
Weatherlnfo: A Weather Information

System with a Web Service

Wen Xiong

Dept. of Computer Science
Oregon State University

Corvallis, OR 97331
xiongwe@cs. orst. edu

Abstract

With the rapid development of Internet technology and popularity of Web solutions, the

Internet has become a major means for collecting information. The Weatherlnfo system

is conceived and developed to provide weather data for end users in tabular and graphic

formats over the Internet. In order to make data retrieval and manipulation easier,

W eatherlnfo uses a relational database to store the weather data extracted from the

Website run by the U.S. National Weather Service. The system also includes a Web

service implemented in ASP .NET to support data exchange. This Web service offers

several methods for client applications to retrieve the weather data.

1

Contents ... 2

Acknowledgements ... 3

1. Introduction .. . 4

2. Overview of Weatherlnfo ... 6

2.1. WeatherDataCollector. .. 6

2.2. WeatherData Database .. 6

2.3. Weatherlnfo Web Application ... 7

2.4. Weatherlnfo Web Service .. 9

2.5. WeatherClient 9

3. Design and Implementation of Weatherlnfo 10

3.1. WeatherDataDatabase ... 10

3 .2. W eatherDataCollector 14

3.2.1. Retrieving Weather Data 14

3.2.2. Regular Expressions 15

3.2.3. Inserting Weather Data 18

3.2.4. Updating the Database .. 19

3.3. Weatherlnfo Web Application .. 20

3.3.1. The Graph Drawer Component 21

3.3.2. The Weather Display Component ... : .. 26

3.3.2.1. Displaying Graph 26

3.3.2.2. Displaying Table .. 28

3.4. Weatherlnfo Web Service ... 29

3.4.1. Returning Data Table 29

3.4.2. Returning Data Graph 30

3.5. WeatherClient 32

4. Conclusions and Future Works .. . 33

Reference 34

2

Acknowledgements

The author would like to thank Toshi Minoura, Prasad Tadapalli, and

Jeffrey Steiner for many helpful comments on this work.

3

1. Introduction .

The U.S. National Weather Service is a government organization that collects weather

data from a wide variety of sources. Those data are provided in textual form on the Web

pages. To make them easy to comprehend, we developed the Weatherlnfo system.

Weatherlnfo gathers the desired weather data, stores them in a relational database,

retrieves the requested weather data from the database, and produces Web pages to be

sent to Web browsers. The system allows a user to obtain the weather data either as a

graph or as a table based on a request submitted from a Web browser. In the request, the

city, the time period, and the time interval for the data to be retrieved can be specified.

Furthermore, a Web service of this system provides a procedural interface for remote

client programs. The W eatherlnfo Web Service is a .NET Web service that supports

Simple Object Access Protocol (SOAP). This Web service describes its interface in Web

Service Description Language (WSDL). The system allows client applications written in

different programming languages on different platforms to talk to the Web service.

The overview of the Weather Info is described in Section 2, and the implementation

details of its five components are discussed in Section 3. Sections 4 concludes this report.

4

2. Overview of Weather Info

The Weatherlnfo system allows end users to obtain-weather data easily and promptly.

This system uses a Web service to support data exchange. Client programs can easily

process the retrieved data by a procedural interface provided by the Web service.

The system consists of five modules shown as Figure 2.1: WeatherDataCollector,

WeatherData, Weatherlnfo Web Application, Weatherlnfo Web Service, and

W eatherClient.

0
Weather Web Server

Data Weather data
as a table

Relational Weatherlnfo
Database Web

Application
HTTP

Weather data

WeatherData as a graph

Collector
XML

Weather Info
Web Service SOAP

Weather
Data Web Service

0 0 0
Figure2.1. Architecture of the Weatherlnfo System.

5

Web

0

2.1 WeatherDataCollector

WeatherDataCollector gathers weather information from the Web site run by U.S.

National Weather Services. The weather data for major cities of all the states are

available from this site.

WeatherDataCollector uses .NET class WebRequest to get weather records with

HTTP requests. The retrieved weather data are extracted with regular expressions and

converted into an XML file. WeatherDataCollector then executes Transact SQL

function OPENXML, to read this XML file and uses a SQL stored procedure to insert the

data into the database in the batch mode. WeatherDataCollector is activated once a day

by the Window 2000 job scheduler.

2.2 WeatherData

A relational database named WeatherData was developed with Microsoft SQL Server.

This database stores the weather data extracted by WeatherDataCollector. Figure 2.2

illustrates the schema of the database. The WeatherData database contains five tables:

City,HourlyWeather,DailyWeather,MonthlyWeather,and

YearlyWeather. The attributes in bold font are the primary keys and the attributes

underscored are foreign keys.

