

AN ABSTRACT OF THE THESIS OF

Shraddha R. Sorte for the degree of Master of Science in Computer Science
presented on September 26, 2005.

Title: End User Software Engineering Features for Both Genders.

Abstract approved:

Margaret M. Burnett

Previous research has revealed gender differences that impact females’

willingness to adopt software features in end users’ programming

environments. Since these features have separately been shown to help end

users problem solve, it is important to female end users’ productivity that we

find ways to make these features more acceptable to females. This thesis draws

from our ongoing work with users to help inform our design of theory-based

methods for encouraging effective feature usage by both genders. This design

effort is the first to begin addressing the gender differences in the ways that

people go about problem solving in end-user programming situations.

©Copyright by Shraddha R. Sorte

September 26, 2005

All Rights Reserved

 End User Software Engineering Features for Both Genders

by
Shraddha R. Sorte

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented September 26, 2005
Commencement June 2006

Master of Science thesis of Shraddha R. Sorte presented on September 26,
2005.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of
my thesis to any reader upon request.

Shraddha R. Sorte, Author

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude towards my

advisor Dr. Margaret Burnett for her constant support, guidance and

encouragement throughout my work. She has been a great source of inspiration

in my academic life. She entrusted me with many tasks throughout the year.

This helped me gain a completely new experience and develop a new

perspective of thinking. I must thank her for giving me this wonderful

opportunity to work with her.

I would also like to thank all the members of the Forms/3 team who

lend their helping hand in resolving the bugs in time for the main experiment

and resolving many minor issues in implementing the prototype with special

mention to Andrew Christmann and Joey Lawrence who helped me develop

the prototype and take it to the final stage. Special thanks to Laura Beckwith

who helped me a lot during the work and also provided guidance during early

stages of the work. It was great working with her.

I thank the participants of our study and also extend this thanks to all

those in the EECS department, for all their support and who made working

here enjoyable. I must also thank all my friends who have directly or indirectly

provided help at some of the craziest hours of work.

I am indebted to the most important people in my life: my family,

especially my parents, sister and all other family members. They gave me all

the support and encouragement throughout my career. Nothing that I have

accomplished would have been possible without them.

This work was supported in part by Microsoft Research, by NSF grant

CNS-0420533 and by the EUSES Consortium via NSF grants ITR-0325273

and CCR-0324844.

TABLE OF CONTENTS

 Page
1. Introduction -- 1
2. Background--- 4

2.1 Related Work -- 4
2.2 Confidence and Self-Efficacy --- 9

2.2.1 Gender Survey--10
2.2.2 Gender differences in debugging in spreadsheet-like environment13

3. Prototype Design ---15
3.1 Forms/3 – End user Software Engineering Environment -------------15

3.1.1 The Features: WYSIWYT with Fault Localization------------------16
3.1.2 Surprise-Explain-Reward ---17

3.2 Known Barriers---18
3.3 Are there any other potential barriers? ----------------------------------20

4. From Problem to Solution 1: “No Confidence Required”---------------25
4.1 Prototype design ideas for Solution 1------------------------------------25

4.1.1 Input Device --26
4.1.1.1 Input Device 1 ---26
4.1.1.2 Input Device 2 ---27
4.1.1.3 Input Device 3 ---28
4.1.1.4 Input Device 4 ---29

4.1.2 Output Device --30
4.2 Solution 1’s Prototype ---30
4.3 Feedback from Users --32

5. Solution 2: Explanations---35
5.1 Requirements on Types of Explanation Content -----------------------36
5.2 Applying the Requirements ---37

5.2.1 Conceptual: The “What” Component ---------------------------------38
5.2.2 Conceptual: The “How did…” Component --------------------------38
5.2.3 Procedural: The “How should…” Component -----------------------39
5.2.4 Problem Solving: The “Advice” Component-------------------------39

5.3 Solution 2’s Prototype ---40
5.4 Feedback from Users --41

TABLE OF CONTENTS (Continued)

 Page
6. Think-aloud Analysis and Final Implementation-------------------------43

6.1 Quick and dirty evaluation --43
6.2 Some interesting observations --45

6.2.1 Unintended usage --45
6.2.2 Pattern of debugging---45
6.2.3 More observations ---46

7. Conclusion---49
BIBLIOGRAPHY---51
APPENDICES ---56

APPENDIX A ---57
APPENDIX B ---60
APPENDIX C ---75
APPENDIX D ---82

LIST OF FIGURES

Figure Page

Figure 1: WYSIWYT with fault localization in Forms/3 ------------------------16

Figure 2: Input Device Design 1---26

Figure 3: Input Device Design 2---27

Figure 4: Input Device Design 3---28

Figure 5: Input Device Design 4---29

Figure 6: Input Device --31

Figure 7: Output Device --31

Figure 8: ToolTip Explanations ---37

Figure 9: Low cost-prototype with paper augmentations ------------------------40

Figure 10: Internal frame explanations ---43

Figure 11: Expandy ToolTip---45

LIST OF TABLES

Table Page

Table 1: Theory-based hypotheses --- 2

Table 2: Survey Questionnaire --11

Table 2 (Continued): Survey Questionnaire ---------------------------------------12

Table 3: Self-efficacy questions ---13

Table 4: Survey Qus results --13

Table 5: Barriers ---19

Table 6: Additional potential barriers---23

LIST OF APPENDIX FIGURES

Figure Page

Figure 1: Survey Questionnaire ---57

Figure 1 (Continued): Survey Questionnaire --------------------------------------58

Figure 1 (Continued): Survey Questionnaire --------------------------------------59

Figure 2: Purchase Budget Task – Spreadsheet Description---------------------75

Figure 3: Gradebook Task – Spreadsheet Description----------------------------76

Figure 3 (Continued): Gradebook Task – Spreadsheet Description ------------77

Figure 4: Payroll Task – Spreadsheet Description --------------------------------78

Figure 4 (Continued): Payroll Task – Spreadsheet Description -----------------79

Figure 5: PurchaseBudget Spreadsheet (PuchaseBudget.frm)-------------------80

Figure 6: Gradebook Spreadsheet (Gradebook.frm) ------------------------------80

Figure 7: Payroll Spreadsheet (Payroll.frm) ---------------------------------------81

End User Software Engineering Features for
Both Genders

Shraddha Sorte

Oregon State University

1. Introduction
Although there have been gender studies [Camp 1997] designed to

understand and ameliorate the low representation of females in the computing

field, there has been little emphasis on software’s design attributes and how

these design attributes affect females’ and males’ performance in computing

tasks. Building upon theories and research about gender differences from a

number of domains [Beckwith and Burnett 2004], our research group has

begun investigating whether there are features within software that interact

with gender differences in the realm of end-user programming.

We used theory and previous gender difference empirical work from

other domains to hypothesize gender issues and their causes that could arise in

end-user programming environments and used empirical methods to

investigate whether these issues do actually arise in end-user programming

environments. This work concentrates on using the empirical results along with

theory and qualitative empirical work involving low-cost prototyping to derive

and refine approaches to address the issues.

Our group’s work on the first step was presented in [Beckwith and

Burnett 2004]. In that paper, our group derived a set of hypotheses from

relevant research literature; the subset of those hypotheses of interest are given

in Table 1. A particularly useful aspect of these hypotheses is that, because

many of these hypotheses are theory-based, they tend to suggest a cause for the

hypothesized effect. These causes potentially point the direction for our

designs to take in addressing issues that are present.

 2

Basis: Confidence and Risk

H1: There will be gender differences in users’ interest in (initially) exploring

new features in end-user programming environments.

H2: Females’ high perceptions of risk will render them less likely to make

(genuine) use of unfamiliar devices in end-user programming environments.

Table 1: Theory-based hypotheses about gender differences in end-user
programming environments [Beckwith and Burnett 2004]

Our group’s work has so far concentrated on hypotheses H1 and H2 in

the table. To investigate these hypotheses, we conducted a study [Beckwith et

al. 2005] in which we gave male and female spreadsheet users two spreadsheet

debugging tasks in an environment containing a number of features that

support such debugging tasks. The hypotheses were confirmed by our

investigation:

• Females had lower self-efficacy (a form of confidence) than males did

about their abilities to debug. Further, females’ self-efficacy was

predictive of their effectiveness at using the debugging features (which

was not the case for the males).

• Females were less likely than males to accept the new debugging

features. A reason females stated for this was that they thought the

features would take them too long to learn. Yet, there was no real

difference in the males’ and females’ ability to learn the new features.

• Although there was no gender difference in fixing the seeded bugs,

females introduced more new bugs—which remained unfixed. This

appears to be explained by their low acceptance of the debugging

features which left editing formulas as their primary “debugging”

device. High effective usage of the debugging features was a significant

predictor of ability to fix bugs.

 3

This thesis reports the results of the next step of our investigation:

applying the above findings related to H1 and H2: to the development of

potential solutions to address the issues revealed. As design progressed, we

supplemented theory-derived approaches with qualitative empirical methods

and low-cost prototyping to refine our proposed solutions.

This thesis also details how the prototype design evolved with the help

of continuous feedback from the end users. Three think-aloud studies were

conducted to evaluate the prototype design at each stage. The results seemed

promising but they need to be confirmed by a follow-up summative

experiment.

The contributions of this work are two-fold. First, it shows the

application of these particular theories to the design of potential solutions to

address gender issues in end-user programming features. Second, the potential

solutions themselves are, to our knowledge, the first reported approaches to

target gender issues for end-user programming environments.

 4

2. Background

2.1 Related Work

Gender differences in attitudes toward technology: As reported in

[Ray 2003] there are gender differences in attitudes toward technology. Males

saw machines as a challenge, something to be mastered, overcome, and be

measured against. They were the risk takers, and they demonstrated this by

eagerly trying new techniques and approaches. On the other hand, females

approached the machine as a tool, and attempted to work with it in a

cooperative manner. So, rather than dominate the machine, females attempted

to work with it to achieve their goals.

Gender differences in mathematical skills: A study [Fennema and

Sherman 1977] by Fennema and Sherman attempted to show gender

differences in spatial and mathematical abilities. They found that males

generally outperformed females on mental rotation tasks and on problems

requiring mathematical skills.

Gender differences in decision making: Altizer et al. [Altizer et al.

1996] hypothesize that given the gender differences in mathematical skills and

information processing, there will be gender differences in decision making.

They classified decision strategies as compensatory and non-compensatory.

Compensatory decision strategies use all available information in a decision

task, whereas non-compensatory strategies focus on a limited set of

information available. They hypothesize that females will generally use

compensatory strategies, whereas males will generally use non-compensatory

strategies. They haven’t reported about the results yet.

Gender differences in information processing: Meyers-Levy and

Maheswaran conducted a study [Meyers-Levy and Maheswaran 1991] to

explore differences in males’ and females’ information processing strategies.

They found that females’ processing often involved detailed elaboration of

message content, sometimes even focusing on the particulars of message

 5

claims. In general, these studies revealed that females’ information processing

strategies were more detail-oriented while males were more schema-based or

theme-oriented.

Interference of stereotype threat: Quinn and Spencer in [Quinn and

Spencer 2001] point out that stereotypes about academic skills are well known

and according to these stereotypes, males are better at math and science

domains and females are better at English and reading domains. These

stereotypes are transmitted in the culture in a variety of ways, including books,

media, parents, peers, and teachers. It has been observed that even the females

who have achieved the most, who have the strongest math skills, underperform

in comparison to their male peers. The authors considered whether there was

an interaction between cultural stereotypes and test-taking situation which they

termed as “stereotype threat” situation. They conducted a study to find out the

relation. The study revealed that under conditions of high stereotype threat,

females underperformed in comparison to males, and were less likely to be

able to formulate strategies. However, when they were told that the same test

was gender fair, thereby reducing the stereotype threat, males and females

performed equally on the test and did not differ in the ability to formulate and

use strategies. The possible explanation that the authors gave for women’s

difficulty in formulating strategies when stereotype threat is high is that

stereotype threat may reduce the cognitive resources available to generate

strategies.

Gender differences in games and software design: A study [Huff and

Cooper 1987] by Huff and Cooper revealed that there was a bias in designing

software for each gender. The designers were asked to design programs for

boys, girls, and students in general. Both boy and student programs were game

oriented (requiring more hand-eye coordination and more action on the screen)

while those for girls were learning tools.

 6

Much later, Miller conducted a small pilot study [Miller 1996] to

investigate girls’ preferences in computer software and future interactive

software. Findings of this study are briefly summarized below:

• Manual – last resort: If the game or the environment was not self-

revealing, girls were not motivated to pursue the manual. They would

instead look around for another available computer when they were

stuck as a way to exit this “stuck” status, or if none were available, they

would ask the person next to them for help.

• Non-closure/Exploration: Girls seemed to move freely among games

without seeming to need to complete or win one game or segment

before switching.

• Rich Texture: Girls placed a high value on the quality of the visual and

audio design of an environment. The richer the texture of the

environment, the more it appealed to the girls.

• Supportive over competitive environment: Most of the girls expressed a

desire that a game be challenging and include elements of problem

solving, but not to the point of causing frustration. The girls wanted the

activity to challenge them, but they did not view winning as a necessary

objective. They placed priority on having a good experience and

wanted the game to include features that preferred supportive feedback.

• Education versus entertainment: Younger girls, regardless of computer

experience, preferred the entertainment environment, while the older

girls preferred the more informational options.

• Virtual reality: Many girls advocated the idea of vicariously

experiencing adventures or activities.

• Career Exploration: Providing real life simulations and role-playing

associated with a variety of careers gained the girls’ interest.

 7

This study points out that using girls’ imaginations and learning styles

as the starting point, rather than expecting girls to be accommodated by male-

produced and accepted games, is the next step in providing alternatives that

may ultimately lead to re-capturing girls’ interests in computing and its

associated professional opportunities.

Gender differences in self-efficacy and its effect on software

adoption and use: Hartzel conducted a study [Hartzel 2003] to find out if a

tutorial affected self-efficacy1 of the participants and if self-efficacy affected

the likelihood of successful use and adoption of the software. The study

revealed that previous experience predicted higher comfort levels. Participants

with more experience using computer-based technologies had higher task-

specific self-efficacy levels than those with less experience. Also this study

confirmed the results of past studies that there exists a relationship between

self-efficacy beliefs concerning computer use and the motivation to use those

technologies. Also, self efficacy has a cumulative nature and experiences build

on each other. The study also found that including a tutorial boosted the self-

efficacy. This was especially true for the women.

