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OPTIMIZING THE MICROCODE PRODUCED BY A HIGH
LEVEL MICROPROGRAMMING LANGUAGE

CHAPTER I
INTRODUCTION

1-1 Motivation

Recent research in c0mputer_systems organization has
. .shown the need for microprogramming tools (1. 3, 5, 6, 19,
20, 21, 22). Such tools must be able t§ aid the develop-
ment of emulators and special purpose process&rs for high
speed applicatiohs. For example, the emulétioh of the IBM
370/158 instruétion set is accomblished by a microprogram |
resident in the control memory of the IBM 370 host.

A microprogram éxecutes from the}éontrol mémory of
 a machine which is called the host computer in this re-
éeérch. The host computer emulatés a virtual computer by
simulating a target instruction set. .The terms "target"”
and "virtual" are often used interchangeably. and desig-
nate the same level in a multi-level system as shown in
Figure 1-1. ’ |

The resident microprogram atvfhé emulator level of
Figure 1-1 must be implemented in much the same fashion as
any ofher computer program.‘ Therefore, it is only logical'
to apply the lessons learned from software engineering tq
this task. That is, the notions of structured‘programming.

high level languages, and machine independence directly



Users . High level application __Application
“language T language ' software.
Extended o : »
. Operating system __Systen
machine — & &8 software
‘ . Virtual (target) , :
Emulator ___ machine — Control
microprogram . memory (ROM)
Hardware Host machine __Electronic
"' circuits

Figure 1-1. A Multi-level Computer System

apply to the problem of reliable, efficient microcode pro-
duction (15). However, software engineering is extremely
‘difficult to achieve when dealing with microprograms. due

to the following problems:

Problem #1. Host machines widely vary in their archi-
" tecture. They may be broadly classified as either

horizontal (more than one microoperation may be

simultaneously executed from one microinstruction)-
or vertical (single microoperations per-hicro-
instruction typically encoded much like machine
code). Seé references 2, 12, 15) for a detailed-

discussion of microprogrammable host machines.

Problem #2. Horizontal microinstruction formats offer
added speed of machine operation only‘if concurrent
microoperations can be detected and combined into a

-single microinstruction. A microprogram is said to



be optimized if the resulting code is of minimum
length (length is equal to the number of micro-
ihstruétions). DeWitt (7) has proven the NP-
completeness of code}optimization for machines with
horizontal formats. Thus,rthé approach taken in
this research is to concentrate on fasf. efficient
algorithms that compact the code, but do not
guarantee'absolute_minimum length’of code sequence.

Problem #3. Portability. The pnodﬁction of portable, yet

compact code for a family of microprogrammable host
machineé is a tépic largely ignored by others. How-
ever, the time and effort needed to produce an |
emulatér should not be wasted when changing the host.
Indeed, the emﬁlation should be transferable to a
number of different host machines with little added
effort. A portable emulator is one that can be
moved from one machine to another’and. m6re import-
antly, enables the host designer to work in parallel
with fhe firmware designer. Thus, the virtual |
machine emulator’and‘hostvﬁachine hardware are
constructed in concert, rather than in an ad hoc
fashioné |

.These and other prbblems are SOlved‘in part by use
of a high-leVel programming language specifically designed

| to write emulators. A proposed high-level lang@age for

implementing emulators is described by Malik (12). Malik's



language is compiled into a portable intermediate form
called IML (see Appendix A). The IML version of a virtual
‘machine is then passed on to a‘translator-portability system

;for retrofitting to a specific host machine. It is the

translation of the IML described by Malik (13) that concerns

‘this investigation.

1-2 Significance of the Research

'Most recent research in microprogramming is concern-
ed with thé quality of the code generation. Microprogram
optimization refers to either reductibn,of the size of
contfol store or reduction of the execution time of micro-
programs. Sizeable reductions in}the eXecution time of
microprograms may be obtained for horizontal microinstruc-
tions. This is due to the ability of horizontal micro-
instructions to combine more than‘one mibrooperation into
a single microinstruction.t All of the proposed algorithms -
detect parallelism bf microoperations and then allocate
}ﬁicrooperations to the smallest number of microinstructions
possible. Two parallel microoperations are defined td be
any two microopefations that can be executed without
conflict. We discuss the kinds of COnfliéts that can arise
in Chapter V. ' |

Early work in code optimiiation is retiewed‘by
Agrewala (1) with the conclusion that very few'techniques_

exist that can be applied in a practical environment. A
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more receht overview in this area is given by Davidson (5),
who found that there have been no published results showing
the usefulness of any of these methods with large amounts
of productioh microcode.

DeWitt (7) examined some compiiers~and algorithms
proposed as "good" optimization aigorifhms~(l9. 21, 22) and
found that these algorithms fail to produce the optimal
sequence of microinstructions becaﬁse fhey do not consider
the interaction between register allocation and micro-
Qperatioh concurrency. Furthermore.,he found fhat micro- |
‘operation concurrency is sometimes determined by the format
of the control word as well as by the host hardware. The
‘importance of DeWitt's translating system‘is that the
elevated code generafioh to the level of symbolic variables
so that he could solve the coﬁbined problem of optimization .
and register allocatibn.' In addition’he-opened the door
to portability by supplying:

1) a model capable of describing a wide variety of
, microprogrammable machines, and

- 2) a register allocation/deallocation scheme

integrateq with code géneration.

DeWitt's methodology is too general to run on a real_‘
machine, because his model does‘not define the host machiné
microcode, and the control flow interface problem .is not

taken into account.

The major significance of this research, then, is



to extend the resultsrof DeWift.'add new techniques for

solving the portability problem, and reveal the effective-

ness of these methods when placed in use.

1-3 Thesis Introduction

The purpose of this thesis is to solve the problems

" ‘agsociated with the translation of a machine independent

intermediate language (IML) into an efficient microcode for

a variety of microprogrammable machines. The IML defined

by Malik (12) is directly compiled from a high level machine
independent microprogramming language designed spebifically_
‘for the realization of some virtual machine. The goals of
‘the resulting system are:

A. Efficiency - The translator must produce the
smallest number of horizontal microinstructions
practical. This is accomplished by a compac-.
tion algorithm described in Chapter V. |

B. Portability - An arbitrary machine can be used

. as fhe host. The system must be portable so
that it is easy to retrofit it to any machine.
This is accomplished by the Field Description
Model dlscussed in Chapter II.

To realize these goals the follow1ng tasks must be

done in this research: |

1) Devise a model which describes ali information

needed by the;system about the host machine.



2) Design a portable interface to map the machine
ihdependent IML into a machine dependent
symbolic intermediate language (MDIL).

3) Implement registér allocati&n/deallocation
scheme to map symbolic variables in MDIL to
machine unit names.

'4) Develop a compaction algorithm to detect con-
currency of statements which have beén register
allocated and to generate compact host binary
microcode. |

The next section provides anvoverview of the whole

system by showing the implementation of a PDP8 virtual
machine on a PDP11/40E host.

1-4 General Structure of the System

Basged on‘the analyéis of the goals and tasks proposQ
~ed in the last éection, the general structure of a machine
independent translation system is described in Figure 1-2.
The system requires three paSseSvOQer the source ¢éode to
produce compact host microcode. vThere are two inputs to
the system. One is the machine independent intefmediate
‘language (IML) which ié the realization of some virtual
machine. The other is the description of the host machine.
The outpdt}is the final version of a virtual‘maéhine ready
fo be loaded into a host control store as an optimized |

sequence of microinstructions which will execute some
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Figure 1-2. Structure of the Translation System
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virtual machine progfam stored in the host's main memory.
Suppose a PDP8 emulétor.written in Malik's high-level micro-
programming language and translated into an IML stream is-
‘input to the system. The IML stream input to pass 1 is
~divided into two parts. One, called the intermediate
executable.statement group (denoted by IESG), contains a
set of executable IML codes to describe the functional be-
havior of the target machine. This IML pfogram_is further
’divided'into’blocks. ‘Each block is a single entry-multiple
exit IML code. Variables defined in each block are eitherl
global’(universal to the whole emulafor progfam) or 100alv
(available only within the current block). The second
part of the IML input, cailed,the intermediate information
statement group (denoted by IISG), describes the target
machine hardware information and lists the variables used
by each block.

For the PDP8 emulation, some typical parts of the
IISG appear as shown in Figure 1-3. It prqvides parfial
hardware informatiqn of the target machine and lists one
block of variables. This block is used to calculate the
effective address of PDP8 target machine. |

Note that in FiggreAl-B. global variables are used
to éimulate thé registers of the PDP8. For example, the
PDP8 has a mémory of 4096x12-bit words called MEM, a
program counter called PC, and other registers, e.g.,

MAR, IR.



' 00A

00D
O0E

IML (IISG Section)

PDP8
...12
TWO

221

00G

207

207

207
208
120
120
120

EFTADR

MEM

IR

PC

MAR
ADR,,7
PCTEMP, ,12
MART,,12

10

Comments

name of the emulatof.
target machine has 12-bit words.

target machine is 2's complement.

target machine memory is 4096x12 ,
bit words.

block name for effective address,
computation.

global variables used by the
emulation to simulate the
registers of the PDP8 target
machine.

local variables with 7.12, and
12 bit precision, respectively

Figure 1-3. Partial IISG of PDP8 Emulator
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The emulation also uses local variables such as the
temporary program counter, PCTEMP, and temporary memofy
address register MART. These aré used by the.emulatioﬂ to
calculate the effective address prior to an operand fetch
by the target PDP8 machine. |

' The executable IML codes of the "effective address
block" are partially illustrated in‘Figure 1-4. These
codes are given in quadruple notation.

The executable section of IML code is produéed by
-the high-level language‘franslator iq a form to aid in
optimization by pass 1, 2, and 3. For example, temporary
variables are tagged (+, -) to indicate whether use will
~continue or not. This helps the register allocator.

The two-parf IML stream is input to pass 1 'as shown"
in Figureblfz. The Macro Table (provided by the user) is
consulted during pass 1 in order to expand each IML
statement into a host;machine dependent macro. Thisvpro;
cess is illustrated for the PDP8 emulation by éxﬁanding

the first four executable IML statements of Figure 1-4.

IML Macro Table o Comments

EXTR PGEADR IR +T.003 The first IML code of Figure 1-b.
The following three codes are

PUSH1 *1+IR TOS Copy the IR into the top of the
stack (T0S) of the PDP11/40E.
Pass 1 tags IR as a global sym-
bolic variable (denoted by sign.
"i") that will be used later
(denoted by the sign "+").



00G

IML *IESG Section)

EFTADR

EXTR PGEADR IR +T7.003
MOVE -T.003 ADR

CONDF .IR,7 TL.0O1

SUB  PC cl PCTEMP

EXTR  CRNTPG PCTEMP +T.00k

MOVE ~T.004 PCTEMP

OR PCTEMP ADR

MAR

12
‘ Comments

Name of executable block
for address calculation.

Get PGEADR from IR, put
into temporary register
designated as T.003.

Copy to ADR. The “"-" in-
dicates that T.003 will
no longer be used in this
block. (The "-" in the
previous line indicates
later use.) These tags

(+, =) are cues to be

used by the register
allocator. S

Test bit 7 of IR, and
branch to label L.001 if
zero. - The label is v
designated "T" to indicate
a True/False branch.

Decrement PC by constant
1, and store it in
PCTEMP.

Extract CRNTPG (current
page number) from PCTEMP
and place into active ,
temporary variable T.004.

Copy from temporary var-
jable T.004 (made inactive
»_*) into PCTEMP.

Inclusive OR PCTEMP with

- ADR and store‘into MAR.

Figure 1-4. Partial IESG of PDP8 Emulator



IML Macro Table

RSMK TOS  PGEADR

MOVE5 D

13

Comments

D Right-shift and mask the

T0S word with PGEADR as a
mask and store into host
register D.

#247,003 Move host register D to

temporary variable T.003.
Pass 1 tags T.003 as a
local symbolic variable
(indicated by the "2")
that will be used later.

The macro eXbanded version of EXTR still uses

symbolic variables PGEADR, T.003, and IR. However, the

macro also introduces PDP11/40E host machine registers.

'For example, the D register is the output from the ALU. The

TOS register is actually a 16- word pushdown stack in the

PDP11/40E host.

MOVE -T 003

ADR

The second IML code of Figure 1-%4.

- - . e, e e R En D an D S D WD D Gw D WD Ay DD D DD - - -

MOVE3  #2_T.

MOVES5 D

003 D

%2+ ADR

Copy from T.003 to host D. " Pass 1
tags T.003 as a local variable that
will not be used subsequently in
this block (indicated by "-"). When
the MOVE3 is done, the register
allocated to T.003 may be reallocat-
ed to another variable.

Copy from host D to symbolic ADR.
Pass 1 tags ADR as a local variable
that will be used later. _

The macro above uses two different forms of MOVE

because the PDP11/40E microoperation for MOVE commands

when copying from D differ from those when copying to D.
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CONDF \IR,7 TL.001  The third IML code of Figure 1-Ak.

PUSH1 *1+IR TOS Save symbolic IR to TOS.

"RMASK1 TOS 7 'EUBC Copy bit 7 of TOS word to host
’ o register EUBC, bit zero.

'NOOP  XUPF P.001 Copy symbolic address P.001 into
’ - base address reglster XUPF for
purposes of brapchlng, later.

BRCH  L.001 P.001 1 Branch depends upon the bit 7
"~ of IR(0.1). |

The CONDF'Code is performed by tesfing_bit 7 of the
. symbolic variable IR. 'If a "1" is placéd in the EUBC (a
hardware register on the PDP11/40E host) the BRCH micro-
operation fails-torcause a branch to L.001. On the other
hand, if a zero is placed in EUBC, the branch to P.001 is
taken; In pass 3, the actual value of P.001 is determined
along with L.001. ‘ |

SUB PC cl PCTEMP The fourth IML code of Flgure 1-4.

--------------—----------—--—-—-.--——--------—-----——----n---

MOVE? 16 B Copy constant 16 to reglster B.
. 16 is obtained by shifting a
‘one by 4 bits due to a 12-bit
target word on a 26-bit host.
Hence, c¢1=16, is put into B.

SUB #¥1-PC B D Subtract register B from PC and
‘ put into register D. Pass 2

tags PC as a global symbolic
variable that will not be used
subsequentlyvin this block. When
the subtract is done, the re-
gister allocated to PC may be
reallocated to another variable.
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SUB PC «ci PCTEMP The fourth IML code of Figure I-4,

- D Se ED D SR D D GD D D D D e D D D Em D e SD D D D e SR D SR SR S Gn ED D D SR GD G D ED R G D GD DGR D EE D ED S S W% S e e e

MOVES D *2+PCTEMP  Copy register D to PCTEMP. Pass .
: . 1 tags PCTEMP as a local variable
that will be used later, hence
the "+" sign. This register
may not be reallocated as per-
mitted by the PC variable, in
this block. A\ :

Register‘B is a host register for input to the ALU.
Thus, host registers A and B are}used,for binary micro-
operations on the PDP11/40E host.

The macro éxpansion above illustrates the use of
tags Placed in the IML stream by pass 1 as well as the
macro expansion‘process. |

Macro expansion of each block continues until the
IML stream is exhausted. The result is a set of host
machine dependent codes (MDIL) with partially symbolic
variable. | o

Several.problems remain-before the output from pass
1 can be used on the PDP11/40E. First, we must allocate
the symbolic variables to the general purpose registers of
the actual host maching. Then, we can assign the binary
microcode to each symbolic assembler code. Finally. we
must resolve addresses (L.OOl). This additional step is
done in pass 2. | | .

In pass 2, the FDM (field description model) is used

to define each MDIL instruction. This yields executable

microoperations which will run on an actual host. FDM is
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~actually a set of prlmltlve opergﬁ;gns%used to describe the

/\.wﬁ”"" e
e rmstese b

“host machine control memory. Each prlmltlve,operatlon is

defined by a 5-tuples in the form <opP, 1L, 0; F, P2
o operation code of this primitive operation.
I1/0: host- machine resourceé used as the inputs and.
outputs by this OP. |
T: timing period of the machine neéded td execute
the <OP,I,0?. | |
F: a set of fields in-the.host‘machine micro-
instruction format used to execute the 40P, I,07.
For example, one of the primitive operations in the
FDM of PDP11/40E is:
OP: SUB
I : One of‘the general burpose registers and re-

gister B of PDP11/40E.

0 : register D of PDP11/40E.
T : pulse P2
F s+ Field RIF Determined by register used by

variable.
Field SRX=1 Use RIF(0:3) as the address of
| register. 'This tells the host
which register to use in the
subtraction. o
Field SBM=0' Copy reglster B to B multlplexer
in preparatlon for the subtract.

This inputs B to the ALC.
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'Field SALU=6  The ALU is told to SUB.
Field DAD=8  The ALU is told to SUB.
Field CLK=2 The SUB is to occur during the

Second clock pulse of the micro-

instruction.
Field XUPF Determined by'the.nextvaddress;
Field CD=1 Copy result from ALU to register
| D. |

The rest of the fields are not used.
- This primitive operation can be used to define thé
MDIL code:v’
SUB *1.PC B D  ; subtract register B from PC

and store in register D.

The FDM of each primitive operatiOn is stored in a

table and used by pass 2. Note that any host machlne may

T

be descrlbed by an approprlate FDM table. Hence. the

s, TN ARG
. p—ese S

portablllty of the system depends on the flex1b111ty of

PR

- this table.

At R b v

The remaining chapters give generalized algorithms
for producing compact,»portable microprograms‘on a‘classkof
horizontal micrdprogrammable machines (pass 3). The
PDP8/PDP11/40E example used throughout will illustrate~that
the techniques are'quite general and apply to other high_
“level languages and host machines.

The results from pass 3 have been omitted from this‘
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lntroductlon. but a complete PDP8 emulatlon is given in
Chapter VI. For results of the compaction and reglster
allocation algorithms see Chapter VI and Appendlx E.

Chapter II develops the FDM (fleld description model)
f’to describe general host machines. The purpose of this
i'model is to‘describe an arbitrary horizontal microprogram-
\lnable host machine to the IML translator. Thqu'port;'

ablllty is obtained if any other machine is used as the

’ host. without altering the translation system. However,
: Ecode efficiency is obtained only if the model can support -

| sufficient host information to decode the IML and produce

/

i

Kof Chapter V.

“compact” microcode. Microcode efficiency is the subject

Chapter II1 solves problems that arise from the
architectural differences between the virtual machine
realized by the IML input stream and the host machine
described by the FDM model. These problems include differ-
ences in the word size, memory size, arithmetic mode, »
hardware mismatch, and operation format mismatch; Port;v'
ability and efficiency may be traded off in an attempt to
solve these problems.

| "The purpose of Chapter IV (pass 2) is to assign
binary microcode to each statement in the MDIL stream.
Before this process can oe completed all symbolic variables
have to be allocated to the general purpose registers (GPR)

~of the host machine. In general, the‘number of variables
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in the program is greater than the humber of regiétgrs of
the host machine. In this case, one of the "less éctive"
variables allocated to a register must'be dealldcated.‘
"Load" ‘and "store" operations are used to'move operands
between memory and the central processor's working
registers. |

| The block structure of thé MDIL stream from pass 2' 
is divided into a set of straight line code segments (SLC).
The "state" of a GPR,is'defined for each SLC as the assign-
ment of operands to the.GPR. In loops, SOme extra load'
and stofé operations are needed to force the states of the
GPRs equal to the initial state of the loop ihmediately
before a backward branch operation. In this pass, an
efficient fegister allocatibn/deaIIOCation 5chéme,and
control flow ihterface schehe are developed to keep thé
number of "load" and "store" operations as small as
possible.

After all symbolic variables have been allocated to
the GPR régisters.vthe_microinstruction fieldvvalue.and |
-timing Phase are assigned to each statement. This produces
a set of microoperations‘(MOP) in a 5-tuple represenfation.

<P, I, 0, F, P, for each SLC in each block of MDIL.

The 5-tuples obtained from pass 2 may be exchange-
able with one another due to their independence.‘ This
fact is used to detect whether a particular MOP can move

toward the beginning of the SLC. Whenever a 5-tuple is
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moved forward in the SLC possible concurrency is checkéd.
Chapter V (pass 3) examines the 5-tuples of each SLC to
detect and combine concurrent 5-tuples into fewer micro-
instructions. Thus, a compabtion algbrithm is developed to
allocate'the sequences of microoperations into‘compaét
concurrent microiﬁstruction;

" The optimization of microoperations produced from a
portable high level language is khdwn to be ah NPfcomplete
problem (7).v Invertibility (defined as the situation whére
two MOPs are datavindépendent with‘each other) is the cause
of the NP-complete optimization problem, but data dependency
among MOPs limits their invertibility. After some |
restrictioné are put on the allocation’of Mo?s; as 0(mn)
algorithm is devéloped which may not produce optimum code,
but produceé the "best" possible code when it'applies to
thé4rea1 machine. |

In Chapter VI we explore the quality of the linear
~ time compaction algorithm and show that it is close to -the

best that can be done with real machines.
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CHAPTER II
THE FIELD DESCRIPTION MODEL

2-1 Introduction
The purpose of this chapter is to develop a model
'ﬁsed to describe arbitrary microprogrammable'host machines .
in order to get both portability and efficiency from the
translation system when machine independent IML is transé .
lated to a Host machine microcode. By porfability we mean
that when other host machine is used, only this model is
changed. Effective translation can take place if the model
supplies all information about the host machine which will
be needed to translate the virtual machine'into;microcode~
for a subsequent host machine. The following goals are
set up‘for designing this model: |
1) The format of this model is machine independent
- s0 that it easily fits other machines.
2) The model is comprehensive in that it includes
all hoSt machine information needed in the
system and it can describe the INL well.
3) This model provides an easy way to detect the
conflicts between any two operations..‘
‘Section 2-2 surveys earlier research done in this
area. Section 2-3 gives a brief analysié of ; microprogram-
mable machine used as an example host. Section 2-4 describes

how the Field‘Descfiption Model. is developed to suit the
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system. The use of this model is illustrated in section

2-5 and 2-6.

2.2 Previous research review

| Two different models proposed by Dasgupta (3) and
DeWitt (6). respectlvely. have prev1ously been used to
describe an arbitrary host machine and its corresponding

concurrency of microoperations.

2-2-1 Dasgupta Model_

In Dasgupta's model (3), the host'machine is des-
cribed in terms of a sequency of microoperations. Each
microoperation is denoted by the 5-tuple.
| n= (OP, SC, SK, U, V>
where

"OP" désighates a primitive operation,

| "SC."V"SK" denote the data source and sink‘sets
respectively for "OP,"

*U"™ denotes fhe set of operational unitsVand/of

baths required to execute m,

"V" is a timing period in which m is executed.

One criterion used to detect the concurrency of
microoperations is: If'there is‘no sourée/sink conflict
and no operational unit conflict between two operations,
they can be combined into one microinstruction,

This model'is hardware oriented. All necessary

‘machine units associated with the microoperation are given
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in the 5-tuple. The model is inadequate as a portable
-translafor model for the following reasons:

1) Because of architectural complexity of the host
machines. it\is.not easy to display all physical
operational units which are used to execute the

| operation.

' 2) Detection of the operational unit conflicts is
another complexity, if the model cannot display
all hérdware‘units.

3) Some counter examples given by DeWitt'show that
even if there is no hardware unit conflict
between two:operations. they still cannot be

executed in one microinstruction. .

2-2-2 DeWitt Model

DeWitt (6) found that the concurrency permitted by
microoperations is sometimes determined not simply by .the
hardware configurations but also.by the format of the
control word chosen by the designer. This observation
motivated. the control word model for determining parallel
operations. This model describes a host machine, a set
of blocks B, and a set of configurations C. Each block
(which corrésponds to the first three‘tuples of the
Dasgupta Model) describes a set of microopefations or a
field in the microinstruction. Each configuration describes

a legal combination of microoperations. The set Cicontains
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- a description of all the legai microinstructions for the
machine. Thus, in order to determine whether two or more
microoperations can be executed concurrently, the corres-
ponding block for each operation is identified first and
the set C is examined to determine if a configuration Cj
exists in such a way that each block is an element of Cj‘
In conclusion, this model utilizes a logical approach for
describing the concurrency avéiiable ih>host,machines
rathérbthan a physical approach as in thevDasgupta Model.
Thé factor determining success of the Control,Word'Modelb'
is whether this model can successfully describe all fhe
legal microinstructions a machine can execute.
This model provideé a éorrect method to determine
the concurrency of microoperations, but there are still
- some problems it does not solve. Among these problems are:
1) In using this model, one has to determihe the
ihdependentvblock first, then check for con-
currency of blocks in order to gét’a "legal”
configuration. DeWitt does not give a method
for finding concurrency of the blocks. This
might be a heavy burden for a user who is not
familiar with the host machine.
2) This model does not supply the binary microcode
 of each microopeiation.
3) The model in the DeWitt system is not used to

map the machine independent code to machine
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dependent code.
These two models fail to satisfy the needs of our
translation system, but lead to a modified model called

- the Field Description Model deSCribed in the next section.’

2.3 General Description of the Host Machine

To summarize all host information into a fixed format
model to suit the translation system is challenging work
because of the substantial architectural differences in a
variety of microprogrammaﬁle machines. In thisﬂsection'an‘
example host machine is briefly analyzed and critical

features extracted and used in the model.

2-3-1-Hardware Description
In order to describe the IISG of the IML, the follow-
ing hardware inforhation of the host machine must be known:
1) Word size and memory size. |
2) Arithmetic mode.
3) Status registers used to display flag settings,
e.g., carry, overflow. . ‘
k) Sstorage deviceé
a. Primary memory used to store virtual machine -
executable programs,.
b. Control memory used to store the final
version of virtual machine, |
c. General purpose registers (GPRs) used to hold

the variables declared in the IISG,
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d. Working registers used to perform ALU

operations (in most machines, working

reglster and the GPR are the same). and

e. Any other machine‘units.

5) Hardware configuration and stack. The IML will

supply information about a stack, if it exists‘

in the virtual machine.

6) The method used to determine the next micro- -

address.

»» Example 2;1:

The example host machine is the PDP11/40E, and the

followihg hardware information is extracted:

Items
word size
arithmetic¢ mode

N\ ,
flags setting -

storage devices
main memory

control memory

general purpose
register (GPR)
working register

other machine
units names

Information

- 16 bits

2's complement

carry, overflow, negative and
Zeros

1024 words RAM, 256 words ROM
and 32 words PROM

16 words

GPR is used as the working
reglster

" registers EUBC, UPF, EUPF, TOS,
. BA, B, D, etc. '
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Items _'” Information
hardware configuratibn 16 words steck. processor

status register (used to
set flags), shifter,
masker, etc. «4
~ 2-3-2 Software Description
From the functional behafior viewpoint, a micrp-
Programmable machine is simply a machine consisting of a set
of prihitive operations encoded and stored in ; control
memory. Wheh one of these operations is. executed, a set'of
“hardware units is activated to process the data during a

- certain timing period with reference to the machine cycle.

[ ——

This set of prlmltlve operatlons is used to emulate the
statement in IESG of L. | T
The efflclent emulatlon of IML involves the follow-
ing questlons.
1) How are primitive operations chosen to describe
the IML?
2) How is hardware unit information used in the
corresponding operation supplied?
3) How is the biharyfmicrocode associated with the

primitive operation?

2-4 Field Description Model
Each host machine has a unique microinstruction’
format which consists of a set of fields. Each microoPerae

tion has fixed fields in the MI format where binary
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 microcodes are assigned. The set of fields of each micro-
operation can be considered as the logical dperational unit
and used as the residence in the execution of this micro-
operation. If the physical operational unit in Dasgupta’s
model is replaced by~this logical operational unit, the
shortcbmings given in the last section to explain why the
illustrated models fail to satisfy the heeds of our system
can be alleviated. This modified model can get the follow-
ing advantages immediately: |

1) All the necessary fields used to execute the

microoperation are easily illustrated in the
microinstruction format. | ‘

2) The binary microcode is obtained directly from

the value of each field.

Further, in Chapterbv, we succeésfully'develop}a
rule to detect the concurrency of micfooperations given
this modified model. These enhancements motiyated the
development of the Field Description Model thaéymeets the

objectives proposed in the first section.

2-lk-1 Definition of the FDM |
The Field Description Model (FDM) represents fhe.
host machine as a set of microoperations (MOPs).
FDM= {Mi, 1 ¢4 ¢ nt
Each MOP, My, which is identified by a unique index
i is denoted by a set of five tuples,

m; = {op, I, 0, F, P}
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and each tuple is expanded by specifying its domain. Each

domain enumerates all the legal values which the component

can assume. The tuple components are:

OP: Designates the primitive operation to be

performed.

I : Denotes the resources used as the input to
the QP. : ‘ L

O : Denotes the resource used as the output to
the 0P. :

" F : Denotes the set of fields which are occupied

in the microinstruction format when OP,I,0
is executing.

P : Denotes the set of timing phases at which the -
<0P,I,0» is executing.

The following example will illustrate this idea.

»® Example 2-2:

One of the MOPs in the FDM of the PDP11/40E (7,8) is

described by:

where

Mi¥ ¢ADD, I, O, F, PY

1) The domain of I is register B and the set of the
general purpose'registers.‘ | | ’

2) The domain of output is register D.

3) The domain of timing is pulse 2.

4) The domain of field is as follows: (The meaning
-of each field_ié described in Appendix B) |
Field 1 specifies one register from the set GPR.

Field 13 specifies the next‘address;
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Field 6s9 (specifies the operetion ADD).
Field 2=1 (allows Field 1 to be used as a source
of general register address).
Field 5=0 (B register -B mux).
Field 12=2 (thie MOP is activated in pulse 2).
Field 19=1 (allows clocking the ALU into D
register). 7
The remaining fields are not used in this MOP.
5) The,domain of OF is operation ADD. 4«
A complete FDM of the PDP11/40E is described in
Appendix B. There are 41 MOPs in the model which are used

A 5 s

to descrlbe the host machlne and decode most statements in

———
B N

B ol

IESG of IML. For each MOP, there are some items in tuples I,

JUERREEE
tacmminir S

0, and F which cannot be determined when the model is built.:
For instance, in example 2-2, one GPR is to be used as the
input, so field 1 is undetermined. The selection of the
register used as the input is determined from the register
allocation/deallocation scheme in Chapter IV. The deter-
mihetion of field i and field 13 are shown in Chapter IV

and Chapter V, respectively.

