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ABSTRACT

Motivated by the tendency of high-Prandtl-number fluids to form sharp density interfaces, the authors inves-
tigate the evolution of Holmboe waves in a stratified shear flow through direct numerical simulation. Like their
better-known cousins, Kelvin—Helmholtz waves, Holmboe waves lead the flow to a turbulent state in which
rapid irreversible mixing takes place. In both cases, significant mixing also takes place prior to the transition
to turbulence. Although Holmboe waves grow more slowly than Kelvin—-Helmholtz waves, the net amount of
mixing is comparable. It is concluded that Holmboe instability represents a potentially important mechanism

for mixing in the ocean.

1. Introduction

Turbulence in the ocean is often governed by a com-
petition between vertical shear, which promotes insta-
bility, and statically stable density stratification, which
acts to stabilize the flow. A simple, oceanographically
relevant model for this physical regime is the stratified
shear layer. In this model, flow evolvesfrom initial con-
ditions in which two homogeneous water masses of dif-
ferent densities are separated by a horizontal, sheared
interface (as may occur, for example, in ariver outflow).
The lower layer is presumed to have the higher density
so that the system is statically stable. If the shear across
the interface is strong enough to overcome the stabiliz-
ing effect of the stratification, instability leads to the
development of wavelike structures that may break and
generate turbulence. In the absence of forcing, turbu-
lence eventually decays and the mean flow relaxes to a
stable, parallel state. Mixing and potential energy gain
resulting from such events represent an important facet
of ocean dynamics that is only partially understood.

Previous studies of turbulence evolving in stratified
shear layers have usually assumed that the vertical
changes in velocity and density change occur on similar
length scales. In this case, sufficiently strong shear re-
sults in the well-known Kelvin—Helmholtz (KH) insta-
bility, which leads to the growth of periodic arrays of
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billows (e.g., Thorpe 1987). However, thelow molecul ar
diffusivities of heat and (especially) salt in the ocean
suggest that this assumption may not always be valid;
that is, there may be a tendency for density to change
more abruptly than velocity (Fig. 1). If R, the ratio of
length scales over which velocity and density change,
is greater than about 2.4, strong stratification no longer
actsto stabilize the flow but rather causes Kelvin-Helm-
holtz instability to be supplanted by Holmboe instabil-
ity, whose finite-amplitude expression is an oscillatory,
standing wavelike structure (e.g., Smyth et al. 1988;
Smyth and Peltier 1989). Holmboe waves are difficult
to observe unambiguously due to their oscillatory na-
ture. However, the conditionsfor their growth areknown
to occur in exchange flows (Zhu and Lawrence 2001),
salt wedge intrusions (Yonemitsu et al. 1996), and river
outflows (Yoshida et al. 1998). Low Reynolds number
mixing events such as those that dominate in the main
thermocline (Smyth et al. 2001) are also expected to be
influenced by Holmboe-like dynamics.

Our purpose is therefore to investigate the nature of
turbulence that results from Holmboe wavesin a strong-
ly stretified shear layer with a sharp density interface.
This flow geometry has largely been neglected as a po-
tential source of turbulence in the ocean (Thorpe 1987;
Gregg 1987), in part because the exponential growth
rate of Holmboe instability is generally much smaller
than that of Kelvin—Helmholtz instability. Here, we will
demonstrate that this neglect is unjustified, that in fact
Holmboe instability can generate strong turbulence and
can lead to mixing comparable with Kelvin—Helmholtz
instability.
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Fic. 1. Profiles of streamwise (@) velocity and (b) density that
define a stratified shear layer [(11), (12)]. In this case, the scale
ratio R = 3.

Kelvin-Helmholtz billows have been studied exten-
sively, both in the laboratory (e.g., Thorpe 1973, 1985;
Koop and Browand 1979) and theoretically. Theoretical
studies have involved linear stability analyses of the
primary instability (e.g., Hazel 1972), nonlinear simu-
lations of the primary instability intwo dimensions(e.g.,
Patnaik et al. 1976; Klaassen and Peltier 1985a), and
secondary stability analyses of the finite-amplitude,
two-dimensional billow (Klaassen and Peltier 1985b,
1991; Caulfield and Peltier 2000). The transition process
has been simulated in three dimensions by Caulfield and
Peltier (1994) and Cortesi et al. (1998). The full KH
life cycle, including the growth and decay of turbulence,
has been simulated more recently as computer capacities
have become equal to the task (e.g., Scinocca 1995;
Smyth 1999; Cortesi et a. 1999; Smyth and Moum
2000b; Caulfield and Peltier 2000; Stagquet 2000; Smyth
et al. 2001). Observations of KH-like billows in the
ocean have been documented in several studies (Farmer
and Smith 1980; Hebert et a. 1992; Seim and Gregg
1994; DeSilva et a. 1996; Farmer and Armi 1999;
Moum et al. 2002, manuscript submitted to J. Phys.
Oceanogr.). Smyth et al. (2001) have shown that tur-
bulence developing in direct numerical simulations of
KH billows is statistically consistent with turbulent
patches in the thermocline as revealed by in situ mi-
crostructure measurements.

Studies of the Holmboe wave have been much less
numerous. The primary instability was first described
theoretically by Holmboe (1962) and was investigated
subsequently by Hazel (1972) and Smyth and Peltier
(1989, 1990). A mechanistic description of the primary
instability has been provided by Baines and Mitsudera
(1994) (also see Caulfield 1994). Laboratory investi-
gations have been carried out by Browand and Winant
(1973), Lawrence et al. (1991), Pouliquen et al. (1994),
Lawrence et al. (1998), Zhu and Lawrence (2001),
Strang and Fernando (2001), and Hogg and Ivey (2002,
hereinafter HI). The nonlinear growth of the Holmboe
wave has been simulated in two dimensions by Smyth
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et al. (1988), Smyth and Peltier (1991), and Lawrence
et a. (1998). Secondary stability analysis was carried
out in a small range of parameter values straddling the
KH-Holmboe transition by Smyth and Peltier (1991).
The three-dimensional development of the Holmboe
wave is computed here for the first time.

Our objective is to perform a direct comparison of
turbulence evolution in Holmboe and KH waves. To do
this, we consider two very similar stratified shear layers.
The only difference between the two casesistherelative
scales over which density and velocity change. In the
first case, velocity and density vary over similar vertical
distances and turbulence evolvesthrough KH instability.
The second case is identical except that the density
change is concentrated in athinner layer (asin Fig. 1)
so that the flow exhibits Holmboe instability. These two
flows are investigated by means of direct numerical sim-
ulation (DNS). In each case, we characterize turbulence
and mixing in terms of irreversible potential energy gain
and mixing efficiency. The simulated Holmboe waves,
like KH waves, exhibit high mixing efficiency prior to
the transition to turbulence (Winters et al. 1995; Smyth
and Moum 2000b; Caulfield and Peltier 2000; Staquet
2000; Smyth et al. 2001). Because the Holmboe waves
grow slowly, this highly efficient preturbulent mixing
phase lasts for a relatively long time. In both KH and
Holmboe cases, the subsequent turbulent phase is char-
acterized by mixing efficiency near the standard value
of 0.2. The net potential energy increase is actualy
greater in the Holmboe case.