Gender differences in computer confidence and its effect on

problem solving: Computer confidence based in gaming experience can affect

girls’ success in problem-solving. From their observations of girls playing

computer and video games, Inkpen et al. [Inkpen et al. 1994] concluded that

the confidence levels of selected study participants affected their playing

abilities and their willingness to solve problems through trial and error. When

the girls in their study doubted their abilities, they were less likely to tackle

math problems embedded in games, and they had less success in completing

the games.

1 Self-efficacy is the measure of one’s confidence in mastering a new challenge. When self-
efficacy is high, one believes there is a high probability that one will be successful, while low
self-efficacy suggests a limited belief one will accomplish an objective.

 8

Gender differences in behavior towards software and its features:

Microsoft reported, in a workshop [Greenberg 1993], an unpublished study

which categorized users into two Profiles, A or B, depending on their

perception of software as bloated or not. Profile A users preferred software that

was complete, they stayed up-to-date with upgrades, they assumed that all

interface elements have some value, and they blamed themselves when

something went wrong or when they couldn’t figure out how to perform a

specific task. Interestingly, this category was comprised of mostly females.

Alternately, Profile B users preferred to pay for and used only what they

needed, they were suspicious of upgrades, they wanted only the interface

elements that were used, and they blamed the software and the help system

when they couldn’t do a task. These were mostly males.

Another study was conducted to gain better understanding of how the

users actually experienced software bloat2 (complex functionality-filled

software applications) and the extent to which users experience them in

similar/different ways. This study also confirmed the results of the Microsoft

study [Greenberg 1993]. They found that gender was a significant factor in the

perception of bloat between the two groups of users and that it was females

who fell into Profile A, i.e., those wanting the most up-to-date, and complete

version of the software.

Gender difference in dealing with help systems: A study [Fennema

et al. 1998] of children’s problem solving abilities revealed gender differences

in strategy use. Girls tended to use concrete modeling (e.g.: counting on

fingers) or counting strategies (i.e. following the methods they were taught),

while boys tended to use more abstract strategies such as invented algorithms

or derived facts. These results may imply that girls need more structured and

2 Software bloat has been defined as the result of adding new features to a program or system
to the point where the benefit of the new features is outweighed by the impact on the technical
resources and the complexity of use. A bloated application is one in which there are a large
number of unused features.

 9

concrete help approaches, while boys may suffice with retrieval-based and

more abstract help approaches.

Arroyo [Arroyo 2003] found that boys of high cognitive development

ignored help the most, while girls of high cognitive development ignored them

the least, spending more time within hints overall. Also, girls spent more time

working with hints than boys, on average. In general, girls seemed more

affected by the over-support and the under-support. The study [Arroyo et al.

2000] by Arroyo reported that girls performed better in subsequent problems

when help was highly interactive, while boys performed better in subsequent

problems when the help had low levels of interactivity. Thus girls were willing

to spend more time on hints, and interaction with help eventually turned into

better learning.

A second study on AnimalWatch (a mathematics intelligent tutoring

system) in 1998 showed that while girls’ self-confidence was positively

affected by highly interactive and high amounts of help, boys’ self confidence

improved significantly most with a version that provided reduced help [Beck et

al. 1999]. This also supports the fact that girls feel comfortable with high levels

of support while boys may feel comfortable with low levels of support.

2.2 Confidence and Self-Efficacy

As seen in previous section, gender differences regarding computer

confidence have been widely studied, revealing that females (both computer

science majors and end users) have lower self-confidence than males in their

computer-related abilities [Huff 2002].

Self-efficacy is a person’s judgment about his or her ability to carry out

a course of action to achieve a certain type of performance. Achieving a

desired type of performance depends on two factors, the skills needed to carry

out the task and the perception of efficacy that will allow the individuals to use

their skills effectively. High self-efficacy is critical in problem solving because

self-efficacy influences the use of cognitive strategies, the amount of effort put

 10

forth, the level of persistence, the coping strategies adopted in the face of

obstacles, and the final performance outcome.

Research has shown that low self-efficacy affects females’ perceptions

of a software application before actual use [Hartzel 2003], raising the

possibility that females with low self-efficacy may avoid using it altogether.

Through self-efficacy literature and a short survey of our own, we consider

how confidence and perceived risk might be tied to feature acceptance.

2.2.1 Gender Survey

There were studies done a number of years ago that reported these

results; however software has changed significantly since then. Thus, in part to

confirm this phenomenon in 2004-era software, and in part to consider

potential ties with feature acceptance, we ran a small survey. Our survey

looked for links between respondents’ software confidence and their self-

reported willingness to explore new features in their real-world computer

usage, with questions such as “I avoid working with new software since it

requires more time to learn,” “If something goes wrong with the software (like

the program crashes), I believe I can fix it,” and “I enjoy exploring new

features provided with the software.” Some of these are summarized in Table 2

and Table 2 (contd). We administered the questionnaire in a psychology class

at Oregon State University in July 2004. There were 32 questions (26

agree/disagree, 5 ranking, 1 subjective) that took approximately ten minutes to

complete. Questions were answered on either a five-point Likert scale

(1=disagree,… 5=agree) or a ranking of choices (1=highest ranking, 2=second

highest ranking, and so on). There were 21 respondents: 14 females and 7

males enrolled in an undergraduate psychology course; mostly psychology and

business majors. Approximately two-thirds were psychology majors and one-

third were business majors. Out of the 14 females, there were 9 Psychology, 3

Business and 2 Liberal Studies majors. Out of the 7 males, there were 5

Psychology, 1 Business and 1 Arts major.

 11

Our survey results were extremely consistent with the findings reported

in [Huff 2002]. In all ten of our questions about software confidence and

respondents’ acceptance of new or advanced software features, females’ mean

scores were lower than the males’. In fact, even with this small sample size,

many of these differences were statistically significant.

In particular, Mann Whitney on the self-confidence questions revealed

Mean Mean Rank P-value
Question

F M F M

I work independently on most of my

computer work
4.9 4.6 12.0 9.0 0.167

Software is difficult to understand 3.0 2.1 12.3 8.5 0.174

I avoid working with new software since it

requires more time to learn
3.5 2.1 13.0 6.9 0.027

I avoid working with new software since it

requires me to think more
3.1 1.7 13.2 6.5 0.015

3.1 4.4 8.9 15.3 0.019 I find that most software is self explanatory

If something goes wrong with the software

(like the program crashes), I believe I can

fix it

1.8 3.9 8.1 16.9 0.001

I am usually confident that I understand the

functionality of these features
3.8 4.3 9.9 13.3 0.192

I am comfortable changing the settings of

these features
3.2 4.3 9.2 14.5 0.057

I enjoy exploring new features provided

with the software
3.1 4.0 9.3 14.4 0.067

Table 2: Survey Questionnaire – Summary of questions of type Agree/Disagree
(Mann Whitney Test)

 12

Mean Mean Rank P-value
Question

F M F M

2.4 1.1 13.0 7.0 0.023 Use Web Browser frequently

1.6 2.4 9.2 14.6 0.043 Use Email frequently

Use Word Processor frequently 3.1 4.9 9.4 14.1 0.094

If something goes wrong with the

software, I seek help from someone

to fix it

1.6 3.0 8.8 15.5 0.010

When I have problems using the

software, I refer to a technical expert
1.7 3.1 9.2 14.6 0.053

Table 2 (Continued): Survey Questionnaire – Summary of ranking
questions (Mann Whitney Test)

that females had significantly lower self-confidence than males (p-

value=.0056). Also for females, there was a significant relationship between

self-confidence3 and how they rated themselves in exploring new software

features (Table 4). The results of Mann Whitney on individual questions are

summarized in Table 2. Cronbach Alpha Reliability4 test run on the group of

questions related to confidence gave a highly significant alpha value = .8; this

lends credence to the results.

3 Self-confidence of the subject was calculated by rating the answers to the questions listed in
Table 3. Those who agreed with the first set of questions in Table 3 were given positive points
for self-confidence based on their degree of agreement while those who agreed with the next
set of questions were given negative points based on their degree of disagreement.
4 Cronbach alpha test is the most common form of reliability (or consistency) coefficient. It is
not a statistical test and is used to estimate the proportion of variance that is systematic or
consistent in a set of scores. It can range from 0.00 (if no variance is consistent) to 1.00 (if all
variance is consistent). For example, if the Cronbach alpha for a set of scores is .90, then the
test is 90% reliable. By convention, alpha should be .70 or higher to retain an item in a scale.

 13

Questions contributing to negative points

Software is difficult to understand.

I avoid working with new software since it requires more time to learn.

I avoid working with new software since it requires me to think more.

Questions contributing to positive points

Software helps me perform my task more quickly.

I find that most software is self-explanatory.

If something goes wrong with the software (like the program crashes), I

believe I can fix it.

Table 3: Self-efficacy questions – Subset of questions (from the
questionnaire) considered for self efficacy rating

Gender Regression Test Results

R2=.1405, p=.3967 Males (n=7)

R2=.5799, p=.0016 Females (n=14)

R2=.5107, p= .0003 All participants (n=21)

Table 4: Survey Qus results – Results of regression analysis of
self confidence as a predictor of exploring new software

2.2.2 Gender differences in debugging in spreadsheet-like environment

Our study [Beckwith et al. 2005] was aimed at investigating gender-

related issues within software aiming to support end-user programmers The

results of this study established ties from the well known gender differences in

computer-related confidence to end users’ debugging behaviors. The females,

whose self-efficacy was significantly lower than the males, were less willing to

accept the new debugging features in the software environment—which is

unfortunate, because these features, which explicitly support testing and

debugging, were statistically significant predictors of debugging success.

 14

The results also indicated that previous experience with spreadsheets

has an important influence on self-efficacy. Lower self-efficacy of females for

spreadsheet debugging may be remediated by greater experience. Thus, as a

female gets more experience, including experience with end-user debugging

features, her self-efficacy can be expected to rise, with corresponding increases

in effective usage of features that increase performance.

However, there is a circular dependency here—a female may never

gain the experience needed to raise her self-efficacy and performance

capabilities if she has already concluded that it is too risky or costly due to her

perceived capabilities being too low. In this situation, time itself is not enough

to produce the needed experience to raise self-efficacy. Consequently, looking

to other, more aggressive, methods seems warranted.

Females’ perceptions of their inability to learn new features were not

borne out by their actual learning of these features. This suggests that females’

low self-efficacy were a self-fulfilling prophecy: their low expectations about

their ability to learn new features prevented them from achieving the benefits

the new features might have brought them.

This also suggests that a partial solution may lie in the content of

communication that helps users to assess both the worth and risks of using the

features. Such communication may need to convince users not only of the

features’ ease of use, but also of the accuracy risks they are taking by not using

the features.

This study was a starting point that led us to address gender issues in

our debugging environment by taking into consideration the behaviors of the

females. The rest of the thesis is an attempt to address these gender issues to

ameliorate these gender differences in our environment.

 15

3. Prototype Design
For some time, our group has been working on a concept we term “end-

user software engineering” [Burnett et al 2004]. The essence of the end-user

software engineering concept is to tightly intertwine into end-user

programming environments features that aid end users in guarding against

errors in the “programs” they create (spreadsheets in our case). This section

describes the end-user software engineering features as they existed in our

prototype at the time of the empirical study that investigated H1 and H2.

As the results of H1 and H2 showed, the environment was not as

effective for females as it was for males. As one specific example, females’

self-efficacy was a significant predictor of their effectiveness testing

spreadsheet formulas. For the males, however, this was not the case. In short,

for females, low self-efficacy was tied to low usage of useful features, creating

a barrier to effectively testing and debugging their spreadsheet formulas.

3.1 Forms/3 – End user Software Engineering Environment

Forms/3 is the research spreadsheet environment in which we are

prototyping our work. Forms/3 is a declarative spreadsheet language, although

it varies from traditional spreadsheet languages. One of the most visible

variations is the lack of a predefined grid layout that cells must belong to; cells

can be placed anywhere within the form (see Figure 1). Although cells can be

placed anywhere within the spreadsheet, there is also support for more

structure in grids. In Forms/3 grids, rows and columns are determined by user-

specified formulas.

 16

Figure 1: WYSIWYT with fault localization as prototyped in Forms/3
[Burnett et al. 2001]. The user notices an incorrect value in Course_Avg
and places an X-mark in the cell. As a result of this X and the checkmark
in Exam_Avg, eight cells are identified as being possible reasons for the
incorrect value, with some deemed more likely than others.

3.1.1 The Features: WYSIWYT with Fault Localization

WYSIWYT (“What You See Is What You Test”) is a collection of two

end-user software engineering features – testing and debugging features that

allow users to incrementally “check off” (“√” in Figure 1) or “X out” (“X” in

Figure 1) values that are correct or incorrect, respectively [Rothermel et al.

2001; Ruthruff et al. 2005]. Besides the checkmarks and X-marks, there are

optional dataflow arrows for making relationships among the cells and sub

expressions explicit.

The effects of these features are that marking values correct and

incorrect allows the system to track the “testedness” and estimate the fault

likelihood of all the cells contributing to those correct and incorrect values.

The underlying assumption behind WYSIWYT is that, as a user incrementally

develops a spreadsheet, he or she can also be testing incrementally. Figure 1

shows an example of WYSIWYT in Forms/3 [Burnett et al. 2001]. Untested

cells start with red borders. Whenever users notice a correct value, they can

 17

place a checkmark (√) in the decision box at the corner of the cell they observe

to be correct: this communicates a successful test. Behind the scenes,

checkmarks increase the “testedness” of a cell according to a test adequacy

criterion based on formula expression coverage (described in [Rothermel et al.

2001]), and this is depicted by the cell’s border becoming more blue. Instead of

noticing that a cell’s value is correct, the user might notice that the value is

incorrect. In this case, instead of checking off the value, the user can put an X-

mark in the cell’s decision box. X-marks trigger fault likelihood calculations

for each cell that might have contributed to the incorrect value [Ruthruff et al.

