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THE ROLE OF INERTIAL OSCILLATIONS
IN THE DYNAMICS OF COASTAL UPWELLING

1. INTRODUCTION

The main elements in the dynamics of coastal

upwelling are a surface offshore Ekman flow and a

compensating onshore subsurface flow, linked by a region

of horizontal divergence and vertical flow near the coast.

These and other aspects of the problem have been carefully

analyzed in the last decades (for reviews see Thompson,

1978, and Allen, 1980). Our purpose in this paper is to

study in detail two elements which still have a high

degree of uncertainty. First, we will be looking at the

importance of inertial oscillations in the adjustment

problem at the coast. Secondly, we will be concerned with

the controversial issue of whether shear enhanced mixing

is significant during upwelling, and what possible sources

for this enhanced mechanism exist. Both topics are

intimately connected.

Mixed layer models constitute a realistic approach

to the study of coastal upwelling, and have the advantage

of permiting the integral representation of the mixed

layer dynamics (for a review on mixed layer integral

models see Niiler and Kraus, 1977). Two main tools for
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our analysis will be the recent integral models by

deSzoeke and Richman (1984) and Richman and Allen (1984).

DeSzoeke and Richman (1984), hereinafter DR, have employed

the semigeostrophic approximation to formulate an

appealing two-dimensional mixed layer model which produces

strong horizontal gradients associated with an upwelling

front propagating offshore. They show that the horizontal

scale of this front is given by an internal Rossby radius

of deformation based on their scaling for the problem.

However, their formulation effectively eliminated all

inertial oscillations, which causes the establishment of

an offshore Ekman balance in an infinitesimal time. In

DR's model entrainment is parameterized using the

representation proposed by Kraus and Turner (1967),

hereinafter icr, in which the wind acts as the source for

turbulent energy in the upper layer.

In this paper we present a two-layer model which

solves the full momentum equations in their integral form,

allowing for turbulent exchange between layers. The

problem is closed using the Niiler and Kraus (1977)

representation for the turbulent kinetic energy equation,

which includes both the icr mechanism and the shear mixing

mechanism proposed by Pollard, Rhines and Thompson (1973)

(hereinafter PRT). The inclusion of the time dependent

terms in our model will permit us to study the role of the

inertial oscillations in the dynamics of upwelling, both
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in the modification of the divergence at the coast and in

the enhancement of the shear mixing mechanism.

In the simple wind-forced inertial problem it can be

shown that the divergence at the coast is reduced for

times shorter than f' . Richman and Allen (1984),

hereinafter RA, have used a non-entraining model to look

at cases ranging from the inertial oscillation dominated

problem to the semigeostrophic approximation arid have

obtained that the time that takes for the thermocline to

upwell decreases until a value of approximately 0.7

where x. is the initial Rossby radius of

deformation and u0 is the Ekrnan velocity. The

semigeostrophic approximation can be obtained as a

limiting case of our model through the choice of a large

value for q0=q2(L1h1)* , where A and h1 are the

non-dimensional initial values for the temperature

difference between both layers and the upper layer depth,

and q is a non-dimensional inertial frequency that

arises from our scaling of the problem. Results for

several values of q0 are in agreement with the trend

shown by RA, the effect of entrainment being to further

advance the surfacing of the thermoclirie at the coast.

For all cases considered the shear production

mechanism is important in the turbulent kinetic energy

budget. The major local contribution comes from the

strong alongshore jet which develops at the front.
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Inertial oscillations have significant effect far offshore

from the coastal region. A version of DR'S model which

includes this mechanism is implemented and gives

confirmation to the above results.

Our model shows the formation and development of

strong horizontal density gradients which propagate away

from the coast. Offshore from this front the upper layer

is warmer and deeper, and exhibits an open ocean regime

consisting of an Ekman balance plus inertial oscillations.

The frontal region is characterized by a strong alongshore

jet, which resembles those analyzed by Csanady (1981).

The region onshore from the front is essentially decoupled

from the exterior. It corresponds to a zone of large

entrainment with very little vertical structure. Maximum

entrainment values occur at the coast , being driven by

the large velocity divergence there. Large values also

occur close to the front, where the upper layer shallows

considerably and both wind stirring and shear velocity at

the interface reach a maximum. The front itself moves

offshore with the velocity of the upper layer.

In Section 2 our model is introduced. Section 2.1

presents the dimensional momentum, continuity and heat

equations while Section 2.2 closes the system of equations

by introducing the parameterization used for the

entrainment velocity. In Section 2.3 the equations are

non-dimensionalized. The DR's sernigeostrophic model is
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briefly reviewed and extended for our treatment of

entrainment (Section 2.4). The finite difference scheme

employed for the numerical calculations is sketched in

Section 2.5. Section 3 presents and discusses the

numerical solutions. In Section 4 the most relevant

aspects of this work are summarized.



2. THE MODEL

2.1 Basic Equations

Consider a semi-infinite ocean of uniform depth

consisting of two initially homogeneous constant depth

layers bounded by a coast at x = 0. At time t = 0 we

introduce the forcing effects of a constant wind stress in

the alongshore direction, and heating. After this moment

we will assume that all the variables will depend only on

the cross-shelf direction. We eliminate surface

oscillations by assuming a rigid lid, but otherwise the

dynamical effect of the surface is obtained by introducing

a surface pressure p0 . The departure of the interface

from its equilibrium position is given by i

Let x and y be the cross-shelf and alongshelf

directions respectively , x positive in the offshore

direction, and let z be the vertical direction, positive

upwards (Figure 1). Denote the velocity components in the

x, y and z directions by u, v, w. The momentum and

continuity equations for the two layers are

ult+ uJulX_ fv1 = -i p + 1 (1)1 z
p x p

0 0

+ u1v1 = (2)

t x

flt +
W



Schematic representation

model.
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of the main elements of our
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U2
+ u2u2 fv2 (4)

V2 + u2v2+ fu = 0 (5)

[(h2+ )u2] = -(n + w ) (6)x t e

Subscripts I and 2 refer to the upper arid lower layer

respectively and differentiation is indicated by the

letter subscripts. * is the entrainment velocity which

represents the difference between the vertical velocity

and the apparent motion of the interface (deSzoeke, 1980)

w =w -
e 1 -

Dt

= (h1-)u (n + u ri )1 t lxx
=[(h1-n)u1]

nt (3')

which is the same equation as (3).