In section 2, we describe the mathematical model
upon which our calculations are based. Linear stability
analyses are used to guide the choice of parameter val-
ues for the nonlinear simulations. Our main results are
given in section 3. We describe the temporal evolution
and spatial structure of turbulent KH and Holmboe
waves, and seek to relate the transition to turbulence to
existing understanding of the secondary instabilities of
the two-dimensional waves (sections 3a and 3b). We
then compare the two flows in terms of irreversible po-
tential energy gain (section 3c). The main conclusions
are summarized in section 4, and directions for future
work are outlined in section 5.

2. Methodology
a. The mathematical model

Our mathematical model employs the Boussinesq
equations for velocity u, density p, and pressure p in a
nonrotating physical space measured by the Cartesian
coordinates x, y, and z

u,=ux (VXxu)— VII = gk(p = po)lpo
+ vVau; (1)
1
m=24Zuu %)
po 2
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Subscripts following commas denote partial differ-
entiation. The variable p, is a constant characteristic
density, here set equal to 1027 kg m—3. The gravitational
acceleration g has the value 9.81 m s2, and k is the
vertical unit vector. Viscous effects are represented by
the usual Laplacian operator with kinematic viscosity v
= 0.995 X 107* m? s~

The augmented pressure field I is specified implicitly
by the incompressibility condition

V-u =0, (©)
and the density evolves in accordance with
p. = —V:pu + kV?p, (4)

in which « is a molecular diffusivity for density. Here,
we use the value 1.06 X 10-7 m2 s! for « in order to
model thermal stratification in the ocean.

We assume periodicity in the horizontal dimensions:

fx+ L,y =1fxy+L,2=1fxyVy2, (5

in which f is any solution field and the periodicity in-
tervals L, and L, are constants. At the upper and lower
boundaries (z = *L,/2), we impose an impermeability
condition on the vertical velocity:

le::LZIZ =0, (6)

and stress-free, adiabatic conditions on the horizontal
velocity components u and v and on p:

u,zlzthZ/Z = v,zlz:tLZ/Z = p,zlz:tLZIZ = 0 (7)

These imply a condition on II at the upper and lower
boundaries:

[H,z - gl — Po)/Po]z=:LZ/2 =0. (8)

b. Numerical solution methods

Spatial derivatives are computed using full Fourier
transforms in both horizontal directions and half-range
sine and cosine transforms in the vertical, as required
by the boundary conditions. The time evolution of the
viscous and diffusive terms in (1) and (4) is evaluated
exactly in Fourier space. (This is made possible by our
choice of Fourier discretization on equally spaced col-
location points.) The remaining terms are stepped for-
ward in time using a third-order Adams-Bashforth
method.

Because the dynamics of interest here depend on the
low diffusivity of seawater, it iscritical that we maintain
adequate spatial resolution in the scalar field. In un-
stratified flows, the resolution requirement isdetermined
by the Kolmogorov scale L, = (v/€)V4, where € is the
kinetic energy dissipation rate. Grid spacing of 4L, is
generally sufficient: Moin and Mahesh (1998) list sev-
eral examples of successful simulations with grid spac-
ing ranging from 3.75L, to 14.3L,. (Flows near solid
boundaries are exceptions, as finer resolution is needed
in the wall-normal direction.) In stratified flow with
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Prandtl number (Pr = »/k) in excess of unity, the density
field requires especially fine resolution, and the appro-
priate scale isthe Batchelor scale, Lg = L, /Pr¥2 (Batch-
elor 1959). Previous studies of stratified shear layers
with high Prandtl number have used grid spacing
=2.5L; (e.g., Smyth 1999; Smyth and Moum 2000a,b;
Smyth et al. 2001). For the present work, we have been
especially cautious in this regard. The minimum value
of Lg, which occurs at the center of the domain just
after the transition to turbulence, is about one half the
grid spacing; that is, the grid spacing never exceeds 2L .
(In addition, we use fully spectral discretizations as op-
posed to the spectral—finite difference methods used in
the studies cited above.)
Our grid increments were set equal at

Ax = Ay = Az = L /255 9
and the array sizes were set to
{N,, N, N,} = {256, 128, 128}. (20)

Later in this paper (section 3b), spatial resolution will
be checked directly using wavenumber spectra of the
density gradient field.

The code is paralelized using Message Passing In-
terface (MPI) directives. The simulations described here
were run using 32 processors on a Cray T3E.

c. Initial conditions

The model isinitialized with a parallel flow in which
shear and stratification are concentrated in a horizontal
layer surrounding the plane z = 0:

qpy AU 2

i@ = 2 tanhhoz, (11)

52 = — 2P tanh 2R (12)
2 “h,

The constants h,, Au, and A p represent theinitial thick-
ness of the shear layer and the associated changes in
velocity and density; R is the ratio of shear layer thick-
ness to stratified layer thickness (Fig. 1).

In order to obtain aturbulent flow efficiently, we add
to the initial mean profiles a perturbation field designed
to stimulate both two-dimensional primary and three-
dimensional secondary instabilities. The horizontal ve-
locity components are prescribed explicitly as described
below; the vertical component is then obtained through
(3). Primary instability is stimulated by a velocity per-
turbation whose streamwise component is

27X 2z 2z
h— tanh—.
-,
Because thisinitia perturbation isweak enough to obey
linear physics, its precise form has little effect on the
statistical quantities of interest here. Random pertur-
bations are added to the velocity and density fields to

Uyer = —0.02Au cos (13)
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seed secondary instabilities. The density fluctuations
have the form

Ap 2
=—(1 - [tanh—Rz
Prand 2 ( | ho

>f,,(X, Y2, (14)

where r, is a random deviate distributed uniformly be-
tween —1 and 1. The vertical dependence is chosen to
enforce the limits |p — po| =Ap/2. The random hor-
izontal velocity perturbations have the form

2z
Ugg = O.lAu(l - ‘tanhh—
0

)ru(x, Y2, (19

where —1 < r, < 1 and similarly for v, 4.

d. Parameter values

The constants h, and Au and Ap and R that define
the initial mean flow can be combined with the fluid
parameters v and k and the geophysical parameter g to
form four dimensionless groups whose values determine
the stability of the flow at t = 0. In addition to R, these
are

h,Au v

ReoE ; = —;
14 K

— RApgh,
poAu?

Ri, (16)
The initial macroscale Reynolds number Re, expresses
the relative importance of viscous effects. In the present
simulations, Re, is set to 1200, large enough that the
initial instability is nearly inviscid. The Prandtl number
Pr is set to 9, the appropriate value for thermal strati-
fication in water at 12°C. The centerline Richardson
number Ri, is equal to the initial gradient Richardson
number Ri(z2) = —gp,/p 02 evaluated at z = 0, and it
thus quantifies the relative importance of shear and strat-
ification within the stratified layer. As the flow evolves,
both the centerline Richardson and Reynolds numbers
increase in proportion to the increasing thickness of the
shear layer (Smyth and Moum 2000b).