2-4-2 General Rule to Build the FDM
The general rule to determine the FDM is descrlbed in
»Figure 2 1 and Algorithm 2-1 which implies the following

steps in the selection of the five tuples.



collect all necessary "OPs" which are
sufficient to describe the IESG of IML
and denoted by OFN= {oP; | 1'% i & n}

X A

for each <OP.», select the legal (Il. 0y >
such that thére is no conflict in

the execution of OPl Il, Ol

rom the conirol store cycle, find the
iming period, denoted by (P 2, needed

to execute the (OP I Ol)

{

Tom The mlcr01nétxﬁ‘ilon format, find
he fields used to store the {0P., I. 1
i» Pj2 while it is executing ané

enoted by (Fl

Fncrement the index i

@—<\7 e (e

Figure 2-1. Functional Flow Chart
of the Generation of the FDM

31
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Algorithm 2-1. General Rule to Determine the FDM

Comment: The Field Description Model (FDM) is built by the
user to supply the host machine primitive
; operations.

BEGIN
CALL ALGORITHM 2-2 TO OBTAIN ALL NECESSARY "QOPs" WHICH ARE
SUFFICIENT TO DESCRIBE THE IESG OF IML
'SELECT THE LEGAL ¢I,0) ASSOCIATED WITH EACH "OP" SUCH THAT
THERE IS NO_UDNFLICT IN THE EXECUTION OF <oP,I, 07
IF THE RESQURCES USED AS <I,0% ARE THE MACHINE UNIT NAMES
THEN ASSIGN THE MACHINE UNIT NAMES T0 €< I,0) DIRECTLY
ELSE (These resources used as the {(I,0) cannot be
determined now)
ASSIGN THE CORRESPONDING MNEMONIC VARIABLE TO <{I, 00
(This variable will be determined in Chapter IV)
CALL ALGORITHM 2-3 TO DIVIDE LOGICALLY THE CONTROL STORE
CYCLE INTO A SET OF PHASES AND EACH 0P, I, 0)» IS ASSIGNED TO
THE CORRESPONDING PHASES(S)
FROM THE MICROINSTRUCTION FORMAT, FIND THE FIELDS USED TO
EXECUTE THE <OP,I,02 AND DETERMINED THE VALUE OF EACH FIELD
IF THE FIELD VALUE CAN BE DETERMINED FROM €OP,I,0) S
THEN FIELD VALUE IS ASSIGNED TO THE CORRESPONDING
NUMERICAL VALUE
ELSE FIELD VALUE IS ASSIGNED TO AN ALPHABETIC VALUE
AND WILL BE DETERMINED IN PASS 2
BASED ON THE MACHINE CONSTRAINT, GET A RULE TO DETECT THE
CONCURRENCY OF MOPs (This idea 1s jllustrated in Chapter V)
END. -
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OP,1,0 Selection

The "OP" selection directly influences the efficiency
of the FDM. From the objective viewpoint, the basic
functibn of‘the model is to map the IMLvinto machine de-
pendent code. This mapping is one-to-one for simple INL
operations, and, one-to-many for complex IML operations.

The set of operations in the FDM must be able to.express
simple dperations in the IML. The geheral rules for
choosing the "OP" used in the FDM are described in Algor-
ithm 2-2. The I/0 resources must befselected so that thére
are no conflicts in the execution of €0P,I,0). The follow- |

ing example will illustrate this idea..

A Example 2-3:

‘In the PDP11/40E (7,8), addition is one of the:ALu
operations. The input resources to the arithmetic l&gic
unit are BIN and AIN, respectively. The choice of an out-
put register mustvconsider possible I/o cOnflictslif |
register B and one register from_the set of genéral'purpose
registérs (GPR) are used as inputs. | |

If one register from the set of GPRs is used as the
output resource, then conflict may occur within this MOP.
For example, the statement | |

R2 + B—R3 ; add R2 and register B to R3
is not allowed by the PDP11/40E host in one microinstruc- -

tion due to the conflict between R2 and R3. 1In this case,
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Algorithm 2.2, Selection of Tuple "OP" in FDM

BEGIN o '
COMPARE THE OPERATIONS (OPs) IN THE MI FORMAT OF THE HM

WITH THE STMT IN IESG OF IML

. CASE "OP" OF:
: IN IESG AND IN HM: THIS "OP" IS USED IN THE FDM

IN HM BUT NOT IN IESG: THIS "OP"IS NOT USED IN THE

FDM

IN IESG BUT IN HM: BEGIN : :
*IF THIS "OP" IS NOT DECODED BY

PASS 1 (i.e. This "OP" is used
as the simple IML code)
THEN DECODE THIS "OP" INTO A
SET OF MACHINE OPERATIONS
‘AND PUT THEM IN THE FDM

’ END

END.

*Some complex IML stmts are decoded by the translation
system. The detail is in Chapter III.

Algorithm 2-3. Selection of Tuple "F* in FDM

'BEGIN
IF THE CONTROL CYCLE IS PHYSICALLY DIVIDED INTO SEVERAL

PHASES AND ASSIGNED TO EACH MICROOPERATION
THEN THE LOGICAL PHASE=THE PHYSICAL PHASE
ELSE BASED ON THE SEQUENCE OF THE MICROOPERATIONS APPEAR
IN THE MICROINSTRUCTION, THE CONTROL STORE CYCLE IS
LOGICALLY DIVIDED INTO A SET OF PHASES AND EACH :
PRIMITIVE OPERATION IS ASSIGNED TO THE CORRESPONDING

| PHASE
E]N'D’
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a set of GPRs cannot be used as the output resource. In-
stead, régister D is used as the output resource to make
| sure this MOP is executable and causes no conflict in
©P, I, 0Y.9¥

Each <OP,I,07 is a primitive operation and from the
charactéristics of horizontal microprogrammable machines,
more than one of these primitive opefatiqns may be executed
in thé,same microinstruction. In order to construct fhis :
kind of microinstruétion..we mﬁst éonsider_"résidence |

cohflictS“ and possible "timing" conflicts.‘

Timing Tuple Assignment

The execution of a microinstruction is controlled
by the fixed control store cycle.” Within this cycle, most
machines provide multiple phases (polyphases) of fimihg'
periods fdr each.microinstruction. In this research the
control cycle is logically broken into several distinct
Phases and control signals are issued at éachlphase.
According to the sequence of the <0P,I,0” appearing in the:
microinstruction, each primitive operation is assigned to
one or more logical phases. The general rule is described
in Algorithm 2-3. The following example will illustrate

this idea.

PrExample 2-4:

In the Mathilda machine (18), the microinstruction
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Iis implemented in a polyphase manner. The logicai'phases
of microinstruction execution are the following:

1) 'Performing data transport on the main data,path."

2) Executing shift and 6ther operations.

'3) Calculating the address of the next micro-

ingtruction to be execufed. |

Another'exadple.is,fhe'Microdata 3200 machine (16),
where each 135 nano-second clock is needed to‘get and
execute a single 32-bit microinstruction}from control stbre.
This control cycle is logically dividéd into three phases,
which are: |
- P1: Test evaluation condition.

P2: Action of the current instruction{ | ,

P3: Branch, on the basis of the test value from P1.
Thus, all microoperations of these machines can be logical-

ly assigned to three phases. ¢« =

Field Tuple Selection

The choice of the set of fields associatéd with the
<OP;I,O>‘is obtained directly from the microinstruction
format of the host machine. The value of each field is
classified as one of two kinds. One is the commercial
value already defined; - The other is the alphabetical
'value de termined iater. The folidwing example explains

this idea.
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»>Example 2-5:
| | In the PDPll/hOE (7,8), the eighty bit micrdinstruc-
tion format is divided into 27 fields. The field tuple
associated with each <0P,I,0> uées these 27 fields directly.
In reference example 2-1, seven fields are used in the
field tupie of this MOP and classified into two kinds:
1) The field value has already been defined.
Field 2 is set to use the GPR as the input
resource. | |
Field 5 is sét to use the register B,
Field 6vis set to use the OP ADD.
Field 12 is set to'use clock 2.
Field 19 is set to clock register D.
2) The field has not Yet been defined.
Field 1 is a function of GPR séleCtion;
- Field 13 is determined by the next micro-

address. ¢ ¢

2-5 Discussion of the FDM
The FDM is a modified Dasgupta model in which the

logical operational unit is a set of fields replading the
physical operational unit~referenced by the micro-
instruction format. The'FDM‘overcomes the disadvantages
listed in section 2-2, and'includes other important features
- as foilows:: | |
1) The field tuple implicitly limits the number_‘

of MOPs in the MI. The fields associated with
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each MOP, and the numbef of MOPs in one'MI'are
inherently constrained by the host machine.
When the number of MOPs in a MI is equal to the
length of the MI, all fields in MI are occupied,
making it impossible to add another MOP to jhié
MI. This feature is used to advantage.in the i
code compaction algorithm of Chapter V.

2) Because of the architectural complexity of host
machines, it is hard to display all physical |
operational units for each MOP. This adds
difficulty to the detection of physical unit

: conflicts. But in the FDM, all physicél unifs
used in one MOP can be expressed in terms of |
the logical operational unit. Then, all
physical operational unit conflicts between
MOPs can be detected from their logical'opera-

tional unit.

poExample 2-6: | |

| In the PDP11/40E (7,8), the RD bus has three
potential resources: 1) GPR, 2) the processor status'
word, and 3) the extension. Eaéh of the three can
independently gate a word onto the RD bus. Usually two
resources gated onto the RD bus would result in an efror.
When the following operations are involved,

M1: 400-——»D, P2 ; copy constant 400 to register D
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_ ’;vin‘pulse'Pz
M2: D=—>R6, Pj ; copy register D to R6 in pulse P3.~
R6 is set to a constant value, 400. With reference to
Figure 2-2, the phyéical.operatidnal units used in M1 are
" the RD bus and AIN. In M2, it appears as if only the Bus
'is used as the physical unit. If this assumption were true,
then M1 ahd}MZ would be exeéuted in one MI‘during clock |
~cycle 3, the I/0 conflict being avoided by the timing |
pulse. But. in fact the new value of R6 is its old value
with bit 8 set instead of 400. Why? This idiosyncrasy is
handled by the FDM by switching M1 and M2 to the following§.
M1 {MOVE6, 400, D, F1, Pé> ; same actions as the
M2 {MOVES., D, R6, F2, P3 » ; previous statements

Domain of F1 is: Domain of F2 is:

Field 6=0 Field I=6

Field 141 ~ Field 2=1

Field 14=15 ‘ Field 4=2

Field 16=25 Field 11=3
Field 17=0 - ’

Field 18=400

Field 19=1

(The set of fields used in M1 or M2 is défined from

. Appendix B.) '

The logical operational unit of M2 is examined.

From the host machine manual as field 1 and field 2

~are set and the corresponding register is being clocked,

the RD bus iS activated again. This implies that the RD

bus is used as the physical unit in M2. Hence there is a

Physical operationél unit conflict so that the potential
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concurrency cannot be permitted. As is seeh.>the fields

used in one MOP can express hardware characteristics»of a

host computer.

Extension
?| GPR
. Reggster RD{ bus.
BUS [:——*———-
. » .
BIN AIN
(ALU)
Register D

Figure 2-2. Simple Diagram of"

PDP11/40E CPU
 Furthermore, the physical operational unit conflict can be
detécted from the field tuples. In F2, as field 1 and
field 2 are set it implies that the RD bus is activated.A
‘In F1, as field 14 is set it implies that the emit value
is sent to the RD bus. In the detection of RD'bus con-
flicts, we only check these three_fiélds by the following
rule: | |
| IF (£(1,14)=1) and (£f(2,1) are set)

THEN there is an RD bus conflict between M1
and M2 : ’

ELSE no conflict
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where f(i,j) means field j in MOP; . ¢ ¥

3)

Some field can be shared by more than one MOP in
one microinstruction (MI) and will not cause a
conflict. "This feature can be used to detect

whether two MOPs can be executed in one MI even

- if there is a physical operational unit conflict‘

in the same timing phase. To understand this
point, the fields in the MI.format are grouped
into two categories first, then an eXample is
given to illuminate this feature.
There are two kinds of fields in the MI format
denoted by FA and'FB. respectively. \
\FA = {fi | if fi}is used by more than one MGP
in the same MI and the values assigned
to these fields are the same, it will

cause no conflict.

For example, the literal field can be used by

more than one MOP in the same MI only if the

value assigned tovthis field ié the same.

Obviously, if this kind of field is used by

more than one MOP and the field value is not

the same, it causes a conflict.

Fgp = {fi.[ if f; is used by more than one MOP

in the same MI, it will cause a conflict
even if the fieid vélue is the same&

For example, when the machine has only one ALU
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operational unit, if two MOPs try to execute the
same ALU operation, this field will cause a con-

flict in detection of parallelism.

r>»Example 2-7: ‘ _
Case 1: Mi: .RZ + B D, P2 ; add R2 and register B to
; register D inﬁpulsé P2
| M2: D R3, P3- ; copy register D to R3 in
; pulse P3
Refer to Figure}2-2{ the physical operational units uséd in
M1 are the RD bus and the ALU. Based on example 2-6, the
RD bus and BUS are used in M2, Because of the RD bus.

conflict, the potential concurrency cannot be permitted.

‘Case 2: M3: R2+ B D, P2 ; add R2 and register B to
B ; register D in pulse ?2
‘M: D R2, P3 ; copy register D into R2
; in pulse P3
For the same reason as in case 1.‘thebconflict of RD bus
still exists between M3 and M4%. But, the execution of M3
and M4 in one MI is permitted by the machine. This
permission can be obtained by éxamining the field tuples.

The field tuples used in each MOP are:

e
&

F1 and F3 : F2 Fh
£(1,1)=£(3,1)=2 £(2,1)=3 f(k4,1)=2
(1,1)=£(3,2)=1 f£(2,2)=1 f(4,2)=1
£(1,5)=1£(3,5)=0 f(2,4)=2 f(4,4)=2
£(1,6)=£(3,6)=9 f(2,11)=3 f(4,11)=3
£(1,19)=1£(3,29)=1 4 ‘ '
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‘(The set of fields used in each MOP is defined from Appendix

B.)

4)

Further, field 1 and field 2 are classified as
the elements in set FA' As is seen in case 2,
£f(3,1)=f(4,1), £(3,2)=f(4,2); i.e., there is no

logical operational unit conflict, so that con-

| currency is allowed even if the physical unit

conflict exists. (The physical unit conflict on
RD bus‘still gets the correct resulf which is
from R2 ORed R2). An examination of caée 1 shows
that f(1,1)=2, f(2,1)=3, so this logical opera-
tibnal unit conflict dbes not permit the con-
curfency of M1 and M2. (The conflict on RD bus
‘gives a wrong result'which is from R2 ORed

R3). 4 4

The logical operational unit supplies the binary
microcode for each MOP so that the FDM tuple

can be used in the real machine instead of the

abstract machine.

From the above discussion, it is obvious that the

‘logical operational unit of the FDM has much potential to

detect the concurrency of MOPs. Based on the 5-tuple

format, a code compaction algbrithm which is developed in

Chapter V can save up to 20% instruction count when it is

applied to the real machine.
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2-6 Cohclusioﬁ
Refer to Figure 2-3, a simple illustration of the
system, to show the use of the FDM. The FDM developed in
this chapter provides the following facilities for this
system: ‘ 7
1) In pass 1 (Chapter III), Tuple OP suppliés the
basic host machine éperatioﬁs used to decode
the statements in IESG of IML;
2) In pass 2 (Chapter’IV); Tﬁple F provides the
field,value~qu each primiti?e operation -and
Tuple P assigns the timing phase to this
operation. The output is mapped to a set of
MOPs in 5-tuple representation.
3) In pass 3 (Chapter V), the 5-tuple format
provides a very efficient way to perform the

optimization of MOPs.
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IESG (machihe independent)

pass 1]  decode IESG

FDM

©r,1,0?
(machine dependent)

pess 2 ,
— assign field and timling
information to {0P,I,07

<®?,I1,0,F.PY

'[pass 3 (Based on the 5-tuple format, a
concurrency detection rule is
developed)

v

‘Figure 2-3. Use of the FDM
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CHAPTER III
PASS 1

3-1 Introduction

The purpose of this‘chapter is to present a solution
to the interface problems associated with .the mapping of a
machine independent intermediate language (IML) to a hos# '
machine dependent intermediate code (MDiL). The IML is
directly compiled from a high level machine independent
microprogramming language developed for the realization of

some Vvirtual machlne. /The host machlne 1nformat10n is

prn e v T

e e 5

descrlbed in the Fleld Descrlptlon Model (FDM) which was

e e I T A T,
et s T

e —

A machine 1ndependent 1nterface system is needed for
portability, but, because of the architectural differences
be tween the'virtual machine and the host mééhine, such a
portable interface system can hardly take advantage of the
host machine to produce efficient object code. In order to
squeeze both of these goals into the system, the problems
arising from the mapping are solved by the sjstem designer
and the user.

| Section 3-2 discusses problems arising from attempt-
ing to handle different host machines. Section 3-3 makes a
suitable assignment of responsibility for solving these

Problems to the user and the designer. Section 3-4 then.
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shows how these problems are solved.

3-2 Problems Arising from the Differences Betweeh_Machines
From‘a iow level designer's viewpoiht. ali character-
istics of the virtual méchine are described in the IML.
(The detail description of the IML is illustrated in
Appendix A.) The information statement group, IISG, of IML
describes the virtual;machiné hardware characteristics, |
The executable statement group, IESG, ovaML; which ig used
to describe the virtual machine funétional behaviof. con-
sists of a set of blocks. Each block is a single entry-
multiple exit collection of host machine independent codes.
Variablés defined in each block are either global (universal
to the whoie emulator program) or local (available qnl&
within the current block).
Virtual méchine and host machine differences stem
from: |
1) The word size and the‘memofy size. Thése
differences influence machine performance.
2) Arithmetié_mode used |
The negative number representation and the
subtraction operation may cause incompatibility
. between virtual machine ;nd host machine.
3) Hardware configurations
If some hardware unit éxiSté in the‘farget

machine but not in host machine, an extra
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mapping is needed.

> pExample 3-1: _

In the IML, if the statement:

223,,,51,52,83,s4

is given in the IISG, fhe tag indicates that é
stack'pointer exists in the target méchine. The
other information, S1, S2, S$3, sl indicates the
push-pob sequence associated‘with the stack.‘
If the host machine does not support a hardware
gtack, the code genefatiOn procedure must |
provide a .software routine to implement an -

algorithm to simulate the stack operation. 44

Operation forﬁat
The host machine operations defined by the FDM
are called the basic machine codes.

IML opefations in IESG are divided into two
kinds. The operations in one group are called
the simple IML codes. The group of complex
IML codes is the IML codes which cannot direct-

ly map into the basic machine codes.

»» Example 3-2:
a) ADD *GPR B D
This is a basic machine code'from the

FDM which means to add GPR and register
B to D.
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c)

The
1)

2)

3)
4)
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ADD  SRC1  SRC2  Dest

This is a simple IML code which means to
add SRC1 and SRC2 to Dest. There may be
different ways to implement this in
different host machines.

LOOP SRC1  SRC2 SRC3 ; loop for SRC1=
: SRC2 to

; SRC3 by 1.

Since most‘machines do not provide the
corresponding primitive operation to decode
the "LOOP" directly. This complex IML code
needs additional modification described in
subroutine EXPANS (section 3-4) before 1t :

can be mapped into a machihe code. @ ¢

translation system must:

handle the problem of word size differences
and/or different arithmetic modes, .
simulate the hardware units eXiétihg'in

the target machine but not in the host
ﬁachine{

decode the complex IML code,

implement a mapping from the simple IML

code to basic machine code.
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3-3 Information Supplied by the User
Before going into more detail, two objectives pro-
‘posed in the previous chapter are to be traded-off here..
One is to get an efficient object code. The other is to
get a portablebtranslation system. If all the tasks arising
from the differences between machines are implemented by the
translation system designer, the translation‘process can be
made machine,independent,‘but it can hardly take advantage
~of the host machine. The result may be production of
inefficient microcode. On the contrary, if all these tasks
are implemented in the host machine microcode by the user,
we can easily take advantage of the machine to get efficient
object code. But‘this is a tedious and error-prove |
implementation methodology rejected at the butset because

portability is lost.

A Macro Expansion Table (MET) written in the basic

e

3EEﬂL5@£2}Qﬁ code is built by.the user to simulate simple

__IML code. 6 The target'machine hardware units which do not
exist in the host must be simulated, also. The remaining
tasks, including the decode of the complex IML code and
the simulation of problems from the word size and_érithmetic

mode differences, are done by the system designer in pass 1.

»pExample 3-3:
PADD SRC1 SRC2 Dest

This is a simple IML code to perform addition of SRC1 and
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SRC2 to Dest and Set the host machine flags, carry (C).
overflow (0), negative (N), and zero (Z). The correspond-
ing MET to do this IML code on a PDPll/NdE is as follows?

MOVE1 SRC1 B ; move SRC1 to register B

ADD SRC2 B D ; add SRC2 and register B to

; register D

MOVE 5 D} . Dest ; move register D to Dest

Flag ; set host flags C,O0,N, and Z
. whererregister-B and D are the PDP11/40E units. All four
codes and their corresponding format are defined in the FDM
(see Appendix B). SRCl. SRC2, and Dest are still symbolic
variables ané’are allocated into registers in Chapter 1V.
Another example 1is:

MOVE .PS,0 varc

Where PS is a status regiéter 6f the host machine which is
used to display flags carry, overflow, negative and zero
from the associated bits in PS. ".PS,0" means the bit 0
of register PS. This simple IML code moves the bit O in PS

to varc. The corresponding MET is:

PUSH PS - T0S
RSMK  TOS 0, 15, 0 D -
MOVES D varc o

Where "0,15,0" is the constant to be shifted and/or masked. -
The content in the top of stack, TOS, is masked out the
left fifteen bits (field LML=0, field RML=15) and shifted
zero bit (field sC=0).a @ o
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A complete example of MET of PDP11/40E is illustrat-
~ed in Appendix C. |

When the uéer decides which machine is to be the host
machine to the system, the following tasks must be acdomp-

e

lished.
. i _ .
V1) Build a FDM as described in Chapter II.

— N

f 2) Build the MET for the corresﬁonding simple IML
( code,

| 3) Simulate all hardware units which exist only -
/ in the target machine.

/ The rémaining tasks will be done by the system in-

| IS

Pass 1.

3-4 Pass 1 |

With the aid of'userbsupplied hosf machine information;
Pass 1 maps the machine independent IML into a machine de-
pendent intermediate language (MDIL). The functional flow
chart and the general structure of this pass are shown in
Figure 3-1 and Algorithm 3-1, respectively. Refer to
Figure 3-1, the.following paragraph is to illustrate the

detail function of each subroutine.
*#% Subroutine IISG ***

This subroutine is used tb‘collect the virtual
machine hardware information, and assign a main memory
location of the host machine to each variable declared as

either global or local variables in IML. The virtual
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ITL

1
LISG a set of IESG state-
| ments (i.e.IML codes)
ubroutine "1ISG" analyzes Subroutine "EXPANST
TISG and supplies the , decodes the complex IML
virtual machine information codes into a set of
to decode the IESG o simple IML codes
a set of simple IML codes.
"with virtual machine word
size operands
Subroutine "WRDSIZE" is to simulate
the word size difference problem
a set of simple IML codes with
host machine word size operands
MET | , | Subroutine'"OPRATOB" links the
buile vy tne [ iple WL codeo Wi wne |
user to supply ' orrespo € S : , S

the host machine
codes for the
simple IML code

a set of host machine codes
with partially symbollc
variable operands

N

Subroutines "CHANGE' and "SIGN"
are to tag these symbolic
variables to tell the difference
from the operands with machine
unit names

host machine dependent
intermediate codes (MDIL)

Figure 3-1. Functional Flow Chart of Pass 1
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Algorithm 3-1. General Structure of Pass 1

Comment: Pass 1 maps the machine independent IML code to
fhe host machine dependent code (MDIL). The hOSt
machine information is included in the FDM. To.
each simple IML code there is a corrésponding set‘
of host machine codes in the Nacro Expansion
Table (MET). Subroutines IISG, EXPANS, WRDSZE,
OPERATOR, CHANGE, and SIGN are used.

BEGIN
CALL SUBROUTINE IISG TO DECODE THE IISG TO GET THE VIRTUAL
MACHINE HARDWARE INFORMATION
READ A STATEMENT OF IESG AND DECIDE IT
IF IT IS A COMPLEX IML CODE -

THEN CALL SUBROUTINE EXPANS TO DECODE IT INTO.A SET OF
. SIMPLE IML CODES ~—
IF THERE IS A WORDSIZE DIFFERENCE BETWEEN VIRTUAL MACHINE
AND THE HOST MACHINE

THEN CALL SUBROUTINE WRDSIZE TO RESOLVE THE DIFFERENCE
- IF THERE IS AN ARITHMETIT WODE DIFFERENCE

THEN MODIFY THE ASSOCIATED OPERATIONS
CALL SUBROUTINE OPRATOR TO LINK THE SIMPLE IML TO THE MET
AND DECODE IT INTO A SET OF BASIC MACHINE CODES
CALL SUBROUTINES CHANGE. AND SIGN TO ADD THE SPECIAL SYMBOL
TO THE VARIABLES WHICH ARE TO BE REGISTER ALLOCATED
END.
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machine information is collected in Table 3-1 and will be

used later;

| .bbExample 3- b

Consider the following partlal descrlptlon of the

PDP8 target machine in IISG:

00A
00D
00E

221

220

00G
207

120
120

PDP-8
.;'12
TWO

MEM.4096.12
ACCM

INK,,1,1

OPCODE,,,9,11,-9

EFTADR

PC

ADR
MART

name of virtual machine
12-bit words

two's complement arith-
metic

4096x12-bit main memory

accumulator is a global
variable

link bit register is one-
bit long

opcode ig a field in blt
position

9 through 11 that is
shifted

right 9 places ( -9) when :
used



Table 3-1..

Item'

PROGNAM
~ WDSZE
ARTH MOD

MEMDIM
MEMSZE

SUNA
EXNA -
FGNA, FGST
IDNA, IDADR

CHAR, BALUE

Block
Information

OTHERS
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Virtual Machine Information
from I1ISG

| Usage

program name
word size

arithmetic mode

memory-diménsibn X memory size
subblock name

external block name

flat name and its flag setting

global and local varlable name
and their location in host memory

field variable name and its
associated constant

block name, block index and the

- global variables in this block

stack information if it exists
in the target.machine
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Ih the partiél PDP8 emulator abové. the global variables
are MEM and PC; the local variables are ADR and MART.

The fdllowing vector is mapped into main memory
‘locations supplied by the ﬁser of the translation system:

Host memory

Variable name ' location : Comment
ACCM 2000 : PDP8 accumulator
PC | ' ' 1000 PDP8 program counter
ADR | 2003 ' PDP8 effective address
Corresponding i '
Flag name ’ flag | Comment
INK carry | PDP8 carry register
Field variable -~ YValue range ‘Comment
OPCODE 9,11,9 PDP8 opcode field

##% Subroutine EXPANS #*#¥

As was mentioned in the last section, most machines
vdo not supply the corresponding machine primitivé opera-
tions to decode the complex IML code direcfly. >Ih order
to reduce the burden from the user,'én intermediate steﬁ ,
is needed to do the transformation frdm the complex IML

code into a set of simple IML codes. . Then, the user



provides only the machine codes (MET) for the simple IML
code, not for this complex IML code. Refer to Figure 3-1,

where subroutine EXPANS is used to expand the complex IML

code into the simple IML codes.

_'bbExample 3-5: '
LOOP SRC1 SRC2 SRC3 . ; loop for SRC1=SRC2 to SRC3
: : by 1 | '
This complex IML code "LOOP" is decoded into the following
set of simple IML codes: _
. MOVE SRC2 SRC1 i copy (SRC2) to (SRC1)
compare (SRC3):(SRC1) and

L.001 COMP SRC3 SRC1
; set host flags
CONDT N LL.002 ; if true, skip to L.002 .

INC SRC1 otherwise increment SRC1

BRCH FL.001

sty —

and jump back to L.001

-e

L.002 (next IML code)
The user has only to provide the MET for the above simple
IML codes instead of decoding the opefation "LOOP."
“Another example is the COmplek ;ML code "ADD" with
"flag cafry setting:'
ADD SRC1 SRCZ Dest flag C
which_is used to perform addition and set virtual machine
flag carry. This flag isvdeclaréd as a variable name,
‘vérc. in the IML emulator. In the hdst machine, the set

of carry flag can be shown from the bit O of PS register.
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The corresponding set of simple IML codes 1is:
ADD SRC1 SRC2 Dest. ; the comment is described

MOVE .PS,0 ~ varc ; in example 3-3.4 %
*#% gubroutine WRDSZE #*#*%

Refer to Figure 3-1, this subroutine is used to solve

' the problems of word size difference between virtual machine

and the host méchine. This assumes that host microprogram;-
mable éomputers can provide the facility to set flags.

- - In case the word size of the hoét machine is greater
than the word size of virtual machine, the host machine |
flag-setting facilities can be used to set virtﬁal machihe
flags by left-justifying the hostvmachine register, zero

filling the remaining bits of each regiE%epi

»»Example 3-6:

Suppose the target machine is the PDP8 (12 bits),
and the host machine is the 16-bit PDP11/40E. All variables
declared in the IML emuiator for the PDP8 are to be loaded
into the 12 most significant bits of each PDP11/40E
register. This is done by modifying the apprbpriate-IML
coaes. For example, the INL increment code,

INC  SRC1 , add one to SRC1
is expanded into,

ADD SRC1 c16 SRC1 ; add constant 16 to SRC1 and

3 put into SRC1
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where the constant ohe has been shifted left fogr bits to
get 16. This is then'mépped into machine code, as further
illustrated by the following examples: |

DEC SRC1 : ; subtract one from SRC1
is expanded by |

' SUB SRCL cl6é SRC1 ; -subtract 16 from SRC1

and, . .

NOT SRC1 Dest ; one's complement SRC1
is expanded by:

“'NOT SRC1 ; ong's complement the top
; 12 bits

AND Dest c65520 Dest ; and then fill-in the lower 4
| T ; bits ‘ |

In addition to arithmetic and logical modifications,
the operands may need to be changed.
Before; .
coNpT JPC,7 L.OO1 ; test bit 7 of the variable
PC and after; | |
CONDT \.PC.ll L.001 i test bit 7+4=11 of PC
i.e., the 7th bit of PC is left shifted to the 11th bit in
host machine. Constants are modified by 2%#* (word size

difference).