2003]. Cells that are likely to contain faults are colored in shades of yellow-

orange with darker shades (more orange) indicating higher fault likelihood.

The goal of these features is to encourage the users to test the spreadsheet

thoroughly and correct errors.

In Figure 1, the user has popped up Quiz5’s arrow, which shows both

that Quiz5 is referenced in Quiz_Avg’s formula and that this relationship is not

yet tested. The arrows also reflect WYSIWYT “testedness” status at a finer

level of detail. (The user can turn these arrows on/off at will.) These features

were present when the above empirical results were obtained. Also visible in

Figure 1 are the progress bar (top) which reflects the testedness of the entire

spreadsheet and the fault likelihood bar (below the testedness bar) which

reflects the likelihood of faults in the tinted cells in the spreadsheet.

3.1.2 Surprise-Explain-Reward

The way these features are supported is via the Surprise-Explain-

Reward strategy [Robertson et al. 2004; Ruthruff et al. 2004; Wilson et al.

2003]. If a user is surprised by or becomes curious about any of the feedback

of the debugging features, such as cell border color or interior cell coloring, he

or she can seek an explanation, available via tool tips (as in Figure 1). If the

user follows up as advised in the explanation, rewards potentially ensue.

 18

The aim of the strategy is that, if the user follows up as advised in the

explanation, rewards will ensue [Ruthruff et al. 2004]. Some of the potential

rewards are functional—such as being led directly to a bug—and some are

affective—such as increased progress in the progress bar. One aspect of

interest is whether, if gender differences in confidence were present, they

might impact Surprise-Explain-Reward’s success in encouraging users to

approach and adopt new features.

Empirical results with end-user software engineering as supported by

Surprise-Explain-Reward have been encouraging [Burnett et al. 2004; Wilson

et al. 2003]. Still, the results of our investigation into H1 and H2 [Beckwith et

al. 2005] suggest that the Surprise-Explain-Reward strategy was not as

effective at enticing females as it was for males to use the features. This was

the case not only for seriously adopting and using the features, but even for

approaching the features to try them out. The theory-based hypotheses H1 and

H2 mentioned earlier suggest that females’ lower confidence and higher

perception of risk may well be causes. The next section considers specific

barriers that may be contributing to these results, and how to remove them.

3.2 Known Barriers

We drew from a combination of existing empirical results, theory, and

human-computer interaction (HCI) design techniques. Following Ko et al.’s

example [Ko et al. 2004], we use the concept of “barriers” to help organize the

problem space. Table 5 lists known barriers. Our empirical results on H1 and

H2 were the sources of the barriers.

Regarding Barrier 1, as our earlier work pointed out [Beckwith et al.

2005], low confidence in females in computer-related tasks was one of the

barriers in approaching or adopting features in the environment. A potential

solution could be to increase their experience to help increase confidence but

this does not seem very useful by itself—seeming to come down to “the best

way to increase feature usage is to increase feature usage”—but it could

 19

1. Low computer-related confidence in females (as measured in

[Beckwith et al. 2005] and numerous other sources)

2. Low feature usage by females [Beckwith et al. 2005]

3. Perception that it will take too long to learn the X-mark feature

(reported by females in [Beckwith et al. 2005])

4. Not able to understand fault localization feedback (observations of

our subjects’ behavior)

Table 5: Barriers females faced related to the findings of H1 and H2

magnify the effects of other solutions that encourage users to get at least a little

experience in the course of trying out the features.

According to the attention investment model [Blackwell 2002], users

will take an action if they believe that the action’s benefits are greater than

their perceived costs and are likely to materialize given the perceived risks.

This implies that a potential solution to Barrier 1 should emphasize the low

risk nature of checkmarks and X-marks. Taking this into account in

conjunction with females’ low confidence led to two low-risk, low-confidence

design ideas, in which users need not be 100% certain of the correctness of

their judgments in order to make these marks.

Barrier 2, low feature usage by females, is not independent of the other

barriers, but is present in the table because it encourages thinking directly

about usage, rather than concentrating only on underlying causes, as in the

other barriers.

Barrier 3, females’ perceptions that it takes too long to learn the X-

mark feature has several possible solutions. The first is ensuring the usefulness

of the feature is clearly stated. The attention investment model’s benefits

component suggests that, if benefits of placing X-marks are not obvious to

 20

users, they are not likely to see learning the feature as a good use of their time,

especially if they expect that amount of time to be large. A potential solution

could be to observe peers accomplishing the task, which is an important source

of self-efficacy. This would mean that a low self-efficacy female should

observe another female peer. Our collaborators at Drexel University are further

investigating this.

It is also possible that the feedback about the results of X-marks led to

Barrier 4. If so, then enhancing the feedback would help reduce the barrier.

Arroyo [Arroyo 2003] and Beck et al. [Beck et al. 1999] support interactivity

in learning to understand tasks, and both studies revealed useful information

about gender. Arroyo’s study suggested that concrete and interactive hints

helped females to perform better and learn more. Beck et al.’s study further

indicated that highly interactive hints helped increase females’ confidence.

3.3 Are there any other potential barriers?

In addition to the known barriers of the previous section, another table

Table 6 of potential barriers and items to be studied was created. Some of these

“to study” items were uncovered in the think aloud studies that are discussed in

Sections 4, 5 and 6. Note that the barriers in Table 5 were confirmed barriers

for females [Beckwith et al. 2005]. Some research points out gender

differences in many other aspects which can also be mapped in our

environment. We believe that they are relevant and hence need to be

considered. However, they were not confirmed in our earlier studies, so

whether these are indeed barriers in our environment for the females needs

further investigation. We discuss them here and in Table 6 as “potential

barriers”.

Potential Barriers 1 and 4: Is the feedback of fault localization

(involving too many colors) a punishment to the females? These barriers are

interrelated and were derived from [Ray 2003], which states that in games for

females, the player should not be punished for a wrong action by having to

 21

restart the game again. Instead there should be ways to block the player’s

progress for a wrong action. They point out that there should be an “element of

forgiveness” in the game. This can be mapped to a problem-solving

environment like Forms/3 such that the users are not punished for their wrong

actions. It is not known if the colors used in the fault localization or

WYSIWYT feedback is a punishment to the low confidence users. The low

confidence users might be overwhelmed by too many color shades used in the

feedback. A potential solution could be to not have as many colors in the Fault

localization or WYSIWYT feedback.

Potential Barrier 2 was derived from Arroyo’s study [Arroyo 2003],

according to which male and female students performed better with different

versions of hints/help system. Females were more sensitive to the amounts of

help fitting their needs than to the level of abstraction while males were

affected by the level of abstraction and ignored help more. As described in

section 3.1.2, Forms/3 uses the Surprise-Explain-Reward strategy. The

explanation component of this strategy is supported via tooltips in the system.

Every feature in the system has a tooltip associated with it. The three main

components of explanations include: the semantics of the object, suggested

action(s) if any, and the reward; these are described in detail in [Wilson et al.

2003]. These explanations might not be serving the purpose of females.

Potential Barrier 3 was also derived from [Ray 2003] which states that

“machine as a foe” became a barrier to the females’ enjoyment. The game

mechanics should be intuitive and easy to learn. The fundamentals of the game

should not be “hidden” within the technology as this requires the player to

“fight” the technology in order to enjoy the game. Similarly the working of

various features in a problem-solving environment should be intuitive to the

users and should not be hidden. Features in the Forms/3 environment may not

seem intuitive to the females.

 22

Potential Barrier 5: Girls described audio and visual support in the

environment as important as [Miller 1996]. Perhaps providing audio clues in

our environment could help females.

Potential Barrier 6: Are the females driven away by the colors used in

the Forms/3 environment, leading them to not use certain features? Males and

females have different preferences towards colors [Radeloff 1990; Green

1995]. Our fault localization feedback involved coloring the interior of the

cells with shades of orange on a continuum from yellow to darker shades of

orange. Using colors less jarring to females might affect their usage of these

features that use colors. This is an item that needs to be studied and further

investigated.

Potential Barrier 7: This was derived from our own observations from

the previous qualitative studies. Some users perceive changed cell color as

having done something wrong rather than following the feedback the system is

trying to give.

 Potential Barrier 8: Researchers found that boys and girls prefer to

work through games in different ways. Rather than working in a linear fashion

through the game girls prefer to explore and move freely about a game. (These

findings are summarized in [Gorriz and Medina 2000].) If in our environment

we include more than one way of doing a particular action, then this might

provide support to the females’ problem-solving style.

Potential Barrier 9 draws from Potential Barriers 1, 4 and 8. From

Potential Barriers 1 and 4, it is implied that the environment should not punish

the users for wrong actions with a violent action; instead have an element of

forgiveness. Potential Barrier 8 relates to females working in a non-linear

fashion, meaning having different alternative solutions for a given task [Gorriz

and Medina 2000]. These potential barriers give rise to the need for a safe

environment where the users can undo their actions. In our case, these actions

 23

include making decisions about a cell by placing a checkmark or X-mark and

editing a cell’s formula.

 Potential Barriers Items to study

1 Overwhelmed by too many colors

of Fault Localization feedback?

[Ray 2003]

Will fewer colors in FL feedback

help?

2 Tool tips – Explanation not

serving the purpose

Need to consider the level of

abstraction (Reduced help /

Abstract / Formal / Concrete)

[Arroyo 2003]

3 Environment (working of Fault

Localization) not intuitive for

females [Ray 2003]

Fundamental working of the

system should not be hidden.

Interface needs to be extremely

intuitive.

4 Punishment – Wrong decision

made while placing a checkmark

or an X-mark on a cell[Ray 2003]

Robust algorithm to handle

mistakes. Result of bad decision –

include “element of forgiveness”

letting the user to continue with

delayed progress.

5 No audio/visual cues [Miller 1996] Add audio/visual cues to the

environment – to explain certain

features and while giving feedback

6 Disliking the colors used in

Forms/3 environment (specifically

WYSIWYT and Fault

Localization) [Radeloff 1990;

Green 1995]

If there is any preference of

females for particular colors or

color combinations, maybe use

them instead of the ones that the

system already has

Table 6: Additional potential barriers and items to study

 24

Potential Barriers Items to study

7 Changed cell color might be seen as

a result of having done something

wrong. Low-confident females might

blame themselves for the errors and

not look for explanations, which

might help lead to solutions, from

tool tips.

Prompt an explanation why the

color of the cell changed

8 Females prefer to consider more than

one solutions to a problem [Gorriz

and Medina 2000]

Allow more than one ways to

do the same task

9 Safer environment for exploring

alternative solutions.

Females not able to restore

original formula, after changing

it once, thus leaving bugs

introduced. Provide an UNDO

action in the environment

Table 6 (Continued): Additional potential barriers and items to study

 25

4. From Problem to Solution 1: “No Confidence Required”
From a high-level design perspective, we are dealing with in an “ill-

structured” problem. In such problems, formulating the problem and the

solution are not entirely separate issues, because each attempt to solve the

problem changes the researchers’ understanding of the problem. The potential

solutions are not well-defined, theory is incomplete, and information upon

which a solution can be based is also incomplete.

We performed a claims analysis for each solution in Table 5. Claims

analysis [Carroll and Rosson 1992] is a technique for evaluating design

solutions where consequences of each solution are identified with respect to

the intended users, labeling each consequence as positive or negative. The

claims analyses done by our group was instrumental in helping us to choose

which solutions to implement first.

One of the barriers in the way of females was low feature usage

(Barrier 2 in Table 5 which is also related to Barrier 1). We believed that

addressing this barrier first was important since feature usage was tied to

effectiveness in debugging which was the main goal of their task and also our

claims analysis revealed that this should be the first solution to follow. So we

decided to target this barrier first. One possible reason for low feature usage

(specifically the usage of checkmarks and X-marks) by the females could have

been that they did not place these marks unless they were completely sure

about their decision.

Our approach towards the solution to this barrier (which we will call

Solution 1) was to provide a way to make decisions about a cell’s value even if

the users are not completely sure about their decision by expressing their

confidence level.

4.1 Prototype design ideas for Solution 1

Solution 1’s goal was to communicate to users that they did not have to

be confident to be “worthy” of judging the correctness or incorrectness of

 26

values. This involved changes not just to our input device but also to the output

device to reflect appropriate feedback based on the input.

4.1.1 Input Device

Our system’s input device – a decision box at the top right hand corner

of each cell – is a means to make decisions about the cell’s value by placing a

checkmark or an X-mark. We wanted to re-design it so that the user could

express confidence while making decision about the cell’s value. The rationale

behind the design was to not increase the cost in making decisions by having

the users enter the confidence each time they make a decision; the base cost

being left click for a checkmark and right click for an X-mark. There were four

proposed design ideas for the input device, depicted in Figure 2, Figure 3,

Figure 4, and Figure 5.

4.1.1.1 Input Device 1

Figure 2 has a confidence setting at the top of each spreadsheet,

allowing the user to set his/her overall confidence in making decisions about

any cell’s value in the spreadsheet or the confidence of the selected cell’s

value. If the user selects a particular cell and sets the confidence level, that

confidence level applies to that particular cell. If none of the cells are selected

then the confidence setting applies to all the cells in the spreadsheet. Initially,

every cell in the spreadsheet is associated with the same default confidence

value which is high. The possible confidence settings are range of values from

0% to 100% on a numeric scale.

Figure 2: Input Device Design 1

 27

Advantages

• Inputting confidence is optional, (reduced screen real estate) a

single confidence widget is added to the top of the spreadsheet

while providing the functionality of setting different confidence

values for different cells.

• The feature is not hidden and is visible at all the times.

• Flexibility to set the confidence value at any time of making

decision (user can set the confidence value either before or after

making the decision).

Disadvantages

• Increased cost in setting confidence value for a single cell (need to

select the cell in order to set its confidence value).

• The user cannot see the confidence level associated with a

particular cell.

• Increased cost of increasing/decreasing confidence if there are too

many levels allowed.

• The user may leave a cell selected while wanting to set the

confidence of some other cell, thus associating a wrong value of

confidence with the cell.

