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FORM FACTORS OF BEAMS SUBJECTED TO TRANSVERSE LOADING
ONLY. *

BY FOREST PRODUCTS LABORATORY.

INTRODUCTION.

This publication is one of a series of three reports prepared by the Forest Products Labo-
ratory of the Department of Agriculture for publication by the National Advisory Committee
for Aeronautics. The purpose of these papers is to make known the results of tests to determine
the properties of wing beams of standard and proposed sections, conducted by the Forest
Products Laboratory and financed by the Army and the Navy.

SUMMARY.

Nearly all of the mechanical properties of wood, especially those affecting its flexural
strength, have been determined from tests on rectangular specimens and, of all of these proper-
ties, the modulus of rupture is the one most used in design. The term modulus of rupture does
not correspond to any of the fundamental properties of wood, but it is that value obtained by
substituting maximum bending moment in the ordinary beam formula which gives stresses in
the extreme fiber for moments within the elastic limit. When confined to rectangular sections,
however, the term modulus of rupture in this restricted sense may well be applied to wooden
beams. However, when applied to beams of I and box sections we obtain results which aro not
comparable with those obtained for rectangular beams. The computed values for such sections
may., in extreme cases, be 50 per cent less than corresponding values computed for rectangular
beams made of material from the same plank.

If the properties of wood as based on tests of rectangular sections are to be used as a basis of
design for any other section, a factor whose value is dependent upon the shape of the section
must needs he applied to the usual beam formula. For convenience in this discussion this factor,
which is the ratio of either the fiber stress at elastic limit or the modulus of rupture of the section
to the similar property of a rectangular beam 2 by 2 inches in section made of the same material,
will be called a "Form Factor."

Such factors for various sections have been determined from test by comparing properties
of the beam in question to similar properties of matched beams 2 by 2 inches in section. Further-
more, formulas more or less empirical in character were worked out, which check all of these test
values remarkably well. In the development of these formulas it is necessary to consider
the characteristics of timber. The strength of wood in tension and compression along the grain
is very different, being much greater in tension. When a wood beam fails it first gives way at
the surface on the compression side and these fibers lose some of their ability to sustain load.
The adjacent fibers receive a greater stress and with this redistribution of stress the neutral axis
moves toward the tension side and shortens the arm of the internal resisting couple, giving a
much higher stress in tension. This process continues until tension failure occurs. The com-
pression failures are often not prominent, sometimes being almost invisible. This has often
led to the erroneous conclusion that tension failures occur before there is a compression failure.

It has been observed for years that the computed fiber stress at elastic limit in bending was
far greater than the fiber stress at elastic limit in compression parallel to the grain. Various

*Reprint of Report 181 of the National Advisory Committee for Aeronautics.
	 3

1310

•



4	 REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

theories have been advanced for this, the one most prominent being the fiber stresses and strains
were not proportional to their distances from the neutral axis even within the limits of elasticity.
This investigation has led to the belief that stresses within the elastic limit are very nearly
proportional to their distances from the neutral axis and that the difference is one of actually
greater fiber stress in the beam than in the block under compression parallel to the grain. We
account for this ability to take greater stress by the assumption that the minute wood fibers when
subjected to compression along their length act as miniature Euler columns more or less bound together.
These fibers when all stressed alike offer little support one to the other, but when the stress is
nonuniform as in a bent beam the fibers nearer the neutral axis being less stressed will not buckle,
and will therefore lend lateral support to the extreme fibers causing them to take a higher load.
By evaluating this support the relation of the elastic limit for various sections can be determined.
The following formula gives such an evaluation:

FE = 0.58 + 0.42 [0.293 (57. — sin a cos a) tz	 tl+tt:]

The above formula for the elastic limit form factor can be used to determine the modulus of
rupture form factor by a change in constants and we have for such factor

Fu = 0.50 + 0.50 [0.293 (5773 —. sin a cos a) t" t' ti1]

As regards the accuracy of the above formulas, we would expect them to check the average of a
great number of test values more closely than a few tests of representative material would check
such average. Even for beams with extremely thin flanges, at which limit they were not ex-
pected to check, it was found that they checked results of tests made on I beams routed beyond
all practical limits.

PURPOSE.

The general aim of this study is the achievement of efficient design in wing beams. The
purpose of the tests, the results of which are here presented, was to determine factors to apply
to the usual beam formula in order that the properties of wood based on tests of rectangular
sections might be used as-a basis of design for beams of any section, and if practical to develop
formulas for determining such factors, and to verify them by experiment.

DESCRIPTION OF MATERIAL.

Because it combines the qualities of lightness, great strength per unit weight, and a consider-
able degree of toughness, Sitka spruce is the wood most used in aircraft construction. For this
reason all test specimens used in this study were built of this species. The material was re-
ceived from the west coast of the United States and from Alaska. Both air-dried ar ta kiln-
dried stock was used and all conformed with Army and Navy specifications as to rate of growth
and slope of grain. No material was used having knots or pitch pockets, no matter how small.
and 0.36 was the minimum specific gravity permitted based on oven-dry weight and volume.
The sizes of the plank from which test beams were made varied from 2 by 10 inches by 12 feet
long to 4 by 22 inches by 34 feet long.

Cross sections of the beams tested are shown in Figures 1, 2, and 3. The I beams were of
single-piece construction. The cheeks or webs of the box beams were attached to the flanges
with ordinary hide. glue. Filler blocks were placed inside the box beams at the ends and load
points. These blocks were not glued in but held in place by small cleats glued to the flanges.
The F-5—L beams (fig. 1) were first routed throughout their length and tested with no filler
blocks at the load points, later a series was made in which the beams were left unrouted for
6 inches at the ends and for 4 inches at the load points.