The stress ( T) divergence term in (1) and (2) can

be written in linear form in virtue of the assumed

vertical independence (deSzoeke, 1980)

?' -' X

= ) e X e
(7)

h1-n



where is the wind stress (by assumption in the y

direction) and t , are the interfacial entrainment

stresses in the x and y directions. Following Niiler

(1975) they can be expressed as

= p(u1 - U2)W

(8)

= p(v1 V2)We

which represent the rate at which lower layer fluid is

incorporated into the upper layer. The pressure in both

layers is given by

p1(x,t) = p0(x,t) - gp1z

(9)

= p0(x,t) - g(p2 -p1)(h1-) - p2gz

where p1 and n are functions of x and t, while P2 is

constant. The cross-shore pressure gradients are

p1 (x,t) p0 - gp1 z (10)
x x x

p2 (x,t) = p0 + g(h1-n)p1
+ 2lx (11)x x x

In order to be consistent with our assumption of vertical

independence we follow DR and substitute P1 by its
x

vertical average over the upper layer

+ g(h1-r)p1 (10')
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As DR indicate this natural first approximation can be

formally justified as corresponding to the lowest order

coefficient in a vertical expansion in terms of orthogonal

basis functions. Neglecting salinity effects we can write

p1 = pctAT pct(T1 - T2) (12)

where c is the thermal expansion coefficient.

Equations (1) to (6) become

(u-u )w12 eU1+ UU1 - = + agT (h1-) - ____- (1')
x p x 2 h1-

0

(v v )w12 ev+ u1v1+ fu1 -- - (2?)

p(h1-r) h1-

[(h1-)u1] + We (3')

U2 + u2u2 - fv2 = + g (h1_n)T - gciAT (4')t x p x
0

v2 + u2v2 fu2 = 0
t x

[(h2+)u ] = (r + w )2x t e
(1?''-I
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The heat equation for the upper layer is

+ U
_a(iT)

1 [i-frI + r?rrnI ]- ____-
0 h1-

(h1-)

1 [Q_ - Tw :i
(13)

cp e(h1-)

where TIT is the turbulent vertical transport of heat,

Q is the surface heat flux,

and c is the specific heat of water at constant

pressure.

We can obtain a conservative form for the system of

equations (l')-(6') and (7) by multiplying (l)-(3) and (7)

by the depth of the upper layer, h1-n , and (4)-(6) by

the depth of the lower layer, h2+n . After some

rearrangements we get

+ [(h1_n)u1u1] + f(h1-rj)v1

(h1-) + (h1_n)2T + u w (14)
x 2e

p x
0 2

+ [(h1-)u1v1] + f(h1-)u = + v w (15)
1 p 2e

0

(h1-1)u1 + w (16)
e
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[(h1.r1)u1]t + [(h2+)u u ] - f(h +)v222x 2

(h2+n) ± gc(h1-)(h0+)T - gcT(h2+n)n
p x -wue2

+ [(h2+)u v ) + f(h,..,+r)u = -w V4. '13)22x 2 e

[(h +n)v ] = (1 + w )2 2x t e (12)

[u1(h1-n)T] (20)

Define the following volume fluxes

U = (h1 - fl)u1 = -(h2 + (21a)

V1 = (h1 - (21b)

V2 (h2 + )v2 (21c)

where (21a) is satisfied because of (16) and (19). By

substituting (21) into (14)-(20) we obtain

- e
+ -) - fV1 = Jhn) gc(h1--)2T Uw

(14 )
h1- p x h2+

0

vi Uvi
+ fU = V2w

fir-,
t h1r p

0

h24-

U = +w
x e

(-1-w

U + U - fV2 = 2p0 + g
p xh2flx

Uw
0

- gcuT(h2+n)r __-_ (iT)
h2±
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V2 2
(18')

h2+ h2+

+ (UT) = _L. (19')
x cp0

(14') and (17') can be added to give

P0 f(V +v ) U2 gcAT= 1
_..a ____________]

p H (h1-)(h2+) x
(17")0

h+n
ga(h1-r)

(h9+_)IT
H 2

where H=h1+h2 is the total depth.

2.2 Entrainment Parameterization

To close the system the entrainment needs to be

specified. Niiler and Kraus (1977) by vertically

integrating the turbulent kinetic energy in its balanced

form (d/dtO) obtained the following approximate

express ion

W(Ri - s)62 = 2mu3 - --(h1-)Q (22)

where 5v2(v1_v2)2 and v1=(u1,v1) , v2=(u2,v2)

RI = g(1p/p)(h1.-n)/v2 = agT(h1-n)/6v2 (23)

is a local Richardson number,

u5(1/) is the surface friction velocity,

and s, m are parameters that need to be specified (see

Niiler and Kraus, 1977, for their interpretation).
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Price, . (1978) have suggested a value of 0.67 for s

while Davis, et al. (1981) used 0.5 for in.

Equation (22) can be rewritten as

2 mu3 Q
e S (24)

T(1 - s/Ri) cg(h1-ri) cp

Notice that for large Richardson numbers (23) becomes

2 mu3 Qwe[--- _]
T og(h1-) ep

(25)

which is KT parameterization for the entrainment. On the

other hand if either becomes large or T small

then the Richardson number will approach a critical value

s. In this case it becomes the dominant criterion for

entrainment as propossed by PRT.

Equations (14') to (19') with either (23) or (24)

constitute a closed system which can be solved

numerically. Before doing so we proceed to

non-dimensionalize the equations by using an adequate set

of scales.