There are two common choices for the length, ve-
locity, and density scales used to describe stratified shear
layers; therefore, care must be taken when comparing
different studies. Theoretical studies (e.g., Smyth and
Peltier 1989; Cortesi et al. 1998) have often used h,/2,
Au/2, and A p/2, because this choice simplifies some of
the mathematical expressions. The choice of h,, Au, and
A p has been made more commonly in the observational
and experimental literature (e.g., Seim and Gregg 1994,
Zhu and Lawrence 2001; HI). Because our DNS work
is done in close coordination with observations (e.g.,
Smyth et al. 2001), we prefer the latter convention.

The potential for instability may be guaged a priori
by applying the Miles-Howard criterion (Miles 1961;
Howard 1961), which states that instability is only pos-
sible if Ri(z2) < 1/4 for some z (This condition for
instability is necessary but not sufficient.) The vertical
dependence of Ri depends on the value of the scaleratio
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Fic. 2. Profiles of the gradient Richardson number for (11) and
(12) with Ri,/R = J = 0.15. Labels indicate the value of R for each
curve. The thicker curves represent the cases to be investigated
through DNS. The vertical dashed line indicates Ri = 1/4.

R (Fig. 2). When R < V2, Ri(2) has a single minimum,
Ri(0) = Ri,, and increases without bound at large |z|.
Ri, < 1/4 is therefore a necessary condition for insta-
bility in this class of flows. When V2 < R< 2,z =
Oisalocal maximum of Ri(2), and is flanked by minima
located in the upper and lower halves of the shear layer.
No unstable modes have been found in this regime to
our knowledge, although their existence is not prohib-
ited by the Miles-Howard criterion. When R > 2, Ri(2)
vanishes far above and below the shear layer, and in-
stability is therefore allowed for any Ri,. In fact, insta-
bility at Ri, > 1/4 requires R > 2.4 (Smyth and Peltier
1989).

To motivate the remaining parameter choices, we now
explicitly compute the linear stability characteristics of
the stratified shear flow described by (11)—(16) with Re,
= 1200 and Pr = 9. Equations (1)—(4) are linearized
about the parallel state (11) and (12). Aside from small
effects due to viscosity and diffusion, (11) and (12)
represent a steady solution, and so perturbations can be
written in the normal mode form:

b(X Y, 2 1) = P(erticxm, (17)
Here, ¢» may represent any perturbation field, « and B
are streamwise and spanwise wavenumbers nondimen-
sionalized by 2/h,, and o is a (possibly complex) ex-
ponential growth rate nondimensionalized by Au/h,. An
extension of Squire's theorem (e.g., Smyth and Peltier
1990) shows that the dominant unstable modes of this
flow are two-dimensional in the region of interest to us,
and so we assume that 8 = O for these calculations.
Discretizing the vertical dependence (using third-order
compact derivatives) yieldsamatrix eigenvalue problem
whose solution furnishes the growth rates and structure
functions of all norma modes.
We now consider a class of flows that are identical
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Fic. 3. Nondimensional growth rate vs streamwise wavenumber and centerline Richardson
number for linear, normal mode instabilities of a stratified shear layer. Ri /R =J = 0.15, Re, =
1200, and Pr = 9. The domain depth L, is 4h,. Waviness in the stability boundary is due to the
difficulty of resolving modeswith vanishingly small growth rates. Thelabels*‘ 1" and *“2"" indicate

the two cases to be investigated via DNS.

except for the value of the scale ratio R. The parameters
Ap, Au, and h, are fixed so that
Beghy _ Rlo _ 5
poAu? R
The ratio Ri,/R represents a bulk Richardson number
and is often denoted ““J” (e.g., HI). The value 0.15 was
chosen for convenience in the nonlinear simulations to
follow. In this class of flows, the stratification profile
varies from weak stratification spread over athick layer
(at small Rand Ri ) to strong stratification concentrated
in athin layer (at large R and Ri,), but the net density
change does not vary.

Figure 3 shows the growth rate (the real part of o)
as a function of « for arange of R values. Below R =
1.6 (Ri, = 0.25), a band of unstable wavenumbers is
evident. These are stationary modes (real phase speed
is zero) and are an extension of the KH instability. The
flow is stable to perturbations of the form (17) for 1.6
< R < 2.4. For R> 2.4, wefind adomain of instability
that does not exist in the R = 1 case. These are the
oscillatory modes first described by Holmboe (1962).
They occur in pairs having equal growth rate and equal
but oppositely directed phase speed. At finite amplitude,
these modes produce the standing-wave-like structures
now known as Holmboe waves.

In this paper, we will examine direct numerical sim-
ulations of two flows chosen to represent the KH and
Holmboe regimes (denoted as ‘1" and *‘2,” respec-
tively, on Fig. 3). The only difference between the two

(18)

flows is that the density changes over the same length
scale as the velocity (i.e., R = 1) in the KH case but
changes over a shorter length (R = 3) in the Holmboe
case. Because of this, the density gradient maximum at
z = O isstronger by afactor of 3 in the Holmboe case,
and Ri, is correspondingly larger. The nondimensional
exponential growth rates of the KH and Holmboe modes
are 0.069 and 0.022, respectively. Thus, by compressing
the stratified layer, we have reduced the growth rate by
more than a factor of 3. One might reasonably expect
that this stabilization of the original flow would reduce
the strength of the resulting turbulence, or even prevent
its emergence entirely. Our DNS experiments will test
this prediction.

The domain length L, was chosen so as to accom-
modate one wavelength of the primary instability since
pairing instability is not present at the high levels of
stratification used here. [The pairing instability of KH
billows s discussed by Klaassen and Peltier (1989). The
fact that Holmboe waves do not pair in this region of
parameter space was confirmed using an auxiliary se-
guence of two-dimensional simulations.] The length
scale h, was set to 0.1795 m. The (dimensional) wave-
length was chosen as 27/a X hy/2 with & = 0.35 (cf.
Fig. 3), so that L, = 1.6116 m. Here L, was chosen as
L,/2, sufficient to prevent the upper and lower bound-
aries from influencing the flow evolution until after the
turbulent mixing phase was complete. The domain width
L, was chosen to be L,/2. This aspect ratio is justified
in light of the small spanwise wavelength of the dom-
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FiG. 4. Kinetic energy evolution for (a) case 1 and (b) case 2. Thick solid lines: kinetic energy of streamwise velocity
perturbations. Dashed (dash—dotted) lines represent kinetic energy of spanwise (vertical) velocity components. Short,
thin lines located near t = 0 indicate the exponential growth rate of the norma mode instability from linear theory.
Steeper lines|ocated near the spanwise kinetic energy curve indicate representative val ues of the growth rate of secondary
instability from (a) KP (their Fig. 6; Ri = 0.16) and (b) SP (their Fig. 11a). Slopes correspond to 2, the growth rate
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for kinetic energy.

inant secondary instabilities that lead the flow to a tur-
bulent state (Klaassen and Peltier 1991; Smyth and Pel-
tier 1991; Caulfield and Peltier 2000). Sensitivity ex-
periments in which L, was varied yielded no difference
in the turbulence statistics of interest here, athough
scale selectivity in the spanwise direction was weaker
than expected on the basis of linear theory. For both
runs, the shear timescale h,/Au was set to 28.28 s to
give dimensional values relevant to the ocean and to
facilitate comparison with previous studies. The model
timestep was set to At = 0.01 hy/Au.

