless the same variable is not in a different register in

NS(K). This condition implies that each NSA(K,J) which

appears in the mapping from ISR(K,J) to NSR(K,J) is used

for the first time in SLC(K). In the case where this condi-

tion is not true, i.e., NSA(K,J)=NSA(K,P), for J/J', we

have the following contradiction:

From statement (a), NSA(K,J) is in R(J). After some

calculations, NSA(K,J) has to be stored back in VigiL

and another variable is allocated into R(J). The

statement (c) is used if NST(K,J) is active.

MEMWRITE R(J) NSA(K,J) (c)

and, then, for some reasons, NSA(K,J) is to be

loaded again, and R(J') has the highest priority to

be replaced. In the worst case,

MEMWRITE R(J') ISA(K,J') (d)

MEMREAD NSA(J,J') R(J') (e)

are used to generate NSA(K,J1) in R(J'). Since

NSA(K,J1)=NSA(K,J), statement (c) blocks statement

(e), but statement (d) can still be moved out.

This special example does not occur very often. If

it does happen, the only result is inefficiency, not an

error. NS(K) is used as the reference state by CS(I) to

determine FS(I).

There is another special case where ISR(K,J)=.

CSR(I,J), but NSR(K,J) is empty. It will cause many

unnecessary MEMREAD/WRITE statements if CS(I) uses NS(K) as

106

the reference states. In this case, NSR(K,J) is set equal

to ISR(K,J) before the determination of FS(I). Algorithm

4-6 is used to generate NS(K) .

4-6-3 Final State of Backward Branch SLC

Refer to Figure 4-4. When the backward branch occurs,

the state CS(I), which is right before the branch statement,

must be set equal to the next initial state, NS(K) , of the

sink SLC. The state S(I) which is after the branch state-

ment will go to SLC(I+1). The branch region between the

branch statement and the sink may be a loop. Correct and

efficient interface design is a major concern.

Algorithm 4-7 is used to solve the branch final

state, FS(I). The sequential final state, S(I), is solved

in Algorithm 4-8.

4-7 Conclusion

The outputs of pass 2 are a set of SLCs and a label

reference table. Each SLC is a set of IMO s, which all

operands are, in machine unit names. The timing phase is

assi gned. and all field values are determined except the

next address value. The label reference table, which lists

all labels and corresponding locations, is used to determine

the next address value. The address field value assignment

and the optimization process will be solved in the next

chapter.

107

Algorithm 4-6

Program: NS of SLC(K)

Data: 1) NP(J) is set when R(J) is first allocated and
will not be reset until entering the next SLC.

2) ODA(M,N) which is to be register allocated is
an operand of a statement M in SLC(K).

3) Refer to Figure 4-4, SLC(K) is sink SLC and
SLC(I) is a backward branch SLC.
SY1), SY(2), SY(3), and SY(4) are defined in
Algorithm 4-2. Subroutine TYPE is defined in
Algorithm 4-2.

Pseudo code:

BEGIN
IF THIS ALGORITHM IS CALLED FROM RA/D. SCHEME

THEN BEGIN
ODA(M,N) IS SEPARATED INTO SY(1), SY(2) , SY(3)
AND SY(4)
IF NP(J)=) (R(J) has not been allocated to

operand yet)
THEN BEGIN

NSA(K,J)=SY(4), NP(J)=1
IF N=3 (ODA(M,N) is used as.the destina_

tion)
THEN BEGIN (set the state variable of

R(J))
NST(K,J)=ACTIVE
NPT(K,J)=DEST
CALL SUBROUTINE TYPE TO SOLVE
NTY(K,J)

END
ELSE BEGIN (This operand is source)

NST(K,J)=PASSIVE
NPT(K,J)=SOURCE
CALL SUBROUTINE TYPE TO SOLVE

NTY(K,J).
END

END
ELSE RETURN (R(J) has been allocated to operand already)

END
ELSE BEGIN

IF CSR(I,J)=ISR(K,J) AND NSR(K,J) IS EMPTY
THEN NSR(K,J)=ISR(K,J)

END

END

Program:

Data: 1)

2)

108

Algorithm 4_7

Branch Final State of Backward Branch SLC.

Refer to Figure 4-4, SLOW branChes SLC(K).
CS(I), FS(I), and NS(K) are defined in section

4-6
Pseudo code:

BEGIN
IF CSA(I,J)=NSA(K,J) (case 1)

THEN BEGIN
FSA(I,J)=CSA(I,J)
FTY(I,J)=CTY(I,J)
IF CST(I,J)=ACTIVE, AND NST(K,J)=PASSIVE

THEN BEGIN (extra case 1)
IF THERE IS NO DEALLOCATION PROCESS HAPPENS
TO R(J) FROM SLC(K) TO SLC(I) (i.e. R(J)
holds only this variable CAS(I,J) in this
region)

THEN FST(I,J)=CST(I,J)
ELSE"MEMWRITE R(J) CSA(I,J)"

IS INSERTED AT THE END. OF SLC(I)
FST(I,J)=PASSIVE

END
END

ELSE BEGIN (case 2)
IF CST(I,J)=PASSIVE, AND NPT(K,J)=DEST, OR

CST(1,J)=PASSIVE, AND NPT(K,J)=EMPTY (R(J)did
not hold variable in NSR(K,J)) (cond. a)
THEN FSR(I,J)=CSR(I,J)
ELSE BEGIN

IF CST(I,J)=ACTIVE, AND NPT(K,J)=EMPTY
(R(J) did not hold variable in NSR(K,J))
THEN BEGIN (extra case 2)

IF R(J) HOLDS ONLY THE VARIABLE
CSA(I,J) FROM SLC(K) TO SLC(i)
(i.e. there is no deallocation
process which happens in this
region)

THEN FSR(I,J)=CSR(I,J)
ELSE BEGIN

"MEdIWRITE R(J) CSA(I,J)"
IS INSERTED AT THE END OF SLC(I)
FSR(I,J)=CSR(I,J)
FST(I,J)=PASSIVE
END

END
END

109

Algorithm 4-7 continued

ELSE BEGIN
IF CST(I,J)=ACTIVE, AND NPT(K,J)=DEST (cond.b)

THEN BEGIN
FSA(I,J)=CSA(I,J)
FTY(I,J)=CTY(I,J)
"MEMWRITE R(J) CSA(I,J)" IS
INSERTED AT THE END OF SLC(I)
FST(I,J)=PASSIVE
END

ELSE BEGIN
iSA(I,J)=NSA(I,J)
FTY(I,J)=NTY(I,J)
FST(I,J)=PASSIVE
IF CST(I,J)=ACTIVE, AND

NPT(K,J)=SOURCE (cond. c)
THEN BEGIN

MEMWRITE R(J) CSA(1,J)
MEMREAD NSA(K,J) R(J)
ARE INSERTED AT THE END OF
SLC(I)
END

ELSE "MEIVIREAD NSA(K,J) R(J)"
IS INSERTED AT THE END OF
SLC(I) (cond.d)

END
END

END.

Program:

Data: 1)

2)

3)

4)

110

Algorithm 4_8

Sequential Final State of Backward Branch SLC.

Case 1 and condition a, b, c and d of case 2 are
directly from Algorithm 4-7.
Refer to Figure 4-4, SLC(I) branches to SLC(K).
FTY777), "set to be a null state," and VAR(L) are
defined in Algorithm 4-4.
FS(I) has been determined in Algorithm 4_7
already.

Pseudo code:

BEGIN
REFER TO ALGORITHM 4-7
IF IT IS IN COND. C, D OF CASE 2 (it is described in
Algo. 4-7)

THEN BEGIN
IF SLC(I) AND SLC(K) ARE IN THE SAME BLOCK

THEN BEGIN
SR(I,J)=FSR(I,J)
IF FSA(I,J) IS IN VAR(L)

THEN TY(J)=FTY(I,j)
ELSE TY(J)=FTY(I,J)

END
ELSE BEGIN

IF FTY(I,J)=TYPE 2 OR NONE (note: FSA(I,J)
is a actually from NSA(K,J) in different
block)
THEN SR(I,J) IS SET TO BE A NULL STATE
ELSE BEGIN

SR(I,J)=FSR(I,J).
IF FSA(I,J) IS A GLOBAL VARIABLE OF

THE BLOCK WHICH CONTAINS THE
SLC(I) AND IT WILL BE USED BEHIND
SLC(I)
THEN TY(J)=TYPE 1
ELSE TY(J)=TYPE 3

END
END

END
ELSE SR(I,J)=FSR(I,J) (case 1, and cond. a, b of case 2)

END.

111

CHAPTER V

PASS 3

5-1 Introduction

The inputs to pass 3 are a set of SLCs and a label

reference table which are directly from the output of pass

2. Each SLC is a set of MOPs which is represented by Mi

5- tuples, (OPi, Ii, 0i, Fi, Pi), and is made machine

dependent by specifying the architecture of a particular

real microprogrammable machine. All field values in the

field tuple Fi are defined except the address field which

will be determined with the aid of the label reference

table.

The purposes of this chapter are to develop tech-

niques for combining sequences of M1IVIOPs into shorter con-

current microinstructions, or what we abbreviate as Nils,

and to move the redundant MOPs from the loop region.

We say the MI sequence is optimized if it is

impossible to rearrange the sequence of MiMOPs contained

in the sequence of MI instructions, in a manner that will

produce fewer microinstructions. DeWitt (7) has proved

that this kind of absolute minimal reduction problem is an.

NP-complete problem. We find that the rules which are

used to detect the parallelism of MOPs are dependent on

the machine constraint. In this chapter, we show why the

112

optimization problem is NP-complete and then derive general

rules to detect the parallelism of MOPs and examine a

special case of FDP11/40E machine to illustrate the machine

dependency. Then, by seeking a near-optimal solution rather

than the absolute optimum solution, we have been successful

with a slower algorithm of complexity 0(mn), where m is a

pragmatically determined constant less than n. While we

have been unable to do so, it is noted that if we could

apply a sort algorithm of complexity 0(n log2 n) to produce

a near-optimal solution, then vie could get a faster algor-

ithm. This reduction would place the near optimal reduction

problem in the class of sorting problems and yield extremely

fast code optimization algorithms. The problem, then, is

to produce the shortest possible sequence of microinstruc-

tions M1
1'

M.
k

from a compiler-generated sequence of

microoperations, Mi, The optimization algorithm'

which is used here to solve this problem is applied

separately each SLC. The proposed algorithm runs in linear

time to produce a reasonable approximation to the best

possible code in most cases.

The general terminology used through this chapter is

described in section 5-2. The general structure of pass 3

is illustrated in Algorithm 5-1 which leads to the follow-

ing tasks; 1) Two important relationships among MOPs,

invertibility and parallelism, are described in section 5-3

and section 5-4, respectively; 2) Based' on this description,

113

Algorithm 5-1

Program: General Structure of Pass 3

Data: 1) SLC(P) is to be compacted.
2) Forward branch is abbreviated as f.b.

Backward branch is abbreviated as b.b.
3) The label name of the SLC is called LABEL, if any.
4) Subroutine OPTM is to describe the purpose of

this pass, and is illustrated in Algorithm 5-2.

Pseudo code:

BEGIN
(START) FETCH
IF THERE ARE

THEN BEGIN
TASK
TASK

TASK

TASK

TASK

GO TO
END

NEXT SLC(P)
f.b. AND b.b TO SLC(P)

1: GENERATE A NEW LABEL NAME CALLED 'NEWLBL'
2: CALL SUBR OPTM TO COMPACT SLC(P) (see

Algorithr7-572)
3: THE LABEL NAME 'LABEL' IS USED AS THE ENTRY

POINT OF SLC(P) FOR f.b. AND IS LOCATED ON
THE LABEL POSITION OF THE FIRST MOP OF THIS
SLC

4: THE NEW LABEL NAME 'NEWLBL' IS USED AS THE
ENTRY POINT FOR THE b.b. AND I
THE LABEL PQUILOILLE_THEEIBILMOLILIGH T
AFTER T ' A ARLT2g, szugains

5: ANY b.b STATEMENT INVOLVED THE LABEL NAME
'LABEL' IS MODIFIED BY 'NEWLBL'

START

IF THERE IS ONLY A b.b. TO SLC(P)
THEN BEGIN

DO TASK 2
DO TASK 4, BUT THE SENTENCE 'THE NEW LABEL NAME
'NEWLBL' IS CHANGED BY 'THE LABEL NAME 'LABEL'
GO TO START
END

IF THERE IS ONLY A f.b. TO SLC(P)
THEN DO TASK 2 AND TASK 3, GO TO START

PERFORM TASK 2, GO TO START

END.

114

the allocation problem of MOPs is illustrated in section

5-5.

5-2 General Terminology

The following terminologies assume a sequence of

MOPs, Mi, M2, ...Mn are mapped into a sequence of micro-

instructions, frill, MI2,... MIk, ken.

1) A SLC is the basic unit to be optimized and is

represented by SLC=fiii, M2,...MnAt, where Mi is a

alicroolperation.Wesay Mi precedes M.
'

denoted

by Mi<Mj, if i<j.

We say a sequence of MOPs is executed in serial,

denoted by Vil,tMilf, if the MOPs are

executed in separate control store cycles. Two

MOPs, Mi and Mj, are executed concurrently,

denoted by (Mi, Mj), if they are executed in

the same control store cycle.

3) A microinstruction MI is a set of concurrently

executable MOPs denoted by MI= (M, Mj,...

N.kpess\s

M. and M are said to be parallel, denoted by

Mi///Mj, if for all inputs the sequential

execution of (Mil, {Mils, results in the same

output as the concurrent execution of micro_

instruction MIk= fMi, Mil

5) We say two MOPs, IYi, M in SLC and Mi <IvIi have

115

I/O conflicts if one MOP depends on the data

produced by the other MOP or alters the data

needed by the other MOP. Assume Ii, 01, is in

Iii and Ii, Oi is in Mi. If Ii (1yo, Ii00i/O,

or 0 00
j
/0, there is an I/O conflict between

these two MOPs.

Optimization

Now, we can pose the problem in more exact terms.

O of a sequence of MOPs in a loop-free SLO, is a

conflict-free partition of the MOPs into sets, say MI1,

MI
2'.

..MI
k'

in such a way that no other partition results

in fewer MIs; e.g., k cannot be reduced.

5 -3 The Parallelism and Invertibility of m0Ps

Based on the 5-tuple format of MOPs, two important

relationships, parallelism and invertibility, are determined

in this section. It will be easier to understand these

relationships if we examine how the 5-tuple of a MOP

affects:

1) I/O resources, 2) timing phase, and 3) field tuples.

5-3-1 I/O Resources

Consider two MOPs
,

M1. M
j'

where M precedes M.

noted by N 4M.j) :

M. : (OP. I
11

Mi : OPi, Ii, Oil

There are 4 cases in I/O intersection. (see

116

Table 5-1) In row 2, 3, or 4 of Table 5-1, there are two

conditions for parallel execution (see the fourth column of

Table 5-1). If the parallel action occurs above the dash

line, it is different from the sequential action. Other-

wise, the parallel action is the same as the sequential

action.

The first nonempty intersection in Table 5-1 will

not influence parallel execution, but the last three non-

empty intersections do influence the parallel execution.

Therefore, depending upon the values of A, B, or C in

column 2 of Table 5-2, there are eight possible combinations.

The only combination of interest, however, is the case

where all intersections are empty. If A =B =C =O, then ki, Mj

are said to be data independent, denoted by MifiMi. This

leads to a very important factor in the optimization prob-

lem. For example, consider the sequence of MUEs, N1, M2,

m3, with fy-ifiIm3 and additional properties that ml not //M2,

M
2
not //M

3
but M //M

3.
If we can change the position of

M
2

and m
3
then we say M

2
and m

3
are invertible. We can

invert two 1,10.1-s only when their ec.ecaktion-i-a_thesame,for_.,,

both sequences. For example, sequential execution of

iill,
'2'

M
3 produces the same result as the execution of i

'3' M2' We may take advantage of invertibility by combin-

ing
l'

m into MI1 leaving m3 assigned to MI2 to give an

optimized partition for r=2. Mi, Mi+1 are said to be

invertible, denoted by mi<Mi+1, if

117

Table 5-1. I/O Intersection

Nonempty Sequential Parallel
Row intersection action action

1 1. ni
j

Data sharing from
common resource

Same as
sequential

2 A=.1.
3.

O.
j

I
i

transfers to *If k.
13

is

O. then 0, executed first,
J 0 reset I.

modified Ii j i

before Ii

transfers to
O.

Same as
sequential

Data passes from

M- to M,

*O has no

chance to set
I if M

is executed
first.

Same as
sequential

C=0. U. O.
1 J
is modified by *If NI is

0. executed first,
0, cannot

J

modify O.

Same as
sequential

iyi, iii are in sequential order, and M. precedes M..

. Mi is denoted by oi).

. Pi. is denoted by <01), Op.

118

5-3-2 Timing Phase

An MI is considered to be a polyphase instruction in

the designing of the FDM. The control store cycle is

logically divided into several timing phases. (The detail

is given in Chapter II.) The possibilities for timing

intersections are discussed.

Assume MiMi and the time interval to initiate and

execute Mj is Ti. The relationship between Ti, Tj is shown

in Figure 5-1.

T.0 T =0 implies T..0. or T.> T
j j j

Ti (IT .0 implies Ti =T.,T. T or Ti ?..T
j j j j

We can see M. precedes Di in the sequential form, but

in the parallel form Mi may not precede M. What we must

do is to find an algorithm to detect whether the parallel

execution of MIk= {Mi,Mi} can produce the same output as the

sequential execution of MIk=Mi, MI10.1=Mj, for all inputs.

Consider Table 5-1 again. It is simple to determine

the results of sequential execution, but parallel execution

may or may not produce the same results as sequential

action. If we add timing to the table and divide the fourth

column in Table 5-1 into two parts, we get the results

shown in Table 5-2. The entries of Table 5-2 show the

conditions of timing which allow concurrency.

From the above discussion, it is obvious to see the

I/O and the timing tuples play important roles in the

Ti T.

T. Sri

If tmt,11. MI. and M,

Mj precedes Mi.

B) Ti
1 j

CS cycle

119

can be executed in one CS cycle then

T.
4

CS cycle

If M. and M, are executed in one CS cycle, then .1 m1

still precedes M.
3*

Ti = Ti
3

Ti

r
Tj

CS cycle

IfM1 lbrij'
1

thenMand M, execute in the same interval.

Figure 5-1. Timing Conflicts in a Poly-
phase Microinstruction

120

Table 5-2. (I,O,T Conflict Detection

Nonempty Parallel and sequential Parallel and sequential
inter- execution leave same execution leave differ
section result ent result.

independent of timing

Ii()Oi Ti 4T.
j

Ti

OiCIIi Ti p T.
j

Oi(VOi Ti

determination of the MOPS. Before going into the general

rules to detect parallelism, a more exact explanation of

field conflict is given.

5-3-3 Field Tuple

As mentioned in Chapter II, there are two kinds of

fields in MI format, denoted by FA, FB, respectively.

{fil If fi is used by more than one MOP in

the same MI and the values assigned to these

fields are the same, it will cause no

conflict.]

ifil If fi is used by more than one MOP in the

same MI, it will cause the conflict even if

the field value is the same.}

iVii. M- are in SLC.
,

F.
1

F are the field tuple to

Mi, Mj, respectively, and it is assumed:

121

Fi C)FrFk= {fi l a set of fields /0

If Vfi fi EFA and the values of each fi are the

same, then Fi Fj is defined to be zero.

In other words, if one of fi eFk belongs to F13, then

Fi C)F/0,

or if Vfi EFk fi EFA, but one pair of fi has the different

value, then

5_4 The Detection of Parallelism of MOPS

The machine constraints on the primitive operations

may be different from computer to computer. The parallelism

detection rule can never be machine independent. Here, we

divide the discussion into two parts. One is statement of

the general rules which are available to every machine.

The second is an explanation of the machine constraints

which must be faced. Then some examples are used to explain

the machine limitations.

General rules

Every microinstruction is completed within a control

store cycle. The method used to analyze the timing phase

within the cycle is described in section 5-3-2. The

following rules are used:

Given Mi, Mj in SLC and Mi < Mj. M.
1
and M, are

denoted by

122

:
1

Oig Fi, Pil

M .
O.

. , I . , 0 . , F .

J JJJJ Ji"

1) If Mi,Mi+i then Mi >4 ivii+1.

2)- As P.. <P.
j*

If Fi(Fj=0 then MV/Mb .

3) As P.4q).
j

If (FiC?Fj=) and (Mil Mj) then Mi Mj.

Example 5-2:

In the PDP11/40E machine (8,9), the CL3 cycle gener-

ates P2 and P3 pulses. Then each pulse is assigned to the

corresponding MOP. There are three cases used to

illustrate the general rules.

Case 1: M1: R2->D, P2 : copy R2 to register D

M2: D-+R3, P3 : copy register D to R3

M3: R3+B.IAD, P2 : add R3 and register B to
register D

M4: D4R4, P3 copy register D to R4

M2 and M3 are examined to detect the

Parallelism.

From example 2-5, we know O370, but M2 not,

m3. This implies M2 not M . (lf M2 and M3 are

executed in one MI, and M3 is executed prior to

M2, it will give a wrong result,)

Case 1Mi5: emit *stack, P

M6: R3 D, P2

From the third rule,

imply M5//M6.

Case 3 M7: R3+B*D, P2
; add R3 and B to register D

MB: D .R3, P3 ; copy register. D to R3

The pulses used by M7 and M8 are P2 and P3,

respectively. F7 11F8=0 implies M7//M8 which is

independent of I/O conflict. 4

123

copy content value "emit"
; to stack
; copy R3 to register D

F 5C1 F6 =0) and Ivi5 /M6)

Machine Constraints

If more than one control store cycle is provided by the

machine, this will cause some machine constraints on

the general rules.