4.1.1.2 Input Device 2

Figure 3 depicts an alternative way of expressing confidence in making

decisions about a cell’s value. Each cell is associated with a tiny widget just

next to its decision box that stands for the confidence level in making decision

about that cell’s value. The user can increase or decrease the confidence level

Figure 3: Input Device Design 2

 28

at any point of time. As in the previous design FigureInputDevice1, each cell

will have a default confidence value which will be the same for all.

Advantages

• Inputting confidence is optional.

• The feature is not hidden and is visible at all times.

• Flexibility to set the confidence value at any time of making

decision (user can set the confidence value either before or after

making the decision).

Disadvantages

• Increased screen real estate over present and over Input Device 1.

• The user cannot see the confidence level associated with a

particular cell.

• Increased cost of increasing/decreasing confidence if there are too

many levels allowed.

4.1.1.3 Input Device 3

Figure 4 provides another way of expressing confidence with a slightly

modified widget adjacent to the cell’s decision box as compared to

FigureInputDevice2. The widget is in the form of a slider bar with 3 levels of

confidence (High, Medium and Low). Initially every cell has a default

confidence level of “Medium” as shown in the figure.

Advantages

• Inputting confidence is optional.

• The user can clearly see the confidence level of each cell at any

point of time.

Figure 4: Input Device Design 3

 29

• Flexibility to set the confidence value at any time of making

decision (user can set the confidence value either before or after

making the decision).

Disadvantages

• Perhaps a difficult design to implement in Forms/3.

• Associating a slider bar with each cell is costly in terms of screen

real estate.

• Sliding is a costlier user choice than mere clicking because it

involves more physical motion with the user’s hand.

4.1.1.4 Input Device 4

Figure 5 combines confidence levels with placing the mark.

Specifically, clicking on a cell’s decision box pops up a slider with 2 levels of

confidence for each of the marks (checkmark and X-mark) – completely sure

and not completely sure. The checkmark is associated with “It’s right” for a

completely confident decision and “Seems right maybe” for a not very

confident decision in placing the checkmark, while the X-mark is associated

with “It’s wrong” for a completely confident decision and “Seems wrong

maybe” for a not very confident decision in placing the X-mark.

Advantages

• User can clearly see the confidence level associated with each cell.

Figure 5: Input Device Design 4

 30

• Reduced screen real estate cost; it is hidden at all the times except

when the user clicks on the decision box when this confidence

widget pops up.

• Only two levels of confidence associated with each of the marks

(LOW and HIGH) reducing the number of choices to make decision

from.

Disadvantages

• Increased cost in decision making. The user now has to select one

amongst the four available choices as compared to two choices in

our original prototype.

• This costs an extra click over the original prototype.

• Perhaps a complex design to implement in Forms/3.

4.1.2 Output Device

The output device was a variation of our previous one. The original

design used cell border color to reflect testedness. The border color ranges

from red to blue where more blue indicates more testedness of the cell. Cell

interior color was used to reflect the fault localization feedback (bug likelihood

of the cell). Cell interior color ranges from yellow to orange where more

orange means greater likelihood of bugs in the cell. With the new input device,

low confidence would result in lower saturation of these colors (50% less

saturated than the higher saturation) while high confidence results in higher

saturation of the respective colors. For example, low confidence in placing a

checkmark results in lower saturation of the cell border color while low

confidence in placing an X-mark results in lower saturation of cell interior

color.

4.2 Solution 1’s Prototype

After brainstorming the above ideas on the input and output devices, a

design emerged that drew from the above ideas and was feasible to implement

 31

Figure 6: Input Device – Clicking on the checkbox turns it into the four
choices. The tool tips over the choices, starting with the left-most X, are
“it’s wrong,” “seems wrong maybe,” “seems right maybe,” “it’s right.”

High Low

High Low

Figure 7: Output Device – Saturation of border color (top) and interior
color (bottom) reflect confidence of user judgments of values being correct

or incorrect.

and consistent with all other features in the environment. The criteria behind

the design were:

• Inputting confidence should be a part of the decision step.

• The user should be able to clearly see the inputted confidence level.

• Low cost in inputting the confidence.

• Low screen real estate – not hidden from the user, should be visible

when the user wants to change its value.

Thus, in our prototype, instead of having only two possible actions—

checking off or X’ing out values—there are now four possible actions: the

original two (“it’s right” and “it’s wrong”) plus “seems right maybe”

checkmarks and “seems wrong maybe” X-marks. See Figure 6. The low

saturated marks are for lower confidence judgments, as their tool tips explain.

One small but important detail: another way this change differs from

the previous prototype is that in the previous version, the checkmark was done

with a left click and the X-mark with a right click. Removing the need for a

 32

right click, which we have observed is not often used by less experienced

users, may make X-marks more accessible to those with less experience.

The lower confidence marks result in feedback at lower saturations.

That is, a lower confidence checkmark produces lower saturations of border

colors reflecting the affected cells’ “testedness.” Similarly, a lower confidence

X-mark produces lower saturations of interior colors reflecting the affected

cells’ fault likelihood. See Figure 7. Like the increases/decreases in testedness

and fault likelihood that arise from the correctness judgments communicated

through checkmarks and X-marks, the confidence of these judgments are also

propagated to all affected cells.

4.3 Feedback from Users

As the prototype evolved, we brought in eight participants, one at a

time, (two males and six females) to use our evolving prototype, in order to

inform our design of the prototype changes. Each participant was asked to

“think aloud” while working on the same tasks as in [Beckwith et al. 2005].

After they were finished, we interviewed the participants.

Only three participants used the low-confidence marks, but in general

the participants did seem to be more willing to make judgments than they had

been in previous studies. This change seemed especially apparent with the X-

marks. Thus, the changes may have indeed succeeded in communicating the

low risk and acceptability of low confidence. However, without a statistical

study, we cannot be sure that such a change occurred.

For example, one female (S4) used the approach exactly as we had

hoped. Here is what she said while contemplating a cell’s value:

S4 (thinking aloud): “I am not sure if this cell’s value is right so maybe I’ll

mark it gray and come back to it later.”

The same female, when asked about the “maybe” marks post-session

said that her general tendency was not to mark a cell unless she was

completely sure about her decision. She was one of the low confidence females

 33

which we had in mind while addressing this barrier about low feature usage

(Barrier 2 in Table 5)

S4 (interview): “I kinda thought it was right but then I was like... wait a

minute I don’t have the exact math. I didn’t want it to be wrong but I knew

that something further along the line was wrong, so I didn’t want to put yes

for sure even though I thought it was right.”

S4 (interview): “I feel like I shouldn’t check them or I shouldn’t check

anything unless I really thought one way or the other.”

The same female when asked if the “maybe” marks would be useful in

a complex spreadsheet:

S4 (interview):”I think the “may be” marks would be useful in a complex

spreadsheet. I used it although I wasn’t a huge fan of them.. In a huge

problem with a lot of aspects, it would make sense to put the “may be”

marks”

However S3, a female who did not use the low-confidence marks, later

told us she did not see any reward in using them:

S3 (interview): “I didn’t use the “maybe” marks because I thought that they

might not help me any more than the other ones in my task.”

Some participants used X-marks to keep track of cells that they needed

to revisit later. In fact, they may have been even less sure of the values’

correctness than we had expected, simply marking the cells whose correctness

they wanted to reconsider later.

S6 (interview): “[X-marks] were a progress marker; just to say that’s not

right.”

S3 also made some revealing comments relating to Barrier 3:

S3 (interview): “I didn’t know what was wrong when it seemed correct to

me ...why it showed 50 and not 100 [% tested].”

Interviewer: “Weren’t the tool tips helpful?”

 34

S3 (interview): “Yeah, they were good but sometimes I didn’t find the

answer that I wanted …I needed more answers than were present.”

Comments such as this one pointed us toward the path to Solution 2.

 35

5. Solution 2: Explanations
The addition of low-confidence marks may have helped with the usage

of marks, but the evidence is not overwhelming. We decided that, whether or

not the low confidence marks were helping, they were probably not helping

enough. To strengthen our approach, we decided to tackle Barrier 3 (Table 5)

which is also interrelated to Potential Barrier 2 (Table 6), perceived difficulty

of learning, via the learning vehicle in the system, explanations.

As pointed out in Section 3.1.2, explanations are a critical part of the

Surprise-Explain-Reward strategy [Wilson et al. 2003]. They connect surprises

with rewards by providing users with a low-cost mechanism (tool tips) to

explore objects that arouse their curiosity. Users can seek explanations for an

object by viewing its explanation, on demand, in a low-cost way via tool tips.

Until the work we report here, explanations were as follows: each

explanation described the semantics, the action users should try, and a potential

reward. They were designed with the goal of encouraging users to learn by

doing and to stay connected to the task they were working on when they

sought the explanations. Therefore, we kept the explanations short—typically

one to three very short lines.

There is literature that says males benefit more from explanations that

are fast to check and go through while females prefer to go through any kind of

explanation and perform better with those that are highly structured and

interactive [Arroyo et. al. 2001] Also females have a positive attitude towards

help and towards learning with the system more often than males [Arroyo et.

al. 2004]. So while making changes to the prototype to include these

explanations, we made sure that these explanations did not get in the way of

the users who would not prefer to read explanations. So these explanations

should appear only when the user wishes to see them and moreover the user

has a choice to select which one they want to seek. The contents of these

explanations are small, unlike the conventional help system which details

 36

every minute detail. Instead they are short and limited to just a few lines of

text. We made sure that they were short while still covering all the aspects

mentioned in sections 5.1 and 5.2.

5.1 Requirements on Types of Explanation Content

We used theory to help develop requirements on the solutions for both

Solution 1 and Solution 2. For example, one important influence on the

redesign of our explanations’ content was the evidence suggesting that the

current short explanations may not be well suited to females. According to

research in information processing and in education, short explanations such as

these are closer matches to the type of information processing and learning

environments in which males, not females thrive. [Arroyo 2003; Beck et al.

1999].

As described in detail in [Beckwith et al. VL2005], Anson’s essay on

minimalist learning theory was a second important influence on Solution 2,

[Anson 1998], in which content is described using the terms conceptual,

procedural, and problem solving. These terms provide a useful framework for

organizing requirements on explanations’ content types. We used the term

“conceptual” to stand for content relating to concepts and semantics,

“procedural” for content about how to perform actions, and “problem solving”

for higher-level strategies directed toward “big picture” goals. Together, these

terms form completeness requirements for our content types; that is, we require

explanations to be available with conceptual, procedural, and problem-solving

content.

A third influence on Solution 2 was Ko et al.’s work on learning

barriers [Ko et al. 2004]. We used these learning barriers to cross-check our list

of content type requirements for completeness and to solidify each

requirements’ aim. We also cross-checked the type requirements’

completeness against observation-based user scenarios. The scenarios were

observation-based in that they were inspired by user behaviors we have

 37

observed (of both the participants described in Section 4.3 and those in

previous studies), in which users were unable to make progress due to barriers

they encountered as they were problem solving, such as misunderstanding the

system’s feedback.

A final influence came from research on learning [Gorriz and Medina

2000]. This work found that females’ styles tend to be non-linear (not

necessarily sequential in nature), whereas males’ tend to be linear (sequential).

As a result, we required that our redesigned explanations support both linear

and non-linear styles.

5.2 Applying the Requirements

The content type requirements of Section 5.1 led initially to three

additional components in the explanations: a “what” component to fulfill the

conceptual requirement, a “how should...” component, to fulfill the procedural

requirement, and an “advice” component to fulfill the problem-solving

The purple border means that this cell has been
partially tested, but that other situations still need to
be tested. The √ says you have tested this cell’s
value. Trying more situations helps you find errors.

The purple border and the √ means you previously
decided that this cell’s value(s) was correct, and
checked it off.

You can get into a new situation by changing some
of the input values.

Looking for new testing opportunities (marked by
?s) helps you make progress testing. Testing helps
you find errors.

You can use the border colors to systematically test your spreadsheet. If you can make a decision about a
cell’s value (correct or wrong) you can (1) test this cell given different inputs, or (2) move on to testing
another cell, or (3) if there are tinted cells, which indicate possible locations of errors, follow the
system’s guidance (cells with darkest tints) to find the causes(s).

Border colors reflect the number of √s on this or related cells, and tints on the entire cell reflect the
number of Xs (in relation to the number of √s) on this or related cells.

What

How
did

How
should

Advice

Figure 8: ToolTip Explanations – The top line of the tool tip contains a very

short explanation. The expansion components will be clickable via the
“What?”, “How did...?”, “How should...?”, and “Advice” labels

 38

requirement. Eventually, we subdivided the conceptual component for clarity

of labeling: a “what” component with declarative information and a “how

did...” component that explains how the current state came about (emphasizing

system responses to user actions). Figure 8 shows an example of a short

explanation (“50% of this cell has been tested”) and the additional

components. The contents of each of these components are derived from

theory which is described in more detail in [Beckwith et al. VL2005]. We

brought in another stream of users to evaluate this prototype.

5.2.1 Conceptual: The “What” Component

S7 (thinking aloud): “I don’t understand why this [cell] is not 100% tested

when it appears to have the right value.”

The goal of the “what” component is to communicate the semantics of

the object in more detail than the short explanation:

The purple border means that this cell has been partially

tested, but that other situations still need to be tested. The √

says you have tested this cell’s value.

It explains in details what the present state of the feature meant.

5.2.2 Conceptual: The “How did…” Component

S8 (thinking aloud): “...how did I do that?”

The “how did” component explains what steps the system or user took

to get the object to its current state:

The purple border and the √ means you previously decided that

this cell’s value(s) was correct, and checked it off.

It explains how the user reached this state in the environment.

For S8, who proceeded to open this component in order to answer her

question above, the “how did…” content provided her with the information she

needed:

S8 (thinking aloud): “Oh yeah, I should test it more.”

 39

5.2.3 Procedural: The “How should…” Component

S8 (thinking aloud): “How should I test it more?”

The “how should…” component suggests action(s) users can take to

make progress on their task:

You can get into a new situation by changing some of the input

values. Looking for new testing opportunities (marked by ?s)

helps you make progress testing.

It explains how the user should proceed from the present state in order

to make progress.