The lengths of the beams, sections of which are shown in Figures 1, 2, and 3, varied from 30
inches to 12 feet 6 inches. The span was always of sufficient length to eliminate horizontal
shear failures.
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MARKING AND MATCHING.

In order to make reliable comparisons between beams of different cross sections, careful
matching of the various beams with beams of standard cross section was necessary. Practically
all beams of I, box, and other symmetrical or unsymmetrical sections tested were matched with
2 by 2 inch rectangular specimens. These 2 by 2 inch specimens will be referred to as minors
and all other beams as major beams or simply majors.

While but one major beam was made from a plank, several minors were cut from the balance
of the material, their number depending upon the length of the major beam. The minors were
taken from one or both sides of the major beam or if this was impossible, they were cut from
one or both ends of the plank depending upon its length. Figure 4 shows the various methods
of matching employed.

When minor bending specimens could be obtained from but one end of the plank the
specific gravity of specimens cut from them after failure were compared with the specific gravity
of specimens cut from the other end of the plank and proper adjustments made in order to
obtain the average properties of the plank based on tests of 2 by 2 inch specimens.

OUTLINE OF TESTS.

Following is an outline of the tests of both the major and minor beams:
Major beams.

Static bending.
Center or third-point loading.
Moisture determinations.

Minor beams:
Static bending-2 by 2 by 30 inch specimens.

Center loading.
Moisture determination.

Compression parallel-2 by 2 by 8 inch specimens.
Load applied parallel to grain.
Mositure determination.
Specific gravity determination.

Compression perpendicular-2 by 2 by 6 inch specimens.
Specimen cut from static bending specimen after failure.
Load applied perpendicular to the grain.
Moisture determination.

Specific gravity-2 by 2 by 6 inch specimens.
Specimen cut from static bending specimens after failure or from plank directly

where size of plank permitted.
Moisture determination.

METHOD OF TESTS.

In some of the earlier tests of the beams shown in Figure 1, both center and two-point
loading was used. However, two-point loading proved so much more satisfactory for larger
beams that it alone was finally used. The minor bending specimens and those of T, circular,
and rectangular section, with diagonal vertical shown in Figure 2, were all tested with load
applied at the center at the rate of 0.103 inch per minute. The load was applied to all the
larger beams at such a rate that strength values obtained could be compared with strength
values of the minors without correcting for rate of loading.

A standard laboratory deflectometer was used to measure deflections of the minor beams.
For the major beams deflections were read by observing the movement of a vertical scale,
attached to the center of the beam, across a wire fastened to two nails driven in the beam over
the supports. Such beams as the Loening (fig. 1) were prevented from bending in more than
one plane by using pin-connected horizontal ties spaced not over 10 inches along the beam
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(see fig. 8). The rear beam was held very well by these ties, but we found it practically impos-
sible to prevent buckling of the Loening front beam and a consequent reduction in maximum
load. The ratio of the moment of inertia about a horizontal axis to that about a vertical axis
is about 39 to 1, which is far in excess of what is permissible for beams in other classes of con-
struction which are held even more firmly than are w;.ag beams in the wing. Although it is
difficult to fix a value for this ratio, since the rigidity of supports and distance between ribs has a
great influence on the allowable moment of inertia about a vertical axis, we would suggest
this ratio to be kept below 25 if possible. When this is exceeded, particular attention should
be given the above-named factors to insure lateral rigidity.

A standard set-up for a two-point loading test is shown in Figure 5. The compression
parallel and compression perpendicular tests and the specific gravity and moisture determinations
were all made according to the approved laboratory methods.

DESCRIPTION OF FIGURES AND TABLES.

Figure 1.—These are sections of wing beams in use, four of them are front and four are
rear beams. Below is given a table showing the form factors of these sections. As will be
pointed out later there is a slight change in the modulus of rupture with a variation in height
of rectangular beams and, since practically all tests for the determinations of properties of
woods grown in the United States have been made on specimens this size, the 2-inch height has
been adopted as a standard for establishing form-factor values.

The test values for the Loening front beam are probably a little low for, as explained
under "Method of Tests," it was practically impossible to prevent lateral buckling of this
section and a consequent reduction in load.

It will be noted that the moduli of rupture of the following beams as computed by the
eM

formula = -- are from 17 to 38 per (int less and the elastic limit stresses 15 to 27 per cent

less than similar properties of the minor 2 by 2 inch specimens.

Type of beam Fiber stress at elastic
limit, form factor. M. of R. form factor.

F-5-L front 	 Act 	 0. 79 Act 	 0. 72
Comp 	 . 73 Comp... . 68

F-5-L rear. 	 A ct .. .80 Act 	 .70
Comp 	 77 Comp... . 73

Loening front 	 Act. 	 .77 Act 	 .75
Comp..... . 82 Comp 	 . 78

Loening rear 	 Act 	 - .85 Act 	 .83
Comp	 . 82 Comp... . 79

T. F front 	  	 Act 	 .75 Act 	 .62
Comp . 	 . 68 Comp 	 . 62

T. F rear 	   let 	 • 75 Act 	 .66
{'amp 	 69 Comp... .64

N. C. Trout. 	 Act 	 '	 .73 Act 	 .72
Comp 	 76 Comp... . 72

N. C. rear 	 Act 	 .80 Act 	 .73
('imp 	 . 77 Comp... . 73

4-"
	 4 k r

T.F. 
	