Example 5-2:

In the PDP11/40E machine (8,9), there are three

machine cycles listed in Figure 5-2: a) CL1 cycle

generates pulse P1; b) CL2 cycle generates pulse P2;

and c) CL3 cycle generates pulse P2 and pulse P3.

The constraint is "Different microinstructions must

use different control store cycles and MOPs in

different cycles may not execute together." This

implies that a MOP in CL1 can never execute together

with MOPs in CL2. Before the general rule can be used,

one has to determine that these two MOPs belong to the

same control store cycle.

CL1

CL 2

CL3

Figure 5-

124

. PDP11/40E Processor Clock

125

Case 4: N9: PUSH, P1 ; push the stack

M
10'

R3 ID, P2 ; copy R3 to register D

M9 is in cycle CL1 and Mio is in cycle CL2

imply M9 cannot be parallel with Mio even if the

general rule is good in this case.

Examine M 5 and M in example 5-1. They both belong t6

cycle CL3. The general rule is applied to get the parallel-

ism result. 414

2) There are some MOPs used for special purposes such that

the general rules cannot apply to them.

'N.-Example 5-3:

In the FDM of the PDP11/40E, the MOP FLAG is used to

set the best machine flags for the previouS ALU operatiOn.

MOP FLAG must be the next one after the ALU operation.

It cannot move the position even if invertibility is

true.

MOP NOOP, which is used in the N-way branch opera-

tion and provides the branch address, has its own fixed

position. It cannot be moved and/or parallel with other

MOPs even if the general rule is applied here.4

The MOPs used for these special purpose and the

extra machine constraint conditions cannot make the

parallelism detection rules completely machine independent.

In order to keep the system portable, they are packed into

126

a subroutine. If the rules are changed for another mathine,

this subroutine must be rebuilt.

5-5 MOP Allocation and Movement

The purpose of this section is to develop algorithms

used to allocate the MOPs into the MI and move the MEMREAD

and/or MEMWRITE statements which are used to generate NS(K)

from IS(K) in the sink SLC out of the backward branch region.

5-5-1 Theoretical Constraints on Optimization

The optimization problem is known to be NP-complete

(7). Thus, it is not likely that there exists a nonexponen-

tial algorithm to solve this kind of problem with a determin-

istic Turing Machine. First of all, we examine why the

optimization problem is NP-complete.

The definition of parallelism and invertibility of a

pair of MOPs was described previously. Now, we extend the

definitions to microinstruction.

MOP Mk is said to be parallel with MI, if Mid

Mk//M j'
Also MOP M is said to be invertible with MI, if

eMI3 Mk >< Mi.

Given a SLC= {M1, M2.... k.... Mn , assume {Xi,

M2' ' 'Mk-11
is partitioned into MIi....MIi. As we allocat-

ed Mk' relationship between MOP and MI is : .(refer to

Table 5 -3)

Case 1: Mk not ><M/i, and Mk not//MIi

Case 2: Mk not ><MIi, and Mk//MIi

127

Case 3: ><MIi, and Mk notrnii

Case lh Mk)4MIi, and Mk8Mli

Table 5-3. Possible Positions of MOPs
in the Allocation Problem

Possible position MIi4.1 MIi MIi.

case number

Case 1

Case 2

Cate 3

Case 4

X

X

X: MOP can be in this position.

41: Check Mk with the MI ahead of the current

one and determine which case it belongs to.

If Mk is invertible with MI. (Case 3 or 4 of Table

5-3), it may be moved past MIi and the same test applied to

MIL-i. On the other hand, if Mk is not invertible with MIi

(Case 1 or 2), it is blocked by this MI. In this case, Mk

is placed in the subsequent MIi4.1 or the current MIi,

respectively.

In Case 3 and 4 of Table 5-3, we have to check the

MOP ahead of the current MIi. Again we face four cases. If

Mk is invertible with all MIs from MIi back to MIi, there

are (1+1) possible positions for Mk; one position is ahead

of MI
1'

one is after MIX. The other i-1 positions are

128

between any pair of successive MIs. In the remaining cases,

if Mk is // and invertible with all MIs, there are 2i +1)

possible positions for Mk.

Let us consider the worst case:

S= flAr alin} , assume every MOP is invertible with

every other, but not parallel. M1 is allocated

in MI M. is to be determined, 2.s.j4n.

j=2, there are 21 possible positions for M2, {M11,

IM2 I, or .1421 fMil .

j=3, there are 31 possible positions for M3.

j=n, there are n1 possible positions for Mn.

Totally, there are 4 kt possible positions in which

to allocate these n MOPs.

Clearly, this is a very special case, since if we

know in advance that there is no, parallelism among MOPs, it

is not necessary to check these positions. We just use n

MIs to allocate the n MOPs. The problem is that all the

relationships are not known until we check the last MOP in

SLC. The allocation of MOPs depends not only on the MOPs

ahead of it, but on the MOPs after it. The best position

of MOPs cannot be decided until every possible combination

of MOPs is checked. We can see that invertibility causes

the problem to be NP-complete.

On the other hand, the data dependency among MOPs is

obvious and limits the invertibility considerably. In this

129

case, it is hard for a MOP to cross too many MOPs ahead of

it. A limitation of the times of comparing a MOP with

other MOPs is necessary.

5-5-2 Linear Order Compaction Algorithm

In order to get a practical and efficient algorithm,

we impose the following restrictions.

1) The position of MOP Mk is computed by searching

backward over the previous microinstructions

leading up to MOP Mk.

2) In each case of Table 5-3, we make the following

decision.

Case 1

Case 2:

In the next two cases, Mk is limited to make

m comparisons with the previous MOPs. In other

words, Mk can compare with h MIs from MIi_i to

MI
i-h

where h is a number of MIs and

`MI. _. is nearest to m. (1 MIk means
j=1

number of MOPs in MIk).

Case 3: If Mk is invertible with all MIs

but not parallel, then (Mk1-MIii.i.

Case 4: Compare Mk with MIi_j, 16jf=h, until

we find the MI nearest to MI
1
that can accept

Mk.

130

We restrict the invertibility problem as described

above and use the relationship of // and >< between MOP and

MI to get Algorithm 5-2. But, there is a special case in

which this limitation cannot be put on the algorithm. As

mentioned in Chapter IV, a SLC(I) backwards branches to

SLC(K). The MEMWRITE statements which are used to generate

the NS(K) from IS(K) will have to be moved out of the

branch region. Otherwise, errors will occur. Algorithm

5-3 which is a subroutine to Algorithm 5-2 is used to move

these statements out of the branch region.

Now, we consider the computational complexity of this

algorithm, using the number of comparisons between pairs of

MOPs as a measure of this complexity. There are n MOPs in

SLC IM1, M2 Mk. Mni Assume MOP Mk is to be determin-

ed for 2skS41 and M1, M2....Mk_i is partitioned into MI1, MI2,

...MIS
-1

already.

1) In case 1 and 2 of Table 5-3, Mk is assigned to

MI j+1
of MIS. In the worst case, we compare

only Mk with all the MOPs in MIS.

In case 3 of Table 5-3, as k > m, we check Mk with

MIj_i, 1+1, 2,...h until >< does not exist. In

the worst case, Mk is invertible with h MIs

ahead of it. We need m comparisons before we

get the position of Mk. As k`` -m, at most k

comparisons are necessary.

131

Algorithm 5-2

Program: 0(mn) Compaction Algorithm

Data: 1) SLC(P), M1, M1,...Mk...Mn is to be processed.

2) When M
k

is allocating into MI, we assume

Mi...Mk_i has been allocated to MIl...MIj

already.
3) n is the number of MOPs in SLC(P).
4) m is the maximum number of comparisons which is

allowed by the algorithm when a MOP is allocat-

ing to MI.
5)
6)

7)
sons when MI, is allocating.

8) /MI/ is the of MOPs in MI.

9) ,.<(invertibility) and // (parallelism) are
determined from section 5 -3 and section 5-4.

k is the current MOP index.
j is the current MI index.
S is the counter to count the number of compari-

Pseudo code:

BEGIN
(STRT) SET THE COMPARISON COUNTER S TO ZERO
FETCH NEXT MOP, Mk

IF ALL MOPs IN SLC(P) ARE ALLOCATED ALREADY INTO MIs THEN

RETURN
ELSE BEGIN

IF THERE IS A b.b. TO SLC(P)
THEN BEGIN

IF M IS A MEMREAD/WRITE STATEMENT

THEN CALL ALGORITHM 5-3
GO TO STRT

ELSE GO TO A
END

ELSE BEGIN
(A) S=S+ 1 MI .1

IF M
k
//MI.

THEN BEGIN
IF Mk ><MIk j

THEN kk=j (kk is set to the current MI
index)

GO TO C
ELSE ALLOCATED Mk

INTO MI.
3'

GO TO STRT
END

Algorithm 5-2 continued)

ELSE BEGIN
IF Mk?

j

THEN BEGIN
(C)

ELSE
.(B)

END

END END

END.

IF S'm

THEN
ELSE

(The number of comparisons
exceeds the limitation)
GO TO B
BEGIN
j=j-1 (decrement the

MI index)
IF j=0

THEN GO TO B
ELSE GO TO A

END

132

current

END
BEGIN
IF kk=0 (Mk has never been parallel

with any MIkk, where kkt4..j)
THEN BEGIN

ALLOCATE Mk into MI
j+1

j=j+1 (set the new MI index)
GO TO STRT
END

ELSE ALLOCATE Mk INTO MIkk

GO TO STRT
END

133

Algorithm 5-3

Program Movement

Data: 1) This algorithm is called from Algo. 5-2.

2) Label MOP is the MOP contained the label state-

ment.
3) M is the MEMREAD/WRITE MOP to be moved out of

the branch region.

Pseudo code:

BEGIN
CHECK M WITH MI., MI. ,...MI (MI is the MI contained

k 4-J.1 q q the label MOP)

IF Mk IS INVERTIBLE WITH ALL THESE MIs

THEN BEGIN
T=j
WHILE t'ci (change the index of
DO BEGIN

MI t+1 4-14I

END
END
ALLOCATE Mk INTO MI (Mk is moved out: he branch

q region)

GO TO D
END

ELSE ALLOCATE Mk MI (may not be used to gener-
k j+1 ate NS(P) from IS(P))

(D)j,...j+1 (set new MI index)
RETURN

END.

134

3) In case 4 of Table 5-3, as we check Mk

with MIS -i, i=1,2,..h until //, >4): , or neither

exist. Then we assign Mk to MIi_i where i is as

large as possible. The worst case occurs when

Mk is # and with h MIs preceding it; i.e., we

need m comparisons before the allocation of Mk.

As at most k comparisons are necessary.

These four cases may occur alternatively but in the

worst case, as It> m, Mk requires a total of m comparisons

before allocation. Indeed, if this occurs for each of MOPs,

Mal+1,...Mn, the total number of comparisons is T(n)=1+2+

m+(n-m)m. Therefore, the algorithm complexity is 0(mn).

This algorithm fails to produce the absolute

optimization code, but runs in linear time 0(mn). The

value of m will be determined pragmatically in the next

chapter.

135

CHAPTER VI

EXAMPLE AND CONCLUSION

6-1 Example

This chapter discusses an example used to describe

the entire performance of the translating system. The

general structure of this example is shown in Figure 6-1.

The target machine, PDP8, is realized by IML in two parts.

One is described by IISG (Appendix E-1); the other is

described by IESG (Appendix E-2). The host machine used is

the PDP11/40E. The FDM and the MET of the host are describ-

ed in Appendix B and Appendix C, respectively.

IISG is decoded into OP(IISG) which, in turn, to-

gether with IESG and MET are the inputs to pass 1. The

output of pass 1, Appendix E-3, is a set of host machine

executable codes partly in the form of symbolic variables.

These codes together with the FDM are the input to pass 2.

The output of pass 2, Appendix E-4, is a set of MOPs and

each MOP is in a 5-tuple representation. The output of

pass 3, Appendix E-5, is a set of compacted codes and the

host binary microcode associated with each MOP. Finally,

three different benchmarks of PDP8 are tested and the

result is shown in Appendix E-6.

This example shows that the system successfully

translates the IML into the PDP11/40E microcode. The

performance of each pass is evaluated in section 6-2 to show

IISG

Decode of of IISG

OP(IISG)

Fr(

IML

136

OP(Pass 1)

OP(Pass 2)

C----Pas8 3 + Address encode

host microcode

riest on the host machine

Figure 6-1. General Structure of Example 6-1

137

the efficiency of the system. In this translator, there

are some limitations from the host machine constraint and

part of the system have not yet been programmed. These

factors will be described in section 6-3.

6-2 Performance Evaluation of Passes

6-2-1 Pass 1

Pass 1 increases the number of IML codes, M, to the

number of MDIL codes, N. This increase number, N-M, which

is used to solve the problems of the difference between the

virtual machine and the host machine, is highly dependent

on the choice of the host machine. Since extra machine

codes (MDIL) are needed to match the difference between

the host machine and the virtual machine, for instance, in

the example 3-7 of Chapter 3, the word size problem causes

eleven machine codes to describe that IML code which needs

only three machine codes if there is no word size

difference.

In the whole translation system, (refer to Figure

6 -2), pass 2 is used to allocate the register to the

variable in MDIL and the output is K MOPs. The increase

in number, K-N, is needed to handle the load and/or store

operations (the details are in Chapter IV). Pass 3

compacts these K MOPs into J MIs, where J4K (the details

are in Chapter V). Pass 1 is one of the factors that

influences the system's efficiency (with respect to the

138

Figure 6-2. The Variation of the Number
of Codes in the Whole System

number of codes increase). In order to minimize the value

N-M, the user may often use the "equivalent" machine to

emulate the target machine. For example:

1) The operations of the host machine are similar

to the IML statements.

The hardware configuration of the host machine

can describe the corresponding configuration

in the target.,

3) The arithmetic mode and the word size are the

same for the host and the target.

6-2-2 Pass 2

The main purpose of pass 2 is to allocate the

symbolic variables declared in the VMPL emulator program

into the set of GPRs of the host machine. As mentioned

before, pass 2 causes extra load/store Operations which

139

directly influence the system's efficiency. The performance

of pass 2 with respect to the number of GPRs is to be

evaluated. Some related work is discussed first.

Rannem, et al. (17) described an experiment performed

for 15 small computers as follows:

1) Gather normalized execution times and memory

space requirements for three simple benchmark

kernels written in the macro assembly level of

each computer.

Choose two different kinds of equations that

have six standard machine parameters as the

independent variables and execution time (T) and

memory space (S) as the dependent variables.

3) Perform a standard regression fit of these

equations to the observed data for time and

space to estimate the equation coefficients.

4) Finally, for each kernel there are two perform-

ance measures, S, and T, which are the functions

of the six machine parameters.

Among these six performance equations, he found that

the execution time of Kernel 3 is significantly dependent

on the number of GPRs, and concluded that substantial

changes in performance are not achieved by increasing the

number of registers beyond 6 or 8.

Lunde, et al. (11) used the DEC-10 ISP (instruction

set processor) to analyze 36 test programs written in high

140

level languages from a scientific environment and 5 compil-

ers, three of which were written in macro assembly language

and the rest in a HLL. Lunde's analysis program was used

to detect register lives, classify them and find the number

of "live registers" at each time during program execution.

The results suggest that programs might run almost equally

time efficiently on an ISP having fewer registers, but the

same structure otherwise.

Reducing the number of GPRs in ISP will increase the

execution time because of redundant register store and

reload operations. The result shows that the average

increase caused by a reduction to 8 registers is 7.9% and

the authors conclude that eight registers would be suffic-

ient for a general register ISP similar to the DEC system

10.

The example in section 6-1 shows that the input of

pass 2 consists of 174 microoperations in 32 SLCs contain-

ing 7 global variables, .3 local variables and 13 local

temporary variables. The host machine used is the

PDP11/40E. An experiment is made by varying the number of

different registers and measuring the length of code

produced. (See the result in Table 6-1). As is seen, when

the number of registers, .

N, is greater than or equal to 9,

there is little change or increase in instruction count.

If we reduce the value of N, it will increase the

instruction count. For example, as N is reduced to 8, the

141

Table 6-1. Evaluation of Pass 2
(number of registers w.r.t.
the length of code produced)

n OP
n

f=0P
n
_op

9
f/OP9 f = -IP f2 /IP

3 267 76 39.8 93 53.4%

4 262 71 37.1% 88 50.6%

5 248 57 29.8% 74 42.5%

6 219 28 14.6% 45 25.8%

7 215 24 7.3% 41 23.6%

8 203 12 6.3% 29 16.7 %.

9 191 0 0 17 8.9%

10 191 0 0 17 8.9%

The number of input codes in 174 in 32 ISCs.

The number of variables is 23.

. n is the number of registers.

OPn
is the number of output codes when the number of

register is n.

increase in relative instruction count is 6.3% which is

close to Lunde's result. It seems that eight or nine

registers would be a good size for general purpose emulation.

The other feature of pass 2 is seen in the last column

of Table 6-1. The inefficiency rate (IR) is defined as:

IR=(# of OFn- # of IP)/(# of IP)

As shown, as the value of N decreases, the value of IR

142

m

* *

2

Table 6 -2. Testing
on the Husson's

of MIs

0(m) Algorithm
Machine

m

* *

2

of MI s

30

31

5

6

* *
3 21 * * 3 4

3 3 23 3 3 4

** 4 18' ** 4 3

4 4 18 4 4 3

**
'5 18 ** 5 3

5 5 18 5 5 3

** ** 18 ** **
3

(56 MOPs in SLC) (9 MOPS in SLC)

**. no limitation on this constraint.

. m : the number of comparisons.

. L : the length of Ii0Ps in MI.

increases. When N is reduced from 9 to 3, the value of IR

is increased from 9A to 53%. We conclude that pass 2 works

well: i.e., it can produce up to 44% savings. The limita-

tions are due to the host machine, not the algorithm.

143

6-2-3 Pass 3

Pass 3 uses a pragmatic rule to detect the concur-

rency of MOPs and an 0(mn) algorithm to allocate the MOPs

into the MIs. (Note: MOP is defined directly from the

FDM). Where n is the total number of MOPs to be processed,

m is the maximum number of comparisons allowed in the

algorithm. The evaluation of pass 3 performance is used

to answer such questions as: What width of the MI would

be sufficient if a machine is designed? What is the best

value of m in the 0(mn) algorithm?

Two test examples, one containing 9 MOPs in a SLC,

the other containing 56 MOPs in a SLC, are encoded on the

Husson machine (10). The number of comparisons, m, and

the limitation of the number of MOPs in one MI, L, are

considered as the dependent variable in pass 3

Different values of m and L are tested and the

results are displayed in Table 6-2. As is seen, there is

no change in the number of MIs when the value of L is

greater or equal to 4 and the average concurrent MOPs in

one MI is 3 It seems that four MOPs is the limiting width

of a MI for a microprogrammable machine. Beyond this

number, data dependency among MOPs limits the compaction

of MOPs into MIs.

Next, the value of m is to be determined. Review

Table 6-2 again. If the value of m is set equal to the

value of L, the number of compacted output MIs is very

Table 6-3. Testing 0(mn) Algorithm on
the. PDP11/40 Machine

of m # of MOPs reduced 41 of OP

3 38 153

4 38 153

5
38'

153

6 38 153

. The number of IPs is 191.

. The width of MI is 2.

. m is the number of comparisons.

close to the number of optimized MIs when the value of m is

not limited. We conclude that the "best" peephole size of

m is twice the width of the MI.

Now, the example in section 6-1 is examined. The

width of the MI which is determined from the FDM is two.

We checked all 41 MOPs in the FDM and found that, at the

most, two MOPs can be combined in the legal condition.

Different values of m are tested in pass 3, as is

shown in Table 6-3. There is no change as the value of m

is greater than 4 (which is twice the MI width). The

average number of concurrent MOPs in one MI is 1.24.

Compare this value with the previous examples. It is

significantly decreased. The reason for the decrease is

that concurrency detection among MOPs is highly machine

dependent. The last example is actually run on the

145

PDP11/40E and the previous examples are based on Husson's

abstract machine.

Pass.3 can produce 20% savings in the instruction

count. Thus, this algorithm does better than the machine

can support.

6-3 Conclusions

A translating system has been developed in this re-

search to meet the goals set up in chapter one and run

correctly on PDP11/40E. Some important features of this

system are:

1) The FDM successfully plays the role of general

model for all host machine information.

2) The RA/D scheme handles the control flow inter-

face problems and produces as great a savings as

host machine constraints will permit in

practice, e.g. the number of GPRs used in the

machine limit machine performance.

3) The optimization (Compaction) algorithm can save

up to 20% instruction count but is limited by the

real machine, rather than the theoretical

NP-complete bound.

From the performance evaluation, we have:

1) The width of a MI should not exceed 4. Beyond

this value, data dependency will limit the

compaction of MOPs.

146

The number of comparisons, m, in 0(mn) is twice

the MI width. (Compare 0(mn) and 0(n2), as n

is larger). Thus r11.5.8..

3) The number of GPRs used in the machine is 8 to

10. Beyond this value, there will not be any

significant change in the instruction count.

There are some limitations to this translation

system, from the host machine constraint. If another host

is used, the subroutines containing these limitations will

be changed. Further, part of the system has not yet been

programmed. The unfinished tasks and host limitations are

described as follows:

in pass 1

1) There are some statements in IESG of IML that

have not yet been programmatically decoded; for

instance, the statements LOOP, NPY, and DIV.

To each simple IML code, there is a correspond-

ing set of machine codes in the Macro Expansion

Table (MET). Each machine code is taken

directly from the Field Description Model (PDM).