6

highTemp

lowtemp

avgtemp

highTemp

lowtemp

avgtemp

weatherTime citylD avgPcP avgPcP citylD weatherTime

Hourly Weather Daily Weather

*
citylD

1 I

cityName City weather URL

* *

Monthly Weather Yearly Weather

highTemp

lowtemp

avgtemp

highTemp

lowtemp

avgtemp

weatherTime citylD avgPcP avgPcP citylD weatherTime

Figure 2.2. Schema of the WeatherData Database.

2.3 Weatherlnfo Web Application

In order to enable end users to directly view the weather data managed by Weatherlnfo,

a Web application was implemented. The Weatherlnfo Web Application generates a

table and a graph of weather data for each request submitted from a Web browser.

The sample of the Weatherlnfo Web Application is shown in Figure 2.3.

7

Weather Stations

~! Crazy Peak

Time Period

e;y~!

From ~@QE 2003

To ~20 -

Display Options

Gl e v, ,Gr.aph

O ·ev Tab)e

Weather Stations

Time Period

By~

t From ~~~1
ITo ,~~r Ell~~

Display Options

O ,ev Graph

@ ·11vTable

I Dis11lay

2003 3
2003 3
2003 3
2001 3
2003 3
2003 3
2003 3
20'd3' 3
2003 3
2003, 3
2003 3·
2003 3
2003 4
2003. 4
~003 4
2003 4
2003 4
2003 4
~003 4
2003 4-
2003 4
2003 4 .
2003 4
2003 4
2003 4
2003 4
2003 4
2003 4
2003 4
2003 4 ,
2003 4
2003 ~

.. ,.
20 82,7,5
21 ?4.88
22 83.13
23 80.24
24 84.13
25 85.11
26 ~2.25
27 83.71
28 88.46
29 93.69 1

30 93.00
31 81.75 ~-
1 78.70
2 75.00 "•

3 74.50
4 71.63
5 69.17
6 68.00

..

7 7.1.79
8 70.79 -
9 172,08
10 71.67
11 68.42
12 66:76
13 66.00
14 66,58

'
1~ 67.13
16 68. 13
17 67.67
18 68,46
19 69,25
20 66.71

Weather Information
, . .. ,. . .

54.08 68.42 1.94
: 54.71 69.79 . L99

54.00 68.56 2.48

- 51.35 ., . fS.79 2.79
53.88 69.00 . 2.79
54.83 ! 6').97 . 3.46
53.29 •, .r 67-77 4.57
54.33 ,_ ,r:·. 69.02 .-

'
4,63 ..

57.50 72.98 4.64
60.00 176.85' 4.64
57.00 7:,.00 4.64
50.63 I: 66.19 4.80
49.70

.
64.20

,:
4.90 " •• I

46.~5 i 60.77 4 .98
45.78 ' 60.14 5.21
42.63 . 57.13 5.60
4·0.29 54.73 ' 5.80
39.83 ' 53:91 ' 5.95
41.50 56.65 6.07
4'1.67 56:23 " 6..07
42.58 57,·33 ' 6.07 ,
42.76 57'. 21 6.07
40.13 :- 54.~7 - ..

6.,1 0 ~ ~

39.14 ,. .'' • 52.~95 6~55
38.19

.
52.10

-
6.85

38.71 .. 52,65 6;98
· 39.33 - 53, 23 •. 6.99.

'3CJ.67 5?.90 . ' .. 7 .04 ..
39.38 ~ 53:.52 7, 11
39.63 . 54~04 7.J2
39.63 t ~.44 7.12
38.58

..
52,65 7. 12

Figure2.3. Outputs of the Weathei-Info Web Application.

8

n.

'

'
u

'
~

'
1

.. --
..

,f

' ,- ' ,
,.

(

' .
•.

,-
., ,

'
..

-

2.4 Weatherlnfo Web Service

A Web service is a remotely-accessible application whose interface is defined in XML

[3]. A client software can interact with a Web service through method calls supported by

a proxy object. XML-based messages are passed by SOAP.

The Weatherlnfo Web Service component of the Weatherlnfo system is implemented

with ASP .NET. This component returns weather information as graphs and tables. A

Web service client can obtain those data by calling the following methods:

ReadTempGraphByDay(), ReadTempGraphByMonth(),

ReadTempGraphByYear(), ReadPcpGraphByDay(),

ReadPcpGraphByMonth(), ReadPcpGraphByYear(),

ReadXMLGraphByHour(), ReadXMLGraphByDay(),

ReadXMLGraphByMonth(), andReadXMLGraphByYear().