When the participants were using the prototype one of the participants

(following up from the previous dialog on the “how did…”) realized she

needed to do more testing from understanding what the purple border meant.

She then went on to read the “how should…” explanation.

5.2.4 Problem Solving: The “Advice” Component

The “advice” component provides ideas about higher-level strategies to

achieve the “big picture” goals. One of the purposes is to help orient the user to

this feature within the context of their overall task.

You can use the border colors to systematically test your

spreadsheet. If you can make a decision about a cell’s value

(correct or wrong) you can (1) test this cell given different

inputs, or (2) move on to testing another cell, or (3) if there are

tinted cells, which indicate possible locations of errors, follow

the system’s guidance (cells with darkest tints) to find the

causes(s).

Border colors reflect the number of √s on this or related cells,

and tints on the entire cell reflect the number of Xs (in relation

to the number of √s) on this or related cells.

 40

It suggests additional advice on how to proceed explaining a few

strategies in more details. We will see in Section 5.4 below how one of the

female subjects asked for the “Advice” explanation when she was stuck.

5.3 Solution 2’s Prototype

Users of our low-cost prototype experienced the new components

primarily in the form of paper augmentations to our executable prototype, as

shown in Figure 9. As mentioned in Section 3, each feature in the Forms/3

environment is associated with a tooltip. With our new explanations, each

tooltip had our four explanation components (What?, How did…?, How

should…?, Advice) just below the main tooltip contents as shown in Figure 8.

The keys F1, F2, F3 and F4 were associated with What, How did, How should

Figure 9: Low cost-prototype with paper augmentations – In our low-cost
prototype, the user’s request for an additional explanation component
(bottom) caused the examiner to add it to the screen (top). Note the support
for non-linear approaches—a user can view many unrelated components
simultaneously.

 41

and Advice explanation components respectively.

Paper labels were glued to these keys to remind the user what each of

them meant. Whenever the user wanted more explanation on any of the

components, he/she would press the respective key and the respective paper

augmentation of that explanation component was put on top of the screen as

shown in Figure 9. The explanation remained there as long as the user wanted

them to be there and were removed when they no longer needed it. They could

ask for more than one explanation at a time, so that there could be multiple

paper augmentations on top of the screen at a time.

5.4 Feedback from Users

The low confidence female quoted in Section 5.2.1 who did not

understand purple border color:

S7 (thinking aloud): ...still there is some problem. I don’t understand what to

do!”

She then referred to more explanation on “What?”, “How should…?”

and “Advice”.

A high confidence female, after asking why she did not use the

explanations, reported that she would prefer to explore things on her own and

would refrain from asking for help unless she was completely stuck and could

not progress.

The high confidence female quoted in Section 5.2.2 who did not

understand what the purple border colors meant:

S8 (thinking aloud): “Why is it still purple? ...is something missing?”

She used the explanation “What” on purple border colors. It reminded

her about what the purple border color meant, then she asked for “How

did…?” which explained her how she reached that state. After reading this

explanation:

S8 (thinking aloud): “Oh ya, I should test it more... how should I test it

more?”

 42

She then asked for more explanation on “How should...?” which

explained her how she can make progress by changing the input values.

The explanations might have helped the females in making progress,

but we cannot be very sure of this. However, females considered seeking more

explanations when stuck more often than the males.

Users who understood the system very well did not need explanations

to help them make progress, so they never used the explanations unless they

were stuck completely and could not make progress. These were mostly the

ones with high confidence. However, users who did not understand some

aspect of the system referred to these explanations often. These were mostly

the ones with low confidence.

 43

6. Think-aloud Analysis and Final Implementation

6.1 Quick and dirty evaluation

After the low cost prototype evaluation with paper augmentations,

another intermediate evaluation was done with a slight modification in the

prototype replacing the lightweight tooltips with tooltip explanations in the

form of internal frames as shown in Figure 10. We invited a male and a female

subject to get feedback on whether the explanations were serving the purpose.

Both of them were led through the same tutorial as mentioned in section 5 and

were given the same spreadsheet task to work and were asked to test the given

spreadsheet and find and fix any errors. The tasks were the same one as given

in the earlier think aloud studies.

Figure 10: Internal frame explanations implemented for think-aloud

One of the subjects mentioned in post-session interview:

 44

S9: “They [explanations] could be helpful if the wordings were in layman’s

terms”

The other subject mentioned that she was looking for more explicit

explanations:

S10: “These [explanations] don’t really help..., they don’t really tell you

what to do...” “...something like Cell B is causing Cell A to be

purple...would have helped”

As seen in Figure 10, the additional explanation on the tooltip can be

expanded or hidden as per the user’s choice. The user may choose not to

expand this part at all. So it is completely optional to refer to them. The

explanations remain on the screen as long as the user wishes to keep them. The

user can discard them by simply closing the internal frame.

The feedback from the users revealed that the contents of the tooltip

explanations were not really helping. So we decided in the absence of useful

user feedback about how to proceed with four different components for the

tooltip explanations, we will start simple, with just one additional line of text

with the heading “Tips” which gave them additional tips on how to make

progress.

A modification to the earlier design was made with the help of other

team members5. The tooltip explanations in this case were implemented as a

part of Java tooltips Figure 11 in order to reduce the “weight” (cost and screen

real estate) of the tooltips. These tooltips had an expander named “Tips”

(implemented as a Java Tree) which could be expanded by clicking it. The

tooltip could be discarded by again clicking on this expander. On expanding

the “Tips” portion of the tooltip, the additional tooltip explanation was

appended to the main tooltip as shown in figure Figure 11.

5 Java ToolTip Explanations implemented with the help of Joseph Lawrence, assisted by
Andrew Stucky and Marc Fisher.

 45

Figure 11: Expandy ToolTip – Before and after expanding the tooltip

6.2 Some interesting observations

The three think aloud evaluation studies conducted revealed some

interesting observations which are discussed in this section.

6.2.1 Unintended usage

Most of the females seemed to use X marks for keeping track of the

cells.

S6 (interview): “[X-marks] were a progress marker; just to say that’s not

right.”

Also, they used the low confidence marks for keeping track while their

ultimate goal was to achieve the darker color of testedness.

S4 (thinking aloud): “I am not sure if this cell’s value is right so maybe I’ll

mark it gray and come back to it later.”

Another interesting observation on how some users made decisions

was, instead of placing a mark based upon a cell’s value, they used formulas to

base their decision in placing a mark. This behavior is also noted down in

[Phalgune et al. 2005].

S10: “The formula is correct, so I’ll mark it right”

6.2.2 Pattern of debugging

Females almost always used a systematic way of testing. Their testing

approach was to follow Western reading order, proceeding from one cell to the

 46

other from the top left cell towards the right, row after row, and not just

randomly select cells to test.

These females used the Western reading order for the task, and so the

interior cell colors did not help them much in debugging. Perhaps if they had

used a sink to source order (proceeding from the bottom cells to the top cells),

they would have found the interior colors useful which was a means of

feedback for fault localization. It would be interesting to see what approach

males follow in their debugging task.

6.2.3 More observations

Based on the observations of the behaviors of our subjects, there were

two categories of users depending on how they tested the cells.

• Category 1 users checked the cell’s values first and placed the marks

without looking at the formula. These were more likely to place X-

marks along with the checkmarks.

• Category 2 users made formula changes without bothering to place the

marks. These were unlikely to place X-marks. However they placed

check marks after the formula change.

Most of the subjects seemed to use X-marks more often than they did in

our previous studies. Of course, these were just a handful of them but we

expect to see similar results in our main experiment. Again this needs to be

verified by the main experiment. Possible reasons for this behavior could be:

• They no longer needed to right click in the modified prototype version

in order to place an X-mark.

• They had both the options (checkmark and X-mark) clearly visible

while making the decision.

It seemed that the users would not use the low confidence marks unless

they got any reward. So the idea that females would use more marks if they

found a way to express their confidence level did not seem effective as least in

a direct way. Although there was a female, S4 who used the low confidence

 47

marks in exactly the way we had predicted. We could tie some kind of reward

for using the low confidence marks, which gave them more support than if

they used the high confidence marks.

 Some subjects were overwhelmed by the complex formulas in the

payroll spreadsheet task. This is especially true of the users with low

mathematical ability. They tried to run away from formula edits / changes. One

such female subject S11 with poor mathematical ability tried to evade formula

changes. She was a Category 1 user as described above, who used all the other

features except for formula edits to get the spreadsheet tested. She did not want

to play with formulas.

S11 (interview): “Such big formulas/equations blew me away!”

Many users feared that if they changed a formula they might not be

able to get it back to the original form, so they did not edit many formulas

unless they were completely sure. While all the other features (checkmarks, X-

marks, arrows) can be undone formula edits cannot be undone. So the users do

not feel safe to edit formulas. This lack of “undo” could be impacting our

experiments’ results; spending the resources to add an undo should be

considered.

Most of the users got carried away by the percent testedness of the

spreadsheet, so the main task may not have been finding and fixing bugs

accurately but instead getting all the cells borders to blue so that the

spreadsheet is 100% tested and the testedness progress bar shows 100%.

When stuck or when not able to make progress, females sought help of

explanations. However, the textual contents of these explanations did not seem

to be of much help to them and hence they later stopped looking at

explanations.

Quite a few of our subjects fixed all the bugs. However, they could not

get the spreadsheet 100% tested and they did not know how to get it 100%

 48

tested, and that’s where they were stuck most of the time. Most of these were

stuck with purple border color.

Most of the users tried to change the formula and expected some kind

of color changes indicating positive progress after they were done with the

formula change. They expected the system to give some feedback in terms of

color changes after they hit the “Apply” button in the formula for a cell. This

could be because they were confused or because they did not understand the

system thoroughly. And if the system did not give them feedback after a

formula change, they thought that perhaps the change was not right.

A check mark placed before formula change was often not quite so

confident while a check mark placed after a formula change was always

confident.

Some users assumed that whatever the system does is always right.

This was true of most of the low confident users. So if they expected color

changes after a formula edit and the system did not change, they thought that

their change was not right. There were certain users like S4 who thought that

all the features present in the system serve some purpose and hence are built

into the system, otherwise, they wouldn’t have been present.

S4 (interview): “They [confidence marks] are there because they make some

sense.”

Research in gaming and software design [Miller 1996] indicates that

females preferred moving freely among environments without completing or

winning one. This was particularly observed of a female subject S4. Although

she started looking at cells systematically, she did not want to be stuck at any

one particular cell (described in Section 6.2.1), so she wanted to go to some

other cell and marked the earlier cell so that she can get back to it later.

S4 (thinking aloud): “I am not sure if this cell’s value is right so maybe I’ll

mark it gray and come back to it later.”

 49

7. Conclusion
This thesis described our investigation into gender issues in end-user

software engineering environments. We used theory and previous empirical

work to derive specific hypotheses related to gender issues in such

environments, and to investigate whether these hypothesized issues really do

arise in end-user software engineering. The empirical result of the previous

step was confirmation that two hypothesized gender issues: 1. There will be

gender differences in users’ interest in (initially) exploring new features in end-

user programming environments and 2. Females’ high perceptions of risk will

render them less likely to make (genuine) use of unfamiliar devices in end-user

programming environments, indeed exist in end-user software engineering.

The next step, reported in this thesis, was to develop solutions to address these

issues.

Our work resulted in two complementary solutions: a single-mouse-

button “no confidence required” device to elicit inputs from low-confidence

users that were then reflected in the feedback devices, and changes to our

explanation system to support user-driven, non-linear exploration of the end-

user software engineering devices in the system.

Our procedure for developing these solutions used theory, low-cost

prototyping, and qualitative empirical work. Specifically, we showed how

theories such as self-efficacy theory, attention investment, etc. can be used to

help understand barriers, derive requirements, and ultimately derive design

ideas to address gender issues in end-user software engineering. Using the

theory-derived design ideas, coupled with design techniques originally

developed in HCI, we then designed the potential specifics of our solutions,

evaluated them analytically and through rapid prototyping, and informed our

emerging approaches with a small stream of users. The solutions that resulted

are the first to begin addressing gender differences through the design of

features in end-user software engineering environments. As discussed earlier,

 50

we were dealing with an “ill-structured” problem where it is not possible to

formulate the problem and solution independently. We used the best HCI

techniques with a combination of Claims Analysis and low-cost prototyping to

design our potential solution.

 51

BIBLIOGRAPHY

[Altizer et al. 1996] Altizer, M., Sen T. K., and Tegarden, D., Gender
Differences in Decision Making, Association for Information Systems
Conference Proceedings, Phoenix, 1996.

[Anson 1998] Anson, P., Exploring minimalistic technical documentation
design today: a view from the practitioner’s window, In J. M. Carroll (Ed.),
Minimalism Beyond the Nurnberg Funnel, Cambridge, MA: MIT Press, 1998,
91-117.

[Arroyo 2003] Arroyo, I., Quantitative evaluation of gender differences,
cognitive development differences and software effectiveness for an
elementary mathematics intelligent tutoring system, PhD Thesis, Univ. Mass.
Amherst 2003, http://ccbit.cs.umass.edu/people/ivon/Dissertation80.pdf

[Arroyo et al. 2001] Arroyo, I., Beck, J. E., Beal, C. R., Rachel E., Wing, and
Woolf, B. P., Analyzing students’ response to help provision in an elementary
mathematics Intelligent Tutoring System. Help Provision and Help Seeking in
Interactive Learning Environments, Workshop at the Tenth International
Conference on Artificial Intelligence in Education, San Antonio, TX, May
2001.

[Arroyo et al. 2000] Arroyo, I., Beck, J. E., Woolf, B. P., Beal, C., Schultz, K.,
Macroadapting AnimalWatch to gender and cognitive differences with respect
to hint interactivity and symbolism, Fifth International Conference on
Intelligent Tutoring Systems, 2000.

[Arroyo et al. 2004] Arroyo, I., Murray, T., Woolf, B. P., Beal, C. R., Inferring
Unobservable Learning Variables from Students Help Seeking Behavior.
James C. Lester, Rosa Maria Vicari, Fábio Paraguaçu (Eds.): Intelligent
Tutoring Systems, Seventh International Conference, ITS 2004, Maceiò,
Alagoas, Brazil.

