

AN ABSTRACT OF THE THESIS OF

Justin B. Goins for the degree of Honors Baccalaureate of Science in Electrical and Computer
Engineering presented on May 28, 2010. Title: Design and Development of a Low-Cost, High
Resolution, High Mobility Acceleration Data Logger.

Abstract approved: __
 Roger Traylor

 To understand the forces exerted on structures during tsunamis, model cities are

subjected to human-generated tsunamis. The study of vertical evacuation, wherein individuals

could take refuge in the upper levels of strong buildings, has resulted in a growing need for a

low cost wireless acceleration data logger. Such a device could be placed inside the walls of

scale buildings to measure the forces encountered. This document describes the development

and implementation of a suitable module. The major implication of this project is that

researchers can more accurately record the forces that are exerted on structures and better

understand the types of construction that best withstand tsunamis.

Key Words: acceleration, wireless, network, logger, IEEE 802.15.4

Corresponding e-mail address: justin.goins@lifetime.oregonstate.edu

©Copyright by Justin B. Goins
May 28, 2010

All Rights Reserved

Design and Development of a Low-Cost, High Resolution,

High Mobility Acceleration Data Logger

by

Justin B. Goins

A PROJECT

submitted to

Oregon State University

University Honors College

in partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in
Electrical and Computer Engineering (Honors Scholar)

Presented May 28, 2010
Commencement June 2010

Honors Baccalaureate of Science in Electrical and Computer Engineering project of
Justin B. Goins presented on May 28, 2010.

APPROVED:

__
Mentor, representing Electrical and Computer Engineering

__
Committee Member, representing Electrical and Computer Engineering

__
Committee Member, representing Electrical and Computer Engineering

__
Dean, University Honors College

I understand that my project will become part of the permanent collection of Oregon State

University, University Honors College. My signature below authorizes release of my project to

any reader upon request.

__
Justin B. Goins, Author

ACKNOWLEDGEMENTS

 I would like to acknowledge my senior design partners Andrew Christensen and Joseph

Gross. Our senior design project is the result of a collaborative effort and we have all worked

hard to produce the final result. This is a project in which we have all invested countless hours

and this thesis would not be possible without their help over the past nine months.

 I would also like to thank each of the people on my thesis committee. It has been my

honor to know Dr. Kartikeya Mayaram, Roger Traylor, and Don Heer. I am deeply indebted for

the inspiration and knowledge that they have provided me. It is my hope that I can someday

help others by sharing the knowledge that I have gained from them at Oregon State University.

GROUP CONTRIBUTIONS

The design presented in this paper is the culmination of nine months of work in senior

design class. Collectively, the three team members have invested nearly a thousand hours into

developing the final product. In order to divide the work equally, each member was assigned a

particular task. The following chart shows the initial division of labor.

Project Block Assignee

Battery Charger Andrew Christensen

Voltage Regulators Joseph Gross

16-bit ADC Justin Goins

Visual Indicators Joseph Gross

Transceiver Andrew Christensen

Microcontroller Justin Goins

Microcontroller Firmware Joseph Gross

Accelerometers Andrew Christensen

TABLE OF CONTENTS
 Page

INTRODUCTION .. 1

CUSTOMER REQUIREMENTS .. 2

TOP LEVEL BLOCK DIAGRAM .. 3

DESIGN INFORMATION .. 4

Battery Block .. 4

Voltage Regulator Block ... 6

Visual Indicator Block ... 8

Flash Memory Block ... 10

Transceiver Block ... 11

Microcontroller Block .. 14

16-bit ADC Block .. 17

Accelerometer Block .. 19

MICROCONTROLLER FIRMWARE ... 22

PCB DESIGN .. 25

DATA STRUCTURE IMPLEMENTATION ... 28

CONCLUSION .. 30

BIBLIOGRAPHY ... 32

APPENDICES ... 35

APPENDIX A: SCHEMATICS... 36

APPENDIX B: EQUATIONS .. 43

APPENDIX C: PCB LAYOUT ... 45

APPENDIX D: G2W10.C SOURCE FILE ... 46

APPENDIX E: EXTRA.H HEADER FILE .. 65

APPENDIX F: EEPROM_LEVELING.C SOURCE FILE ... 66

APPENDIX G: EEPROM LEVELING.H HEADER FILE .. 68

APPENDIX H: DESIGN PHOTOGRAPHS ... 69

LIST OF FIGURES

Figure Page

1. Top Level Block Diagram ... 3

2. Battery Interface Diagram.. 4

3. Voltage Regulator Interface Diagram .. 6

4. Visual Indicator Interface Diagram .. 8

5. Flash Memory Interface Diagram .. 10

6. Transceiver Interface Diagram ... 11

7. Microcontroller Interface Diagram .. 14

8. 16-bit ADC Interface Diagram .. 17

9. Accelerometer Interface Diagram ... 19

10. Microcontroller Firmware Flowchart ... 22

11. Four Layer PCB Stackup - Cross Sectional View ... 25

12. Microstrip Side Portrait .. 26

13. EEPROM Wear Leveling Implementation .. 28

LIST OF TABLES

Table Page

1. Customer Requirements .. 2

2. Battery Interface Definition.. 4

3. Voltage Regulator Interface Definition .. 6

4. Visual Indicator Interface Definition .. 8

5. Flash Memory Interface Definition .. 10

6. Transceiver Interface Definition ... 12

7. Microcontroller Interface Definition .. 14

8. 16-bit ADC Interface Definition .. 17

9. Accelerometer Interface Definition ... 19

LIST OF APPENDIX EQUATIONS

Equation Page

B-1. Minimum VREG Inductance During Buck Mode ... 43

B-2. Minimum VREG Inductance During Boost Mode .. 43

B-3. Peak Inductor Current During Buck Mode .. 43

B-4. Peak Inductor Current During Boost Mode .. 43

B-5. Resistor Values Needed To Program Output Voltage ... 43

B-6. Estimated LED Current (Per Channel) ... 44

B-7. Calculation Of Crystal Load Capacitance ... 44

LIST OF APPENDIX FIGURES

Figure Page

A-1. Voltage Regulator Schematic .. 36

A-2. Visual Indicator Schematic .. 37

A-3. 16-bit ADC Schematic ... 38

A-4. Microcontroller Schematic ... 39

A-5. Flash & Accelerometer Schematics... 40

A-6. Battery Charging & Monitoring Schematic ... 41

A-7. Transceiver Schematic .. 42

C-1. Layer 1 Copper .. 45

C-2. Layer 4 Copper .. 45

DEDICATION

This thesis is dedicated to my parents. They have provided constant support and

encouragement throughout the past four years. My mom has always placed a strong emphasis

on the importance of acquiring a good education and it is primarily her influence that has helped

me progress to where I am today. Without her help I would never be graduating with an Honors

Degree from Oregon State University. Thank you.

INTRODUCTION

 Researchers at the O. H. Hinsdale Wave Research Laboratory are currently investigating

the feasibility of vertical tsunami evacuation, in which members of the public would be

evacuated upwards in buildings, rather than being relocated horizontally to higher ground. The

use of such methods could potentially save lives by reducing the time needed for individuals to

reach safety.

 In order to better understand which building designs are best able to withstand a

tsunami, researchers are subjecting scale buildings to model tsunami waves. If small data

loggers could be embedded inside model tsunami debris and structures, the data loggers could

record the acceleration caused by the tsunami waves and by the subsequent collisions of debris.

This data could then be transmitted back to a computer system where researchers and

engineers could analyze the recorded values.

In the fall of 2007, the laboratory commissioned a group of students to design a suitable

low-cost wireless acceleration data logger. The data logger met most of the system

requirements but it exhibited several flaws that prevented it from being used in professional

research. In particular, the poor wireless transmission range (≤20 ft) and a faulty power supply

limited its usefulness.

 In September of 2010, the project was assigned to the author's senior design group. The

team was tasked with developing an improved version of the module. A list of customer

requirements was provided along with the stipulation that the device must utilize the existing

computer graphical user interface. The senior design team consisted of the author and two

additional undergraduate engineering students. The design presented in this paper is the result

of our work.

2

CUSTOMER REQUIREMENTS

The O. H. Hinsdale Wave Research Laboratory presented the senior design team with a

list of project requirements and potential improvements over the existing design. The customer

requirements are as follows:

 The final product must be able to operate under the following water and air

temperatures (1.7 - 35º C and 7.2 - 23.9º C, respectively).

 The datalogger must be waterproof to a depth of 10 feet.

 The final product should exhibit a neutral buoyancy.

 The module must be able to survive accelerations of 98.1 m/s2.

 Acceleration data must be recorded at a rate of at least 50 times per second.

 The device must begin saving acceleration measurements within 2 ms of a 5 volt pulse

issued by the Wave Lab's equipment.

Table 1: Customer Requirements

Requirement Specific Details

Air Temperature 1.7 - 35 º Celsius

Water Temperature 7.2 - 23.9 º Celsius

Buoyancy ≥ 0 N

Waterproof ≤ 10 ft below the water's surface

Impact ≤ 98.1 m/s2

Volume ≤ 12x9x5 cm (540 cm3)

Trigger Time ≤ 2 ms

Sampling Frequency ≥ 50 Hz

3

TOP LEVEL BLOCK DIAGRAM

Figure 1: Top Level Block Diagram

4

DESIGN INFORMATION

Battery Block

Figure 2: Battery Interface Diagram

Table 2: Battery Interface Definition

Signal Name Properties

V_BATT 3.7 VDC, 900mA maximum, unregulated

USB_D- 3.3 VDC USB data protocol

USB_D+ 3.3 VDC USB data protocol

USB_EN 3.3 VDC IO enable pin

BATT_SDA I2C Data

BATT_SCL I2C Clock

Design

 The UBI-5093 was chosen as the system's battery due to its small size (36mm x 54mm x

6.2mm) and exceptional power density (900mAH capacity at a nominal voltage of 3.7V) [28].