Before;
MOVE c8 AB ; copy 8 into AB
and after; f
MOVE cl28 AB ; copy 2“* (8) into AB

The other INML codes that need to be modified when conforming
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to larger host machine words are;

SHR,  SHL, SLCT, and EXIR. < <4

If the host machine does not provide a facility to
e
set flags, the problem of target-host mismatching must be

AN s RSP

o

e, e

solved by the user. Further, as a virtual machine program
_/’“‘_-MW -

is loaded into the host main memory, each 12-bit word must.

be shifted before loading it into the 16-bit host machine

Memory——

In case the virtual machine word size is an integer
multiple, n, of the host machine size, before the IML
- variable can be mapped into either host memory or a host
register, this variable has to be bound into n segments.
Each segment is the host machine word size. Then, n re-
‘gisters and n memory locations for each variable are needed
wﬁen the load/store operétion is used betﬁeen the host
machine memory and GPR. When a statement in IML is taking -
into account this kind of word size probiem. we have'to
1) decode the statément which includes each operand
in .the virtual machine word size into a set of
IML statements which include each opérand in the
host machine word size. ‘
2) modify the load/storevoperation so that one IML
variable is aésociated with n host registers and
- n host memory locations. | |

The following example will illustrate this point.
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‘ PbExample 3-7:

Assume the v1rtua1 machine wordsize is 32 bits and
the host machine is the 16 bit PDP11/40E. Each variable
declared in the IML emulator for the virtual machine is to
be loaded into two host registers. This ié done by the
follow1ng steps.

For example the INML addition statement;

ADD SRC1 SRC2 Dest (stmt 1); add SRC1 and SRC2 to Dest,
| ; and each operand is in the
3 virtual machine word size
Step 1: Bind each variable into‘two segments. One is the
higher 16 bits of variable, denoted by HBVAR, the other is
the lower 16 bits of variable, denoted by LBVAR, icey

variable inv32 bits
" higher 16 blts Tower 106 blts

HBVAR LBVAR

Step 2: Decode stmt 1 into another set of IML statements
in which each operand is in thé host machine word size.
Stmt 1 is expanded by : | . |
ADD LBSRC1 LBSRC2 LBDest ; add lower 16 bits of SRC1
; and SRC2 to Dest, and set

; host machine flags

CONDF Carry ‘ L.001 (stmt 2); if no carry, g0 to
| ; L.001 |
INC = HBSRC1 ", increment higher 16 bits

; of SRC1 by one
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L.001 ADD HBSRC1. HBSRC2 HBDest ; add highér 16 bits of
| ; SRCl and SRC2 to Dest
Thebabove codes are another set of IML statements, and
each operand is in the host machine word size. |
Step 3: The Macro Expansién Table is used to expénd each
statement into a set of machine code (Here, we‘skip'the
expansion of stmt 2).

MOVE1 LBSRC1 B (stmt 3) ; move LBSRCl into
- ‘ register B

ADD LBSRC2 B D ; LBSRC2+B-D-

MOVES D- LBDest ; move the result into
LBDest

FLAG

CONDF carry L.001 ; check carry flag

INC HBSRC1 (stmt 4) ; increment HBSRC1 by one
L.001 MOVE1l HBSRC1 B
- ADD HBSRC2 B D
MOVE5 D HBDest
The above codes are a set of machine codes and each
operand is either a machine unit'namev(for example, register
B or D) or a symbolic variable in the host machine word
size (for example, LBSRC1, LBDest, or HBSRC2).
Step 4: The load/store operation which is used to transfer
the variable between host memory ahd GPR must have the
followingvfunction: _
| "As the variable LBVAR is to be loaded into GPR, the

load operation will load LBVAR into R, and HBVAR into Ry, ,

h
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 together. Similarly, either R, or Rh%l is to be deallocated.
Both the contents of R, and Ryt will be stored in the‘
memory.“’ For example, in stmt 3 of step 3, as LBSRC1 is to
be allocated into the GPR, we allocate LBSRC1 into Ry and
'HBSRC1 into R,. In stmt 4.‘as the variable HBSRCl is first
read, we know it is in Rl_already. Later, if either Ry or
Ry is to be deallocated, both the contents of Ry and Ry will

‘be stored back in host machine memory. The other examples

are illustrated in Appendix Di."ﬂ <
##% Subroutine OPRATOR *¥¥

Refer to Figure 3-1, this subroutine is used to map
the simple IML code to a set of basic host machine codes.
To each simple IML code, there is a corresponding set of'
machine codes which aré stored in MET as provided by the

user. This subroutine provides a 1ink to connect them. -

»®»Example 3-8:

'In the second case of example 3-5, a complex IML
code is decoded into two simple IML codes. Then, as shown
in example 3-3. each simple IML code as defined by its
associated'set of basic machine codes stored in MET, is

mapped into the basic codes of the host machine by Macro

Gt R

Expansidn Table. For example; an IML addition corresponds
. T R S A

tgésexgg~33§igﬁgggbine codes. When the proper variable

names are substituted into the codes, we get the following
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MDIL code:

Before ‘expansion we have;

ADD ACCM MDR ACCM C ; IML addltlon and set virtual
; machine carry flag

which becomes after expansion:

MOVE1 ACCM B ; move from ACCM to host machine
’ ; register B
'ADD  MDR B D ; add MDR and reglster ‘B to
; register D
VMOVES D ACCM ; move from register D to ACCM‘
FLAG . : _ ; set carry flag
PUSH3 PSS TOS ; move register PS to the top
‘ _ _ ; of stack
"RSMK TO0S 0,15,0 D ; see example 3-3
MOVE5 D INK ; move from register D to LNK 4%

In the above example, registers B, PS, T0S, and D
are the machine unit names.  Symbols ACCM, LNK, and MDR
are the variablés declared in IML which are to be allocated ,

to the general purpose registers in pass 2.
~ ##%* Subroutines CHANGE and SIGN *#**

In order to tell the difference between variables
declared in IML and host machine unit names, these two
subroufines of Figure 3-1 assign the symbol (*) (1 or‘2)
(+ or -) to the IML variables which need be register |
~allocated. Each block which is defined in sectibn 3-2-is

used as the basic unit when the assignment,is processed.
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A detailed definition of this symbol is shown in Table 3-2.
Table 3-2. TAGs of the Variable

(*)(n)(sign)(variable) ; Explanation

*¥1+variable It is a global variable and
will be used later in this block.

- ¥1l.variable | This global variable will not-
be used in the current block,
but it may be used in the next

blocks.

- %*24variable It is a local variable and will
be used later in this current
block. .

#2_variable This local variable will not

be used any more.

.Code '#*° means the variable is to be register allocated.

.Code 'n' is either 1 or 2.

.Code 'sign' is either '+' or '-'.

.Code ‘variable' is the variable name to be processed.
»®»Example 3-9:

Assuming that codes of example 3-8 consist of a

“ single block. ACCM and INK are global variables, and MDR

is a local variable, then the final result of pass 1 yields:

MOVEL  *1+ACCM B

; for comments see
ADD *2_MDR B D , example 3-8
- MOVE5 D - *1-ACCM ;
FLAG
PUSH3 PS. : ToS
RSK 1050150/ D

MOVE 5 D *1-INK
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Each statement described above is a host machine code
defined directly from the FDM model. Operand'tagged with
symbol "#*" is the symbolic variable which will be allocated

into the general purpose registers ih”paés 2. ¢4 9

With the aid of the Macro Expansion Table supplied
by the user, pass 1‘produces a set of host machine dependent
intermediate codes (MDIL) consisted of a set of blocks that

can be the input of pass 2.
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CHAPTER IV
PASS 2

4-1 Introduction

Pass 2 accebts a set of singleventry-multiple exit
segments called control blocks which are directly from.the
output of ﬁass 1. Each bldck is a collectioh.oerDIL state-
ments consisting of machine dependent, executable statementé
with partlally symbolic operands. The purposes of pass 2
are to allocate the symbolic operand to one of the general
purpose register.(GPRs) of the-actual,hqst machine and
assign the corresponding host binary microcode to each
statement of MDIL. |

In general, the number of symbolic variable operands
in a given prégram is greater than the number of registers
in the host machine. Thus, the register must be shared by
more than one symbolic operand. Register allocation/de~
~allocation is a major factor in producing efficient code.
"Active” operands are,heldAih the registers and swapped to
maih memory when they become latent or "passive." As the
number of swaps increases, the efficiency of the executable
codé decreases.

Within'the block, more than one branch statement may
jump to thé same label statement. Thus, different

symbolic variables may use the'register at the same time
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which in turn involves the control flow interface problem
(see section 4-4). This interface problem can be made less
burdensome by structuring the blocks of MDIL code. Each
block is analyzed for its flow of cOnfrol governed by two

- legal control structures--thé branch statement and the label
statement. These two statements divide the block into a
set of straight line codes (SLC) which are sets of single
entry-single exit statements. |

We define the “"state" of a SLC as the assignment of
operands to GPRs for the given SLC. .Upon entry to the SLC
we must define an initial state 1s; for SLC;, and we define
the final stéte FSi as the state of SLC-l when register
allocation is completed. | | |

~ When the RA/D scheme is applied, the SLC is used as
the basic unit of program segment. At -the end of each SLC,
this scheme will continue with the next SLC after the
initial state of the following SLC is determined. During
the execution of the RA/D scheme on each statement, the
host machine field values and their timing phase‘ére
assigned to each MOF.

The functional flow chart and the general structure
of pass 2 are described in Figure k-1 and Algorithh b1,
respectively, which tell how each branch statement and
label statement separate the block into SLC segments and
lead to the associated tasks with each SLC.

The general terminology of pass 2 ig described in



Start

read the next WDIL étatement'

|

from this statement, deter-
mine the boundary of the SLC,
i.e., the label statement
opens a SLC and the branch
statement closes_the SLC.

Determine the initial state-
ment of the SLC when the label
statement is met. Determine

the final state of the SLC

when the branch statement is met.

|

Based on the initial state of
the SLC, perform the RA/D
scheme on each statement and
assign the field value and -
timing period to it.

go to start

Figure 4-1. Simplified Flow Chart
. of Pasgs 2 '

70
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Algorithm 451

Program: General Structure of Pass 2

Data: I is index of SLC.
-IS(I) is the initial state of SLC(I)
FS(I) is the flnal state of SLC(I).

Pseudo code:

BEGIN.
(START) FETCH NEXT STwT '
IF THE CURRENT STMT IS A LABEL STMT (the beglnnlng
of SLC(I)
THEN BEGIN -
FILL THE LABEL TABLE (see Algorithm 4- 3)
IF THE PREVIOQUS STMT IS NOT A BRANCH STMT
THEN DETERMINE FS(I-1) (see Algorlthm
h_s, 4.7, L_.8)
DETERMINE IS(I) (see Algorithm: h_4)
GO TO AA
END

ELSE BEGIN
IF THE PREVIOQUS STMT IS A BRANCH SIMT (the
end of SLC(I-1)
THEN DETERMINE IS(I)
(AA) IF THE CURRENT STMT IS A BRANCH STMT (the
v end of SLC(1)) .
THEN BEGIN .
FILL THE LABEL TABLE.
BASED ON THE POINTER TO DETERMINE
FS(I) (see Algorithm 4-3)
END '

ELSE BEGIN
PERFORM RA/D SCHEME ON THE STMT ( see
Algorithm 4-2)
g?SIGN FIELD AND PHASE TUPLES TO THE. STMT

D
GO TO START
END
END.
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section 4-2. The details’of the register allocation scheme

and field'value‘computation are given in section 4.3. The

control flow interface problem is discussed in section 4k,

The initial state andvthe final state of a SLC are described

in section 4-5 and section 4-6, respectively.

4.2 Definitions and Terminology

Some general components of pass 2 are introduced

first, and other special terms are explained in more detail

when they are used in later sections.

1)

2)

3)

L)

- Bipyk
special code BKS, and is a single entry-multiple

oPND= {OPND1, OPND2} is a set of operands, where
OPND1 is a set of machine unit names, ahd OPND2
is.a set of symbblic variables to be register
allocated.

GPR= {R(1), R(2).... R(NR)} is a set of host
machine general purpose registers used to hold
the operand values during execution of the
statement. R(J) is defined as jth register in
the set of GPRs, where iéJﬁNR.

VML is a set of variable memory locations which
are in the host machine main memory and are

used to hold the variable values when deallocated

~from the general purpose registers.

A program consists of a set BK= BKI' BKl""

of blocks: Each block starts with a
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exit collédtion of straight line codes.

5) A.straight line code, SIC, is a single entry-‘
single éxit set of statements. There is an
index I to eaéh SLC, denoted by SLC(I), which
ordérs the SLC in the program. SLC(I) and
SLC(K) are said to be in sequential order.

ItK, we say SLC(I) precedes SLC(K).

6) Each statement of a SLC segmént is givenbas:
LB(I), OP(I), ODA(I,1), ODA(I,2), ODA(I,3)
where I is the index of the statements in the
program, and LB(I) is the-label of the statement.
OP(I) is the MOP name which can be found from

Field Description Model.

ODA(I,1) and ODA(I,2) are the elements of set
OPND and are used as the source inputs of
OP*I).

OFA(I,3) is from set OPND and used as the output
destination of OP(I). |

Symbolic variables can be used as operands'of
-SLC statements.

7) The label stafement ig defined if LB(I) is not
empty. The branch statement is defined if OP(I)
is a branch operation and ODA(I,1) is a label
name. Branches are either forward or backward
branches depending on the direction of the‘brahch.

8) The state of register GPR(J) during the execution
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of SLC(I) is denoted by:
SR(I,J)= SA(J), ST(J), TY(J), PI(J)
R(J) is the jth register in tﬁe GPR.
SA(J) is the variable name currently held in R(J).
ST(J) is the status of the variable in R(J).

TY(J) is the type of this variable.

PT(J) is the position of the variable in the

statement.
The detailed description is shown in Table 4.1,

The states of GPR in SLC(I), denoted by S(I),

are a set of states of R(J), where J=1 to NR,

and are represented by:
NR
s(1)= %, sR(1,J)
J=1 :
The operation which is used to load and store
variables between main memory and the central.
processor exists both in the original IjL and

pass 2 level, but they are processed in differ-

- ent wayé.

a) In the INL level, operation RMOVE and WMOVE
are used for reading and writing into the
variable memory of the virtual machine‘(VM).v:
The format is: | |
RMOVE SRC1 SRC2 Dest ; Dest «Mem(SRC2)

VMOVE - SRC1 SRC2 Dest ; Mem(SRC2) & Dest
SRC2 is the address value of the memofy.

and Mem. (SRC2) is the content of this
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Status ST(J)

Active
Passive

Position PT(J)
Source '

Dest

Type TY(J)
' 1

none

Reference
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Components of SR(I,J)

Action

The value of the variable in R(J) is
different from the content of the
same variable stored in VML.

. The value of this variable is the

same between the VML and the register.

This variable is used as source in .
the statement.

This variable is used as destination.
in the statement.

This global variable will be used

‘later in this current block.

This global variable will not be
used in the current block.

This local variable will be used

later in this current block.

Thig local variable will not be
used in the current block.

' SLC(I-1) and SL(I) are in sequential

order, if SLC(I-1) has an uncondi-
tional branch then the final state
of SLC(I-1) cannot be used by SLC(I),
but can be considered as a reference
state. In this case, such variables
are assigned to type reference which.
means the register does not really
contain the variable.
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address.

In pass 2, the variable memory of virtual
machine is mapped into the host main memory
and the operations RMOVE and WMOVE are
decoded into a set of basic machine codes.
The following example will illustrate how
" the RMOVE and WMOVE are implemented by the
set of PDPll/ﬁOE microcodes.

~ phExample bo1: |

RMOVE Mem PC IR ; IR<¢Mem(FC)
This means fhe memory content of PC is read
into a register IR (insfruction register).
The corresponding DIL codes are:

MOVE8 *1+PC BA copy the address of

PC to Bus address
register, set

DATI, and then turn
off processor clock

we We we we we

MOVE4 unibus *1-IR;'copy the value of PC
' ; to IR :

This means the address of PC is moved to

the bus address fegisferv(BA). and then the
" memory content of this address is moved to

the register which holds the IR. In the

statement MOVES, the first operand is the

address value of thevvariable instead‘of

its content.
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Similarly. an example of a WMOVE'operation:‘
WMOVE Mem WMAR -T.001 ; Mem(MAR ¢ -T.001
The corresponding DIL'codes are:

MOVEZ2 *1+MAR BA ; copy the address of
MAR to register BA

copy the value of
(-T.001) to register
D, set DATO, and then
turn off processor
clock

no operation

MOVE9 *2-T.001 D

-, ws WS We we ws

NOOP |
This means the address of MAR is moved to
BA. Then the content of -T.001 is moved
to register D, and the machine stores the

content of D into the address which is

"in BA. .4 €4

In the register allocation/deallocation
‘scheme (the level of pass 2), MEMREAD and
MEMWRITE statements are used to communicate
between a GPR and the main memory of the
host machine. In the most general case,
the host machine cannot implement these
statements in one machine cycle. Howevér.
the execution procedure is different in
various machines. The general format of
the MEMREAD statement used in this chapter
e, . _ .

MEMREAD variable reglster n reglster'ér“
: Mem(Varlable)
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This means the content of the variable is
loadéd into the register. The variable is
declared in the INL level and is assigned
a host memory address. This statement is
decoded into the PDFP11/40E microcodes:

MOVEL11 variable BA ; copy the address
of "variable" to
BA register, set
DATI, then turn
off processor

clock.

MOVEY4 unibus register
' ; copy the value of

; "variable" to

; "register"
It is useful to compare the difference
between the operation RMOVE and the state-
ment MEMREAD as given above. One is from 
the IML level; the othef is from the'ﬁass
2 level. The first operand of statement
MOVE8 is stored in the register, but, in
statemeht MOVE1l, it is displayed byvan
emit value.

In the example 4-1, MENREAD statement
cannot be used when the address value of
PC is loaded into the register; The
statement: | | |

MEMREAD FC register ;register¢ Mem(PC)
means to load the contents of PC into a

register. This feature should be carefully
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considered in the scheme and field value

computation. The general format of the

MEMWRITE statement is:

MEMWRITE register variable ; Mem(re-

; gister)
; variable

and the corresponding PDP11/40E microcodes

are:

MOVE12 variable BA ;

MOVE9 register D

s we we wWe me ws

NOOP .

copy the address
of "variable" to
register BA

copy the value of'
"register” to

register D, set

DATO, and then ‘
turn off processor
clock ' o

no operation

or the same reason, the reader may com-

pare the difference be tween WNMOVE in iML

and MEMWRITE in the pass 2 level.

4.3 Register Allocation/Deallocation Scheme

The input to pass 2 from pass 1 of the translation

system is a set of machine dependent,’executable statements,

in which some operands still reference symbolic variables.

Before the pinary microcode can be completely assigned to

any one statement, the symbolic variable

operands must be-

allocated to the general purpose registers of the actual

host machine. 1In geheral, the number of GPRs in the host

machine is less then the number of variables in the program.
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That means these variables camnot stay in the GFR forever,
and some variables must be stored in the host machine
memory and loaded into the GFR when they are recalled. -

There need to be some extra NEMREAD or MEMWRITE statements

to move‘operénds between the GFR and host machine memory.

Ay w—————

‘ / N . - . .
These "extra" memory references influence the efflclency

| The general_idéa of the RA/D scheme is to keep the
~variables in the corresponding registers as long as |
possible until no available register is free for the next
new variable. When the set of general purpose registers

is full of variables, the register deallocatioﬁ process is
used to free a register for the new variable. A decision
must then be made as to which old variable in the registers
should be replaced'first so that the number of MENMREAD or
MEMWRITE statements ié kept as small as possible. The
efficiency of‘the RA/D scheme is highly dependent on the

priority assignment of variables.

4_3-.1 Replacement Priority Assignment

The replacement priority is determined by the status
and type of each variable. When an'"active" status variable
is to be deallocated, a MEMWRITE statement is needed to
store this variable in the host machine memory. However,
an extra MEMWRITE statemént is not necessary for a

"passive" status variable. Combinations of status and
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type, and the replacement priority of variables are des-
cribed in Table 4-2.
There is one kind of variable Which cannot be de-

allocated, regardless of the priority of fhe variable. The

gr—————

LS T—

not be deallocated until the .second operand of this state-

ment is register allocated. The following example will

e N s A

illustrate this idea:

‘BaExample 4-2:
This statement
ADD *2-AB *1+BC *1+BC ; AB+BC->BC
is to be registef allocated. In the WOrSt case, assume
that after R1 is allocated to variable AB, all régisters
 are full, and R1 containing the.variable AB has the highest"
priority to be deallocated. If R1 is not protected, fhe

output will be:

MEMREAD AB R1 ; R1eMem(AB)
MEMREAD BC R1 i R14Mem(BC)
ADD R1 Rl R1 ; Ri+R1-*R1

In the third statement both the first and second R1 hold
the value of variable BC and this gives an incorrect
result. Thus, it is necessary to protect the‘register
which holds the first operand of one statement from
deallocation. This restriction can be dismissed after the

second operand of this statement is register allocated.
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'*priority type status
1 none passive
2 ref  do not

care
3 none active
h 3 passive
5 3 active
6 2 passive
7 1 Passive
8 2 active
9 1 active
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Replacement Priority Assignment

action

Local variable with passive
status will not be used in
the rest of the cgrrent block.

This variable does not actually

exist in the register.

Same as (1) but with active

status.

Global variable with passive
status will not be used in

the rest of the current block,

but may be used in the next
blocks.

Same as (&) but with active
status.

Local variable w1th pass1ve
status will be used in the
rest of the current block.

Global variable with passive
status will be used in the
rest of the current block.

" Same as (6) but with active

status.

Same as (7) but with active

- status.

#*The smaller value in this column has the higher prlorlty

to be deallocated.
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Thig limitation will be good for any machine as long as

the number of GPRs is greater than one.4 4

- Refer to_Algorithm 4_1, the RA/D scheme is divided

into the following Algorithms.

4-3-2 RA/D Algorithm
The whole process which is described in Algorithm
4.2 can be described by‘the variation of the state of GPR
when the operand is register allocating. Each SLC is
treated independently of other SLCs when the RA/D scheme
is applied. Within thé SLC, the scheme is performed
operand by operand; then, statement by statemenf; |
:;x?: 4_3-3 Tuple5 Scheme

( ‘,_ When the FDM is given by a user, the microinstruc-
tion format is divided into separate fields._and the value'
of the field which is assigned to each MOP is classified
in two ways. One is by the numerical value which has
already been defined. Thé other is by tﬁe alphabetical
value which will be détermined in this section.

wa; we use. the FDM of PDP11/40E (Appendix B) and

some examples‘to illustrate the function of Tuple5. The
set of undetermined field values in FDM are described

in Table 4-3.
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Algorithm 4_-2

Program RA/D Scheme S : o
Data: ODA(M,K) is the kth operand of stmt M in SLC(I) and
is decoded by:

SY(1) is the first character of the operand.
. sY(2) is the second character of the operand.
SY(3) is the third character of the operand.
sY(4) are the remaining characters of the operand.
R(J) 1is the jth‘register in GPR, 1%J2NR. :
SA(J) is the variable name held by R(J)
ST(J) is the status of SA(J).
TY(J) is the type of SA(J).
(The detail definition and function of these
program parameters are described in section &4-2.)

‘Pseudo code:

(FETCH)

(FREE)

BEGIN ‘
FETCH NEXT OPERAND, ODA(M,K)
1F ODA(M,K) IS A MACHINE UNIT NAME
THEN GO TO FETCH
ELSE BEGIN (This symbolic operand is to be
allocated to GPR) ’
CALL ALGORITHM 4-6 TO DETERMINE NS
1? ?DA(M,K) IS IN THE GPR ALREADY, SAY
R(J
THEN BEGIN (Determine the state
variable SA(J), ST(J),
TY(J))
SA(J) IS NOT CHANGED
CALL SUBROUTINE TYPE TO DETER-
MINE TY(J) '
‘IF K=3 (This operand is destin-
ation) :
THEN ST(J)=ACTIVE
ELSE ST(J) IS NOT CHANGED
END
ELSE BEGIN (This operand is not in
' the set of GPR)
IF THERE IS A FREE REGISTER,
\ R(J), IN GPR
THEN BEGIN

IF K=3 (This operand is destination)
THEN BEGIN
SA(J)=0DA(M,K)
ST(J)=ACTIVE
CALL SUBROUTINE TYPE TO SOLVE TY(J)
END
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Algorithm 4-2 (continued)

ELSE BEGIN (This operand is source)
MEMREAD ODA(M,K)  R(J)
(load the operand into R(J)
SA(J)=0DA(M,K)
ST(J)=PASSIVE
CALL SUBROUTINE TYPE TO SOLVE TY(J)
END -
ELSE BEGIN (There is no free register in GPR)
- FROM TABLE 4-2, DEALLOCATE THE HIGHEST
PRIORITY VARIABLE IN GPR, SAY R(J)
IF ST(J)=ACTIVE
THEN "MEMWRITE R(J) SA(J)
IF ST(J)=ACTIVE
THEN "MEMWRITE R(J) SA(J)*
(store the content of R(J) into
memory)
GO TO FREE
END
‘ END
END
END.

Subroutine TYPE

BEGIN
SEPARATE ODA(M,K) INTO SY(1), SY(2), AND SY(4)
IF SY(3)="+" (ODA(M,K) will be . used later in the block)
THEN TY(J)=SY(2)
ELSE BEGIN (ODA(M,K) will not be used any more)
IF SY(2)="2" (ODA(M,K) is a local variable)
THEN TY(J)=NONE
ELSE TY(J)="3"
END ,
END.
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Table 4.3. Undetermined Field of PDP11/40 FDM

Case Format in the FDVM/Field value determination

1 oP SRCl(GPR) SRC2 Dest(*GFR)
Field(1)=function (the register used in the
operand *GPR)

2 0P *emit Dest )
Field(18)=function (the constant used in %*emit)

3 . OP SRC1 $CT Dest
or OF B "T0S,CT D
Field(15), Fleld(lé), or F1eld(17) is a function
of CT.

Ly OP SRC1 $FF, LL CT Dest

Field(15), Fleld(16). and Fleld(l?) are a
functlon of FF, LL, and CT.

5 OP wvariable Dest
Field(18)=function (address value of the variable)

6 Field(13)=function (next MOP address)
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P rExample 4.2
In case 3 of Table 4.3, one MOP in FDM is:

OP :RMASK ' |

Input: TOS $CT

which means to mask out the right (16-CT) bits of TOS.
Now, in pass 2, the following MOP is to be fleld

valﬁe assigned:

RMASK TOS 5 B

CT=5, field 16=CT-1=k.v ¢

»bExample 4-3:

In case 4 of Table 4-3, the format of MOP RSKMK in
FDM is: v | - Facy

' %/’ ~7

OP :RSMK

I : T0S $FF,LL,CT

field 15=LL-CT .

field 16=15-FF+CT

field 17=CT
which means to right shift TGS CT bits, and then mask.

In pass 2, the following MOP is to be field value
assigned: | |

RSMK TOS PGEADR D
Where PGEADR 1s a variable name which is associated with a
bits range to be shifted or masked, the bits range

associated with this variable is 0,6,0. Comparing PGEADR

in pass 2 with FF,LL,CT in the format of the FDM, we have
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FF=0, LL=6, and CT=0. The following field values are

assigned to this MOP:
field 15=6, field 16=25, field 17-0.¢ ¥

Example 4-4:
In case 5 of Table 4-3, the field value of the’
foilowing MOP is to be assigned: |
WOVE10 BC D |
and the address value of PC.is allocated to a fixed value

'in VML, say, PC=1000, then field 18=1000. 4 4

4.4 Problems Arising from the Control Flow Interface
Before describing the RA/D‘scheme entering the next
SLC or the next block, the interface problems are first
considered. |
1) The interface problems within the block
Figure 4-2 illustrates two typical examples.
One is the forward branch caée. The other 1is
the ‘backward branch case. |
a) The forward branch case:
The final sfates (FS) of SLC(Ik),.SLC(Im).
and SLC(In) have been determined already and
will influence the initial state (IS) of
SLC(I). Which state of GFR can be used as
the IS of fhis SLC?
b) The backward branch case: .

.~ The IS of SLC(Ip) has been determined already.
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Each circle means a SLC.
IS(I) is to be determined.
FS(Iq) is to be determined.
Each character, Ik' Im cens
I, or, Iq is a SLC index.

Figure 4.2, Forward Branch and Backward Branch
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The FS‘of the SLC(Iq) is to be determined
and depends on the IS(Ip)- This backward
branch region may be executed many times.
Hdw do we get,the efficient interface to
determine.this FS?
2) Interface problems between blocks
‘Each biock has avsingle‘entrybpoint which is
the first statement of the block and a set of
its own local variables. When the interface
occurs a problem arises in addition to the
‘problems}mentioned in céndition.(l). This is
insuring that the local variables in FS of one
block must not be used as the IS of the other
block.

From the above analysis, it isbevident that the
interface proﬁlems can be solved by correct;y finding the
initial state and the final state of a SLC.

In order to find the initial state, the label state-
ment has to record all SLCs which support the forward
branch to this label. To find the final state, the direc-
tion of the branch statement has»to be determined. There
is a label table, described in Table 4-4, which is set up
by the iabel statement.and the branch statement in Algorithm
4.3, and used to record all information associated with |
each label. Based on this label table, the initial.state

and the final state of SLC are determined in the



Components

Label
vector
LBL

sa(I)

SB(I)

BS(I,J)
J=1 to
SB(I)

BWL(I)

BWLB(I,J)
J=1 to
BWL(I)

BI(I)

SLCD(I)
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Table 4-4. Label Table

Functions

This is a label name vector which is
used to record all labels according
to the sequence in which the label
appears in the whole program. LBL(1)
is a label name with index I in the
label vector. =

It is assigned to zero if the label
appears in the label statement, and
it is assigned to one if the label
appears in branch statement. From
this vector, the direction of branch
statement can be determined.

It is used to count the number of

forward branch statements to this

label.

It is a matrix which is used to
record the indexes of SLCs which
support the forward branch statement
to this label.

It is used to count the number of
backward branch statement to this
label.

It is used to record the indexes'of
SLCs which support the backward
branch statement to this label.

If the label name is a block name
then it is used to record the
block index.

It is an index of the SLC which

~contains the label statement with

label name LBL(I).
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Algorithm 4-3.

Program: Label Table Determination

Data:

LBL(J) is the label name.

SB(J) is the forward branch(f, b) counter of LBL J).
BS(J,1) records all f.b. SLCs to LBL(J).

BWL(J) is the backward branch (b.b) counter of LBL(J)
BWLB(J,I) records all b.b. SLCs to LBL(J).

BI(J) tells if LBL(J) is a block name or not.

SQ(J) tells the direction of the branch.

SLCD(J) is the index of a SLC which contains LBL(J).

(The details are described in Table 4-4.)