2.5 WeatherClient

In order to test the Weatherlnfo Web Service, a Web application named WeatherClient

was created. WeatherClient invokes methods provided by Weatherlnfo Web Service

and displays the data returned by those methods.

In Figure 2.4, it shows a graph and a table created by Weatherlnfo Web Serivce from

the data returned by method ReadTempGraphByDay () and ReadXMLByDay () .

9

~
·-- -~~

' ·•

'~ Temp -~owTem.p :avgTemp :a vgPcp
~80_04166~6660:6 667)49. 125 .. ·64 _5833333333333 112.2 9
'81 ~-541 666666 66ol ,9 0666666 6-666 67 65 6041-666666667 Ti2-29 __ _
s2~388888888888~lso.z777777777778 66-3333"333333333h 2.29 - --- ----
83_ 7916666666667!:S0.9:58333'33333 33. 67 _ 375. . 1 2. 29
J 9 .3_?.?_ ________ @9'. 1 6_6666666?667;64: 2 7 08333333:_:B3 j1 2 ,2,9 _ -,- __
7 5 _0416666666667:47.9583333333333 61-5 11:2. 2 9833 33333333
7 7 _2857142857 143'. . 9'.3333333333333.6.3 .. 3095238095238 '1 2.3

83--41-6~6:6'?~?_'?15~ 7 j:5~.~?·83_333333333: 67- S'375 ... , l 2_:?
84-3333333333333-15 3._20833333333 33 62-77083 3 333 3333 , 12. 3
84.4 11764705 8823'53. 294 1 1764 7 0 5 88 68, 85294 1 176470 6 l 2 .-3----_______ _,

8.Cl :52 66 1 2.31
~ ··-· - ---•

78. 0952380$)'5238 1 j51 .0476 19'04761 9 l 6 4 _ 571428571 4 :236 •1 2 .31
8-i-4 t 6666666-6667ls2.7o83333333333 c:··ioc;2:5 -- .12.31
·ii-_5 --- ------153."1533333333333.6 7 .4791666666667 \12.31-

84.4.2857142 8-5 7141.5.5 69. 7142857142857 ,1 2.31
g:s_ 0~33333333333(.56. 62 5 _ 7 2354 l 6666-6666_7_'_1_2_·. _3_1 ______ _,_

?_ ! -"!_1_~~2.~§~666 ~ 5-~ 1 666666_666667 _74 .791~66666666711 2.31

I 1

:Q.rt 7 '1~~~ _-".:.:7.~?:3~~~;~R Ll ~ ~"::;:'2; ~ ~:""-2; ~ ~~ 7.d. ~R~~.~ ~~ -~~"::.~~~ ~ - ,-'-~-'-/ - ~_~'i -------'------------

Figure 2.4. A Graph and a table obtained from the Weatherlnfo Web Service.

10

3. Design and Implementation of Weather Info

The WeatherData database, WeatherDataCollector, Weatherlnfo Web Application,

Weatherlnfo Web Service, and WeatherClient are the major components of the

Weatherlnfo system. In this section, we describe the implementation details of these

components. Weatherlnfo is implemented with ASP.NET, including ADO.NET.

3.1 WeatherData Database

The WeatherData database has five tables. Figure 3.1 through 3.5 lists the attributes of

these tables. In these tables, "PK" indicates a primary key, and "FK" is a foreign key.

Attribute Name Description Data Type Key

cityID Identification number of a city int (4) PK

cityName Name of the city varchar (50)

state Name of state char (2)

weatherURL URL address of weather station of city char (200)

Figure 3.1. The Attributes of Table City.

Figure3.1 gives the attributes of table City. The weather data values are stored in table

HourlyWeather,DailyWeather,MonthlyWeather,andYearlyWeather.

The City table and others are related by ci tyID.

11

Attribute N a'me Description Data Type Key

weatherTirne Time value of the weather datetime (8) PK

avgPcp Average precipitation value float (8)

highTernp Highest temperature value float (8)

lowTernp Lowest temperature value float (8)

avgTernp Average temperature value float (8)

cityID Identification number of a city int (4) PK,FK

Figure 3.2. The Attributes of Table HourlyWeather.

Attribute Name Description Data Type Key

weatherTirne Time value of the weather datetime (8) PK

avgPcp Average precipitation value float (8)

highTernp Highest temperature value float (8)

lowTernp Lowest temperature value float (8)

avgTernp Average temperature value float (8)

cityID Identification number of a city int (4) PK,FK

Figure 3.3. The Attributes of Table DailyWeather.

12

Attribute Name Description Data Type Key

weatherTirne Time value of the weather datetime (8) PK

avgPcp Average precipitation value float (8)

highTernp Highest temperature value float (8)

lowTemp Lowest temperature value float (8)

avgTernp Average temperature value float (8)

cityID Identification number of a city int (4) PK,FK

Figure3.4. The Attributes of Table MonthlyWeather.