This battery is only 6.2 mm thick which allows it to fit into the case underneath the PCB

(therefore allowing a larger PCB in the same enclosure).

5

Since the battery is permanently soldered to the PCB, a charging circuit had to be

included in the design. In order to allow the battery to be charged from a personal computer, a

Mini-USB connector was used to power the charging circuit. The LP3947 IC was then chosen

because it was designed to operate from a USB port and included the ability to monitor the

battery's current voltage and temperature. Additionally, if the IC detects any abnormalities in

temperature or charge current, the charging process will halt and the user will be notified of the

error [17].

A fuel gauge circuit is included to monitor the battery's current state of charge. The fuel

gauge also allows the device to predict its RTE (run-time to empty) which can then be

transmitted back to the computer and displayed to the user. If the battery's voltage falls below

3.1V, the low battery indicators will be illuminated so that the user can be alerted to charge the

battery. The circuit was based on the data sheet available from Texas Instruments [25].

Implementation

The design for the LP3947 charging circuit was derived from the datasheet provided by

National Semiconductor [28]. The ISEL pin selects the charge current and is pulled high by an

internal pull-up circuit (selecting the 100 mA charge mode). Grounding the MODE pin sets the

chip to receive its charging power from a USB input. Additional pin states and modes can be

found on page 2 of the data sheet [17].

The BQ27541 is a fuel gauge IC made by Texas Instruments to monitor the charge status

of a Lithium-Ion battery. The reference schematic can be found on page 33 of the datasheet

[25]. The IC can be programmed via I2C to provide the state of charge, remaining capacity, RTE,

6

and the current battery voltage. The microcontroller firmware can then use this information to

implement power saving features as necessary to conserve the battery life.

Voltage Regulator Block

Figure 3: Voltage Regulator Interface Diagram

Table 3: Voltage Regulator Interface Definition

Signal Name Properties

V_BATT 3.7 VDC, 900 mA maximum, unregulated

V_ANALOG 3.3 VDC, 300 mA maximum, regulated

V_DIGITAL 3.3 VDC, 300 mA maximum, regulated

Design

The voltage regulator block consists of two switching voltage regulators with one

additional low dropout linear voltage regulator that is optimized for low noise performance (30

µVRMS typical) [26]. The additional LDO regulator was added at the advice of an HP engineer

who was present at our initial design review session. The output voltages are divided into two

supplies, one intended for analog circuitry and the other for digital circuitry. This approach helps

prevent high frequency noise generated by the digital circuitry from corrupting the analog

circuitry power supply.

7

Implementation

The TPS63031 chip was selected for its buck-boost capability and its acceptable input

voltage range of 1.8 V to 5.5 V [27] (page 1). When the battery's voltage is greater than 3.3 V,

the chip is in buck mode, stepping the voltage down to 3.3 V and delivering up to 800 mA of

current [27]. When the battery voltage falls below 3.3 V, the switching regulator will transition

to boost mode, stepping the voltage up to 3.3 V and delivering up to 500 mA of current [27].

The TPS63031 datasheet provides two equations to determine a suitable inductor value

for the switching portion of the circuit (see Equation B-1). The datasheet recommends

inductance values between 1.5 µH and 4.7 µH [27].

Texas Instruments also provides two equations to calculate the peak inductor current

(see Equation B-3). The datasheet suggests the use of the larger value between I1 and I2 [27].

Using a worst case current draw of 300 mA (calculated by allocating 50mA towards the

microcontroller, 120 mA to the LEDS, 25 mA to the transceiver, 30 mA to the Flash, and 75 mA

to the remaining circuitry) and a minimum switching frequency of 2200 KHz, the predicted peak

current draw is approximately 500 mA. Based on the datasheet's typical application circuit, a 1.5

uH SMD inductor with a 10% ISAT current of 1.8 A was chosen to fill this role. The current rating

of this inductor is quite sufficient for this application and leaves an adequate safety margin. This

current draw is also well within the battery's recommendation of 1 C (900 mA) for the maximum

discharge rate [28] (page 1).

The PS/SYNC pin controls the chip's power conservation mode and will be driven to logic

one on both voltage channels [27] (page 4). While in low battery mode, the microcontroller will

send a low (0 V) signal to the EN pin, thereby disabling V_ANALOG [27] (page 4).

8

In order to provide adequate overhead voltage for the 3.3V LDO regulator, a TPS63030

is used with its output voltage set to 3.6 V. This voltage is determined by the voltage divider

formed by R101 and R102. The datasheet provides a formula that can be used to determine

appropriate values (see Equation B-6) [27] (page 14). Choosing 𝑅2 as 100K ohms, 𝑅1 is

calculated as 620K ohms. The closest resistor value in the E96 (1% tolerance) series is 619k.

The output of the TPS63030 is decoupled with 0.1uF and 10uF capacitors to help

prevent high frequency noise from entering the TPS73633 3.3V LDO regulator. The capacitors

placed on the output and noise rejection pins (C104 and C105, respectively) are specified in the

data sheet [26] (page 7).

Visual Indicator Block

Figure 4: Visual Indicator Interface Diagram

Table 4: Visual Indicator Interface Definition

Signal Name Properties

V_BATT 3.7 VDC, 900mA maximum, unregulated

V_ANALOG 3.3 VDC, 300 mA maximum, regulated

VISUAL_SDA I2C Data

VISUAL_CLK I2C Clock

9

Design

The visual indicator system is included to alert lab employees whenever a module needs

human intervention. The LEDs will always be either off, on, or blinking.

Once the battery capacity drops to a software configurable threshold (i.e. 5% remaining)

the LEDs will be disabled and the entire device will enter a low power mode. Lithium Ion

batteries are extremely sensitive to over discharge and can be permanently damaged if the

voltage drops below 2.4V [9]. Consequently, the low battery LEDs will be programmed to blink

only until this critical voltage is approached.

Implementation

In order to ensure that the indicators are clearly visible, high brightness LEDs were

selected for the project. The SMD LEDs have a 120 degree viewing angle and a brightness of up

to 1800 millicandela [19][20].

The TLC59108 LED driver is capable of driving eight LEDs with configurable duty cycle

and current. The IC interfaces with the microcontroller via I2C. One resistor is used to select the

device's I2C address and a second resistor is chosen to create the device's reference current. The

TI datasheet provides a simple formula to determine the necessary resistor value (see Equation

B-6) [24]. A reference resistor value of 619 ohms was chosen to set the default LED current at

30.2 mA. The LED controller also includes the ability to vary LED currents for each channel and

detect LED open circuit malfunctions [24].

10

Flash Memory Block

Figure 5: Flash Memory Interface Diagram

Table 5: Flash Memory Interface Definition

Signal Name Properties

V_DIGITAL 3.3 VDC, 300 mA maximum, regulated

FLASH_SS SPI Slave Select

FLASH _SI SPI Slave Data Input

FLASH _SO SPI Slave Data Output

FLASH _SCK SPI Clock

FLASH _WP Flash Write Protect (Active Low)

FLASH _HOLD SPI Slave Select (Active Low)

Design

Based on the project requirements, digital acceleration values will be recorded to the

flash memory at a minimum of 50 Hz. Since the module contains dual 3-axis accelerometers, six

channels of 16 bit data will be recorded at every 20 ms iteration. In order to record a 30 minute

test, the minimum capacity is as follows.

11

𝑀𝐸𝑀𝑅𝐸𝑄 = (6 𝑐𝑕𝑎𝑛𝑛𝑒𝑙𝑠)𝑥(16 𝑏𝑖𝑡𝑠 / 𝑐𝑕𝑎𝑛𝑛𝑒𝑙)𝑥(50 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 / 𝑠𝑒𝑐𝑜𝑛𝑑)𝑥(60 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

/ 𝑚𝑖𝑛𝑢𝑡𝑒)𝑥(30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 / 𝑡𝑒𝑠𝑡) = 1.08𝑀𝐵

A 16 Megabit (2MB) SPI flash IC fulfills this space requirement with plenty of room to spare.

Implementation

The flash memory IC draws its supply voltage from V_DIGITAL in order to minimize the

high frequency switching noise present on V_ANALOG. Decoupling capacitors have also been

added on the 𝑉𝐶𝐶 lines to help reduce transient voltages.

All I/O lines are connected to the microcontroller, consisting of four serial peripheral

interface lines and two additional wires for the write protect and hold lines [23]. The flash IC is

effectively self contained and does not require any additional external components.

Transceiver Block

Figure 6: Transceiver Interface Diagram

12

Table 6: Transceiver Interface Definition

Signal Name Properties

V_DIGITAL 3.3 VDC, 300 mA maximum, regulated

XCVR_SS SPI Slave Select

XCVR _SI SPI Slave Data Input

XCVR _SO SPI Slave Data Output

XCVR _SCK SPI Clock

MASTER_CLOCK 3.3 VDC Clock Signal

16 MHz square wave

50% duty cycle

Output driver is software selectable between 2

mA, 4 mA, 6 ma and 8 mA

XCVR_INTERRUPT_REQUEST 3.3 VDC

Interrupt signal

Active high signal

XCVR_SLP_TR 3.3 VDC

Initiates transceiver power-down mode

Also triggers the start of a packet transmission

Active high signal

XCVR_CHIP_RESET 3.3 VDC

Active high signal resets the transceiver and

restores the default startup configuration

ANT IEEE 802.15.4 RF Signal

Frequency: 2.402 GHz - 2.480 GHz

Modulation: DSSS

Power: -10 dBm to 3 dBm (software

selectable)

13

Design

The transceiver block is designed around an Atmel RF230 IEEE 802.15.4 integrated

circuit. The RF circuitry is designed to operate using Offset-QPSK with half-sine pulse shaping [6].

The transceiver is driven from a high precision (10 PPM frequency stability) 16.0 MHz crystal [1].