N.C.

FIG. 1.—Types of wing beams.

Figure 2.—This figure shows additional sections tested for form factors. They represent a
considerable range in form factor, that for modulus of rupture varying from 0.69 for the box
beam with equal flanges to 1.41 for the square with diagonal vertical. The extreme sections
shown are beyond practical limits but were made and tested to check out the form factor
formulas.
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Act.=A value determined by test of from G to 13 beams, each of
which was matched with from 3 to 8 minors. Spans vary from 6 to 12
feet and load was applied at the third points.

Comp.=Values computed by the formulas to be discussed in the
analysis.

The dimensions of the above sections are shown in Figure 1.
Table I shows the individual results and the average of the minors
matched with each beam.
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Formula 	  .64	
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Formula 	  .89	
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—.....k.',.: .'5.s.... N.	 ',.//,,,.. 	 -'—
Test 	  .89	 . -	 .ii --'''' 

1—
Extreme sections

I section 	

T section 	

Box section equal flanges 	

Box section unequal flanges 	

Extreme sections:
Thin flanges 	

Thick flanges 	

Test 	  0. 70
Formula 	  . 70
Test 	  . 78
Formula 	  . 80
Test 	  . 69
Formula 	  . 69
Test 	  . 71
Formula 	  . 74

Type.
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Below is given a table showing the modulus of rupture form factor of six of these sections as
determined by test and by the formula which will be developed later in this analysis. The
circular and the square section with diagonal vertical will be discussed separately.

Fm. 2.—Sections of beams tested for form factors.

CIRCULAR SECTIONS.

In the case of the circular section we have a form factor greater than unity. A series of cir-
cular beams were tested and the average modulus of rupture computed by the usual beam
formula was found to be 115 per cent of the modulus of rupture of matched specimens 2 by 2
inches in section. Let us compare the bending strength of a beam of circular section with a
beam of square section, cross sectional areas being equal. The section modulus I/c of the square
is approximately 118 per cent of the I/c of the circle, but as stated above the modulus of rupture
in the case of the circle was 115 per cent that of the square. This shows that a beam of circular
section and one with a square section of equal area will sustain practically equal loads.

SQUARE SECTIONS WITH DIAGONAL VERTICAL.

The moment of inertia of a square about a neutral axis perpendicular to its sides is the
same as the moment of inertia about a diagonal. When a beam of square section is tested with
the diagonal vertical, however, c, the distance from the neutral axis to the extreme fiber in
compression, is v.-2 times as great as c for the same beam tested with two sides vertical. If.

I,
we use the ordinary beam formula 3 =

S we would anticipate that the loads sustained by

the two beams would be to each other as 1 is to 0.707 in favor of the beam with its sides vertical.
Tests have shown, however, that this is not the case but that they sustained loads which were
practically equal; in fact, the beam with its diagonal vertical was slightly superior in strength,
though scarcely more than the normal variation to be expected with careful matching of
material. The stress factor then of a rectangular beam loaded with its diagonal vertical is
practically 1.414, or when using the usual beam formula with S as determined by tests of 2-

S I
by 2 inch specimens a stress factor must be applied, and we have M= 1.414 - -

Figure 3.—This figure gives illustrations of equivalent sections. Although there is a
considerable difference in lie, both beams in each set sustain practically equal loads.

Figure 4.—This figure shows the systems used for matching minor 2 by 2 inch specimens
with a major beam which is to be investigated. The minors are shown taken alongside the
beam on one or both sides or at one or both ends. When taken from one end specific gravity
determinations were made for the other end and adjustments made.

Figure 5.—Figure 5 shows a standard set-up for a two-point loading test. Slender beams
like the Loening (Figure 1) were prevented from bending in more than one plane by pin-
connected horizontal ties which are shown in Figure 8.

1310



VA,‹
a

C
= 756

	

	 .8.33
•

o-Maximum load = 3200 lb.
3/78 "

c-	 "	 "	 2280 "
"	 2285 "
"	 3897

f-	 -	 3867

Minor
specimens
cut from
troth ends
of plonk

as indicated.

S	 REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

Figure 6.—The theory of variable elastic limit and ultimate stresses in timber under
compression along the grain due to the support which a low-stressed fiber may give to one
more severely stressed is developed later in this report. When attempting to evaluate the
amount of reinforcement received by the extreme compressive fiber from those less stressed
or in tension several trials were made to obtain a relation which would check test results and
which could be represented by simple mathematical curves. Curve A was the resulting relation.

Curve B is the supporting ratio of the flange of a box or I beam. The depth of compression
flange in per cent of total depth of beam is plotted against the ratio of the area above this
flange-depth ratio to the total curve A area.

Figure 7.—This figure shows how the maximum load sustained at the center of a box or
I beam varies as material is transferred from the tension to the compression flange, over-all
dimensions and area remaining constant.

•
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Figure 8.—This is a, photograph of the apparatus used to prevent the bending of beams in
more than one plane. When the ratio of the moment of inertia about a horizontal axis
to that about a vertical axis is large, lateral buckling causes a considerable reduction in load
unless prevented by some such apparatus as shown.

Table 1. This table shows the properties of the beams, sections of which are shown in
Figure I, together with the average of the properties of the minors matched with each beam.
All minor values have been adjusted to the moisture content of the beam. The ratio of a prop-
erty of the major to that of a minor is expressed as a form factor for that property. Modulus
of rupture form factors were determined in this way and also by giving the compression parallel
values equal weight with modulus of rupture values. In weighting compression parallel values

7.900
they were multiplied by 4'300' 

the ratio of modulus of rupture to maximum crushing strength

parallel to the grain for spruce at 15 per cent moisture.