These FDM and MET are host machine dependent

and provided by the user.

In pass 2:

1) The size of GPR and the algorithm used to

compute the field value are machine dependent.

Algorithm 4-7 is to determine FS(I) when SLC(I)

147.

backward branches to SLC(K). There are two parts,

in this algorithm, denoted by extra case 1 and

extra case 2, which have not been programmed.

In pass 3:

1) From Chapter V, the MOPs used for the special

purposes and some machine constraints can never

make the parallelism detection rule of MOPs

machine independent. This rule will be designed

by the user when the other host is used.

The next microaddress determination is dependent

on the host machine.

3) The loader used to load the VM benchmark into

the host machine memory is machine dependent.

148

BIBLIOGRAPHY

1. Agerwala, T. "Microprogram Optimization: A Survey,"
IEEE Trans. Comput., Vol. C-25, Oct. 1976, pp. 962-973.

2. Agrawala, A. K., and T. G. Rauscher. Foundations of
Microprogramming Architecture, Software, and Applica-
tions, Academic Press, Inc., 1976.

Dasgupta, S. Parallelism in Microprogramming System,
Ph.D. Thesis, University of Alberta, Aus. 1976, Tech.
Rept., Dept. of Computing Sci.

Dasgupta, S., and J. Tartar. "The Identification of
Maximal Parallelism in Straight Line Microprograms,"
IEEE Trans. Comput., Vol. C-25, Oct. 1976, pp. 986-991.

Davidson, S., and B. D. Shriver. "An Overview of
Firmware Engineering," Computer, Vol. 11, No. 5, May
1978, pp. 21-33

6. DeWitt, D. J. "A Control Word Model for Detecting
Conflicts Between Microprograms," Proc. 8th Annu.
Workshop on Microprogramming, pp. 6-13.

7. DeWitt, D. J. "A Machine Independent Approach to the
Production of Optimal Horizontal Microcode," Ph.D.
Dissertation, The University of Michigan, 1976.

8. Fuller, S. H., et al. PDP11/40E Microprogramming
Reference Manual, Dept. Computer Sci., Carnegie-
Mellon Univ., Jana 1976.

Fuller, S. H., et al. The PDP11/40E Maintenance Manual,
Dept. Computer Sci., Carnegie-Mellon Univ., June, 1977.

10. Husson, S. S. Microprogramming: Principles and
Practice, Prentice Hall, Englewood Cliffs, New Jersey,
1970.

11. Lunde, A., G. Bell, D. Sieworek, and S. H. Fuller,
"Empirical Evaluation of Some Feature of Instruction
Set Processor Architecture," Comm. ACM 20, 3(March,
1977), 143-155.

12. Malik, K. Optimizing the Design of a High Level
Language for Microprogramming, Unpublished Ph.D.
Dissertation, Oregon State University.

149

13. Malik, K., and G. Lewis. "Description of IML,'
Dept. of Computer Sci., Oregon State Univ. (Unpublish-
ed paper).

14. Malik, K., and T. G. Lewis. "High Level Micro-
programming Language," COMPCON, 1978, Pp. 88-91.

15. Mallet, P. W., and T. G. Lewis. "Considerations for
Implementing a High Level Microprogramming Language
Translation System," Computer, Vol. 8, No. 8, Aug.
1975, pp. 40-52.

16. Microdata 3200 Microprogramming Manual (preliminary),
Revision 2, June 21, 1973

17. Rannem, S., V. Hamacher, and S. Zaky. "Relating Small
Computer Performance to. Design Parameters," Infotech
International, 1977, pp. 250-270.

18. Shriver, B. D. "A Description of the MATHILDA System,"
Dept. of Computer Sci. Report, Univ. of Arhus, Arhus,
Denmark, April, 1973.

19. Tabendeh, M., and C. V. Ramamoorthy. "Execution Time
(and Memory) Optimization in Microprograms," Preprints
Supplement, 7th Annu. Workshop on Microprogramming,
pp. S19-S27.

20. Tsuchiya, M., and C. V. Ramamoorthy. "A High Level
Language for Horizontal Microprogramming," IEEE Trans.
Comput., Vol. C-23, Aug. 1974, pp. 791-802.

21. Tsuchiya, M., and M. J. Gonzalez. "An Approach to
Optimization of Horizontal Microprograms," Proceedings
of the Seventh Workshop on Microprogramming, Palo Alto,
California, Sept. 1974.

22. Yau, S. S., A. C. Schowe, and M. Tsuchiya. "On
Storage Optimization of Horizontal Microprograms,"
Preprints, 7th Annu. Workshop on Microprogramming,
PP. 98-106.

APPENDIX

150

APPENDIX A

MACHINE INDEPENDENT

INTERMEDIATE LANGUAGE

A program written in VMPL gets translated by the

META-VMPL compiler into an abstract intermediate language

(IML). The various statements of the intermediate language

are discussed here. In discussing the intermediate lan-

guage, reference to VMPL statements has been made, since

IML is highly dependent on VMPL.

INTRODUCTION

Basically there are two kinds of statements in IML.

One group is associated with the declaration statements of

VMPL and is known as the intermediate information state-

ment group (USG). The other group is associated with the

actual executable statements of VMPL and is known as the

intermediate executable statement group (IESG). I will now

discuss both these groups in detail.

IISG

An IISG statement is made up of five objects. The

basic format of the statement;

DECLARATIONTAG IDENTIFIER, DIMENSION, LENGTH, OTHER-

INFORMATION where

A uniform numbering system for the

adopted. Assuming the tag is of the

40 None of the others

form

A. 0
1 LOCALv. 1
2 GLOBAL -'2

3 Internal procedure (IPROC)
4 Sub-procedure (SPROC)

IN 0 SIMPLE A Name of emulator
1 MEMORY B. Program start
2 STACK C Program end
3 PSTACK D WORDSIZE
4 FLAG F ARITHMETIC
5 FIELD_ G Sub procedure name
6 USE_ H Block code start
7 EXPECT I Block code end
8 RETURN J
9 EXTERNAL Unused (presently)

152

tags has been

Y" then.

None of the others
TEMPORARY
PERMANENT

Examples:

OOD Wordsize
221 Global permanent memory
214 Global temporary flag
00H Block code starts

OTHERINFORMATION

This is only associated with a few tags. Since its

format for each of them varies, so they will be discussed

individually.

a) 005 - N1, N2, N3

The tag indicates that this is a field declaration.

N
1,

N
2

and N
3
are integer numbers and are the three

numbers associated with the FIELD declaration of

VMPL.

2(2/1)3 - Si, S
2'

S3, S4

The tag indicates that this is a stack pointer

(PSTACK) declaration and the other information i.e.

153

Sl' S2, S3, S4 indicates the push-pop sequence

associated with the stack. Sl, S24 S3 and S4 are all

distinct symbols and can be t +,

2/2/1) 9 -0(

The tag indicates an EXTERNAL variable.qcan be a

'p' indicating an external procedure or it can be an

'F' indicating it is an external flag.

2(2/1) -49

The tag indicates a global flag declaration. f can be

0 - None of the others, a general flag

1 - Indicates special flag C - carry.

2 - Special flag 0 - overflow

3 - Special flag N - negative

4 - Special flag Z - zero

IESG

The IESG statements are based on quadruples with an

operation and three operands. All three operands are

optional in that some statements have none, some one, some

two and some all three operands. First the overall format

is discussed and then the individual statements are

discussed.

FORMATS

A label starts in column 1 and always exists by it-

self in a line. A star (*) in the first column indicates

a continuation of the previous statement. It is only used

1514.

for translating two types of VMPL statements. If

the line with the star is empty it indicates the

end of the continuation. All other statements start

in column 7 or 8. The various column designations

are:

8-14 Operation
17-23 Operand one
26-32 Operand two
35-41 Operand three
42-46 Flag settings
7 Operation modifiers

16,25,34 Operand modifiers

OPERATION MODIFIERS

The two operation modifiers are:

- indicates that the arithmetic operation is to be

done according to the mode (1's or 2's) declared

in the ARITHMETIC declare statement (tag - OOE).

indicates that the flags (host) are to be set

and will be used by the following statement.

OPERAND MODIFIERS

The operand modifiers are:

indicates the operand is a bit operand. The

format of the operand is:

ID, NUMBER

where NUMBER refers to the bit of ID in question.

- indicates concatenated operand. The format of

the operand is:

ID ID
1' 2

where ID1 and ID2 are identifier names.

+ - indicates
- indicates

C - indicates
P - indicates
T - label for
E - label for
G - label for
F - label for
L - label for

155

the temporary (operand) is needed.
the temporary is not needed.

a (constant) integer is the operand.
the operand is a parameter identifier.
first branch in IF-THEN -ELSE dtatement.
second branch in IF-THEN-ELSE statement.

a GOTO statement.
a FOR statement.
a LEAVE statement.

STATEMENTS

There are seven classes of statements. Each class is

treated separately.

1 - This class has as its OPERATION either an arithmetic or

a logical operation. The general form:

OPERATION SROI SRC2 DEST

and it means:

DEST 1,--SRC1 (OPERATION) SRC2

The operations available are:

ADD, SUB, MPY, DVD, AND, OR, XOR

The not operation has the form

OPERATION SRC1 DEST

and it means

DEST ' (OPERATION)SRC1

2 - There are only two statements in this class which have

the operation SHL (shift left) or SHR (shift right).

The format is:

OPERATION SRC1 COUNT,(1/0) DEST

meaning 1 or 0 and store the result in DEST.

3 - These statements are for reading and writing into the

variable MEMORY of VMPL. The operations are RMOVE

156

(read from) and MOVE (write into). The format is:

OPERATION SRC1 SRC2 DEST

which means:

if operation is RMOVE

DEST F-- --SRC1 (SRC2)

else if operation is MOVE

SRC1 (SRC2)4.--DEST

4 This class deals with the various branch operations.

a. - COMP SRCI SRC2

is done to set various host flags. The operation

requires us to do:

SRCI - SRC2

along with the flag settings.

b. The direct branch statement is:

BRCH label

meaning go to the label.

c. Testing flags which usually follows the COMP

statement is of the form:

OPERATION *FLAG LABEL

where operation can be CONDF (condition is false)

or CONDT (condition is true). The statement

means to branch to the label based on the setting

of the flag and the operation, i.e.,

CONDF Q ZETA

means go to ZETA if C (carry) is not set.

5 - This class includes the following statements:

a - INC SRC1
b - DEC SRC1-
c - SET SRC1
d - CLR SRC1
e - MOVE SRC1 DEST
f - PUSH SRC1
g - POP DEST
h - EXTR FD SRC1 Dest

157

means SRC1 SRC1 + 1
SRC1 SRC2 1

SRC1 all l's
SRC1 0

DEST SRC1
Push SRCI into STACK
Pop from STACK into DEST

FD is declared in IISG as a set of integer numbers,

N1, N2, and N3-. The 'EXTR' stmt means bit positions N1

through N2 of SRC1 are extracted and shifted right/N3/ bits

if N3 is negative, otherwise, shifted left

6 - This contains two statements which

the FOR and SELECT statement.

a. - LOOP SRC1 SRC2 SRC3

means

FOR SRC1 = SRC2 TO SRC3

b. - SLCT SRC1 SRC2

SRC3 Label 1

SRC5 Label 2

means

/N3/ bits.

are translated from

SELECT (SRC1; SRC2) FROM;

(SRC3, Label 1);

(SRC4, Label 2);

ENDSELECT;

7 - The statements in this class are:

a - HALT means halt

b - XEQ SRC1 PAR1

PAR2

means

EXECUTE SRC1 (PAR1, PAR2)'

c RET means return from the sub-procedure.

x x

158

* Flag can also be a bit variable and will be of the form,

'SRC1, SRC2 which means that a reference is made to the

SRC2 bit of SRC1.

APPENDIX B

The FDM of PDP11/40

FIELD DESCRIPTION mCOEL

FIELD(1):RIFE0t?1 FIELO(2):SRX(471
FIELO(3)ISBAMI1T1 FIEL0(4)ISImi14:151
FIELO(5)1S8MC16:191 7,,FIEL0(6):SALUE241281
F/ELD(7)isPS(291311 FIEL0(8111A0t32:351
F/ELD(9):EUSI36:381 FIELD(10)ICBAE391
F/ELD(11):WRI4214.31' FIELD(12)SCLKE-461471 --1T
F/ELD(13)1XUPF*UPFt481531 FIELD(14):1EST+MSOE591631
FIELD(15)ILMLf64t6'1 FIELD(16)IRMLI681711
FIEL0(17)1SCt72:751 FIELD(18):EMIT[641791
FIELO(19)1C0(401431 FIELD(20):CBC411
FIELD(21)1CLKOFFC451 FIELD(22)IppE(771

MOP 1 ADD *GDR 3 O 0
FIELD 1 WILL BE CETERMINED BY GPR
FIELD 2= 1

FIELD 5=
FIELD 6=
FIELD 12= 2

FIELD 13 WILL BE DETERMINEC BY NEXT ADOR
FIELD 19= 1 _

THE REST FIELDS ARE NOT USED
MOP 2 SUB *GPR
FIELD 1 WILL BF DETERMINE[BY GPR
FIELD 2= 1

FIELD 5= 0

FIELD 6= 6
FIELD 8= 8
FIELD 12= 2
FIELD 13 WILL BE CETERMINED BY NEXT AYR
FIELD 19=
THE REST FIELDS ARE NUT USED
MOP 3 AND *GEIR 3 0 P2
FIELD 1 WILL BE CETERMINE0 BY GPR
FIELD 2= 1

FIELD 5= 0

FIELD 6= 27
FIEL3 12= 2

FIELD 13 WILL BE CFTERMINEO BY NEXT ADOR
FIELD 19= 1

THE REST F;ELDS APE NOT USED
MOP 4 OR *GPR
FIELD 1 WILL BE CETER1INEE BY GPR
FIELD 2= 1

FIELD 5= 0

FIELD 6= 30
FIELD 12= 2

FIELD 13 WILL BE DETERMINED BY NEXT A3OR
FIELD 19= 1

THE REST FIELDS ARE NOT USED
MOP 5 SUB1 *EmIT
FIELD 5= 0

FIELD 6= 6

FIELD 8= 8

FIELD 12= 2

FIELD 13 WILL EE OETE;t1IAE) 9Y NEXT ADOR
FIELD 14= 1
FIELD 18 WILL BE CETrRMINEn BY ElIT
FIELD 19= 1

P2

B

MOP 6 xoR *GDR
FIELD 1 WILL BF CFTEmINEC 3Y
FIELD 2= 1

FIELD 5= 0

FIELD 6= 22
FIELD 12= 2

FIELD 13 WILL BE CETERMINED BY NEXT: ADOR
FIELD 19=
THE REST FIELDS ARE NOT USED
MOP 7 INC *GDR
FIELD 1 WILL BE CETER4INEI BY GPR
FIELD 2= 1

FIELD 6= 0

FIELD 8= 8

FIELD 12= 2

FIELD 13 WILL BE CETERMINE1! BY NEXT AODR
FIELD 19= 1

THE REST FIELDS ARE NOT USED
MOP 8 NOT *GDR
FIELD 1 WILL BE CETERMINEC

3 P2

C;PP.

FIELD 2= 1

FIELD 6= 16

BY GPR

P2

P2

FIELD 12= 2

FIELD 13 WILL BE CETERMINEC BY NEXT ADDR_
FIELD 19=
THE REST FIELDS ARE NOT USED
MOP 9 DEC *GDR
FIELD 1 WILL BE CETERMINED BY GPR
FIELD 2= 1

FIELD 6= 15
FIELD 12= 2

FIELD 13 WILL BE CETERMINEC BY NEXT ADOR
FIELD 19= 1

THE REST FIELDS ARE NOT USED

P2

MOP 10 CLR
FIELD 6= 19
FIELD 12= 2

FIELD 13 WILL PE DETERMINEC BY NEXT ADDR
FIELD 19=
THE REST FIELDS ARE NOT USED

P2

MOP 11 SET
FIELD 6= 28
FIELD 12= 2

FIELD 13 WILL BE CETERMINED BY NEXT ADIR
FIELD 19= 1

THE REST FIELDS APE NOT USED
7 MOP 12 mOVE1-- 'GDR---

FIELD 1 WILL BE CETERMINEC BY GPR
FIELD 2= 1

FIELD 4= 0

FIELD 12=
FIELD 13 WILL BE CETERMINEC BY NEXT AODR
FIELD 2G= 1

THE REST FIELDS ARE NOT USED
MOP 13 MOVE2 *GDR
FIELD 1 WILL BE CETERMIAEt BY GPR
FIELD 2= 1

FIELD 3= 1

FIELD 10=
FIELD 12= 1

FIELD 13 WILL BE CETERMINEC BY NEXT ACM.
THE REST FIELDS ARE NOT USED

P

P1

P1

-Ye

MOP MOVE3 c P2
FIELD 1 WILL BE CETERMINEC 3Y GPR
FIELD 2= 1

FIELD 6= 0

FIELD 12= 2
FIELD 13 WILL BE DETERMINE!: BY NEXT ADOR
FIELD 19=
THE REST FIELDS ARE MOT USED
MOP 15 MOVF4 UNI3US
FIELD 1 WILL BE CETEkMINFD BY GPR
FIELD. 2= 1

FIELD 4= 1
FIELD 11= 3
FIELD 12= 1

FIELD 13 WILL PE CETERMINEC BY NEXT ADDR
THE REST FIELDS ARE NOT USED
MOP D *GPR
FIELD 1 WILL BE DETERMINED BY GPR
FIELD 2= 1

FIELD 4= 2
FIELD 11= 3
FIELD 12= 3

FIELD 13 WILL EE CETEkMINEOEy_NEXT ADOR
THE REST FIELDS ARE NOT USED
MOP 17 MOVE6
FIELD 6= 0

FIELD 12= 2
FIELD 13 WILL ES DETERMINED BY NEXT ADDR
FIELD-

FIELD 18 WILL BE DETERMINED BY EMIT
FIELD 19= 1

THE REST FIELDS ARE NOT USED
MOP 18 MOVE?
FIELD 4= 0

FIELD 12= 3
FIELD 13 WILL BE DETERMINED BY NEXT ADOR
FIELD 14= 1
FIELD 18 WILL EE DETERMINED BY EMIT
FIELD 20= 1

THE REST FIELDS ARE NOT USED
MOP 19 PUSH1 *GPR
FIELD 1 WILL BE DETERMINED
FIELD 2=
FIELD 4=i 0

FIELD 12= 2
FIELD 13 WILL BE DETERMINED BY NEXT ADIR
FIELD 14= 8

FIELD 22= 1

THE REST FIELDS ARE NOT USED
MOP 20 PUSH2
FIELD 12= 1

*EMIT

FIELD 13 WILL PE DETERMIAEC BY NEXT ADOR
FIELD 14=
FIELD 18 WILL BE DETERMINED BY EMIT
FIELD 22= 1
THE REST FIELDS ARE NOT USED
MOP 21 PUSH3, PS
FIELD 4= 0

FIELD
FIELD 12= 3
FIELD 13 WILL BE CETERMINEC BY NEXT ADOR
FIELD 14= 8
FIELD 22= 1

*GPR P1

0

P3

P2

TOS P2
BY GPR

TOS

TOS

Pi

P3

. 41. Imo 11. a ,

MOP 22 POP TO3
FIELD 6=
FIELD 12= 2

FIELD 13 WILL BE DETERMINED FY NEXT A009
FIELD 14: 6

FIELD 15= 15
FIELD 16= 15
FIELD 17= 0

FIELD 19= 1

FIELD 22= 1

THE REST FIELDS ARE NOT USED
MOP 23 LMASK TOS ACT
FIELD 4= 0

FIELD 12= 3

FIELD 13 WILL BE CETERMINEC BY NEXT ADOR
FIELD 14= 6

FIELD 15 WILL BE DETERMINED BY CT-01
FIELD 16= 15
FIELD 17= 0

FIELD 20= 1
FIELD 22= 1

THE REST FIELDS ARE NOT USE!)
MOP 24 RMASK TOS- iCT--
FIELD 4= 0

FIELD 12= 3

FIELD 13 WILL BE DETERMINED BY NEXT ADOR
FIELD 14= 6
FIELD 15= 15
FIELD 16 WILL BE DETERMINED BY CT-01-
FIELD 17= 0

FIELD 20= 1

FIELD 22= 1

THE REST FIELDS ARE NOT USED
MOP 25 FLAG C,V,N,Z
FIELD 7= 3

P2

P3

-03

P1

FIELD 12= 1

FIELD 13 WILL BE DETERMINED BY NEXT ADOR
THE REST FIELDS ARE NOT USED
MOP 26 BRCH *LABEL
FIELD 12= 1
FIELD 13 WILL BE CETERMINEC BY LABEL
THE REST FIELDS ARE NOT USED
MOP 27 RSMK TOS tFF,LL,CT 0
FIELD 62 0

FIELD 12= 2
FIELD 13 WILL BE CETERMINEC BY NEXT ADDR
FIELD 14-
FIELD 15 WILL BE DETERMINED BY LL-CT r41
FIELD 16 WILL- BE CETERMINED_BY_15-FF+CTi_
FIELD 17 WILL BE DETERMINED BY CT
FIELD 19= 1

FIELD 22=
THE REST FIELDS ARE NOT USED
MOP 2P LSMK TOS SFF,LLIOT C
FIELD 6= 0

FIELD 12= 2
FIELD 13 WILL BE CETERMINEC BY NEXT MOOR
FIELD 14= 6
FIELD 15 WILL BE DETERMINED BY LL+CT
FIELD 16 WILL BE CETERMINED BY 15-FF-CT
FIELD 17 WILL 8E DETERMINED BY 16-CT
FIELD 19= 1