2.3 Scaling

Let the non-dimensional variables be momentarily

primed. Following DR we introduce the following scaling

x = Xx' cgTh
= 2mu /f* S

f



t = t*t,

U =

(V1, V2) =
hv(V1t,

V2T)

p0 pp0'

= h'

t = h/2mu

v* = u2/(fh)

= p fVX = pvq

h = mu /(__)
2cp

0
We W*WeI w = hv/A

T = TiY T = A( )(--)
cp U2

2mQ 0 S

= ___
p Cu

= =

h is the Monin-Obukhov depth; in the KT parameterization

it establishes an upper limit for the depth of the mixed

layer, corresponding to a zero net entrainment velocity.

T is obtained by making the time dependent and advective

heat fluxes comparable to the surface heat flux. X is

the Rossby radius of deformation based on the upper layer

depth scale and the temperature scales. t is obtained

by making the local rate of change and horizontal

advectiori of momentum comparable; it can also be obtained

from the continuity equation by comparing the velocity

divergence with the rising of the interface. V is an

Ekman velocity for an upper layer with depth h
;

although it is representative only for the cross-shelf

15

(2(3)
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direction its choice for both components facilitates the

study of the inertial oscillations. w can be obtained

through the continuity equation. p is chosen such that

it makes the surface pressure gradient comparable to the

Coriolis terra in the cross-shore momentum equation. Table

1 shows the values taken by these scales for typical

driving functions.

With this scaling, equations (14') to (19') (with

(17'') instead of (17')) and (24) become (dropping primes)

U + (
U

- qV =
2

-q(h-n)p0 + -(h.-n)t x 1h1- x 2
'

uv yv w (27)2e+
1

+ qU = q + -

t h.-n (28)1 1-h+'rn

U =n +w
x t e

(29)

'yU2

PDX
= y(V1+V2) (h_fl)(1_1h+x (30)

ri)

- q[(1_'ih1+ir)n

UV2 -'fV w2e (31)qU=v2t lh1+n' 1-ihin

+ "X (32)

W
32/(h_) -

(33)

[1 - s/(q2Ri)]
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Table 1

Characterization of the variables and parameters appearing

in our model. The driving functions and parameters

employed are the following:

= pu2 = 0.1 Pa , Q = 75 W/m,

1.7 x i-O C1, g = 9.8 mIs2, c = 4.1 x 10 JI(kg C),

p = 10 kg/rn3, f = l0 s 1, rn = 0.5 (Davis, et a].,

1981).
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Variable Scale Typical Value

Temperature difference, TX2 1 8x103 C

=2mQ/(pcu5)

2mu3
Interface elevation, ii h*=gQS/cp) 33 m

Horizontal distance, X=(gTh)2/f 100 m

x
=2mu/f- S

Time, t t=x/v=h/(2mu5) 3300 S

Horizontal velocities, vu /(fh,) 3 cr1/s

Uj U2, V1, V2

Entrainment velocity, We w=hv/X 1 cm/s

Parameters

Aspect ratio, y=h/H=0.1 H=330 rn

Initial depth, h1h1/hO.5 h116.5 m

Initial temperature 1T/Tl80 T10.32 °C

difference, [i000] [1.8 °c]

Non-dimensional q=ft4m h/A,

inertial frequency, =0.33
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For large Richardson numbers (33) reduces to the KT

parameterization

3

T 2_ Q(h.-r,)
W (33')

The non-dimensional velocities in the upper and

lower layer can be easily recovered from

U -yU
U1 U2

1-ih1+i
(34)

V 1v2
1 v=

h- 2
1-yh1+yn

The four parameters appearing in the equations are

y=h/H , the ratio of the upper layer depth scale to the

total depth.

h.=h1/h , which is a measure of the initial depth of the

upper layer.

LIT./T , which gives the initial temperature difference

between both layers in units of T

q=ft , is a non-dimensional inertial frequency. It

can be rewritten as q(cighT/v2) 4m2h/X

which shows that it also corresponds to the square root of

a Richardson number formed with our scaling for the

problem. The true non-dimensional Richardson number, Ri,

which arises from the dimensional quantities, can be

expressed as
Ri = qRi (35a)



where

20

(h-n)Ri= - (35b)

(U1-U2)2+(V1-V2)2

is calculated using the non-dimensional variables.

For given values of the driving functions T Q

and a particular choice of the Coriolis frequency f, the

scales T , h and the parameter q become totally

specified. Hence, different initial conditions can be set

through h1 and . Some characteristic values for

these parameters are shown in Table 1.

An estimate for the time that takes for the front to

upwell (upwelling time) is given by t0=/u0 , where

u0=u52/fh1 is the Ekrñan velocity and

is the initial Rossby radius of deformation, t0 can be

related to our time scale t by t0(th13)2t which

shows that the thermocline will upwell at non-dimensional

times approximately equal to (h13)2 (actually earlier

due to entrainment).

RA have discussed the physical meaning of a

parameter given by

ctgT.h
q

1 1 = (ft )2
(36)

C
u2

0
0

which can be related to q by q0q2(h3)2 . They show

how as q0 becomes large the full momentum equations
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approximate to the semigeostrophic solution. Hence, in

our scaling we would require q2(.b3) to become large

(of the order of 1000 or more) for our solution to

approach the semigeostrophic limit.

2.4 Semigeostrophic Approximation

It could be argued that near the coast either the length

or the velocity scale in the alongshore direction are

large compared with those in the cross-shore direction,

and that the terms u1 +u1u1 and u2 +u2u2 in equations
t x t x

(1) and (4) are small compared to the Coriolis force

associated with the alongshore velocity. This is the so

called semigeostrophic approximation (Pedlosky, 1979, page

404) and it was employed by DR. It has the advantage of

reducing the complexity of the, system and permits the

elegant semi-analytical treatment followed by DR.

However, the elimination of the time-dependent terms

totally filters the inertial oscillations which are very

important far offshore, and, during the process of

adjustment after a wind set-up, are responsible for

behaviour very different from the semigeostrophic case.

In particular, the neglect of these terms sets up an

offshore Ekman balance in an infinitesimal time. As

mentioned in the introduction the other possible important

role of the inertial oscillations is to enhance the shear

mixing mechanism. In order to look into the accuracy of
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these statements DR'S model has been extended to calculate

the upper layer alongshore velocity. Also, this will

permit us to calculate the shear at the interface and to

use equation (23) for the entrainment velocity.