1310



3

C

r

E

1

-'..eRgE4'&' g 3§EF E4 5155§Wirc g 	FC•21 R5.11 5 g E

e---OcOcCOO n m-t-: tO O..Fa7e.r.7OO CO

.v.4iRtF1. .: GO cc, 0, ...1 	 .-1 PR .M rir4- g rZfiE gg g 9gg2tr..=P-' tN
-5E

=i .er'mrtr>..4.%6 Eg

• CICCe.00,c0	 CO
E ...1.4..4,401	 71

C MmCO0 0.
d	 .4 6

00.000.0.00

V.7.4g 	g eE2("§49711 ASIE2&§ 5 ii.Wk5f.Or-40.

oompocr>
?F4ga',4 ag,';'rgcm 44 rn Ln ".2.415'inAn 6gg".=.:,:p

6
:

ma.;

44e1444AA41111411114.44.1.:s, Lsn
46 t ~ .IA
4,:.1.4.4•11k.[LU.
orimi

.7,tj
44141pgi
44444 -̀'4WWWWW

64,444 t
' 44444

tz “ -
e 	 2-;23

.,...8. ti i	 .
1	 ; la	 ''''

FORM FACTORS OF BEAMS SUBJECTED TO TRANSVERSE LOADING ONLY. 	 11

O

to
R

N22gRal 3 FigPlg §i§-$R$ g A
..

gAR36M17:41gg2°,§ 
I••• N,..... 2 .7,'OnE:g81= O..	 .	 .	 .	 .	 .	 .

v.

51FIRra2.RHE F- FORP.H igF.E:"4.1°.2
6 	

t ip22g ?R2g§8253 §oculor.or-onMn .§1..?..2a§ 5 tO	 0 CD	 C-	 ca c§.M04§§§§ 72.4
6,OotiOat:cCoo-OcrCoCOOO CC of eci.-r.4'$clicai Ocecri-cii.6r--ce a.;"

7,4s.	 01.0.00.^^^,O., •- na .5.@S§§ g 4=4O5 A2P'; V- n g lEriF. 5' V2 n221'greet2 gco co R gUa5.F.,.P A
-,0'1A4 44'4,7 .6,7 1::$

te

74 t

qg22.2.2i2Sa-
0 0 .0 n 0> 	 ,0 g§§2

+.6767Ocia-cCoCOOcrCOOO
8 nagS§

e
2§§§R§SR c,
ta"o±o"o"oil	 o0 e,;" 8

fa. 
0,
$ago

0
	,sago$
VD 0 .0 10 S	 *.

cioicnoo-ar COCO00 of

,․)
c,A.F.sic•42§,IP2222§2

•	 00 CZ,	 1.•••	 I• • CP 02 CI 2 3 ,0	 Cra	 02

.51

§H5RE
n7a,•aa•aa•

8 §F.gni il
OOtiace.n.tc.0 8 § 

112

02 C2	 0.1c0 CO g
Oco-oCOOOO,..C.-C

8c4

2.••ca
4iROSR4 619R.S ,CR ,S, 4.9

.;	 •	 ?1,	 n	 02	 abc:nova:, g ..agt:1 0.:Ge ceoitegsi z gri tARA§5
-E-Wter-r-''afor

z "6@IT4§12°HR
r.--C,:n.c0-cfn-tt-z-crice

2L'' 4;

122§22.V4.422,2 §•	 C0.1.	 C-0,0,01 0,,0 01 0
<1.1:

.:2 §§ g 5
.279

§•4

e'eal
•	 0000 0, 00 00 cl c0 01 .0 c0 00 N 0,

kEZ°3 2"5 2 c',2°6c'2222 2
na.=,--cqr,

ai cd	 e.1
alt Cra	 00 •et, 0 .1•

c54,4.4.4e4c4e4
01 .0 O. CV CC 00 n 0,
co4 0,1

e3

igHE5Vini5i W5'55 .....	 .
i4

, IAEU10
6 • E

rt)-ItaL	 Cs4	 :
1441=t643'r',4F14:1

:1 4F11;. ,1A .st401'E..1‘gli4 .4>
i2nn

••••11.1.C.P64P:1
,?4,?,?4,1? 4,1?
ZZZZZZZX

4•V4.4E-4 4	 L.

zzzzzzzzz

§§"..112;.'SP:trS c-

•

a'Ffi g `fil§H5i'..	 ..	 .

0.4 Ei
.0
c..v°0

t.:111--1

AMR 1•	 •

V..."24AA W-4. g
CO c0	 '

killF.111F.11 

REF ckan csi.46O00000C.-

0 0 .0 0 0	 01

cg-x-.C.Coe,CO
•-•1

o

-•
c§k:0	 .0 0 0 CC

1=5521? g C•4	 ts
C	 Cr7 U, CO ,4 g iRu§ag a C.-2F-OtTi

VC 40	 .0	 CC
V=

kie9§5 g 1 g
id..•=.773F:°7-

§&5§1
..rseer,„,„ 2

.3ga.5§5gna
o.'''.6"crOOOOO

m .•••I

Sit,i22 2 g B
-77ac,77aaOO CC

Ce75!

i§R§F!rthg-g
co-r:Ocra co-OO,FOOOOto- CO [ ALT.

1310



12	 REPORT NATIONAL ADVISORY COMMIL	 ItIE FOR AERONAUTICS.

ANALYSIS OF RESULTS.