Attribute Name Description Data Type Key

weatherTirne Time value of the weather datetime (8) PK

avgPcp Average precipitation value float (8)

highTernp Highest temperature value float (8)

lowTernp Lowest temperature value float (8)

aAvgTemp Average temperature value float (8)

cityID Identification number of a city int (4) PK,FK

Figure3.5. The Attributes of Table YearlyWeather.

13

3.2 WeatherDataCollector

The WeatherDataCollector periodically extracts weather information from the Web site

of the U.S. National Weather Service and stores those data in the WeatherData database.

The WeatherDataCollector is implemented as a class DataService. The data

collection is performed in the following three steps:

(1) The weather information is retrieved from the Website by an instance of .NET

class WebRequest.

(2) The desired data in the retrieved pages are extracted with regular expressions and

then converted into XML.

(3) A Transact SQL function OPENXML and SQL stored procedures insert the data in

XML representation into the WeatherData database.

The scripts performing the above operations are stored in the MSSQL database server.

They are executed by the MSSQL job scheduler.

3.2.1 Retrieving Weather Data

The WeatherDataCollector uses .NET class WebRequest to retrieve weather data.

The source code performing this operation is given in Figure 3.6.

14

1 protected ArrayList web_site = new ArrayList();
2 private StreamReader objReader;
2 for (inti= O; i < web_site.Count; i++) {
3

4

5
6

7

8

9

10

}

string sURL = . "";
sURL = web_site[i] .ToString();
WebRequest wrGETURL;
wrGETURL = WebRequest.Create(sURL);
Stream objStream;
objStream wrGETURL.GetResponse() .GetResponseStream();
objReader = new StreamReader(objStream);

Figure 3.6. Retrieving weather data with class WebRequest.

WebRequest is a class in the namespace of System. Net. It encapsulates a HTTP

request. The request can be sent from an application, such as WeatherDataCollector, to

a particular URL, such as the Web site of the U.S. National Weather Service. The method

Create () ofWebRequest creates a new WebRequest object and initializes it with

the URL of the target Website.

After the target page is obtained with wrGETURL, Stream object obj Stream is

created for reading the target page. Finally, the weather data is loaded from obj Stream

to obj Reader. ·

3.2.2 Regular Expressions

15

1
2

3

4

5

6

7

8

9

10
11
12

A regular expression allows us to seatch for a string and replace it with another string [6].

In our project, class Reg ex and its methods Replace () and Split () , are used to

find strings representing weather data and convert them into XML. This XML

representation is used by the SQL function OPENXML to insert the weather data into the

database.

Several rules for regular expressions are employed to handle occasional incorrect formats

that appear on the Web pages obtained from the Website of the U.S. National Weather

Service. For instance, <tr> is sometimes be incorrectly displayed as <tr, even though a

browser displays the correct information. An example of regular expressions that extract

the desired weather data is shown in Figure 3. 7.

string sLine =
while (sLine

\\ II •
I

objReader.ReadLine()) != null) {

}

if (sLine.Length >120 && sLine.Length < 160) {
sLine Regex.Replace(sLine, @"<TD NOWRAP>. *Gust" "");
sLine Regex.Replace(sLine, @"</TD><TD

sLine

sLine
sLine
sLine
sLine
sLine

NO WRAP> . * < TDNOWRAP >" , " 0") ;
Regex.Replace(sLine, @"<TD NOWRAP>.*<TD NOWRAP>",

Regex.Replace(sLine,
Regex.Replace(sLine,

= Regex.Replace(sLine,
Regex.Replace(sLine,

= Regex.Replace(sLine,

" 0");
@" < TD > II I " II) ;

@"</TD>" I "II) ;

@" <TR>" I \\II) ;

@" < I TR> II I " II) ;

@"<TD VALI. *>", "");

Figure 3.7. Regular expressions for extracting weather data.

16

In addition, other regular expressions are used to detect missing weather data. The

detected missing data will be replaced with the most current data to produce a best

estimate. If we couldn't find the correct value of the most current data, the detected

missing data will be replaced by an empty string. The procedure to replace missing data

is performed by looping through all the data record whenever WeatherDataCollector

imports the data from the Website. The code that detects and replaces missing high

temperature values is shown in Figure 3. 8.