The seinigeostrophic non-dimensional system is

1
(u -u )w

1 2 e
(37)v1=pO-

x
x q h

1

vi + ulvi + qu1 = qT/h - Wei_V)
(38)

h

ht (hu1) = We
(39)

V2 p0 - hi - (40)

x

V2
+ u2V2 + qu 0 (41)

(h)t + (hu ) = Q (42)lx

where h (h.-) is introduced to maintain the
1

notation close to DR. For comparison with DR notice that

we have set the bottom Ekrnan velocity to zero. DR

manipulated this system to obtain

(43)
dt x

d h = -u h + w
1 1 e (44)
x

d P=P yW
(45)

1- y h

- (h12u ) + hPu = T (46)lxx
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P is the lower layer potential vorticity,

(1+v2 /q)

p=1 (47)

1- y h

which is scaled by P = f/H. The d/dt derivatives

are following the characteristics, i.e.

= u1 , x1(O,) = (48)

dx
= u2 x2(0,) = (49)

DR calculated the lower layer alongshore velocity as

v2(x,t) = q f[(1-h/y)P-1]dx (50)

The upper layer alongshore velocity can be obtained

by solving

w (v -v )e 12= -qu1 + qTJh
h

(51)

where d/dt is along the characteristic ( 48 ). The

entrainment velocity is given by equation (33).

2.5 Numerical Analysis

The non-dimensional system of equations (27)-(33) is

approximated by its finite difference representation (see

Appendix A). The initial condition at all points is a
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state of rest, i.e all volume fluxes, interface elevation

and surface pressure gradient are set to zero, and the

temperature difference is set to its full value, . The

boundary conditions are of no flux normal to the shore

ie. U = 0 at x = 0, and a smooth transition for all

variables at large values of x ( U/x = 0). For this

last condition to be true we require a spatial grid large

enough that the gradients of all variables at its offshore

extreme are always small, ie. such that for the largest

time considered the front has not had time to cross the

whole grid. The space discretizatiori is small near the

coast and the evolving front and larger further offshore;

it has been chosen such that it can adequately resolve the

fine details of the evolution. The time step has been

chosen such that it satisfies both the

Courant-Friedrich--Levy (or CFL) condition and a condition

arising from the von Neumann stability analysis of the

system of equations (see Appendix B). For all the cases

studied the second condition dominates.
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3. DISCUSSION

Comparison of the numerical results for several

cases will serve our objectives. For brevity let's refer

to the DR model , modified with the shear enhanced

entrainment formulation, as DRM, and to our finite

difference model, which includes inertial oscillations, as

TLWE. The KT entrainment parameterization (wind as the

source for turbulent kinetic energy) is given by equation

(33'), which can be obtained from equation (33) by simply

setting s = 0. The shear mechanism (PRT) can be included

by setting s to a critical Richardson number; following

Price et al (1978) we will use s = 0.67. First, DRM for S

0 can be compared to TLWE for s = 0 in order to study

the role of inertial oscillations in altering the

divergence at the coast. Two values for the initial

temperature difference between both layers will be used,

specifically = 180 and = 1000. Second, the

importance of the shear mixing mechanism can be assessed

by comparing TLWE runs for s = 0 (KT) and s = 0.67 (KT and

PRT). Finally, the effects of the alongshore coastal jet

and the inertial oscillations can be isolated by

considering DRM (which contains only the jet) for S = 0

and s = 0.67, and TLWE (which includes both the jet and

inertial oscillations) for s = 0.67. Table 2 summarizes

the conditions for the numerical results to be compared.
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MQcI]- S

1 DRM 180 0.0
2 TLWE 180 0.0
3 DRM 1000 0.0
4 TLWE 1000 0.0
5 DRM 180 0.67
6 TLWE 180 0.67

Table 2

Summary of numerical runs. DRM refers to the DR model

modified to allow for shear enhanced entrainment (Section

2.4). TLWE refers to the model described in this paper

which includes inertial oscillations (Section 2).
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The values employed for the parameters are those given in

Table 1.

In the discussion to follow we will always refer to

the non-dimensional quantities, but their corresponding

dimensional values will be included within parenthesis.

Notice that both = 180 (0.32 C) and 'j = 1000 (1.8

C) correspond to relatively weak initial temperature

stratification, and will produce only relatively weak

fronts. They have been chosen because the minimum time

step for the numerical scheme to be stable is given by

mm x/ 2q(h(1_Yh).)2 (see Appendix B).However, these

values already show all the frontal features.

Furthermore, their associated (see Section 2.3), 2.5

and 13.6 respectively, are representative of two very

different situations. The first value, q0 = 2.5

corresponds to an upwelling time t0 of 4.74 (4.35

h), while the second one = 13.6, gives an upwelling

time of t0 = 11.18 (10.25 h). These values can be

compared with the time of occurrence of the maximum

offshore volume fluxes for the linear wind-driven problem

(see equations (52) below), t = = 3i = 9.42 (4.32

h). This shows that in the first case the thermocline

will upwell before the maximum offshore fluxes and in the

second case it will upwell afterwards. Notice that in the

presence of entrainment the interface will never upwell

(We goes to infinity as h goes to zero). In this case the
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upwelling time can be obtained from the time that takes

for entrainment to dominate over the horizontal volume

flux divergence ( r changes sign) and it will be less

than uOi
Results for the DR model with

. = 180 and s = 0
1

are shown in Figure 2. In it the temperature difference

between both layers, , the lower layer potential

vorticity, F, the upper layer depth, h hi-n , and the

alongshore and cross-shore velocities, u1 and v1 , are

displayed over the coastal region for different stages

during upwelling. These results are essentially the same

as those reported by DR with the exception that v1 is

now calculated. They show the inmediate establishment of

an offshore Ekman balance (Figure 2a), the upwelling of

the thermocline at about t = 3.3 (3.03 h) (Figure 2b) and

the development and offshore propagation of a sharp front

moving with the velocity of the upper layer (Figures 2c to

2f). The region onshore of the front (interior region) is

decoupled from the region offshore from the front

(exterior region). The alongshore velocity profiles show

the formation of an increasingly strong baroclinic jet

over the front itself, or frontal region (see, for

example, Figure 2f at x = 10 (1 km)). This jet, occurring

in a region of large density gradients, contrasts with the

barotropic jet which develops near the coast during later

stages (see Figure 2f for x = 3 (300 m)). If we calculate
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Figure 2