3. Results

We begin this discussion by describing the basic pat-
terns of temporal and spatial variability occurring in our
two simulations. This description will be set mainly in
the context of scales predicted previously vialinear sta-
bility analysis. We will then quantify mixing in the two
cases in terms of irreversible potential energy gain.

a. Temporal evolution

In each simulation, the kinetic energy associated with
the random component of the initial flow decayed rap-
idly during the first few time steps (Fig. 4). This was
followed by alonger period of two-dimensional growth
as predicted by linear stability theory. Streamwise and
vertical kinetic energies grew during this phase, while
spanwise motions continued to decay. As expected, the
Holmboe mode grew more slowly than the KH mode,
and its growth was modulated by a pronounced oscil-
lation. The short lines near the streamwise kinetic en-
ergy curves on Fig. 4 indicate exponential growth rates
predicted using the linear stability analyses of the pre-
vious section. Both modes grew at rates close to those
predicted by linear theory. (We do not expect exact cor-

respondencein this case becausetheinitial perturbations
are not eigenfunctions and because the mean flow
spreads somewhat in time due to viscosity and mass
diffusion.)

Once the spanwise kinetic energy began to grow, its
growth was considerably more rapid than that of the
streamwise and vertical components. This is a mani-
festation of three-dimensional, secondary instabilitiesof
the finite amplitude, two-dimensional waves. Linear,
secondary instabilities of KH billows have been com-
puted for the case Re, = 1200, Pr = 1, Ri, = 0.16 by
Klaassen and Peltier (1991, hereinafter KP). [A higher-
resolution study has been conducted recently by Caul-
field and Peltier (2000), but the results are limited to
Ri, = 0.1 and are thus of lessrelevance here.] Although
the parameter values of KP are dlightly different from
ours, the growth rate predicted from their analyses com-
pares well with the growth of the spanwise kinetic en-
ergy seen in Fig. 4a.

Secondary stability analysis for the Holmboe case
simulated here has not yet been carried out. The closest
existing results are those of Smyth and Peltier (1991,
hereafter SP), which focused on much smaller values
of the centerline Richardson number (Ri, = 0.28). That
study predicted that growth rates of secondary insta-
bilities would greatly exceed those of primary instabil-
ities, and that result is also evident in Fig. 4b. In quan-
titative terms, though, the growth rate observed here
(about 0.045 in nondimensional units) is far less than
that predicted by SP (~0.12). This quantitative dis-
crepancy is perhaps not surprising given the significant
difference in parameter values.

In each case, the spanwise kinetic energy saturates at
avalue nearly equal to the vertical kinetic energy. There
follows an extended period in which the three compo-
nents decay in parallel, with the spanwise and vertical
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Fic. 5. (), (b) Density structure of the KH billow as it approaches maximum amplitude, (c) as it evolves into a Holmboe wave, and (d)
after one oscillation period of the Holmboe wave. The range of shading from dark to light corresponds to the range of density from high
to low, but the correspondence is not exact because additional lighting effects are used to highlight three-dimensionality. The highest and
lowest densities are rendered transparent, as is al fluid in the upper right-hand quarter of the billow in (@), (b), and (c).

components nearly equal and the streamwise component
almost an order of magnitude larger.

b. Spatial structure

We now describe the evolving spatial structure of our
simulated flows, beginning with the KH case. During
the two-dimensional growth phase, the density field
(Fig. 5a) reveals the standard *‘cat’s eye’” structure of
the KH billow. The centerline Richardson number (Ri,
= 0.15) is high relative to previous KH simulations
(e.g., Caulfield and Peltier 2000; Smyth and Moum
2000b), and as a result the billow is strongly elliptical.
At the state of maximum kinetic energy (Fig. 5b), the
density field is dominated at large scales by the KH
billow; at small scales by disordered, three-dimensional
motions concentrated in the vortex core. This chaotic,
strongly dissipative flow stateisreferred to loosely here
as ‘“‘turbulence,”” although the Reynolds number is bare-
ly large enough to allow such a state to exist. Although
the low Reynolds numbers used here are necessary in
order to maintain the required spatial resolution in the
density field for these high Prandtl number flows, low
Reynolds number events such as this may actually ac-
count for much of the mixing occurring in the ocean
thermocline (Smyth et al. 2001).

Shortly after the state of maximum kinetic energy is

reached, the KH wave separatesinto a pair of oppositely
propagating vortices resembling the Holmboe wave
(Figs. 5¢,d; cf. Fig. 7). This wave persisted throughout
the remainder of the simulation, although it never be-
came as well-defined as the primary Holmboe wave that
appeared in the explicit ‘““Holmboe’” simulation. This
transition has been observed previously in laboratory
experiments (Browand and Winant 1973; HI). Because
the Prandtl number exceeds unity, the shear layer tends
to spread more rapidly than does the stratified layer,
with the result that the mean flow tends to evolve to a
state susceptible to a Holmboe-like instability. [In the
absence of instability, the scale ratio would approach
the limiting value R = \V/Pr (Smyth et al. 1988), which
is one reason we chose { R = 3, Pr = 9} to characterize
the Holmboe regime.] Close examination of the mean
profiles (not shown) reveals that the thin stratified layer
is actually divided into two sublayers separated by a
central mixed layer. Caulfield (1994) has shown theo-
retically that this more complex flow geometry is, in
fact, more unstable to Holmboe-like modes than is
Holmboe's original, two-layer density distribution. A
related phenomenon was noticed in simulations of more
weakly stratified flow by Smyth and Moum (2000b): a
KH billow in its final stages of decay spontaneously
produced a secondary KH billow as the result of non-
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FiG. 6. (a) Power spectrum of the nondimensional spanwise density gradient, p,/p,, vs nondimensional spanwise wavenumber 3, computed
at t = 1979 s. The spectrum is averaged over {L,/4 < x < 3L /4; — L,/4 < z < L,/4}; the spanwise wavenumber is nondimensionalized
by h,/2 to give B. Inset in (a) shows the exponential growth rate spectrum of the fastest-growing secondary instability, replotted from KP
(their Fig. 20). (b) Contours of K, the kinetic energy associated with the secondary instability. The kinetic energy corresponds to velocity
fluctuations about the spanwise-averaged velocity, and is itself spanwise averaged. Contour values are { 0.25, 0.50, 0.75, 1.00} X 3.2 X 10-°
J kg~*. The background is an image plot of the spanwise-averaged density field.

linear modification of the gradient Richardson number
profile.

The complex structure of the mature KH billow (Fig.
5b) is the finite amplitude expression of three-dimen-
sional secondary instability of the two-dimensional pri-
mary billow as computed by KP. We now compare that
structure with the predictions of KP, focusing first on
variability in the y direction and then on structure in
the x—z plane.