P2

P2

FIELD 22= 1

THE REST FIELDS APE NO USED
MOP 29 MOVER *GDR
FIELD 1 WILL BE CETERMINEC BY GPR
FIELD 2= 1

FIELD 3= 1

FIELD 9= 1

FIELD 10= 1

FIELD 12= 1

FIELD 13 WILL BE DETEKMINED BY NEXT ADOR
FIELD 21=
THE REST FIELDS ARE NOT USED
MOP 30 NOOP XUPF
FIELD 12= 1

FIELD 13 WILL BE CETERMINED BY LABEL
THE REST FIELDS ARE NOT USED
MOP 31 LMASK1 TOS SDI EUBC P2
FIELD 12= 2

FIELD 13 WILL BE DETERMINED BY NEXT AD1R
FIELD 14= 7

FIELD 15 WILL BE DETERMINEC BY CT -01
FIELD 16= 15
FIELD 17= 0

FIELD 22= 1

THE REST FIELDS ARE NOT USED
MOP 32 RMASK1 TOS
FIELD 12= 2
FIELD 13 WILL BE DETERMINEC BY NEXT :MR
FIELD 14= 7

FIELD 15= 0

FIELD 16= 15
FIELD 17 WILL BE DETERMINEC BY CT
FIELD 22= 1

THE REST FIELDS APE NOT USED
MOP 33 ORLSM B TOS,CT
FIELD 5= 0

FIELD 6= 30
FIELD 12-
FIELD 13 WILL BE DETERMINED BY NEXT ADDR
FIELD 14= 6
FIELD 15= 15
FIELD 16 WILL BE DETERMINED BY 15-CT
FIELD 17 WILL BE DETERMINED BY 16 -CT
FIELD 19.7

FIELD 22= 1

THE REST FIELDS ARE NOT USED
MOO 34 ORSM
FIELD 5= 0

FIELD 6= 30
FIELD 12= 2

FIELD 13 WILL BE DETERMINED BY NEXT ADOR
FIELD 14= 6

Brun 15 WILL BE CETERMINED BY 15-CT
FIELD 16= 15
FIELD 17= 0

FIELD 19= 1

Fut.() 22=
THE REST FIELDS ARE NOT USED

35 MOVE9 *GPR
FILD f-WICI BE CETERMINEC BY 5PR
FIELf) 2=
Fret.° 6= 0

FIELD 9= 5

BA

*LABEL

P1

;DT EUBC P2

P2

TOS,CT P2

00111

1.1.7peppeafr,

FIELD 12= 2

FIELD 13 WILL FF rETEPMINEC BY NEXT AD3R
FIELD 19= 1

FIELD 21= 1

THE REST FIELDS ARE NOT USED
MOP 36 MOVE11 *VAR BA P1
FIELD 3= 1
FIELD 9= 1

FIELD 10= 1

FIELD 12=
FIELD 13 WILL BE DETERMINED BY NEXT ADOR
FIELD 14= 1

FIELD 18 WILL BE CETERMINE' BY VAR
FIELD 21= 1

THE REST FIELDS ARE NOT USED
MOP 37 MOVE12 *VAR
FIELD 3=
FIELD 10= 1

FIELD 12= 1

FIELD 13 WILL BE DETERMINE) BY NEXT ADOR
FIELD 14= 1

FIELD 18 WILL BE CETERMINEC BY VAR
THE REST FIELDS ARE NOT
'f401) 38 MOVE10 'VAR P2
FIELD 6= 0

FIELD 12=
/ FIELD 13 WILL EE DETERMINED BY NEXT ADOR

(FIELD 14=
--FIELD 18 WILL. BE puF_IR,0TNI5c BY VAR
FIELD 19= 1

`-THE REST FIELDS ARE NOT USED
MOP 39 CALL *LABEL
FIELD 12= 2

FIELD 13 WILL PE DETERMINEC BY NEXT ADDR
FIELD 14= 3

FIELD 18= 0

FIELD 22= 1

THE REST FIELDS ARE NOT USED
MOP 40 RETURN EUBC P2
FIELD 12= 2

FIELD 13 WILL BE CETERMINEC BY NEXT ADDR
FIELD 14= 7

FIELD 15= 15
FIELD 16: 15
FIELD 17= 0

FIELD 22= 1

THE REST FIELDS ARE NOT USED
MOP 41 PUSH
FIELD 12= 1

FIELD 13 WILL BE CETERmINED BY NEXT ADOR
FIELD 14= 11
THE REST FIELDS ARE NOT USED

BA P1

P2

P1

APPENDIX C

The MET of PDP11/40

EXAMPLE OF MARO ,-1FAASION TA3LE OF POP11/40

.._.

SIMPLE IML CODE
tADD cRC1 SRC2 DEST

THE 00kREEPCNOING MOPS
MOVE1 SRC2 3

A00 SRC1 3 0

MOVE5 0 BEST
FLA;

SIMPLE ImL CODE
AND SRC1

THE 3mPESFONDING MOPS
MCVE1 SRC2
AND SRC1
MOVE5 0

SIMPLE IML CODE
NOT SRO1

THE ,OORPESPONDING MOPS
VOT SRC1
MOVE5

S;C2 OE ST

DEST

5

0

JEST

3

DEST

SIMPLE IML CODE
,SO5 SRC1 Sk-C2 REST

THE C3,cRESPONOING MOPS
MOVE1 ORC2 3

SUE JRC1 5 0

MOVE5 0

FLA;
DEST

SIMPLE IML CODE
X30 SRC1 SRC2 REST

THE CORRESRONDING MOPS
MCVE1 SRC2 3

XOP SR01 3

MOVES DEST

STAPLE IML CODE
SR1J j SRC2 DEST

THE OOkEESPONOINS mCPS
MOVE1 SRC2
OR 0R(.2. 0

104E5 JEST

SIMPLE IML CODE
St,R SRC 5,1 JEST

THE Cam:RESPONDING MOPS
Pt-V-42 F5FF TO

.LMASK
2US11
OPS4
4GUE5

TOS
SRO

0

5 3

TOS
TOS,5 9

DEST

SIMPLE IML OOOE
SHL SRC

THE 03r<RES2CNOING POPS
6,1 JEST

PUSH2 65535
LMASK ,TOS-
PuS11 SRC
ORLS4,
MOVE5 0

SIMPLE ImL CODE
S-IL SRC 390

THE ,ARPESPUNOING MOPS
Pu..4H1 TOS
LSMK TOS NPWOHARA000
MOVE5 0 DEST

TO3

TOS
105,6 0

DEST

JEST

SIMPLE IML CODE
SRC 4,0 OAST

THE CORRESPONDING tCPS
Ru,H1 3R0
RS M< TOS
MOVES 0

T01
NEwOHARA310

JEST

silRLE IML ca)E
RmovE PPm SRC DEST

THE O3kESRONDING POPS
-4(.4E3 SRC 3A
mOVE47-UNISUI---- JEST

SIMPLE IML CDOE
wmOVE MEM SRC

THECORESPOKOINS-MCPS-
MOVE2 SRC
MOVE9 LEST
4002

SIMPLE IML C713.7
CEC SRC1

THE CORESPONJING mLPS

mCvE5

SIMPLE IML CO3E
SET

DEST

BA
0

0
SRO1

SET
mOVE5 3

SIMPLE IML CODE
INC SRC1

THE 03kPESPON)ING MOPS
INC SR01
MOVES 0

SIMPLE IML CODE
CLR SRO1

THE CO:O.RESPONDING MCPS

0

SRC1

0
SRC1

:LR 0

MOVE5 7 SRC1

SIMPLE IML CODE
MOVE SRC1 JEST

THE :OkPESPON3ING MOPS
MOVE3 SRC1 0
MOVES 0 JEST

SIMPLE IML CODE
ExTR CRNTPG SRC JEST

THE COKRESPONDINOPS
PUS-11 SRO TO'S

RSMK TOS CRNTPG 0
MOVES 0 'DEST

SIMPLE IML CODE
,COMP !RCA

THE CORPESPONOINGMOPS
MOVE1 JEST
SUP SR01
FLC.;

1FST

SIMPLE IML CODE
'COMP SRA. C8

THE CORPESPONDING MOPS
MOVE7 8

SUE SR31
FL43

3

0

SIMPLE ImL CODE
:0N7IF PLaPEL?.

THE CDR,=ESPU.3IN6 mLc3
PUsH1 SRC TO'S

PmkS<1 135
_
, EU3C

NIOJz XUPF 7j.0J1
3FL4 LABEL? r.7J1 i

IML CODE
CONOF

THE CORFESPONOING
PUSH3
PM;',SK1

4030

FLABEL2
MOPS

PS
TOS 3

XUPF P.602

TOS

BROM LABEL? P.602 1

SIMPLE IML CO3E
CCNOT C TLABEL1

THE COkRESPONJING MOPS
PUSH3 PS TOS
PMASK1 TOS 0 EU3C
40DP XUPF P.603
BRC1 LABELi P.003+1 i

SIMPLE IML CODE
CCNOT .FR98 LLABEL4

THE COr<RESP0:0ING MGPS
PUS11 SR 103
RMASK1 TOS 3 EU3C
NOOP -AIME 3.604
JUMP LABEL,. P.004+1 i

SIMPLE ImL 003E
ERCH LLAEEL

THE CORRESPONJING MOPS
5RCH LABEL

SIMPLE IML CCDE--
SLCT SR i.1 C3

CI
Ci
C2

SSUBRi
S.XBR2
SSUBR3

THE 33kPESPON3ING MOPS
'US-i1 SRC1

TEL3CLm4SK1 TOS 2

NOuP XUPF P.CO5
UN J° SUP R1 P.00 2

jNJP SJP.R2 P.665+61 Z

JNJP SUBF3 P.305+C2 2

SIAPLE Ir.L CpDE
XITC.1 SU3R

4

THE C3RRE5.,'ON3ING MOPS
PUFA

SUBR

SI10LE IML CT3E
PET

THE C3KPEFDONDING MU'S
RLTUPN RETADP,

AUPF
EU3C

APPENDIX D

Case Where Virtual Machine Word Size

is Integer Multiple of

Host Machine Word Size

APPENOIX D
THE VM WORDSIZE IS 32 BITS AND THE HM IS 16 BITS.TO SOLVE THIS
KIND OF WOPDSIZE DIFFERENCE_PRCBLEM,_THEVARIABLE_BASEC CN THE
VM WORDSIZE HAS TO BE SINOE) INTO SEVERAL VARIABLES BASE) ON THE
HM WOROSIZE. THEN,THE IML STATEMENT WHICH THE VARIABLES AFE
DECLARE) IN THE VM WOFOSIZE IS EXPANDED INTO A SET OF IML
STATEMENTS WHICH THE VARIABLES ARE BASED ON THE HM WORCSIZE.
IN THIS EXAMPLE, THE LOWER 16 BITS OF VARIABLE,A9,IS DENOTED BY
ABC,AND TME_HIWER.....15_BIIS OF TUE VARIA(ILE, IS DENOTED EY AB1.

_ THIS IML CODE IS EASED ON .4M WOROSIZE2
ACO AB CO EF

ASEO H4 WOROSLII--__
'ADD AEO GOO EFO
CONOF C _L.01X
INC AE1

L,00X ADD AB1_ COl_

THIS IML CODE IS BASED ON VM WORDSIZE...___.
AND AB CO EF

THE FOLLOWING IML CUES ARE EASED. ON HM
AND ABO CDO EFO
AND._ &01 EF1

THIS IML CODE IS EASED ON IM WORDSIZE
XOR AR CO EF

THE_fOLLOWTN5. TML CCCES ARE BASED ON HM WORDSIZE
XOR ABO ODO EFO
XCR A91 CD1 EF1

THIS IML CODE IS BASED_ON VM WORDSIZE
OF A8 CD EF

THE FOLLOWING IML LCOES ARE EASED IN HM WORDSIZE
OP A20. COO EFO
OR A91 CO1 EF1

THIS IML CODE IS BASED ON VM WOPOSIZE
SUE Ae co EF

THE FOLLOWING IMO CODES ARE BASED ON HM WORCSIZE
NOT COO COO

C0iNOT
tINC
CONDE
INC

L.00Z tACD
CONOF
INC

L.31W AO0

CO.
COG
C 4,OCZ
CC/
ABC GOO EFO
C L,00W
A31_
A31 001 EF1

THIS IML rnoc TS mArn ON Vm WrIP113T7F

NOT AB CD
THE FOLLOWING IML CCDES ARE 3ASED ON HM WORDSIZE

NOT ABC CDO
_ 4.91, CD1

THIS IML CODE IS BASED ON VM WOROSIZE
RNOVE MEM 43 CO

,THE_EOLLOWING IML. CCOESAlE aft.SE.O_ON_HM_WOR.C.SIZE
EmOVE MEM 430 CDO
RMOVE MEM _AIL__ CO/

7."

_THIS_IMt COOE_IS eAsEa_oN jM WOROSIZ
WMOVE MEM 43 CD

THE FOLLOWING IML CODES ARE BASED ON HM WORDSIZE.
WUOVE MEM ABO COO
WMOVE MEM A31

1.
THIS IML CODE IS BASED ON VM WORDSIZE

CLR AB
THE FOLLOWING Poi. CCOES ARE BASED ON HM WOROSIZE.

CLP ABC
CLR AB1

THIS IML CODE IS BASED ON VM WORCSIZE
DEC A3

THE FOLLOWING_IML Mg_,,,,.$AR RASED ON HM WOROSIZE
'DEC ABO
CONDF C L.00G
INC 421

L.00G DEC ABi

THIS IML CODE IS EASED ON 4M WORDSIZE
SET AB

THE FOLLOWING IML CODES ARE BASED ON HM WORCSIZE
SET ABC
SET 491

THIS IML CODE IS BASED ON VI wpRosizE
MOVE AB CD

THE FOLLOWING IML CCDES ARE BASED ON HM WORDSIZE
MOVE ABC C00
MOVE 491 CCI

THIS IML COUIS2ASE0 01 Vi WOROSIZE
MOVE 01234 CO

THE FOLLOWING IML 'OOZES ARE SASE!) ON mm WORCSIZE
MOVE C1234 COG
MOVE C01,

THIS IML CODE IS BASED ON P1 WORCSIZE
MOVE C1234567 CD

THE FOLLOWING IML CODES ARE BASED ON HM WORDSIZE
MCVE C54919 _ _ COO
MOVE Cii CD1

THIS IML CODE IS BASED ON VM WORDSIZE
INC

THE FOLLOWING IML CCCES ARE BASED ON HM WORCSIZE
+INC ABC
CCNDF C L.00G

Ael_
L.00G (NEXT IML)

THIS IML CODE IS BASED ON VM WORDSIZE
,ITCMP AB CD

THE FOLLOWING IML CCDES ARE BASED ON HM WORDSIZE
NOT CDC COO
NOT CO1 CO1
*INC COO
CONOF C L.00Z
ImC CO1

L.00Z *ADD ABO 300 TEMPO
CCNDF C L.00W
INC A91

L.00W 'ADD A1 001 TEMP/

THIS IML CODE IS BASED ON 4M WORDSIZE
CONOF .AB,4 LABEL2

THE FOLLOWING IML COCES ARE BASED ON HM WORCSIZE
CONOF .A90,4 LABEL2

THIS IML CODE IS BASED ON VM WORDSIZE
CONDT LABELI

THE FOLLOWING IML CODES ARE BASED ON HM WORDSIZE
CONDI .A91,7 LABELI

THIS IML CODE IS BASED ON %FM WORDSIZE
AB 1.9,1 CO

THE FOLLOWING IML CODES ARE BASED ON HM WORCSIZE
SHR Ael 3,1 COO
MOVE C65535 CD1

THIS IML CODE IS PLED OA V4 WJPOSIZE
SHR A 1,3 CD

THE FOLLOWING IML CCDES ARE BASED ON HM WORCSIZE
SHR A31 2,G CDO
4 CVE CO CO1

THIS I1L CODE IS BASSO ON VM WORDSIZE
SHR A9 _ CO

THE FOLLOWING IML CODES ARE BASED ON HM WORDSIZE
SHR ASO 5,0 COO -

EXTR CHAPA00 491 CO1
OR CO1___ _C10 COO_
SHR A91 5,0 CD1

THIS IML CODE IS BASED ON VM WORDSIZE
SHR AB __ 6,1 CO

THE FOLLOWING IML CCDES ARE. BASED ON HM WOROSIZE
SHR A90 6,0 COO
EXTR CHAPAli 431 CO1
OP CI1 C30 COO
SHR AB1 6,1 CD1

THIS IML CODE IS EASED ON 4M WORDSIZE
SHL AB 5,0 CD _ _ _

THE FOLLOWING IML CCDES ARE BASED ON HM WORCSIZE
SHL ABA 5,0 C01
SHR 490 11,3 COO
OF CO1 100 CO1
SHL 490 5,0 COO

THIS IML CODE IS 'USED ON VM WOROSIZE
_. SHL AB 6_4 CD

THE FOLLOWING IML CCCES ARE BASED ON H4 WORDSIZE
SHL _ A91 6,0 CO1
SHR A30 10,0 COO
OR CD1 COO CD1
SHL ARC 5,1 CDO

THIS IML CODE IS BASED ON VM WOROSIZE
SHL AR 13,0 CD

THE FOLLOWING IML CODES ARE BASED ON HM WOROSIZE
FHL _ _kar4_ / 0 001
MOVE CO COO

THIS IML CODE IS BASED ON VM WOROSIZE
SHL AB 13,1 CO

THE FOLLOWING IML CCDES ARE BASED ON H4 W3RCSIZE
SHL Agit; 2,1 COl_
MOVE C65535 COO

THIS TML CODE IS 3ASED ON VM WOROSIZE
_ . . _ _ _ . _

EYTP CHAP1 43 CO
THE FOLLOWING IML CCCES ARE EASED ON HM WOROSIZE

EXTR CHAPAOZ__ABO .coo
MOVE cr'

THIS IML CODE IS PASEDON VM,...W3ROSIZE
EXTR CHAR2 AB CD

THE FOLLOWING IML CODES ARE BASED ON. HM wOROEI2E
Ex TR CHAPA03 481 001
MOVE CO COO

THIS ImL CODE IS BASED ON_ 4M WORDS'
EXTR CHAR3 AB CO

THE FOLLOWING G IML CODES ARE EASED ON HM HORDE Ire
EXTR CHARA04 430 COO
EXTR. C1APAG5 4B1. coi

THIS IML CODE IS 3t SEDON VI WORQSIZE
EXTR cHAR4 AB

E_M,LcWING I m1.. CODES ARE BASED
CD
ON HI wOROSIZE

SHP A90 5,0 TEMPO
EXTR CHAPAO6 431 TEMP1
OP TcHP1 TEMPO TEMPO
SHR A91 5,0 TEMPI
Ex TR CHARA08 TEMPO COO
EXTR CHAPA09 TEMP1 CO1

THIS IML CODE IS 9ASE0 ON VI wORDSIZE
EXTR CHAPS AB CO

THE_ FOLLOWING _I ML CODES ARE BASED ON mm WORDSIZE
SHL
SHR
OR
SHL
EXTR
MOVE

A91
A90
TEMFI
ABC
CHAR

CO

7,0 TEMPI
9,0 TEMPO
TEMPO TEMPI
71.0 TEmp0

Ali TEMPI CO1
COO

CHAR1 14 3 0

CHAR2 27 19 0

CHAR3 28 12 0

CHA R4 25 14 -5
CHAR5 21 14 7

CHARAOO 4 C 11
OHARA% 5 0 10

CHARA02 1' 3 0

CHARA03 27 19 0

CHARA04 15 12 0

CHARA05 12 0 0

Cl 4.06. 4

CHAR407 20 9 0

CHARA08 15 9 0

CHARAO9 1
t.1 0

CHAPA10 28 21 0

CHARAll 28 21 0

t

APPENDIX E-1

IISG of Emulator PDP8

004 POP 8 ,)

000 99,12i
00E TWO
221 4E19 4i/96912,j
220 ACCM, 912
220 RC, 912
220 MAR 12
210 IR, 912
211 MDR 12
210 Inn, 3
214 LNK, 9191
229 IOINST, 11D
229 OATASW 12
005 31:T.09E9913 111 9-9
005 CRNT°G 9 9 979119 0
035 RGEAOR, 90 96, 0
005 ROTPLD99 91939-1-
005 DSC, 9 93999-3
035 0313,,,0,2,0
306 C
ooe PROGRAMSTARI
OOF INF
206 ,BEM
206 IR
206 °C
00 F INSTDC.;
206 IR
236 Inn
30G EPTAOR
207 1E4
207 IR
207 QC
209 MAR
120 ADR, 7

123 POTE1F 912
120 MART, 912
00P MRI
205 1AR
206 1E1
206 MDR
206 °FCC
1406 EPTAlk
00 F AND
206 ACCM
206 MDR
OOF TAD
206 ACCM
206 MDR
206 LNK
OOF ISZ
206 ACCM
206 MAR
206 PC
03F JCA
20 MEM
206 ACC4
206 MAR
03F JMS
206 'IEM
206 MAR
206 PO
OOF J 'lO
206 PC

'20 6 MAR
00F I0
206 IR
406 IOINSI
120 DS,
120 os 3
0 0 F OPT
206 IR
OOF OPR1
206 IR
20 ACCM
20 6 LNK
120 ROTACT 9, 3
OOF RAL
20 6 LNK
20 6 ACCM
DO F RTL
206 LNK
206 ACCM
00 F RAR
206 ACCM
206 LNK
0 OF RIR
206 LNK
206 ACC1/41
0 G F OPR2
206 IR
206 ACCM
20 6 PC
206 LNK
206 OATAS W
120 COUNT 92
120 CHECK , , 2
00C P2OGRAMEND