An internal clock divider in the RF230 is programmed to output an 8.0 MHz clock to the

microcontroller.

Most of the necessary RF components are already included in the transceiver IC. A

complete RF solution is formed with the RF230, a 16MHz crystal, a 100Ω differential to 50Ω

single ended balun, and an external antenna [6].

Implementation

The design for the AT86RF230 transceiver came from an Atmel application circuit [6].

Resistor R202 and capacitor C203 form a low pass filter that is designed to reduce high

frequency switching noise from the output clock. It is important that this filter be placed as close

to the CLKM pin as possible to work most effectively.

The crystal specifies a load capacitance of 10 pF [1]. The optimum values of CX201 and

CX202 were then found by solving Equation B-7 and assuming CSTRAY to be 5 pF [15].

A 1/4-wave single ended antenna is used with a voltage standing wave ratio (VSWR) of

approximately 1.31 and a bandwidth of 50 MHz [4]. A VSWR of ≤ 2.0 ensures that at least 88.9%

of the energy sent to the antenna will be radiated into space [29]. In order to convert the

differential antenna output from the transceiver into a single ended output, a 100 ohm to 50

14

balun is used. The balun configuration was adapted from the example on page 8 of the

datasheet [6].

Microcontroller Block

Figure 7: Microcontroller Interface Diagram

Table 7: Microcontroller Interface Definition

Signal Name Properties

V_BATT 3.7VDC, 900 mA maximum, unregulated
V_ANALOG 3.3VDC, 300 mA maximum, regulated
V_DIGITAL 3.3VDC, 300 mA maximum, regulated

MASTER_CLOCK 3.3VDC Clock Signal
16 MHz square wave
50% duty cycle
Output driver is software selectable between 2

15

mA, 4 mA, 6 ma and 8 mA
BATT_SDA I2C Data

BATT_SCL I2C Clock

XCVR_SS SPI Slave Select

XCVR _SI SPI Slave Data Input

XCVR _SO SPI Slave Data Output

XCVR _SCK SPI Clock

XCVR_INTERRUPT_REQUEST 3.3 VDC

Interrupt signal

Active high signal

XCVR_SLP_TR 3.3 VDC

Initiates transceiver power-down mode

Also triggers the start of a packet transmission

Active high signal

XCVR_CHIP_RESET 3.3 VDC

Active high signal resets the transceiver and

restores the default startup configuration

3G_TEST Used to test accelerometer functionality

3G_GSELECT Selects between 3G and 11G mode

3G_SLEEP Enables low power

11G_TEST Used to test accelerometer functionality

11G_GSELECT Selects between 3G and 11G mode

11G_SLEEP Enables low power

VISUAL_SDA I2C Data

VISUAL_CLK I2C Clock

FLASH_SS SPI Slave Select

FLASH _SI SPI Slave Data Input

FLASH _SO SPI Slave Data Output

FLASH _SCK SPI Clock

FLASH _WP Flash Write Protect (Active Low)

FLASH _HOLD SPI Slave Select (Active Low)

ADC_SS SPI Slave Select

16

ADC _SI SPI Slave Data Input

ADC _SO SPI Slave Data Output

ADC _SCK SPI Clock

Design

The Atmel XMEGA 64A4 was initially selected as the microcontroller of choice. The

XMEGA series of microcontrollers can consume as little as 1.7 uA in power-down mode while

running at 3.3 V [7]. The chip consumes only 7.5 mA while clocked at 16 MHz. The 64A4 also

offers an attractive array of features including dual SPI ports, multiple 16 bit timers, 8 event

channels, 34 I/O lines, and a maximum operating frequency of 32 MHz [7].

Unfortunately, the 64A4 was very difficult to obtain at design time. After contacting

multiple distributors it was discovered that Atmel's production of the 64A4 was several months

behind schedule and no one seemed to know when the IC would become available.

Consequently, another microcontroller was chosen instead.

The XMEGA 128A3 is a similar model that is currently available for purchasing. The

128A3 has a slightly higher power consumption (9.5 mA in active mode while clocked at 16 MHz)

[8] but it is still suitable for this application.

Implementation

The microcontroller external clock is provided by the transceiver block as described on

page 70 of the RF230 datasheet [6]. The system clock section (pg 18) of the microcontroller

datasheet confirms that an external clock signal can be used with the XMEGA A3 [8]. A brief

description of the various clock configurations is provided on page 20 of the datasheet.

17

16-bit ADC Block

Figure 8: 16-bit ADC Interface Diagram

Table 8: 16-bit ADC Interface Definition

Signal Name Properties

V_ANALOG 3.3 VDC, 300 mA maximum, regulated

V_DIGITAL 3.3 VDC, 300 mA maximum, regulated

ADC_SS SPI Slave Select

ADC _SI SPI Slave Data Input

ADC _SO SPI Slave Data Output

ADC _SCK SPI Clock

3G_X Analog voltage (0 V - 3.2 V)

0g -> 1.65 VDC @ 25ºC

3G_Y Analog voltage (0 V - 3.2 V)

0g -> 1.65 VDC @ 25ºC

3G_Z Analog voltage (0 V - 3.2 V)

0g -> 1.65 VDC @ 25ºC

11G_X Analog voltage (0 V - 3.2 V)

0g -> 1.65 VDC @ 25ºC

11G_Y Analog voltage (0 V - 3.2 V)

0g -> 1.65 VDC @ 25ºC

11G_Z Analog voltage (0 V - 3.2 V)

0g -> 1.65 VDC @ 25ºC

18

Design

The project utilizes a self-contained 16-bit, 8 channel ADC (separate from the

microcontroller). The only additional components needed are the decoupling capacitors placed

on each voltage reference pin. Since the module uses dual 3-axis accelerometers, only six

channels are necessary. In order to avoid any floating I/O lines, the remaining two channels are

connected to V_ANALOG and GND, respectively.

Implementation

In order to minimize the ADC's exposure to high frequency switching noise, the IC is

powered by V_ANALOG. Table 7 of the AD7689 datasheet explains that the REF pin must have a

reference voltage applied where 0.5 V <= Vref <= V_ANALOG [3] (pg 9). Vref was chosen as

V_ANALOG because the two accelerometers can potentially output voltages up to 3.2VDC (see

page 3 of the MMA7340L datasheet) [12]. C502 exists to decouple the REF pin as specified on

page 9 of the datasheet. C500 and C501 are included to minimize noise from the voltage

regulators (see page 6 of Intersil Application Note 1325, as well as page 30 of the AD7689

datasheet) [14][3].

The SPI bus connections are taken from the sample schematic on page 29 of the

datasheet [3]. R500 is a pull-up resistor that exists to maintain the Slave Output line at 3.3 VDC

until the ADC chip pulls the line low. R500 is also shown on page 229 of the datasheet [3].

19

Accelerometer Block

Figure 9: Accelerometer Interface Diagram

Table 9: Accelerometer Interface Definition

Signal Name Properties

V_ANALOG 3.3 VDC, 300 mA maximum, regulated

3G_X Analog voltage (0 V - 3.2 V)

0g -> 1.65 VDC @ 25ºC

3G_Y Analog voltage (0 V - 3.2 V)

0g -> 1.65 VDC @ 25ºC

3G_Z Analog voltage (0 V - 3.2 V)

0g -> 1.65 VDC @ 25ºC

11G_X Analog voltage (0 V - 3.2 V)

0g -> 1.65 VDC @ 25ºC

11G_Y Analog voltage (0 V - 3.2 V)

0g -> 1.65 VDC @ 25ºC

11G_Z Analog voltage (0 V - 3.2 V)

0g -> 1.65 VDC @ 25ºC

3G_TEST Used to test accelerometer functionality

3G_GSELECT Selects between 3G and 11G mode

20

3G_SLEEP Enables low power

11G_TEST Used to test accelerometer functionality

11G_GSELECT Selects between 3G and 11G mode

11G_SLEEP Enables low power

Design

The project utilizes dual accelerometers in order to provide greater sensitivity at low

accelerations while still maintaining the ability to record large acceleration values. One

accelerometer will be set to a sensitivity level of ±3g while the other will be set at ±11g. In the

±3g setting the accelerometer is able to represent acceleration more precisely (440mV per 9.8

m/s2) at the cost of decreased range [12]. Unfortunately, it is possible that the module may

experience acceleration magnitudes in excess of 3g's. In this situation, the ±11g accelerometer

plays an important role by providing data when the high sensitivity accelerometer has reached

the edge of its dynamic range. It spreads each g of acceleration over 117 mV [12] which gives it

more range but less accuracy. Each chip is capable of collecting at both sensitivity settings (but

not simultaneously), hence the reason that both accelerometers are utilized simultaneously.

Both sets of data are saved into the external flash as well.

Implementation

The accelerometer's nominal voltage reading is 1.65 volts at 0 g’s [12]. When the

accelerometer is orientated positively in earth's gravitational field the voltage reading will

increase to represent 9.8 m/s2. If the accelerometer is rotated upside down, the output voltage

will decrease from the effects of gravity.

21

The 11g accelerometer's G-SELECT pin will need to be pulled high by the microcontroller

in order to select the proper sensitivity range [12] (Page 4). Capacitors C601, C602, C603, C701,

C702, and C703 are included to filter high frequency noise from the accelerometer output lines.

The value of 3.3 nF was specified on page 5 of the datasheet [12].

22

MICROCONTROLLER FIRMWARE

Design

The following flow chart illustrates the firmware's operation.

Figure 10: Microcontroller Firmware Flowchart

23

Testing

The firmware will begin by initializing the visual indicators, the transceiver, the external

flash, the ADC, the V_ANALOG voltage regulator, and the accelerometers. After initialization, the

software will then proceed to follow the flowchart shown in Figure 10. The bullet points listed

below explain each test in the firmware flowchart.