1 string[] results;
2 string prevHighTemp = '"';
3 protected ArrayList input_line = new ArrayList();
4 for(int j = input line.Count-1; j >= 0; j--) {
5 if(input line[j] .ToString() != null &&

input 1 i;:e [j] . ToString () ! = " ") {
6 results= Regex.Split(input_line[j] .ToString(), @" ");

7 string strHighTemp = results[colHighTemp];
8 string[] nextResults;
9 if (strHighTemp.StartsWirh("M")) {
10 string nextHighTemp = "M";
11 int next= j - 1;
12 while (nextHighTemp.StartsWith ("M") && next>= 0) {
13 nextResults = Regex.Split(input line[next] .ToString(),

@" ") ;

14
15

16
17
18
19

}
}

}

nextHighTemp
next--;
}

nextResults[colHighTemp];

if (next< 0 && nextHighTemp.StartsWith("M"))
strHighTemp preHighTemp;

else
strHighTemp nextHighTemp;

Figure 3.8. Using regular expression to detect missing high temperature value.

17

3.2.3 Inserting Weather Data

In order to perform data insertion, we created stored procedure read_ xml as Figure 3.9.

This procedure uses OPENXML, sp _ xml _preparedocument, and

sp_xml_removedocument. sp_xml_preparedocumentand

sp_xml_removedocument are system stored procedures ofMSSQL Server 2000.

1 CREATE PROCEDURE read xml
2
3 AS

@strXML ntext

4 DECLARE @iDoc int
5 EXECUTE sp_xml_preparedocument @iDoc OUTPUT, @strXML
6 INSERT INTO HourlyWeather
7 SELECT* FROM OPENXML(@iDoc, '/NewDataset/WeatherData', 2)

WITH HourlyWeather as x
8 WHERE (x.weatherTime NOT in (SELECT weatherTime FROM

HourlyWeather and x.CityID in (SELECT CityID FROM
HourlyWeather)

9 EXEC sp_xml removedocument @iDOc
10 GO

Figure 3.9. Stored procedure read_xml.

In read_ xml, sp _ xml _preparedocument converts weather data in XML to

strXML, and treats the strXML as a string input parameter. Then the procedure returns

strXML as a handle iDoc to an internal representation. When the handle is passed to

OPENXML, OPENXML retrieves weather data as a rowset. The SELECT statement

retrieves all the columns in this rowset, so that INSERT statement can insert the weather

data into the WeatherData database.

18

The stored procedure sp _ xml _preparedocument loads and stores the XML

document in the SQL Server cache. Once the internal representat~on of the weather data

in XML is no longer needed, the memory is rele~sed by system stored procedure

sp_xml_removedocument.

As read_ xml inserts multiple rows of weather data into a database table in the batch

mode, it can insert the data faster than when those data are inserted by SQL INSERT

statement one at a time.

read_xml is executed in the WeatherDataCollector as shown in Figure 3.10.

sqlcmd.Connection = sqlconn;
sqlcmd.CommandType = CommandType.StoredProcedure;
sqlcmd.CommandText = "read_xml";
sqlcmd.ExecuteNonQuery();

Figure 3.10. Executing the read_ xml stored procedure.

3.2.4 Updating the Database

In order to insert data into WeatherData periodically, the SQL job scheduler is set up.

The scheduled jobs are written as SQL statements and are executed daily, monthly or

yearly. The SQL statement executed daily is shown in Figure 3.11.

19

insert into DailyWeather
select Top 100 PERCENT HourlyWeather.cityID

min(HourlyWeather.weatherTime) as weatherTime,
max(HourlyWeather.HighTemp) as HighTemp,
min(HourlyWeather.LowTemp) as LowTemp,
avg(HourlyWeather.AvgTemp) as AvgTemp,
avg(HourlyWeather.AvgPcp) as AvgPcp, from HourlyWeather,
DailyWeather

where HourlyWeather.cityID = DailyWeather.cithID
group by HourlyWeather.cityID, Year(HourlyWeather.weatherTime),

Month(HourlyWeather.weatherTime),
Day(HourlyWeatherTime.weatherTime)

order by HourlyWeather.cityID, Year(HourlyWeather.weatherTime),
Month(HourlyWeather.weatherTime),
Day(HourlyWeatherTime.weatherTime)

Figure 3 .11. The SQL statement for daily database update.

Monthly and yearly weather data are calculated similarly by stored SQL statements

executed by the job scheduler.

3.3 Weatherlnfo Web Application

Weatherlnfo Web Application dynamically produces Web pages for weather data.

These data are displayed either as a table or a graph, according to the requests submitted

from Web browsers. A Web page generated by Weatherlnfo Web Application is shown

in Figure 3.12.