Pseudo code:

BEGIN

IF THE LABEL NAME IS FROM THE LABEL STMT
THEN BEGIN

IF THIS LABEL IS IN THE LABEL TABLE
' THEN GO TO ASSIGN
ELSE BEGIN
STORE THIS LABEL IN LBL(W)
IF LBL(M) IS A BLOCK NANE
“THEN BIEM;=BLOCK INDEX
ELSE BI(M)=0
SB(M)=0 (set f.b. counter)

(ASSIGN) SQ(M)=1 (label name appears in the label

position)
BWL(M)=0 (set b.b. counter)
SLCD(M) =CURRENT SLC INDEX
END

ELSE BEGIN (it is from the branch stmt)

(TEST)

IF THIS LABEL IS IN THE LABEL TABLE
THEN GO TO TEST
ELSE BEGIN.
'STORE THIS LABEL IN LBL(J)
SET SQ(J)=0, SB(J)=0
IF LBL(J) IS A BLOCK NAME
THEN BI(J)=BLOCK INDEX
ELSE BI(J)=0
IF SG(J)=0 (it is a forward branch)
THEN BEGIN _
SB(J) + 1 (INC the f.D. counter)
BS(J, SB(J) )=CURRENT SLC INDEX
END ‘
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ELSE BEGIN ‘ .
BWL(J)=BWL(J)+1 (INC the b.b. counter)
BWLB(J,BWL(J) )+CURRENT SLC INDEX
END

'SET POINTED T0 TELL THE BRANCH STATUS

(ref. to Algorithm 4-1, this pointer is

used to determine FS)

END
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- next sections.

4-5 Initial State of SLC
The initial state of SLC(I), denoted Dby IS(I), is

defined és the state of GFR immediately before entering

this SLC(I). The IS of a SLC is actually determined from
the FS of other SLCs, and used as the basis to perform the
register allocation/dealiocation scheme on the current SLC.

To get a reliable IS ié extremely important for pass 2.
Based on the above discussion, the IS(I) can De

determined as follows: |
From the label table, vector SB(label) tells the

number of forward branches to this SLC(I), and the matrix

BS(I,J), J=1, SB(label); lists all.indexes of SLCs which

supply the forward branch to this SLC. Now, with the

assumpfion that:
SB(label=n,

and the indexes in BS are Il' Loeees I,

Case 1 if n=0 which means no forward branch to this SLC or
SLC(I) is not a label SLC then IS(I)=FS(I-1).

Case 2:if n#0, and SLC(I-1) is not an unconditional - branch
SLC then IS(i) can be expressed by IS(I)=f1(FS(Il)
....FS(In), FS(I-1)).
if SLC(I-1) is an unconditional branch SLC.'fhen

IS(I)=f2(FS(Il)....Fs(ln)).
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To simplify the description, we ﬁaVe
IS(I)=f(FS(Ii)....FS(Im))------; ................ (1)
Where the number of m is n or n+l.

Each FS or IS is a state of GPR.. The further analy-
sis follows:

IS(1)=\J 1SR(I,J)

FS(K) & FSR(K,J)

Where FSR(K,J) is the state of the jth register in
the FS of SLC(K) and can be expressed by
FSR(K,J)= {FSA(K,J), FST(K,J), FIY(K,J)}

FSA(K,J) 1is a variable name which is in the registerb
J of the FS of SLC(K).
FST(K,J) is the status of the variable FSA(K,J).
FTY(K,J) is the type of the variable FSA(K,J).
Similarly, we have

ISR(I,J)= {IsA(I,J), IST(I.J), ITY(I,J)}'
and the same explanation for each cdmponent of
ISR(I,J).
Now, equation (1) is abbreviated as:

m_ : :
IS(I) = £(Z] FS(I))) —mmmmmmmmmmmmmmmmnnee (2)
| .
ISR(I,J)= £5( & FSRI,J))

The IS(I) of register J is determined by all the FSs
‘of register J. The problem in finding the IS(I) is
to solve the function fj' Algorithm 4-4 is used to

solve function'fj.
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4-6 Final State of SLC
Refer to Figure 4-3 and 4-4. The branch‘statement

which is the last statement of a SLC will bring a state to
the sink SLC and leave a state to the next SLC. These two
states may not be the same. The FS problem'is actually to
find these»two states at the end of the current SLC. Some
terminology will be used in this section.

1) The state'immediately before the branch occurs
in SLC(I) is denoted by CS(I).

2) After the branch statement, the state which will
be brought to the slnk SLC is called branch
flnal state and denoted by FS(I). The state
which will enter the next SLC is called the
sequential final state and denoted by S(1).

3) Forward branch SLC is defined as a SLC’in which
the last statement of the SLC is a forward
branch statement.

) Backward branch SLC is defined as a SLC in
which the last statement of the SLC is a back- B
ward branch statement.

The final state of a SLC may be from either the

forward branch SLC or the backward branch SLC. They are

determinéd as follows:
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Algorithm 4.4

Program: Initial State of SLC(I)

Data: 1) There are m SLCs with indexes I,, k=1 to m,
forward branch to SLC(I). ISA(¥,J), IST(I,d),
ITY(I,J), FSA(Ik.J), FST(Ik,J) and FTY(I ;J)

are defined in section 4-5.

2) A null state of register means no variable is
assigned to this reglster and all 1nformatlon
of thls register is marked out.

3) Type means the complement of the type of the
variable. If this variable is global varlable.
then Type 1 = type 3, and Type 3 = type 3.
this variable is a local variable, then type 2 =
type none, and Type none type none, and the
type reference does not have the complement

'operatlon.

4) Operator “ is defined as: S
'ﬁ'A. z"passive, if all Ai's are passive.
‘ active, if one of Ai is active.
5) Vector VAR(L), where L=1 to VA, is defined in.
each block. ‘VAR(L) to SLC(I)' means the
vector stores all the variables which will not

use any more from the SLC(I) to the end of the
block. ’ '

Pseudo code:

. BEGIN :

IF ALL FSA (IK'J)' 1%2k=m, ARE EQUAL (All variables in R(J)
from the different SLCs, Il’ 12,...and I, are the same )
THEN BEGIN ) .

ISA(T, J)=FSA(I J) (Determine the variable in R(J)

of IS(I))
IST(1,d)= 4§ FST(L,,J) (Determlne the status of this

variable)
THEN ITY(I,J)=hTY(Ik,35
ELSE ITY(I,J)=FTY(1K,J)
END
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ELSE BEGIN (One of the variables in R(J) from SLCs, I ...
I isg different from others) . '
IQR(I,J) IS SET TO BE A NULL STATE
FOR ALL k, 1%k=m
Ir FST(Ik.J) = ACTIVE

THEN "MEWWRITE R(J) FSA(Ik.J)" 1S INSERTED

AT THE END OF SLC(I,)
END '

IF SLC(I) Is THE FIRST SLC CF A BLOCK (Local variables of
the previous block are not available here)

THEN BEGIN ' : .
IF ITY(I,J)=TYPE NONE (Reset the R(J) holding the
local variable) :
THEN ISR(I,J) IS SET TO BE A NULL STATE
ELSE BEGIN 4
IF ISA(I,J) WILL BE USED IN THIS BLOCK
THEN ITY(I,J)=TYPE 1 .
END
END
END.
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¢s(1)

PS(L)_y BRCH label 1 (the end of SLC(I))

(é S(I)

label 1 OF OPERAND (beginning of SLC(K))

1. Eéch circle means é statement.

2. SLC(I) is a forward branch SLC.

3, SLC(K) is a sink SLC to SLC(I).

4, Cs(I), FS(I). and S(I) are defined in section L_6.

Figure 4-3. Fiﬁalrstate of Forward Branch SLC
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\45 label 2 - 0P Opnd (beginning of SLC(K))

]
\

L (end of SLC(K))

label sfatementv(beginning of SLC(I))

CS(I)

BRCH label 2 (end of SLC(I))
S(1)

Each circle means a statement.
SLC(I) is a backward branch SLC.
SLC(K) is a sink SLC to SLC(I).

CS(I), FS(I), and S(I) are defined in section

Figure 4-4., Final States of Backward Branch SLC
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4_6-1 Final State of the Forward Branch SLC

‘The method used tovdetermine;the FS of the forward

" branch SLC (Figure h 3) does not depend on the sink and can
come directly from the current SLC. Algorithm 4- 5 is used

to describe the determination of this FS.

Lb_6-2 Next Inltlal State of Sink SLC
When a . SLC(I) backwards branches to a SLC(K) (Figure
' Uaﬁ), the state 1mmed1ately before the branch statement must
be the same as the initial state of the sink SLC, and the
‘state just after the branch‘statement vwill go te the
SLC(1=1). |
| The first problem to be determined is what initial _
state of SLC(K) will be used as a reference state by LS(I)
From the last section, IS(K) is the state right before
entering the SLC(K), but it does not involve any RA/D
action about the SLC(K). The next initial state of SLC(K),
denoted by NS(K), is introduced here. | |
When the R(J) is first allocated in the whole pro-

cess of the RA/D scheme performed on SLC(K), the operand
assigned to R(J) and its associated information is denoted
by NSR(K,J) and expressed by:

NSR(K,J)= NSA(K,J), NST(K,J), NTY(K,J), NPT(K,J)
and NS(K) is defined as the set of NSR(K,J), J=1 to NR and
expressed by NS(K)= ?23 NSR(K,J). (For details see item 8

in section 4-2).
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Algorithm 4-5

Program: FS of a Forward Branch SLC

Data: (Refer to Figure 4.3 and section 4-6)

1) I is the index of SLC(I).

2) J is the index of GPR, 1%J%NR.

3) FS(1I), CsS(I), and S(I) are the states assoc1ated
with SLC(I). (see section 4-6)

4) "a null state" is defined in Algorithm 4-k4.

5) FSR(I,J), CSR(I, J), SR(I,J) are defined in. sectlon 
k.2 and section L.s,

Pseudo code:

BEGIN
IF THE SLC FORWARD BRANCHES TO THE SAME BLOCK
(Determining the branch final state)
THEN FS(I)=CS(I) (FS is the same as the state before
the branch statement)
ELSE BEGIN (branches to other block)
FOR ALL J, 1%J%NR
IF CTY(I J) TYPE 1 or TYPE 3
THEN BEGIN »
FSA(I,J)=CSA(I1,J)
FST(I,J)=CST(I,J)
FTY(I,J)= TYPE 3
END
ELSE FSR(I,J) IS SET TO BE A NULL STATE (Local
variable only good within the current block)
END
IF THE NEXT SLC IS IN THE SAME BLOCK (Determine the sequen-
tial final state)
THEN BEGIN |
FOR ALL J, 14J4NR
IF CTY(I,J)=TYPE 3
THEN SR(I,J)=CSR(I,J)
ELSE SR(I,J) IS SET TO BE A NULL STATE
END

END
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Some MENREAD and MEWWRITE statements are needed in
the generatibn of NS(K) from IS(K). Thié is simpiy des-
cribed as follows: » | ‘

Case a: }if NSA(K,J)=ISA(K,J) then no MEMREAD/WRITE state-
ment is needed. | ’ |

Case b: if NSA(K,J) # ISA(K,J), the possible conditions

are:
IST(K,J) NPT(K,J) Condition
active . gource 1
active dest 2
passive source 3
passive = dest L

The‘statements that_may be used are:

MEMWRITE R(J) ISA(K,J) ~=-emmmmee———- (a)

MEMREAD NSA(K,J) R(J) cmmmmmmn- e (b)

In condition 1, statements (a), and (b) are used.

In.conditionlz. statement (a) is used.

In condition 3, statement (b) is used.

In condition 4, none of the statements is used.

In the worst case, statements (a) and (b) are used
to generate NSA(K,J) from ISA(K,J). If CS(I) uses the
I1S(K) as the reference state, these two statements cannot
be moved out of the branch region. In the case of a loop,
it will waste much time to execute these statements. 1f |
NS(K) is’used ag the reference state, these two statements:

do not need to be executed when the backward branch occurs.
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'However, if the statement (a) is still in the region, it
will destroy the content of ISA(K,J) in the host machine
memory. The conclusion is that if the‘MEMWRITE statément
Qsed to generate the NSA(K,J) from the ISA(K.J) can be
moved out of the branch region, then NS(K) can be used as
the reference state in the determination of FS(I). "A
statement can be‘mo?ed out of the region" means that this
sfatement is.data independent of all those statements .
ahead of it in the region. If we can prove that all the
statements ahead of statement (a)'do_not contain‘R(J),
ISA(K,J), this statement can be moved out of the region.
The féllowing paragraph will illustrate this point.

If NSA(K,J)=ISA(K,J), no MEMREAD or WEMWRITE is
needed. Now, in the worst case of NSA(K,J)#ISA(K,J),
statements (a) and (b) are used. The basic idea of the
RA/D scheme is that when it is performed on a variable
which has been assigned to a register already, the same
register is used by this variable. If ISA(K,J) has been
used before it ig deallocated, it must be the same as
' NSA(K,J). Our assumption, however, is that NSA(K,J)#
ISA(K,J). so that ISA(K,J) in statement (a) is used for
the first time in SLC(K). From the definition ofVNS(K),
R(J) is first used when NSA(K,J) is assignéd. R(J) and
ISA(K,J) are both used for the first time in statement (a).
It can be moved out of the region. |

In statement (b), NSA(K,J) cannot be moved out
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unless the same variable is not in a different register in
NS(K). This condition implies that each NSA(K,J) which
appears'in the mapping from ISR(K,J) to NSR(K,J) is used
for the first‘tiMe in SLC(K). 1In the case where this condi-
tion is not true, i.e., NSA(K,J)=NSA(K,J'), for J#J', we
have the following contradiction: | |
| From statement:(a), NSA(K,J) is in R(J). After some
calculations, NSA(K,J) has to be stored back in VML
and anothef variable is aliocated into R(J). The
statement (c) is used inyST(K.J) is active.
WEMWRITE R(J) NSA(K,J) mommcmommmmmmmmmmmo- (c)
and, thén, for some reasons, NSA(K,J) is to be
loaded again, and R(J') has the highest priority to
be replaced.. In the worst case, |
MEMWRITE R(J') ISA(K,J") =oemmmmmemcca—- (d)
VEMREAD NSA(J,J') R(J') moommmmmmmmmmmmmmm (e)
are used to generate NSA(K,J') in R(J*'). Since
NSA(K,J')=NSA(K,J), statementb(c) blocks statement ‘>
(e), but statement (d) can still Dbe mbﬁed ouf. 
This special example does not occur very often. If
it does happen, the only result is ineffiéiency. not‘an
error. NS(K) is used as the reference state by CS(1) to
determine FS(I).
There 1is anothef special case where ISR(K.J)=
CSR(I,J), but NSR(K,J) is empty. 1t will cause many

unnecessary.MEMREAD/WRITE statements if CS(I) uses NS(K) as
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the reference states. 'Ih this case.‘NSR(K,J) is set equal
to ISR(K,J) before the determination of FS(I). Algorithm

4-6 is used to generate NS(K).

k_6-3 Final State of Backward Branch SLC

Refer to Figure 4-4. When the backward branch occurs,
the state CS(I1), which is right before the branch statement,
must be set equal to the next initial state, NS(K), of the
sink SLC. The state S(I) which is after the branch state-’
ment will go to SLC(I+1). The branch fegion between the
branch statement and the sink may be a loop; Correct and
efflclent interface deslgn is a major concern.

Algorithm 4- 7 is used to solve the branch final
state, FS(I). The sequential final state, S(I), is solved
in Algorithm 4.8, |

L7 Conélusion |

The outputs of pass 2 are a set of SLCs and a label
reference table. Each SLC is a set of 1OPs, which all
operands are, in,machiné unit names. The timing phase is
assigned, and all field values are determined except the

next address value. The label reference table, which lists

all labels and corresponding locations, is used to determine

the next address Value, The address field value assignment
and the optimization process will be solved in the next

chapter. -
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Algorithm 4-6

Program: NS of SLC(K)

Data: 1) NP(J) is set when R(J) is first allocated and

will not be reset until entering the next SLC.

2) ODA(M,N) which is to be register allocated is
an operand of a statement M in SLC(K).

3) Refer to Figure 4-4, SLC(K) is sink SLC and
SLC(I) is a backward branch SLC.
SY1), sY(2), SY(3), and SY(4) are defined in
Algorithm 4-2. Subroutine TYPE is defined in
Algorithm 4.2,

Pseudo code:

BEGIN
IF THIS ALGORITHM IS CALLED FROM RA/D SCHEME
THEN - BEGIN
ODA(M, N) IS SEPARATED INTO SY(l). SY(2), SY(B)
AND SY(#) '
IF NP(J)=) (R(J) has not been allocated to -
operand yet)
THEN BEGIN :
NSA(K,J)=SY(4), NP(J) 1
IF N=3 (ODA(M,N) is used as. the destlna—
tion)
THE? ?%GIN (set the state varlable of
R(J : ,
NST(K,J)=ACTIVE
NPT(K,J)=DEST
CALL SUBROUTINE TYPE TO SOLVE
NTY(K,J)
END '
ELSE BEGIN (This operand is source)
NST(K,J)=PASSIVE ‘ .
NPT(K,J)=SOURCE
CALL SUBROUTINE TYPE TO- SOLVE
NTY(K,J)
END
END
ELSE RETURN (R(J) has been allocated to operand already)
END
ELSE BEGIN

IF CSR(I,J)=ISR(K,J) AND NSR(K,J) IS ENMPTY
THEN NSR(K,J)=ISR(K,J)

END 0

END
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Algorithm 4.7

Program: Branch Final State of Backward Branch SLC.

Data: 1) Refer to Figure 4-4, SLC(1) branches SLC(K).
: 2) CS(I), #S(I), and NS(K) are defined in section

Pseudo code:

BEGIN
IF CSA(I,J)=NSA(K,J) (case 1)
THEN BEGIN

FSA(I,J) CSA(I J)
FTY(I,J)=CTY(I,J)
IF CST(I J)=ACTIVE, AND NST(K J)=PASSIVE
THEN BEGIN (extra case 1) S
IF THERE IS NO DEALLOCATION PROCESS HAPPENS
TO R(J) FROWM SLC(K) TO SLC(I) (i.e. R(J)
holds only this variable CAS(I,J) in this
region) v
THEN FST(I,J)=CST(I,J)
ELSE"MEMWRITE R(J) CSA(I,Jd)"
IS INSERTED AT THE END. OF SLC(I)
FST(I,Jd) PASSIVE
END
END

ELSE BEGIN (case 2)

IF CsT(1,J) PASSIVE AND NPT(K,J)=DEST, OR
CST(1,J)=PASSIVE, AND NPT(K,J)=ENPTY (R(J)dld
not hold variable in NSR(K, J)) (cond. a)

THEN FSR(I,J)=CSR(I,J)
ELSE BEGIN
IF CST(I,J)=ACTIVE, AND NPT(K, J) =EMPTY
(R(J) did not hold variable in NSR(K,J))
THEN BEGIN (extra case 2)
I1F R(J) HOLDS ONLY THE VARIABLE
CSA(I,J) FROM SLC(K) TO SLC(I)
(i.e. there is no deallocation
process which happens in this
: region)
THEN FSR(IL,J)= CSR(I J)
ELSE BEGIN
"MEMWRITE R(J) CSA(I,J)" »
IS INSERTED AT THE hND OF SLC(I)
FSR(I,J)=CSR(I,J)
FST(I, J)-PASSIVE
END
END
END ’
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Algorithm 4-7 continued

ELSE BEGIN
- IF CSI(I,J)=ACTIVE, AND NPT(K,J)=DEST (cond b)
THEN BEGIN
FSA(I,J)=CSA(I,J)
FTY(I,J)=CTY(I,J)
"MEMWRITE R(J) CSA(1,J)" IS
INSERTED AT THE END OF SLC(I)
FST(I, J)»PASSIVE
END
ELSE BEGIN
FSA(I,Jd)=NSA(I,Jd)
FIY(I,Jd)=NTY(I,J)
FST(I,J)=PASSIVE _
IF CST(I,J)=ACTIVE, AND
NPT(K,J)=SOURCE (cond. ¢)-
THEN BEGIN ,
MEMWRITE R(J) CSA(I,J)
MEMREAD NSA(K,J) R(J)
ARE INSERTED AT THE END OF
SLC(I)
END
ELSE"MEMREAD NSA(K,J) R(J)"
IS INSERTED AT THE END OF
, SLC(I) (cond.d)
END
END
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Algorithm 4-8

Programt Sequential Final State of Backward Branch SLC.

Data: 1) Case 1 and condition a, b, c and d of case 2 are
directly from Algorithm 4-7. -
2) Refer to Figure &-4, SLC(I) branches to SLC(K).
3) FTY(I,J), "set to be a null state," and VAR(L) are
defined in Algorithm L-k.
4) FS(I) has been determined in Algorithm 4-7
-already.

Pseudo code:

BEGIN
REFER TO ALGORLTHM 4-7
IF IT IS IN COND. C, D OF CASE 2 (it is described in
Algo. 4-7) . ‘
THEN BEGIN i
IF SLC(I) AND SLC(K) ARE IN THE SAME- BLOCK
'PHEN BEGIN -
SR(I,J)=FSR(I,J)
IF FSA(I,J) IS IN VAR(L)
" THEN TY(J)=FTY(L,Jd)
v ELSE TY(J)=FTY(I,J)
END
ELSE BEGIN : : . -

IF FTY(I,J)=TYPE 2 OR NONE (note: FSA(I,J)
is a actually from NSA(K,J) in different
block)

THEN SR(I,J) IS SET TO BE A NULL STATE
ELSE BEGIN .
SR(I,J)=FSR(I,J) , ’
IF FSA(I,J) IS A GLOBAL VARIABLE OF
THE BLOCK WHICH CONTAINS THE
SLC(I) AND IT WILL BE USED BEHIND
SLC(I)
"THEN TY(J)=TYPE 1
ELSE TY(J)=TYPE 3
END
END '
END
EVDELSE SR(I,J)=FSR(I,J) (case 1, and cond. a, b of case 2)
ND.
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CHAPTER V
PASS 3

5-1 Introduction | |
The inputs to pass 3 are a set of SLCs and a label

reference table which are difectly»from the output of'pass

2. Each SLC is a set of MOPs which is represented by M

F P.), and is made machine

5_tuples, (OPi' I 0 ir i

R O

dependent by specifying the architecture of a particular
'real\microprogrammable machine. All field values in the
field tuple F; are defined except the address field which
will be determined with the aid of the label reference
table. |

The purposes of this chapter are to develbp tech-
niques for combining sequences of MiMOPs into shorter con-
current microinstructions, or what we abbreviate as lIs,
and to move the redundant MOPs from the loop region.

We say the NI sequencé is optimized if it is
impossible to rearrange the sequence of MiMOPs contained
‘in the sequence of MI instructions, in a manner that will

produce fewer_mipfoinstructions. DeWitt (7) has proved

- that this kind of absolﬁte minimal reduction problem is an
NP_complete'prbblem.' We find that the rules which are
used to defect the parallelism of [OPs are dependent on

the machine constraint. In this chapter, we show why the
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obtimization problem is NP-complete and then deriVe'general
rules to detect the parallelism of MOPs and examine a
special case of PDP11/40E machine to illustrate the machine
dependency. Then, by'seeking a near-optimal soiution rather
" than - the absolute optimum solution, we have been successful
with a slower algorithm of complexity O{mn), where m is a
pragmatically determined constant less than n. While we
have been unable to do so, it is noted that if we could
apply a sort algorithm of complexity 0(n log, n) to produce
a near-optimal solution, then we could get a faster aléor-
ithm. This reduction would place the near optimal reduction
problem in the class of sorting problems and yield extremei&f
~ fast code optimization algorithms. The problem, then, is

to produce the shdrtest possible sequence of microinstrﬁc-
tions Mll' i\uIZ,...MIk from a compiler-generated sequence of
~ microoperations, I, iy« o . The optimization algorithm
which is used here to .solve this problem is applied
separately each SLC. The proposed algofithm runs in.lineér :
time to produce'abreasonable approximation to the best
poésible code in most cases.

The general terminology used'throughAthis chapter is
described in section‘j-z. The general structure of pass 3
is illustrated in Algorithm 5-1 which leads to the follow-
ing tasks:.‘l) Two important relationships amonngOPs.
invertibility and parallelism, are described in section 5-3

and section 5-4, respectively; 2) Based on this description,
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Algorithm 5.1

Program: Geheral Structure of Pass 3.

1) SLC(P) is to be compacted.
2) Forward branch is abbreviated as f.b.
Backward branch igs abbreviated as b.b.
3)  The label name of the SLC is called LABEL, if any.
k) Subroutine OPTM is to describe the purpose of
this pass, and is illustrated in Algorithm 5-2.

Data:

Pseudo code:

BEGIN
(START) FETCH NEXT SLC(P)
1F THERE ARE f.b. AND b.b TO SLC(P)
THEN BEGIN ' ‘ _
TASK 1: GENERATE A NEW LABEL NAME CALLED 'NEWLBL'
TASK 2: CALL SUBR OPTM TO COMPACT SLC(P)(see
“Algorithm 5-2) '
TASK 3: THE LABEL NAME ‘'LABEL' IS USED AS THE ENTRY -
POINT OF SLC(P) FOR f.b. AND IS LOCATED ON .
THE LABEL POSITION OF THE FIRST MOP OF THIS
SLC
TASK 4: THE NEW LABEL NAME 'NEWLBL' 1S USED AS THE
ENTRY POINT FOR THE b.b. AND I
THE LABEL POSITION.QF THE FIRST MOP RIGHT
AFTER THE MENREAD/WRITE STATEMENTS
TASK 5: ANY b.b STATEMENT INVOLVED THE LABEL NANE
'LABEL' IS MODIFIED BY 'NEWLBL'
GO TO START |
END

IF THERE IS ONLY A b.b. TO SLC(P)
THEN BEGIN
DO TASK 2
DO TASK 4, BUT THE SENTENCE 'THE NEW LABEL NAME
'NEWLBL' IS CHANGED BY 'THE LABEL NANE 'LABEL’
GO TO START
END
IF THERE IS ONLY A f.b. TO SLC(P)
THEN DO TASK 2 AND TASK 3, GO TO START
FERFORN TASK 2, GO TO START

END.
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the allocation problem of ¥0Ps is illustrated in section

5-5.

5-2 General Terminology

The following terminologies assume a sequence of
MOPS, Ml, MZ"“Mn are mapped into a sequence of micro-
. . o g e
instructions, M;l, MIgyeee ML, k€n.

1) A SLC is the basic unit to be optimized and is
represented by SLC=ﬁﬂ1, MZ"“Mn\' where M; is a
microoperation. We sayM-l precedes Mj' denoted
by Mi(l\ﬁj, if i«j.

2) We say a sequence of MOPs is executed in serial,
denoted by {MR,Qﬁj%, {Mk}..., if'the MOPs are |
executed in separateVCOntrol store cycles. Two
MOPs, My and Mj, are executéd concurrently,
denoted by {Mi. Mj}' if they are executed in
the same control store cycle.

3) A microinstruction MI is a set of concurrently
executable MOPs denoted by wl= (M, Mj;...

- [Vlkgbaaa\a » .

4) M; and My are said to be parallel, denoted by
Mi///Mj,‘if for all inputs the sequential
execution of {Mi}, {Mj}, results in the same
output as the concurrent execution of micro-
instruction M1k=.{Mi' Mjs .

5) We say two MOFPs, Mi' Mj in SLC and Mif<mj have
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I1/0 conflicts if one MOP depends phvthe data
produced by the other MOP or alters the data
needed by the other MOP. Aséumevli; Oi' is in
l; and Ij, oj is in Mjf If Ii<\Oj%O, Ijnoi#o,
or OiCioj%O, there is an I/0 conflict between

thesge two MQOPs.

' Now, Wwe can pose the problem in more exact ternms.
Optimiiation of a sequence of MOPs in a lqop-frée SLC, is a
conflictffree partifioh‘of the ¥OPs into sets, say Mli'
MI

MI in such a way that no other partition results

2’000 k,
in fewer MIs; e.g., k cannot be reduced.

5-3 The Parallelism.and Invertibility of ¥OFPs

Based on the 5;tuple format of’MOPs, two important
relationships, parallelism and invertibility, are determined
in this section. It will Be easier to understand these |
relationships if we examine how the 5-tuple of a MOP
affects:

1) 1/0 resources, 2) timing phase, and 3) field tuples.

5-3-1 I/0 Resources

Consider two MOFs M, Mj’ where M precedes Mj(de-_
noted by M <i.):
A y by <is)

iy {OPi, Iir 04)

L (OPj. I, oj}

There are 4 cases in I/0 intersection. (see
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Table 5-1) In row 2, 3, or 4 of Table 5-1, there are two
’conditione for'paraliel execution (see the foufth column of
Table 5—1).‘ 1f the parallel action occurs abOVe‘the dash
line, it is different from the sequential action. Other-
wise, the parallel action is the same as the sequential
action.

The first nonempty intersection in Table 5-1 will
not influence parallel execution, but the last three non-
empty intersectione do-influence the parallel execut%on.
Therefore. depending upon the values of A, B; or C in
column 2 of Table 5-2, there are eight possible combinations..
The only combination of interest, however, is the case
where all intersections are empty. I1If A=B=C=O,-then Ny Mj
are said to be data independent, denoted by Mi/?Mj. This
leads to a very important factor in the optimization prob-
lem. For example, censider’the sequence of MOPS. Nl' MZ'
My, with §EiSl, and additional properties that Wy not /1y,
M, not //Mjbut Ml/ﬂﬂj. If we can change the position of
Mé and MB then we say PN and M3 are invertible. We can

e

invert two [0Fs only when their execution is the.

—

- both sequences. For example, sequential execution of

Ml, MZ' MB produces the same result as the execution °f.M1-
M3' Npe We may take advantage of invertibility by combin-
ing Ml, MB into Mll leaving MB assigned tO'MI2 to give an
optimized partition for r=2. My, My, are said to be

inverti TR T
ible, denoted by s> M1+1' 1f111;an+1.



Table 5-1.

Nonempty
Row intersection

1 »Ii(jIj

1/0 Intersection

Sequential
~action

Data sharing from
common resource
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Parallel
. action

Same’ as

- sequential

2 . A=Ii{\0j

I transfers to

Oi then Oj

- modified Ii

executed first,
Oj reset Ii

before Ii

~trangfers to

Same as
sequential

3 BéOi()I

Data passes from

Mi to Mj

*Oi has no

chance to set
I. if M.

J J
is executed
first.

Same as-
sequential

.4 'C=oicj0j

0 is modified by
0.
J

*If M, 1
I; 1s

executed first,
0j cannot

W - - .

Same as
sequential

« M., M
l’

. Mj is denoted by {bPi

are in sequential order,

’ Il’ Ol>'

. M. is denoted b oP., 1., 0.5\
] v KOFgu 1y0 05y

and M; precedes M.