The spanwise density gradient spectrum (Fig. 6a)
shows that the dominant nondimensional wavenumber
att = 1979 s is consistent with the growth rate maxi-
mum predicted by KP for the fastest-growing mode.
However, the degree of scale selectivity predicted by
linear theory is not evident here; density fluctuations
cover awide band of spanwise wavenumbers. This sug-
gests both upscale and downscale cascades due to the
finite amplitude of this fully nonlinear secondary flow.

Next, we compare the x—z structure of the simulated
wave at t = 1979 s with that of the fastest-growing
eigenmode of KP. We isolate motions associated with
secondary instability by computing the kinetic energy
associated with velocity fluctuations about the span-
wise-averaged state:

1 (Y1
Kso(xa Z, t) = L_ EUSD “Ugp dy (19)
y Jo
1 (Y
U (X, Y, Zt) = U — L—f u dy; (20)
y Jo

Ko is concentrated in the convectively unstable regions
on the upper-left and lower-right edges of the billow
core (Fig. 6b). This structure corresponds well with the
linear eigenfunctions of KP (their Fig. 21).

We now investigate the spatial structure of the Holm-
boe wave. Figure 7 shows two-dimensional cross-sec-
tions through the wave at selected times covering ap-
proximately one oscillation period. At this point in its
evolution, the wave is nearly two-dimensional and is

similar to those simulated previously by Smyth et al.
(1988), SP, and Lawrence et al. (1998). The standing-
wave-like structure of the Holmboe wave may be un-
derstood intuitively if one thinks of the thin layer of
intense stratification around z = 0 as a flexible barrier,
at which vertical motions are strongly inhibited. Above
and below this barrier are sheared regions that are rel-
atively free of stratification, so we might expect KH-
like instability in these regions. If the barrier wererigid
(i.e., if Ri, were infinite), there would be no such in-
stability because neither half of the velocity profile con-
tains an inflection point. Because the stratification is
finite, however, coupling between the upper and lower
halves of the shear layer is allowed, and this coupling
induces a positive feedback that causes KH-like billows
to grow in the upper and lower layers [see Baines and
Mitsudera (1994) for a more complete description of
this mechanism].

Figure 8 illustrates the three-dimensional geometry
of the mature Holmboe wave at various points in its
evolution. Att = 3817 s (Fig. 8a) the spanwise kinetic
energy is still more than an order of magnitude smaller
than the streamwise and vertical components (Fig. 4),
but spanwise structure is aready evident. Inspection
suggests that the dominant spanwise length scaleisL,/
4, Att = 4383 s (Fig. 8h), spanwise kinetic energy is
not much smaller than the other two components, and
the three-dimensionality of the density field is corre-
spondingly more fully developed. By t = 4949 s (Fig.
8c), all three components of the kinetic energy have
reached their maxima. The billows now exhibit a highly
complex structure with variations over a wide range of
length scales. As the large billows pass each other,
strong overturning is generated in the intervening fluid
such that the central density interface itself is over-
turned. This generates overturns that are highly local-
ized in x and z (arrow on Fig. 8c).

Figure 8c represents the last oscillation cycle visible
in the kinetic energy evolution (Fig. 4) before the flow
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Fic. 7. Isopycnal representation of two-dimensional cross sections through the Holmboe wave at selected times. Isopycnal levels are
{—0.95, —0.8, —0.5, —0.2, 0.2, 0.5, 0.8, 0.95} X Ap/2.

0
| : 0.4
y(m) 0.4 i (a)t=3817s. i (b) t=4383s.
08 : s -
- < - ¥ 40 z(m)
- i ,_';“
P e - .04
: 0.4
(c) t=4949s. i (d)t=5514s. &
_— —
s 02z(m)
[ER——— N -0.4
0 04 0.8 1.2 16 0 04 0.8 1.2 1.6
x(m) x (m)

Fic. 8. Density structure of the Holmboe wave through approximately two oscillation cycles. The range of shading from dark to light
corresponds to the range of density from high to low, but the correspondence is not exact because additional lighting effects are used to
highlight three-dimensionality. The highest and lowest densities are rendered transparent, as are sections of the upper billow in (b) and (c).
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Fic. 9. Vortex lines associated with the loop structure seen in Fig. 8c (also Fig. 10b). Domain
boundaries are shaded according to the vorticity component normal to each boundary, with dark
(light) indicating clockwise (counterclockwise) rotation.

enters the turbulence decay phase. At later times (Fig.
8d), the oscillatory character of the large-scale wave is
still evident in the density field, but the billows are
severely distorted and there is very little displacement
of the central density interface. Because of the latter,
changesin available potentia energy (and thusinkinetic
energy) associated with the oscillation are small. There
is, however, considerable activity in the upper and lower
parts of the shear layer, and stratified fluid is ejected far
above and below the original stratified layer. These gjec-
tions often take the form of loops, one of whichisvisible
near the upper right-hand corner of Fig. 8d. Closer in-
spection (Fig. 9) shows that these structures are similar
to the hairpin vortices that appear in boundary layers
(e.g., Head and Bandyopadhyay 1981). Similar struc-
tures have been noticed in laboratory experiments on
Holmboe waves (G. Lawrence 2001, persona com-
munication). They form when localized vertical motions
(e.g., the overturn shown by the arrow on Fig. 8c) dis-
place isopycnals from their equilibrium depths, and the
displaced fluid is differentialy advected by the verti-
cally sheared streamwise flow. This differential advec-
tion of the upper and lower parts of the loop tends to
amplify vorticity in the loop via vortex stretching. [See
Lin and Corcos (1984) for a more detailed discussion.]

The process of loop formation is illustrated in Fig.
10. Figure 10b represents the same stage of flow evo-
lution as Fig. 8c (also Fig. 9), but more layers of low
density are rendered transparent in order to expose the

localized overturn. Figure 10a shows a similar view
taken at a slightly earlier time. Between Figs. 10a and
10b the upper part of the overturn has not moved sig-
nificantly in the x direction (becauseits vertical location
isnear z = 0), but the lower billow has been advected
to the left so that it straddles x = 0, and part of it has
reentered near the lower right-hand corner of thedomain
(cf. Fig. 9). The straining motion of the background
flow has extruded the overturn into a loop whose apex
is shown by the thick arrows. The thinner arrow on Fig.
10b indicates a region near the base of the loop where
overturns in the y-z plane revea the counterrotating
structures visible in the vorticity field (Fig. 9).

A simple model for a one-dimensional vortex main-
tained against viscosity by stretching isthe Burgersvor-
tex (Batchelor 1967), whose cross section is a Gaussian
function and whose diameter is 4V »/S, where Sis an
imposed strain field that stretches the vortex along its
axis. The Burgers vortex has been used previously as a
model for one-dimensional vortices that appear in ho-
mogeneous turbulence (Jimenez 1992; Andreotti 1997;
Jimenez and Wray 1998). In the present context, S may
be approximated by the strain due to the horizontally
averaged streamwise flow T(2), that is, S = 0.5 du/dz
We approximate du/dz as the velocity difference 0.5Au
~ 3 X 1073 m s * divided by a typical height 0.3 m,
sothat S~ 0.01s*. With v = 10-¢m2s~*, the diameter
of aBurgersvortex becomes0.06 m. Thisisareasonable
approximation to the diameters of theloops seenin Figs.