APPENDIX E-2

IESG of Emulator PDP8

DOA POP8
009 PROGRAMSTART
00 F INF
00H

RMOVE MEM PC
MD VE -T 001 IR
INC PC

+T.001

00!
OOP INST)C
00H

EXP 3 P C +TODZ
MOVE -T 00 2 OPC3
SLT OPCCr; C8

CO SMRI
Cl - SHRI

* C2 SMRI
C3 -SOCA
C4 SJMS
C5 SJMP
C6 SIO
C7 SOPT

oar
DOG EPTAOR
DOH

00K

L. 001
03J

00K
L.002

00J

Ir

E T R 'GEAOR IR +1.003
MOVE -T 0 03 AOR-

CONDP .IR.7 TL 00i

,Sj8 PC Cl PCTEMP
PKTR RNTPG- PCTEMP +T.004
M)VE -T .004 PCTEMP
OR PCTEMP AOR MAR

BRCH EL .0tZ

MOVE AOR MAR

C1NOF TL-. 003

RMOVE MEM MAR +T005
MOVE -T .005 MART

+COMP MAR C8 N

CONCT Ki IL. 004
00 .1

+COMP MAR Ci6 N

CONDF *I IL. 005
00J

ADO MART Cl +T.007
, MOVE +T.007 MART

MEM tHAP
0 OK
L . 005
03K
L. 004

H MART MAR

L 001
RET

00!
OOF "4r

00H

00I
00 F AND
00H

XEQ

RMOVE
MOVE
SL CT

EFTADR

MEM- MAR-- +T .010
- '-7.010 MOR

3PCC C3
CO

C2

SAND
STAD
SISZ

AVG
PRCH

ACCM MOR ACC'4
BINF

00I
00 F TAO
004

*ADD ACCM
BRCH BINF

00I
OOF ISZ
30H

00J

00K
1. 005

BRCH EINF
OG I
OOF DCA
00H

XEQ

NOR ACCM

RMOVE
A3D
WMOVE
RMOVE

*COMP
CONCF

INC

MEM MAR
- T.011 Cl

MEM MAR
4FM MAR

- 7.1313--- CO
IL .006

PC

30I
00F J'IS
0014

XEQ

EFTADR

+T.011
+T.012
-T.012
+7.013

W1OVE MEM MAR
CLR ACCM
PRCH BINF

00I
00 F JMP
00H

0 0 I

EFTADR

W1OVE MEM
ING MAR
MOTE- MAR L.,

BRCH BINF

MAR

XEQ

MOVE
BRC..1.4

E FT ADP

MAR
BINF

PC

ACCM

PC

00P IO
00H

NOOP
BRC,H BINF

001
OOF OPT
00H

NOOP1
001
00C PROGRAMENO

APPENDIX E-3

Output of Pass

OUTPUT OF PASSi
SKS
INF MOVES

MOVE4
MOVE3
MOVE5
MOVE7
ADD
MOVE5

SKS

BA
UNIBUS
*1+PC

*2+T 001
2-T.001 0

0
16

31-IR
3

0
0
*1-PC

41.+PC 5

INSTO0 PUSH1 *1-IR
RSMK TOS

_ALOVE5 0

MOVE3 *2T.002
NOVE5 -
PUSH1 *1-0PC3
RSMK TOS

SKS
EFTADR

TOS
OPCOOE_ D

*2+T.002
0

*1+0PC1
TOS

NEWOHARA000
0

PUSH1 *2-7 00X k;bt4;:=, TOS

NOOP XUPF
1

P.001
/ I2S oLMASK TOS 3 EUSC

P.001 3
of

2-1C_N JP MRI
UNJP MRI
UNJP MRI
UNJP DCA
UNJP JMS
UNJP jmp

UNJP IO
UNJP OPT

PUSH1 *DIR
RSMK
MOVE5
MOVE3 *2-T.003

PUSH1
RMASK/
NOOP
pRcH
.MOVE?
SUB

H-MOVr5
PUSH1
RSMK
MOVE5
MOVE3
MOVE5
mOVE1
OR
MOVE5
.8 RUN

L.001 MOVE3

1.002
MOVE5

RCH

1SH

NOOP
RMASKi

MOVES
MOVE4
OVE 3

MOVE5
MOVE7

P.00140/ 3

P.001+02 3

F.001+03 3

P.001+04 3

P.301+05 3
P.901+06 3

P.001+07 3

PGEAOR

0

*1+IR
TOS
XUPF
1.001
16

11
P.002
P.002 1

B

TOS

*2+T.003
0

*2+AOR
TOS
ELM

*1-Pc B 0

o 2+FCTMP
,*2+PCTEMP TOS
TOS ORNTPG 0

*2+T.004
*2-T.004 0

*24PCTEMP
*2+AOR B

*2-POTEMP B 0

0 *1+MAR
1.002
*2-AD R
0
*1-IR
TOS
XU°F
L.003
*1+mAR
UNIIBUJ
*2-T.005
0
128

P.003
P. 003

0

*1+MAR
TOS
EU3C

1

8A
*24T.005
0

*2+MART

avo

PUSH3 PS
RMASK1 TOS
NOOP XUPF

-H L.004
rmovEr 256
SUB *i+MAR
FLAG
PUSH3 vs

RMASK1 TOS 3

NOOP XUPF P.005
BRCH L.005 P.005
MOVE? 16
ADD *2+MART B

MOVE5
MOVE3 *2+3.007
MOVE5 0
MOVE2 *1+MAR
MOVES *2-T.307
NOOP

L.005 NOOP
L.004 MOVE3 *2-4ART

MOVES
L.003 RETURN PETADR

NOOPI XUPF

TOS-
3 EUBC
P.JO4
P.034+1 1

0

TOS
EUBC

BKS
MRI If PUSH

L_DALL EFTADR
MOVES *1-MAR
MOVE4 UNIBUS
MOVE3 *2-T.010

OUSH1 *1-0PC0
RSmK TOS
MOVE5 0

PUSHI *2-T.00X
LMASKI TOS 2

NOOP XUPF P.006
UNJP AND P.006
UNJP TAD P.006+01
UNJP ISZ P.006+02 2

eics

AND

B
0
*2+T.007

02+MART
BA
0

0

*1-MAR
EUBC

3A
42+T.010
D

TOS
NEWCHARA010

*2+T.00X
TOS
EUBC

BKS
TAD

OVEI 411-MOR
NO 41+ACCM B

OVE5
UNJP IMF

B

41-ACCM

MOVE1 *1-MDR
ADD *1+ACC1
MOVES
FLAG

B

0

41.-ACCm

PUSH3 PS 105
RSMK TOS NEW HARA029
MOVE5_ 0 *1+LNK
PUSH1 *1+LNK TOS
LSMK TOS NEwCHARA030
MOVE5 0 *1-LNK
UNJP INF

BKS
ISZ MOVES *i+mAR

MOVE4 UNIBUS
MOVE? 16

BA

*2+7.011

avo
F

PUSH3 PS TOS
RMASK1 TOS 3 EU3C
NOOP XUPF P.004

41 L.004 P.4i044.1. 1

-MOVE7 256 ct _

SUB *1+MAR B 3

FLAG
PUSH3 0S TOS
RMASK1 TOS 3 EUBC
NOOP XUPF P.005
SRCH L.005 P.005 1

MOVE? 16 8

ADO *2+MART B 0

MOVE5 D *2+1.007
MOVE3 *2+T.007 D

MOVES 0 *2+MART
MOVE2 *1+MAR BA
MOVE9 *2-1.307 0

NOOP
1.005 NOOP
L.004 MOVE3 *2-MART 0

MOVES 0 *1-MAR
1.003 RETURN PETAOR EUBC

NOOPi XUPF 0

SKS
MRI 0 PUSH

I CALL
MOVES *1-MAR 3A
MOVE4 UN/BUS *2+T.010
MOVE3 *2-T.010 0

MOVE 5 0

PUSH/ *1-0PCO TOS
RSMK TOS NEWCHARA0/0
MOVE5 0 *2+T.00X
PUSHi *2-1.00X TOS
LMASK1 TOS 2 EUBC
NOOP XUPF P.006
UNJP AND P.006 2

UNJP TAD P.006+31 2

UNJP ISZ P.006+02 2

EKS
AND MOVE1 *1-MOR

AND *1+ACCM
MOVES
UNJP INF

SKS
TAO MOVE1 *1-MOR

ADD *1+ACC4 B
MOVE5 0 '1-ACC'
FLAG
PUSH3 PS TOS
RSMK TOS NEWCHARA021
MOVES 0 *1+LNK
PUSHi */+LNK TO'S

LSMK TOS NEWCHARA030
MOVES 0 *1-LNK
UNJP INF

B
0
*1-ACCM

SKS
ISZ MOVE8 *1+mAR BA

MOVE4 UNIBUS *2+7.011
MOVET 16

RUU Is

MOVE5
MOVE2 *1+4A
MOVE9 *2-T.012
NOOP
MOVES *i-MAR
MOVE4 UNIBUS
MOVE? 0

SUB *2-T.013 8
FLAG
PUSH3 PS TOS
RMASKI TOS 2 EUBC
NOOP XUPF P.007
BIRCH L.006 P.UOT 1

MOVE? 16
7 a

ADO *1+PC B 3
MOVE5 0 1-PC

*2+T.012
BA
0

BA
*2+T,013
8
0

L.006 UNJP INF
SKS
OCA PUSH

CALL EFTADR
MOVE2 *1-MAR BA
mOVE9 *1+ACCM
NOOP
CLR
MOVE5 0

UNJP INF

0
AC CM

BKS
JMS PUSH

CALL EFTADR
MOVE2 *1+MAR BA
MOVE9 *i+PC 0

NOOP
MOVET 16 B
ADD I+MA B 0
MOVE5 0 *1+MAR
MOVE3 *1-MAR 0
MOVE5 6 *1-PC
UNJP INF

OKS
JMP PUSH

CALL EFTAOR
MOVE3 *1-MAR
MOVE5 0 1-PC
UNJP INF

BKS
TO NOOP

UNJP INF
BKS
OPT NOOP1
THE NUMBFR OF COOSS 174

APPENDIX E-4

Output of Pass 2

OUTPUT CF PASS2

MOVE10 PC
FIELD 6= 0

FIELD12= 2
FIELD14= ,, -1

FIEL018= 2048
FIEL019= 1

THE REST FIELDS ARE NOT USED
MOVE5

FIELD 1= 2
FIELD 2= 4
FIELD 4= 2

FIEL011= 3

FIEL012= 3

THE REST FIELDS ARE NOT USED-
INF MOVE8 R13
FIELD 1 2---
FIELD 2=
FIELD 3= 1

FIELD 9= 1

FIEL014= 1 --

FIEL021=
THE REST FIFLDS ARE NOT USED

mOVE4 UNIBUS
FIELD 1= 3

FIELD 2= 1

FIELD 4= 1

FTEL011= -3

FIEL012= 1

THE REST FIELDS ARE_NOT USED
MOVE3 P12

FIELD 1= _3
FIELD 2=
FIELD. 6= 0

FIEL012= 2

FIEL019=
THE REST FIELDS APE NOT USED

MOVE5
FIELD 1= 3

FIELD 2= 1--
FIELD 4= 2
FIELD11= 3_
FIELD12= 3

THE REST FIELDS ARE NOT USED
MOVE? 16

FIELD 4=
FIELD12= 3

FIEL014= 1

FIEL018= 16
FIEL020=
THE REST FIELDS ARE NOT USED

ADD R13 B

1

0 P2

R13

BA

P3

P1

R12 P1

FIELD 1= 2
FIELD 2=
FIELn 5= 0

FIELD 6= 9
FTPI

P3

P2

F/EL019=
THE REST FIELDS A L NOT USED

MOVE5
FIELD 1= 2
FIELD 2= 1

FIELD 4= 2

F/E1011= 3
FIELD12= 3
7HE REST FIELDS ARP NOT USED
INSTDC- PUSH/ R12
FIELD 1= 3

FIELD 2= 1
FIELD 4= 0

F/EL012= 2
FIELD14= 8

FIELD22=
THE REST FIELDS ARE NOT USED

RSMK TOS OPOODE . a
FIELD 6= 0

FIEL012= 2
F/EL014= 6
FIEL01.5=
FTEL016= 11_
FIELD17= 9_
FIELD/9= 1

FIEL022= 1

THE REST FIELDS ARE NOT USED
MOVE5

FIELD 1= 4
FIELD 2=
FIELD 4= 2
FIELD11= 3
FIEL3i2= 3
THE REST FIELDS ARE NOT USED

MOVE 3 P11 0 P2

R13 P3

TOS.

P2

R11_

FIELD 1= . 4
FIELD 2= 1

FIELD 6= 0
FIELD12= 2
_FIEL0i9=
THE REST FIELDS ARE NOT USED

MOVES C Rit_ P3
FIELD 1= 4
FIELD 2 1

FIELD 4= 2
FIELD1i= 3
FIELD/2= 3

THE REST FIELDS ARE NOT USED.
PUSH1 Ril

FIELD 1= 4
FIELD 2= 1

FIELD__-4 =_-..

FIELD12= 2

FIEL014= 8_

F/ELD22=
7HE REST FIELDS ARE NOT USED

RSMK 70S
FIELD 6= 0

F/EL0i2= 2
FIEL014= 6
F/ELD15= it
FIEL016= 15
FIELD17= 4

TOS

NEWCHARADOD

FIELD19=
TIEL022=
THE REST

1

1

FIELDS
MDVE5

FIELD 1= 5

--- FIELD 2= 1

FIELD 4= 2

-------F/EL011= 3

FIELDI2= 3

ARE NOT USED

SHE REST-FIELDS ARE NOT USE
PUSH1 F10

FIELD 1=- 5-

FIELD 2= 1

FIELD 4= 0

FIEL012= 2
.4----

FIELD22= 1

THE REST FIELDS ARE NOT USED
LMASK1 TOS 3

FIELDI2= 2

F/ELD14= 7

FIEL315= 2
FIELD16= 15
F/EL017= 0
FIEL022= 1

--- THE REST FIELDS ARE NOT USED
NM' _BAY) P.001

f/EL012= 1
THE REST FIELDS ARE NOT USED

UNJP MRI
FIELD12= 1

THE REST FIELDS ARE NOT USED
UNJP MRI P.001+01

FIEL012=
THE REST FIELDS ARE NOT USED

UNJP MRI
FIELDI2= 1

THE REST FIELDS ARE NOT USED
UNJP

TIELD12= 1----
THE REST FIELDS ARE NOT USED

UNJP JMS
FIELD12=
THE REST FIELDS ARE NOT USED

UNJP JMP
FIELD12= 1
THE REST FIELDS ARE NOT USED

UNJP ID
FIELDI2= 1

THE REST FIELDS ARE NOT USED
UNJP OPT

THE REST FIELDS ARE NOT USED
EFTADR PUSH1 R12
FIELD 1= 3

FIELD 2= 1

FIELD 4= 0

FIELD12= 2-
FIELD14= 8

FIEL022= 1

THE REST FIELDS ARE NOT USED
RSMK TOS

FIELD 6= 0

R10 Pa

TOS P2

EUBC P2

P.001

P.001+02_3-

DCA P.001+03 3

P.001+04 3

P.001+05 3

P.0011-06 3

P.001+07 3

TOS 2

PGEADR 0 p2

FIELD12= 2

FIELD14= 6
FIELD15= 10
FIELDI6=
Fiuntr= 0

FIELD19=
FIELD22=
THE ,RET FIELDS ARE N3T USED

MOVES
FIELD 1= -5

FIELD 2=
FIELD 4= 2
FIELD11= 3

FIELD12= 3
THE REST FIELDS ARE NOT USED

MOVE3 &la-
FIELD 1= 5
FIELD 2= 1
FIELD 6= 0

FIELDI2= 2
FIELDI9= 1

THE REST FIELDS ARE NOT-USE0
MOVE5

FIELD 1= 5
FIELD 2= 1

FIELD 4= 2
FIELDII= 3

FIELD/2- 3
THE REST FIELDS ARE NOT USED

PUSH]. R12
FIELD 1= 3

FIELD 2= 1

FIELD 4= O.

FIEL012-- 2
FIEL014= 8
FIELD22=
THE REST FIELDS ARE NOT USED

RMASK1_ TOS . EUBC, P2
FIELDI2= 2

FIELD14- 7
FIELD15= 0

FIELD1b= 15
FIELDI7= 11
FIEL022= 1

THE REST FIELDS ARE NOT USED
MOOR XUPF 9..002

1

FIELDS ARE NOT USED
BRCH L.001 P.0a2

FIELDI2=
THE REST FIELDS ARE NOT USED

MOVE7____ 16
FIELD 4=
FIELDI2= 3
FIELD14= 1

FIELDIb= 16
FIEL020= 1

THE REST FIELDS ARE NOT USED
SUB R13

FIELD 1= 2

R10

910

P3

P2

P3

TOS P2

FIELD12=
THE REST

FIELD 2= 1
FIELD 5= 0

FIELD 6= 6

Jp3

FIELD 8= 8

FIEL012= 2

FIELD19=
THE REST FIELDS ARE NOT. USED

MOVE5 0 R9
FIELD 1= 9
FIELD 2=
FIELD 4= 2

FIELD1/= 3

3
THE REST FIELDS ARE NOT USED

PUSH/ R9
FIELD 1= 9
FIELD 2= 1

FIELD 4= 0

FIELD12 2
FIELD14= 8

FIELD22=

TOS

THE REST FIELDS ARE NOT USED
RSMK TOS ORNIPG P2

FIELD 6= 0

FIEL012= 2
F/ELD14= 6

FIEL015= 15
FIELD16= 4
FIELD17= 0

FIELD19= 1

FIELD22= 1_

THE REST FIELDS ARE

FIELD 1=
FIELD 2=
FIELD 4=

MOVES
8

i

2
FIEL011= -2

NOT USED
R8 P3

FIEL012= 3
THE. REST FIELDS ARE NOT USED

MOVE3 R8
_8
1

a
FIEL012= 2

FIEL319=
THE REST FIELDS ARE NOT USED

MOVE5
FIELD 1= 9
FIELD 2= _1
FIELD 4= 2

FIEL011= 3

FIELD12= 3

THE REST FIELDS ARE NOT USED
MOVE1 R10

FIELD 1= 5

FIELD 2= 1

FIELD 4= 0

FIELD12= 1

FIELDn= 1

THE REST FIELDS ARE NOT USED
OR R9 _

FIELD 1= 9
FIELD 2= 1
FIELD 5= 0

FIELD 6= _30
FIEL012= 2

FIELD 1=
FIELD 2=
FIELD 6=

R9 p3

P1

P2

FIELD19= 1

THE REST FIELDS ARE NOT USED
MOVES REI 03

FIELD 1= 8

FIELD 2= 1

FIELD 4= 2

FIEL011= 3

FIELD/2= 3

THE REST FIELDS ARE NOT USED
MOVE12 PCTE.M.P SA

FIELD 3= /

FIELD10= 1

F/EL012= 1

------FIEL014= 1

FIELD18= 3079
------THE REST FIELDS ARE-NOT_USED

MOVE9 R9 0 P2
FIELD 1= 9
FIELD 2= 1

FIELD 6= 0

FIELD 9= 5

FIELD12- 2
FIEL019= 1

FIEL021.=
THE REST FIELDS ARE NOT USED

NOOP
FIELD12= 1

THE. REST FIELDS ARE NOT.. USED
BRUN L.002

FIEL012= 1

THE REST FIELDS ARE NOT USED
1.001 MOVE3 R/0
FIELD 1= 5
FIELD 2=
FIELD 6= 0

FIELD/2= 2
FIELD19= i

THE REST FIELDS ARE NOT USED
MOVES 0 R8

FIELD 1: IL

FIELD 2= 1

FIELD 4= 2
FIELD/1= 3

FIELD/2= f 3
THE REST FIELDS ARE NOT USED
L.00Z___ PUSH1___R12
FIELD 1= 3

FIELD. 2= 1
FIELD 4= 0

FIELD12= 2
FIELD/4= 8

__FIELD22= _

THE REST FIELDS ARE NOT USED
RMASKi TOS 12

FIELD12= 2

FIEL014= 7

FIEL115= 0

FIELD/6= 15 _
FIELD/7= 12
FIEL022=- i

THE REST FIELDS ARE NOT USED
NOOP XUPF r.003

FIELD12= I

P3

TOS Pa_

EUBC P2

THE REST FIELDS ARE NUT USED
BRCH L.003 P.003 1

FIELD12= 1

THE REST FIELDS ARE NOT USED
MOVE8 Ri BA

8
1
1

1

FIELD10- 1

FIELD/2= 1

FIELD2i=
THE REST FIELDS ARE NOT USED

MOVE4 UNIBUS
9

1

FIEL011= 3
FIELD12= 1

THE REST FIELDS ARE NOT USED-
MOVES P9

9
1

0

FIEL01.2= 2

FIELD19= 1

THE REST FIELDS ARE NOT USED
$OVE5 -0-

FIELD 1= 9
FIELD 2= 1

FIELD 4= 2
FIEL011=- 3

FIELD12= 3

THE- -REST FIELDS ARE_NOT
MOVE? 128

FIELD 4= 0

FIELD/2= 3

FIELD14=
FIELD/8= 128
F/ELD20=
THE REST FIELDS ARE NOT USED

SUB R8 P2

FIELD 1=
FIELD 2=
FIELD 3=
FIELD 9=

FIELD 1=
FIELD 2-
FIELD 4=

01

R9

FIELD 1=
FIELD 2=
FIELD 6=

P2

03

FIELD 1= 8
FIELD 2= t_i
FIELD 5= 0

FIELD 6=
FIELD 8= 8

FIELD12= 2
FIELD/9= 1

THE REST FIELDS ARE NOT_USED_
FLAG

FIELD 7= 3,

FIELD12= 1

THE REST FIELDS ARE NOT USED__
PUSH3 PS

FIELD 4= 0 f_
FIELD 7= 6
FIEL012= 1
FIELD14= 8
FIELD22= 1
THE REST FIELDS ARE NOT usEn

RMASKt TOS
FIELD12= 2

P1

TOS P3

.EUBC,_ _P2.