J
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5-3-2 Timing Phase'

An MI is considered to be a polyphase instruction in
the designing of the FDM. The control store cyCle is
logically divided into'several timing phases.- (The detail‘
- is given in Chapter.II.) The possibilities for timing
intersections are discuéséd.‘ |

Assume Mi<fMj and the timé interval to. initiate and

J
in Figure 5-1.

execute M, 1is Tj' The relationship between Ti' Tj is shown

Tioszo implies Ti(Tj or Ti’-Tj

, Ti(\Tj;!O implies Ty -*-T.]..T;;$T'j or T.lz.'.lj

We can see My precedes Mj in the sgquential form, put
in the4parailel form M, may not precede mj. What we must
do is to find an algofithm to detect whether.the parallei
execufidn of MIk= {Mi.Mj} can produce the same output as the
sequential execution of MIkzmi, MIk+1=Mj.lfor all inputs.

Consider Table 5-1 again. It is simple to determine
fhe results of sequential execution, but parallel execution
méy or may not prodﬁce the same results as sequential
action. If we add timing to the table and divide the fourth
column in Table 5-1 into two parts, we get fhe results .
shown in Table 5-2. The entries of Table 5-2 show the
conditions of timing which allow concurrency.

From the above diséussion, it is obvious to see the

1/0 and the timing tuples play important roles in the
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T_ ' III-
S VROV R Pt N—
; CS cycle

If both Mi and-Mj can be executed in one CS cycle then

| Mj Precedes Mi.
B} Ti<Tj

s CS cycle

 SORTP - S e g

If M; and Mj are executed in one CS cycle, then my

still precédes Mj'

— 1 CS cycle

If Mi//Mj' then M. and Mj execute in the same interval.

Figuré 5-1. Timing Conflicts in a Poly-
Phase Microinstruction
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Table 5-2. <I,0,T Conflict Detection

Nonempty Parallel and sequential Parallel and sequential
inter- execution leave same execution leave differ-
section result - ent result

Ii(WIj independent of timing

I; 00, T3 ¢ T; o T; 575

determination of the MOPs. Before going into the general
rules to detect parallelism,'a more exact explanation of

field conflict is given.

5-3-3 Field Tuple
As mentioned in Chapter II, there are two kinds of
fields in MI format, denoted by Foy Fgo respectively.

FAz.{fi[ If f; is used by more.than one MOP in
the same MI and the values assigned to these
fields are the same, it will cause no
confliet.}

Fg= {fil If f; is used by more than one MOP in the
same MI,'it will cause the conflict even if

the field value is the same}

s Mj are in SLC. Fyis Fj are the field tuple to

Mi, Mj, respectively, and it is assumed:
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F OFgRs {£3] a set of flelds} 7o

1EVE, €F.2 1 EFA and the vg_lues of each f; are‘the
same, then‘F-l'(')Fj is defined to be zero. '
In other words, if one of f; ¢ F, belongs to Fy, then
Fy QFj;r!o, -
or if VfiEFk3 f; e¢F,, but one ;.)airfbof f. has the di’ffe.rent
value, then
F.quj;éo.

5-4 The Detection of Parallelism of MOPs

The machine constraints on the primitive operafions
may be different from computer to domputer. The paralielism
detection rule can never be machine independent. Here..We'
divide the discussion into two parts. One is:statement of
the general rules which are available to every machine.
The second is an éxplanafion of the machine constraints
which must be faced. Then some examples are used to explain:

the machine_iimitations.

General rules

Every microinstruction is completed within a control
store cycle. The method used to analyze the timing phase
within the cycle is described in sectlon 5-3-2.  The
following rules are used: A

Given M;, Mj in SLC and Mi;<,Mj. My and_mj‘are

denoted byi»'



M. :
i

M.:
J

1)

2)

3)

ppExample 5-2:
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{op,, I,

i’ 0

i Fir P; }

fors, 15, 05, Fy gy

1.
As Py (P,

if Fi(\Fj=0 then Mi//Mj.

As Piépj

If (Eic>Ej=0) and (mi;>mj) then Mi//Mjﬁ

In the PDP11/4OE machine (8,9), the CL3 cycle gener-

ates P2 and P3 pulses. Then each pulse is assigned to the

corresponding KOP. There are three cases used to

illustrate the general rules.

Case 1:

il R2-9D; P2 -+ copy RZ2 to register D

M2: D=R3, P3 : copy register D to R3

‘M3: R3B=D, P2 : add R3 and register B to

o register D

M4: D-RY4, P3 : copy register D to R4
M2 and M3 are examined to detect the

parallelism,

F;om example 2-5, we know Fp ﬂF3=O. but[M2 not/R‘

MB'

M

This implies I, not M . (If M, and N4 are
~executed in one MI, and M3 is executed prior to

o» it will give a wrong result.)
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Case 2: M5: emit —»stack, P3 ; copy content value "emit"

. ; to stack
M6: R3 D, P2 ; copy R3 to register D

From the third rule, (F;QF4=0) and Mjfmé)

imply M5//116.

Case 3: M7: R3+B-3D, P2 ; add R3 and B to register D

1)

M8: D =—+R3, P3 ~; copy register D to R3
The puisés used by M, and Mg are P2 and P3,
respectively. F, (Fg=0 implies M,//Mg which is
independent of I/0 conflict.d ¥

Machine Constraints

1f more than one control store cycle is provided by the

‘machine, this will cause some machine constraints on

the general’rules.
Example 5-2:

In fhe PDP11/40E machine (8,9), there are three
machine cycles listed in Figure 5-2: a) CL1 cycle
generates pulse P1; b) CL2 cycle generates pulse F2;
and ¢) CL3 cycle generates pulse P2 and pulse P3.

- The constraint is "Different microinstfuctions must
use different control store cycles and MOPs in
different cycles may not execute together."  This
implies that a MOP in CL1 can never execute together

with MOPs in CL2. Before the general rule can be used,

~one has to determine that these two NMOPs belong to thé

same control store cycle.



CL1

CL2

CL3

P1

140 ns ____§

& 200 Nno—
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P2 F3

&——-—— 200 ns

44 ~ le~100 ns

(_

300 ns

N

Figure 5-2. PDP11/40OE Processor Clock
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Case 4: M9: PUSH, P1 ; push the stack
Mioz
M9 is in cycle CL1 and MlO is in cycle CL2

R3 —D, P2 ; copy R3 to register D

imply M9 cannot be parallel with “10 even if the
general rule is godd in this‘caSe.
Examine M5 and Mé'in example 5-1. They béth belong to
cycle CL3. The general rule is appliéd to get the parallel-
ism result. 4 ¢ | |

2) There are some MOPs used for special purposes'such that

the general rules cannot apply to them.

"»Example 5-3: ‘

In the FDM of the PDP11/40E, the MOP FLAG is used'to

set the best machine flags for the previous ALU 6peration.
- MOP FLAG must be the next one after the ALU operation.

It cannot move the poéition even if invertibility is
true. |

MOP NOOP; which is used in the N-way branch opéra-;
tion and provides the branch address, has its own fixed
position. It cannot be moved and/or parallel with other

MOPs even if the general rule is applied here.« ¢

The MOPs used for these special purpose and the
extra machine constraint'conditions.Cannot make the-
‘parallelism detection rules completely machine independent.

In order to keep the system portable, they are packed into
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a subroutine. If the rules are changed for another machine, .

this subroutine must be rebuilt.

5-5 MOP Allocation and Movement

' The burpose of this section is to develop algorithmg
used to allocate the MOPs into the MI and move the MEMREAD
and/or MEMWRITE statements which are used to.generatebNS(K)

from iS(K) in the sink SLC out of the backward branch regionw

5-541 Theoretical Constraints on Optimization
The optimization problem is known to be NP-complete
(7). Thus. it is hot likely that there exists a nonexponen-
‘tial élgorithm to solve this kind of problem with a determin-
isticiTuring Mﬁchine. First of all, we examine why the
optimization problem is NP-complete.

Thé definition of parallelism and invertibility of a
pair of MOPs was described previously. Now, we extend the
definitions to microinstruétion. | |

MOP M, is said to be parallel with MI, if ijMIkg

k
Mk//Mj. Also MOP M, is said to be invertible with MI, if
M, eMI{ M, >< M., ‘

Given a SLC= {Mi. M ....Mk.... Mni}’ assume ﬁwi.k

2

M "”Mk-l} ig partitioned into MIi....MIi. As we allocat-

2
ed Mk' relationship between MOP and MI is : (refer to
- Table 5-3) _

Case 1: Mg not ><MI_-1. and My not//MI;
not><MI,, and Mk//MI-l

Case 2: Mk



127

Case 3: M, >¢MI;, and My not//MI

k

Case W: M

i ><MI, and Mk//MIi

Table 5-3. Possible Positions of MOPs
in the Allocation Problem

Posz;:tengggiﬁion MI;,, MI; MIg...MI;
Case 1 X
Case 2 X X
| CaSe 3 | X

Case 4 X X A

~

MOP can be in this position.

A: Check M, with the MI ahead of the. current
one and determine which case it belongs to.

| If Mk is invertible with MIi (Case 3 ofvb of Table
5.3), it may be mo?ed past'MIi and the same test applied to
MIi-i' On the other hand, if Mk is not invertible with MI;
(Case 1 or 2), it is blocked by this MI. In this case, My
is placed in the subséquent MI;,, or the current MI,,
respectively.

In Case 3 and 4 of Table 5-3, we have to check the
MOP ahead of the current MI,. Again we face four cases. If
M, is invertible with all MIs from MI, back to MI,, there
are (i+1) possible positions for M, ; one position is ahead

of MIl,rone is after MIi. The other i;l positions are
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between any pair of successive MIs: In the remaining cases,
if M, is // and invertible with all MIs, there are 2i+1)
possible positions for Mk’

Let us considervthe worst case:

S= fM1"’Mn} , assume every MOP is invertible with
every other, but not parallel.. M1 is allocated
in MI,, Mj is to be determined, 2%j%n. .
j=2, there are 2! possible positions for My, {Ml},

A, }.oor {u) {u} .

J=3, there are 31 possible positions for M3..

j=n, there are n! possible positions for Mn’

Totally, there are -%,k! possible positions in which

to allocate these n MOPs.

Clearly, this is a very special case, since if we
know in advance that there is no parallelism among MOPs, it
is not necessary to check these positions. We just use n
MIs to allocate the n MOPs. The problem is that all the
relationships are not known until we check the last MOP'in‘
SLC. The allocation of MOPs depends not only on the MOPs
ahead of it, but on the MOPs after it. The best pcsifion
of MOPs cannot be decided until every poésible combination

of MOPs is checked. We can see that invertibility'causes

‘'the problem to be NP-complete. ,
On the other hand, the data dependency among MOPs is

obvious and limits the invertibility considerably. In this
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case, it is hard for a MOP to cross too many MOPs ahead of

it. A limitation of the times of comparing a MOP with

other MOPs is necessafy.

5.5-2 Linear Order Compaction Algorithm

In order to gef a practical and efficient algorifhm.

we impose

1)

2)

the following restrictions.

The position of MOP M, is computed by,searching

k
backward over the previous microinstructions

leading up to MOP M, .

In each case of Table 5-3, we make the following

decision.

Case 1: {Mk\_w+MIi+1

Case 2: {Mk)ﬁ wiMI-l

In the next two casés;_Mk is limited to make
m comparisons with the previous MOPs. In other .
words, Mk can compare with h MIs from MIi_1 to

MI where h is a number of MIs and

i-h
?51 lMIi_j[ is nearest to m. (/! MI | means

number of MOPs in MIk).
Case 3: If M, is invertible with all MIs

but‘not parallel, then {Mk}-aMIi+1.

Case 4: Compare M, with MI; ., 1£j¢h, until

. _jo
we find the MI nearest to MI, that can accept

Mk'
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We restrict the invertibility_problem as described
above and use the relationship of // and > < between MOP and
- MI to get Algorithm 5.2. But, there is a special case in
which this limitation cannot be put on the algorithm. As
mentioned in Chapter IV, a SLC(I) backwards branches to
- SLC(K). The MEMWRITE statements which are used to generate
the NS(K) from IS(K) will have to be moved out of the
branch région. Otherwise.verrors will occur,  Algorithm
5-3 which is a'subroutihe to Algorithm 5;2 is used.to move
these statements out of the branch region.

Now. we consider the computational complexity of this
algoritﬁm, using the number of comparisons between péirs of
MOPs as a measure of this complexity. There are n MOPs in
- sLe {M,, MZ...;Mk....Mn} . Assume MOP M, is to be determin-
_ed for 2¢k€n and M,, M,....M, , is partitioned into MI,, MI,,
...MIJ._1 already. _ |

1) In case 1 and 2 of Table 5-3, Mk is assigned to

- MIJ.+1 of MI;. In the worst case, we compare

J

only Mk with all the MOPs in MIj.

2) In case 3 of Table 5-3, as k >m, we check Mk‘with

MI i+1, 2,...h until >€ does not exist. 1In

-1
the worst case, Mk igs invertible with h MIs
ahead of it. We need m comparisons before we
get the position of M) . As k€m, at most k

comparisons are necessary.
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Algorithm 5-2

Program: O(mn) Compaction Algorithm |

Data: 1) SLC(P), My, My,e. .oy is to be processed.

' 2) When M, is allocating into MI, we assume
My+o.My 4 has been allocated to MIl...MIj

already.
3) n is the number of MOPs in SLC(P).
) m is the maximum number of comparisons which is
allowed by the algorithm when a MOP is allocat-
ing to MI. . ‘ ‘
k is the current MOP index.
j is the current MI index. : ‘
$ is the counter to count the number of compari-
sons when M, is allocating.
/MI/ is the“number of MOPs in MI.
»¢(invertibility) and // (parallelism) are
determined from section 5-3 and section 54,

OO ~3 O\
N s N s s

Pseudo code:

BEGIN v .
(STRT) SET THE COMPARISON COUNTER S TO ZERO
FETCH NEXT MOP, M

IF ALL MOPs IN SLC(P) ARE ALLOCATED ALREADY INTO MIs THEN
RETURN ’
ELSE BEGIN o
IF THERE IS A b.b. TO SLC(P)
THEN BEGIN
IFM IS A MEMREAD/WRITE STATEMENT

THEN CALL ALGORITHM 5-3
‘ GO TO STRT
ELSE GO TO A
END
ELSE BEGIN
(A) ‘ S=S+ \Mlj\

IF,Mk/'/MIj
THEN BEGIN
IF Mk><M1j

THEN kk=j (kk is set to the current MI
. index) . ' ~
GO TO C

ELSE ALLOCATED M, INTO MI'J..
GO TO STIRT '

END



Algorithm 5-2 continued)

ELSE BEGIN
IF Mk>£MIJ
THEN BEGIN
(C)
THEN
"ELSE
. END
: ELSE BEGIN
{B) - IF kk=0
' THEN
ELSE
END
| END
END END

END.
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IF S>m (The number of comparlsons

exceeds the limitation)

GO TO B

BEGIN

j=j-1 (decrement the current
MI index)

IF j=0

THEN GO TO B

ELSE GO TO A

END

(M has never been parallel

w1th any MI,,, where kk%j)
BEGIN
ALLOCATE My into NI,

j=j+1 (set the new MI index)
GO TO STRT

END

ALLOCATE Mk INTO MI '

GO TO STRT
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Algorithm 5-3

Program Movement

Data: 1) This algorithm is called from Algo. 5-2. '
2) Label MOP is the MOP contained the label state-
ment. ‘ , _
3) Mk is the MEMREAD/WRITE MOP to be moved out of

the branch region.
Pseudo code:

BEGIN , ‘
CHECK Mk’WITH~MI., MI ., 1,...MI (MI_ is the MI contained
J = 2" "2 ghe label MOP)

IF My IS INVERTIBLE WITH ALL THESE MIs

THEN BEGIN
7= - -
WHILE t2q (change the index of MI)
DO BEGIN C | '
MIgyq MLy

t &t-1
END
END v
ALLOCATE M, INTO MI (Mk is moved out the branch
-1 region) :
GO TO D '
END R
ELSE ALLOCATE M, INTO MI.+1(Mk may not be used to gener-
| T ate NS(P) from IS(P))
(D)j ej+1 (set new MI index) ' - '
RETURN

END.
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3) 1In case 4 of Table 5-3, as k »m, we chéck’Mk

with MIj-i'

exist. Then we assign N to MIj_i where 1 is as

i=1,2,..h until //, »¢, or neither

large as possible. The worst case occurs when
M, is // and with h MIs preceding it; i.e., we
need m comparisons before the allocation of My«
As k<m, at moét k comparisons are necessary.
These four cases may occur alternatively but in the
worst case, as k>m, Mkvrequires a total of m comparisons
before allocation. Indeed, if this occurs for each of‘MOPs.
Mm+1""Mn’ the tbtal number of comparisons is T(n)=1+2+ coe
m+(n-m)m. Therefore, the algorithm complexity is O(mn).
This algorithm féils to produce the absolute |
optimization code, but rﬁns in linear time O(mn). The
- value of m will be determined pragmatically in the next

chapter.
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CHAPTER VI
EXAMPLE AND CONCLUSION

6-1 Example

This chapter discusses an example used to describe
the entire performance of the tfanslating system. The
general structure of this example is shown in Figure 6-1.
The térget machine, PDP8, is realized by IML in two parts.
One is described by IISG (Appendix E-1); the other is
described by IESG (Appendix E-2). Thé host machine used is
the PDP11/40E. The FDM and the MET of the host are descrlb-
ed in Appendix B and Appendix C, respectlvely.

, IISG is decoded into OP(IISG) which, in turn, to-

| gether with IESG and MET are the inputs fo pass i. The
output of pass 1, Appendix‘E-j. is a‘set of host machine
executable codes partly in the form of symbolic variables;
These codes together with the FDM are the input to pass 2.
The output of péss 2.,Appendix E-%, is a set of MOPs and
each MOP is in a 5-tuple representation. The output of
pass 3} Appendix E-5, is a éet of compacfed codes and the
host binary microcode aséociatéd with each MOP. Finally,
three different benchmarks of PDP8 are tested and the
result is shown in Appendix E-6. |

This example shows that the system successfully
translates the IML into the PDP11/40E microcode. The

performance of each pass is evaluated in section 6-2 to show
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Figure 6-1. Genéral Structure of Example 6-1
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the efficiency of the system. In this translator, there
" are some limitations from the host machine constraint and
part of the system have not yet been programmed. These

factors will be described in section 6-3.
6-2 Performance Evaluation of Passes

6-2-1 Pass 1

Pass 1 increases the number of IML codes, M, to the
number of MDIL codes, N. This increase number, N-M, which
is used to solve the problems of the difference between the
virtual machine and the host machine, is highly dependent
on the choice of the host machine. Since extra machine
codes (MDIL) are needed to match the difference between
the host machine and the viftual machine, for instance, in
the example 3-7 of Chaptei 3, the word size problem causes’
eleven machine codes‘to describe that IML code which needs
-only three machine codes if there is no word size
différenée.

In the whole translation system, (refer to Figure

6-2), pass 2 is used to allocate the register to fhe
variable in MDIL and the output is K MOPs. The increase
in number, K-N, is needed to handle the load’and/or store
operations (the details are in Chapter IV). Pass 3
compacts these K MOPs into J MIs, where JK (the details
are in Chapter V). Pass 1 is one of the factors that

influences the system's efficiency (with respect to the
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M IML codes | N DIL codes : ‘
___ylpass ﬂ | ., |pass 2
' N2=M
K MOPs J MIs
S | Pass 3| ‘ -
k=N JEK

Figure 6-2. The Variation of the Number

of Codes in the Whole System -

number of codes increase). 1In order to minimize the value

N-M, the user may often use the "equivalent” machine to

emulate the target machine. For‘example:

1)

2)

3)

The operations of the host machine aré similér'
to the IML statements. o

The hardware configuration of the host machine
can describe the corresponding configuration
in the target.

The arithmetie modé and the word size are the

same for the host and the target.

6-2-2 Pass 2

The main purpose of pass 2 is to allocate the

symbolic variables declared in the VMPL emulator program

into the set of GPRs of the host machine. As mentioned

before, pass 2 causes extra load/stofe operations which
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directly influence the,éystem?s efficiency. The performance
of pass 2 with respect to the number of GPRs is to be
evaluated. Sqme-related work is discussed first.

Rannem, et al. (17) descfibed an experiment performed

for 15 small éomputers as follows: |
‘1) Gather hormalized execution times ahd memory
space requirements for three Simple-benchmark
kernels written in the macro assembly level of
each éompﬁter.

2) Choose tWo different kihds of equationé that
have six standard machine parameters as the
independent variables and execution time (T) andv
memory space (S) as the dependent variabies.

3) Perform a standard regression fit of these
equations to the observed data for time and
space to estimate the equation coefficients.

4) Finally, for each kernel, there are two perform-

 ance measures, S, and T, which are the functions
of the_six'machine parameters.

Among these six performance equations, he found that

" the execution time of Kernel 3 is significantly dependeht
on the number of GPRs, and concluded that substantial
changes in performance are not achie?ed by increasing the
number of registers'beyond 6 or 8.

- Lunde, et al. (11) used the DEC-10 ISP (instruction

set processor) to ahalyze 36 test programs written in high
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level languages from avscientific‘environment and 5 compil-
ers, three of which were written in macro assembly language
and the rest in a HLLQ Lunde's analysis program was used.
to deteét register lives, classify them and find the number
of "live registers" at each time during program execution,'
The results suggest that programs might run almost equally
time-efficiently on an ISP having fewer registers, but the
same structure otherwise.

Reducing the number of GPRs in ISP will increase the
execution time because of‘redundant pegister storé and
" reload operations. The regsult shows that the average | |
increase caused by a reduction to 8 registers is ?.9% and
the‘authors conclude that eight registers would be sufficQ
ient for a general register ISP similar to the DEC system
10. | |

The example in section 6-1 shows that. the inpﬁt‘of
pass 2 consists of 174 microoperations in 32 SLCs contain-
ing 7 global variables, 3 local variables and 13 local
temporary variables. The nhpst machine used is the
PDP11/40E. Ah experiment is made by varying the number of
different registers and measuring the length of code
produced. (See the result in Table 6-1). As is seen, when
the number of registers, N, is greatér than or equal to 9,
there is little change or increaée in instruction count.

If we reduce the value of N, it will increase the

instruction count. For example, as N is reduced to 8, the
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Table 6-1. Evaluatidn of Pass 2
(number of registers w.r.t.
the length of code. produced)

n OP f=0Pn-0P9 f/0P9 f,=0P -IP fZ/IP

3 267 76 39.8 93 5345
L 262 71 37.1% 88 ' 50.6%

5 248 57 29.8% M b2.5%
6 219 28 14, 6% b5  25.8%
7 215 24 7.3% 2! . 23.6%
8 203 12 6.3% 29 16.7%
9 191 0 o 17 8.9%
10 191 0 0 17 8.9%

. The number of input codes in 174 in 32 LSCs.
. The number of variables is 23.
. n is the number of registers.

. 0P, is the number of output codes when the number of
register is n.

increase in relative instruction couﬁt is 6.3% ﬁhich is
close to iunde;s result. It seems that eight or nine
registers would be a good size for general purpdse emulation.
The other feature of pass 2 is seen in the last column
of Table 6;1. The inefficiency rate (IR) is defined as:
IR=(# of OP - # of IP)/(# of IP)

As shown, as the value of N decreasés. the value of IR
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Table 6-2. Testing O(m) Algorithm
' on the Husson's biachine

L - # of MlIs

N

30
31
21
23
18
18
18
18

W EE W oW

* 3 18

m

#3%

3%

* %

3%

* %

L # of lils
2 5
2 6
3 L
3 L
b 3
b 3
5 3
5 3
* % 3

(56 1MOPs in SLC)

(9 MOPS in SLC)

¥%*: no limitation on this constraint.

m : the number of comparisons.

. L : the length of MOPs in WI.

increases. When N is reduced from 9 to 3, the value of IR

is increased from 9% to 53%.

We

conclude that pass 2 works

well: i.e., it can produce up to 44% savings. The limita-

tions are due to the host machine. not the algorithm.
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6-2-3 Pass 3
Pass 3 uses a pragmatic rule to detect the concur-
- rency of,MOPs and an 0(mn) algorithm to allocate the MOPs
into the MIs. (Note: MOP is defined directly from the
FDM) Where n is the total number of MOPs tolbe processed,
m is the maximum number of comparlsons allowed in the
algorlthm. The evaluation of pass 3 performance is used
to answer such’ questlons as: What width of the MI would_
be sufflclent if a machlne 1s designed? What is thebbest
value of m in the O(mn) algorithm? .

Two test examples, one contalnlng 9 MOPs in a SLC,
the other containing 56 MOPs in a SLC, are encoded on the
Husson machine (10). The number of cdmparisqns. m, and
the limitation of the number of MOPs in one MI, L, are.
considered as,the.dependent variable in pass 3.

Different values of m and L afe tested and the
results are displayed in Table 6-2. As is seen, there is .
no changevin the number of MIs when the value of L is
greater or equal to 4 and the average concurrent MOPs in
one MI is 3. Iﬁ seems that four MOPs is the limiting'Width
of a MI for a microprogrammable machine. Beyond this
number, data dependency among MOPs limits the compaction
of MOPs into MIs. |

Next, the value of m is to be determined. Review

Table 6-2 again. If the value of m is set equal to the

value of L, the number of compacted output MIs is very
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Table 6-3. Testing 0(mn) Algorithm on
the PDP11/40 Machine

m # of MOPs reduced # of OP

#ofn
3 38 153
b 38 15
s 8 153
6 38 153

. The number of IPs is 191.
. The width of MI is 2.

. m is the number of comparisons.

close to the numbef of optimized MIs when the value of m is
not limited. We conclude that the "best" peephole size of
m is twice the width of the MI.

Now, the example in section 6-1 is examined. The
width of the MI which is determinedvffom the FDM is two.
We checked all 41 MOPs in the FDM and found ihat. at the
most, two MOPs can be combined in the legal condition;

Different values of m are tested in pass 3, as is.
shown in Table 6-3. There is no chénge as the value of m
is greater than 4 (which is twice the MI width). The
average number of cqncurrent MOPs in one MI is 1.24.
Compare this value with the previous examples. It is
significantly decreased. The reason for the decrease is

that concurrency detection among MOPs is highly machine

dependent. The last example is actually run on the
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PDP11/40E, and the previous examples are based on Husson's
abstract machine. |

Pass 3 can produce 26% savings in the inétruétion |
count. Thus, this algorithm does better than the machine

can support.

6-3 Conclusions
‘ A translating system has been developed in this re-
search to meet the goals set up in chapter one and run
correctly on PDP11/40E. Some important featurés of this
system are:
1) The FDM successfully plays the role of general
model for all host machine information.
2) The RA/D schemé handles the control flow inter-
face problems and produces as great a savings as
‘host machine constraints will permit in
practice, e.g. the number of GPRs used in the
machine 1imit machine performance.
3) The optimization (Compaction) algorithm’cah save
up to 20% instruction count but is limited by the
real machine, rather than the theoretical o
NP-complete bound.
From the performance evaluétioh._we ha#e:
1) The width of a MI should not exceed 4. Beyoﬁd
| this value, data dependency will 1imit the -

compaction of MOPs.
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2) The number of comparisons.'m; in 0(mn) is twice
the MI width. (Compare O(mn) and 0(n2). as n
is larger). Thus m&8;
3) The number of GPRs used in the machine is 8 to
10. Beyond this value, there will not be ahy\
significant change in the instruction count.
There are some limitations to this translétion
system, from the host machine constraint. If.another host
is used, the subroutines containing these limitations will
be changed. Furthér. part of the system has not yet beéﬁ
programméd. The unfinished tasks and»hosf limitations are
described as follows: |
in pass 1:
1) There are some statements in IESG of IML that
have not yet been programmatically decoded; for
instance, the statements LOOP, -MPY, and DIV.
2) To each simple INML code, there is a correspond-
ing set of machine codes in the Macro Expansion
Table (MET). Each machine code is taken
directly from the Field Description Model (FDM) .
These FDM and MET are host machine dependent .
and provided by the user.
In.pass 2: \ |
1) The size of GPR and the algorithm used- to

compute the field value are machine dependent.

2) Algorithm 4-7 is to determine FS(I) when SLC(I)



In pass 3:
1)

,.2)

3)

‘1h75

backward branches to SLC(K). There are two parts.

in this algorithm, denoted by extra case 1 and

extra case 2, which have not been programmed.

From Chapter V, the MOPs used for the special
purposes and some machine constraints. can never
nake the parallelism detection rule of MOPs
machine independent. This rule will be designed
bj the user when the other host is used.

The next microaddress determination is dependént
on the host machine.

The loader used to load the VM benchmark into

the host machine memory is machine dependent.
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APPENDIX A

'MACHINE INDEPENDENT

INTERMEDIATE LANGUAGE

A program written in VMPL gets translated by the
META-VMPL compiler into an abstract intermediate language
- (IML). The various stétements of the intermediate language
are discussed here. In discussing the intermediate lan-
guage, reference to VMPL statements has been made, sincé

IML is highly dependent on VMPL.

INTRODUCTION

Basically there are two kinds of statements in IML. -
One group is associated with the declaration statements of
VMPL and is known as the intermediate information state-
ment group (IISG). >The otﬁer group is associated with the
actual executable statements of VMPL. and ié known as the
intermediate executable statement group (IESG). I will now -

discuss both these groups in detail.

113G

An IISG statement is made up of five Objebts. bThe
basic format of the Statémenfx o

DECLARATIONTAG IDENTIFIER, DIMENSION} LENGTH, OTHER-
- INFORMATION where |
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adopted.
«0

fele LN Ro NG L WE LR e £W N

| 152

uniform numbering system for the tags has been

None of the others
LOCAL~
GLOBAL ,

Internal procedure (IPROC)
Sub-procedure (SPROC)

SIMPLE

‘MEMORY

STACK
PSTACK
FLAG
FIELD.
USE
EXPECT
RETURN
EXTERNAL

Examples:

00D Wordsize

221
214
OOH

OTHERIN FORMA TION

Global permanent memory
Global temporary flag
Block code starts

Assuming the tag is of the form CB 7
p- 0
1

2

CGHIOO-HUO QW

then.

None of the others
TEMPORARY '
PERMANENT

Name of emulator
Program start
Program end
WORDSIZE
ARITHMETIC
Sub-procedure name
Block code start
Block code end

Unused (presently)

This is only aSsociafed with a few tags. Since its

format for each of them varies, so they will be discussed

individually.

a) 005 - Nl' N

b)

20 Ny

The tag indicates that this is a field declaration.

Nl.N2 and N3fare integer numbers and are the three

numbers associated with the FIELD declaration of

VMPL.