704

JOURNAL OF PHYSICAL OCEANOGRAPHY

VoLUME 33

; 0.4
- (b) t=4949s.

x (m)

0 04 0.8 1.2 1.6 0

04 0.8 1.2 1.6
x(m)

FiG. 10. Density structure of the Holmboe wave at two times, illustrating loop formation. Shading is as in Fig. 5. Arrows indicate
different regions of the loop structure discussed in the text.

8d and 10. The spatial structure of the loops seen here
is therefore consistent with the notion that they are
shaped by a competition between straining by the mean
shear and viscosity. Mass diffusion and baroclinic
torques due to convective overturning are also likely to
be important factors.

The loop shown in Fig. 10 is distinct from that seen
previously in Fig. 8d. The former dissipated shortly after
t = 5000 s without extending very far in the vertical;
the latter formed later in a higher region of the flow
and transported stratified fluid far above its original
depth. In even more extreme cases, these gjections
reached the upper and lower boundaries. A loop struc-
ture also appeared in the later stages of the KH evolution
(Fig. 5d), but did not eject fluid nearly as far from the
shear layer as did the loops arising from the Holmboe
wave.

We now describe the spatial structure of the mature
Holmboe wave with reference to the secondary stability
analyses of SP. Once again, those analyses were per-
formed at a significantly smaller level of stratification
than the present simulations, so we do not expect quan-
titative correspondence.

Smyth and Peltier (1991) found that the structure of
the dominant secondary instability varied significantly
with the phase of the Holmboe wave (e.g., their Fig.
10). At some points, the dominant mode was concen-
trated around highly localized overturns on the central
density interface; at other points, instability wasstronger
in the upper and lower billows. At any given instant,
the growth rate of secondary instability was large
enough compared with the oscillation frequency of the
wave that the characterization of the instability as a
spatially self-similar, exponentially growing normal
mode was self-consistent. Nevertheless, the variability
of the mode shape indicates that the secondary distur-
bance existing at any given time contains contributions
from modes with different shapes that emerged at pre-
vious times. Smyth and Peltier (1991) documented the
dependence of growth rate on spanwise wavenumber

for only a single mode, namely, the highly localized
mode that appeared when the central density interface
was overturned. (This mode exhibited the largest ex-
ponential growth rate.) This dependence gave the im-
pression of an ‘“‘ultraviolet catastrophe’”; that is, the
growth rate increased monotonically with increasing
wavenumber up to the highest wavenumber resolved in
the numerical calculation. Such a mode is thought to
generate a direct transfer of energy into the dissipation
range of the wavenumber spectrum. It was later sug-
gested by Smyth and Peltier (1994) that this behavior
is extremely sensitive to the time dependence of the
background state: modes with small length scales could
be effectively decorrelated by even slow changesin the
background flow. If this suggestion is correct, the ul-
traviolet catastrophe will appear only on background
flows that, unlike the Holmboe wave, are very nearly
stationary.

Figure 11 shows the structure of the Holmboe wave
at approximately the same phase in three successive
oscillation cycles approaching the maximum amplitude
state. The left-hand column shows the spanwise density
gradient spectrum; the inset in Fig. 11c shows SP's
growth rate curve for the fastest-growing secondary in-
stability. As the wave grows, the spectrum broadens,
indicating both upscale and downscale cascades due to
nonlinear mode—mode interactions. On the basis of lin-
ear theory, we would expect the shape of the growth
rate curve to be reflected in the spectrum of the simu-
lated flow, at least in the early stages of secondary in-
stability growth. This expectation is not fulfilled. The
growth rate curve suggests that spanwise variability will
be found mainly around 8 = 4-5 and possibly higher,
whereas most variability in the simulated fields occurs
at lower B. At the earliest times (when linear theory
should be most relevant) the strongest fluctuations occur
at B < 3. It could be that this is partly a function of
theinitialization; although the initial noisefieldiswhite,
viscous dissipation of that noise in the early part of the
simulations occurs preferentially at the smallest scales
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Fic. 11. Three-dimensional aspects of the Holmboe wave. (a), (c), (e) Power spectrum of the spanwise gradient of the nondimensional
density, p,/p,, vs nondimensional spanwise wavenumber 8, computed at t = 4666 s. The spectrum is averaged over all x and z, the spanwise
wavenumber is nondimensionalized by h,/2 to give B. Inset in (c) shows the exponential growth rate spectrum of secondary instability for
the case Ri, = 0.28; replotted from SP, Fig. 9a, t = 120. (b), (d), (f) Contours of K, the kinetic energy associated with the secondary
instability (19). Contour values are {0.25, 0.50, 0.75, 1.00} X K, where K = 3.7 X 10-° for (b), 4.3 X 10-8 for (d), and 3.4 X 10-7J
kgt for (f). The background is an image plot of the spanwise-averaged density field.

so that those scales begin the three-dimensional growth
phase at lower amplitude. Nevertheless, we conclude
that the growth rate spectrum of SP gives an unsatis-
factory description of the present results, even in qual-
itative terms. In particular, there is no evidence here for
ultraviolet catastrophe in Holmboe waves.

The x—z structure of the three-dimensional motionsis
shown in Figs. 11b,d,f via contour diagrams of the ki-
netic energy K,, superimposed on the spanwise-aver-
aged density. The x—z dependence seen here is quali-
titively consistent with the predictions of SP. Early in
the three-dimensional growth phase (Fig. 11b), second-
ary circulations are concentrated in the lower billow of
the Holmboe wave. Thisasymmetry reflects someslight,
random asymmetry in the particular noise field intro-
duced into this flow realization at t = 0. By t = 4807
s (Fig. 11f), K, has grown by two orders of magnitude
and has become much more symmetric. For the most
part K, is concentrated in the billows of the Holmboe
wave. Also evident, however, is a highly localized dis-
turbance (slightly left of center in Fig. 11f) associated

with the small overturn in Fig. 8c. This structure evi-
dently corresponds to the intensely localized convective
instability found by SP (their Fig. 10, e.g., t = 120,
160).

The density gradient spectrum shownin Fig. 11e pro-
videsaparticularly stringent test of the spatial resolution
of the density field (cf. discussion in sec. 2b), as it
corresponds to an advanced state of turbulence devel-
opment. The fact that the spectrum drops smoothly over
several orders of magnitude at the highest wavenumbers
shows that the density field is well resolved.