Temperature difference, , lower layer potential

vorticity, P, upper layer cross-shore and alongshore

velocities, u and v , and upper layer depth, h, obtained

using the DRN model with = 180 and s = 0. The times

for the sequence shown are: 2a, 0.95 (0.87 h); 2b, 3.3

(3.03 h); 2c, 3.8 (3.48 h); 2d, 4,3 (3.94 h); 2e, 5.7

(5.23 h); 2f, 9.0 (8.25 h).
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the offshore volume flux ( U = u1h ) it will be apparent

that it goes from nearly its full value at a distance

to zero at the coast. This distance is what we will call

the length of adjustment, or Rossby radius of deformation.

Its initial value is given by A =(h11) = 9.5 *

and gets progressively shorter until it becomes of the

order of the horizontal length scale, X, (see DR).

Simultaneously, the temperature near the coast changes

from its full value = 180 (.0.32 C) to the small

value given by the temperature scale L = 1 (0.0018 C)

after the front has developed (Figures 2a and 2d).

Notice, finally, how the interior region does not feel the

exterior region, and instead tends towards a steady state

solution as the one described by deSzoeke and Richman

(1981).

Figure 3 corresponds to a run of the model TLWE with

s = 0 and t.. = 180. In it , , the entrainment

velocity, We and the cross-shore and alongshore volume

fluxes, U and V1. are shown over the coastal region at

different times during upwelling. Itotice the slow

development of the velocity offshore from a state of rest

towards an Ekman balance with inertial oscillations. The

presence of the inertial oscillations in the exterior

region drives the divergence at the coast (Figure 3b)

until the thermoclirte surfaces at about t = 6.6 (6.05 h)

(Figure 3c). During this stage the length of adjustment
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Figure 3

Temperature difference, , interface elevation, n

entrainment velocity, Wei and upper layer cross-shore and

alongshore volume fluxes, U arid V1, obtained using the

TLWE model with = 180 and s =0. The times for the

sequence shown are: 3a, 1.0 (0.92 h); 3b, 4.0 (3.67 h);

3c, 7.0 (6.42 h); 3d, 9.0 (8.25 h); 3e, 11.0 (10.08 h);

3f, 14.0 (12.83 h).
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(corresponding to the area where the horizontal volume

flux divergence occurs) increases until its full value is

reached at about t = 9.5 (8.71 h) (Figure 3d). This acts

to raise the interface and to enhance We over a larger

area, which broadens the frontal region. The interior

region, formed after the development of the front, is

ignorant of the offshore oscillating regime , i.e. it is

decoupled from the exterior region. When the cross-shore

volume flux in the exterior region decreases considerably

(the volume flux at the frontal region being unable to

follow it; see Figure 3e) the horizontal volume flux

divergence at the front becomes negative and forces the

front to steepen like a shock wave (Figure 3d). This same

case can be observed with more detail in Figure 4 which

shows a smaller region near the coast; in it the upper

layer cross-shelf and along-shelf velocities, U1 and V1

are shown. The decoupling between the interior region

(large entrainment , nearly homogeneous in the vertical)

and the exterior region (inertially dominated; no large

stratification) is clear in the sequence shown,

particularly in Figures 4d to 4f. Notice that in this

case the interior region shows the offshore progression of

a steady state solution. In particular, the curves for

U1, v1 and h in the interior region are nearly the same at

all times.
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Figure 4

Temperature difference, , interface elevation, n

entrainment velocity, We, and upper layer crOss-shore and

alongshore velocities, u1 and v1, for an expanded region

near the coast, obtained using the TLWE ttode1 with j

180 and s = 0. The times for the sequence shown are: 4a,

4.0 (3.67 h); 4b, 7.0 (6.42 h); 4c, 9.0 (8.25 h); 4d, 11.0

(10.08 h); 4e, 14.0 (12.83 h); 4f, 16.0 (14.67 h).



4

U1 2

0

2

VI 0

-2

0 20 40 60 80 iCO

4a

4

U1 2

0

2

V1 0

-2

40

.5

.25 We

0

.5

a'?

-.5

60

qo

0

.5

.25 We

0

.5

0'?

-.5

I'

190

90

ii it Ii iii ft iii t Iii I I t1 0

0 20 40 60 80 100

4b

Figure 4



4

U1 2

0

2

V1 0

-2

4

U1 2

0

2

vi 0

-2

0 20 40 60 80

4c

0 20 40 60 80

4d

Figure 4 (continued)

.5

.25 We

0

.5

o1

-.5

t

0

100

.5

.25 We

0

.5

-.5

'$0

0

100

41



4

U1 2

0

2

i 0

2

4

U1 2

0

2

V1 0

2

.5

.25 We

0

.5

0??

.5

qo

+10

Jo
0 20 40 60 80 100

4e

0 20 40 60 80

4f

Figure 4 (continued)

.5

.25 We

0

.5

.5

80

1c

0

100

42



43

In Figure 5 is shown the numerical run for the DRN

model with s = 0 and = 1000, while Figures 6 and 7
correspond to the results for TLWE with s = 0 and =

1000. The differences between them are similar to those
described above. However, the increase in has the
following effects. 1) The length of adjustment is
increased ( A ). Compare, for example, the situation
at the time of surfacing of the thermoclirte: Figures 2b
and 5a that for the DRN model A has increased from about
5 to 10 (0.5 to 1 km), while Figures 3c and 6b show that
for the TLWE model it has increased from 30 to nearly 100

(9 to 30 km). 2) The surfacing of the thermocline is
delayed (it takes longer for For the DRM model the
upwellirig time increases from 3.4 (3.12 h) for = 180

to 8.0 (7.33 h) for = 1000 ; for the TLWE model it
increases from 8.0 (7.33 h) for = 180 to 10.6 (9.63
h) for = 1000. 3) The depth of the upper layer in

the frontal region is diminished (in order for we to
become significant while is still large). The

minimum upper layer depth decreases from 0.08 (2.6 m) to
0.014 (0.46 m) for the DRN model and from 0.08 (2.6 m) to
0.03 (1 m) for the TLWE model. 4) The alorigshore jet is
augmented ( is bigger). For both models the magnitudes

are approximately doubled; characteristic values for
= 180 are 4 (12 cm/s) while for = 1000 they increase
to about 10 (33 cm/s).