 "Enough batt for a test?":

If there is insufficient battery for a test, the visual indicators will display the low

battery warning and the module will be disabled until the battery is charged.

 "Rcvd test startup signal from xcvr?":

The microcontroller will remain in an idle state in order to ensure minimal

power consumption. An interrupt routine will monitor the

XCVR_INTERRUPT_REQUEST line for the start of test signal. Additionally, the

battery voltage will be periodically checked to ensure that the battery's charge

is sufficient.

 "Get timestamp, save to memory":

When the transceiver receives a start test signal, a time stamp is immediately

saved to flash.

 Data collection loop

o "Read acceleration data from ADC, save it to memory":

An interrupt service routine (triggered by a timer) retrieves a data

sample from the ADC every 20ms and saves it to the external flash.

o "Is there enough room in memory?":

24

Before the sample can be saved, the remaining flash capacity is checked

to ensure that there is sufficient memory. If there is no space for the

sample, the external memory is considered to be full and a signal goes

to the LED indicators to signify the error condition.

o "Rcvd end of test signal from xcvr?":

An interrupt service routine monitor's the transceiver to see if it has

received an end of test signal. When the signal is received, any partially

filled buffers are flushed to the external flash and the internal EEPROM

records are updated with the completed test information.

o "Is there enough battery to transmit data via xcvr":

The Fuel Gauge IC is consulted via I2C to determine the remaining

battery capacity. If the charge level is becoming critical, the module will

shutdown to conserve power and extend the battery life.

25

PCB DESIGN

 The PCB (printed circuit board) design was implemented in a four layer arrangement.

The stack-up consists of a top copper layer containing signal lines and controlled impedance

traces. The second layer consists of a ground plane. The third layer is primarily for routing

V_DIGITAL and V_ANALOG, in addition to a limited number of signal traces. The bottom (fourth)

layer contains additional signal traces as shown in Figure 11 [2].

Figure 11: Four Layer PCB Stackup - Cross Sectional View

In general, the layout of the PCB can be divided into physical regions, each

corresponding to a particular system block. The voltage regulators and battery monitoring

circuit are grouped together in one corner on the top of the PCB. The ADC and accelerometers

are located on the bottom of PCB, along with the microcontroller circuitry.

The most sensitive portion of the PCB's design is the RF transceiver. The module's RF

circuitry operates in the 2.4 GHz band and controlled impedance lines are necessary for proper

operation. The previous data logger design used faulty data while computing the necessary

26

trace widths (incorrectly assuming that the substrate between PCB layers one and two was 18.8

mils in thickness). The manufacturer's website indicates that the substrate thickness is actually

8.8 mils [2]. Consequently, the previous RF design suffered from mismatched impedances which

significantly reduced the system's maximum wireless range.

The RF230 datasheet explains that pins RFP and RFN form a 100Ω differential port. In

order to properly match the impedances, special care was taken while selecting the trace

widths.

𝑍𝐷𝐼𝐹𝐹 = 2 ∗ 𝑍0[1 − 0.48 ∗ 𝑒
 −0.96∗

𝑆
𝐻

]

𝑍0 =
87

 𝜀𝑟 ∗ 1.41
∗ 𝐿𝑁

5.98 ∗ 𝐻

0.8 ∗ 𝑊 + 𝑇

The equation above represents the differential impedance between two PCB traces on layers

one and two (where S and H are given in inches and 𝜀𝑟 represents the dielectric constant)

[10][11][16]. The following diagram shows the physical layout from a side perspective [10].

Figure 12: Microstrip Side Portrait

In practice, the differential impedance was calculated with a more direct approach.

Mentor Graphics' PADS program (the PCB layout software used for this design) includes the

capability to estimate the impedance of a PCB trace. Consequently, 𝑍𝐷𝐼𝐹𝐹 was calculated by

27

using the 𝑍0 value provided by PADS and simply plugging in the number to determine the

differential impedance value.

In order to help prevent noise, the second PCB layer contains no signal traces and is

reserved entirely for use as a ground plane. There is purposely no ground plane beneath the

antenna due to the manufacturer's recommendation [4].

28

DATA STRUCTURE IMPLEMENTATION

 In order to extend the microcontroller's internal EEPROM life, a form of wear leveling

was implemented. In most cases the EEPROM is only guaranteed to operate properly for

100,000 write cycles [8]. However, if the user does not need to store data in 100% of the

available memory, the spare memory can be utilized to extend the expected EEPROM life.

 Atmel Application Note AVR101 explains one method of implementing "High Endurance

EEPROM Storage" [5]. The scheme uses multiple circular buffers in EEPROM as shown in the

figure below.

Figure 13: EEPROM Wear Leveling Implementation

 One buffer (the data buffer) contains the actual user data while the other buffer (the

status buffer) holds only integers. When data is written to EEPROM, a pointer in RAM is

incremented and the user data is written to the next slot in the data buffer. At the same time,

the status buffer's next available location is written with an incremented number.

29

 When the device is powered off, the volatile pointer is lost. When the power returns,

the pointer's previous location can be determined by cycling through the status buffer's

contents and detecting the first slot that meets the condition

𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠 𝑛 + 1 ≠ 𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠 𝑛 + 1 [5]. This implementation works even if the integer value

overflows to zero.

30

CONCLUSION

 The team successfully designed a module that meets all but one of the original

project requirements. The customer requirements originally specified that the device must

begin saving acceleration measurements within 2 ms of a 5 volt pulse issued by the Wave Lab's

equipment. Unfortunately, it is impossible to guarantee that this requirement is met while using

the current equipment.

In order to detect the 5 V pulse, the Wave Lab provided a USB compatible data

acquisition unit that could interface with a personal computer and trigger the acceleration

recording process. Unfortunately, the acquisition unit does not sample faster than 200 Hz

meaning that in a worst case scenario, 5 ms will elapse before the unit detects the 5 V signal's

presence. Consequently, the trigger time is unpredictable and cannot be guaranteed to activate

the module in less than 2 ms. The project mentor later explained that the automated trigger had

not worked on the previous model and it was not an issue if the new design did not

automatically trigger.

However, all remaining requirements were satisfied. The hardware has worked

flawlessly in all of the tests to date and the O. H. Hinsdale Wave Research Laboratory is

intending to use the device beginning in June, 2010.

 The senior design team was able to improve on several features of the previous model.

The wireless range (≥ 80 feet in testing) is far superior and the visual indication system is easily

visible, even while submerged 10 feet below the water's surface. The inclusion of a 16 bit ADC

and ±3g accelerometers allows the module to record acceleration values with higher precision.

31

Also, the battery charger circuit is now built into the device so there is never a need to remove

the battery, barring any physical damage.

 The module was tested in the Wave Lab and it performed very well. The final product

interacts with the existing graphical user interface and the battery life is more than sufficient to

operate for an hour. The case is small, lightweight and has been proven waterproof to 10 feet. A

short demonstration was given to the project's mentors and they were very happy to see the

results. They are enthusiastic about using the module for research purposes within the coming

months.

 This project has provided an excellent learning experience and the real world practice

will inevitably prove useful in the years to come. The assignment has provided the author with

an extensive review on embedded development including everything from protocols such as SPI

and I2C to four layer PCB design and controlled impedance traces. The nine month project

required nearly 1000 hours of student labor but the experience has been priceless and the long

term benefits will inevitably payoff.

32

BIBLIOGRAPHY

*1+ Abracon Corporation, “ABM 9 Technical Datasheet,” Abracon Corporation. *Online+

Available: http://www.abracon.com/Resonators/abm9.pdf. [Accessed 15 November 2009].

[2] Advanced Circuits, ".062 Finished Thickness on PCB's," Advanced Circuits. [Online] Available:

http://www.4pcb.com/stackups-controlled-dielectric/. [Accessed 22 May 2010]

[3] Analog Devices, "AD7682/AD7689," Analog Devices, Inc. [Online]. Available:

http://www.analog.com/static/imported-files/data_sheets/AD7682_7689.pdf. [Accessed 30

November 2009].

*4+ Antenna Factor, “ANT-2.4-JJB-RA,”Antenna Factor. *Online+ Available:

http://www.antennafactor.com/documents/ANT-2.4-JJB-xx_Data_Sheet.pdf. [Accessed 2

February 2009].

[5] Atmel Corporation, Appl. Note AVR101.

*6+ Atmel, “AT86RF230 Technical Datasheet,” Atmel Corporation. *Online+ Available:

http://www.atmel.com/dyn/resources/prod_documents/doc5131.pdf. [Accessed 15 November

2009].

[7] Atmel, "ATxmega16A4/32A4/64A4/128A4 Preliminary," Atmel Corporation. [Online].

Available: http://atmel.com/dyn/resources/prod_documents/doc8069.pdf. [Accessed 14

November 2009].

[8] Atmel, "ATxmega64A3/128A3/192A3/256A3 Preliminary," Atmel Corporation. [Online].

Available: http://atmel.com/dyn/resources/prod_documents/doc8068.pdf. [Accessed 14

November 2009].

[9] Chester Simpson, "Characteristics Of Rechargeable Batteries," National Semiconductor

Corporation. [Online] Available: http://www.national.com/appinfo/power/files/f19.pdf

[Accessed 21 May 2010].

[10] Douglas Brooks, "Differential Impedance What's the Difference?," UltraCAD Design, Inc.

[Online] Available: http://www.ultracad.com/articles/diff_z.pdf. [Accessed 22 May 2010].

[11] Douglas Brooks, "PCB Impedance Control: Formulas and Resources," UltraCAD Design, Inc.

[Online] Available: http://www.ultracad.com/articles/formula.pdf. [Accessed 22 May 2010].

*12+ Freescale Semiconductor, “MMA7340L Technical Datasheet,” Freescale Semiconductor.

[Online] Available: http://www.freescale.com/files/sensors/doc/data_sheet/MMA7340L.pdf.