Nearly all of the mechanical properties of wood, especially those affecting its flexural
strength, have been determined from tests on rectangular specimens and, Of all these properties
the modulus of rupture is the one most used in design. Although modulus of rupture is not
a, true fiber stress, it has been shown that the modulus of rupture of solid rectangular beams of
any dimension can be used as a basis of design for solid rectangular beams of practically any
other dimensions without introducing errors of any considerable magnitude. The advent of
the airplane, however, brought into use wood beams of shapes not commonly used before, such
as I and box beams, and it was soon found that the modulus of rupture of rectangular beams
could not be satisfactorily used in calculating the ultimate strength of such sections from the

SI
ordinary beam formula	 Since to obtain the modulus of rupture we substitute maxi-

mum bending moment in the usual beam formula which is based on the assumption that the
limits of elasticity are not exceeded it is not surprising that this computed value varies with
the shape of the beam. It seems quite apparent that the cross section would have a tremendous
influence on the distribution of stress .beyond the elastic limit. What is surprising, however, is
the fact that the fiber stress at elastic limit is greatly influenced by the shape of the cross
section. There is every reason to believe that the ordinary assumption as to distribution of
stress holds quite well up to the elastic limit when considering the stress in the extreme fiber,
yet a wood I beam, for example, may have an elastic limit stress 30 per cent less than a solid
rectangular beam made of the same material.

A conclusive mathematical explanation of the change with shape in the elastic limit and
the so-called modulus of rupture of wood beams is not available, but the following conception of
What takes place, has been used in the development of formulas which check experimental
results remarkably well.

Consider a rectangular beam of Sitka spruce at 15 per cent moisture content. The elastic
limit of this material in compression parallel to the grain is 2,960 pounds per square inch. It
might be expected that when the specimen is tested in bending that the elastic limit would be
reached when the extreme fiber on , the compression side was stressed to 2,960 pounds per square

 •	 •

inch as calculated by the standard .fr j formula. Tests show however, that the elastic limit

in bending is not reached until the extreme compressive fiber has a calculated stress of 5,100
pounds per square inch. A similar condition is found at ultimate load. We believe that the
common theory of flexure holds quite well up to the elastic limit. What then operates to
develop a much greater compressive stress at elastic limit in flexure than under direct compres-
sion ? If we consider the minute fibers on the compressive side as miniature Euler columns
somewhat bound together, we may account for this increase. These little columns when rein-
forced laterally will exceed the load . Uecessary to cause buckling when unsupported, and as the
fibers near the neutral axis are less stressed they may well lend such support. The outside fibers
are reinforced by those in the layers below them and so on down through the beam. At the elastic

•

limit the total reinforcement in the exaMple	
5 100-2  960

cited amounts to	 —0.72 of the strength
2,960

at elastic limit in compression.
Furthermore, the results of thousands of tests on some 150 species grown in the United

States indicate the following realtions at a moisture content of 12 per cent:

F1 = 19,000 -‘4/W and	 = 11,000 -‘4/06

where F1 =fiber stress at elastic limit in bending in pounds per square inch.

F2 =fiber stress at elastic limit in compression parallel to the grain in pounds per
square inch.

0= specific gravity of the material

,F
whence y=1.727.

2
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•

•

Anther illustration of the effect of lateral supporting action was obtained in the following
manner: Several matched pairs of compression specimens 2 by 2 by 8 inches were tested with
load applied parallel to the grain. One of each pair 'was loaded centrically and the other eccen-
trically, load being applied through plates and knife edges. In the latter case the knife edges
were placed one-third of an inch off center. In the case of eccentric loading we might anticipate
a maximum of stress on the edge nearest the knife edges and zero on the opposite side, with a
total load equal to one-half that obtained by centric loading. A series of such tests showed not
one-half bur, over two-thirds the load 'sustained by the specimen centrically loaded indicating
that for some reason the extreme fiber stress had gone far beyond what might be expected. It
Seems reasonable that lateral support from the less stressed fibers might account for this increase.

Now, in an I beam such as shown in Figure 6, only those fibers in a width equal to the
width of the web get the complete supporting action which obtains in a solid beam. The
reinforcing action for the fibers outside the web is necessarily limited to the depth of the com-
pression flange. A beam of this shape, then, is weaker than a solid beam of the same height and
same section modulus and has a lower elastic limit. It is necessary, therefore, in designing such
an I beam to modify the modulus of rupture of the material as determined by tests of solid
sections by applying an appropriate factor such as has already been referred to in this dis-
cussion as a form factor.

It is difficult to evaluate the amount of reinforcement received by the extreme compres-
sive fibers from those less stressed. The adjacent-fibers could lend considerable reinforcement
by virtue of their proximity but they too are stressed nearly as much as the extreme fibers;
and those farther away, being under less compressive stress or under tensile stress, could lend
considerable lateral support but their ability to lend such support is reduced because of their
distance from the extreme fibers. With these two factors in view several trials were made to
obtain a relation which would check test results and which could be represented by simple
mathematical curves. Curve A, Figure 6, was finally adopted. The abscissae of this curve
represent the relative supporting influence of all the fibers.

The total area under the curve represents the total support received by the extreme com-
pressive fiber of a solid beam. The area to a depth equal to the compression flange as compared
with the total area represents the relative support of the extreme fiber in the flange of an I or
box beam exclusive of that portion which may be considered the web extended through to the
top.

If we assume the radius R, (Fig. 6) to he unity, the total area between the curve and the
vertical axis would then be:

4143.3
57. 13° + (3 x2) 

557.