FIELD14= 7

FIELD/5= 0 7--

FIELD16=i 15_
FIELD17= _3
FIELD22= 1

THE REST FIELDS ARE NOT USED
NOOP XUPF ' P.004

FIELD/2= 1

THE REST FIELDS ARE NOT USED
UCH 1.004---- P.004+1_ 1

FIELD12=
-- THE REST FIELDS ARE NOT USED_

MOVE? 256
FIELD 4= 0

FIELD12= 3

F/EL014= 1
FIELD/8= 256
FIEL020= 1.

THE REST FIELDS ARE NOT USED
SUB R8 _ B

FIELD 1= 8

FIELD-2= 1
FIELD 5= 0

FIELD 6= 6
FIELD 8= 8

--F/EL012= 2
FIEL019=
THE REST FIELOS_AlE_NOL_USE0

FLAG
FIELD 7= 3
FIELD/2= 1

THE REST FIELDS ARE NOT USED ----__

PS
----FIELD-4- 0.

FIELD 7= 6
FIELD12= 3
FIEL014= 8
FIEL022= 1
THE REST FIELDS ARE NOT USED

RMASKI___TOS 3 EUBf
FIEL012= 2
FIELD14= 7
FIELD15= 0

FIEL016= ,15
FIELD/7=
F/EL022= 1:

THE REST FIELDS ARE NOT USED
NOOP XUPF P.005

FIELD/2= 1

THE REST FIELDS ARE NOT USED
BRCH L.005 P.005

F/ELD12= 1
THE REST FIELDS ARE NOT USED

MOVE7 16
FIELD 4= 0

FIEL012= 3
FIELD14= 1
F/EL018= 16
FIELD2G= 1

THE REST FIELDS ARE NOT USED
ADD F9

FIELD 1= _,9
FIELD 2= 1

D. P2

P1

TOS P3

P2_

8. P3

FIELD 5= C

FIELD 6= 9

FIEL012= 2

FIELD/9= 1

THE REST FIELDS ARE NOT USED
MOVES 0 R7 P3

FIELD 1= 10
FIELD 2= 1

FIELD 4= 2

FIEL011= 1
FIELD12= 3

THE REST FIELDS ARE NOT USED
MOVES R7

FIELD 1= 10
FIELD 2=
FIELD 6: Ct_

FIELO12= 2

FIEL019=
THE REST FIELDS ARE NOT USED

MOVES
FIELD 1= 9
FIELD 2.:
FIELD 4= 2
FIELD11= 3
FIELD12= 3

THE REST FIELDS ARE NOT USED
MOVE2 RS

.1.=

FIELD 2= 1

FIELD 3= /_

FIELD16= 1

FIEL012=
THE REST FIELDS ARE NOT USED

FIELD 1= 10
FIELD 2= 1.

FIELD 6= 0

FIELD 9= 5

FIELD12= 2
FIELD/9=
FIEL02/=
THE REST FIELDS ARE NOT USED

NOOP
FIEL012=
THE REST FIELDS ARE NOT USED

NOOP
FIEL012= 1

THE REST FIELDS ARE NOT USED
L.004 MOVE3 P9
FIELD 1= 9
FIELD 2= 1

_FIELD 6= 0

FIEL012= 2

FIE1019= 1__
THE REST FIELDS ARE NOT USED

MOVES.
FIELD 1=

_ FIEL0_2= L _
FIELD 4= 2
FIEL011= 1___
FIEL012= 3

THE REST FIELDS ARE NOT USED
MOVE12 MART

0 P2

R9 _

BA pi

FL_

0 98

P2

P3

FIELD 3= 1

FIEL31G=
FIEL312= 1

FIELD14=
FIELD18= 3080
THE REST FIELDS ARE NOT USED

HOVE9 P9
FIELD 1=- 9
FIELD 2= 1

FIELD -6-= 0
FIELD 9= 5
FIEL012= 2
F/EL019= 1

FIELD21= i

THE REST FIELDS ARE NOT USED
NOOP

FIEL012=
THE REST FIELDS ARE NOT USED
1.003 RETURN RETADR
FIELD12 2

F/EL014= 7

FIEL015=----- 15
FIELDI6= 15
FIEL017= 0

FIELD22= 1

THE REST FIELDS ARE NOT USED
NOOP1

------FIEL012= 1

THE REST FIELDS ARE NOT USED
PRI PUSH
FIELDI2=
FIEL014=
THE REST FIELDS ARE NOT USED

CALL---- -- -- . -EFTAD

FIEL012= 2

FIELD14= 3
FIELD22= 1

THE--REST FIELDS ARE NOTUSEO_
MOVE8 R8

FIELD 1:7. 8
FIELD 2= 1

FIELD 3= 1

FIELD 9=
F/EL010= 1

FIEL012= 1

FIELD2174, 1
THE REST FIELDS ARE NOT usPn

MCVE4 UNIBUS
FIELD 1= 5

FIELD 2= 1

FIELD 4= 1

FIELD11= 3,

FIEL012= i

THE REST FIELDS ARE NOT USED
MOVE 3

FIELD 1= 5

FIELD 2= 1

FIELD 6=___
F/ELD12= 2
FIELD19= 1
THE REST FIELDS ARE NOT USED

MOVE5
FIELD 1= 5

0 P2

EUBC

XUPF 0

R10

Pi

02

BA p1

R10

R10

P1

P2

FW*N*1....IIM1i.V?M.I..IMlwo.a.w-

FIELD 2= 1

FIELD 4= 2

FIEL011= 3
FIELD12= 3

THE REST FIELDS ARE NO' USED
PUSH1 R11

FIELD 1= 4
FIELD 2=
FIELO 4= 0

FIELD12= 2
FIEL014=
FIEL022= 1

THE REST FIELDS ARE NOT USED
RSMK TOS NEW1H4RA010

FIELD 6= 0

_
FIEL014= 6
FIEL015= 11___
FIEL016= 15
FIELD17=,_.
FIEL919=
FIEL022= 1.

TOS

P2

THE REST FIELDS ARE NOT USED
MOVE5

FIELO 1= 9
FIELD 2= 1
FIELD 4= 2
FIELD11= -3-
FIELDI2= 3

THE REST FIELDS ARE NOT USED
PUSH1 R9

FIELD 1= 9
FIELD 2= 1

FIELD 4= Il
FIELD12= 2
FIELD14= 8
FIEL022=
THE REST FIELDS ARE NOT_USED

LMASKI TOS

FIEL014= 7
FIELD15=
FIELOI6= 15
FIEL017=
FIELD22=
THE. REST FIELDS ARE_NOT usPa_

R9 P3

TOS P2

NOOP
FIEL012= 1_
THE REST FIELDS ARE NOT USED

UNJP AND_ P.006_ 2_
FIEL012=
THE REST FIELDS ARE, NOT USED_

UNJP TAO P. L06 +11 ?

FIELDI2= 1 _..

THE REST FIELDS ARE NOT USED
UNJP ISZ__ P.006+02

F/E1012= 1

THE REST FIELDS ARE_NOTAS7.0
AND MOVE1 R10

EU3C P2

XUPF P.006

FIELD 1= 5__
FIELD 2= /
FIELD 4 0
FIELD12= 1

P1

itLueur. 1

THE PEST FIELDS ARE NOT USED
AND P15 B 0 P2

G

1

0

27
FIEL012= 2
FIELDI9= 1

THE REST FIELDS ARE-NOT USED
MOVE5 0

FIELD 1= 0
FIELD 2= 1

FIELD 4= 2

FIEL011= 3
FIEL012= 3
THE REST FIELDS ARE NOT USED

MOVE 12 IR
F/ELn 3= 1
FIELD/0= 1
FIEL012= 1

FIELD14= 1
FIEtD18= 3074
THE REST FIELDS ARE- NUT USED

MOVE9 R12
FIELD 1= 3
FIELD 2= 1
FIELD.- 6=
FIELD 9= 5

FIEL312= 2
FIELn19= 1

FIELD21= 1

THE REST FIELDS ARE NOT USED
HOOP

FIELDI2= 1

THE REST FIELDS ARE- NOT. USED
UNJP /NF

FIELD12= t
THE REST FIELDS ARE NOT USED
TAD NOVEL Rift

FIELD 1= 5
FIELD 2= 1.
FIELD 4= 0

FIELD/2= 1
F/E1020=

_ THE REST FIELDS.. ARE_NOT_USED
ADD

FIELD. 1= _0
1

0_

9

FIELD 1=
FIELD 2=
FIELD 5=
FIELD 6=

Ri5 P3

BA

FIELD 2=
FIELD 5=
FIELD 6=
FIELD12=.
FIELDI9=
THE REST FIELDS ARSE_ NOT USED _

MOVES
FIELD 1= 0

FIELD 2= 1

FIELD 4,7 2
FIEL011= 3
FIEL012= 3_
THE REST FIELDS ARE NOT USED

FLAG
FIELD 7= 3

R15

P2

PI_

P2

P15 P3

FIELD12=
THE REST FIELDS ARE NOT USED

PUSH3 PS
FIELD 4= 0

FIELD 7= 6
F/E1012= 3

FIELD14= 8

FIEL022= 1

THE REST FIELDS ARE NOT USED
RSMK-

FIELD 6= 0

FIELD12= 2

FIELD14= 6
FIEL015= 0

FIELD16= 15
-FIELD17=

FIELO19=
FIEL022=
THE REST

FIELD 1=
----FIELD 2-

FIELD 4=

TO S

-TOS---- NEwCHA RA0 20

FIELDS ARE NOT USED
MOVES -D

1

1

2
FIEL011= 3
FIELD12= 3

THE REST FIELDS ARE NOT USED
PUSH1

1

R14

FIEL0-1=-
FIELD 2= 1

FIELD 4= 0

FIELD12= 2
FIELD14= 8
FIEL022= 1

THE REST FIELDS ARE NOT USED--
LSX- TOS NEwCHARA030 P2

FIELD 6= 0

FIELD12= 2

FIELD14= 6-
FIELD15= 15

------FIEL016=- 11
FIEL017= 71.2)

FIELD19= 1

FIELD22= 1

THE REST FIELDS ARE NOT USED
MOVES
1-
1

2 -
FIEL011= 3

FIELD12= 3

THE REST FIELDS ARE NOT USED
MOVE 12 IR

FIELD 3= 1

FIELD10= 1

FIELD12=
FIELD14= 1

FIELO18= 3074
THE REST FIELDS ARE NUT USED

MOVES R12
3

1
0

5

R14 TOS

q3

P3

P2

----FIELD 1=
FIELD 2=
FIELD 4=

FIELD 1=
FIELD 2=
FIELD 6=
FIELD 9=

3A Pi

FIELD12= 2

FIELD19= 1

FIELD21= 1

THE REST FIELDS ARE NOT USED
NOOP

FIELI12= 1

THE REST FIELDS ARE NOT USED
UNJP_ INF

F/ELD12= 1

THE REST FIELDS_ ARE_ NOT.
MOVER R8

FIELD 1= a
FIELD 2= 1

FIELD 3= 1

FIELD 9= 1

FIELD14
FIELD12=
FIEL021= 1

THE REST FIELDS ARE NOT USED
MOVE4 UNIBUS

FIELD 1= 9

F IE L3 -2=_.
FIELD 4= 1

FIELD1/= 3

FIELD12= 1

THE REST FIELDS ARE NOT USED
MOVE7 16

FIELD. -. 4r,____- 0

FIELD12= 3

FIEL014= 1_
FIELD18= 16
FIEL026=
THE REST FIELDS ARE NOT USED

ADO JP1 3
FIELD 1= 9
FIELD Zg_
FIELD 5= 0

FIELD 6= 9
FIEL112= 2

THE REST FIELDS APE NOT USED
MOVE5 D

FIELD 1= 9

FIELD 2= , 1
FIELD 4= 2

FIELD1i=_

BA Pi

Pi

P3

Pa_

R9_ P3

FIEL012= 3
THE REST FIELDS ARE NOT USED ,

MOVE2 R8

FIELD /=
FIELD 2= 1

FIELD 3= 1
FIELD10= 1

F/ELD12=
THE REST FIELDS APE NOT USED

MOVE9 R9

BA P1

P2
FIELD 1=
FIELD

9

FIELD 6= 0

FIELD 9= 5
FIEL012= 2
FIELDI9= _
F/ELD21= I

THE REST FIELDS APE
NOOP

FIELD12= 1

THE REST FIELDS ARE
MOVES

FIELD 1= 8

FIELD 2= 1

FIELD 3=- 1

FIELD 9= 1

FIELD10=-- 1

FIELD12=
FIELD21=- 1

THE REST FIELDS ARE
MOVE4

FIELD 1= 9
nun. 2=----1--
FIELD 4= 1
FIELD11=_-- 3_
FIELD12=
THE REST FIELDS ARE

MOVE?
FIELD 4= C
FIELD12= 3
FIEL014= --i-
F/ELD18= 0

F/EL020= 1

THE REST FIELDS ARE NOT
SUR

FIELD 1= 9
FIELD 2= - 1--
FIELD 5= 0

FIELD 6= 6-
FIELD 8= 8

FIELD12=---2---
FIELDI9=
THE REST FIELDS ARE NOT USED

FLAG
FIELD 7= 3

FIEL012= 1

THE REST FIELDS ARE.. NOT
PUSH3 FS

FIELD 4= 0

FIELD 7= 6
F/ELD12=_ , 3

FIELD14= 8

_

THE REST FIELDS ARE
RMASK1

FIELD12= 2
F/ELD14= 7_
FIELD15= 0

_FIEL016= 15
FIELD17= 2
FIEL022= 1 _

THE REST FIELDS ARE NOT usEn
MOOD XU°F P,C37

FIELD12= 1

THE REST FIELDS_AFE
BROM

FIELU12= 1
THE REST FIELDS ARE

MOVE7
FIELD 4= 0-

NOT USED

NOT USED_
R8 9A

NOT USED
UNIBUS- 49 P1

NOT USED
0 P3

USED
Et_ 0

USED

NOT USED
TOS,

TOS P3

EUBC P2

NOT USED
L.006

NUT USED
16

P.007

P3

FIEL012= 3

FIELD14= 1

FIE1018= 16
FIELD20= 1

THE REST FIELDS ARE NOT USED
ADD P13 B

FIELD 1= 2
FIELD 2= 1

FIELD 5= 0

FIELD 6= 9
FIELD12= 2
FIEL019= 1

THE REST FIELDS ARE NOT USED
MOVES 0

FIELD 1= 2
FIELD 2- 1

FIELD 4= 2

FIEL011= 3
FIEL012= 3

THE REST FIELDS ARE NOT USED --
MOVE12 IR

FIELD 3- 1

FIELD10= 1

FIEL012= 1

FIELD14= 1

FIEL018= 3074
THE REST FIELDS ARE NOT USED

MOVE9 R12

P2

R13 P3

BA P1

FIELD 1= 3

FIELD 2= 1
FIELD 6= 0

FIELD 9= 5
FIEL012= 2
F/EL019- 1
FIELD21= 1

THE REST FIELDS ARE NOT USED
NOOP

FIELD/2= 1

THE REST FIELDS ARE NOT USED
L.006----
FIEL012= 1

THE REST FIELDS ARE NOT USED
DCA PUSH
FIEL012= , 1

FIEL114= 11
--_-_-THE --REST-- FIELDS- ARE_NOT_USED.

CALL EFTAOR
FIEL012= 2
FIELD/4= 3

FIELD22= 1
THE REST FIELDS ARE NOT USED

MOVE2_ _R8
FIELD 1=
FIELD 2=
FIELD 3=

8

1.

1

FIEL010=_ 1
FIELDI2= 1

THE REST FIELDS_ARE_NOT USED__

3A

P2

F1

FIELD 1=
FIELD 2=
FIELD 6=
FIELD 9=

MOVE9
()-
1

0

5

g1.5 0 P2

FIEL012= 2

FIELD/9= 1

FIELD21= 1

THE REST FIELDS ARE NOT USED
NOOP

FIELD12= 1,
THE REST FIELDS ARE NOT USED

CLR
FIELD 6= 19
FIELD12= 2

FIELO19=
THE REST FIELDS ARE NOT USED

MOVES 0
FIELD 1= °-

FIELD 2= /

FIELD11= 3
FIELD/2= 3

THE REST FIELDS ARE NOT USED
MOVE 12-___.__._- IR ,_ 3A Pi

FIELD 3=
TIELD/0=
FIELD12= 1

FIELD14=
FIELDtS= 3074
THE REST FIELDS ARE NOT USED_

MOVE9 F12
FIELD I= 1
FIELD 2= 1

FIELD 6= 0

FIELD 9= 5

FIELD/2= 2
FIEL019= 1

Z

THE REST FIELDS ARE NOT USED
NOOP

FIELD/2= i

__THE REST FIELDS ARE NOT USED
UNJP INF

FIEL012=
THE REST FIELDS ARE NOT USED
JMS PUSH
FIELD/2= 1

FIELD/4= 'IA
THE REST FIELDS ARE NOT USED

CALL- ,EFTADR
FIELD12= 2
FIELD/4=
FIEL022=
THE REST FIELDS ARE NOT USED

MOVE2 R8
FIELD 1= S
FIELD 2= 1
FIELD 3= 1
FIELD10=
F/EL012= 1
THE REST FIELDS ARE NOT USED

MOVE9 0
FIELD 1= 2
FIELD 2= 1
FIELD 6= 0
FIELD 5
FIEL012m ' 2

P2

R15 P3

P2

BA

P1

Pa

FIEL019= 1

F/ELD21= 1

THE REST FIELDS ARE NOT USED
Nov_

FIELDI2= 1

THE REST FIELDS ARE NOT USED
MOVE? 16

FIELD 4= 0
FIELDI2= 3

FIELG14=---1
FIEL018= 16
FIELD20= 1

THE REIT FIELDS ARE NOT USED
ADD R8

FIELD 1= 8

__FIELD 2=
FIELD 5= 0

FIELD 6= 9
FIELD12= 2
FIELD19= 1

THE REST FIELDS ARE NOT USED
MOVES

FIEtO 1= 8

FIELD 2= 1

FIELD 4= 2

FIEL011=
FIELDI2= 3

;.....___THE_ REST FIELDS A_RE_NoT_USEn
MOVE3 R8

FIELD 1= 8

FIELD 2=
FIELD 6= 0_

FIEL012= 2
FI EL 019--

THE REST FIELDS ARE NOT USED
mOVE5

FIELD 1= 2
FIELD 2= I__
FIELD 4= 2

__FIELD1.1.-.L._
FIELDI2= 3

THE REST FIELDS ARE NOT USED_
MOVE 12 IR

_FIELD 3=
FIELDIO= 1

FIEL012=_i_

a P3

D VP2

RB P3

0 P2

Rti

BA P1

FIELD14=
FIELD18
THE REST

1

3074_
FIELDS ARE NOT USED
MOVE9 Ri2 P2

FIELD 1= 3

2= i
FIELD 6= 0

FIELD 9= 9_

FIELO12= 2

FIELD19=
FIELO21= 1

THE_REST.FIELDS_ARE__NGT_USED
NOOP

FIELDI2=
THE REST FIELDS ARE NOT USED

UNJP____ __INF
FIELDt2=

THE REST FIELDS ARP NOT USED
PIP PUSH
FIELD/2=
FIELD14= 11
THE REST FIELDS ARE NOT USED

CALL EFTAOR
FIELD12= 2

FIELD14= 3

FIELD22=
THE REST FIELDS ARE NOT-USE0-

MOVE3 R8

FIELD 1= 8
FIELD 2= 1

FIELD 6= 0

FIEL0i2= 2

FIELD19= 1-
THE REST FIELDS ARF NOT USED

MOVES 0--
FIELD 1= 2

FIELD 2= 1

FIELD 4= 2
FIELD/1- 3-

FIELD/2= 3

THE REST FIELDS ARE NOT USED
MOVE/2 IR

FIELD 3= 1
FIEL010= 1

------FIELD12- 1

FIELD14= 1
FIELD16= 3074
THE REST FIELDS ARE NOT USED

MOVE9 R12-
FIELD 1= 3
FIELD 2- 1
FIELD 6= 0

FIELD 9= 5
FIELD12= 2
FIEL019= 1
FIELD21= 1

THE-REST FIELD& ARE NOT -USED
NOOP

FIELD/2= 1
THE REST FIELDS ARE NOT USED

UNJP INF
FIEtO12= 1

THE REST FIELDS ARE NOT_USEa
ID NOOP

h- FIELDI2= 1

THE REST FIELDS ARE NOT USED
MOVE 12__.___ IR-

FIELD 3= 1
,--__FIELD16-

FIEL012= 1

FIELD14= 1
FIEL016= 3074
THE REST FIELDS ARE NOT USED

MOVE9 Ri2
FIELD 1= -3--
FIELD 2= 1
FIELD 6= 0-
FIELD 9= 5
FIEL012=_-
FIEL019= 1

P1

P2

0 P2

R13 P3

BA

P2

BA

0 P2

FIELO21=
THE REST FIELDS ARE NOT USED

NOOP
FIEL012= 1-
THE REST FIELDS ARE NOT USED

UNJP INF
FIELDI2= 1

THE RET FIELDS ARE NOT USED ----
OPT N00P1

'------FIEL012=----1-
THE REST FIELDS ARE NOT USED

---- THE NUMBER OF CODES-- 191

-11

.116, mu Imar..