[Accessed 5 December 2009].

http://www.abracon.com/Resonators/abm9.pdf
http://www.analog.com/static/imported-files/data_sheets/AD7682_7689.pdf
http://www.antennafactor.com/documents/ANT-2.4-JJB-xx_Data_Sheet.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc5131.pdf
http://atmel.com/dyn/resources/prod_documents/doc8069.pdf
http://atmel.com/dyn/resources/prod_documents/doc8068.pdf
http://www.freescale.com/files/sensors/doc/data_sheet/MMA7340L.pdf

33

[13] Henry W. Ott, "PCB Stack-Up," Henry Ott Consultants. [Online] Available:

http://www.hottconsultants.com/techtips/pcb-stack-up-2.html. [Accessed 22 May 2010].

[14] Intersil, "Choosing and Using Bypass Capacitors," Intersil Americas Inc. [Online]. Available:

http://www.intersil.com/data/an/an1325.pdf. [Accessed 5 December 2009].

[15] James B. Northcutt. (1998, February). "Specifying Crystals for Use in VCXOs and TCXOs for

Wireless Design." Wireless Design & Development. [Online]. Available:

http://www.foxonline.com/tech3031.htm [Accessed 22 May, 2010].

[16] Logic Systems, "Typical FR4 Laminate Properties, 0.059" [1.5mm]," Logic Systems

Corporation. [Online] Available: http://www.lscpcb.com/fr4specs.htm. [Accessed 22 May 2010].

[17] National Semiconductor, "LP3947," National Semiconductor. [Online] Available:

http://www.national.com/mpf/LP/LP3947.html#Overview. [Accessed 15 November 2009].

[18] NXP, "The I2C-Bus Specification," NXP Semiconductors. [Online]. Available:

http://www.nxp.com/acrobat_download2/literature/9398/39340011.pdf. [Accessed 5

December 2009].

[19] OSRAM, "PointLED Enhanced Thinfilm LED -- LR P47F-U2AB-1-1-Z," OSRAM Opto

Semiconductors. [Online] Available: http://catalog.osram-

os.com/catalogue/catalogue.do;jsessionid=74B0AF55271023A752A5A2E1F061E872?act=downl

oadFile&favOid=020000000000bc28000200b6 [Accessed 14 January 2010].

[20] OSRAM, "TOPLED Enhanced Thinfilm LED -- LA T67F-U2AB-24-Z," OSRAM Opto

Semiconductors. [Online] Available: http://catalog.osram-

os.com/catalogue/catalogue.do;jsessionid=2E00060302E798ACA185A88D03AF7201?act=downl

oadFile&favOid=020000030001d516000100b6 [Accessed 14 January 2010].

[21] Otter, "Otter Box" [Online]. Available: http://www.otterbox.com/waterproof-

cases/otterbox-1000/. [Accessed 15 November 2009].

[22] Paul Horowitz and Winfield Hill, The Art of Electronics, 2nd ed. New York: Cambridge

University Press, 2008, pp. 490.

[23] SST, "16 Mbit, serial Flash memory, 75 MHz SPI bus interface" Numonyx, B. V. [Online].

Available: http://www.numonyx.com/Documents/Datasheets/M25P16.pdf [Accessed 9 March,

2010].

[24] TI, "8-Bit Fast Mode Plus (FM+) I2C Bus Constant-Current LED Sink Driver," Texas

Instruments. [Online] Available:

http://focus.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=tlc59108&fileType=p

df [Accessed 4 December 2009].

http://www.intersil.com/data/an/an1325.pdf
http://www.national.com/mpf/LP/LP3947.html#Overview
http://www.nxp.com/acrobat_download2/literature/9398/39340011.pdf
http://catalog.osram-os.com/catalogue/catalogue.do;jsessionid=74B0AF55271023A752A5A2E1F061E872?act=downloadFile&favOid=020000000000bc28000200b6
http://catalog.osram-os.com/catalogue/catalogue.do;jsessionid=74B0AF55271023A752A5A2E1F061E872?act=downloadFile&favOid=020000000000bc28000200b6
http://catalog.osram-os.com/catalogue/catalogue.do;jsessionid=74B0AF55271023A752A5A2E1F061E872?act=downloadFile&favOid=020000000000bc28000200b6
http://catalog.osram-os.com/catalogue/catalogue.do;jsessionid=2E00060302E798ACA185A88D03AF7201?act=downloadFile&favOid=020000030001d516000100b6
http://catalog.osram-os.com/catalogue/catalogue.do;jsessionid=2E00060302E798ACA185A88D03AF7201?act=downloadFile&favOid=020000030001d516000100b6
http://catalog.osram-os.com/catalogue/catalogue.do;jsessionid=2E00060302E798ACA185A88D03AF7201?act=downloadFile&favOid=020000030001d516000100b6
http://beaversource.oregonstate.edu/projects/44x200902/wiki/%20http:/www.otterbox.com/waterproof-cases/otterbox-1000/
http://beaversource.oregonstate.edu/projects/44x200902/wiki/%20http:/www.otterbox.com/waterproof-cases/otterbox-1000/
http://focus.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=tlc59108&fileType=pdf
http://focus.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=tlc59108&fileType=pdf

34

[25] TI, "BQ27541 Datasheet," Texas Instruments. [Online] Available:

http://focus.ti.com/lit/ds/symlink/bq27541.pdf. [Accessed 15 November 2009].

[26] TI, "Cap-Free, NMOS, 400mA Low-Dropout Regulator with Reverse Current Protection,"

Texas Instruments. [Online] Available: http://focus.ti.com/lit/ds/symlink/tps73633.pdf

[Accessed 19 January 2010].

[27] TI, "High Efficient Single Inductor Buck-Boost Converter w/1-A Switches (Rev. A)," Texas

Instruments. [Online] Available: http://focus.ti.com/lit/ds/symlink/tps63031.pdf [Accessed 27

November 2009].

*28+ ULTRALIFE Batteries, “UBP563450/PCM Technical Datasheet,” ULTRALIFE Batteries.

[Online]. Available: http://www.ultralifebatteries.com/documents/techsheets/UBI-

5093_UBP563450.pdf. [Accessed 15 November 2009

[29] Linx Technologies, Appl. Note AN-00501.

http://focus.ti.com/lit/ds/symlink/bq27541.pdf
http://focus.ti.com/lit/ds/symlink/tps73633.pdf
http://focus.ti.com/lit/ds/symlink/tps63031.pdf
http://www.ultralifebatteries.com/documents/techsheets/UBI-5093_UBP563450.pdf
http://www.ultralifebatteries.com/documents/techsheets/UBI-5093_UBP563450.pdf

35

APPENDICES

36

 APPENDIX A: SCHEMATICS

Figure A-1: Voltage Regulator Schematic

37

Figure A-2: Visual Indicator Schematic

38

Figure A-3: 16-bit ADC Schematic

39

Figure A-4: Microcontroller Schematic

40

Figure A-5: Flash & Accelerometer Schematics

41

Figure A-6: Battery Charging & Monitoring Schematic

42

Figure A-7: Transceiver Schematic

43

 APPENDIX B: EQUATIONS

Power Supply Equations

𝐿1 represents the minimum inductance to operate in step down mode and 𝐿2

represents the minimum inductance needed to operate in boost mode [27].

𝐿1 = 𝑉𝐼𝑁1 − 𝑉𝑂𝑈𝑇 ∗ 0.5 ∗
µ𝑠

𝐴

Equation B-1: Minimum VREG Inductance During Buck Mode

𝐿2 = 𝑉𝑂𝑈𝑇 ∗ 0.5 ∗
𝑢𝑠

𝐴

Equation B-2: Minimum VREG Inductance During Boost Mode

𝐼1 =
𝐼𝑂𝑈𝑇
0.8

+
𝑉𝑂𝑈𝑇 (𝑉𝐼𝑁1 − 𝑉𝑜𝑢𝑡)

2 ∗ 𝑉𝐼𝑁1 ∗ 𝑓 ∗ 𝐿

Equation B-3: Peak Inductor Current During Buck Mode

𝐼2 =
𝑉𝑂𝑈𝑇 ∗ 𝐼𝑂𝑈𝑇
0.8 ∗ 𝑉𝐼𝑁2

+
𝑉𝐼𝑁2 ∗ (𝑉𝑂𝑈𝑇 − 𝑉𝐼𝑁2)

2 ∗ 𝑉𝑂𝑈𝑇 ∗ 𝑓 ∗ 𝐿

Equation B-4: Peak Inductor Current During Boost Mode

𝑅1 = 𝑅2 ∗ (
𝑉𝑂𝑈𝑇
𝑉𝐹𝐵

− 1)

Equation B-5: Resistor Values Needed To Program Output Voltage

44

Visual Indicator Equations

𝐼𝑂𝑈𝑇 (𝑡𝑎𝑟𝑔𝑒𝑡) =
1.25

𝑅𝐸𝑋𝑇

∗ 15 ∗ 𝐴

Equation B-6: Estimated LED Current (Per Channel)

Transceiver Equations

𝐶𝐿𝑂𝐴𝐷 = 𝐶𝑆𝑇𝑅𝐴𝑌 +
𝐶𝑋201 ∗ 𝐶𝑋202

𝐶𝑋201 + 𝐶𝑋202

Equation B-7: Calculation Of Crystal Load Capacitance

45

 APPENDIX C: PCB LAYOUT

Figure C-1: Layer 1 Copper

Figure C-2: Layer 4 Copper

46

 APPENDIX D: G2W10.C SOURCE FILE

/*

 The following code was written by Justin Goins.

 Additional contributions are included from Joseph Gross.