3. 13

3
° x (

2
3)21=A1 

The area of the portion of this figure above the dotted line representing the flange-depth ratio
of a routed or box section is:

1 /2(-54--3 — sin a cos a)

The above formulas represent the conditions when the depth of the compression flange
is not more than 60 per cent of the total depth of beam. Curve B, which will he explained
later, can be used to determine the relative support for any flange depth.

Within these limits a which is the angle between the vertical and a radius to the point
where the horizontal representing the flange-depth ratio intersects the supporting action curve,

is the angle whose versed sine (1 — cos) is 3 x depth of compression flange
depth of beam.

If the width of the flange of an I or box beam is t, and the width of the web t, the supporting
' tA,—

t 
t,ability of the compression flange would be	 times the supporting ability of the rectangle

A ,
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t2 wide. The supporting ability of the web will be 1- times the reinforcement of a rectangle t2
t2

wide .
Now it was shown that in rectangular sections the total lateral support given to the more

stressed fibers, by those less stressed, increases the fiber stress at elastic limit in flexure over
that in direct compression by practically 72 per cent. The increase of fiber stress at elastic limit
for the I or box beam may be expressed as:

0.72[

t., — t,Al
A t,

The ratio of the elastic limit stress in bending to the elastic limit of the material in direct com-
pression will be 1 plus this quantity, and the form factor will be 1 plus this quantity divided by
1.72. Consequently, for the form factor of the I or box section we have by substituting the
values of A and A':

0.58 +0.42[0.293( 	 —sin a cos af2— 4 +1	 (1)
57.3	 t,	 t,

in which FE = form factor at elastic limit. Not only does this formula check test results for all
routing within practical limits but extreme cases as well. For the section with the one-eighth-
inch saw kerf at the neutral axis (see fig. 2) the formula value checks the average of test results
within 2 per cent. This formula which is semiempirical in its nature apparently would not hold
for very thin flanges, giving values too low. Experiment, however, showed that with thin
flanges (see fig. 2 for extreme cases) factors such as the influence of thickness of material with its
resulting buckling and offsetting action when failure starts, cause a reduction in load which off-
set the apparent inaccuracy of the formula. For thin flanges our test results coincide almost
exactly with the formula.

A'The quantity 0.293 a 3 — 
sin a cos a or A. which is the ratio of the area above a horizontal(57. 

representing the flange-depth ratio to the total area of curve A, Figure 6, can be determined
graphically and is so recorded in curve B, Figure 6. If we let K represent this ratio we may then
write:

,— t	 ti
F E= 0.58	 t+0:42 (A	 "+i) •

4'2

So far we have worked on the assumption that the limits of elasticity were not exceeded.
When the limits of elasticity are passed there is practically no theoretical basis for the adoption
of a formula such as the above formula (1). It was found, however, that if 0.50 was substituted
for both 0.58 and 0.42 the formula gave values which checked experimental results very well
and for this reason we have adopted the following formula for the modulus of rupture form
factor:

. 

	

n=0.50 +0.50[0.293( a. - — sin a cos a)t 	+57.3	 t, 

t,

	 t,

fu — 0.50+0.50 K t.-,—tt
,	 t,

the value 'of K to be taken from Figure 6.
It is often the case that the top and bottom edges of wing beams are not perpendicular to

the vertical axis of the beam. The above formulas (1) and (2) can not be used to determine
the form factors of such sections. In order to estimate the strength of such a section it is
necessary to consider a section of equal strength which is symmetrical about a vertical axis.
It has been found by test that such an equivalent section is one whose height equals the mean
height of the original section and whose width and flange areas equal Those of the original
section.

(2)
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Figure 3 shows several sections with the equivalent section corresponding to each. An
examination of this figure leads to but one conclusion, that the extreme fibers on the beveled
compression edge by virtue of greater supporting action carry a higher stress. The loss in
I/c is thus compensated for and the two beams of each pair carry equal loads.

The use of the equivalent section not only simplifies calculations but eliminates the necessity
of testing for form factors of sections not symmetrical about a vertical axis. Greater accuracy
will be obtained by the use of the equivalent section than would be obtained by the use of a
form factor for the unsymmetrical section determined from a relatively few tests.

To illustrate the use of the equivalent section let us take the pair of I beams shown in
Figure 3. We wish to estimate the moment which the beam with the beveled top flange will
sustain but the form factor of this section can not be determined by the formula. The form
factor for modulus of rupture of the equivalent section by the formula is found to be 0.65,

.05since Ilc- 38.05	 38we have the breaking moment M= 0.65 8-x  3.66 -6.76 S. - In attempting to3.66
check the accuracy of this value the form factor of the original section was found by test to be 0.68.
I/c for this wefimisMamd3.71 S. The moment estimated by means of
the equivalent section was, therefore, correct within less than 1 per cent.

GENERAL CIRCUMSTANCES TO BE CONSIDERED IN APPLYING STRESS FACTOR FORMULAS.

The form factors determined by test and those obtained by the use of the above formula
are based on comparison of properties of the various sections with those of specimens 2 by 2
inches in section. All strength tables used in design by the Aeronautical Bureaus of the Army
and Navy Departments are based on tests of such specimens. Some standard must be adopted,
since it has been shown by test that the modulus of rupture gradually diminishes as the height
of a beam is increased. This decrease may be estimated by the following empirical formula
based on tests of beams up to 12 inches in height:

D= - 0.07 (A/4- 1)	 (3)2

and for a rectangle	 Fu = 1 - 0.07 (V-4 -1)2

where D= per cent modulus of rupture of beam with height (h) varies from the modulus of
rupture of a beam 2 inches in height.