2(2/1)3 - 814 5,0 84, S,

The tag indicates that this is a stack pointer

(PSTACK) declaration and the other information i.e.
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STRTY 53' 84 indicates the push-pop sequence |
associated with the stack. S, S, Sy and § are all
distinct symbols and can be p, L+ +, -

¢) 2/2/1)9 - |
The tag indicates an EXTERNAL variable. %can be a |
'p' indicating an external brocedure or it can be an
'F' indicating it is an external flag.

d) 2(2/1) - p |

' The tag indicates a global flag declaration. /?can be

0 - None oflthe others, a general flag - |

Indicates special flag C - carry.

. 'Special flag 0 - overflow

1
2
3 Special flag N - negative
L

Special flag 2 - Zero

IESG

The IESG 'statements are based on quadrupleS'with aﬁ'
operation and three operands. All three operands are
optional in that some statements have none, some one, some
two and some all three operands. First the overall format
is discussed and theh the individual statements are
discussed. |
FORMATS
", A 1abel starts in cdiumn 1 and always exists by it-
self in a line. A star (*) in the first column indicates

a continuation of the previous statement. It is only used
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for translating two types of VMPL statements. If
the line with the star is empty it indicates the
end of the continuation. All other statements start
in column 7 or 8. The various column designations
are:
8-14 Operation

17-23 Operand one

26-32 Operand two

35-4%1 Operand three

h2.46 Flag settings

7  Operation modifiers
16,25,3% Operand modifiers

OPERATION MODIFIERS
. The two operation modifiers are:
% - indicates that the arithmetic operation is to be
done according to the mode (1's'or 2'sg) declared
“in the ARITHMETIC declare statement (tag - 00E) .
1 - indicates that the flags (host) are to be éét
and will be used by the following statement.
OPERAND MODIFIERS

~ The operand modifiers are:
« - indicates the'operand is a bit operand. The
forﬁat of the operand is:
ID, NUMBER |
where NUMBER refers to the bit of ID-in"question.
/ - indicates concatenated operand. The format of
the operand is:
ID1. ID2

where IDy and ID, are identifier names.
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- indicates the temporary (operand) is needed.

+
_ _ indicates the temporary is not needed..
C . indicates a (constant) integer is the operand.
P - indicates the operand is a parameter identifier.
T . label for first branch in,IF-THEN-ELSE,étatementa‘
E - label for second branch in IF.THEN-ELSE statement.
G - label for a GOTO statement. : ,
F - label for a FOR statement. :
L - label for a LEAVE statement.
STATEMENTS -

There are seven classes of statements. Each class is

treated separately.

1 -

This class has as its OPERATION either an arithmetic or
a logical oﬁeration.' The general form:

OPERATION SRC1 SRC2 DEST
and it means: |

. DEST «—SRC1 (OPERATION) SRC2

The operations available are:

ADD, SUB, MPY, DVD, AND, OR, XOR
The not operation has the form |

OPERATION SRC1 DEST

and it means

DEST < (OPERATION)SRC1 .
There are only two statements in this class which have
the operation SHL (shift left) or SHR (shift right).
The format is: v '
 OPERATION SRC1 COUNT;(l/b) DEST
meaning 1 or 0 and store the result in DEST.
These statements are for reading and writiﬁg into'thé

variable MEMORY of VMPL. The operations are RMOVE
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(read from) and WMOVE (write into). The format iss

OPERATION SRC1 SRC2 DEST

which means:

‘This

a. -

if operation is RMOVE
DEST ¢—SRC1 (SRCZ) ~
else if operation is WMOVE
SRC1 (SRC2)+—DEST
class deals with the various branch operations.
COMP SRC1 SRC2 |
is done to set various host flags. The_operation
requires uskto do: | |
SRC1 - SRC2
along with the fiag settings.

. The direct branch statement is:

BRCH label
meaning go to the label. »
Testing-flags_which usually follows the COMP
statement is of the formz"

OPERATION *FLAG LABEL
where operation cén be CONDF (condition is false)
or CONDT (condition is tfue)._ The statement
means to branch to the label based on the setting
of the flag and the operation, i.e.,

CONDF G ZETA ‘

means go to ZETA if C (carry) is not set.
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5 - This class includes the following statements:

INC SRC1

DEC SRC1

SET SRC1

CLR SRC1

MOVE SRC1 DEST
PUSH SRC1

POP DEST

SR MO0 oM

means SRC1

"EXTR FD SRC1 Dest

SRC1
SRC1
SRC1
DEST

SRC1 + 1
SRC2 1
all 1's
0

SRC1

Push SRC1 into STACK
Pop from STACK into DEST

FD is declared in 1IISG as a set of integer numbers,

N1, N2, and N3. The 'EXTR' stmt means bit positions N1

through N2 of SRC1 are extracted and shifted right/N3/ bits

if N3 is negative, otherwise, shifted left /N3/ bits.

6 - This contains two statements which are translated from

the FOR and SELECT statement.

a. - LOOP SRC1 SRC2 SRC3

means
| FOR SRC1
b. - SLCT SRC1
* SRC3
* SRC 5

means

SELECT (SRC1, SRC2)
(SRC3, Label
(SRC4, Label
ENDSELECT; |

SRC2 TO SRC3

SRCZ2
Label 1
Label 2

FROM ;
1);
2);
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7 - The statements in this élass are:

a - HALT means halt
b - XEQ SRC1 PAR1

* PARZ2

%

means N ‘ .

EXECUTE SRC1 (PAR1, PAR2)

¢ - RET means return from the sub-?rSCedure.

. X X

.* Flag can also be a bit variable ahd will be of the form,

*SRC1, SRC2 which means that a reference is made to the

SRC2 bit of SRC1.
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The FDM of PDP11/40
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ek 1

P v

MOP 1 ADD *Gok 3 O] p2
FIELD 1 WILL BE CETERMINED BY GPR
FIELD 2= 1
FIELD 5= o
FIELD 6= 9 &—
FIELD = 12= 2 .
FIELD 13 WILL BE DETERMINSC BY NEXT AODR
FIELD  19= T o S
THE REST FIELDS ARE NOT USED
MOP 2 suB *GPR 8 0 P2
FIELD 1 WILL BF DETERMINEC BY GPR
FIELD 2= 1
FIELD £z e
FIELD 6= 6
FIELD 8= 8
FIELD 12= 2 ‘ ‘ e
FIELD 13 WILL BE CETERMINED BY NEXT ADNR
_FIELD 19= 1
THE REST FIELDS ARE NOT USED f
MoP 3 AND ~ *G®PR 8 b P2
FIELD 1 WILL Bf CETERMINED BY GPR
FIELD 2= 1 e e n
FIELD 5= 0 /
FIELD 6= 27
FIELD 12z 2
FIELD 13 WILL BE CFTERMINED BY NEXT ADOR -
FIELD  19= 1
THE REST FIELDS ARE NOT USED - T
MOP 4 oR *GPR ) D P2
FIELD 1 WILL BE CETERYINEC 8Y GPR
FIELD 2= 1 IR
FIELD 5= 0 3 o
FIZLOD 6= 30 ‘
FIELD 12= 2 g
FIELD 13 WILL BE DFTSRMINED BY NEXT AJOR :
CFIELD 19= 1
THE REST FIELDS ARZ NOT U3SD 7 i
MOP & SuUB1 *E4IT B o P2 e
FIELD 5= 0 o ' ' SRR
FIELD 6= 6 '
FIZLD 8= 8 -
FIELD 12= 2 :
FIELD 12 WILL BE DETERMINED 8Y NiIxT ADOR
FISLD  14= 1
FIELD BY TMIT

FLIELD DESCRIPTION MCDclL

FIELD(1)IRIF(02?)
FIELO(Z)$SBAMI17])
FIELO(S) 3SBMT16119)
FIELO(T)1SPST{29t31]
FIELD(9) SEUSL 36¢38)
FIELD(11) SWRE42142)
FIELD(13)SXUPF+UPF(48159])
FIELD(15) tLMLI6LEET]
FIELD(17)8SCL721751
FISLG(19)3COT40143]
FIELD(21) $CLKOFF(45)

FIELO(2)3SX[(4H27])
FIELD(L)3SOMI14215)

FIELD(RI®DADL 32:35]
FIELD(10)tCBAL39Y
FIELD(12)8CLKCLELT7Y -
FIELD(14)8DEST+MSCI59863)
FIELD(16)3RMLIG8171)
FICLD(18)8EMITI64879)
FIELD(20):CB(41])
FIELD(22)tPPEL77]

18 WILL BE CETERMINEN
FIELD 19= 1 ‘




MOP € X0R *GOR 3 5] P2
FIELD 1 WILL BT CETEXMINSQD 3Y GPR
FISLD 2= 1
FIELD 5= 0
FIELD 6= 22
FIELD 12= 2
FIELD 13 WILL BE CETERMINED BY NEXT ADODR
FIELD 19= 1
THE REST FIELDS ARE NOT USED
. MOP 7  INC *GPR 0 P2
FIELD 1 WILL BE CETERMINEDN 3Y GPR
FIELD 2= 1 ) B
FIELD 6= 0
FIELD 8= 8
FIELD 12= 2
... FIELD 13 WILL BE DETERMINE" BY NEXT ADOR
FIELD 19= 1 . k
} THE REST FIELDS ARE NOT USED B o o
MOP 8 NOT ¥GPR ) P2
) FIELD 1 WILL BE CETERMINEC BY GPR
FIELD 2= 1
. FIELD &= 16
FIELD  12= 2
FIELD 13 WILL BE CETERMINEC BY NEXT AODR E
FIELD 19= 1
THE REST FIELDS ARE NOT USED - S
MoP 9 DEC *GPR 0 p2
. FI=LD 1 WILL BE CETERMINED 3Y GPR
FIELD 2= 1
FIELD 6= s o
FIELD 12= 2
o FIELD 13 WILL BE CETERMINEC BY NEXT ADOR . -
: FIELD 192 . ; L 8Y NExi AUDK
~ THE REST FIELDS ARE NOT USED
MOP 16 CLR i} P2 V
_ FIELD 6= 19 :
. FIELD 192 R L
 FIELD 13 WILL PE DETERMINEC 3Y NEXT ADDR
~ FIELD 19= g e AL AR o .
__THE REST FIELDS ARE NOT USZD
MOP 11 SET ) P2
o FIELD 6= 28
FIELD 12= 2
B FIELD 13 .WILL BE CETERMINED BY NEXT ADOR
FIELD 19= ; MINTO BY NZxi1 AUUR -
_THE REST FIELDS ARE NOT USED B N
Y MopP 12 MOVEL ¥GPR e Pi
‘‘‘‘‘‘‘‘‘‘ FIELD 1 HILL BE CETERMINEC BY GPR
b FIELD 2= 1 o
o FIELD b= 0
‘ FIELD 12= 1
FIELDO 13 WILL BE CETERMINE( 8Y NExT ADIR
T FIELD ~ 26= 1 -
e THE REST FIELDS ARE NOT USED B R
MOP 13 MOVE2 *GPR a3 . P1 S
FIELD 1 WILL BE CSTERMINEL BY 6PR - o ;
— PIELDT 2e g ; e T o
5 FIELD 3= 1
T FIELD T10= 1 =
- FIELD 12= 1 ;
, FIELD ~ 13 WILL BE CETERMINrc 5y TR S I ceb T (o

THE REST FIELDS ARE NOT USED

NEXT ADOR




MOP 1 MOVE 3 *522
FIELD 1 WILL Bf CETERMINEC
FIELD 2= 1

FIELD €= 0

FIELD 12= 2 .
FISLD 13 WILL BE CETEXIMINETC
FIELD 19= 1 :
THE REST FIELDS ARE MOT USED

83Y GF

ea

Y NEXTRBBR T

FIELD 14= 8
FIELD 22= 1

MOP 15 MOVEL UNISUS .. %¥GPR Pt
FIELD 1 WILL BE CETEKMINZD BY GPR

_FIELD. 2= . 3
FIELD b= 1
FIELD 11= 3
FIELD 12= 1
FIELD 13 WILL RE DETERMINEC BY NEXT ADDR
THE REST FIELDS ARE NOT USED
MOP _ 16 MOVES D e ¥GPR P3 e
FIELD 1 WILL BE DETERMINED BY GPR
FIELD 2= 1
FIELD L= 2
FIELD 11= 3
FIELD 12= 3

CFIELD 13 WILL BE CETERMINED BY NEXT ADIR - .
THE REST FIELDS ARE NOT USED
MOP 17 ~ MOVE6 _  *EMIT 0 P2 )
FIELD 6= 0
FIELD 12= 2 o . o e § S
FIELD 13 WILL EF DETERMINED BY NEXT ADODR

CFIELD . 14= 24 . —
FIELD 18 WILL BE DETERMINED BY EMIT
FIELD 19= 1 _ o _ o
THE REST FIELDS ARE NOT USED : =
MOP 18 = MOVE7  *E™MIT B P3
FIELD 4= (i}

FIELD  12= R S
FIELD 13 WILL BE CETERMINEOD BY NEXT ADDR

 FIELD  14= 1 o I i
FIELD 18 WILL BE DETERMINED BY EMIT

~ FIELD 20= S SR Y
THE REST FIELDS ARE NOT USED

_MOP_ 19 PUSH1 *GPR T0S p2 ~
FIELD 1 WILL BE CETERMINEC BY GPR
FIELD e= 1+ — . s .
FIELD b= 0
FIELD 12= 2 ’ S .
FIELD 13 WILL BE CETERMINEC 3Y NEXT ADNR

_ FIELD  1u4= 8
FIELD 22= 1 . |
THE REST FIELOS ARE NOT USED - L e - L
MOP 20 P USH?2 XEMIT T0S P1 :

- FIELD 12= 1 : :

" FIELD 13 WILL BE DETERMINEL B8Y NIXT ADOR :

_FIELD  14= 4 s - e ——
FIELD 18 WILL BE DETERMINEGD BY =MIT :
FIELD 22= b . , - o
THE REST FIELDS ARE NOT USED :
MOP 21 PUSH3 PSS 705 P2 =
FIELD 4= 0

CFIELD 7= 6 . S
FIZLD 12= 3 e
FIELD 13 WILL BE CETEQMINtC ev NEXT ADDR



MOP 22 POP T03 ] p2
FIELO 6= 0 -
FIELD 12= 2
FIELD 13 WILL BE DFTERMINED B8Y NIXT aoaq
FIELD 1= 6
FIELD 15= 15
FIELD 16= 15
FIELD 17= 0
FIELD 19z 1
e FIELD 22= % X N e
THE REST FIELDS ARE NOT USSD
3 MOP 23 LMASK T0S $CT B P3
| FIELD = 4= 0 :
B FIELD 12= 3
| FIELD 13 WILL BE CETERMINSC BY NEXT ADOR
. FIELD 1= €6 ; .
| FIELD 15 WILL BE DFTERMINED BY CT-01
_ FIELD 16= 15 N
FIELD 17= 0
FIELD 20= 1 )
FIELD 22= 1
— .. THE REST FIELDS ARE NOT USED e - -
MOP 24 RMASK T0S 3CT 8 P3 ¢
FIELD L= o \
FIELD 12= 3 i
. FIELD 13 WILL BE DETERMINED BY NEXT AOJOR Ny
FIELD 14= 6
_FIELD 15= 15
: FIELD 16 WILL BE DETERMINFD 8Y CT-01
_ FIELD 17= 0
‘ FIELD 20= 1 e
.. FIewo 22= 1 . . . -
: THE REST FIELOS ARE NOT USED :
- MOP 25  FLAG CyVsN,Z P1
i FIELD 7= 3 i
___FIELD 12= 1
FIELD 13 WILL BE OETERMINEC BY NEXT ADDR
. THE REST FIELDOS ARE NOT USED i
s MOP 26 BRCH *LABEL
____ FIELD 12= 1 -
FIELD 13 WILL BE CETERMINET BY LABEL

THE REST FIELDS ARE NOT USED

. FIELD

e S ——

MOP 27 - RSMK T3S 5FFsLL,CT D P2
FIELD 62 0 X (I |
FIeLo oo g o e
CFIELD 13 WILL BE CETERMINEC BY NEXT ADDR
FIELD 14= 6 o ST
FIELD 15 WILL BE DETERMINED BY LL-CT ' 7 e
FIELD 16 WILL BE CETERMINED BY 15-FFCT . jv = 9-1° =
FIELD 17 WILL BF DETERMINEC BY CT >
FIELD 19= 1 T o
FIELD 2=t
THE REST FIELDS ARE NOT U3ED )
MOP 2R LSMK  T0S SFFsLL,CT P2
FIELD 6= o
FIELD 12= 2
FIELN 13 WILL BE CETERMINEC BY NEXT AQDR
FIELO 1,‘= . e 6 . - . . . - S e . —
FIFLD 15 WILL BE CETERMINED BY LL+CT
FIELD 16 WILL BE CETERMINED 8Y 165=-FF=-CT
FIELD 17 WILL B8E CETERMINED BY 16-CT
19= 1 , : ~ .




FIELD

22= 1

THE RFST FIELDS ARE NOT USED
MOP 29 ‘MOVER *GPR BA F1
FIELD 1 WILL EBE DETERMINEC BY GPR
FIELD 2= 1 o
FIELD 3= 1
~ FIELD 9= 1
FIELD 10= 1
FIELD 12= 1 ‘ o
FIELD 13 WILL BE OETERMINED BY NEXT ADOR
____ FIELD 21= 1
THE REST FIELDS ARE NOT USED
- MOP 30  NOoOP XyefF  ———————=  ®LABEL
FIELD 12= 1
B} FIELD 13 WILL BE CETERMINED B8Y LABEL
THE REST FIELDS ARE NOT USED
—... MoP 31 = LMASKL = TOS __ 3CT _ EuscC P2
‘ FIELD 12= 2
o FIELD 13 WILL BE DFTERMINED BY NEXT ADIR o
‘ FIELD 1= 7
— .. FIELD 15 WILL Bt DETERMINEC BY CT-02 ==
FIELD 16= 15
——.. FIELD  17= 0.
FIELD 22= 1
B THE REST FIELDS ARE NOT USED ‘ , R =z
MoP 32 RMASK1 T0S $CT EUsC P2
. FIELD 12= 2 o . R N
FIELD 13 WILL BE DETERMINEC BY NEXT ANOR
: _ FIELD  14= 7
; FIELD i5= 0
_ FIELD 16= 15 o
: FIELD 17 WILL BZ DETERMINEC BY CT ;
FIELD 22= 1 .

_MOP 33 ORLSM B TOS,CT 0 P2
FIELOD £= 0 T
.. FIELD 6= 30 - = - s &
. FIELD 12= 2 ~
FIELD 13 WILL BE DETERMIN¢D BY NEXT ADDR N
. FIELD  14= 6
- FIELD 15= 15 e
' FIELD 16 WILL BE DETERMINZED BY 15-CT B
o FIELD 17 WILL BE DETERMINED BY 16-cT
« FIELD 193 1 ‘
o FIELD  22= 1 R
B THE REST FIELDS ARE NOT USZSD B} ,
. MOP 3t ORSM : TOS,CT 0D P2
< FIELD E= 0 ‘ '
__ FIELD &= 30 h
TTTTOFIELD 122 T2 T
© FIELD 13 WILL BE oersanrncu BY NEXT ADOR
— FIftD  1a= 6 Xt RDUR
~ . FIELD 15 WILL BE CETERMINED BY 15-CT
T FIEWD T 1e= T L5 T ‘
 FIELD 17= - @ "
= FIflD 190 1 S
, FIELD  22= 1 i
T THE REST FIELDS ARE NOT USED ™~ ~ iy
= MJP 35 MOVEQ *GOR D P2
T FIELD 17WILL BE CETERMINEL BY GPR
FIELD o S

2
FIELD 6
9

. 1 - ‘-
T
FIELD 5 . ¢




FIELD 12= 2 :
FIELD 13 WILL €S PETEPMINEC BY NEXT ADOR

FIELD 19= 1
FIELD 21= 1
THE REST FIELDS ARE NOT USSD o
MOP 36 MOVEL1L * VAR . 8A P1
FIELD 3= bl ‘
FIELD 9= 1
FIELD 10= 1
FIELD 12= 1
. FIZLD __13 WILL BE DETERMINED BY NEXT ADIR
FIELD 14= 1

FIELD 18 WILL BE CETERMINED BY VAR

FIELD  21= 1

THE REST FIELDS ARt NOT USED o o

MOP 37 MOVE12 *VAR BA P1
FIELD 3= 1.

FIELD  10= 1
3 FIELD 12= 1 o -
FIZLD 13 WILL BE GETERMINED 8Y NEXT ADDR
_ FIELD  14= - 1 | A
FIELD 18 WILL BE CETERMINED 3Y VAR
—— . THE REST FIELDS ARE NOT WUSED .
MOP e MOVELD *VAR D P2
§FI€LD; 6= 0 o -
FIELD  12= 2
. /JFIELD 13 WILL EEZ DETERMINED 8Y NEXT AOOR S

FIELD i4= 1

__LFIELD 18 WILL BE DETERMINEC 3Y VAR
l FIELD  19= 1

“THE RESY FIELDS ARE NOT USED o ; S -
MOP 39 CALL ~ *LABFEL ‘ P2
FIELD 12= 2

FIELD 13 WILL BE DETERMINEC BY NEXT ADOR
CFIELD _ 1u= 3

FIELD 18= 1]
FIELD 22= 1

THE REST FIELDS ARE NOT USED

MOP 40  RETURN  RETADR  EUsc P2
FIELD 12= 2 :
FIELD _ 13 WILL BE_CETERMINEC BY NEXT_ADIR

[ -

FIELD  1&= 7
FIELD 15= 15
FIELD 162 15
FIELD 17= 0
FIELO  22= 1
_THE REST FIELDOS ARE NOT USED _

MOP L1 P USH 4 - . T}
FIELD 12= 1 , ,

FIELD 13 WILL EE CETERMINEQ BY NEXT AOOR
FIELD  1L= 11 :
THE REST FIELDS ARE NOT USED




APPENDIX C
The MET of PDP11/40



5202

skee

SkC2

JC2

3R(C2

srC2

541

EXAMPLE OF MASRO
SIMP_E IML COOt
+A5D SRC1
THE CORFESPCNIING MOFS
1oVl SRC2
ADD SRC1
i MOVIS o
- | g
SI4PLE IML COCOc
AND SRC1
THE SOXRZISFGNIING MOPS
, MOVEL SRC?2
ANC SRC1
MOVES 0
SIMPLE IML C3DE
NOT oRC1
THc CORRESPUNIING MOFS
NOT SRC1
MCVES 3]
SIMPLT IML CQ23E
+SUG SRC1
THE COxKkcS>DNIING MCFS
MOVE 1
Sutl SRC1L
MOVES D
FLAS
SIYPLZ IML COIE
Xoe SRC1
THE COKRESPONIING MOPS
MCVEL SRC2
X0F RC1
TNVZIS 3
sIteLz IML CODE
, Ok SR
THE Z3KFESFONDING MCFS
MOVE 1 SRC2 -
)3 g1
MCves 3
SIAPLT ImML CCIEZ
SHR SRL
THE CIOIRRESPGMNIING MCPS
) ' B SUsH2 ) HHEIE

3

o

# g}

(2}

ot ST

DEST

NEST

{9 ]
in
W
e}

()
m
w
L~

O Ow

Z+FANSION TA3LE OF POP11/40

L

(1]
w)
-—

a
DEST

SO w

m
2]
p

i
(¥ ]
Y

3w
-1

(K]
U

28




. LMASK 105 s 3
oUsS4L SRC TOS i
LA | a T0S+5 D
_.AGVES D JEST
SIMPLI IML COJE
SHL SRC 691 DEST
_THE COKRESPCNUING MOFS
PUSH2 65535 T0S
LMASK - 70S 5 3
U341 SRC 103
IRLSH B TG5+6 D
MOVES D DEST
SIMPLT IsL CODE
S4L SRC 3,0 DEST
THE CORPZSPONIING MCOFS '
. PUSHY $2C T35
T T sk T T TTos T T T UNEWCHARAGOD T T
MOVES D JEST
SIMPLZ IML COJE
S4xk SRC 4,07 0EST
THZ CORRESCONIING MCPS |
PULHL SRS T03.
RS MK 70S NEWCHARAD1D
MOVZ5 5 OEST
SI4PLI IML COJE
PMOVE MEM SRC IEST
THE CIxRSSPONDING MCFS
“MGVES SRC 3A
CMCVIL TTTUUNIRUS DEST -
SIMPLST IML CODE -
WMOVE MEM 53C DEST
THZ SORRESPOROING “MOPS -
Y0VEZ2 SRC 8A
MOVIO DEST o
NGO?
SIMPLE IdL C03S
CEC SRO1
THZ CORRISPGNIING MBS
DES 5R3L )
MCVES D 5231
SIMPLZ IML CO3E o
e



SET D
MOVES 2 SRC1
SIMPLE IML COOE
) INC S3C1L
| THE COxRESPONJING MOFS
r INC SRC1 0
I _MCVES o SRC1
‘ ‘
_SIMPLZ IML COJE
. CLR SRC1
. THE CUXRESPUNIING MCPS
o = L LR R e ; ~4
MOVES D SRC1
- SIMPLI IML COIE
T MUGVE T TSRO T aesT R
; THZ JIRFESFONIING MGOS |
» MOVE3 RC1 )
M0VES 0 0EST
.+ 3IMPLET IML 5%
ExTR CRNTP5  3RC DEST
THE CORRESPCONIING MGPS
2yUSH1 SRAC 705
RSMK T0S CRNTFG D
o NouEs g T2
SIMPLZ IML CODE
~ *L0OMP <RC1 JEST
- "THE CORRESPONDING MQGPS™ 77777 o
| MoVl JEST 3
su®f SRC1 E D
- FLAS ) ‘
.
SIMPLE IML CCIE
+0OMP ER01 c3
THE CORFESPCONIING MOES
MOVE7 2 3
| sSUs SRIL 3 D
‘ FLL; . .
SIMPLT IML C3IOF
N SONGF 47 FLARIL?
‘ THZ CORSESPCADING MLCS
T FUSHL 52C 1953
5 ' RML3K1 103 7 ZU3C
k,__,, Lo NGI? XUPF BERR R
£ CBREATTT T L RBELZ T By L




SIMPLI IML C33E

CONDOF N T FLABEL?2 o
T4E COKFFSPCNDING MGPS
PUSH3 F3 ' ; TJ3
RMLSK1 ToS 3 - ZU8BC
NQD? XUPF - P,02
_ 8RCA LABEL?2 P.002 1
SIMPLE IML CD33JE :
CCONDT C TWABEL1L
THE CORRESPONIING MOFS
BUSHE  ~" B s i g g
RMASK1 T3S a £U3C
CNDDP XUPF P.0G03 ‘
3RCH LABEL L 2,003+1 1

" SIMPLT IML COJE
CCONDT «SX,8 LLABELG
THZ CORRESPOIIING MCPS
2USH1 SR S - T93
RMLSK1 705 . 5 £U3C
NOO? : RUBE = g g
JUM> LABEL 4 PelOu+1 1

SIMPLZ ImL CODE :
. ERCA CLLALEL et . e e e s et
THE CIORRISPCNJIING MOPS

3RCH LABEL

SIMPLZ IML CLDE B B
SLCT SRLL C3
- C9 ' ssueRtl
¢ SouUBR2
cz SSUBR3

* & &« &

o

D VU —
UsH1 SRC1 T03 |
Miski Tas EaC i i
NOLP XUOF P |
UN o IS >
JNIP SUeR2 p
INJP SUsF3 2

[ s B =1
wn
+
o

) -

~NN N

ING MGPS

SUBR



SI4PLE INML COIE
RET
—— THE _CORESPONIING MCOS

RETURN RETADR

NOO21  XUPF.

tU3C

t
1. .
\
e o o e s et e S 110 g e 2t S Attt
i - 1 e et




APPENDIX D

Case Where Virtual Machine Word Size
is Integer Multiple of
Host Machine Word Size



e e e e

AFFENIIX O .

THE VM WORDSIZE IS 22 RITS AND THE’AM“I§V15'axrs;¥0”SOIVE“in§MW%;"f
_KIND OF WORDSIZE DIFFERENCE PRCBLEM, THE VARIASLE BASEC CON THE T~ =

VM WORJSIZE HAS TO B8 SINDED INTO3 SEVERAL VARIABLES BASED ON THE
HM WORDSIZE, THEN,THE IML STATEMENT WHICH THE VARIABLES ARE

DECLARED IN THE VM WORDSIZE IS EXPANDED INTQ A SET OF INML- =
STATEMENTS WHICH THE VARIABLES ARE BASED ON THE HM WORCSIZE.