¢. Mixing

Mixing is usefully quantified in terms of an irrevers-
ible increase of potential energy (Winters et al. 1995;
Winters and D’Asaro 1996). The computation of the
irreversible potential energy increase begins with the
identification of the minimum potential energy state of
a given density distribution. In this state, density varies
only in the vertical, and its vertical gradient is negative
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Fic. 12. Mixing in KH and Holmboe waves. (a), (b) Total potential energy P, (solid curves); background potential
energy P, (dashed curves), potential energy increase in the absence of fluid motions [ d(t') dt’ (thin, solid curves).
(c), (d) Viscous dissipation rate e (solid); rate of irreversible potential energy creation by fluid motions (dashed). (e),
(f) Instantaneous flux coefficient. Horizontal lines indicate I'; = 0.2. Some curves are jagged because data were not
saved frequently enough to thoroughly resolve the fast oscillations.

semidefinite. The associated (volume averaged) poten-
tial energy is defined, up to an additive constant, by

g [~
f 2p4(2) dz,
pO Lz 0

in which p,(2) is the density profile defining the equi-
librium state. The total (volume averaged) potential en-
ergy is

P, = (21)

9
Pt = —\/ f ZP(X1 Y, Z) dV, (22)
Po
where the integral is over the computational volume.
The available potential energy isjust the difference: P,
=P, — P,.

A fluid volume obeying the boundary conditions (5)—
(8), at rest in the equilibrium state, gains potential en-
ergy by molecular diffusion at the (volume averaged)
rate

gk _

O]
P bo‘:t’tom

o(t) = — (23)

0%z
in which p |, denotes the net difference in horizon-
tally averaged density between the upper and lower

boundaries (Winters et al. 1995). The energy source for
this increase in background potential energy is the in-
ternal energy of the rest state.

Total and background potential energies for the KH
and Holmboe cases are shown in Figs. 12aand 12b. Note
that the growth of P, is monotonic. In contrast, P, fluc-
tuates in response to large-scale wavelike motions, es-
pecialy in the Holmboe case (Fig. 12b). In each case,
the total potential energy growth is more rapid than the
irreversible component in the early part of the simulation.
However, P, grows more rapidly once the flow has be-
come fully turbulent, and P, and P, become equal once
turbulent motions have decayed. Thin, solid curves on
Figs. 12a and 12b show the time integral of ®. This
represents a substantial contribution to the potential en-
ergy increase in these low Reynolds number flows. By
the time P, and P, become nearly equal, the rate of po-
tential energy increase is only negligibly larger than ®.

To calculate the mechanical efficiency of mixing, we
would relate the rate of irreversible potential energy
increase to the rate at which kinetic energy is supplied
to the turbulence by the mean flow. Unfortunately, there
is no way to distinguish latter from the reversible trans-
fer of kinetic energy between the mean flow and wave-
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like, nonturbulent motions. Instead, we represent mixing
“efficiency’” by the flux coefficient T",, which relates
the rate of irreversible potential energy increase to e,
the rate at which kinetic energy is lost to viscous dis-
sipation (Moum 1996), namely,

dP,/dt — @
r,=—t——.
(€)

The dissipation rate is given explicitly by e = » 23_,
(u;; + u;;)?/2 and angle brackets denote a volume av-
erage over the computational domain. In this compu-
tation, & is subtracted from dP,/dt in order to isolate
the rate of irreversible potential energy increase asso-
ciated with fluid motions. The subscript i on I'; indicates
the instantaneous value, as opposed to the ratio of net
potential energy gain to net dissipation (Smyth et al.
2001).

In both simulations, we observe an initial phase in
which dP,/dt — ® and (e) arerelatively small and nearly
equal (Figs. 12c,d). This is the period of laminar, two-
dimensional growth. The transition to turbulence is
marked by a dramatic increase in (€), accompanied by
a much smaller increase in dP,/dt — ®. As turbulence
decays, the two quantities decrease approximately in
proportion to one another.

The approximate equality of dP,/dt — @ and (e) dur-
ing the two-dimensional growth phase is expressed in
values of the flux coefficient near unity. A central result
of this work is that Holmboe waves, despite their dra-
matically different physical character, exhibit values of
I'; near unity in the preturbulent phase just as do KH
waves (Figs. 12¢f). In fact, values of I, are slightly
larger in the Holmboe case. Because of its low growth
rate, the phase of highly efficient preturbulent mixing
lasts much longer in the Holmboe case than in the KH
case.

Close inspection shows that peaksin I'; occur just as
the upper and lower vortices pass. We suspect that this
is because the close interaction of the vortices creates
exceptionally sharp density gradients in the intervening
fluid (e.g., Figs. 7a,c). The localized instability seenin
Figs. 8b and 8c may represent a significant source of
mixing at this stage in the oscillation cycle.

With the transition to turbulence, I', decreases to near
0.2 in both flows. In the KH case, this decrease is only
temporary; I'; begins to increase again at t = 2800 s
and reaches 0.5 by the end of the simulation. By this
time, I'; has become a ratio of small numbers, and the
large values may be due in part to roundoff error. An-
other reason for the increase, however, is the emergence
of the secondary Holmboe wave (Figs. 8c,d).

Comparison of Figs. 12a and 12b reveals a second
significant result of this study. Linear theory suggests
that Holmboe waves will be less effective at mixing the
fluid than KH waves because the instability they grow
fromisrelatively weak. Here, we find that the Holmboe
wave does grow more slowly than the KH wave, but
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FiG. 13. Potential energy gain due to fluid motion in KH and Holm-
boe waves. Thick sections of curves represent the preturbul ent phase.
This phase is taken to end the first time that I"; drops below 0.3 (cf.
Fig. 12c).

that the net amount of mixing (i.e., irreversible potential
energy gain) is quite comparable. In fact, by the time
turbulence has decayed (i.e., when P, and P, become
equal and dP,/dt becomes indistinguishable from &),
the Holmboe wave has accomplished somewhat more
potential energy increase than has the KH wave. By
virtue of its rapid growth, the KH instability quickly
consumes the kinetic energy stored in the mean shear.
The Holmboe wave, in contrast, grows more slowly but
as a result lasts longer, and ultimately accomplishes a
comparable amount of mixing.

This comparison becomes more vivid when potential
energy gain dueto fluid motionisisolated by subtracting
out the time integral of ® (Fig. 13). Although the KH
wave mixes the fluid more rapidly, the net potential
energy gain attributable to the Holmboe wave is about
twice as large as that due to the KH wave. In each case,
dlightly less than one half of the potential energy gain
due to fluid motions occurred before the transition to
turbulence.

Net changesin mean profilesfor the KH and Holmboe
cases are shown in Fig. 14. Initial velocity profiles (thin
curves) are the same in both cases, and in both cases
the shear layer spreads considerably during the simu-
lation. Spreading is greater in the Holmboe case, due
in part to the longer duration of the run. Initial density
stratification near z = 0 is greater in the Holmboe case
than in the KH case and remains greater as the flows
evolve. However, density mixing away from z = 0 is
more similar in the two cases; both Holmboe and KH
instabilities alter the density profile significantly out to
z ~ *0.2 m. Thisis aresult of strong plume gection
eventsin the Holmboe case, which arein turn associated
with the tendency toward reduced Richardson numbers
on the edges of the shear layer as illustrated in Fig. 2.
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Fic. 14. Changes in mean velocity and density profiles due to KH and Holmboe instabilities. Thick (thin)
curves indicate final (original) profiles.