Figure 5

Temperature difference, , lower layer potential

vorticity, P, upper layer cross-shore and alongshore

velocities, u1 and v1, and upper layer depth, h, obtained

using the DBN model with = 1000 ands = 0. The times

for the sequence shown are: 5a, 7.0 (6.42 h); 5b, 8.0

(7.33 h); 5c, 9.0 (8.25 h); 5d, 14.0 (12.83 h).
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Figure 6

Tentperature difference, t , interface elevation, n

entrainment velocity, Wet and upper layer cross-shore and

alongshore volume fluxes, U and V1, obtained using the

TLWE model with . = 1000 and s = 0. The times for the1

sequence shown are: 6a, 7.0 (6.42 h); Gb, 11.0 (10.08 h);

6c, 12.0 (11.00 h); 6d, 14.0 (12.83 h).
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Figure 7

Temperature difference, , interface elevation, r

entrainment velocity, We and upper layer cross-shore and

alongshore velocities, u1 and v1, for an expanded region

near the coast, obtained using 3= 1000 and s = 0. The

times for the sequence shown are: 7a, 7.0 (6.42 h); 7b,

11.0 (10.08 h); 7c, 12.0 (11.0 h); 7d, 14.0 (12.83 h).
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An interesting difference between the cases =

180 (q = 2.5) and = 1000 (q = 13.6) is the result

of the inertial oscillations driving the horizontal flux

divergence. For 180 the maximum offshore fluxes

occur after t = u /. while for . = 1000 they occur
0 0 i 1

earlier. This causes that the delay in the upwelling

time, due to the inertial oscillations, is much larger for

the . = 180 case.
1

The results of the semigeostrophic model (DRM) with

the shear enhanced entrainment formulation (s= 0.67), for

= 180, are shown in Figure 8. The importance of this

mechanism can be observed by contrasting Figures 8 and 2.

The main effect occurs at the frontal -region where the

alongshore jet resides (see, for example, Figures 2b and

8b, which correspond to the time 3.3 (3.03 h), when the

thermocline surfaces). In this region We 1Z enhanced by

the shear mechanism which causes both and v1 to

decrease, and the thermocline to upwell earlier.

The profiles for the TLWE model with s = 0.67 and

= 180, corresponding to the times 4.0 (3.67 h) and

5.0 (4.58 h), before and after the thermocline has

surfaced, are shown in Figure 9. Shear due to the

inertial oscillations enhances turbulence through the PRT

mechanism causing significant entrainment velocities over

the whole interior and frontal region (We is several times

larger in the exterior region although it cannot be
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, lower layer potential

cross-shore and alongshore

Dper layer depth, h, obtained

=18Oands=O.67. The

are: 8a, 2.8 (2.57 h); 8b,

3.3 (3.03 h); 8c, 4.3 (3.94 h); 3d, 4.7 (4.31 h).
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Figure 9

Temperature difference, , interface elevation, n

entrainment velocity, Wer and upper layer cross-shore and

alongshore velocities, u1 and v1, for an expanded region

near the coast, at times (9a) 4.0 (3.67 h) and (9b)

5.0 (4.53 h), obtained using the TLWE model with =

180 and s = 0.67.
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distinguished from the plots). A clear manifestation of

the importance of this mechanism comes from the minimum

value taken by the upper layer depth. Without shear

mixing the minimum upper layer depth is unaltered by the

introduction of oscillations: 0.08 (2.6 m) for our

computations with = 180. When shear mixing is

introduced (s = 0.67) the minimum upper layer depth

increases to 0.23 (7.6 m) for the DRN model and to 0.30

(9.9 m) for the TLWE model.

The importance of the PRT mechanism could have been

anticipated by looking at the values taken by the

Richardson numbers at x= 1 (which is very close to the

coast, ie. 100 For the case when s = 0 Ri very soon

becomes supercritical, that is Ri becomes less than

0.67/ q2 = 6.03 (or equivalently, RI goes under 0.67).

Notice how also here the sharper character of the DRM

front is manifested. In both models the minimum Ri occur

just after the front upwells, and are due to the large

shear associated with the alorigshore jet over the frontal

region. For the runs with s = 0.67 the Ri values become

small less rapidly than before, and always remain

subcritical, ie. above 0.67, showing the important role

that shear-enhanced mixing plays in the system Of

equations (Figure 10).

The initial effect of the inertial oscillations on

the divergence at the coast can be drawn from the simple
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Figure 10

Richardson numbers as a function of time at x = 1.0 for

four different cases: 1, DR

0.0; 2, TLWE model with
. =
1

with = 180 , s = 0.67; 6,

s = 0.67. Curve a corresponds

4 model with ,. = 180, s =

180, s = 0.0; 5, DRM model

TLWE model with . = 180,
1

to equation (56').
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linear wind-driven inertial oscillation problem. In

non-dimensional form it is

- - qV1 = 0
-

(52)

aV
qU = T

whose solution far from the coast ( x >> A. )

is given by

U = r/q (1 - cosqt)

(53)

V1 = t/q sinqt

The condition of no normal flux at the coast

requires the existence of an adjustment region. Following

deSzoeke and Richman (1981) we can introduce it through

the factor (1 - e1'Ai), which in non-dimensional form

gives

U = T/q (1 cosqt) [i - exp(-x/( h )2)J
i-i

(54)

V1 = -r/q sinqt [1 exp(-x/(.h )2)]
ii
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For this approximate solution the horizontal divergence of

the cross-shelf volume flux is given by

= t/q (1 - cosqt) exp[-x/(.h.)J (55)11

This expression is approximately followed by our numerical

solutions prior to the development of the front, as shown

in the sequence of Figures 3b-3d. The effect of

increasing (i.e. to increase the length of

adjustment) can be seen by comparison of these figures

with Figure Ga. After the surfacing of the thermocline

the interior quickly evolves towards a steady-state

solution, ignorant of the evolution far offshore.