[Beck et al. 1999] Beck, J. E., Arroyo, I., Woolf, B. P., and Beal, C., An
ablative evaluation, Ninth International Conference on Artificial Intelligence in
Education, 1999, 611-613.

 52

[Beckwith and Burnett 2004] Beckwith, L. and Burnett, M., Gender: An
important factor in end-user programming environments? IEEE Symposium on
Visual Languages and Human-Centric Computing, 2004, 107-114.

 [Beckwith et al. 2005] Beckwith, L., Burnett, M., Wiedenbeck, S., Cook, C.,
Sorte, S., and Hastings, M., Effectiveness of end-user debugging software
features: Are there gender issues? ACM Conference on Human Factors in
Computing Systems, Portland, Oregon, April 2005, 869-878.

[Beckwith et al. VL2005] Beckwith L., Sorte S., Burnett M., Wiedenbeck S.,
Chintakovid T., and Cook C., Designing Features for Both Genders in End-
User Software Engineering Environments, IEEE Symposium on Visual
Languages and Human-Centric Computing, Dallas, TX, to appear, September
2005.

[Blackwell 2002] Blackwell, A., First steps in programming: a rationale for
Attention Investment models, IEEE Symposium on Human-Centric Computing
Languages and Environments, 2002, 2-10.

[Burnett et al. 2001] Burnett, M., Atwood, J., Djang, R., Gottfried, H.,
Reichwein, J., and Yang, S., Forms/3: A first-order visual language to explore
the boundaries of the spreadsheet paradigm, Journal of Functional
Programming, 11(2), 2001, 155-206.

[Burnett et al. 2004] Burnett, M., Cook, C. and Rothermel G., End-user
software engineering, Communications of ACM, 47(9), 2004, 53-58.

[Camp 1997] Camp, T., The incredible shrinking pipeline, Communications of
ACM, 40(10), 1997, 103-110.

[Carroll and Rosson 1992] Carroll, J. M. and Rosson, M. B., Getting around
the task-artifact cycle: how to make claims and design by scenarios, ACM
Transactions on Information Systems, 10(2), 1992, 181-212.

[Fennema and Sherman 1977] Fennema, E., and Sherman, J., Sex-related
differences in mathematics achievement, spatial visualization, and affective
factors, American Educational Research Journal, 14, 1977, 51-71.

 53

[Fennema et al. 1998] Fennema, E., Carpenter, T., Jacobs, V., Franke, M.,
Levi, L., A Longitudinal Study of Gender Differences in Young Children’s
Mathematical Thinking, Educational Researcher, 27(5), 1998, 6-11.

[Gorriz and Medina 2000] Gorriz, C., and Medina, C., Engaging girls with
computers through software games, Communications of ACM, 43(1), 2000, 42-
49.

[Green 1995] Green, K. S., Blue versus periwinkle: Color identification and
gender, Perceptual and Motor Skills, 80(1), 1995, 21-32.

[Greenberg 1993] Greenberg, S., The Computer User as Toolsmith: The Use,
Reuse, and Organization of Computer-based Tools, New York: Cambridge
University Press, 1993.

[Hartzel 2003] Hartzel, K., How self-efficacy and gender issues affect software
adoption and use, Communications of ACM, 46(9), 2003, 167-171.

[Huff 2002] Huff, C., Gender, software design, and occupational equity, ACM
SIGCSE Bulletin, 34 (2), 2002, 112-115.

[Huff and Cooper 1987] Huff, C., and Cooper, J., Sex bias in educational
software: The effect of designers’ stereotypes on the software they design,
Journal of Applied Social Psychology, 17(6), 1987, 519-532.

[Inkpen et al. 1994] Inkpen, K., Klawe, M., Lawry, J., Sedighian, K., Leroux,
S., and Hsu, D., We have never-forgetful flowers in our garden: Girls’
responses to electronic games, Journal of Computers in Mathematics and
Science Teaching, 13, 1994, 383-403.

[Ko et al. 2004] Ko, A. J., Myers, B. A., and Aung, H. H., Six learning barriers
in end-user programming systems, IEEE Symposium on Visual Languages and
Human-Centric Computing, 2004, 199-206.

[Meyers-Levy and Maheswaran 1991] Meyers-Levy, J., and Maheswaran, D.,
Exploring differences in males’ and females’ processing strategies, Journal of
Consumer Research, 18, 1991, 63-70.

 54

[Miller 1996] Miller L., Girls’ preferences in software design: Insights from a
focus group, Interpersonal Computing and Technology: An Electronic Journal
for the 21st Century, 4(2), 1996, 27-36

[Phalgune et al. 2005] Phalgune A., Kissinger C., Burnett M., Cook C.,
Beckwith L., and Ruthruff J., Garbage In, Garbage Out? An Empirical Look at
Oracle Mistakes by End-User Programmers, IEEE Symposium on Visual
Languages and Human-Centric Computing, Dallas, TX, September 2005.

[Quinn and Spencer 2001] Quinn, D., and Spencer, S., The Interference of
Stereotype Threat with Women’s Generation of Mathematical Problem-solving
strategies, Journal of Social Issues, 57(1), 2001, 55-71.

[Radeloff 1990] Radeloff, D. J., Role of color in perception of attractiveness,
Perceptual and Motor Skills, 71, 1990, 151-160.

[Ray 2003] Ray, S., Females and Machines, In Gender Inclusive Game Design:
Expanding the Market, Charles River Media, September 2003.

[Robertson et al. 2004] Robertson, T. J., Prabhakararao, S., Burnett, M., Cook,
C., Ruthruff, J., Beckwith, L. and Phalgune, A., Impact of interruption style on
end-user debugging, ACM Conference on Human Factors in Computing
Systems, 2004, 287-294.

[Rothermel et al. 2001] Rothermel, G., Burnett, M., Li, L., Dupuis, C., and
Sheretov, A., A methodology for testing spreadsheets, ACM Transactions on
Software Engineering and Methodology, 10(1), 2001, 110-147.

[Ruthruff et al. 2003] Ruthruff J., Creswick E., Burnett M., Cook C.,
Prabhakararao S., Fisher II M., and Main M., End-User Software
Visualizations For Fault Localization, ACM Symposium on Software
Visualization, 2003, 123-132.

[Ruthruff et al. 2004] Ruthruff, J., Phalgune, A., Beckwith, L., Burnett, M. and
Cook, C. Rewarding ‘good’ behavior: End-user debugging and rewards, IEEE
Visual Languages and Human-Centric Computing, 2004, 115-122.

[Ruthruff et al. 2005] Ruthruff, J., Prabhakararao, S., Reichwein, J., Cook, C.,
Creswick, E., and Burnett, M. Interactive, visual fault localization support for

 55

end-user programmers, Journal of Visual Languages and Computing, 16(1-2),
2005, 3-40.

[Wilson et al. 2003] Wilson, A., Burnett, M., Beckwith, L., Granatir, O.,
Casburn, L., Cook, C., Durham, M., and Rothermel, G., Harnessing curiosity
to increase correctness in end-user programming, ACM Conference on Human
Factors in Computing Systems, 2003, 305-312.

 56

APPENDICES

 57

APPENDIX A
Survey Questionnaire

Figure 1: Survey Questionnaire

 58

Figure 1 (Continued): Survey Questionnaire

 59

Figure 1 (Continued): Survey Questionnaire

 60

APPENDIX B

Tutorial for Think-aloud 2
Introduction

Hi, my name is Shraddha Sorte, and I will be leading you through today’s

study.

The other people involved in this study are Dr. Margaret Burnett, Laura

Beckwith, and Dr. Curtis Cook.

Just so you know, I’ll be reading through this script so that I am consistent in

the information I provide you and the other people taking part in this study, for

scientific purposes.

The aim of our research is to help people create correct spreadsheets Past

studies indicate that spreadsheets contain several errors like incorrectly entered

input values and formulas. Our research is aimed at helping users find and

correct these errors.

For today’s experiment, I’ll lead you through a brief tutorial of Forms/3, and

then you will have a few experimental tasks to work on.

But first, I am required by Oregon State University to read aloud the text of the

“Informed Consent Form” that you currently have in front of you:

(Read form).

Please do NOT discuss this study with anyone. We are doing later sessions

and would prefer the students coming in not to have any advance knowledge.

 61

Questions?

Contact:

 - Dr. Margaret Burnett burnett@cs.orst.edu

 - Dr. Curtis Cook cook@cs.orst.edu

Any other questions may be directed to IRB Coordinator, Sponsored Programs

Office, OSU Research Office, (541) 737-8008

Background Questionnaire (hand it out, have them fill it out)

(please do NOT turn to any other pages until you are asked to do so)

 62

Tutorial

Before we begin, I’d like to ask if you are colorblind. We will be working with

something that requires the ability to distinguish between certain colors, and so

we would need to give you a version that does not use color.

Think Aloud Practices:

In this experiment we are interested in what you say to yourself as you perform

some tasks that we give you. In order to do this we will ask you to TALK

ALOUD CONSTANTLY as you work on the problems. What I mean by talk

aloud is that I want you to say aloud EVERYTHING that you say to yourself

such as what you are thinking. Just act as if you are alone in this room

speaking to yourself. If you are silent for any length of time, I will remind you

to keep talking aloud. It is most important that you keep talking. Do you

understand what I want you to do?

Good. Before we turn to the real experiment and the tutorial, we will start with

a couple of practice questions to get you used to with talking aloud. I want you

to talk aloud while you answer the question.

How many windows are there in your parent’s house?

Another practice question for you to talk aloud.

Name the states that begin with the letter “A” which you can ski in.

 63

In this experiment, you will be working with the spreadsheet language

Forms/3. To get you familiarized with the features of Forms/3, we’re going to

start with a short tutorial in which we’ll work through a sample spreadsheet

problem. After the tutorial, you will be given a spreadsheet; asked to test it,

and correct any errors you find in it.

As we go through this tutorial, I want you to ACTUALLY PERFORM the

steps I’m describing. When I say, “click”, I'll always mean click the left mouse

button once unless I specify otherwise. I will be very clear regarding what

actions I want you to perform. Please pay attention to your computer screen

while you do the steps.

If you have any questions, please don’t hesitate to ask me to explain.

For that spreadsheet that we will be working with, you will have a sheet of

paper describing what the spreadsheet is supposed to do.

(Hand out PurchaseBudget Description)

Read the description of the “PurchaseBudget” spreadsheet now.

(Wait for them to read)

Now open the PurchaseBudget spreadsheet by selecting the bar labeled

PurchaseBudget at the bottom of the screen with your left mouse button.

This is a Forms/3 spreadsheet. There are a few ways that Forms/3 spreadsheets

look different than the spreadsheets you may be familiar with:

Forms/3 spreadsheets don’t have cells in a grid layout. We can put cells

anywhere (select and move a cell around a bit). However, just like with any

other spreadsheet, you can see a value associated with each cell.

 64

We can give the cells useful names like PenTotalCost (point to the cell on the

spreadsheet).

You can also see that some cells have red borders.

Let’s find out what the red color around the border means. Rest your mouse on

top of the border of the PenTotalCost cell (wave the mouse around the cell and

then rest mouse on border). Note that a message will pop up that tells us what

this color means. Can you tell me what the message says? (PAUSE, look for a

hand.) Yes, it means that the cell has not been tested. You can also get more

information, such as: “What does this mean?”, “How did it happen?”, “How

should I proceed?”, and “Advice”. Try clicking on one of these.

You might be wondering what does testing have to do with spreadsheets?

Well, it is possible for errors to exist in spreadsheets, but what usually happens

is that they tend to go unnoticed. It is in our best interest to find and weed out

the bugs or errors in our spreadsheets so that we can be confident that they are

correct.

So, the red border around the cells tells us that the cell has not been tested. It is

up to us to make a decision about the correctness of the cell’s value based on

how we know the spreadsheet should work. In our case, we have the

spreadsheet description that tells us how it should work.

Observe that the Pens and Paper cells have a black border color (wave mouse

around cells). Such cells with black borders are like this because their formulas

are constant values.

Let’s test our first cell. To do this, we’ll examine the TotalCost cell. Is the

cell’s value of zero correct? (PAUSE for a second). Well, let’s look at our

 65

spreadsheet description. Look at the Total Cost section of the spreadsheet. It

says, “The total cost is the combined cost of pens and paper.” Well, both

PenTotalCost and PaperTotalCost are zero, so TotalCost appears to have the

correct value.

Now drag your mouse over the small box with a question mark in the upper-

right-hand corner of the cell. Can you tell me what the popup message says?

(PAUSE, wait for answer.) Yes, it says that if you can decide if this value is

correct or wrong, click. It also tells us that these decisions help test and find

errors.

Click the question mark in this decision box for TotalCost. Hey, there are 4

choices here – 2 X marks and 2 check marks. Can you read aloud the popup

messages on each of the check mark boxes and tell me what they say (starting

from the left)? (Pause) Yes, starting from the left the popup messages say, “It’s

wrong”, “Seems wrong maybe”, “Seems right maybe” and “It’s right”. Now,

we know that the value in this cell is right, so we will focus on the checkmarks.

Click on the rightmost check mark and see what changes happen. Three things

changed. A checkmark replaced the question mark in the decision box (wave

mouse). The border colors of some cells changed—three cells have blue

borders instead of red, and the percent testedness indicator changed to 28%

(point to it). Forms/3 lets us know what percent of the spreadsheet is tested

through the percent testedness indicator. It is telling us that we have tested

28% of this spreadsheet.

What about that other checkmark that we saw? We’ll try that one, click on the

check mark to UNDO the changes and bring the question mark back. Now

click on the question mark to bring the other choices back again. Now click on

the other check mark (the left one) and see what happens. (Pause) Now if you

 66

accidentally place a checkmark in the decision box, if the value in the cell was

really wrong, or if you haven’t seen the changes that occurred, you can

“uncheck” the decision about TotalCost by clicking on that checkmark in

TotalCost’s decision box. (Try it, and Pause) Everything went back to how it

was. The cells' borders turned back to red, the % testedness indicator dropped

back to 0% and a question mark reappeared in the decision box.