Even in the KH case, the shear layer spreads more rap-
idly than does the density interface, accounting for the
Holmboe-like behavior seen in the late stages of that
simulation (Figs. 5c¢,d). However, this flow retains a
significant feature of turbulent KH waves that appears
not to develop the Holmboe case: athin region of well-
mixed fluid near z = 0. This tendency for enhanced
mixing of mass near the centerline has been noted pre-
viously by (e.g.) Scinocca (1995) and Caulfield and Pel-
tier (2000), and was found by Smyth and M oum (2000b)
to lead to the generation of new KH billows long after
turbulence from the original event had decayed.

4. Conclusions

We have compared the evolution of turbulence in two
stratified shear layers that differ only in the thickness
of the density interface. (Note that this differs from the
approach usually taken in laboratory experiments, in
which the bulk Richardson number is varied by varying
Ap; eg., HI.) One case yields KH instability, whose
mixing characteristics are relatively well understood.
The second case yields Holmboe waves, which have not
been simulated in three dimensions before now. The KH
billow simulated here became three-dimensional via a
mechanism very similar to the secondary instability pre-
dicted by KR After the KH billow had reached large
amplitude, it evolved into a Holmboe-like standing
wave. This transition is expected to be common in high

Prandtl number fluids, a result that emphasizes the po-
tential importance of Holmboe waves in the ocean.

The Holmboe wave was found to develop turbulence
despite the low growth rate of the primary instability.
Secondary stability analysis of Holmboe waves at |ower
Ri, (SP) predicted some features of the transition to
turbulence in the Holmboe wave simulated here, but
significant differences are al so apparent. L oop structures
in the density field associated with hairpin-like vortices
are a conspicuous feature of turbulent Holmboe waves.
These structures are initiated by secondary instabilities
(in one case this resembled the localized convective
instability described by SP) and grow to large amplitude
via vortex stretching.

Our main objective has been to compare the Holmboe
and KH waves in terms of irreversible potential energy
gain. This comparison has led us to two significant con-
clusions.

1) Despite their very different spatial structure, Holm-
boe waves exhibit highly efficient mixing in the lam-
inar growth phase that precedes the transition to tur-
bulence just as do KH waves. This tends to confirm
our expectation that high mixing efficiency in the
preturbulent regime is characteristic of awide range
of unstable shear flows. High efficiency appears to
be a result of the coherence of the strain field in
laminar flow as compared with turbulent flow. Tur-
bulent strain fields tend to be stronger, but they are
also highly chaotic and therefore unable to advect
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the density gradient into the optimal orientation for
mixing (Smyth 1999). At the same time, the high
strain rate means that kinetic energy is dissipated
rapidly by viscosity. Laminar strain fields, though
weaker, are relatively steady and are therefore able
to compress density gradients effectively while min-
imizing viscous dissipation.

2) Although they result from a relatively ““weak” in-
stability (in terms of linear growth rate), Holmboe
waves mix the fluid at least as effectively as do KH
waves. This suggests that the traditional focus on the
fastest-growing modes of linear theory is not always
appropriate. Instability in stratified shear flowsisthe
mechanism by which an unstable mean flow adjusts
to a stable state. This adjustment process invariably
involves some degree of mixing, as a part of the
kinetic energy shed by the mean flow is converted
irreversibly to potential energy. The remaining ki-
netic energy is lost to viscosity (or, in other situa-
tions, radiated as waves). The net amount of mixing
depends not on the vigor of the linear instability, but
rather on the fraction of mean flow kinetic energy
that winds up as potential energy. A slowly growing
instability may spend more time in the highly effi-
cient preturbulent state and thus, given sufficient
time, mix the fluid more completely than does an
instability that extracts mean kinetic energy rapidly
but wastes most of it. In other words, Holmboe in-
stability may mix effectively not despite its low
growth rate but because of it.

5. Future work

The work described here must be extended in several
ways to attain a comprehensive understanding of Holm-
boe instability and its role in ocean mixing. The sec-
ondary stability analyses of SP must be extended con-
siderably if we are to understand the transition process
in Holmboe waves in terms of linear modes. In addition,
nonlinear studies are limited in several respects due to
finite computational resources, as we now discuss.

Our simulated flows have devel oped significant struc-
ture at the largest scal es permitted by the boundary con-
ditions, suggesting the possibility of undesirable bound-
ary effects. In the streamwise direction, thisis unlikely
to be a problem: upscale energy cascade via KH vortex
pairing happens only when stratification is much weaker
than that used here (e.g., Klaassen and Peltier 1989;
Smyth and Moum 2000b), and two-dimensional tests
indicate that Holmboe waves do not pair (at least not
in this region of parameter space). In the spanwise di-
rection, an extended domain would be preferable. This
has not been possible with the resources presently avail-
able. However, auxiliary simulations run with L, halved
yielded essentially the same results seen here: transition
to turbulence in both KH and Holmboe cases, hairpin
vortices, efficient mixing in the preturbulent phase and

SMYTH AND WINTERS

709

net potential energy gain greater in the Holmboe case.
In the vertical, some gjection events occurring late in
the Holmboe simulation encountered the boundaries at
z = *L,/2, but it seems unlikely that these interactions
influenced the rest of the flow.

The Reynolds numbers achieved in the present work
lie at the low end of the range of values for turbulent
events in the ocean interior (Smyth et al. 2001). They
are considerably smaller than those occurring in ex-
change flows and river outflows and are orders of mag-
nitude below the values at which standard theories of
turbulence apply. Future simulations will use a newly
developed numerical model in which the scalar field is
discretized on a finer grid than the velocity fields, op-
timizing the use of computer memory for high-Prandtl-
number flows. While this gives access to higher Reyn-
olds numbers, values will remain at the low end of the
geophysical range for the forseeable future. We do not
believe, however, that the main results of the present
study are likely to be sensitive to Reynolds number. The
evolution of I"; has been checked explicitly for Reynolds
number dependence by Smyth et al. (2001) for the case
of KH waves, and no such dependence wasfound. There
is no reason to expect that the Holmboe wave will differ
in this regard. Similarly, there is no reason to expect
that the relative effectiveness of Holmboe and KH
waves at mixing the fluid should depend upon Reynolds
number. To summarize, future studies must employ larg-
er domains and higher Reynolds numbers as resources
permit, but it is unlikely that such studies will alter the
conclusions reached here.

The present comparison has covered only a single
point in the Holmboe wave parameter space; results may
differ at different values of Ri, and R. Also, we have
assumed that the initial flow is symmetric, in the sense
that the center of the stratified layer coincides with the
center of the shear layer. Thisisaspecial case of amore
general situation in which the centers of the sheared and
stratified layers may be offset from one another (Haigh
and Lawrence 1999). As the offset increases from zero,
the gradient Richardson number decreases in the half
of the shear layer away from the stratified layer, and the
component of the disturbance that is centered in that
region thus becomes stronger. When the offset becomes
large, the stronger disturbance takes the form of a KH
instability with small Ri,. The results of Staquet (2000)
suggest that mixing efficiency in KH waves increases
as Ri, decreases, and therefore that the limit Ri, — 0
is singular (because mixing efficiency must vanish in
unstratified flow). Dependence of mixing physics on
Ri,, R and asymmetry must be explored before the pre-
sent results can be applied with confidence to more gen-
eral classes of oceanic flows.
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