This same simple model could have anticipated the

importance of the inertial oscillations in the shear

mixing mechanism. Since the lower layer velocities are

much smaller than the upper layer ones the shear across

the interface can be approximated from (51) by u12+v12

Far offshore (x >> A.) this can be expressed as

(U/h)2 + (V1/h)2 2(1 - cosqt) (56)

h. 2
1

and its corresponding Ri is

.h.
Ri 1 1 (57)

2(1 - cosqt)



The minimum value for Ri* occurs at qt = T , and is

given by

mm Ri ii
4

(58)

For h. = 0.5 and = 180 it gives a minimum Ri
1 1

of 5.63 which is less than the critical Ri ( 0.67/q2 =

6.03 ).

Close to the coast u1 is small and the alongshore

- momentum balance can be approximated by

(59)

which for a constant wind stress gives

V1 t (60)

This shows that the alongshore jet approximately grows

linearly in time as

V1 it/h (61)

For small times h h1 and the shear can be approximated

by (it/h.)2 which causes Ri to decrease very rapidly

Ri. .h.3/(it)2 (62)11
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This result has been plotted in Figure 10 (curve a). It

suggests that the enhance mixing near the coast will be

due predominantely to the alorigshore jet. The quick

decrease in the Ri for the DRM model is due to the

immediate establishment of the offshore Ekman balance and

fast development of the alongshore jet. Instead, the TLWE

model shows larger Ri due to the longer time that it takes

for the alongshore jet to develop.

The generation of internal waves (Poincare waves) at

the coast has been discussed by Millot and Crepon (1981)

and RA. RA have shown how the inertial motions are damped

by these waves in several inertial periods. In the

present work we have not considered them for tso reasons.

First, our numerical runs never lasted longer than one

inertial period, t 18.8 (17.23 h). Second, the small

initial vertical stratification used results in a slow

propagation of the Poincare waves, its maximum value being

approximately given by

.1

u = (agE,T.h1)2
p

= q2(.h.)v (63)

which for = 180 (q = 0.33, h = 0.5) results in

= 2.5v. This value is usually smaller than the frontal

velocity (which is equal to the cross-shore upper layer



velocity at the position of the front) as shown by Figures

2c-2d, 4c-4f. This indicates that for this case the

damping of the inertial oscillations by the Poincare wave

would be masked by the upwelled front. For = 1000

we get u1 = l3.6v while a characteristic value for the

frontal speed is 10, which means that for this case the

Poincare waves could be seen if the model ran for several

inertial periods.

Figure 11 shows the position of the front as a

function of time for both models, without the PRT

mechanism. It can be observed that the velocity of

propagation of the front for the TLWE model is more

similar to that for the DRM model for the case with larger

q0. This goes in agreement with the behaviour indicated

by RA , i.e. that the semigeostrophic (DRM) and inertial

(TLWE) solutions become closer as increases.
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Figure 11

Location in time of the front for four different cases: 1,

DRM model with = 180; 2, TLWE model with = 180;

3, DRM model with = 1000 4, TLWE model with =

1000 In all cases s = 0.0.
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4. SUMMARY

A finite difference model has been succesfully

employed to model coastal upwelling in the presence of

inertial oscillations. By comparing the results from this

model with those from the deSzoeke and Richman #(1984)

model (modified to include shear enhanced mixing) the

importance of the inertial oscillations during coastal

upwelling has been analyzed. It has been determined that

their effect is twofold: to modify the horizontal volume

flux divergence at the coast and to enhance entrainment by

shear-mixing.

It has been shown that the inertial oscillations

change the divergence at the cOast. One of the main

effects is to increase the divergence over a larger area

(the length of adjustment is increased); this causes the

upper layer depth to decrease over this region, which

enhances We, and ultimately acts to smooth the frontal

characteristics. Another effect of the inertial

oscillations comes from the variability that they have in

the open ocean; this, together with the decoupling that

exists within the upper layer at both sides of the front,

causes the development of a shock-wave like phenomenon.

This variability has other effects as to decrease the

alongshore jet and to change the time at which the

thermocline surfaces.
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The enhancement of mixing by shear at the interface

has been carefully studied and the role of inertial

motions in this mechanism has been considered. In the

absence of this mechanism the Richardson numbers, RI, very

soon become supercritical. The inclusion of this

mechanism maintains Ri subcritical by increasing

considerably the entrainment velocity. This causes

upwelling to be substantially advanced and a further

smoothing of the frontal features. The shear necessary

for this mechanism is maximum over the frontal region

where the alongshore jet occurs. However, inertial

oscillations are responsible for the initial increase in

the shear far away from the front. The enhancement of

entrainment has a very important effect in the coastal

dynamics; for example, it substantially decreases the

alongshore jet.

From our results it can be concluded that both

inertial oscillations and shear enhanced entrainment must

be included in any realistic treatment of coastal

upwelling.
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APPENDIX A. Finite Difference Scheme

The region of

by a rectangular

respectively. The

x mx , t =ntm n

Y(Xrn t)

74

interest in the x-t space is covered

grid with spacings x and 't

value of any variable at a point

of the grid is denoted by

y(mx, nt) (A.1)

The time domain goes from t = 0 to a value large

enough to show the main features of the evolving front.

The space domain covers from the coast (x=O ) to a

distance far offshore where for all times considered the

effects of the front are negligible (Figure A.l)

The values M, N such that x = Mx and t = Nt
M N

depend on the choices of x and it . The space

intervals are given by

O.1x

x = 0.1 (rn-500) Am

0< m< 500

500<rn<550 (A2)

520<m<620

This variation allows good resolution near the coast,



N

n

fl-I

0

0 m-2 m m+2 M

Figure A.1
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Grid over the domain of interest (not to scale). The

inner region is amplified in Figure A.2.
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where the front evolves.