20

Weather Stations Ii ,,,-1 1 CA J;CH BAKERSFIELD lEl
Time Period

Selecting Loca~ ;:,m ~ ocii[iiiiiiiE Selecting time period

1: T o Dan£}[£1~
I --~

Beginning time l!,l Ending time

O e. y Grap~ I o" ~ To retrieve as a graph

To retrieve as a table

Weather Information

__ □□□ a Local intrane_t ,a

Figure 3.12. A Web page for retrieving weather data.

Weatherlnfo Web Application consists of two components: Graph Drawer and

Weather Display. The Graph Drawer component draws a graph for the weather data

requested. Weather Display sends the GIF image of a graph and the data table back to

the Web browser. In the following subsection we discuss the implementation details of

these components.

3.3.1 The Graph Drawer Component

Graph Drawer uses classes in the .NET Framework to generate graphs for weather data.

Graph Drawer consists of classes: Recorder and LineRecorder, where

LineRecorder is inherited from Recorder. We will now describe the fields and the

methods of these two classes.

21

Class Recorder

This class can be used to draw Line, text, rectangle graphs.

Fields

ArrayList recorderData

The values of the points needed to draw a graph are stored in this field. A point

should be an instance of class Point.

double xAxisLabelUnit

This field specifies the value of tick marks interval along the X axis.

double numDataPointsOnX

This field gives the number of data points to draw on the X axis.

double yAxisLabelUnit

This field specifies the value of tick marks interval along the Y axis.

string title

The title of the graph is assigned to this field.

string xAixsTitle

The label for the X axis is assigned to this field.

string yAixsTitle

The label for the Y axis is assigned to this field.

Color recorderColor

This field defines the color of the graph.

bool ifNegativeValues

The value of i fN eg at i ve Va 1 ue s indicates whether the data for the graph

contains a negative value or not.

22 ;;:

string frornTirne

The start time submitted by a Web browser is. stored in this field.

Constructor

public Recorder(ArrayList recorderData,

double xA.xisLabelUnit, double nurnDataPointsPerPixelOnX,

double yAxisLabelUnit, string title, string xAxisTitle,

string yAxisTitle, Color recorderColor,

bool ifNegativeValues, int type, string frornTirne)

Initializes the fields of a Recorder object.

public Recorder(ArrayList recorderDataMin,

ArrayList recorderDataAvg, ArrayList recordDataMax,

double nurnDataPointsPerPixelOnX, double yAxisLabelUnit,

string title, string xA.xisTitle, string yAxisTitle,

Color recorderColor, bool ifNegativeValues, int type,

string frornTirne)

Initializes the fields of a Recorder object.

Methods

public void drawAxisSystern(Graphics g)

Draws the title and the axes together.

public void drawTitle(Graphics g)

Draws the title for the graph.

public void drawAxes(Graphics g)

Draws the X axis and the Y axis for the graph.

23

public void drawTicksAndLabelsOnY(Graphics g)

Draws the tick marks and the labels along the Y axis.

public void drawTicksAndLabelsOnX(Graphics g)

Draws the tick marks and the labels along the X axis.

public static string MonthTransferChar(string integer)

Converts the integer representing a month to a string.

public static string MonthTransferint(string month)

Converts the character representing a month to an integer.

public static int EndDayofMonth(int month, int year)

Returns the number of days for a month specified.

public void draw (Graphics g)

Draws a graph by calling drawAxisSystem (Graphics g) and

drawRecorder(Graphics g).

public void drawTogether (Graphics g)

_Draws a graph by calling drawAxisSystem (Graphics g) and

drawRecorderTogether(Graphics g).

virtual public void drawRecorder(Graphics g)

The child class of Recorder inherits this method, which draws a graph for

recorderData.

virtual public void drawRecorderTogether(Graphics g)

The child class of Recorder inherits this method which draws a graph for

recorderDataMin,recorderDataAvg,andrecorderDataMax.

24

Class LineRecorder

Class LineRecorder is a child class of class Recorder. An instance of this class

can be used to draw a line graph. There are no addition of fields other than those in class

Recorder.

Constructor

public LineRecorder(ArrayList recorderData,

double xAxisLabelUnit, double

numDataPointsPerPixelOnX, double

yAxisLabelUnit, string title, string

xAxisTitle, string yAxisTitle, Color

recorderColor, bool ifNegativeValues,

int type, string fromTime)

Initializes the fields of a LineRecorder object.

public LineRecorder(ArrayList recorderDataMin,

ArrayList recorderDataAvg, ArrayList

recordDataMax, double

numDataPointsPerPixelOnX, double

yAxisLabelUnit, string title, string

xAxisTitle, string yAxisTitle, Color

recorderColor, bool ifNegativeValues,

int type, string fromTime)

Initializes the fields of a LineRecorder object.