 Senior Design Group 2 Firmware

 Last Updated May 22, 2010

*/

/* Default CPU frequency */

#define F_CPU 2000000UL

#include <util/delay.h>

#include <avr/io.h>

#include <stdlib.h>

#include "flash.h"

#include "adc.h"

#include "visual.h"

#include "xcvr.h"

#include "at86rf230_registermap.h"

#include <avr/interrupt.h>

#include "extra.h"

#include "eeprom_driver.h"

#include "eeprom_leveling.h"

// Globals

volatile uint8_t flash_buffer[2][256], flash_buffer_index, flash_current_buffer, flash_buffer_is_full;

volatile uint8_t extFlashWriteInProgress = 0x00;

volatile uint8_t opcode = 0x00; // Intialize to zero

hal_rx_frame_t myframe; // This frame will hold data from the TX

// External EEPROM TX Complete Flag

ISR(USARTD0_TXC_vect)

{

 extFlashWriteInProgress = ZERO;

 return;

}

// SPM wakeup interrupt

ISR(NVM_SPM_vect)

{

 // Do nothing

 return;

}

// EEPROM wakeup interrupt

ISR(NVM_EE_vect)

{

 // We need to disable the IRQ

 // It will get re-enabled the next time it's needed

 NVM_INTCTRL = 0x00;

 return;

}

// External button IRQ wakeup

ISR(PORTA_INT0_vect)

{

 // Enable the yellow LEDs after the debug button is pressed

 yellow_leds_on();

 _delay_ms(3000);

 yellow_leds_off();

 return;

}

// TMR F0 Compare ISR

ISR(TCF0_OVF_vect)

{

 uint8_t spi, isloaded;

 uint8_t temp_buffer_index = 0; // Use to keep track of which sample we are on

47

 uint8_t temp_buffer[16]; // Create an array to hold the current sample

 // Two channels need to be dumped

 // Grab the actual samples

 for (int i = 0; i < 8; i++) { // TODO: Fix hardcoded number of channels

 PORTD_OUT &= ~(1 << 4);

 // Send a dummy byte

 SPID_DATA = 0x00;

 while(!(SPID_STATUS & (1<<7))) { } // Wait for the SPI transaction to finish

 spi = SPID_DATA; // This is is the top 8 msb of our sample

 SPID_DATA = 0x00; // Start the background transaction again

 isloaded = 0x00;

 do { // Store the first byte while waiting for the second

 if (isloaded == 0x00) {

 isloaded = 0x01;

 temp_buffer[temp_buffer_index] = spi;

 temp_buffer_index++; // Increment the index

 }

 } while(!(SPID_STATUS & (1<<7))); // While waiting for the 8 lsb to show up

 spi = SPID_DATA; // This is now the 8 lsb of our sample

 // Store the second half of our sample

 temp_buffer[temp_buffer_index] = spi;

 temp_buffer_index++; // Increment the index

 PORTD_OUT |= (1 << 4); // Pull SS High

 // Now we need to delay long enough to fulfill the adc's tconv specification (3.2 uS)

 TCC0_CNT = 0x0000; // Clear any existing value on the timer

 TCC0_CTRLA = 0x01; // Start the timer with no prescaler

 // Now just wait for the time to elapse by polling the overflow interrupt

 // The delay is absolutely necessary!! If it is too short you will get giberish

 while (!(TCC0_INTFLAGS & 1<<0)); // Wait for the interrupt flag to get set

 // Reset the interrupt flag

 TCC0_INTFLAGS |= (1 << 0);

 }

 // We now have 2 junk samples and 6 valid samples stored in temp_buffer

 // (The two samples (four bytes) stored in temp_buffer[0] to temp_buffer[3] are junk)

 for (int i = 0; i < 12; i++) {

 // Load a sample into the buffer

 flash_buffer[flash_current_buffer][flash_buffer_index] = temp_buffer[i+4]; // Note the 4 byte

offset

 flash_buffer_index++; // Increment the index

 i++; // We actually increment the counter ourselves to compensate for the fact that were writing

two bytes per iteration

 flash_buffer[flash_current_buffer][flash_buffer_index] = temp_buffer[i+4]; // Note the 4 byte

offset

 flash_buffer_index++; // Increment the index

 // Now we need to see if our buffer is full

 // The flash_buffer_index will loop around to 0 if the buffer is full

 if (flash_buffer_index == 0) { // Time to swap buffers

 // We're basically assuming that the other buffer has been emptied by now

 // The buffer emptying is taken care of by the main function

 if (flash_current_buffer == 1) {

 flash_current_buffer = 0;

 } else {

 flash_current_buffer = 1;

 }

 flash_buffer_index = 0; // Reset the index

 flash_buffer_is_full = 1; // This will tell the main function to empty the buffer

 }

 }

 return;

}

// RTC Compare ISR

ISR(RTC_COMP_vect)

{

 // This is no longer being used

 return;

}

// XCVR IRQ wakeup

ISR(PORTC_INT0_vect)

{

48

 // Read the incoming packet

 hal_frame_read(&myframe);

 hal_register_read(0x0F); // Read interrupts so that the TX resets the IRQ flag

 opcode = myframe.data[9]; // Update the opcode

 return;

}

void timer_configuration() {

 /*

 Attempt to configure timer F0 for our use

 */

 TCF0_CTRLA = 0x00; // Disable the timer

 TCF0_CTRLD = 0x00; // Disable events

 TCF0_CTRLD = 0x00; // Use in 16 bit mode

 TCF0_INTCTRLA = 0x00; // For now we will ignore overflows/underflows and other timer errors

 // Set the desired trigger time...

 //TCF0_PER = 0b1111010000100100; // Set the timer period for 1/2 second (if you're using an 8 MHz

source)

 //TCF0_PER = 0b0000100111000100; // Set the timer period for 1/50 second

 //TCF0_PER = 0b10011100010; // Set the timer period for 100 Hz

 TCF0_PER = 0b1001110001; // Set the timer period for 200 Hz

 TCF0_CCA = 0x00; // This is unused in the current mode

 TCF0_CTRLB = 0x00; // Disable the CCs

 TCF0_CTRLFSET = 0x08; // Force timer restart

 //TCF0_INTCTRLA = 0x03; // Enable overflow as a high level interrupt

 TCF0_INTCTRLA = 0x02; // Enable the overflow interrupt as medium level

 TCF0_INTCTRLB = 0x00; // Disable all CC interrupts

 TCF0_CNT = 0x0000; // Clear any existing value

 //TCF0_CTRLA = 0x05; // Start the timer with a 64 prescaler

 /*

 Attempt to configure timer C0 for our use

 */

 TCC0_CTRLA = 0x00; // Disable the timer

 TCC0_CTRLD = 0x00; // Disable events

 TCC0_CTRLD = 0x00; // Use in 16 bit mode

 // Set the desired trigger time...

 TCC0_PER = 0b0000001000011010; // Set the timer period for 3.25 uS

 //TCC0_PER = 0b0000100111000100; // Set the timer period for 20 mS

 TCC0_CCA = 0x00; // This is unused in the current mode

 TCC0_CTRLB = 0x00; // Disable the CCs

 TCC0_CTRLFSET = 0x08; // Force timer restart

 TCC0_INTCTRLA = 0x00; // We do not want the interrupts

 TCC0_INTCTRLB = 0x00; // Disable CC interrupts

 TCC0_CNT = 0x0000; // Clear any existing value

 //TCC0_CTRLA = 0x01; // Start the timer with no prescaler

 /*

 RTC Configuration

 */

 RTC_CTRL = 0x00; // Shut off the RTC so it doesn't immediately start counting

 CLK_RTCCTRL = 0x0B; // Select the external 32KHz crystal as the RTC source and enable the crystal

 RTC_INTFLAGS = 0x00; // Clear the RTC interrupts

 while (RTC_STATUS & (1 << 0)) {} // Wait until the SYNCBUSY bit is clear

 // Set the TMR period. The low byte must be written first if you're doing it manually!

 RTC_PER = 0b0011000000000000; // Set to 12288

 RTC_CNT = 0x0000; // Clear any existing value

 //RTC_INTCTRL = 0x08; // Set the RTC compare IRQ as a medium level interrupt

 //RTC_INTCTRL = 0x0C; // Set the RTC compare IRQ as a high level interrupt

 //RTC_CTRL = 0x03; // Start the RTC with prescaler of 8

 RTC_INTCTRL = 0x00; // Disable RTC interrupts

}

int main() {

/* Set I/O port directions and values */

 /* INITIALIZATION */

 PORTA_DIR = 0b11111011; // 1 = output, 0 = input

 PORTA_OUT = 0b00110000; //not sleep 11g accel and set to 11g mode

49

 PORTB_DIR = 0b10001001;

 PORTB_OUT = 0b00000000;

 PORTC_DIR = 0b10111011;

 PORTC_OUT = 0b00010011;

 PORTD_DIR = 0b10111011;

 PORTD_OUT = 0b00010001;

 PORTE_DIR = 0b00111011;

 PORTE_OUT = 0b00110011;

 PORTF_DIR = 0xFF;

 PORTF_OUT = 0b01110011; //xcvr not sleep, 3g mode selected, 3g not sleep,

 /* CLOCK SETUP */

 CCP = 0xD8, // IO Register Protection

 //CLK_PSCTRL = 0b00000011; // Set prescalers... Currently FCPU = FPER = 16MHz / 2 / 2 = 4 Mhz

 CLK_PSCTRL = 0b00000100; // Set prescalers... In theory this should be 16 MHz / 2 = 8 Mhz

 //CLK_PSCTRL = 0b00000000; // Set prescalers... In theory this should be 16 MHz

 /* INTERRUPT CONFIGURATION */

 PMIC_CTRL = 0x07;

 // Configure external button interrupt

 //PORTA_INTCTRL = 0x03; // Set INT0 to high level

 PORTA_INTCTRL |= 0x02; // Set INT0 to medium level

 PORTA_INT0MASK |= 0x04; // Enable bit 2 on the INT0 IRQ mask

 PORTA_PIN2CTRL = 0b00011010; // Set A2 to be pulled up and trigger on falling edge