The time step A has to be small enough such that

the numerical method is stable. For the near-linear

problem it can be shown to depend on h
,

, and q

(see Appendix B).

Figure A.2 shows a small region of the grid with the

cell structure employed for the variables appearing in

equations (27)-(33). This particular structure is only

one of the possible choices. It has been selected because

it simplifies somewhat the finite difference

representation of the equations. It also seems desirable

to maintain U, v1, V2 together because of the similar

character that they have in the momentum equations, and

A , , with we because of the interrelation shown in

equation (33'). p has been more arbitrarily located

with the volume transports.

The cell structure allows an easier use of a central

difference approximation for for both the x and t

derivatives. For example, equation (29) can be

approximated by

n+1 n+1 n+2 n 34U1 Urn m m + r_
T

(.L3)

n+1 L

x -x 2At A h.-n
m+1 m m 1 rn

which after reordering becomes

2At(U1 n+1 T"Z
n+2 n +

m+iUm )
4At

m

(A.4)

(h.- )x -x A
m+1 m rn 1 m



nI

n
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PXm
In a

Urn Um+i

Vim Vim.i.i n
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rn
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Wem

V,
'77
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rn-I rn rn+I

Figure A.2
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Cell structure showing the positioning of the variables.
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With a similar representation for all the equations

and the knowledge of the initial and boundary conditions

(see Section for 2.4) we can obtain an explicit solution

for all variables, over the whole space domain, for

successive time steps (in this treatment the coriolis

terms in the momentum equations are treated implicitly).
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APPENDIX B. Stability Analysis

The stability analysis for the system (27)-(33) has

been done using the von Neumann method (O'Brien, Hyman and

Kaplan, 1955). Since the applicability of this method is

restricted to linear unforced systems the first step has

been to linearize our system of equations. The linear

system is

v1+qU0
t

- qV1 = -qhp0

nt = TJx (B.1)

V -qUO
t

pox
= 1(V1+V2) -

Notice that the equation for We is totally non-linear and

for this reason does not exist in (B.1). Notice also that

all forcing terms have been neglected, which reduces the

heat equation to =



In the von Neumann method all variables are written

in terms of their Fourier series representation, eg.
K

U(rnx, nLit) U Uexp(ikirmx/l)
(B.2)

1Mix

and an amplification factor

coefficients

m m-1_ mUUk _Uk _Uk

is introduced for the

(B.3)

Since the finite difference equations are linear we

need to study the stability for only one of the Fourier

terms, say the first one (k=1). Hence, consider

n On
Urn = U1 exp(ima)

7

n
= U0 exp(im )

Similarly, let

n
V1 = V1

n
exp(lmcz)

m 0

V2n = V2 exp(irna)
m 0

n
n0

n
exp(ima)

n
p =X

p
n
exp(lmct)

a E 'r x /1 = ir / M

U0

(B,4)

(B.4v)
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The finite difference form of the system (3.1) is

n+ 1n+2 n+2 n n - 2qtPU -qtV U +qtV
m 1m

m m

= U + qtV1n - 2qt[y(V11+V2'1)
m rn rn

n+i n-i
-(1-yh1)q1rn m )j

n+2 n+2 fl_q n
V +qtU V tU

1 rn 1 m (B.5)
m rn

n+2 n n+1 n+1+ 2Lt/x (U1 Urn )

n+2 n+2 + qitU'1V -qtU -v
rn2 m 2

rn rn

where the equation for p has been substituted into the
x

u equation. Introducing (B.4) and (3.4') into (3.5) and

dividing throughout by exp(irnc) we get

UO2 - qtV1 = U0 + qMV1 - 2qtyh.(V1+V2)
0 0

-ia+
)

2 + qtUO2 = V qitU0 (B.6)
0 10

Ia
= + 2(t/x)tJ0(e -1)

2 qtUO2 = V +
0 2o

qtU0



which can be rewritten in matrix form as

/

o I

f \ j
o

Al

V1 -2q2(t/x)h
i

2 I \ o -tq(2+1)
0/
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o 0

0

-qt(2+1-2yh) 2qAtyh V1

o
V20

=o (7)

(B.6) will have non-trivial solutions only if det A 0.

After some algebra we get

det A = q2t2(-1) + (2_1)2

+ 16q2(t/x) h.(1-yh.).2sin2a/2 = 0 (B.3)

Let kl=2 to get an equation of the form

a2+b+cO (B,9)

whose solution is

- b ± (b2--4ac)2
(B.10)

2a



For stability we require that IcI< 1 , ie.

(2a + b)2 > b2 - 4ac

a+b> C

For 2+ç we get

83

(B.U)

a q2it2 + 1

b = 16q2(t/x)2 (1-yh )t sin2c/2 = 2 (B.12)
± ± I

c = 1 q2t2

which leads to t>O . For 2=-ç we obtain

a = q2it2 + 1

b = 2 - 16q2(t/x)2h.(1_1h.).sjn2/2 (B.13)

c = q2t 1

which gives t r 14)

2q[h (1-1h.).]2
i 11
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The error introduced by the linearization is

expected to be negligible as long as the non-linear terms

are of the same order or smaller. In practice this

appears to be true for most cases and the criterion given

by equation (B.12) is satisfactory. However, there are

two situations in which the above criterion fails. The

first one corresponds to large times when an overtaking

sharp front is formed (resembling a shock wave) and the

non-linear terms become dominant. By decreasing the time

step this difficulty is only delayed. This problem could

probably be solved by employing a numerical scheme capable

to deal with shock-wave type behaviour (see, for example,

Glimm, 1965). The second situation arises for values of s

(see Section 2.2) different of zero. In this case the

system is unable to respond in a smooth and fast enough

way to Richardson numbers approaching s, and quickly

becomes unstable. A possible solution to this problem

would be by reducing the time step when the difference (RI

s) drops below some critical value. These limitations

have not impeded us in studying some of the most

interesting aspects of this problem and it has not seemed

justified at this point to spend more effort on them.