APPENDIX E-5

Output of Pass 3

MOP 1 CNT ACO; 2000 t 1279) NEXT ADS 1278

GROUP4 4300

GROUP3 637E

GROUP2 100400

GROUPI a

GROUPO 0

MOP 2 CNT ACOR 2001 1278) NEXT ADS 1277

GROUP!.

GROUP3

GROUP2

GROUPIL
GROUPO

0

2375

146000

0

100022
MOP 3 CNT ACC; 2002 (1277) NEXT ADS 127E INF

GROUP4

GROUP3

GROUP2

GROUPI

GROUPO
MOP

GROUP4

GROUP3

GROUP2

GROUPi

0

2374

60220

0

20022
CNT ACC; 2033

2373

6, 6 0 0 0

p

(1276) NEXT ADS 1275

MOVElL

MOVES

VOVE8

mOVE4

PC

0

R13

UNIEUS

0

P13

EA

R12

GROUPO 40023
MOP CNT, .ACCR 20114 t. 12151. NEAT _AOS .127A

GROUP4

GROUP3 2372

GROUP2 14640.11_

GROUPI

GROUPO
MO° 6

GROUP4

GROUP3

GROUP2

100023
CNT ACC; 2005

20

6!71

1.41010

t 1274) NEXT ADS 1273 10011E. 7 16 c.

GROUPS. 0

GROUPO 0 -
MOP 7 CNT ACOP 2006 (1273) NEXT ADS 1272

GROUP4 0

GROUP3 2370

GROUP2

GROUPS.

14E400

4400

CP7m

GROUPO 100022
MOP__ ACOR 2012.7_ (1272 NEXT ADS 1271_ IhSTOC FUSH1 _

GROUP4 20000

GROUP3 423E7

GROUP2_ _1000011

GROUP1

GROUPO 23
MOP 9 CNT ACCP 2010 (1271) NEXT ADS 1270

CROUP4

GROUP3

GROUP2

GROUP1

246EF

323EE

100400

GROUPO 0

MOP 10 CNT ACDR 2011

GROUP3 2365

GROUP2_ _ _ 14600.0

GROUPS.

GROUPO
MOP 11

(1270)_ NEXT ADS 12E9_

PSMK

CPTM

TOS OPCOCE

ICS

100024
CNT ACCP 2012 (1269)

GROUP4 20000

GROUP3 423E4

GROUP2 140000

GROUPI

GROUPO
MOP 12

0

NEXT ADS 12E8

2L
CNT ACCP 2013 (1260_ NEXT ADS 12E7

GROUP4 22373

PUSH1

PSMK

R11

TOS NEWOH4 '009

Gq0UP3 323E3

GROUP2 100400

GROUPI 0

GROUPO 0

MOP 13 CNT ACC 2014

GROUP4

GROUP3

GROUP2

GROUP/

GROUPO

0
2362

146000

II

100025
MOP 14 CNT ACOF 2015

GROUP'

GROUPS

GROUP2

GROUP/

GROUPO

20000

423E1

100000

0

25
MOP 15 CNT ACOR 2016

GROUP'

__. GROUP3

GROUP2

GROUP/

263E2

3E360

100000

GROUPO 0

MOP 16 CNT ACOP 2017

GROUP'

GROUP3

GROUP2

GROUP/

3377

40060

0

GROUPO 0

GROUP' 2.0000

GROUPS 42356

GROUPZ__ 1_010M

GROUP /. 0

GROUPO. _23
NOP 26 CNT ACDP 2021 (1262) 'NFXT

(1267) NEXT ADS 126E MOVES R10

R10 T 0 S(1266) NEXT ADS 12E5 FUSH1

TOS 3 EUSC(1265) NEXT ADS 12614 LMASK1

X UPF P.001(1264) NEXT AOS 1791 fXOP

-

EFTADR

12F:1

PUSH 1

4K

Fi12 T 05

Tre' PGF-741`7v

GROUP4

GROUP3

GROUP2

GROUP1

20272

32355

100400

GROUPO 0

CNT ACOF 2022 (1261) NEXT ADS 1260MOP 27

GROUP4 0

GROUP3 2354

GROUP2 146000

GROUPi 0

GROUPO 100025
MOP 28 CNT ACOF 2023 (12601 NEXT AOS 1259 --

GROUP4 20000

GROUP3 42353

GROUP2 100000

GROUP1

GROUPO 23
MOP 29 CNT ACOF 2024 (1259) NEXT ADS 12E8

GROUP4 25760

GROUP3 36352

GROUP2 100000

GROUPi 0

GROUPO
MOP 30 CNT ACOF 2025 (1258) NEXT ADS .1783

GROUP4

GROUP3 2367

GROUP2

GROUPI

40000

a

GROUPO
MOP 32 CNT ACOR 3011 (1782) NEXT ADS 12EE

GROUP4 20

GROUP3 6350

GROUP2 141300

CRowl

CPTM

PUSH1_ R12_

FmASK1 TOS

1400P XUPF

11 EUEC

P.002

GROUPO 0

MOP 33 CNT ACOR 2027 1256) NEXT ADS

GROUP4

GROUP3 2347

GROUP2 100410

CROUP1 3000

GROUPO 22
MOP 34 CNT ACOR 2033 t 1255) NEXT ADS

GROUP4 O.

GROUP3 2346

GROUP2 146000

GROUP1

GROUPO 100031
MOP 35 CNT ACDR 2031 t 1254) NEXT ADS

GROUP4 20000

GROUP3 42345

GROUP2 100000

CROURI 0

GROUPO 31
MOP 36 CNT ACOR 2032 t 1253) NEXT ADS

GROUP4 20117_

GROUPS_ 32344

GROUP2 100400

CROUP1

GROUPO_
MOP 37 CNT ACOR 2033 t 1252) NEXT ADS

GROUP4 0

GROUP3 2343

GROUP2 146000

GROUP1

GROUPO 100030
MOP_.._._ 38 CNT_ACOF 2034 (1251). _NEAT ACS

CROUP4 0

GROUPS .2342

12E5

1254

12E3

12E2

12E1

SUB

HOVE5

PUSH1

RSmK

CPTA4

R13

0

R9

TCS CRNTPG

R9

TOS

1250_ 00

GROUP2 146000

GROUP! 0

GROUPO 100031
MOP 39 CNT ADOR 2035 (1250) NEXT AOS 1249

GROUP4 0

GROUP3. 2341

GROUP2 41000

GROUP/

GROUPO 25

MOVE1 RIO 8

MOP 40 CNT ACDF 2036

GROUP4 0

GROUP3 2340

GROUP2 100400

GROUP!

GROUPO

17000

31

(1249) NEXT ADS 1248 OR R9

MOP 41 CNT ACCE 1246),__ NEXT ADS__ 1247

GROUP4

GROUP3 2337

GROUP2 146090

GROUP!.

GROUPO 100030
MOP 42 CNT ACOR 2040 (1247) NEXT ADS 124E

.MOVES.

MOVE12 PCTEMP

3

Re

PA

GROUP4

GROUO3

GROUP2

GROUP!

6007

633,6

40200

0

GROUPO 20000
MOP 43 CNT ADDR 2041 (1246)

GROUP4

GROUP3 2335

GROUP2 120520

_.GROUP1., _C

NEXT ADS 1245 YOVE9

1

GROUPO 31
MOP 44 CNT ADDP 21142 (1245) NEXT 40S

GROUP4

241 tonp

-

GROUP3

GROUP2

GROUP1

GROUPO

2331

40000

MOP 46 CNT ACOF 3010 (1793) NEXT AOS 1242 L.001 POVE3 R10

GROUP4 0

GROUP3 2332

GROUP2 100400

GROUP/ 0

GROUPO 25
MOP 47 CNT :COP 2045 (1242) NEXT AOS 1241 MOVES RE

GROUP4 0.

GROUP3 2331

GROUP2 146300

GROUP/ ------ - II

GROUPO 100070
MOP 48 CNT ACCP 2046 (1241) NEXT AOS 1240 L.002 FUSH1 R12 TCS

GROUP4 20000

GROUP3 42330

GROUP? 100000

GROUP/ 0

GROUPO 23
MOP 49 CNT ACDP 2047 (1240) NEXT AOS_.. 1239 _ RMASK1 _ TOS 12 EUFC

GROUP4 26360

GROUPS 36327

GROUP? 100000

GROUP/

GROUPS __.

0

a
CNT ACCR 2050 (1239) NEXT ADS 17 NOOF XUFF P 0 03MOP 50

GROUP'

GROUP3

GROUP2

GROUP/

GROUPO

0

3365

40060

MOP 52 CNT AOCP 1013 (1750) NEXT ADS 1237

GROUP4 C

GROUP3 2325

GROUP2 60220

GROUPL 0

GROUPO 20030
MOP 53 CNT ACCF 2052 (1237) NEXT ADS 123k

GROUP4 0

GROUP3_ 2324

GROUP2 46000_

GROUP'

GROUPO 40031
MOP 54 CNT ACOF 2053 (1236) NEXT ADS 1235

GROUP4

GROUP3 2323

GROUP2 146400

GROUP1

GROUPO 100031
MOP-- 55- CNT ACCR 2054 1235) NEXT ADS 1234

GROUP4 200_

GROUP3 6322_

GROUP2______ 1419.1113

GROUP1

GROUP!) 0

MOP 56 CNT ACOF 2055 (1234) NEXT AOS 1233

GROUP4 0

GROUP3 2321

GROUP2 100410

GROUP1 3000

GROUPO 30
MOP_ CNT.ADDF 2056_ f 1233) NEXT,. ADS..

LROUP4____

GROUP3 2320

GR0UP2_ 4:0:000_

MOVER R5 BA

POVE4 UNIEUS

£DTM

.POVE7 128

SUB RI

R9

FLAG_

GROUP1 60000

GROUPO 0

MOP 58 _ _ CNT. ACOR 205.7_,C .1232)___ NEXT AOS_

GROUP4- 20000

GROUP3 42317

GROUP2 140000_

GROUP1 140000

GROUP°
MOP 59 CNT ACOP 2060

0

PUSh3 PS.

(1231) NEXT ADS 1233

GROUP4 21760

GROUP3 36316

GROUP2 100000

GROUP1

GROUPO

F1.14 SKI.

0

0

MOP 60 CNT AOOF 2061_ (123C)

GROUP4_

GROUP3 3363_

GROUP2 40000

GROUPO 0

NEXT ADS 1779

MOP 62 CNT ACDR 3014 (1779) NEXT AOS 1228

GROUP4

GROUP3

GROUP2

GROUP1

GROUPO

400

6314

141000

VOOP

TOS

TOS-

XUPF

MOVE7 256

EUEO

MOP ,63 ONT.A0OF 2063 (1226) NEXT ADS_____._ 1227_

GROUP4___

--GROUP3

GROUP2 10041.0

GROUP1 3000

GROUPO 30
MOP 64 CNT COAF 2064

GROUP4 0

GROUP3 9319

(1227) NEXT ADS

SOS :
R8 3

FLAG

GROUP2

GROUP/

GROUPO
MOP 65

GROUP4

40000

60000

0

CNT ACOP 2065 (

20000

1226) NEXT AOS 1225 FUSH3 PS

GROUP3 42311

GROUP2 140000

GROUP/ 140000

GROUP()
MOP 66 CNT AOOF 2066 (1225) NEXT A!S 1224 FmASKi TOS

GROUP4 21760

GROUP3-

CROUP2 100000

GROUP1 0

GROUPO
MOP 67 CNT ACCF 2067 (1224) NEXT ACS 177 7 t,00F X UP F

GROUP4 0

GROUP3 3161

GROUP2 40000

GROUP/ 0

GROUP() 0

MOP CNI_ACOR 3017_ t 17761 NEXT Ans 1222 t"OVEL 16

GROUP4 20

GROUP3 6306

GROUP2...._.__,... /41000_

GROUP() 0

MOP 70 CNT AOOF 21)71 (12221 NEXT AOS 1221 AOD R9

GROUP4 0

GROUP3 2305

CROUP2 100400

GROUP/ 4400

GROUP° 71
CNT ACOF 2072_ A 1221).. AEXT_ACS_ 1220 CPIrd

TOS

3

P.005

EUBC

8

GROUP4 0

GROUP3 23C4

GROUP2 146000

GROUP/ 0

GROUPO 100032
MOP 72_ ONT_ACO.R. 2073_4.

GROUP4

GROUPS

GROUP2

GROUP1

GROUPO
MOD 73

GROUP4

GROUP3

CROUP2

GROUP1

GROUPO
MOP 74

GROUP4_----_

GROUP3

GROUP2 120520

0

2303

146000.

100331
CNT ACCP 2074 t

CNT

0

2302

40200

0

20030
ACDF

2301

2075 t

GROUP/ 0-

12201----NEX7__ ADS

1219) NEXT ADS

1218) NEXT ADS

MOVE5 0 R9

1218 MOVE2 R8

R7

BA

0MOVE91217

GROUPO 32
MOP 75 CNT ACCF 2076

GROUP4 0

t 1217) NEXT ADS 1777 HOOP

GROUP3

GROUP2

GROUP1

3361

40000

0

GROUPO 0

MOP 76 CNT ACCF 3016 t 17771. NEXT ACS. 1774._ L.005 NOOF

GROUP4

GROUP3

GROUP2

GROUP1_

C

3362_

GROUPO
MOP 77 CNT ACOF 3015 (1778) NEXT ACS 1214 L.004 MOVE3 R9

GROUP4 0

GROUP3 2276

GROUP2 100400

GROUPI

GROUPO 31
MOP 78 CNT ACCF 2101 (1214) NEXT ACS 1213

GROUP4

GROUP3 2275

GROUP2 146000

GROUPI 0

GROUPO 100030
MOP 79 CNT AOGF 2102 (1213)

3

GROUP4 6010

GROUPS 6274

GROUP2 40200

GROUPI

tOVE5

NEXT ADS 1212

MOP 80 CNT ACOF 2103

GROUP4

GROUP3

GROUP2

GROUP1

GROUPO
CNT_ACOR 2104

GROUP4

GROUP3 3365

GROUP? 40010

C

2273

120520

0

(1212) NEXT ADS 1211

MOVE12 MART

!.!OVE9 Q9

R8

0

31

GROUPI--

GROUP()
MOP 82

0

0

CNT ACOF 3012

GROUP4 20377

GROUPS 36271

GROUP2 100000

I 1211J NEXT ACS

(1781) NEXT ACS

17el_

1209 L.003

NOOP

FETURN RETAOR EUBC

GROUPI 0

GROUP()
MOP 83 CNT ACDF 2106 t 1209) NEXT ACS 255 NOOP1 XUPF

GROUP' 0

GROUP3 377

GROUP2 40000

GROUPI 0

GROUPO 0

- MOP 84 CNT ACCR_3000____ 17911- AEXT ADS 120.7_ MPI__ PUSH__

GROUP' - C

GROUPS 56267

GROUP2 40000

GROUPI 0

GROUP°
MOP 85 CNT ACCR 2110 t 1207) NEXT ACS 1263

GROUP'

GROUP3

GROUP2

GROUP1

2111

16357

100000

0

GROUP° 0

MOP 86 CNT ACCR 2111_

GROUP' 11

GROUP3 2265

GROUP2 60220

GROUPI

GROUPO 20030
MOP 87 CNT AOCP 2112

1206). NEXT ADS 1205

CALL

POVE8

EFTADR

R8 BA

GROUP'

GROUP3

GROUP2

GROUP1

GROUPO
MOP 88

GROUP4._

2264

46000

0

40025
CNT ACCF 2113

0

NEXT ADS 1204

t 1294) NEXT ADS 1203 C

GROUP3 2263

GROUP2 146400

GROUPI 0

GROUPO 100025
MOP 89 CNT AOCR 2114

GROUP4 20000

GROUP3 422E2

GROUP2 100000

GROUPI 0.

GROUPO 24
MOP 90 CNT ADCF 2115

GROUP4

GROUP3

GROUP2

GROUP1

22373

322E1

100400

0

GROUPO 0

MOP 91 GNI AOOR 2116

GROUP4 0

GROUPS 2260_

GROUP2 146000

GROUPI 0

GROVEL_ 100031
MOP 92 CNT ACOP 2117

GROUP4 2000]

GROUP3 42257

GROUP2 100000

GROUP1 0

GROUPO 31

MOP 93_, CNT A.CLIF-21,21_

GROUP4

GROUP3

GROUP2_

GROUPI

_GROUP°
MOP 94

20361

36256

CNT ACCP 2121

1202 PUSH.(1203) NEXT AOS

1201 F,SPAK(12021 NEXT ACS

(12011 NEXT ACS 1200 VOVE5

(12001 NEXT ADS 1199 FUSH1

(1199) NEXT_AOS_ LmASK11198_

11981 NEXT A1S 1775 torIPf

R11 TOS

TOS NEWCHARA010

R9

TOS

TOS

XUPF P.006

EUBC

GROUP4

GROUPS,-

GROUP2

GROUP'

GROUPO
MOP 98 CNT ACOF 3020

GROUP4 0

0

3357

40000

0

11

GROUP3 2254

GROUP2 41000

GROUPI 0

GROUPO 25
MOP__ 99 -- CNT ACCR- 2123 1196) NEXT ACS 119q

(1775) NEXT AlS 1196 AND

GROUP4 0

GROUPS 2253

GROUP2 _

GROUPI

146400_._.

15400

GROUPO 100020
MOP 100 CNT ACOP 2124 (1195) NEXT AI'S 1194

GROUP4 6002

GROUP3 6252

GROUP2

GROUP1

40200

MOVE1 R10

CPTti

mOVE12 IR

GROUPO
MOP 101

GRO

GROUP3 _ 2251

GROUP2

GROUPI

0

20101)
CNT ACCR 2125 A 1134) NEXT A1S 1151_

120520

GROUPO 23
MOP 102 CNT AOCF. 2126 (1133) NEXT AOS 1277

GROUP4 0

GROUPS 2375

GROUP2 40000

GROUPI 0

MOVE9

t 10F

R12

GROUPO
MOP 104

0

CNT ACOF 3021 (1774) NEXT AOS

GROUP4 0

GROUP3 2246

GROUP2 41000

GROUP1 0

GROUPO 25
MOP 105 CNT AOCF 2131 (1190) NEXT AOS

GROUP4- -0-

GROUP3 2245

GROUP2 146400

GROUPI - 4400

GROUPO 100020
MOP 106 CNT ADCP 2132 (1189) NEXT ADS

GROUP4 0

GROUP3 2244

GROUP2 40000

GROUPI 60100

GROUPO 0

MOP 107 CNT AOCR 2133 (11381_ _NEXT AOS

GROUP4 20000

GROUP3, -42243_

GROUP2 140000

GROUPI--- 140000

GROUPS.
MOP 108 CNT AOCP 2134 (1137) NEXT ADS

GROUP4

GROUP3

GROUP2

GROUP'

20360

32242

1190 TAD mOVE1 R10

1189

1188

CPTM

FLAG

1187_ FUSH3 PS TOS

1186 RS MK TOS NEW;HAFA020

GROUPO 0

MOP 109 _.C.N.T_AO.CP,.2135. L. 11861_ _N.EXT,.ADS__ 111_5.,

GROUP4 0

GROUP3 2241 _,

m0VE5 0

GROUP2

GROUP1

146000

0

GROUP° 100021
MOP 110 CNT AODF 2136 t 1185) NEXT ADS 1184 FUSH1 R14 TOS

GROUP4- 20000

GROUPS- 42240

GROUP2 100000

GROUP/ 0

GROUP1__
MOP 111 CNT AODF 2137 t 1184) NEXT ADS 1183 LSMK TOS NEWCHAPA030

GROUP4 26277

GROUO3 32237

GROUP2 .100400

GROUP1 0

GROUPO 0

MOP - -.112 CNT_ACDF_2140 L 1183)__NEXT. ADS. _1182 MOVE5 R14

GROUP4 0

GROUP3 2236

GROUP2 146000

GROUP1 0

GROUPO 100021
MOP 113 CNT ACOR 2141 1 1182) NEXT ADS 1181 VOVE12 IR BA

GROUP4 6002

GROUP3 6235

GROUP2 40200

GROUP1 0

GROUPO 20000
MOP 114 CNT ACDF 2142 (1181) NEXT ADS 1160 POVE-9 R12

GROUP4

GROUP3 2234

GROUP2 12052C

GROUP1

GROUPO 23
MOP 115 CMT ACOF 2143 (1180) NEXT ADS 1277 NOOP

GROUP4

GROUP3 2375

GROUP2--- 40400

GROUP1 0

GROUPO
MOP 117 CNT ACOP 3022 (1773)

0

NEXT AOS 1177 ISZ

GROUP4

GROUPS

GROUP2

GROUP1 0

GROUPO 20030
HOP 118 CNT ACOP 2146_ (1177) _. NEXT ADS 1176

GROUP4

GROUP3 2230

GROUP2 46000

GROUP1 _ 0

GROUPO
MOP 119 CNT ACDP 2147 (1176) NEXT ADS 1175

GROUP4

GROUP3

GROUP2

GRoupi 0

GROUPO 0

MOP 120 CNT ADOP 2150 (1175). NEXT Aos

GROUP4 0

GROUPS__ 2226

GROUP2 146400

GROUP1 4400

MOP 121 CNT ACCP 2151 (1174) NEXT AOS

0

2231

60220

40031

20

6227

141000

1174

MOVE8 R8

mCVE4

mOVE7

UNI9US

16

BA

R9.