25

Methods

public void drawRecorder(Graphics g)

Draws the record on the drawing object.

public void drawRecorderTogether(Graphics g)

Draws the record on the drawing object.

3.3.2 The Weather Display Component

The Weather Display component is responsible for generating a graph and a table

requested by a Web browser.

3.3.2.1 Displaying Graph

Weather Display calls the Graph Drawer component to draw the requested graph with

the data retrieved from WeatherData. After drawing the graph, the Graph Drawer

passes control back to Weather Display. The graph is sent to the browser as part of the

resulting page. Web server controls Image, Panel, and DataGrid are used by this

component. The implementation of Graph Drawer is shown in Figure 3.13.

26

1 ArrayList dataArray = new ArrayList();
2 SqlDataReader reader;
3 While (reader.Read())
4 dataArray.Add(new Point

(reader.Getint32(0) ,reader.GetDouble(l)));

5 dataArray.TrimToSize();

6 Recorder recorder=new LineRecorder(dataArray,
getXLabelUnit(dataArray),
getNumPointPerPixel(dataArray),
getYLabelUnit(dataArray),
"Daily Precipitation(mm)",
Color.BlueViolet,
ifNegativeValues(dataArray),
type,fromTime)

7 Bitmap bitmap= new Bitmap(700, 240);
8 Graphics g = Graphics.Fromimage(bitmap);
9 recorder.draw(g);
10 Resonse.ContentType = "image/gif";
11 Bitmap.Save(Response.OutputStream, ImageFormat.Gif);

Figure 3.13. Generating an image by calling Graph Drawer.

The path for the image to be displayed by a Web browser is specified in the ImageUrl

property. The implementation of ImageUrl is shown in Figure 3.14.

1 System.Web.UI.WebControls.Image graphimage;
2 graphimage = new System.Web.UI.WebControls.Image();
3 graphimage.ImageUrl =

"StreamGraph.asp?getGraph=l&cityID="+cityID
+"&fromTime="+fromTime+"&toTime="+toTime;

Figure 3.14. Displaying an image by ImageUrl.

27

3.3.2.2 Displaying Table

Class Dataset and class DataAdapter displays a table. The Dataset contains the

weather data retrieved from the database which provides a relational model that is

independent of the data source [1]. The DataAdapter provides the interface between

the Dataset and the data source.

String selQry contains SQL select statement for collecting the data from the database,

and weatherConn is the SQL connection object. The DataAdapter instance is

initialized with these two arguments. The Fill () method of the DataAdapter adds

the rows of weather data to the Dataset by using name weatherdata. The

MyDataGrid, which is a WebControl DataGrid, binds the data source specified

by the DataSource_property to it. The code for displaying a data table is shown in

Figure 3.15.

1 Systern.Web.UI.WebControls.DataGrid MyDataGrid;
2 SqlDataAdapter adpt = new

SqlDataAdapter(selQry, weatherConn);
3 Dataset ds = new Dataset();
4 adpt.Fill(ds, "weatherdata");
5 DataTable dataTable = ds.Tables[O];
6 MyDataGrid.DataSource = dataTable;
7 MyDataGrid.DataBind();

Figure 3.15. Loading data into a Dataset.

28

3.4 Weatherlnfo Web Service

A Web service provides a convenient means for exchanging data among different

applications on various platforms. Weatherlnfo Web Service allows its clients to

· acquire the weather data through this Web service. When a set of data is requested, the

Web service returns it as XML format. If a graph of the data is requested, the Web

service returns the image in binary format. The methods supported by the interface of

Weatherlnfo Web Service can be retrieved as a Web page as shown Figure 3.16.

nfo Web Service - Microsoft Internet EHplorer S~ IEf
[E.ile - ~dit :{iew .Fgvorifes Iools t!,elp

I 4!=,,e,a~ ...,,-- ~ , ...,, 0 @'l ·~ I 0,search [±)Favorites · ~Media -~ :_l, ~• ~ ~ ~ ~
I Address !@:'.J http;//localhost/users/x iong1,ven/['JewWeatherlnfo/WeatherlrifoWS/Weatherlnfo.asmx IE] ~Go Links· >>
I -

I ta
Weatherlnfo
The following operations are supported. For a formal definition, please revie w the Service Description.

• ReadTempGraphByYear

• ReadXMLByYear.

• ReadTempGraphByDay

• ReadTempGraphByM~nth

• ReadP~pGraphByY~ar

• ReadPcpGraphBy.Month

• ReadXMLByMonth

• ReadXMLByDay

• ReadPcoGraohByDay

Figure 3 .16. W eatherlnfo Web Service.