A common method of obtaining a form factor for a proposed section by test has been to
compare its modulus of rupture with that of a rectangular beam of the same over-all dimensions.
If the form factor of an I beam on the basis of comparison with a specimen 2 inches high is
0.70, for example, and this I beam is compared with a rectangular beam 8 inches high in which
we would expect a discrepancy of 0.07 in modulus of rupture the apparent form factor would
become 0.70 + 0.93 or 0.75. It would be incorrect to use 0.75 when strength values used in
design are based on tests of beams 2 inches in height. If this procedure is adopted a height
factor must be introduced to take care of the difference in stress developed in a specimen 2
inches high, and in the particular rectangular beam. The constants in our form factor formulas
were chosen so as to compensate for this reduction with height and they have been found to
give very accurate results for ordinary box beams and normally routed I beams for heights up
to 9 inches. For greater heights a slight error will be introduced which will probably increase
with increase in heigh$1 	

RELIABILITY OF TEST VALUES.

Unless standard methods are employed in making tests it is not expected that test values
will check each other or formula values. It is not the purpose of this report to discuss the test
methods in great detail, but it might be well to point out a few of the things to guard against
in order to obtain reliable results by tests. In applying center loading on a span .equal to
1310
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fourteen times the depth of beam, the bearing block should have a radius curvature one and
one-half times the depth of beam for a chord length equal to the depth of the beam. Greater
width of block can be secured by continuing the curvature on a radius two-thirds the above.
For beams loaded at the third point double the above radii. Any great departure from this
procedure will give results which are not comparable. The properties of wood are considerably
influenced by the rate of loading. , Consequently, the speed of machine is very important.
When but few tests are made to determine a form factor, material should be selected with great
care. Taking Sitka spruce, for example, a test piece would not be considered representative
material unless the ratio of maximum Crushing strength to modulus of rupture fell between
0.52 and 0.57.

CONCLUSIONS.

The strength of I and box beams can'uOt be estimated by applying the strength values of
wood as determined from tests on small rectangular beams directly in the usual beam formula.

These strength values can be applied, however,-'in conjunction with certain correction
factors whose values depend upon the shape of the Cross section. These factors have been
named form factors.

The form factor applied to the modulus of rupture may be as small as 0.50 or, in other
words, the modulus of rupture of a section other than rectangular when calculated by the usual
beam formula may be only 50 per cent of the modulus of rupture of a small rectangular beam.

The reduction of fiber stress at elastic limit for any section is not as great as the reduction
in modulus of rupture.

Form factors are not necessarily all less than unity. A beam of circular section, for example,
has a form factor for modulus of rupture of about 1.18.

There is also a reduction of modulus of rupture with height for beams of solid rectangular
section. Therefore the value of form factors must be based on some standard height, as prac-
tically all tables used in aircraft design are based on tests of small rectangular beams usually
2 by 2 inches in section, the 2-inch height has been taken as this standard.

If the ratio of moment of inertia about a horizontal axis to that about a vertical axis is
excessive the full theoretical strength of a beam can not he developed because of lateral buckling.
For one standard section tested in connection with this study this. ratio was 39 to 1, which is
far in excess of what is permissible for beams in other classes of construction which are held
even more firmly than beams in the wing. We would suggest that this ratio be kept below 25
if possible, but if this value is exceeded particular attention should be given such factors as the
rigidity of the supports, rib spacing, etc., which influence the lateral rigidity.

Heretofore the factors for any adopted or proposed section had to be determined by test.
An analysis of the results of a large number of such tests, together with a study of what seemed
to be the underlying principles governing these results, furnished a basis upon which to develop
formulas for determining form factors for any section. Values obtained by these formulas
check test results remarkably well.

All previous methods of estimating the breaking moment of wood beams involved the
tensile and compressive properties. of the wood and assumed fiber stress at elastic limit and
maximum fiber stress in the extreme fiber to be constant for all sections, whereas our assumption
is that both these stresses are variable.

As regards the accuracy of the above formulas, we would expect them to check the average
of a great number of test values more closely than a few tests of representative material would
check such average. Even for beams with extremely thin flanges, at which limit they were
not expected to cheek, _it was found that they checked results of tests made. on I beams muted
beyond all practical limits.

NONSYMMETRICAL SECTIONS.

It is generally know that the ultimate tensile strength of wood is greater than the ultimate
compressive strength even when the compression fibers are as fully supported as in a solid
rectangular beam. It would appear reasonable, therefore, to proportion a wood beam in some
manner which would involve a large compression flange :end a smaller tension flange.
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Naturally this would only apply tb simple or cantilever beams under stress from transverse
load only and that not subject to reversal unless the load factor under reversed conditions was
much lower than for normal conditions. In combined loading stiffness is an element of strength
and is greatest for a symmetrical section.

SECTION MODULUS A MAXIMUM.

It is commonly supposed that the most effective wood section is obtained by so arranging
the material that the distances of the extreme tension layers and extreme compression layers
from an axis containing the centroid are to each other as the ultimate tensile stress and ulti-
mate compressive stress of the material.. Many textbooks present this idea for such materials
as wood and cast iron, but by all the assumptions which are made in the development of the
common-beam formula, the section modulus I/c should be a maximum if the ultimate stress is
considered constant. In neither wood nor cast iron does this occur when the distances from
the centroid to the extreme tension and compression fibers are as the ultimate tensile and
compression strength, which condition would indicate an equal likelihood of failure by tension
or compression. The first failure in wood beams with unequal flanges always occurs on the
compression side if the material is normal and distributed between the two flanges so as to
give maximum strength.