IN THIS EXAMPLE, THZ LOWER 16 BITS OF VARIABLE,AR,IS CENOJOTED BY

... .ABO,AND THE HIGHER_ 16 BITS_OF THE VARIABLE IS DENOTED EY AB1.

il

~ THIS IML CODE IS 3ASED ON ¥M WQRDSIZE ~ . . S
AkCO A3 co EF
we. THE FOLLCWING IML _CCDES ARS 3ASED ON HM WORDSIZE

+400 AgBg ca0 eFo
.. ... CONDF _C _ __ LeOOX

ING AB1 R

L.0OX ADD  ABL  CDL EFL

THIS IML CODE IS BASED ON VM WORDSIZE e o

AND AB co EF

THE FOLLGWING IML CCGES ARE EASED ON HM WORCSIZE . *
AND ARG coo EF G W
e aMD._____ ABY o1 EF1

e o e e o i e S A e i e

THIS IML CODE IS BASZD ON /M WORODSIZE
‘ XOR AB co EF , ‘
. THE FOLLCWING IML CCCES _ARE BASED ON _HM WORDSIZE

‘‘‘‘ XOR AB0 c00 EF 0

XCR Ag1 U v b S £F1 R

- THIS IML CODE IS RASED_ON VM WORDJSIZE

OF AB- Cco EF

THE FOLLCWING IML GCOES ARE BASED uN HM WORDSIZE
OR AR0 coo EF G / e

OR . ABL ___ CD1 _EF1

s 5 a8 £ e e s e g 1 ke e

THIS IML CODE IS 2ASED ON VM WORQSIZE

Sy AR co EF

~ THS FOLLCWING IML CCDES ARE BASED ON HM WORCSIZE
NOT coc -~ coo -
- NOT . CD1 ‘ co1

CONDF € Le0QZ . on

INC  CC1 \ e e T

L.007 *ACD R2C CO0 EFO0
CONDF c Le0OW o ' R

e CING L ABY

N

L.00W  ALD a31 ot EF1

© THIS IML £ODF TS 2ASED ON VM W3IRISTZE



R D e—

1 s o o 12 5 L s, oy s S g

NOT ﬁwié R “ep T

THE FOLLOWING IML CCDES AE 3ASED ON HM WORDSIZE = m“w‘,M““NM;MMWw;WWW

NGT ABC cDo
e NGT ... AB1 _cD1

. THIS IML COOE IS BASED ON VM WORDSIZE . S

RMOVE MEM A3 Cco
JTHE FOLLUWING IML CCDES ARZ BASED ON HYM WORCSIZE

: RMOVE MEM A30 cDO
. RMOVE . _MEM_ . _AB1 . COLi__

X

e b e e _— [ FORN oS e I e e e it e

e JHIS IML CODE IS BASED QN VM WORDSIZE

WMOVE MEM A3 co
_ THE FOLLOWING IML CODES ARE BASED ON HM WORDSIZE

WMOVE MEM ABG Cco0

WMOVE  MEM.  ABL . CDY -

- THIS IML CODE IS BASED ON VM WORDSIZE . . . : I
CLK AB :

THE FOLLOWING IML CCDES ARS BASED ON HM WORDSIZE . R
CLR ARG o
CLR . RBY

_THIS IML CODE IS BASED ON ¥M WORCSIZE )
DEC A3 '
o JHE FOLLOWING _IML CODES _ARS BAS:Z0 ON HM WORDSIZE
+0FC ABO
CONDF C . Led0G__ . _ e
INC [ -3} ;
L.00G DEC ABL
THIS IML CODE IS BASED ON VM WORDSIZE
SET LB |
o THE FOLLOWING IML COCES ARE BASED ON HM WORCSIZE
SET A3C '
e SET . AB1
- THIS IML CODE IS BASED ON VM WOKDSIZE Lo
MCVE AR - co G -
THE FOLLCWING IML CCOES ARE 3ASE] ON HM WQROSIZE
MCOVE ABC c040 ;
MOVE  ABL o 0BT . , 2

——. THIS IML CODE IS SASED ON VM WORDSIZE

MCVE 1234 co ;
THE FOLLCWING IML CCDES A2E BASED ON HM WIRCSIZE
MCVE . C1234 cos | o

coL

. MOVE . CO



IM WORCSIZE
cD

THIS IML CODE IS BASED ON
MOVE . C1234567

" THE FOLLGWING IML CCGES ARE
o MCVE C54919
MOVE ct3

SR A

CD1

BASED ON HM WORDSIZE
CO0

Rt At i p e w4

THIS IML CODE IS SASED ON VM WORDSIZE
: INC AB
THE FOLLCWING IML CCCES ARE BASED ON HM
~*ING . ABC
CCNDF C
INC . _ AB1

BT S

WORDSIZE

L.33G (NEXT IML)

THIS IML CODE IS RASED ON VM WORDSIZE

*COMP_ . _AB. Go

" THE FOLLCOWING IML CCDES ARE BASED ON HM
NGT COC

WODSIZE

.goo.

NOT co1 co1 ‘
*INC . COO. . .
| CONDF c Le0 G2 s
U INnC . CD1 '
| L.00Z *2DD L90 coo TEMPAO
CONDF € LeOCW . - =
INC aAB81
L.d0OW #£CO AP1 GOl TEMP1 .
~THIS IML CODE IS BASED ON ¥M WORDSIZE =~
CONDF AR, 4 LABEL?2
THE FOLLOWING IML CCCES ARE BASED ON HM WORDSIZE
CCNDF ABC, L LABEL2
THIS IM4L CODE IS BASED ON VM WORDSIZE
CONDT  .AB,23  LABEL1 e T
THE FOLLOWING IML CCDES ARE BASED ON HM WOROSIZE
e oo CONDT  oAB31,7 ' LABELL ~
~ THIS IML COCE IS SASED ON ¥M WORDSIZE
SHR AR 19,1 cD
o THS FOLLOWING IML CODES ARS BASED ON HM WORECSIZE
SHR 281 3,1 cog e G
MOVE £65535 ~Cb1 . - st o o
. THIS IML CODE IS S£SED ON VM WIFDSIZE N )

AR 13,3
IML CCDES ARS 3ASEN ON HM
240 CDO

- SHR
. THE FOLLOWING

: . SHR
. MCVE

co

WO20SIZE




‘ THIS IML CODE IS SASED ON VM WOKDSIZE
SWR  _ AB 5,8 _ _ CD _ ______

1 THE FOLLCWING IML CODES ARE 3ASED ON HM WOROSIZE |

I SHR  A3Q 50  COG .o .o
EXTR CHARADO 481 . CD1 |

1 .. OR . . CDL . G20 COO .
SHR A9t 540 cD1

THIS IML COGE IS BASED ON VM WORDSIZE = - R
SHR AR . 591 co = :

THE FOLLOWING IML CCDES ARE BASES ON HM WORDSIZE e S
e SHR . ABGQC 640 Gog

EXTR CHARADL A31 cD1 B J
ok ... CDL __GDB___  GCOU —
SHR AB1 6yl co1

s,

THIS IML COODE IS 8£SED ON VM WORDSIZE o ‘ . -
« ) SHL AR 5,0 co
THE FOLLCWING IML CCOES ARE 3ASED ON HM WORLSIZE
SHL . ARL = 5,0 _ CO1 _
| SHR Lap 11,9 coo
]Mw oF €0t 200 ¢D1

SHL 43¢0 5+0 el

THIS IML CODE IS IASED ON VM WORDSIZE
R .. SKL o A Bst  CD
THt FOLLOHING IHL CCCES At BAS:D OGN HY WOIDSIZE
SHL A81 = 640 _ CD1 I
SHR A39 10,0 coo , SR

SHL k3¢ 6,1 COo

THIS IML CODE IS BASED ON VM WORJSIZE

SHL AR 18,0 CO
THE FOLLOWING IML CCDES ARE 3ASEU ON HM WORDSIZE
SHL . _... ABE 2,0 Co1
MGVE  CO | o0

g P TR TN

| THIS IML COGE IS 3£SED ON VM WORDSIZE
——— i SHL ... BB 19,1 co

| THE FOLLGWING IML CCDES ARE BASES ON HM WORCSIZE e

I SHL  R8G 2,4 CDL. e

| MCVE 63535 : co0 o e e LT

THIS TML CODE IS 3AScD ON VM WORDSIZE
EYTPR CHeRrRt A3 Co )
. THE FOLLOWING IML CCCES ARZI EASED ON HHM WORDSIZE .
o EXTR CHAFAOZ ABB ... koo oo

T ey e TR Foim Ry =




B

o s 50

_THIS IML COGE IS RASED_QN_VM WORCSIZE
EXTR CHAR2 AB cD
THE FOLLOWING IML CCDES ARE 3ASED ON HM WORDSIZE N B
EXTR CHARAJZ A8} c01 - .
MOVE (ol | R o121 B
~ THIS IML CODE IS BASED ON ¥M WORDSIZE
EXTR CHAR3 AB co - .
~ THE FOLLCWING IML CODES ARE SASED ON HM WORSSIZE .
EXTR CHARADL A3D cDo s ‘
__EXTR _ CHARAGS __ABR1 co1 :
. THIS IML CODE IS 9£SED ON VM WOROSIZE _
EXTR CHARY AB co
_..JHE FOLLCWING IML CCDES ARE BASED ON HM WORDSIZE
SHR ARD 5,0 TEMPO
ExTR CHERAQOG ABL TEMPL i
oF TEMPL T EMPY TEMPD
SHR £21 5,0 TEMPY .. . R .
EXTR CHARAODR TEMFQ CDG
JEXTR __ CHARADS _ TEIMPL CD1_ -
THIS IML CODE IS 2ASED ON VM WORDSIZE s
EXTR CHARS LY:| co
THE FOLLOWING IML CODES ARE BASED ON _HY WORCSIZE
SHL £91 7,0 TEMPL
SKR LB0 990  TEMPO
OR TEMFL TEMPO TEMP1
SHL ABC 7,0 _  TEMPO
EXTR CHAFALY1 TEMPL cD1
. MOVE ____CB __ cDo
CHARL is 3 0
CHARZ2 27 19 0 ] = -
CHAR3 28 12 0
CHARL 25 14 ~ =5 ] .
CHARS 21 14 7
. CHARAQG & G 11
CHARANL 5 ¢ 10
~ CHARADZ 14 30
CHARAD3 27 19 0
CHARADG 15 12 o -
CHARADS 12 0 Rt} '
e— . CHARASE & L A3 g
CHARAD7 20 9 0
CHARACS 15 g 0 o .
CHARADG & o g
CHARALY, 28 1 0
CHARALL 28 1 g




APPENDIX E-1
IISG of Emulator PDP8



goa
gaoc
00E
221
2219
2210
220
210
21
210
214
229
229
005
895
035
005
005
035
306
gos
00F
206
205
206
GOF
206
299

- 306

207
207
207

1208

129
120
120
g0F
205
206
20¢€
206
406
BaF
206
206
ggrF
206
20¢€
205
J0F
208
206
236
00 F
2C0¢
208
238
03F
206
206
205
00F
206

0P8
veel2”
TWO |
MEMy 495,12

ACC\" ’ 12 e e
PCyy12
MAR,,12
IRys12
MIRyy12
OPC0y 3
LNKyy1,1
TIOINSTyee?
DATASKHse12
JPCODEs993 911 ,4-9
CRINTPGyeee7911,0
pGEAJR,, 9096, U

ROTFLU 99 gle3y=1"

OSTe99398,y=3
OSByys092s0
c
PROGRAMSTAPRT
INF

WEM e
IR

2C
INSTOC
IR
3PCH
MEM

IR

4

MAR
AJRy 47
PCTEMFy412
MART, 12
MRI
MAR
4EM
MOR
0PCO
EFTATR
AND
ACCM
M3JR
Tad
ACCHYM
MOR
LNK
IS?
ACCM
MAR
P
3CA
MIM
ACCH
MAR
iMS
4™
MAR

L]

4P

PC




206 MAR
00F IO

206 IR
06 IOINST

‘W'120 DS»ys5
123 0S4,3
0OF OPT

206 IR

( 00F 0PRe ; , , , , R e
206 IR '

— 206 ACCM
206 LNK

120 ROTACT 3 h
0OF RAL
206 LNK
- 206 ACCM
e
206 LNK
206 ACCM -
L 00F RAR
~ 206 ACCM T
206 LNK
—BOE RTR
205 LNK
206 ACCM
00F 0OPR2
206 IR - I - . .
206 ACCM
— 0B PO
205 LNK

1 2 0 CH ECK - 2 e e A £ e S e - - N . o
800G PIOGRAMEND
e ) - R =
Bt 3 . i




APPENDIX E-2
IESG of Emulator PDP8



008 PROGRAMSYART e

00F INF
_O0H

g

o ST RMOVE TTTTNEM PC +T.001

i MIVE -T.0C1
e ING PG e e
001 ‘ ‘

7 0O0F INSTIC

F 00H
T T EXTRTTTTTTTOPCONE IR *T.,002
MOVE -T.0062 OFCD

e s e SL;T S rJVV'Pj\/CVB\)_A”.” ca i e A
co - SMRI ‘

E s

el < T e s -
c2 SMRI ‘ f

C3 SDCA
Ck SJUMS

ST SUMP T
Cé SIO

X & & XK K &K ¥

e c7 " SOPT . i N

*
i

T 001
006G EFTAIR

DOH . - e ’
EXTP °GEADR IR +T7.003 ‘ .

MIVE  -T,003  ADR o R
CONDF IRy 7 TL.001 \

SUB pC c1 FCTEMP o=

EXTR ©~  SRNTPG ™ PCTEMP  #T 004 o = =
MIVE -T.0C04 PCTEMYP

0 Q IR r TR — p c T E "p - A DR T, M A R e eemat e i i A i B D AN ,_.,.kw‘ b et e mpramm =B,

TTTBRECHTTTTTEL LG0T

004 e e i e e —
MOVE ADOR MAR ‘ ‘ o

30K - R

T U CANDF +IR8 TL.003

PO, p— R ?M 0 v E - - "E H O M AR * T . 0 G 5 it rme e et e e Ay et 1 S ROV
MOVE ~T.008 ° MART
*COMF MAR cs o N
CONCT N TL.O0k

- 00 i~ - : -
*+COMP MAR Cle . ' N

ZRN A A CONDF SO “ b ¢ TL. 005,‘ SR A.i_u et et et e

430 MART  C1 +T.007
MOVE  +T.GG7  MART

WMOVE MEM [MER “T.007
200K ' '

TLL005 e e W““Aﬁﬁwgwwfwwp%;y;r‘,m

03K

| MOVE MART MAR

L. 00& - et s SR T U ) e i i

e
L.8373
D RET

00T e e




s

00H
Xz Q

L I

EFTADR

LT i

ey

001

' 1' D A
00F TAD
00H

301

T Q0F 1ISZ
00H

e QMOVE T MEM T MAR T AT G40 e e e
: MOVE ~T,.010 MDR -
st¢v JpPCC ~ C3 o -
co SAND
BT STAD
c2 SISz
BOF AND -
| 00H . o o
i . AND ACCM ~  MDR ACCM E
BRCH BINF
*+A0D ACCM MDR ACCM c
BRCH  BINF SV S e
RMOVE WEM- - MAR - #TeBAQ e e SRS
A2D -T.011 Ci +T.012
WMOVE — MEM MAR 7 =T.012
RMOVE MEM MAR +7.013 ‘
—TT T aCOMPTTT =T, 0137 GO 'z
CONCF z TL.036

g0 J

ING
goK
L.005

T 1

00I
00F DCA
COH

PG -

EINF

- EF T A DR e b et A ARt e S otetms b < <o s 6 S e m i v < A A o nre & R LR B 5 804 gL S AR AT S e &L A A i 8 T e 8 S e s o ‘,,' ey

MEM MAR

BINF

ACCM

301 - - o
80F J4S
PO — -
XZQ EFTANR
* -
WMOVE  MEM MAR PC st T
INC MAR
’43 VE ” A R Dre ot e o 5 it e
BRCH BINF _— ,
001 B o SRR
00F 4P
00H |
| XEQ EFTLDR
: L
o mouE MAR  PC
)  BRGCH  BINF |
v 0 0 I“. R o gty S e e e e ety e fey



CaeE ro o S a— -
00H
NOOoP - I
BRLH BINF
TUo0r
COF OPT
NOOP1
aer- e e
00C PROGRAMEND



APPENDIX E~3
Output of Pass 1



OUTPUT OF PASS1

BXS c P

INF MOVES *14PC BA
MOVE4 . UNIBUS 247,001

MOVE3 *2-T.001 D
S . MOVES .. D UM IR
. MOVE?7 16 3 -
ADD __ *1ePC_____ 8B . D - e e

| INSTOC PUSH1 *1-IR T0S ~
.. RSMK ___ TOS____ T OPCODE____ D ~ ' i
= __MOVES O - *2+7,002 f . -

MOVE3 . *2-T.002 -~ .. D T v AL SV

MOVES O ‘1*0900 o _r

~  PUSAL_ *1-0PCO Tos.

RSMK T0S NEWCHARADDD )
A E5 D e =) 1':5 "2 *T ng T L e e et et e+ Lo,
* ””—'"F%§H1 T s2-T.00X e T0S ‘ Cﬁ?ﬂt&a 51{; 3 vt
LMASKYL  TOS 3;H‘M,__WMWVEUBCM:Tj:way RVER. e
NOOP XUPF PelD1 i e bt 73

e [UNYP MR] P.001 3 %‘p:kz5(
* UNJP MR1 P.0ut+01 3 !
UNJP  MRI  P.001¢02 3 = e
UNJP OCA P,031¢03 3 _
UNJP  J4S_ P.001+404 3 v .
UNJP - JUMP P.001+05 3
e _UNJP 10 - P.301+406 3 N
LUNJP oPT P.,001+07 3
BKS L g

EFTADR - PUSH1 *{+1IR , T0S’
el - RSN  TOS  PGEADR O
- MOVES D 247,003
.. .MOVE3 *2-7,003 n.
_____MQVES D *2+A0R
CPUSHL  *LeIR . TOS
- RMASK1 10S 11 guUBe
— .. ... .7 NOOP  XUPF  P.G02
- BRCH L.001 P.002 1
[ Mover . 16 . 8
V' | SuB *1-PC B 0
~MCVES D . t2ePCTEMP
PUSHL _®24PCTENP T3S
RS MK T0S CRNTPG o
MOVES 0 *2+T7.004
MOVE3 L ¥2-7,004 D
MOVES 0 *2+PCTEMP

Y A AL o 2 ANRAY A S S

R MOVEL  ®2¢ADR B o
OR *2-pCTEMP B 3]
oo MOVES D , *§{+MAR L
BRUN L.002 :
L.001 ~_ MOVE3 *2=-ADR D
T MOVES ) , £ ¥MAR
~Le.B02 PUSHL ~  *1eIR TS o
RMReKL C Tos 120 suac SRR .
NOO®  XUeF P L0O3 R
Le003  P,303 1 K |
e - CFLeMAR O BA i —
CUNIBUS *2+7,005
~ *2-T,005 ] :
ST » R ; ®24MART T .
T v N - DS S SR e S




-5

PUSH3
RMASK1
NOGP

ps

70S
XUPF

3
Pedl4

T0S.
EU3C

H

SuB
- |_FLAG

TMOvVET 2

Peldurt

%1 +MAR

oW

PUSH3 oS T0S
_RMASK1 70S 3 FUBC
NOOP XUPF P.00O5
o  BRCH  L.005 = P,005 - 1 N SR
MOVE?7 16 ; , 8 -
ADD _ ®2#MART__ B D
MGVES D , *2+7,007
MOVE3 *2+7.,007 D o
MOVES 0 ¥2¥MART
_ MOVE2 = ®1+MAR = _BA
MOVEQ ¥2-T,307 )
B _____ NOOP e .
L.005 NOOP
 LeBD4 __ MOVE3 *2-MART 0
MOVES n #1=-MAR
L.003 RETURN  RETADR - EUBC <
NOOP1 XUPF 0
BXS o R .
MRI {j PUSH
' CALL EFTADR R N
MGVES ®x1-MAR 3A
B MOVE4L ~ UNIBUS _ *2+T.010
MOVE 3 *2.7,010 D -
) MCVES O . F®i=MDR
"PUSH1 *{-0PCO T0S
RSMK T0S NEWCHARAO1D0
MOVES 0 TTa2eT L, 00X
PUSH1 *»2-T,00X T0S
LMASKL  TOS 2 7 eusC
_ NOOP ~ XUPF  P.00&6 S .
UNJP AND P.0GO6 2
_UNJP TAD P,006431 2
UNJP 1sZ P.006¢02 2
) EKS . o S 5
AND MOVE 1 _ *1=MDR 8
END . ™isaCCM B8 o -
OVES D *1~ACCM
o _UNJP INF :
BKS »
TAD . MOVE®r  ¥1eMDR B8
ADD *{1+4CCM B i ~
MOVES o ‘ *1-ACCM e
FLAG - :
PUSH3 _PS ... T0S B,
RSMK 708 NEWSHARAD 2D
MOVES D FI4LNK A

BKS

Isz

pusit

LSMK -
MOVES
(UNJP

LR

Tos
D ;
INF

MOVES

MOVEL

*L1eMAR

UNIBU

. ..hmover

a6

1os

 NEWCHARAC3D

+{-LNK

Ba

n

,*2*7'0115‘;."_.W,HW;_HWMﬁm .




-y

PUSH3
RMASK1
NOGCP

Ps
T0S
XUeF

3
P.U0L

. H

MOVE7
SUB
FLAG

L0044
g

*14MAR

YIRS

g

PUSH3
_RMASK1

eSs
70S

3

NOGP
BRCH

MOVE?
ADD

XUPF
L.005
16

F24MART

P.005

P.GOS -

B

Owe

BKS
JIsz o

MOVE 8
MOVE 4
MOvE?

1+
UNIBUS
.18 '

BA

)

MOVES 0 ; *2+T7.007
MOVE3 ¥247,007 D
MOVES D *2+MART
. ) L MOVE2 = *i+MAR __BA
MOVEQ ¥2-7,307 0
o .. NooP _
L.005 NOOP &
L Le0D&___ MOVEZ *2-MART )
MOVES n *1-MAR
L.003 RETURN  RETADR £uscC e . e
NOOP1 XUPF 0
BXS ; e e
MRI {j PUSH
| CALL EFTADR N
MOVES ®1-MAR 3A
MOVE4  UNIBYS o ®2+T.010
MOVE 3 ¥2-T7,010 D -
~ _ MCVES O ... FASMOR
“PUSH1 *{-0PCH TOS
_RSMK T0S NEWCHARAO1D =~
MOVES D *2¢7,00X%
PUSHL  ¥2-T7.00X_ T0S
LMASKY T0OS 2 EusC
_ NOOP ~ XUPF ~~ P.006 e ;
UNJP AND PL.UDG 2
_UNJP TAD P.006¢31 2
UNJP 1SZ P.006¢02 2
. BkKS R I
AND MOVE 1 . *1=MDR 8
AND  *1spCCM 8 O )
MOVES 0 B ¥{=ACCM
~ __UNUP INF ~
BKS -
TAD  MOVEl ~ *1=-MDR = 8 ;
ADD ¥{1+4CCM B o)
MOVES D R *1-ACCM
FLAG T
PUSH3 LS . T0s
RSMK 708 NEWCHARAD 2D
. MOVES O FLHLNK
PUSH1 *{eLNK T0S ‘
LSMK T0S NEWCHARAC3D
MOVES o *{-LNK
) e UNJP CINE e -

Mg gy
n .




R CRUU e T @ AL v —
MOVES D *2+7,012 )
o MOVE2  *feMAR 0 BA__ A
‘ MOVEQ *2-T,012 D
NOOP ~ : -
MOVES *1=MAR 8A
. _ MOVE4L __ UNIBUS __ _  *2+T.013
v MOVE7 0 8

. .. ... suB  *2-T.013 B O
1 ' FLAG
PUSH3 FS 10S
RMASK Y T0S 2 EUBC
NOOP  XUPF P .007_
BRCH L.006 Pe07
| ADD *14+PC 8 :
MOVES 0
L.006 UNJP INF
... BKS .
| DCA PUSH
B L CaLL  EFTADR . .
| MOVE2 *1-MAR SA
__MOVEYQ *1+ACCHM D
NOOP
‘HWH ... CGwr T T R
MOVES o . *1-ACCH
UNJP INF . .

8xS
e IMS_____ . PUSH o '
CALL EFTADR
MOVE2 =~ MMeMAR - BA -
MOVEQ *14+PC 2
e e NoOP S ;
MOVE? 16 B8
ADD *1 +MAR B D
MOVES 0 *1 +MAR
) _ MOVE3  *1-MAR D _
MOVES 0 T x1pC Kl
— ... UngP INF ' -
dis Ji 4
... JmP__ _ PUSH . B
CALL EFTADR , '
... MOVE3 . *1-MAR o ] -
MOVES . D *1-pC
UNJP INF
BKS
10 _NooP
' UNJP ~ INF
. BXS I
oPT NOCP1 o
THE NUMBER OF CODES 174 = =
‘ S - i - = i e o -



APPENDIX E~4
Output of Pass 2



QUTFUT CF FPASS2

FIELD 6=
FIELDL2=

. FIELDL1h=. .

FIELD18=

- FIELD19=

THE RESY

FIELD 1=

-~ FIELD 2=...

FIELD 4=

- FIELO11=

FIELD12=
THE REST
INF

_FIELD 1=..

FIELD 2=

. FIELD 3=

FIELD 9=
FIELDLG=
FIELD12=
FIELD21=
THE REST

CFIELD 1=

FIELD 2=
FIELD 4=

-~ FIELD11=

FIELD12=
THE REST

- FIELD 1=

FIELD 2=

FIELD &= -

FIELD12=
FIELD19=

THE REST

CFIELD 1=
_FIZLD 2=

- FIELD1i=

FIELD 4=

FIELD12=
THE REST

- FIELD . 4=

FIELD12=
FIZLD14=
FIELD18=
FIZLDZ2G=
THE REST

FIELD 1=

FIELD 2=
FIELD 5=
FIELD 6=
FYF1 Ny o

. S

SRS S

MOVE10
0
2

1 -

PC

p2

2048
B :
FIELDS ARE
MOVES

2
NI, [P

NOT USED

0

- R13

P3. ...

2

3

3

FIELOS ARE
MOVES

S S

NOT USED - i e

R13

BA

vwbiu,mmuw.”

P s

RN T
FIFLDOS ARE
MOVE&L
3
1
1

NOT USED
UNIBUS ...

P1

1

FIELDS ARE

MOVE3

1
B

2

1

FIELDS ARE

MQVES
3

NOT USED_ _.

R12

P2

NOT USED

R12

P3

2
3.
3

FIELJIS ARE
MOVE?

o B

NOT USED
16

‘ps;WH,“N

3
1
16
1
FIELDS ARE
ROD ...
2

1
0
9
)

P2



FIELD19=
THE REST FIELDS ARE NOT USED
MOVES D R13 =]

i FTIELD 1= - e e . — .

FITLD 2= 1

FIELD 4= 2

FIELD11= 3
N FIELDL12= 3 . o :

THE REST FIELDS ARE NOT USED

~INSTOC..... PUSH1 k12 108 P2
FIELD 1= 3 '

. FIELD 2= 1
FIELD &= 0 ;

. FIELD12= ? B e e i
FIELDL L= 8

FIELD22=....1
THE REST FIELDS ARE NOT USED

e RSMK .. TOS.. . OPCODE [\ _.P2.
FIELD 6= g

—. FIELD12= 2
FISLD14= 6
FIELD1S5=..... 6]

FIELD16= 11 |

— FIELO17= 9
FIELD19= 1
 FIELD22= 1. ...

THE REST FIELDS ARE NOT USED |
. MQOVES. 0 'R1s P3

‘ FIELD 1= 4 _ ,
——— . FIELD 2= = .1 - e . e o e

FIELD o= 2
.. FIELD11= 3

FIELD12= 3
———THE REST FIELDS ARE_NQOT_USED

MOVE 3 R11 0 P2
e FIELD L= &

FIELD 2= 1

— FIELD ©= . . B -
| FIELD1Z= 2
FIELDL13=. 1

THE REST FIELDS ARE NOT USED

... MOVES . C ... _ o R1A . P3
FIELD 1= & ; .

FIELD 4= ' 2 T i s kL
_FIELO11= .3 . ~ o

FIELO12= 3 o
e THE REST FIELDS ARE NOT USED .

PUSH1 R11 T0S p2

FIELD 2=
FIELD 4=

e FIELD A= 4

1
0
; FIELD12= 2
. FIELD14= 8

FIELD22= 1

RS MK T0S NEWCHARABDD : o2
oo FIELD 6= 0 y

FIELD12= 2

FIELD14= =)

FIELD15= 11

FIELOL6= 15

. FIELD17= 4

.. THE REST FIELOS ARE NOT USZD R s R



. FIELD19= 1
© ... FIELD22= 1
THE REST FIELDS ARE NOT USED
e MDVES D o RA8 . PR
| FIELD 1= 5
R FIELD 2= 1
| FIELD 4= 2
‘mvmm, FIELD11= 3
FIELD12= 3
THE REST FIELOS ARE NOT USED
| PUSH1 R10 T0S P2
‘__m_«,; FIELD 4= .. . & _ - SN S -
FIELD 2= 1
e FIELD 4= 0. .
‘ FIELD12= 2
FIELD1 4= 8
| FIELD22= 1
.. THE REST FIELDS ARE NOT USED _ R - = .
« LMASK1 70S 3 EUBC P2
b FLERD L 2o o 2 e e e oo e e S -
| FIELDL4= 7
1 FIELD18= . .2
| FIELD16= 15 |
—— FIELD17= — . -
FIELD22= 1
— . THE RESY FIELDS AREZ NOT USED . .
NOOP XUPf P.00L
FIELD12= 1
THE REST FIELDS ARE NOT USED .
. UNJP . _MRI ... P.OOL . .3 )
FIELD12= 1
— . THE REST FIELDS ARE NOT USED . _ -
| UNJP MRI P,001+01 3 i
FIELD12= 1
THE REST FIELDS ARE NOT USED
e UNJP _ MRI. . P.,001+02__3 P
- FIELD12= 1 o
— . THE REST FIELDS ARE NOT USED i
UNJP nca P.CO1+¢03 3
—  _FIELDi2= 1 S
THE REST FIELDS ARE NOT USED o i
UNJP JMS P.0D1404 3 oo o
FIELN12= 1 .
—— . THE REST FIELDS ARE NOT USED
UNJP Jup P.001+05 3
e FIELD12= . . :
THE RZIST FIELDS ARE NOT USEN
e .. _UNJP 10 P.001+406 3
| FIELD12= 1 :
... THE REST FIELDS ARE NOT USED . . »
UNJP oPT P.001407 3 ’
(_*a_NVFIEL012=_”W_1MMw“ .
THE REST FIELDS ARE NOT USED , g8
EFTADR PUSHL = . R42 . .. TOS. ... P2 . ..
FIELD 1= 3 i
FIELD 2= 1 ,
FIELD 4= 0
e FIELD12= 2 N ~
FIELDLla= 8
. FIELD22= 1 o , IR i o
~ THE REST FIELDS ARE NOT USED S | :
T e ROMK 70S o PGEADR i D DZ,.U,.“ R
-~ FIELD &= 0 T T




FIELDL1?2= 2
FIELD14= 6
FIELD1S= 10
FIELDLe6= 11
FIELN17= T
FIELD19= 1

FIELD22= 1

-

THE REST FIELDS ARE NJOT USED :
MOVES L R10 P3
e FIELD 12 e B - _ e
FIELD 2= 1
FIELD11= 3
FIELDL12= 3 : - : -
THE REST FIELDS ARE NOT USED
- e MOVEZ e R0 e B P2 e N
: FIELD 1= 5
e FIELD 2= 1
FIELD 6= g
. FIELDL2= 2 S S
FIELD19= 1 :
e THE REST FIELDS ARE NOT-USED - - s
MOVES D R10 p3
e FYELD A= o B e S -
FIELD 2= 1
FIELD11= 3
e F1ELDL2= .3 !
THE REST FIELOS ARE NOT USED
_ e PUSHL ... RL12 o i ™0s ... ... P2 Ll
FIELD 1= 3
e FIELD 2= % . - . e .
FIELD 4= 0-
——e FTELDL 222
FIELD14= 8
. FIFLD22= 1 —
THE REST FIELDS ARE NOT USED ‘
I R RMASKL ... _T0S. ... 1% . ... EYBC. .. ... P2
FIELD12= 2
e FIELDL Y= 7
FIELD1S= 0
FIELDte= is e e
FIELD17= 11 .
FIELD22= , 1 e e e e e e PR FE
THE REST FIELDS ARE NOT USED
- -..... .NOCP. XUPE. P02
FIELD1¢= 1
THE REST FIELDS ARE NOT USED .. . ... ; ; . S
BRCH L.001 P.032 1
FIELD12= i : . R
THE REST FIELDS ARE NOT USED
e e < e e MOVE?Z - 16 . B P3 . o
FIELD 4= e
FIELD1¢= 3 — L
FIELD14= 1 :
FIELDL1 = 16 e T S <
FIELD20= 1 =
wmeoe . THE REST FIELDS ARE NOT USED e T
‘ sue k13 8 D 22
. FIELD 1= 2 —
FIELD 2= 1
FIELD 5= 0 B SN .
FIELD 6= 6 HE



FIELD 8= 8
FIELD1Z2= 2
FIELD19= 1
wowo THE REST FIELDS ARE NOT USED ... . S
MOVES 0 ]R3 p3
FIELD 1=
FIELD 2=
FIELD &=
FIELD11=
- FIELD12=. .3
THE REST FIELDS ARE NOT USED
PUSH1 o R . T0S [ — P

NN O

CFIELD 1=

9
FIELD 2= 1 -
FIELD &= ]
- FIELD12=. 2
FISLD14= 8
—me . FIELD22= 1 — - - m

THE REST FIELOS ARE NOT USED

et e RSMK .. . T0S .. CRNTPG D P2 i
FIELO 6= 0
- FIELD12= ... 2

| FIELD1&= 6
e FIELD1S= s

FIELD16= 4

1§

1

1

.. FIELD17=
' FIELD19=
FIELD22=.