 // Configure SLEEP mode to idle

 SLEEP_CTRL = 0x01;

 /*

 Useful variable declarations

 */

 test_container current_test; // Create a structure to hold the test details

 // The following vars hold info from EEPROM

 uint8_t nextTestNum, nextAvailableSector, nextAvailablePage, nextAvailableByte;

 // Variable for SPI data

 uint8_t spi;

 // Variables used while recording samples

 uint8_t buffertoempty = 0, junk;

 flash_buffer_is_full = 0;

 /*

 Initializations

 */

 for (int i = 0; i < 3; i++) {

 current_test.start[i] = 0;

 current_test.stop[i] = 0;

 }

 for (int i = 0; i < 4; i++) {

 current_test.timestamp_low[i] = 0;

 current_test.timestamp_high[i] = 0;

 }

 current_test.duration[0] = DEFAULT_CAPTURE_TIME & 0xFF; // Grab the bottom bytes

 current_test.duration[1] = (uint8_t)((DEFAULT_CAPTURE_TIME >> 8) & 0xFF);

 current_test.adc_channels = DEFAULT_ADC_CHANNELS; // Enable all six channels by default

 current_test.period[0] = DEFAULT_SAMPLE_PERIOD & 0xFF; // Grab the bottom bytes

 current_test.period[1] = (uint8_t)((DEFAULT_SAMPLE_PERIOD >> 8) & 0xFF);

 current_test.errata[0] = ZERO;

 current_test.errata[1] = ZERO;

 // The following line shows how to enable the EEPROM IRQ but you can't enable it until after you

have started the EEPROM write operation

 //NVM.INTCTRL = 0x03; //Enable the EEPROM ready IRQ

 _delay_ms(10);

 visual_twi_init();

 led_on_mode();

 red_leds_off();

 yellow_leds_off();

50

 // New Code Here

 _delay_us(10);

 red_leds_on();

 _delay_ms(1000);

 red_leds_off();

 // xcvr, flash, adc setup

 xcvr_spi_init();

 adc_spi_init();

 flash_spi_init();

 INTEN(); // Enable interrupts

 /*

 IMPORTANT: Interrupts must be enabled before trying to access the EEPROM!

 Otherwise the microcontroller has no way to wake up from sleep mode.

 */

 /*

 Retrieve some EEPROM values

 I've implemented EEPROM wear leveling using circular buffers.

 The process should be transparent to any functions requesting to read or write EEPROM values.

 With the current implementation, EEPROM bytes should be good to 400K write cycles (rather than the

standard 100K).

 */

 // EEPROM General Initialization

 EEPROM_FlushBuffer();

 EEPROM_DisableMapping();

 // The following example demonstrates EEPROM usage

 eeprom_pageinquestion = EEPROM_CONFIGURATION_PAGE;

 EEPROM_FlushBuffer();

 findCurrentEepromAddr(&EeBufPtr);

 nextTestNum = EeReadValue(EeBufPtr, NEXT_TEST_NUM);

 nextAvailableSector = EeReadValue(EeBufPtr, NEXT_AVAILABLE_SECTOR);

 nextAvailablePage = EeReadValue(EeBufPtr, NEXT_AVAILABLE_PAGE);

 nextAvailableByte = EeReadValue(EeBufPtr, NEXT_AVAILABLE_BYTE);

 // Update the current_test structure

 current_test.start[0] = nextAvailableSector;

 current_test.start[1] = nextAvailablePage;

 current_test.start[2] = nextAvailableByte;

 for (int i = 0; i < 3; i++) {

 current_test.stop[i] = current_test.start[i];

 }

 // XCVR Testing

 uint8_t incoming;

 // Reset the chip

 tat_reset_trx();

 // Ask the chip to go into TRX_OFF

 HAL_SS_LOW();

 hal_subregister_write(SR_TRX_CMD, CMD_FORCE_TRX_OFF);

 _delay_us(TIME_P_ON_TO_TRX_OFF); //Wait for the transition to be complete.

 HAL_SS_HIGH();

 // Tell the chip to implement clock changes immediately

 HAL_SS_LOW();

 hal_subregister_write(SR_CLKM_SHA_SEL, 0x00);

 HAL_SS_HIGH();

 // Change the clock output to 16MHz

 HAL_SS_LOW();

 hal_subregister_write(SR_CLKM_CTRL, 0x05);

 HAL_SS_HIGH();

 // Swap to 16MHz clock

 _delay_us(10);

 PORTCFG.CLKEVOUT = 0x00; // Don't output the clock on any external pins

 OSC_XOSCCTRL = 0xC0; // Select 16 MHz external clk

 OSC.CTRL = 0x09; // Enables the external oscillator and keeps the 2MHz clock on as well

 do {_delay_ms(2);} while ((OSC.STATUS & 0x08) == 0x00); //wait for stability

 OSC.CTRL = 0x08; // Disables the 2MHz internal clock

 CCP = 0xD8; // IO Register Protection

 CLK.CTRL = 0x03; // Sets external clock out

51

 HAL_SS_LOW();

 hal_subregister_write(SR_CHANNEL, 0x0F); // Set to channel 15 -- Should be 0x0F

 HAL_SS_HIGH();

 tat_set_short_address(SHORT_ADDRESS); //set address to 0x1001

 tat_set_pan_id(PAN_ID); //set to to 0xBEEF lol dont know what this does yet

 tat_set_device_role(0x00);

 tat_configure_csma(234, 0xE2);

 tat_use_auto_tx_crc(0x01);

 // Set IRQ Mask

 hal_register_write(0x0E, 0x08); // Only enable the TX/RX Complete IRQ

 //tat_set_trx_state(RX_ON);

 tat_set_trx_state(RX_AACK_ON);

 //Build IEEE 802.15.4 frame

 txFrame[0] = 0x61;

 txFrame[1] = 0x88;

 txFrame[2] = 0;

 txFrame[3] = PAN_ID & 0xFF;

 txFrame[4] = (PAN_ID >> 8) & 0xFF;

 txFrame[5] = DEST_ADDRESS & 0xFF;

 txFrame[6] = (DEST_ADDRESS >> 8) & 0xFF;

 txFrame[7] = SHORT_ADDRESS & 0xFF;

 txFrame[8] = (SHORT_ADDRESS >> 8) & 0xFF;

 clearTXErrorFlag();

 rxFlag = 1;

 _delay_us(200);

 hal_register_read(0x01); //Read Status

 hal_register_read(0x06); // Read RSSI

 hal_register_read(0x0E); // Read IRQ Mask

 hal_register_read(0x0F); // Read IRQ Status

 incoming = hal_register_read(0x0F); // Read IRQ Status

 hal_subregister_read(SR_TX_PWR);

 // Clear any existing interrupts from the XCVR

 hal_register_read(0x0F);

 // Configure XCVR IRQ

 //PORTC_INTCTRL = 0x02; // Set INT0 to medium level

 PORTC_INTCTRL = 0x03; // Set INT0 to high level

 PORTC_INT0MASK = 0x04; // Enable bit 2 on the INT0 IRQ mask

 PORTC_PIN2CTRL = 0x01; // Set C2 to trigger IRQ on rising edge

 // Configure the timers with default values

 timer_configuration();

 // More variables

 uint8_t spibuffer, spibuffer2;

 uint8_t isloaded;

 uint8_t realtime_buffer_index;

 while (1) {

 switch(opcode) {

 // Start capturing data samples

 case 0x20:

 opcode = 0x00;

 red_leds_off();

 yellow_leds_off();

 // Start the timers

 TCF0_CTRLA = 0x05; // Start the timer with a 64 prescaler to sample at 50 Hz

 // We need to adjust the TMR start value to trip immediately and trigger an interrupt

 // TODO

 //Store timestamp data... should be myframe.data[10-17]

 //Frame Data Format: [0x20] [byte 7 (msb)] [byte 6] [byte 5] [byte 4] [byte 3] [byte 2] [byte

1] [byte 0 (msb)]

 //timestamp[] Format: [byte 7 (msb)] [byte 6] [byte 5] [0x00] [byte 4] [byte 3] [byte 2]

[0x00] [byte 1] [byte 0] [0x00] [0x00]

52

 // Note that we only receive 8 bytes for the timestamp but we end up sending 12 bytes back

since come zeros are implied

 current_test.timestamp_high[0] = myframe.data[10];

 current_test.timestamp_high[1] = myframe.data[11];

 current_test.timestamp_high[2] = myframe.data[12];

 current_test.timestamp_high[3] = myframe.data[13];

 current_test.timestamp_low[0] = myframe.data[14];

 current_test.timestamp_low[1] = myframe.data[15];

 current_test.timestamp_low[2] = myframe.data[16];

 current_test.timestamp_low[3] = myframe.data[17];

 // Variable initializations

 flash_buffer_is_full = 0; // Reset the variable for good measure (but we should never have to)

 flash_buffer_index = 0; // Start back at index 0

 flash_current_buffer = 0; // Go back to using buffer 0

 yellow_leds_on();

 while (opcode != 0x30) {

 // Flush the flash buffer when necessary

 // I initially set the buffer empty

 if (flash_buffer_is_full == 1) {

 // Determine which buffer to flush

 if (flash_current_buffer == 0) { // We must need to flush buffer 1

 buffertoempty = 1;

 } else {

 buffertoempty = 0;

 }

 // We need to tell the flash chip that we'd like to write the next page in line

 // The current sector, page and byte is stored in current_test.stop[i]

 // Request write permission

 PORTD_OUT &= ~(0x01); // SS low

 USARTD0_DATA = 0x06; // Request write permission

 while(!(USARTD0_STATUS & 1<<6)); // Wait until the TX is finished

 USARTD0_STATUS = 1<<6; // Reset the TX complete IRQ

 spibuffer = USARTD0_DATA;

 spibuffer2 = USARTD0_DATA; // Immediately read the next byte to flush the buffer

 PORTD_OUT |= 0x01; // Release SS line

 // Now that we've been granted write permission we just need to program the page

 // This part of the code is expected to be randomly interrupted by timers (and even the

transceiver)