3.4.1 Returning a Table of Weather Data

29

The outputs of methods ReadXMLByHour () , ReadXMLByDay () ,

ReadXMLByMonth () , and ReadXMLByYear () are written in XML. The code

writing the output in XML is shown in Figure 3 .1 7.

1 DataAdapter adpt = new DataAdapter;
2 StringBuilder sbXML = new StringBuilder();
3 adpt.Fill(ds, "WeatherData");
4 ds.WriteXml(new XmlTextWriter(new

StringWriter(sbXML)) ,XmlWriteMode.WriteSchema);

Figure 3 .17. Producing table of weather data in an XML.

When a Web service client invokes one of above methods, the results is returned in

XML. The XML data binds with the Dataset created at the client side.

3.4.2 Returning a Graph of Weather Data

In order to pass the image to a client, Weatherlnfo Web Service converts the graph into

binary format. The conversion is perform_ed by the following steps: (1) the graph is

retrieved from its URL (line 2 - line 5 in Figure 3.18), (2) ArrayList imgArray is

declared to hold the image (line 6 - 11), and (3) the image is converted into bytes and

passed to array imageBytes (line 12 - line 14). The conversion of an image into image

bytes is shown in Figure 3.18.

30

1 string sURL;
2 sURL = "http://localhost/users/xiongwen/

NewWeatherinfo/Weatherinfo/
StreamGraph.asp?cityID=" +cityID +"&getGraph="
+(int)type + "&fromTime="+startTime + "&toTime="
+endTime;

3 WebRequest wrGETURL;
4 wrGETURL = WebRequest.Create(sURL);
5 Stream urlStream = wrGETURL.GetResponse().

GetResponseStream();
6 int curint = urlStream.ReadByte();
7 ArrayList imgArray = new ArrayList();
8 while (curint != -1) {
9 imgArray.Add(Convert.ToByte(curint);
10 curint = urlStream.ReadByte();
11
12
13

}
Byte tmpByte = O;
Byte[] imageBytes

14 return imageBytes

(Byte[])imgArray.ToArray
(tmpByte.GetType());

Figure 3 .18. Convering a graph into bytes.

Six functions ReadTempGraphByDay () , ReadTempGraphByMonth () ,

ReadTempGraphByYear(), ReadPcpGraphByDay(),

ReadPcpGraphByMonth () , and ReadPcpGraphByYear () have been defined to

return a graph of a set of weather data requested. When a Web service client invokes each

of these methods, the image in bytes is returned to the Web service client.

3.5 WeatherClient

WeatherClient is a Web service client that verifies a weather data table and a graph from

Weatherlnfo Web Service.

31

The MemoryStream instance in WeatherClient holds the binary image retrieved from

the Weather Info Web Service. If a client wants to obtain the graph in one of the

commonly used graphics formats such as a GIF, the binary image must be converted into

that format. The implementation is shown in Figure 3 .19.

1 WeatherinfoWS ws = new. WeatherinfoWS();
2 Byte[] imageBytes = ws.ReadTempGraphByDay(city·, state,

startDate, endDate);
3 MemoryStream ms= new MemoryStream(imageBytes);
4 Response.ContentType = "image/gif";
5 ms.WriteTo(Response.OutputStream);

Figure 3 .19. Obtaining a graph from W eatherlnfo Web Service.

The Content Type of Response specifies the image type as GIF. The

OutputStream property of Response is used to send the image to a Web browser. In

this approach the image is not saved as a file.

32

4. Conclusions and Future Works

As the Internet has become a major means for collecting information, we created the

Weatherlnfo system that collects weather data and displays them as graphs and tables.

The system gathers the desired weather data, stores them in a relational database,

retrieves the requested data from the database, and produces graphs and tables to be sent

to Web browsers.

The implementation of Web services is appealing for W eh-based applications on

different platforms because Web services provide a common procedural interface to be

shared by other applications. W eh-based applications use this interface to access a Web

service. The Weather Info system provides a Web service for such weather data as

temperatures and precipitation at different locations.

As the formats of graphs, only line graphs are currently supported. In the future other

formats such as bar charts and pie drafts may be supported. Weatherlnfo may be further

extended to support other data such as winds, tides, and humidity.

33

Reference:

[1] C.J.Date, An introduction to Database Systems, 6 Edition, Addison-Wesley, 1995

[2] Raghu Ramakrishnan, Database Management Systems, McGraw-Hill Companies,

1997

[3] Steven A. Smith, ASP.NET, Que, 2001

[4] Scott Mitchell, Steve Walther, ASP.NET: Tips, Tutorials, and Code

[5] Michael Stiefel & Robert J. Oberg, Application Development using C# and .Net,

PHPTR, 2002

[6] Steve Mansour, A Tao of Regular Expressions, 1999

34