THE REST FIELDS ARE NOT USED '
e e MOVES . O __ . . ... RB .. . P3 .
FIEWD 1= 8 :
FIELD 4= 2 e ‘
FIELO11= 32
FIELD12= 3
oo THE REST FIELDS ARE NOT USED . . R
MOVE3 RS 0 P2 : i
e FIELD 1= .8 T S O O SO R
FIELD 2= 1 , S
.FIELD &= 1]
F1ELD12= 2 «
FIELD19= 1 ; - ‘ B e e
THE REST FTIELDS ARE MOT USZED . ST :
i, - MOVES . .. D ... R . R9 ... B3 e g e
FIELD 1= 9 .
e FTELD 22 L S e . o
FIELD &= 2
S FIELD11= 3 e e e e e e s i
FIELD1Z2= 3 ' 3 e Swie
.. THE REST FI®LDS ARE NOT USED ‘ R
MOVE 1 R10 8 P1 , e e
- FLERD A= 6
FIELD 2= 1
i FIELRD 4= 0 , e e i . . R
FIELD12= 1
FIELD2u= 1
THE REST FIFLOS & NOT USED
wm,vhw —— OR. . ... . R9. ... .. .B. . . D . P2
FIELD 1=
FIELD 2=
FIELD 5=
. FTELD 62 3
| . FIELD12=

-

A}
m

NoOoOo kY



FIELD19=
THE REST

e FTERD 12
FIELD 2=
e FIELD &=
FIELD11=

.. FIELD12=

THE RESY

FIELD 3=

e FIELD10= . ..

FIELD1Z=
e FIELDL =
FIELD18=
. THE  REST

—w. FIELD 1=

FIELD 2=
i FTIELD &= e
FIELD 9=
—— FIELDL1 2=
FIELD1G=
—- FIELD21=
THE REST
FIELD12=

~————THE. . REST

.. FIELD12=
THE REST
— - Le0021 .
FIELD 1=

FIELD 6=
i FIELD1Z2=
FIELD19=
— .. THE REST

—— FIELD 1= .

FIELD 2=
FIELD 4=
FIELD11=
FIELDL2=
THE REST

i L0 802

FIELD 1=
e FIELD 2=
FIELD 4=
FIELD12=
FIELDOL4=
e FIELD22=
THE REST

FIELD12=

FISLD1 4=
FIELDN15=

FIELOL7=

FIELD22="

?:"“i;‘rue REST

. FIELD12=

1
FIELDS AKFE
MOVES
8
1
2
3
3

FIELOS ARE NOT USED
- MOVEL1 2 - PCTEMP

1

1

D ''''SS"EEEEGGSSSSS———— SO

NOT USED
D

23

BA

e3

P1

T

3079
FIELDS AKE
MOVES

-NOT. USED
k9

S

P2

~FIELD 2=

POV O R

FIFLDS ARE
NOOP .
1
FIELDS ARE

BRUN

i
FIELDS AKRE
MOVE3

5
1

NOT USED

..NOT. USED

L.0G2

NOT USED

RO

_FIELDle=

. NooP_

¢
2
1
FIELDS ARE
MOVES
8

NOT USED. ... .

W,Rew»

o3

1

2

3

. 3 .

FIELDS ARE
PUSHL ..

NOT USED

.R12.

r2

™ N O

1

FIELDS ARE
RMASK1

2

7

T

12 |
A
FIELDS ARE

1

o

NOT USED
T0S

A5

‘NOT USZD
XUPF

12

. F.003

P2




THE REST FIELDS
BRCH

FIELD12=
wonm THE REST

-~ FIELD 1=
FIELD 2=
e FIELD 3=
FIELD 9=

FIELD12=
. FIELD21=
THE REST

FIELD 1=

FIELD 4=

e FIELD11=

E FIELD12=
. THE RESTY
— FIELD 1=

FIELD 2=

FIELD1O=

FIE

1
L3S

MOVES

FIE
MO

-FIELD 2= 1%

FIE
MO

8

ERE

ARE

NOT USED
L.003 P.U03

NOT USED
k4

BA e1

S b b
% i

L0

ARE

VEY

9

NOT USED
UNIBUS.

RY o P

1

3.

1
LDS
VE3
9

 FIELD12=
e FIELD19=
"~ THE REST

FIELD 1=

FIE

. MOVES

e FIELD 2= .

FIELD &=

— FIELD11=

FIELD12=
— - THE .REST

FIE
MO

i FIELD L= .

. FIELD12=

 FIELD1i4=

FIELD18=

THE REST

FIELD 1=

. FIELD 2=

FIELD 5=
FIELD b=
FIELD 8=

e FIELD12=

 FIELD19=
- THE REST

e FIELD 7=
FISLD1Z2=
v THE REST

i FIELD &=
FIELD 7=

wiem FIELD12=
FIELDLL=

i FIELD22s=
~ THE REST

_ FIELD12=

FIELD20=.

wiz

1
2

Lo

9
1
2
3
3
LosS

3
¥

8
i

FIE
SuU

LDS
B

FIE
FL

»N® OO o

AG
3.

ERE NOT USED o o o oo
R9 0 P2
0
R - Bl
ARE NOT USED |
B RS p3
ARE. NOT-.USED
VE7 128 8 03
[ 1 i _ S L
ARE NOT USED }
R8 .. B 0 P2
LDS ARE NOT USED _ . .. - e
P1

FIE
PU

Y

1
LOS
SH3

ARE

]

NOT US:
FS

0 -y

B

|

1

FIELDS ARE

KM

2

NOT USEN

ASKL . JOS .. 3

ZuBC.. .. P2 ...




FIELD14= 7
L. FIELO15= ;@ |

FIELDi6= | 15
e FIELD17= e B
| FIELD22= ~ 1
—— THE REST FIELDS ARE NOT USED o

NOgP XUPF ' PLGdG
\ e FTELDL2= L e e
THE REST FIELDS ARE NOT USED

... BRCH.. Le004 . P.O0LEL 1
’ FIELD1 2= 1

——— THE REST FIELDS ARE NOT.USED. . . e

| MOVE? 256 B . P3 :

 FIELD12= 3 |
FIELDL4= 1

. FIELDi8= 256

i FIELD2G= o L et o st e et s e

\ THE REST FIELDS ARE NOT USED T

. SUB..__. R8 _ 8 0 P2

B FIELD 1=
‘ FIELD 2=
e FIELD 5=
e FIELD 6=
| FIELD 8=
[ FIELOL2=
. FIELDL19=
- JHE REST FIELDS _ARE NOT USEQD
N FLAG - - P o BT g
. FIELD 7= .3 S - S o S
FIELD12= 1 , PN o
—— THE REST FIELDS ARE NOT USED._._ . PRI : R ey -
e PUSH3 PS LEE ‘ T0S P3 . e S R
FIELD 4= 0 — — i ‘ 2
. FIELD 7= 6 ‘ : ; - D e
— FIELD12=. 3 : : S e
oo FIELD1 4= 8 :' : - et i
— - _FIELD22= . % .
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e e e i )
GROUP3 3347 -
GROUP2 40000 B - ' ) )
e — 0 ] R
T e | _
MOP 133 CNT ADDR 3031  ( 1766) . NEXT ADS . 1162 MOVE? 16 .8 L
GROUPG 20 DT * e W? R
. GROUPS 212 . g
6ROUP2 . 11800
~ GROUPL B I SR .
. GROUPS e e e . _

E'TMTGRQUPQ;:MW R

MOP 134

CNT ACOF

2155

o

Taner

(11621

TNEXT 495

17€7

R S



GROUP2

GRJUPL .

- GROUPO

MOP 135

GROUPL

1L6400

SRS 'Y 7Y 1 + S U

108022

CNT ACOF 3639  ( 1767)

€002

NEXT ANS

,1160W“

L.006

MOVE12 IR

BA

GROUP3

GROUP2
CROUPL
GROUPD
MOP  13&

GRIUPYL

GROUPS . . ..

CROUP2
GROUPL

GROUPO.

MOP 13%‘

GROUPL

GROUP3

'6§d052'”'

GROUP1

 GROUPD
MOP. 139 ___ CNT ADCR 3003 (. 1788)._ __ NEXT_ADS 1156

GROUPY

GROUP3

- CROUP2 .. _
GROUPL

GROUPD = .

MOP 140

i B

U 3 11§11 (R

6210
40200
0

”Wécadam
CNT &CCE 2167 ... ( 11601}
g

e 220 T

NEXT ADS

120520

g

1159

CNT ACCF 2170 ( 1159)
c -

237¢

NEXT ADS 1277

40000
0

“0 -

i

. FUSH

BB 20 b

B

R 0

CNT ACOF 2173

ﬁMﬁé*}WAhgwﬂ.”

ﬁ m"CAtLb u;M

GROUP4

GROUP3

' GROUPZ

- GROUPL

GROUPO

. MOP 141 __ CNT ADDR 2174 . ( 1155)

2174
16357

160000

e
o

ONEXT ADS 1154

UbwﬁQVEZ?tiwtRBJ:i!i; :i?»'me ©




GROUPL
GROUP3
GROUP2
GROUPL

GROUPO

GROUPY
GROUP3
GROUP2 -
GROUPL

GROUPO
MOP

GROUPL
GROUP3

GRJUP2

GROUPYL

GR0UPD
MOP 14b

GRIUPL s

GROUP3

CROUPZ.

GROUPL ..

143

0

2262

R15.

S g B ) ]
0
20030
 MOP 142 — - CNT ADGR 2175 ¢ 1154) . NEXT ADS — . 1153 -~ MOVEQ
[ R
2201
e 120528 e S )
¢
20 R .
CNT ADCK 2176 ( 1153) NEXT AQS 1152 NOOP

0

2200

CNT ADCR 2177 .

e B

(

1152}

NEXT AansS

1181

CPTM

2177 . . .
1466400 . .
114¢C0 —

GROUPD
MOP 145

GROUP#VWk'WW

120820

vwédﬁéwww,

CNT ADDF 2200

1151)

NEXT A0S

1150

MOVE1L2

GRQUP3

GrOUPZ

60UPL

617€

40200

0

;#@;@mwsgoupxa"

GROUPO
MOP 146

GROUPL . .

GRAUP2 ..

20000
CNT ACOF 2201

G

- GROUPZ ..o 2178

(

1150)

NEXT ADS . .

120520 . .

EESE N S R

5

Y




GROUPD
MOP 147

GROUPL ...

23..Mw
CNT ACDR 2202

L

( 1149)

NEXT A0S

1277 NOOF

GROUP3 2375 .
GROUP2 Lg0Co
e GROUPYL ¥y
MOP 149  CNT ADOR 3004  ( 1787) NEXT ACS 11Le  JMS FUSH
oo . S R
T T TTT S
GROUP2 46000
GROUPL 0
GROUPO 0 h
MOP 156  CNT ADDR 2205 ( 1146)  NEXT ADS . 12€3 CALL EFTADR
GROUPG 220€
GROUP3 _ ___. 16357 — ] e .
6]0UP2 106000
GROUPL g
_ GROUPD _ o e S I
MOP 151  CNT ACCR 2206  ( 1145) NEXT ADS 1144 MOVE2 RS 8A
GROUPG e ) )
~ o T
GROUP2 40260
GROUPL 0 : B B
e
e MOP._ 152 CNT _ACLCR. 2207 £ 13%4) _  NEXT ADS 1143 FOVES R13. 0
GROUPL 6 ) ) ) s
GROUPS . 2167 ... : - .
— __GROWPZ______ 126520
GROUPL 0 e )
GROUPD 22 ‘ o
MOP 153  CNT AOCP 2210 ( 1143)  NEXT ADS 1162 NGOFP
T L R o
R FiE : .

R“taguééwﬁ,“‘Wi




GROUP1L

GROUPD 2 0
CNT ADOFR 2211

MOP 1564
GROUPG

GRQUP3

(i

.26.

€165

( 1142)

NEXT ADS

1141

MOVE?

16

GROUP2

GROUP1

GROUPO

MOP . 155 .

141000

0

CNT AQDk 2212 .4 1151) . .

NEXT ADS .

1140 e CFTM

GROUPY 0
GROUP 3 2164 .
GROUP2 - oo 1464 00 e
GROUP1 L4GO |
GROUFD 100030 . . . o ‘ - B |
MOP 156 CNT ACDR 2213 ( 1140) NEXT ADS 11329 MOVE 3 RA D
~ GROUP4 0 o i {
GRIUP3 21€3 o
GROUP2 1004G0 )
"~ grouPt 0 D f
GROUPO 30 )
_ MOP 157 CNT ACDR 2214 _( 1139)  NEXT ADS 1138 MOVES ) R13
——. GROUP4 __ 0
GROUP3 2162 N e -
GROUP2 146000 . ]
e GROUPL ) 0. ; -
~ GROUPD 106022 T A | SRR
MOP 158 CNT ACDR 2215 ( 1138) NEXT ADS 1137 MOVE12 IR BA |
Gaoupék 6302 i e : e : . 2 s
GROUP3 6161
GROUP2  4024C * R ) o
e e i :
P T I | )
. MOP__ 159 CONT ACDF 221€  ( 1137)  NSxXT A0S 113 _Moves R12 0

*ngEROU?Qf‘




EROUP3 21€0

GROUP2 120520

GROUPL 0

GROUPD 23
MOP 160 CNT ACOFR 2217 ( 1136) NEXT AOS 1277 : NOGoP

[~]
i

e GROUPL ..

GROUP3 ~ . 2375

|
i
| GROUP2 L0000

GROUPL. . o D - U SO - e o b e b e e e

GROUPD 0 : : e o ;
MOP 162 CNT ACCF 3005 ( 1786) NEXT ADS 11233 JMP FUSH

CR0UPY e

GROUP3 56155 T - S R _
GROUP2 40000
GRNOUPL 0

GROUPO 0 k
MOP 163 CNT AQDR 2222 ( 1133) . NEXT AJS. 1263 . CALL SFTADR o

GROUPYL 2223

e GROUPI o 1E3ST. P et e e
GROUPZ2 100000
GROUPL B e

—— GROUPO. .. — e :
MOP 1ol CNT ACDF 2223 { 1132) NEXT ADS 1131 MOVES "8 D

GROUPG ¢

CROUP3 ,H;”‘“éiésmpwu“WRMWMww‘MH.VMHNH.A

GROUP2 100400

cRoUPL . U,_ e e e et i

~ GROUPO 30 : e | \ R E. |
e MOF 165 . CNT ACOR 2224.-....{ 1131)  NEXI ACS 4130 .. . . MOVES D . 5 . _R13

GROUPL , e
’cgoups‘ ... 2152 R . : o , D S e

oo GROUPZ. . . 1LEOCL L N e e

GROUPL ... = B

e GROUPD L ABC022
. MDP 166 . CNT ACDF 2225 ¢ 1130) ~ NEXT ADS 1129 G MOVEL2 IR




.&géubéﬂww

. GROUP2 60000

GROUPL - 60802
GROUP3.-.. .

GROUP2 L0200

S % £ B

GROUPL B

GROUPD e 20000

MO® 1067 CNT ADDF

GROUPY 0

GROUP3 210

2226

{ 1129)

NEXT ADS

1128

MOVEQ R12

120520

GRQOUP1 - Crk’M

6R0UPO 23
MOP 168 .. CNT ACCR 2227 (. 1125} . NEXT AOS._.

GROUPL s O

GROUP3 2375

1277

e WOOF

GROUPL . : , 1

GROUPO 0
MOF 170 CNT ACCF

3006 { 1785)

NEXT ADS

1125

IC

GROUPH 0

GROUP3 214¢

€rOUP2

kwgnodo“uwww

NOOF

£ D .

GROUPL 0

. GROUPD 0

MOP 171 . CNT ADDEK

GROUPL £e002

2232 .. . 0.1125)

NEXT ACS .

RS 9 -{ S—

. MGVE12 IR

GROUPZ2

GROUPY . . Q...

2000¢0
CNT ACCE

GRNOUPO
MOP  £72

2233 ( 1124)

: 6§°U§;H'v‘ S f hé _”me_

GROUP3 2143 o
GROUPZ 120520

vééguplvj , §Jiff ,bmfm

Ngkf‘hﬁsw”\”

CGROUPS . elub . o
40200




23

GROUPD |
MO 173  CNT ACCF 223t ( 1123) NEXT ACS 1277 NOOF
© oure 0 e I e : N
620UP3 2378
e
~ groUPt 0 I -
GROUPD o
NP 175  CNT ACCR 3007 ( 178%) NEXT A0S 255 NOOF 1
.. GROUPW 0 | R e
GROUP3 177
GROUP?2 L0000
GROUPL 0 ) \ B . e
GROUPO e N o
MOP 17€  CNT ACCF 3001  ( 1790) NEXT ADS 1791 NOOP
L e
R e
GROUP2 40000 )
GROUP1 0
i - R o
MO® 177 - CNT ACCR 3002  ( 1789)  NEXT ADS 1791 NOOP
GROUPY 0 N
& GROUPX .. 3377 ~
GrROUP2Z 46000 ) )
GROUPL o o )
.. GROUPD T o
| TOTAL SUM IS 153




APPENDIX E-6
PDP8 Benchmarks and Test Run



1) Benchmark 1 — PDPT?2

Address

200
201
202
203
204
205
206
207
210
211

212
213
214
215

The output is as follows:

Address

2000
2001

2076
2077

Code
AND 215
TAD 212
DCA 213
TAD 214
DCA 10
TAD 10
DCA I 10
152 213
JMP =3
HALT
- 7700
0
1777
o
Contents
1777
2000
2075

2076

Comment

/ clear ACCM

/ set counter to -64

'/ set adr(10) to 1777

/ used as an autoindex

check counter
/loop

register



UK TTISFORETE T o T Ea L e e e
CeMAIN,  RT-11 MACRO YMOR-12 - 28-MAY-78 01126134 FaGE L = o o

R g -

=¥ ¥

A

B
A P .
ETD0A000 00430 T CTTRIERRG e

004020
D0A0RD 024230 JUDRTT . 121220 L -
004040 « 24040
9004040 0464240 ; CWARD IOIIX2G ~ : S o
10 004040 , = 4040 ~ ~ ' s
T117040607°024300 LWORD 131T4%20 ; , N b
12 504100 . =4100 o
i T3 03100 0a0200 WORD  3010%20 o
14 004120 =4120 o B
15 04120 0202060  JWORTL io10%xz0 -
16 004140 +=4140 , L
TI7 03140 070200 CWORD 3410%Z0 T ft
18 0041460 «=4160
I 03180 0A4ZE0 T WWORIDT . 2213EE0 .
20 004200 T =4200 S H
TTRTT04200 174130 JWORL ™ S205%70
22 004220 «=4220
23704842720 170040 <WORT TAOKIZD
24 004240 , =4240
2TOATA0 176000 S WORD TO0F S0
26 004240 «=4260
TRTOF2E0 000000 T WORT 4]
28 004300 «=4300 '
TRYTDAZNODITTED JWORT 1777%70
30 004320 =430
3T 04370 000000 CWORT 0
32 040000 « 240000
‘ 33 QoO0gT " +END
. JMAIN. RT~11 MACRO VUMO2-12 25-MAY-78 01126134 FAGE 1+
—TSYMBOL TAEBLE , ‘ B 1

-
.
W

05~

. ARS. 040000 000 , .
000000 001 \ ' |

ERRORS DETECTED: © :
TFREE CORET I8B439 . WORDS

v T o=FifFolx~

TTERRORSTTDETECTEDT O T
FREE CORE:! 18439. WORDS

X o




WU SMaLL e S . . e ‘ E e T e , ”MM:
QA0000L GIFPAO T T S o : , . !

GA00200 020000

GANGAGT  GAdOID *

0400601 0AGO40 o i _ : A

Q401200 240100 = i o o
COAGTA0T Sacises T T -

040140 040140 o

04052007 040140 ‘ B L
040220 040200 B
S 0402401 040220

0402601 040240

TACIOOT CADIET

040320 040300

0403307 040320

TT0402007 040340 _ - i )

- 040420% 040400 5
0404407 040470 U
040460¢ 040440
0A05007 OATAE0 g
GA05208 040500 . i

TOA0TA0T CA0520 i ~ ,
040560¢ 040%540 - - L

04046007 04054607 - B o B ' - v i

- 040620% 040400 '

0406407 040820 , ; :

040660 040640 . ; £

040700% 640660

040720% 040700 ,

0407407 040720 , i

040760+ 040740

0410007 040760

041020% 041000 = {

0410407 DA102Q ~

041060¢ 041040 . ,

6411007 041040 ; .

041120t 041100

041140: 041120 ' ‘ \ T

0411460% 041140 u ¢
T 0412003 041140 SR

041220% 041200 s L ‘
TOAITA0T 041920 {

041260% 041240
'TT041300¢ 041260
041320 041300
T 0413407 041320
0413603 041340
0414007 041340
0414203 041400
041440% 041420
~ 041460% 041440 - » ,
"TT041I5007T 041340 ) : N = ' ; e
0415203 041500
TOAISACT OATEED
0415601 041540
T 0416007 UAIGA0
0416201 041600 —
0416407041620 '
| 0414660¢ 041640

SRR . T N . W L . S S Y S S MR A . A e




2) Benchmark 2 — PDPT3

The

Address

200
201
202
203
204
205
206
207

210
211

212
213
214
215
216

AND
TAD
DCA
TAD
DCA
DCA
ISz
152
JMP

HALT .

7200

' 2000

output is as follows:

2600

2077

0

Comment

/clear ACCHM

/set counter to -64

/set adr(216) to 2000

/clear adr(2000) to zero
/increment adr(216)
/check counter

/1loop



SETAE A G

‘MAIQ“"‘ T—11 MACLRO UMO2~ 1“‘““§GiﬁﬁY~?3“§T:2?:44 FAGE T -
S8
1 200000 LASECT '
T DO ST
3000200 GO0000 WORD 0 A
iy s e . R R
TO00A000 04T JMORD TR0 o 5
- F T e :
7 004020 024240 WORT 1212%20
3 004040 =A040 B
? 004040 064260 “BUKD ; = o
10 TOADED s =ADARD koo ) ;
11 040460 024300 WORD 1214%20 i .
17 SOFIC0 L =4100 - f
13 04100 044340 CHORD 3216%20 o
B O0ZI70 =A1R0 L
15 04120 074340 JWORD 34616%20 e
1% ) oUATAD =4T30 '
17 04140 044340 JWORD 2216%20 .
18 004140 c=ATED {
19 04160 044240 JWORDN  2213%20
20 004200 c=42000
21 04200 124120 JWORD 5205%20 3
el 0042720 T =4R50
23 04220 170040 +WORD 7402%20 o
24 004240 =A240 o -
25 04240 1746000 .woan 7700%20
26 0042460 c=4260 |
27 04240 000000 JWORD 0 - :
28 004300 «=4300 -
29 04300 040000 +WORD 2000420
30 T00a3I0 =430 ¢
31 04320 000000 JWORD 0
32 004340 «=4340
3% 04340 000000 WORD 0 ;
34 0400060 «=40000 ol
35 000001’ JEND B
CWMAIN, T RT-11 MACRO VMOZ-12 — 35-MAY-78 01:27%t44 FAGE 1+ 3
SYMROL TARLE
2TUTARS, 040000 500
000000 001
VTERRORS LDETECTED: O ,
___FREE CORE! 18439, WORDS
y TTI=FDFBT3 .
9
~ ERRORS DETECTED?! © _
" TTFREE TORET 18439, WORNS :
TR
]
5
4

it e Py



e
s ol

0400002
0420208

WL A S TN

U BMAL

L
OLOOD0
DOOOGN

FATGADT
0400402

STATAT ;
QOOG0N

L0A01007
0401202

0401400

04014603

N TR
CENO0Y

(j(_)(} 0 \’.;:f; am mtren e e P - o
00000

o

0407003
0402203
04024018
04024603

QOGO00

Q00000 - o e
000000 ' :
000000

0AC3ID03
040320

000000
000000

g ar. :

OE TR To
0403601
7030400
0404203

Q00000
000000
000000 =
000000

04044073
04044602

000060
003000

040500G7:
0405201

000000
000000

0405402

0403602
0406007

0406202

000000

000000

000000
000000

0406402
0406601

¢00000
000000

0407002
0407202

400000
000600

0407402
0407601

00000
000600

041C002
0410207

000000
000000

0410403
0410602

000004
000000

Tl

R

¢
§

oL
P i

£

0411003
0411203

Q00000
000000

0411402
0411402

000000
000000

0412060
0412203

000000
000000

0412407
Q04126010

000000
0000060

0413003
041320

000000
0000600

04134073
041340

000000 -
000000 -

0414001
0414203

000000
006000

0414403
04144603

000000
000000

T 0A1S00
0415201

000000
000000

TTORITADT 000000

041354603

000000

¢
Ay

0416003
0418202

CO00GD
300000

0415403

. 0416600

500600
000000




3) Benchmark 3 — PDPT5

Address

10

200

201

202

. - 203

| | 204
- 205

- 212
: | 213
‘ ' 214
; 215

‘ o 250
| 251
| 252
253

| 254
| 255

256

The output is as follows:

Address

2000
2001

2016
2017

JMS
TAD
DCA

187

JMP
HALT

- 7760

1777

AND
TAD
DCA
TAD
DCA
JMP

I

250
10
10

213

215
212
213

214

010
250

Contents

1777
2000

2015
2016

Comment

/jump to subroutine

/used as autoindex register

/loop

/clear AECM
'/set count to ~16

/set adr(10) to‘1?77’
/return |



l

RT-11 MACRO

YMO2-12

ASERT

25 MAY- 78 nl*“v*oz PAG

g

1 00000
E 1\{,1; v(\\) .
Vwknuﬂlvyrm“wwwﬂwuhuww

Q04000 10E200

. mfﬁi\k"’r\

7~7no*

o U'Jhil T
=201 %00

3 7',(1)&’ ’«\

:
4
5
7 004020 020200
.8
7

ORT 101020 .
004040 »202%20
0*40401070200_ H»ﬁ@»_,+unhn F410%20 S
10 004060 T =203%20 b -
11 04060 044240 .woan 2213%20 ™ sl
12 004100 «=204%20 <
13 04100 124020 JWORD 5201%20 0
14 004120 s = 20520
15 04120 170040 SWORD 740220 L
16 0043480 ek Ber Selo) ,
17 04240 177400 JWORD  7740%20 T
ig 004740 =21I¥%20 {"
19 04260 000000 JWORD 0000%20
70 O0F300 RESeE 0 Sely)
21 04300 037740 WORD . 1777%20 £
e 003350 NESeh Bt $elo) ,
23 04320 000000 JWORD 0000%20
23 005200 CEIG0RT0 ’ L5
25 05200 000000 ,wORn 0000%X20
oo GORLTI0 RESCIREE ¢
27 05220 004320 .NUnﬂ 0215%20 :
28 005240 CEFSIREY T
29 05240 024240 JWORD 1212%20
30 0TG240 T U RIR IR0 ‘
31 05260 064240 JWORD 3213%20
37 05300 RESAIGE Y 3]
33 05300 024300 .wo&n 1214%20
34 005320 VEDPHERD0
35 05320 060200 JUORD 3010%20
‘ 35 005340 CEIGEERTD
37 05340 135200 JWORD S450%20
A0 Q00001 o BN
C WMAIN.  RT-11 MACRO UMO2-12  25-MAY-78 01129102 FAGE
SYMEOL TAELE i
"« ARS. 00%342 000
- oOBO00 001
- ERRORS DETECTED? © &
TFREE CORE? 18434, WORLS e
sy TTT=FIFSTS
— ERRORS DETECTELDT O
FREE CORE:! 184326, WORDS £
| b 4
B g




T O A AT I

JRU O SANANMALL
0400008 QITTLO T ,
GAQODDY 040000 e
AT AT : , i
040060 040040 S e y IR B
COR0100T Oat0sy T
0401208 D40D1NN
TTOAOTA0Y DADIN0 T , oy e
040160% 040140 ‘ - o i
BA02003 OA01a0 : i -
0402203 040200 - o e &
DA02ZATY Q40220 T s ‘ : e
040260% GA0240 : ,
TUEG3000A0TED - T e
040320% 040300 ‘ ‘

1
i

0ADI50T 04037 i o T
040340 040340 _ : SR o U F
SATAEOT 606000 e
0404203 000000 : .
0404407 000000 , £
040460% 000000 : '
0305003 000000 B , 1
0405%20¢ 000000 ‘ ey
0405407 000000
0405608 000000 o ~
0406007 000000 T ) . ¢
040620¢ 000000
0406407 000000
0406460% 000000 , -
040700: D00OCO
040720% 000000
040740% 000000 B} : ;
040760% 00000 ‘ .
041000¢ 000000 ‘ :
041020¢ 000000
0410407 0000006
041060 000000
041100 000000
041120% 000000
041140: 000000
0411601 000000
041200¢ 000000
041220% 000000
041240¢ 000000 ‘ B -
041260t 000000 : -
0413008 000000 =
0413203 000000
70413408 002000
041360% 000000
0414007 000000
041420% 000000
041440% 000000
0414603 000000 _ ; A
0415001 000000 , ; AT oo
041520 000000
03154037 000000 -
041560 CO00GOH
0416003 000000
0416203 000C0NHD ‘ .
0414408 000060 N
-_...04 1660: 000000 e PSP e . - s . “Mﬂ,.,.‘..,,w(ﬂ,,ln.- N «

iy