GROUP4

GROUP3 2225

GROUP2 40200

GROUP1

GROUPO 20030

CPTM

1173 mOVE2 R8 BA

MOP 122 CNT AODF 2152 t 1173) NEXT ADS 1172

GROU04

GROUP3 2224

GROUP2 120520

GROUP1

MOVES F9

GROUPO Si
MOP 123 CNT ADDF 2153 t 1172) NEXT ADS 1171

GROUP4

GROUP3 2223

GROUP! 40300

GROUP1

GROUPO c
MOP 124 CNT ACOF 2154 1 1171) NEXT ADS 1170

GROUP4 0

GRDUP3 2222

GROUP2 60220

GROUPi 0

GROUPO 20030
MOP_ 125_ CNT ACDR 11701_ NEXT_ADS 1169 UNIEUS___

HOOP

POVE8 RI

GROUP4

GRDUP3 2221_

4ROUPZ_______ 46808

GROUP!. .0___

GROUPO . 4002-1
MOP 126 CNT ACOF 2156

GROUP4

GROUP3

GROUP2

GROUPi

GROUPO

0

6220

141000

t 1169) NEXT ADS 11E8 POVE7

BA

R9

0

0

MOP 127. CNT ACOF 2257 1 1158). NEXT ADS 11E7

_GROUP4 a

GROUP3 2217

GROUP2__ 100410

EU? R9

GROUP1 3000

GROUPO 31
MOP -128-----CNT-ACtR.

GROUP4 0

GROUPS 2216

GROUP2 40000--

t 11671_ NEXT ADS_ _11E6_

GROUP/ 60000

GROUPO
MOP 129 CNT ACCF 2161 (1166) NEXT ADS 11E5

GROUP4 20000

GROUPS 42215

GROUP2 140000

GROUP1 140000

GROUPO 0

MOP 130 CNT ACCF 2162 (1165) NEXT ADS 11E4

GROUP4- 213E0

GROUPS 36214

GROUP2 100000

GROUP/

GROUPO 0

MOP 131 CNT ACDF 2163 (1164) NEXT ADS 17E7

GROUP4 0

GROUP3 3347

GROUP2 40000

GROUP/ 0

GROUPO 0

MOP 133 CNT ADOF 3031 (1756),_ NEXT ADS _ 11E2

GROUP4 20_

GROUP3 6212

GR0UP2 _ 141000

GROUP1 0

GROUPO
MOP 134

C

CNT ACCF 2165 (116?) NEXT ADS 1iii----

GROUP4

GROUPS 3347

FLAG__

FUSF3 PS

FMASK1 TOS

NOOP

TOS

EUBC

X UP F P.007

mflVE7

OPITfA

16

GROUP2

GROUP1

146400

440C

GROUPO 10E022
MOP 135 CNT ACCF 3030 (1767) NEXT A1S 11E0 L.006 MOVE12 IR

GROUP4 6002

BA

GROUPS

GROUP?

CROUP/

6210

40200

0

GROUPO 20000
MOP 136 CNT ACCF 2167_ t 11601 NEXT AOS 1159

GROUP4 0

GROUPS 2207

CROUP2 120520

GROUP/

GROUP1_ 21
MOP 137 CNT ACCF 2170 t 1159)

GROUP4

GROUPS

GROUP2

CROUP1

GROUPO

2375

40000

0

0

NEXT AOS 127 7

V0VE9

NOOF

MOP__139_ _CNT_ACCR 3001 JL 17181 NEXT ADS 1156_ OCA FUSH

GROUP4

GROUP3 56204

CROUP ?_. 40000_

GROUP/ _ 11_

GROUPO 0

MOP 140 CNT ACDF 2173 (1156) NEXT Any 1263

R12

CALL EFTAOR

GROUP4

GROUP3

GROUP2

GROUP/

2174

16357

100000-

0

GROUPO 0

MOP ,/41 CNT 'OCR 2174 t 1155) NEXT_ AOS. 114 YOVE2 R3 BA

GROUP4 0

GROUP3 2202

GROUP2 40200

GROUP1

GROUPO 20030
NOP 142-- CNT AOCF 2175- t 11544 NEXT Ans. 1153-- MOVEg R15 II

GROUP4 o

GROUP3 2201

GROUP2 120520

GROUPi

GROUPO 20
MOP 143 CNT AOCR 2176 t 1153) NEXT ADS 1152

GROUP4

GROUP3

GROUP2

GROUP1

GROUPO

0

2200

40000

0

0

NOOP

MOP 144 CNT AOCF 2177 t 1152) NEXT Ans 11E1

GROUP4

GROUP3 2177.

GROUP2- 146400_

GROUP1---------- 114t0

GROUPO
MOP 145

CPTM

100020
CNT AOOF 2200 t 1151) NEXT AOS 1150

GROUP4 6002

GROUP3 6176

GROUP2 40200

GROUP1 0

GROUPO 20000
MOP 146 CNT ACOF 2201 t 1150) NEXT ADS 1149_

GROUP4

GROUPS__

GROUP2

-

C.

2175

120520

mOVE12 IR

OVf9.. R12

BA

GROUPO 23
MOP 147 CNT ACCF 2202 t 1149) NEXT ADS 1277

GROUP4_

GROUP3 2375

GROUP2 40000

-- GROUP1 0

NOOF

GROUPO 0

MOP 149 CNT AOCR 3004 (1787) NEXT ACS 1146 JMS FUSH

GROUP4 0

GROUP3 56172

GROUP2 40000

GROUP). 0

GROUPO 0

MOP 150 CNT ADCR 2205_ t 1i46) , NEXT ADS 1263

GROUP4 2206

GROUP3 16357

GROUP2 100000

GROUP1

GROUPO
moi, 151 CNT ACCR 2206

GROUP4

GROUP3

GROUP2

GROUP/

GROUP()

0

2170

40200

20030

(1145) NEXT ADS 1144

CALL EFTADR

MOVE2 R8

MOP 152__ .u. CNT ACCR.2207_ 1140. .NEXT_ ADS 1141

GROUP4

GROUP3

GROUP2_

GROUP/

0

21E7

120.520

0

POVE9 R13

GROUPO 22
MOP 153 CNT AOCP 2210

GROUP4

GROUPS 2166

GROUPi 40000

t 1143) NEXT ADS 1142 NOOF

GROUP1

GROUPO__
MOP 154

GROUP4

GROUP3

GROUP2

GROUP1

GROUPO
MOP 155

GROUP4

GROUP3

GROUP2

GROUP1

GROUPO
MOP 156

GROUP4

GROUP3

GROUP2

GROUP1

GROUPO
MOP 157

GROUP4

GROUP3

GROUP2

GROUPS_

GROUPO
MOP 158

0

,0____________
CNT ADOF 2211 t 1142)

20

6165

NEXT ADS 1141

141000

0

0

CNT ADOR

21E4

146400

4400

100030
CNT ACDF

2212_ t 11411_ _NEAT_ADs.

2213 (1140) NEXT ADS 1139

0

2163

100400

0

30
CNT ACDF 2214_ _(1139) NEXT _ADS 1138_

2162

14600T

0

100022
CNT ACDR 2215 1138) NEXT ADS 1137

GROUP4 6002

MUVE7 16

CPTm

mOvE3 R8

MOVES R13

GROUP3 6161

GROUP2 40200

GROUPI

GROUPO 20060
mop__15q_ _1_1437) NEXT ADS 113E

GROUP4 0

MOVE9 Fi2

GROUP3 2160

GROUP? 120520

GROUPI

GROUPO 23
MOP 160 CNT ACOF 2217

GROUP4

GROUP3 2375

GROUP? 40000

GROUPI

GROUPO
MOP 162 CNT ACCP 3005

CROUP4 0

GROUP3 56155

GROUP2 40000

GROUP1 C

GROUPO
MOP 163 CNT ACC 2222

GROUP4 2223

GROUP3 16357

GROUP2 100000

GROUP1

GROUPO
MOP 104

GROUP4

GROUP3

GROUP2

GROUP1

GROUPO
MOP 165

0

CNT ACDF 2223

0

2153

100400

(1136) NEXT ADS 1277 NOOP

FUSH

CALL

(

(

1786) NEXT ADS

NEXT ADS_

1133

1263

J412

1133)

(1132) NEXT ADS 1131 MOVE3

EFTAOR

R8

0

30
CNT ACOR 2224_ Wu_ ./4Exj Ans

GROUP4

GROUP3 2152

GROUP2_ 14tT0t

GROUPI 0..

GROUPO 100022
MOP 166 CNT ACOF 2225 (1130) NEXT ADS 1129

?OVE5

MOVE12 IR q.A

GROUP4

GROUP3-

GROUP2

6002

6151___

40200

GROUP/ 0

GROUPO- 20000
MOP 167 CNT ADOR 2226 t 1129) NEXT AOS 1123

GROUP4

GROUP3 2150

GROUP2 120520

GROUPI

GROU00 23
MOP 168 CUT CDR_ 2227_1.. 11281_____NEXT ADS__

GROUP4

GROUP3

GROUP2

GROUP1

2375

_40000

0

GROUPO 0

MOP 170 CNT ACCF 3006

GROUP!.

GROUP3

CR OUP2

GROUPI

GROUPO
MOP 171 CNT AODE 2232 t 1125) NEXT ADS 1124

t 1735) NEXT ADS 1125

MOVE9 R12

NOOF

IC

0

2145

40000

0

GROUP4

GROUPS

GROUP2

GROUPI

6144_.

0

GROUPO 20000
MOP 172 CNT A CDR 2233

GROUP4

GROUP3

GROUP2

GROUPI

C

2143

120520

t 1124) NEXT AlS 1123

MOVE12 IR

MO V E 9 R12

GROUP 0 23
MOP 173 CNT ACCT 2234 t 1123) NEXT ACS 1277

GROUP4

GROUP3 2375

GROUP? 400E4

GROUPI 0

GROUPO 0

MOP 175 CNT A CCF 3007

GROUP4

GROUP3 377 _

GROUP2 40006

GROUPI 0

t 1784) NEXT A OS 255 OPT

GROUPO
MOP 17e CNT A CCF 3001 t 1790) NEXT ADS 1791

GROUP4

GROUP 3

GROUP?

GROUPI

GROUPO
MO0 177 CNT ACE R 3002 t 1789) _NEXT ADS 1791

0

3377

40000

0

GROUP4 0

GR 0 UP 3 _ . 3377

GROUP2 40000

GROUPI 0

NOOF1

NOOP

NOOP

TOTAL SUM IS 153

APPENDIX E-6

PDP8 Benchmarks and Test Run

1) Benchmark 1 PDPT2

Address Code Comment

200 AND 215 /clear ACCM
201 TAD 212

202 DCA 213 /set counter t -64
203 TAD 214

204 DCA 10

205 TAD 10

206 DCA I 10 /used as an autoindex register
207 ISZ 213 check counter
210 JRP .-3 /loop
211 HALT

/set adr(10) to 1777

212

213

214

215

7700

0

1777

0

The output is as follows:
Address Contents
2000 1777

2001 2000

2076 2075

2077 2076

7 R. hi;CkLi

'*,TI.:=PDP8T2 _ .

*MAIN. RT -11 MACRO-VM02-12 '-1:257MAY778- 01726:34 PAGE-1

-.1. 0 0 .1.% 0 cr.. 0
^

. i=*-1 TE 0 1-

2 000200 .:=200
3 000200 00000 0
4 004000 .=4000
L'T 0040 0 0 004320 W D

6 004020 ~=4O2O
' 7 004020 024240

8 004040
9 004040 064260
10 004060
11 04060 024300
12 004100
13 04100 060200
14 004120
157)4120 020200
16 004140
17 04140 070200
18 004160
19 04160 044260
20 004200

2F-04200 124120
22 004220
23 '04220-170040
24 004240

WORD 1212*20
4=4040

W 0 R 32131(20
=40A0
WORD
=4100
WORD
=4120
WORD 1010*20
=4140
WORD 3410*20-
=4160

. WTIFTH 221-317,70
=4200

:WU D 7120-5* 20
=4220
WORD 7402*20
=4240

1214*20-

3010*20

04.-.40 1,6000 ^WORD 77C-0420
26 004260 ^=426O
27 04260 -000000 . WORD- 0-
28 . 004300 =4300
29-0430-0-03776 :41 arar 1777*-20
30 004320 ^=432O
s5.1 04340 000000 .W0Rrt
32 040000 =40000

00000I~ END
MA IN R F-11 MACRO VM02-12 25-MAY-78 01 : 26 : 34 PAGE 1+

SYND OL -TABLE

. ABS. 040000 000
000000 001

ERRORS DETECTED: 0
FREE CORE 18439^ -WORDS

ERRORS TrE TECT EP: 0
FREE CORE: 18439^ WORDS

I

12

OV9T0, :099TVO
OCYTVO :0V9TVO__
0091J-0 :eZ9TVO
09L1VO :009TVO

O -ft() :09STVO
0J,LITV0_10tIllk0

00CT170 :OU,Tt70
09VIVO :00LTVO
OVVIVO :09t7TVO
0i7VIVO :OVVIVO
OM-IVO :0(7V1V0
09FTVO :00VIVO
OVETVO :09ETVO
OZETtO :OVTIVO
00ETVO :OZETVO
09ZItO :00ETV0
OVL-N70
OZZTVO :OVZTV0 ,

00Zit0 :0=TtO
09TIVO :00ZTVO__z
OttT'O :09TIVO

O tto :OVITVO
00TIVO :0J,TIVO
090Tv0 :00TIVO_
0170t70 :090TVO
WOIVO :OtOrt0
000TVO :OZOTtO
09LOVO :000TVO
OVLOt70 :0940V0
0:t0170 :0t7(2.000

OOLOVO :OZLOVO
0990t-0 :00/0V0

O '90'0 :0990170
OF.90V.0 :0V90V0
0090t0 :090t0

090t0_1009Dt0___
OVSOVO :092,0V0

0 ZE10 OLI 0 VED1.0___
00rAt-0 :OZSOVO

"
0070t70 :09t7OVO
OZ;t0t70 :OtP0t0___
OuVOVO :OZVOVO
109E0tO
OtE0t0 :09E000
OZTOVO :0t-E0V_Q
o000 :OZEOVO
O9;Ot3 :C(iZOVO
OVFX*0

O 0t0
no-ovo
09Toto
OtYTOro

:09(70V0
:Ot.4070._

:0ZZ:70V°

:0070V0
:091:0t70

.4f(2t,Q atnt9___
00IC,t-C) .;OZTOi70
0900t-0 jppioty_p__

r ot7oot,o :0900t70
O OC/0 I

0000t70 :Gi:00tv0

094a.0 :0000t70.
11VWS

2) Benchmark 2 --

Address

PDPT3

AND

TAD

DCA

TAD

DCA

Code

200

201

202

203

204

215

212

213

214

216

205 DCA I 216

206 ISZ 216

207 ISZ 213

'210 JMP .3

211 HALT

212 7700

213 0

214 2000

215 0

216 0

The output is as follows:

2000 0

2077

Comment

Alear ACCM

/set counter to -64

/set adr(216) to 2000

/clear adr(2000) to zero

/increment adr(216)

/check counter

/loop

mAcrzo 0 ! 2 7 pAGE

1 000000 ,ASECT
7: 77757T71 . ,,,20T
3 000200 000000 ^WORD 0
4 004000
5 004,100 004720 :WORD '-,1.20
0 004010- 4=4020'
7 004020 024240 .WORD 1212*20

004040 .=4040
9 004040 064260 .VORD 3213*20
10 -004060 .=4060
11 04060 024300 .WORD 1214*20
1-27 00410T
13 04100 064340 .WORD 3216*20
14 U0412-0 .=4120
15 04120 074340 .WORD 3616*20

--I6 004140 .=4140
17 04140 044340 .WORD 2216*20
IS 004160 .=4160
19 04160 044260 .WORD 2213*20
20 004200 .=4200
21 04200 124120 .WORD 5205*20

004220 .=4220
23 04220 170040 .WORD 7402*20
24 004240 .=4240
25 04240 176000 .WORD
26 004260 .=4260
27 04260 000000 .WORD 0

28 004300 .=4300
29 04300 040000 .WORD 2000*20
30 004320
31 04320 000000 .WORD 0
32 004340 .=4340
33 04340 000000 .WORD 0
34 040000 .=40000
35 000001' .END

RT-11 MACRO VMO2-12 25MAY-78 01:27:44 PAGE 1+
SYMBOL TABLE

7700*20

Z I

4

2 ^ ABS. 040000
000000 001

1-ERRORS DETECTED: 0
FREE CORE: 10439. WORDS

o

9

rTT:=PDP8T3

ERRORS DETECTED: 0
FREE -COREI-18439 WORDS'

7

6

000000 :0991v0
000000 :0t9TVO

`2

`n

00000e :039TtO
00000a :oo9Tvo

,

000000 :09,_]TtO

000000_10VITVO__,
000000 :OZSTOO
000000 toaLsirvo___,

000000 :09t-TVO
00000a :0tVIVO
000000 :0J,Vrt70
000000 tOOVIt.0_____

000000 :09F1V0
000000 :0V2TVO__,
000000 :0Z2100
000000 :00E13'0 ,

000000 :093TVO
000000 :OVE:TtO 1

000000 :OZZTVO
000000 :00ZTVO
000000 :091TV0
000000 :Ot.TIVO
000000 :OZTIVO
000000 :00TTPO
000000 :090TVO
000000 :OVOTVO
000000 :OZOTVO
000000 :0001V0
000000 :09Z.0VO
000000 :OVZOVO__
000000 :034000
000000 :00/_OVO
000000 :0990t0
000000 :0V90V0
000000 :0390V0
000000 :0090V0
000000 :0920V0
000000. :0Vg0t70
000000 :OZSOtO
000000 :00q0V0
000000 :09$70$70 !

_000000 :OVV0170
000000 :OZVOVO

000000_:_oovava__
000000 :0920t0
000000 :0t7F(\t70

000000 :OUOVO
00_000.0_100c4.:0170

000000 :0930V0
000000.4003070._

000000 :033Ot.70
000000 :003OA,0

'

000000 :09TOVO
000000_1
000000 :0Z-,10frO

000000_:.P9T.0t707_
000000 :0900t...0

000000
000000 :0:00t,0
.000000 .:0000t0.

171k;yS. nw_ff.

3) Benchmark 3 --

Address

PDPT5

0

JMS

TAD

DCA

ISZ

JMP

HALT

Code

250

10

10

213

.-3

10

200

201

202

203

204

205

I

212 7760

213 0

214 1777

215 0

250 0

251 AND 215

252 TAD 212

253 DCA 213

254 TAD 214

255 DCA 010

256 JMP I 250

The output is as follows:

Address Contents

2000 1777

2001 2000

2016 2015

2017 2016

Comment

/jump to subroutine

/used as autoindex register

/loop

Alear ALCM

/set count t

/set adr(10) to 1777

/return

.MAIN. RT-11 MACRO V

1 000000
000200

3 000200 000000
4 004000
0o4o00 10200

6 004020
7 004020 020200
8 004040
9 01,4040 070200

10 004060
11 04060 044260
12 004100
13 04100 124020
14 004120
15 04120 170040
16 004240
17 04240 177400
-18- 004260
19 04260 000000
20 004.300
21 04300 037760

--22- -004320
23 04320 000000

005200
25 05200 000000

0'7)- 25-'1AY- 78 0 1:291O2 PAGE *I

ASECT_
,:,,,10*7-1

^WnRD 0O
::!700120
WORD 4 2"30*

. WORD 1(.1 O*20

;202*20
.WORD 3410*20
.=203*20
*WORD 2213*20
.=204*20
. WORD 5201*20
.=205*20
.WORD 7402*20
.,:.;212*20

.WORD 7760*20

.=213*20

.WORD 0000*20

.=214*20

.WORD 1777*20
=215i20
.WORD 0000*20
=250*20
.WORD 0000*20

26 005220 =2514(20
27 05220 004320 .WORD 0215*20
28 005240 .=-77524770

29 05240 024240 'WORD 1212*20
-----30 '005260 =;253*20
31 05260 064260 WORD 3213*20
32 003300
33 05300 024300

7734 005320
35 05320 060200

005341.7-
37 05340 135200

=25-4*20
. WORD 1214*20
.4=25E420-
. WORD 3010*20
.=256*2.0 --

.WORD 5650*20
68 000001' .END
.MA1N. RF-11 MACRO VMO2-12 25-MAY-78 01:29:02 PAGE 1+
gYMBDC-TABLE

. ABS. 005342 000
<57575-000 001

ERRORS DETECTED: 0
FREE- CORE: 18436: WORDS-

yiT:.=PDPST5 ^

E\ROikb 1.11-LUTED. 0
FREE CORE: 18436. WORDS

,

,RU SA\AMALL'-
040000:-037760
040020: 040000

040060: 040040
040100: 040060
040120! 040100

--04-mAa: 040120.
040160: 040140
040200: 040160
040220: 040::00
040240: 040220
040260: 040240
040.700: 040260
040320: 040300
040340. 040320
040360: 040340
20400: 000000
040420: 000000
040440: 000000
040460: 000000

Zi

040500: 000000
040520: 000000
040;40 :000000
040560: 000000
040600: 000000
040620: 000000
040640: 000000
040660: 00i000
040700: 000000
040720: 000000
040740: 000000
040760: 000000
041000: 000000
041020: 000000
041040: 000000
041060: 000000
041100: 000000
041120: 000000
041140: 000000
041160: 000000
041200: 000000
041220: 000000
-041240: 000000
041260: 000000
041300: 000000
041320: 000000
041340: 000000
041360: 000000

0414001 000600
041420: 000000
041440: 000000
041460: 000000
041500: 000000
041520: 000000
041540: 000000
041560: 000000
041600: 000000
041620: 000000
041640: 000000

0416601 .000000