If the thickness of the tension flange of an I or box beam is gradually diminished and the
thickness of the compression flange increased by the same amount, it is found that up to a
certain point the quotient I/c increases in value and then begins to decrease. (See fig. 7.) I is
the moment of inertia of the section about the axis which contains the centroid and c the dis-
tance from this axis to the extreme fiber in compression. We are apt to assume an increase in
maximum load practically corresponding to this increase in . I/c as the formula M=S I/c would
indicate, provided, as stated above, that the maximum compressive stress was considered
constant as the shape of the beam changed. An increase in strength is obtained, but it is
greater than would be anticipated from the I/c increase. This is because the section, by virtue
of its change in shape, will develop greater compressive stress in the extreme fiber at failure or
what means the same thing, has a larger form factor.

It is the combination. of these two factors that gives the increase in efficiency of box or I
sections when the flanges are made of unequal area.

Properly both factors should be used in determining the relative areas of the two flanges,
yet it has been found sufficiently accurate to use only I/c to determine what section shall be
used and both in computing the probable strength of this section. An examination of Figure
7 will show that the maximums of the two full-line curves occur at different flange area ratios.
However, both curves are quite flat at the maximum and the difference in strength for a con-
siderable change in flange area ratio is not great. Furthermore, as the theoretical maximum
efficiency is approached the beams become more erratic in their behavior due to the inability
to detect flaws which may cause tension failures. It appears advisable, therefore, to use only
the I/c curve in determining what section shall be used and to introduce the form factors when
computing the strength of the section.

RESULT OF TEST.

Figure 7 shows the results of tests of several sets of matched beams with varying ratios
of tension flange area to compression flange area. The lower curve is the variation in maximum
load we would get if we followed the change in Ilc.

K SI
A = —• 16c

But you will note all the tests show a much greater increase.
It is not difficult to account for this increase if we apply the principles outlined in the

preceding pages of this report. By transferring material to the compression flange from the
tension flange we increase the form factor of the section, or, in other words, the ability of the
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extreme fiber to resist compressive stress is enhanced The form factor unlike the 	 value
	 •

does not reach a maximum and then get less, but continues to increase until all of the material
has been transferred from the tension to the compression flange. The variation in load expected
when both the form factor and I/c are taken into account is represented by the upper full line
of Figure 7..

F SI P=
16c

P —Maxitnum load.
F„ =Stress factor of section.
K =F„ for section when flanges are equal.
S = M of 1? of material obtained from solid rectangular beams.
I = moment of inertia of section about axis through its centroid.
c = Distance from centroid to extreme fiber in compression.

The test values follow this line in a general way. The variations from the curve, however,
are not greater than would be expected when the difficulties of matching are considered. In
order to match nine or more beams of the dimensions indicated it was necessary to use material
in relatively large sizes, and two pieces cut from the same plank some distance from each other
may differ considerably in specific gravity and accordingly in other properties. The test values
were not corrected for density differences.

FORMULA FOR DESIGN.

In order to develop a formula for determining the proper dimensions of the most efficient
section with unequal flanges, let us assume a symmetrical I or box section whose bending
strength under loads from one direction we aim to improve by transferring material from the
tension to the compression flange, total height, width, and area to remain constant. We have
but to set up an expression for the section modulus in terms of the variable thickness to be
removed from the tension flange and added to the compression flange and to solve this expres-
sion for a maximum.
Let

A = area of the cross section.
b= total width.
h= total height.
w= width of flange.
D= distance between flanges.
F= one-half the combined thickness of the flanges.
/, = moment of inertia of the symmetrical section.
/, =moment of inertia of the unsymmetrical section about the axis containing the centroid.
c= distance from the above axis to the extreme fiber on the compression side.

/2 = moment of inertia of the unsymmetrical section about an axis at midheight.
.r ,== the thickness to be taken from the tension flange and added to the compression flange

for maximum efficiency.
Then

/, /, A
2 

e)2

or
1

1. , vi 	 rw6-- r — -5 -
I	 E21.x3 —

I1 = Is— x'w (h — 2F) — AG-h —cY

X 2	 ih

+ 170 AU—

(1)

•
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Since the statical moment about an axis through the centroid = 0, we have

A (2 — e)—xw(e — F —0+ rw (h, — — F +

	

)  A	 zw(h — 2 F)c 

c	 [

(h
-tv (h — 2 F)i

2 L A j

substituting (2) in (1) and dividing by c or its value from (3) we have

x2w(h 2F) A [xw (hA— 2 F)1

c xw (h — 2 F)
2	 A

Let
h— 2F= D

I, 2 (AI s — Ax2wD — x2w2 D3

	

e — 	 Ah— xwD

Differentiating this expression, equating to zero and canceling, we have:

x2wD (A + wD) — xAh (A + wD) + Ala= 0

Substituting bh for (A + wD) , we have:

x2wD bh — xAbh3 + A4= 0

	

A bh' — VA2b21 4 _a  4A IsbhwD
x	 2 wD bh

The minus sign preceding the radical is used to fulfill the second condition for a maximum.
On account of the suddenness of tension failures and the difficulty of inspection which would

insure material of high tensile strength it is probably inadvisable to use a ratio of tensile to
compressive stress greater than 2i to 1. In going over the various wing beam sections which
the laboratory has had occasion to test there appear to be none in which this ratio limits the
application of the above formula.

0

and

(2)

(3)
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