Since we’ve already decided the value in the TotalCost cell is correct, we want

to retell Forms/3 that this value is correct for the inputs. So click in the

decision box for TotalCost to put either of the 2 check marks back.

You may have noticed that the border colors of the PenTotalCost and

PaperTotalCost cells are both blue. Now let’s find out what the blue border

indicates by holding the mouse over the PenTotalCost cell's border in the same

way as before. The message tells us that the cell is fully tested. (PAUSE) Also

notice the blank decision box in the PenTotalCost and PaperTotalCost cells.

What does that mean? Position your mouse on top of the box to find out why it

is blank. A message pops up that says we have already made a decision about

this cell. But wait, I don't remember us making any decisions about

PenTotalCost or PaperTotalCost. How did that happen?

Let's find out. Position your mouse to the TotalCost cell and click the middle

mouse button. Notice that colored arrows appear. Click the middle mouse

button again on any one of these arrows—it disappears. (PAUSE) Now, click

the middle mouse button again on TotalCost cell—all the other arrows

disappear. Now bring the arrows back again by re-clicking the middle mouse

button on TotalCost.

 67

Move your mouse over to the top blue arrow and hold it there until a message

appears. It explains that the arrow is showing a relationship that exists between

TotalCost and PenTotalCost. The answer for PenTotalCost goes into or

contributes to the answer for TotalCost. (PAUSE)

Oh, ok, so does that explain why the arrow is pointed in the direction of

TotalCost? Yes it is, and it also explains why the cell borders of PenTotalCost

and PaperTotalCost turned blue. Again, if you mark one cell as being correct

and there were other cells contributing to it, then those cells will also be

marked correct. (PAUSE) We don’t need those arrows on TotalCost anymore,

so hide them by middle-clicking on the TotalCost cell.

Now, let’s test the BudgetOk cell by making a decision whether or not the

value is correct for the inputs. What does the spreadsheet description say about

our budget? Let me go back and read…oh yeah, “You cannot exceed a budget

of $2000”.

This time, let’s use the example correct spreadsheet from our spreadsheet

description to help us out. Let’s set the input cells of this sheet identical to the

values of our example correct spreadsheet in the spreadsheet description. The

Pens cell is already zero. But we need to change the value of the Paper cell to

400 so it matches the example spreadsheet in the description. How do I do

this? Move your mouse to the Paper cell and rest the mouse cursor over the

little button with an arrow on the bottom-right-hand side of the cell. It says

“Click here to show formula.” Let’s do that by clicking on this arrow button. A

formula box popped up. Change the 0 to a 400, and click the Apply button. I

think I’m done with this formula, so hide it by clicking on the “Hide” button.

Moving on, in this example correct spreadsheet, PensOnHand is 25, and

 68

PaperOnHand is 21. (Wave paper around) Oh good, the spreadsheet already

has these values, so we don’t have to change anything.

Now, according to this example correct spreadsheet, BudgetOk should have

the value “Budget Ok”. But it doesn’t; my spreadsheet says “Over Budget”. So

the value of my BudgetOK? cell is wrong. What should we do?

Remember, anytime you have a question about an item of the Forms/3

environment, you can place your mouse over that item, and wait for the popup

message. To remind us what the question mark means, move your mouse to the

BudgetOk decision box. The popup message tells us that if you can decide if

this value is correct or wrong, click and also that these decisions help you test

and find errors. Well, this value is wrong, so go ahead and click on the

question mark. But wait, there are 2 X marks. Can you read aloud the popup

messages on each of the X mark boxes and tell me what they say? (Pause)Yes,

the leftmost message says, “It’s wrong” and the other message says “Seems

wrong, maybe”. Now, click on the leftmost X mark and see what changes

happen. Then, click on the X mark to UNDO the changes and bring back the

question mark. Now click on the question mark to bring the other choices back

again. Now click on the right X mark and see what changes happen. Again,

click on the X mark to remove it. Since we have decided that this value is

wrong, go ahead and click on any of the 2 X marks.

As you probably noticed when you placed the first X, things have changed!

Why don’t you take a few seconds to explore the things that have changed by

moving your mouse over the items and viewing the popup messages?

Now let’s make a decision about TotalCost’s value. For the current set of

inputs, TotalCost should be 1600. But our TotalCost cell says 2800. That

 69

means the value associated with the TotalCost cell is “Wrong”. Click on the

question mark in the decision box to place an X-mark. Take a few seconds to

explore anything that might have changed by moving your mouse over the

items and viewing the popup messages.

Finally, I notice that, according to the example spreadsheet in the description,

PaperTotalCost should be 1600. But our value is 2800, and that is wrong.

Place an X-mark on this cell as well.

There is at least one bug in a formula somewhere that is causing these three

cells to have incorrect values. I’m going to start looking for this bug by

examining the PaperTotalCost cell. Let’s open PaperTotalCost’s formula.

PaperTotalCost is taking the value of the Paper cell and multiplying it by 7. Let

me go back and read my spreadsheet description. I’m going to read from the

“Costs of Pen and Paper” section. (read the section) So the cost of paper is

four dollars, but this cell is using a cost of seven. This is wrong. So change the

7 in this formula to a 4, and click the Apply button to finalize your changes.

Hey wait, the total spreadsheet testedness at the top of the window went down

to 0%! What happened? Well, since we corrected the formula, Forms/3 had to

discard some of our previous testing. After all, those tests were for the old

formula. We have a new formula in this cell, so those tests are no longer valid.

But, never fear, we can still retest these cells.

For example, the value of this PaperTotalCost cell is 1600, which matches the

example spreadsheet in my description. Since this cell is correct, let’s click to

place a checkmark in the decision box for PaperTotalCost. Oh good, the

percent testedness of my spreadsheet went up to 7%; We got some of my

testedness back.

 70

Let’s work on getting another cell fully tested. Look at the value of the

PaperQCheck cell. Is this value correct? Let’s read the second paragraph at the

top of the spreadsheet description. (read it) With a value of 400 in the Paper

cell, and a value of 21 in the PaperOnHand cell, we have 421 sheets of paper,

which is enough to fill our shelves. Since the PaperQCheck cell says “paper

quantity ok”, its value is correct. Click in the decision box of this cell to place

a checkmark.

But wait! The border of this cell is only purple. Rest your mouse over this cell

border to see why. The popup message says that this cell is only 50 percent

tested.

Let’s middle-click on this cell to bring up the cell’s arrows. Hey, the arrows

are both purple too. Rest your mouse over the top arrow that is coming from

the Paper cell. Ah ha, the relationship between Paper and PaperQCheck is only

50% tested! So there is some other situation we haven’t tested yet. Change the

value of the Paper cell to see if we can find this other situation. Click on the

little button with an arrow on the bottom-right-hand side of the cell. Let’s try

changing the value to 380, and click the Apply button.

Now look at the decision box of the PaperQCheck cell. It is blank. I don’t

remember what that means, so rest your mouse over the decision box of this

PaperQCheck cell. Oh yeah, it means we’ve already made a decision for a

situation like this one. Okay, let’s try another value for the Paper cell. I’m

going to try a really small value. Move your mouse back to the formula box for

the Paper cell, change its value to 10, and click the Apply button. Now push

the Hide button on this formula box.

 71

Now look at the PaperQCheck cell. There we go! The decision box for the cell

now has a question mark, meaning that if we make a testing decision on this

cell, we will make some progress. Let’s look at the cell’s value. Well, with 10

in the Paper cell and 21 in the PaperOnHand cell, we have 31 papers on stock.

Is this enough paper? The spreadsheet description says we need 400 reams of

paper, but we only have 31. So this is not enough paper. And the PaperQCheck

cell says “not enough paper”. Well, this is correct, so let’s click on the

PaperQCheck cell’s decision box. Alright! The border changed to blue, and

even more, the spreadsheet is now 35% tested.We don’t need those arrows on

PaperQCheck anymore, so hide them by middle-clicking on the PaperQCheck

cell.

Why did it take two checkmarks to fully test the PaperQCheck cell? Let’s open

the cell’s formula to find out (open the formula). See that this formula has an

if-then-else statement. It says that if the sum of Paper and PaperOnHand is less

than 400, then the cell should display “not enough paper”. Else or otherwise,

it should display “paper quantity ok”. In other words, for PaperQCheck, if

Paper plus PaperOnHand is less than 400, then “not enough paper” should

appear in the cell, and if Paper plus PaperOnHand is greater than or equal to

400, “paper quantity ok” should appear in the cell. Push the Hide button on the

formula box of the PaperQCheck cell.

Now let’s look at the PenQCheck cell. This cell is displaying “pen quantity

ok”. Is this correct? Our spreadsheet description says you must keep more than

68 boxes of pens on hand. But we only have 25 boxes of pens on hand,

because the Pens cell is 0 and the PensOnHand cell is 25. So even though we

don’t have enough pens, the PenQCheck cell is displaying “pen quantity ok”.

This value is not correct, so click on the question mark in PenQCheck’s

decision box to place an X-mark.

 72

I’ll give you a couple minutes to try to fix the bug that caused PenQCheck to

have this wrong value. After a couple minutes, we’ll fix the bug together to

make sure that you’ve found it.

(wait exactly two minutes)

Okay, let’s start by looking at PenQCheck’s formula. Unless you have changed

this cell’s formula, it says that if the sum of the Pens and PensOnHand cells is

greater than 68, then the cell should contain “not enough pens”, and otherwise

it should contain “pen quantity ok”. But let’s go back and look at our

spreadsheet description and read that second paragraph again. It says that we

only need to keep 68 or more boxes of pens in stock. So, based on the

description PenQCheck should really print “pen quantity ok” if Pens plus

PensOnHand is greater than 68, and otherwise it should print “not enough

pens”. So let’s change this formula accordingly and push the “Apply” button

when you are done. (wait a second). Note that PenQCheck now displays the

correct value. So go ahead and put a checkmark in this cell by clicking on the

question mark.

Look at the bottom of the description. It says, “Test the spreadsheet to see if it

works correctly, and correct any errors you find.” Remember, if you are

curious about any aspect of the system, you can hover your mouse over the

item and read the popup and also get more information / explanation like

“What does this mean?”, “How did it happen?”, “How should I proceed?”, and

“Advice”. Also, you might find those checkmarks and X-marks to be useful.

Starting now, you’ll have a few minutes to test and explore the rest of this

spreadsheet, and to fix any bugs you find. Remember, your task is at the

bottom of your spreadsheet description.

 73

Gradebook.frm

Here is a Gradebook spreadsheet problem. Let’s read the second paragraph at

the top of the description:

“Your task is to test the updated spreadsheet to see if it works correctly and to

correct any errors you find.”

The front side of this description describes how the spreadsheet should work.

Also, if you turn to the backside of this sheet (turn over your description),

you’ll see that two correct sample report cards are provided to you. You can

use these to help you in your task.

Remember, your task is to test the spreadsheet, and correct any bugs you find.

To help you do this, use the checkmarks and X marks by clicking cell decision

boxes.

Start your task now, and I’ll tell you when time is up.

(Task is 22 minutes)

 74

Payroll.frm

Here is a payroll spreadsheet problem. Let’s read the second paragraph at the

top of the description:

“Your task is to test the updated spreadsheet to see if it works correctly and to

correct any errors you find.”

The front side of this description describes how the spreadsheet should work.

Also, if you turn to the backside of this sheet (turn over your description),

you’ll see that two correct sample payroll stubs are provided to you. You can

use these to help you in your task.

Remember, your task is to test the spreadsheet, and correct any bugs you find.

To help you do this, use the checkmarks and X marks by clicking cell decision

boxes.

Start your task now, and I’ll tell you when time is up.

(Task is 35 minutes)

 75

APPENDIX C

Figure 2: Purchase Budget Task – Spreadsheet Description

 76

Figure 3: Gradebook Task – Spreadsheet Description

 77

Figure 3 (Continued): Gradebook Task – Spreadsheet Description

 78

Figure 4: Payroll Task – Spreadsheet Description

 79

Figure 4 (Continued): Payroll Task – Spreadsheet Description

 80

Figure 5: PurchaseBudget Spreadsheet (PuchaseBudget.frm)

Figure 6: Gradebook Spreadsheet (Gradebook.frm)

 81

Figure 7: Payroll Spreadsheet (Payroll.frm)

 82

APPENDIX D

Explanations Used for Think-aloud 2

A. Border Colors

Redborder:

TT: 0% of this cell has been tested

What: The red border means you have not tested this cell. Red means

untested, blue means tested, and any color in between (i.e., purples) means

partially tested. Testing helps you find errors.

How did: If this cell border was purple or blue before and is now red, this

means the cell is no longer tested. This is either because you edited a related

formula, or because you removed a √. Making a decision about this cell’s

value helps you find out if formulas have errors.

How should: If you can decide that the value in this cell appears to be correct

given its input value(s), click on the “?” to check (√) it off. If you can decide

that the value is wrong given those input value(s), click on the “?” to X it out.

Checking it off will increase the testedness of this cell. Xing it out will cause

the system to help guide you to the cause of the bad value.

Advice: You can use the border colors to systematically test your

spreadsheet. If you can make a decision about a cell’s value (correct or

wrong) you can (1) test this cell given different inputs, or (2) move onto testing

another cell, or (3) if there are tinted cells, which indicate possible locations of

errors, follow the system’s guidance (colorings) to find the cause(s).

Border colors reflect the number of √s on this or related cells, and interior

tinting on the cells reflects the number of Xs on this or related cells.

Blue Border

TT: 100% of this cell has been tested

 83

What: The blue border indicates that you have tested this cell. Red means

untested, blue means tested, and any color in between (i.e., purples) means

partially tested. Testing helps you find errors.

How did: If this cell border was purple or red before and is now blue, it means

that the cell was not completely tested before you √ed this cell or a cell that

this cell affects.

How should: This cell border is blue, but you could try out more values on it,

which could still reveal new errors. (More testing never hurts.) OR, you can

proceed to other less tested cells (purple or red). Testing helps you find errors.

Advice: You can use the border colors to systematically test your

spreadsheet. If you can make a decision about a cell’s value (correct or

wrong) you can (1) test this cell given different inputs, or (2) move onto testing

another cell, or (3) if there are tinted cells, which indicate possible locations of

errors, follow the system’s guidance (colorings) to find the cause(s).

Border colors reflect the number of √’s on this or related cells, and tints on the

entire cell reflect the number of Xs on this or related cells.

Purple Border:

NOTE: Same for all

TT: X% of this cell has been successfully tested.

What: The purple border means that this cell has been partially tested, but

that other situations still need to be tested. The “?” says you have a new

opportunity to test. Trying more situations helps you find errors.

Advice: You can use the border colors to systematically test your

spreadsheet. If you can make a decision about a cell’s value (correct or

wrong) you can (1) test this cell given different inputs, or (2) move onto testing

another cell, or (3) if there are tinted cells, which indicate possible locations of

errors, follow the system’s guidance (colorings) to find the cause(s).

Border colors reflect the number of √’s on this or related cells, and tints on the

entire cell reflect the number of Xs on this or related cells.

CASE 1: Question Mark (?)

 84

How did: The purple border and “?” mean you previously decided that this

cell’s value (or one that it affects) was correct, and checked it off. Since then,

some values have changed, so this cell is in a new situation.

How should: If you can decide that the value in this cell appears to be correct

given its input value(s), click on the “?” to check (√) it off. If you can decide

that the value is wrong given its input value(s), click on the “?” to X it out. OR

You can get into a new situation by changing some of the input values, by

editing some of the values or by pushing the Help-Me-Test button (**draw it

here**). **hide the last part of above sentence** Looking for new testing

opportunities (marked by “?”s) helps you make progress testing. Testing helps

you find errors.

CASE 2: Checkmark (√)

How did: The purple border and the √ mean you previously decided that this

cell’s value was correct, and checked it off.

How should: You can get into a new situation by changing some of the input

values, by editing some of the values or by pushing the Help-Me-Test button

(**draw it here**). **hide the last part of above sentence** Looking for new

testing opportunities (marked by ?s) helps you make progress testing. Testing

helps you find errors. Testing helps you find errors.

CASE 3: Blank checkbox ()

How did: The purple border means you previously decided that this cell’s

value (or one that it affects) was correct, and checked it off.

How should: Even though this situation has been tested you could try out

more values on it, which could still reveal new errors. (More testing never

hurts.) OR You can get into a new situation by changing some of the input

values, by editing some of the values or by pushing the Help-Me-Test button

(**draw it here**). **hide the last part of above sentence** Looking for new

testing opportunities (marked by ?s) helps you make progress testing. Testing

helps you find errors. Testing helps you find errors.

CASE 4: X-mark (X)

 85

How did: The purple border means you previously decided that this cell’s

value (or one that it affects) was correct, and checked it off. You've also

spotted a wrong value in this cell, and X'd it out.

How should: You can get into a new situation by changing some of the input

values, by editing some of the values or by pushing the Help-Me-Test button

(**draw it here**). **hide the last part of above sentence** Looking for new

testing opportunities (marked by ?s) helps you make progress testing. Testing

helps you find errors. Testing helps you find errors.

B. Decision Box

Question Mark (?):

TT: If you can decide that the cell’s value is correct or wrong, click. These

decisions help to test and find errors.

What: A “?” appears when you can make testing progress by making a

decision about this cell’s value. Each value is a “test case”. Testing helps you

find errors.

How did: A “?” is shown in the decision box whenever a situation is not

tested. A “?” can reappear in a decision box for a few reasons: (1) a formula

may have been changed somewhere in the spreadsheet which requires this

cell be retested, or (2) some input values were changed and cover some

previously untested situation.

How should: If you can decide that the value in this cell is correct given its

inputs, check (√) it off. If you can decide that the value is wrong X it out.

Checking it off will increase the testedness of this cell. Xing it out will cause

the system to help guide you to the cause of the bad value.

Advice: You can use the decision boxes to record decisions about the cells’

values. If you have made a decision about a cell’s value and √ed it off or Xed

it out, you can then: (1) move onto another cell to continue testing, (2) finish

testing one cell completely then move onto another cell, or (3) if there are

 86

tinted cells, which indicate possible locations of errors, follow the system’s

guidance (colorings) to find the cause(s).

Border colors reflect the number of √’s on this or related cells, and tints on the

entire cell reflect the number of Xs on this or related cells.

A √ is a way to say the value is correct, an X is a way to say a value is wrong.

A “?” shows that there is an opportunity to make this cell more tested if you

can decide about its current value. (If the decision box is empty, you are still

allowed to √ it off or X it out.)

Checkmark (√):

TT: You have decided this cell’s value is correct.

What: A √ appears when you decide this cell’s value is correct. Each value is

a “test case”. Testing helps you find errors.

How did: You √ed this cell’s decision box. Usually this causes the border

color to become more blue than it was before, reflecting the fact that the cell is

more tested than it was before.

How should: If you think you shouldn’t have √ed off this value, you can click

the √ again to remove it. If you want to make more decisions about this cell,

you can change some input values (with or without the help of the Help-Me-

Test button **hide) that affect this cell and make new decisions about the

results.

X-mark (X):

What: An X appears when you decide this cell’s value is wrong. Each value is

a “test case”. Testing helps you find errors.

How did: You Xed this cell’s decision box. Usually this causes the interior

color to become more orange than it was before, reflecting the fact that the

cell has higher bug likelihood.

How should: If you think you shouldn’t have Xed off this value, you can click

the X again to remove it. If you want to make more decisions about this cell,

you can change some input values (with or without the help of the Help-Me-

 87

Test button **hide) that affect this cell and make new decisions about the

results.

No mark (blank decision box):

What: The decision box is blank when this cell’s value does not cover a new

situation. Each value is a “test case”. Testing helps you find errors.

How did: You either √ed a cell affected by this cell, or if this cell’s decision

box previously had a √ then inputs values changed, but these new values are

not a new situation.

How should: If you can decide that the value in this cell is correct given its

inputs, check (√) it off. If you can decide that the value is wrong X it out. Xing

it out will cause the system to help guide you to the cause of the bad value.

Testing helps you find errors.

C. Arrows

TT: Relationship between X and Y is Z% tested.

What: Arrows show (1) that one cell contributes to another cell’s value, and

(2) the color show how much of this relationship has been tested.

How did: Arrows were turned on by middle clicking on a cell. You can turn the

arrows off by (1) middle clicking on the same cell or (2) middle clicking on the

arrow.

How should: If you are using arrows to aid in testing and to find new

situations open the formulas to see more specifically which input cells need to

change to find new situations (pay attention to red and purple arrows for

situations that need testing).

Advice: Arrows can be used to help you find situations that have not been

tested. If an arrow between two cells is purple or red you can open up the

formula(s) to see which part of the situation has not yet been tested. Then

change input values or use HMT to help you generate new inputs.

 88

Arrows can also help you with a big picture feel for the relationships among

the spreadsheet cells.

D. Interior cell colors

TT: BUG LIKELIHOOD: VERY LOW / LOW / MEDIUM / HIGH / VERY HIGH

NOTE: This applies to all cases:

Advice: The tinted cell(s) are likely to have bug(s): the darker the color the

more likely there is to be a bug in that cell's formula. The more decisions you

are able to make about values (correct or wrong) the more accurate the

feedback can be.

CASE 1: Question Mark (?)

What: An orange or yellow cell interior means there might be a bug in this

cell’s formula.

How did: Although you have not explicitly made a decision about this cell’s

value, another cell affected by this cell was X’ed out. Since this cell affects the

cell with the wrong value it is possible the problem is with this cell’s formula.

How should: Check for formula bugs, OR look at other tinted cells, OR √ off

and X out other cells’ values to get more feedback. If you can decide the

correctness of this cell’s value √ it off (if the value is correct) or X it out (if it’s

wrong) – this will help you narrow your search for the bug. Using the interior

color feedback you may be able to locate the bug.

CASE 2: Check Mark (√)

What: An orange or yellow cell interior means there might be a bug in this

cell’s formula

How did: Although you have decided that this cell’s value is correct, this cell

affects a cell with a wrong value.

How should: Check for formula bugs in this cell, OR look at other tinted cells,

OR √ off and X out other cells’ values to get more feedback. There is a bug

somewhere (either in this cell’s formula or in the cells’ formulas affecting this

 89

cell). Look at these cells’ formulas, or √ off or X out other cells’ values to

narrow your search.

CASE 3: X mark (X)

What: An orange or yellow cell interior means there might be a bug in this

cell’s formula.

How did: You decided that the cell’s value is wrong. Previous testing

decisions on this cell or other cells affect by this cell also impact the color of

this cell.

How should: Check for formula bugs in this cell, OR look at other tinted cells,

OR √ off and X out other cells’ values to get more feedback. There is a bug

somewhere (either in this cell’s formula or in the cells’ formulas affecting this

cell). Look at these cells’ formulas, or √ off or X out other cells’ values to

narrow your search.

E. Progress Bars

FL progress bar:

TT:

What: Your testing has narrowed down the possible sources of the bugs to

most likely be in one or more of the darkest-tinted cells.

How did: This progress bar changes to reflect the current state of all the

tinted cells. It changes when a testing decision is made (√ or X). The progress

bar can also change when formulas are edited.

How should: You can look to the darkest cell’s formula to start searching for

the bug. OR To receive more feedback from the system and narrow your

search for the bug, make decisions about other cell’s values. This may make

some cells’ interiors darker indicating the likelihood of the bug being in those

cells. Using the interior color feedback you may be able to locate the error.

Advice: The tinted cell(s) are likely to have error(s): the darker the color the

more likely there is to be an error in that cell's formula. The more decisions

 90

you are able to make about values (correct or wrong) the more accurate the

feedback can be.

Testedness progress bar:

TT:

What: The overall testing progress of this spreadsheet. Testing helps you find

errors.

How did: Each time a value is √ed off for a new situation a cell becomes more

tested, that change is reflected in this overall spreadsheet testedness.

Spreadsheet testedness can decrease when formulas are edited or √ is

removed.

How should: If you can decide that a value in some cell appears to be correct

given its inputs, click on the “?” to check (√) it off. If you can decide that the

value is wrong given its inputs, click on the “?” to X it out. Checking it off will

increase the testedness of the cell. Xing it out will cause the system to help

guide you to the cause of the bad value.

Advice: You can use the border colors to systematically test your

spreadsheet. If you can make a decision about a cell’s value (correct or

wrong) you can (1) test this cell given different inputs, or (2) move onto testing

another cell, or (3) if there are tinted cells, which indicate possible locations of

errors, follow the system’s guidance (colorings) to find the cause(s).

Border colors reflect the number of √’s on this or related cells, and tints on the

entire cell reflect the number of Xs on this or related cells.

F. Confidence Marks

NOTE: For all cases the following are the same:

How did: You clicked on the decision box.

Advice: You can use the decision boxes to record decisions about the cells’

values. Once you make a decision about a cell’s value (correct or incorrect)

 91

you can either: (1) move onto another cell to continue testing, (2) finish testing

one cell completely then move onto another cell, or (3) if there are tinted cells,

which indicate possible locations of errors, follow the feedback to help you

locate the error.

A √ is a way to say the value is correct, an X is away to say a value is wrong.

A "?" shows that there is an opportunity to make this cell more tested if you

can decide about its current value. (If the decision box is empty, you are still

allowed to √ it off or X it out.)

High Confidence Checkmark (√):

TT: it’s right (√)

What: √ing this cell means that this cell’s value is correct given its inputs.

Testing helps you find errors.

How should: If you can decide that this cell’s value is correct given its inputs,

√ it off. If you can decide that the value is wrong given its inputs, X it out.

Checking it off will increase the testedness of this cell. Xing it out will cause

the system to help guide you to the cause of the bad value.

Low Confidence Checkmark (√):

TT: it’s right maybe (√)

What: √ing this cell means this cell’s value might be correct given its inputs.

Testing helps you find errors.

How should: If you are not entirely sure but there are indications that this cell’s

value is correct given its inputs, √ it off. If you can decide that the value is

wrong given those input value(s), X it out. Checking it off will increase the

testedness of this cell. Xing it out will cause the system to help guide you to

the cause of the bad value.

High Confidence X-mark (X):

TT: it’s wrong (X)

What: Xing this cell means that this cell’s value is wrong given its inputs.

Testing helps you find errors.

 92

How should: If you can decide that this cell’s value is wrong given its inputs,

X it out. Xing it out will cause the system to help guide you to the cause of the

bad value.

Low Confidence X-mark (X):

TT: it’s wrong maybe (X)

What: Xing this cell means this cell’s value might be wrong given its inputs.

Testing helps you find errors.

How should: If you are not entirely sure but there are indications that this

cell’s value is wrong given its inputs, X it out. Xing it out will cause the system

to help guide you to the cause of the bad value.

	1. Introduction
	 Background
	2.1 Related Work
	2.2 Confidence and Self-Efficacy
	2.2.1 Gender Survey
	2.2.2 Gender differences in debugging in spreadsheet-like environment

	3. Prototype Design
	3.1 Forms/3 – End user Software Engineering Environment
	3.1.1 The Features: WYSIWYT with Fault Localization
	3.1.2 Surprise-Explain-Reward

	3.2 Known Barriers
	3.3 Are there any other potential barriers?

	4. From Problem to Solution 1: “No Confidence Required”
	4.1 Prototype design ideas for Solution 1
	4.1.1 Input Device
	4.1.1.1 Input Device 1
	4.1.1.2 Input Device 2
	4.1.1.3 Input Device 3
	4.1.1.4 Input Device 4

	4.1.2 Output Device

	4.2 Solution 1’s Prototype
	4.3 Feedback from Users

	5. Solution 2: Explanations
	5.1 Requirements on Types of Explanation Content
	5.2 Applying the Requirements
	5.2.1 Conceptual: The “What” Component
	5.2.2 Conceptual: The “How did…” Component
	5.2.3 Procedural: The “How should…” Component
	5.2.4 Problem Solving: The “Advice” Component

	5.3 Solution 2’s Prototype
	5.4 Feedback from Users

	6. Think-aloud Analysis and Final Implementation
	Quick and dirty evaluation
	6.2 Some interesting observations
	6.2.1 Unintended usage
	6.2.2 Pattern of debugging
	6.2.3 More observations

	 Conclusion