 PORTD_OUT &= ~(0x01); // SS low

 USARTD0_DATA = 0x02; // Issue write page command

 while(!(USARTD0_STATUS & 1<<5)); // Wait until the data register is empty

 USARTD0_STATUS = 1<<5; // Reset the DRE IRQ

 USARTD0_DATA = current_test.stop[0]; // Load up the sector address

 while(!(USARTD0_STATUS & 1<<5)); // Wait until the data register is empty

 USARTD0_STATUS = 1<<5; // Reset the DRE IRQ

 USARTD0_DATA = current_test.stop[1]; // Load up the page address

 while(!(USARTD0_STATUS & 1<<5)); // Wait until the data register is empty

 USARTD0_STATUS = 1<<5; // Reset the DRE IRQ

 USARTD0_DATA = 0x00; // Byte address (we always begin programming at byte 0)

 while(!(USARTD0_STATUS & 1<<5)); // Wait until the data register is empty

 USARTD0_STATUS = 1<<5; // Reset the DRE IRQ

 for (int i = 0; i < FLASH_BYTES_IN_PAGE; i++) {

 USARTD0_DATA = flash_buffer[buffertoempty][i]; // Load in more data

 while(!(USARTD0_STATUS & 1<<5)); // Wait until the data register is empty

 USARTD0_STATUS = 1<<5; // Reset the DRE IRQ

 }

 while(!(USARTD0_STATUS & 1<<6)); // Wait until the upload is finished

 USARTD0_STATUS = 1<<6; // Reset the transmission complete flag

 PORTD_OUT |= 0x01; // Release SS line

 spibuffer = USARTD0_DATA;

 spibuffer2 = USARTD0_DATA; // Read the status byte

 // NOTE: After we finish writing to the page we will lose our write permission and have to

request it again!

 flash_buffer_is_full = 0; // Reset the variable

 // Empty the SPI buffer

 do {

 junk = USARTD0_DATA;

 } while (USARTD0_STATUS & 1<<7);

 // Increment the page count

 current_test.stop[1]++;

 // Note that the page count will automatically roll around to 0

53

 // If it is zero that means we need to increment the sector number

 if (current_test.stop[1] == 0) {

 current_test.stop[0]++; // This will not ever overflow because the device has less than

256 sectors

 // We also need to be careful to keep an eye on our current sector number

 if (current_test.stop[0] == FLASH_NO_SECTORS) {

 while (1) {

 // TODO

 red_leds_on();

 _delay_ms(1500);

 red_leds_off();

 _delay_ms(1500);

 }

 // TODO: Check to see if there is more memory available

 // If there is, change to sector 0. If there isn't trigger an out of memory error.

 }

 }

 // Read Status Reg

 PORTD_OUT &= ~(0x01); // SS low

 USARTD0_DATA = 0x05; // Read status register

 while(!(USARTD0_STATUS & 1<<5)); // Wait until the data register is empty

 USARTD0_STATUS = 1<<5; // Reset the DRE IRQ

 USARTD0_DATA = 0x00; // Load up the new packet

 while(!(USARTD0_STATUS & 1<<6)); // Wait until the TX is finished

 USARTD0_STATUS = 1<<6; // Reset the TX complete IRQ

 spibuffer = USARTD0_DATA;

 spibuffer2 = USARTD0_DATA; // Read the status byte

 PORTD_OUT |= 0x01; // Release SS line

 } // end if loop

 // Else

 // Do nothing for now

 } // If we made it here then we need to stop recording

 // For now we will just turn off the timers and reset the count

 // TODO: Set the timers to immediately interrupt

 TCF0_CTRLA = 0x00;

 //RTC_CTRL = 0x00;

 TCF0_CNT = 0x0000; // Clear any existing value

 //RTC_CNT = 0x0000; // Clear any existing value

 // Now we need to actually flush out the partial buffer to flash

 // The current sector, page and byte is stored in current_test.stop[i]

 // Request write permission

 PORTD_OUT &= ~(0x01); // SS low

 USARTD0_DATA = 0x06; // Request write permission

 while(!(USARTD0_STATUS & 1<<6)); // Wait until the TX is finished

 USARTD0_STATUS = 1<<6; // Reset the TX complete IRQ

 spibuffer = USARTD0_DATA;

 spibuffer2 = USARTD0_DATA; // Immediately read the next byte to flush the buffer

 PORTD_OUT |= 0x01; // Release SS line

 // Now that we've been granted write permission we just need to program the page

 PORTD_OUT &= ~(0x01); // SS low

 USARTD0_DATA = 0x02; // Issue write page command

 while(!(USARTD0_STATUS & 1<<5)); // Wait until the data register is empty

 USARTD0_STATUS = 1<<5; // Reset the DRE IRQ

 USARTD0_DATA = current_test.stop[0]; // Load up the sector address

 while(!(USARTD0_STATUS & 1<<5)); // Wait until the data register is empty

 USARTD0_STATUS = 1<<5; // Reset the DRE IRQ

 USARTD0_DATA = current_test.stop[1]; // Load up the page address

 while(!(USARTD0_STATUS & 1<<5)); // Wait until the data register is empty

 USARTD0_STATUS = 1<<5; // Reset the DRE IRQ

 USARTD0_DATA = 0x00; // Byte address (we always begin programming at byte 0)

 while(!(USARTD0_STATUS & 1<<5)); // Wait until the data register is empty

 USARTD0_STATUS = 1<<5; // Reset the DRE IRQ

 for (int i = 0; i < flash_buffer_index; i++) {

 USARTD0_DATA = flash_buffer[flash_current_buffer][i]; // Load in more data

 while(!(USARTD0_STATUS & 1<<5)); // Wait until the data register is empty

 USARTD0_STATUS = 1<<5; // Reset the DRE IRQ

 }

 while(!(USARTD0_STATUS & 1<<6)); // Wait until the upload is finished

 USARTD0_STATUS = 1<<6; // Reset the transmission complete flag

54

 PORTD_OUT |= 0x01; // Release SS line

 spibuffer = USARTD0_DATA;

 spibuffer2 = USARTD0_DATA; // Read the status byte

 // NOTE: After we finish writing to the page we will lose our write permission and have to

request it again!

 // Empty the SPI buffer

 do {

 junk = USARTD0_DATA;

 } while (USARTD0_STATUS & 1<<7);

 // Update everything

 /*

 The current test information needs to be updated

 */

 // Update the starting information in case we have been capturing multiple tests in one

session

 EEPROM_FlushBuffer();

 eeprom_pageinquestion = ((nextTestNum * 3) + 0); // Select the info page containing starting

info for the current test

 findCurrentEepromAddr(&EeBufPtr);

 // Load up the 7 values before writing them out to EEPROM

 eeprom_buffer[0] = current_test.start[0]; // The start page

 eeprom_buffer[1] = current_test.start[1]; // The start sector

 eeprom_buffer[2] = current_test.start[2]; // The start byte

 eeprom_buffer[3] = current_test.timestamp_high[0]; // t_high

 eeprom_buffer[4] = current_test.timestamp_high[1]; // t_high

 eeprom_buffer[5] = current_test.timestamp_high[2]; // t_high

 eeprom_buffer[6] = current_test.timestamp_high[3]; // t_high

 EeWriteBuffer(&EeBufPtr); // Load and write the buffer

 EEPROM_FlushBuffer();

 eeprom_pageinquestion = ((nextTestNum * 3) + 1); // Select the info page containing the low

timestamp bytes

 findCurrentEepromAddr(&EeBufPtr);

 // Load up the 7 values before writing them out to EEPROM

 eeprom_buffer[0] = current_test.timestamp_low[0]; // The start page

 eeprom_buffer[1] = current_test.timestamp_low[1]; // The start sector

 eeprom_buffer[2] = current_test.timestamp_low[2]; // The start byte

 eeprom_buffer[3] = current_test.timestamp_low[3]; // t_high

 eeprom_buffer[4] = 0x00; // duration // These numbers are unused right now

 eeprom_buffer[5] = 0x00; // duration

 eeprom_buffer[6] = 0x00; // adc channels

 EeWriteBuffer(&EeBufPtr); // Load and write the buffer

 // Update the ending information for the test

 EEPROM_FlushBuffer();

 eeprom_pageinquestion = ((nextTestNum * 3) + 2); // Select the info page containing ending

info for the current test

 findCurrentEepromAddr(&EeBufPtr);

 // Load up the 7 values before writing them out to EEPROM

 eeprom_buffer[0] = 0x00; // The period (unused right now)

 eeprom_buffer[1] = 0x00; // The period (unused right now)

 eeprom_buffer[2] = current_test.stop[0]; // The ending sector

 eeprom_buffer[3] = current_test.stop[1]; // The ending page

 eeprom_buffer[4] = (flash_buffer_index - 1); // The last byte that was written

 eeprom_buffer[5] = 0x00; // Errata (unused right now)

 eeprom_buffer[6] = 0x00; // Errata (unused right now)

 EeWriteBuffer(&EeBufPtr); // Load and write the buffer

 // The system info also needs to be updated with the next available empty page

 // Now we need to let the microcontroller know where it should put future tests

 // Check to see if the next page is on another sector

 current_test.stop[1]++; // Increment current page

 if (current_test.stop[1] == 0) { // The next page must go on the next sector

 // Increment the sector number

 current_test.stop[0]++; // This will not ever overflow because the external flash device has

less than 256 sectors

 // We also need to be careful to keep an eye on our current sector number

 if (current_test.stop[0] == FLASH_NO_SECTORS) {

 while (1) {

 red_leds_on();

 _delay_ms(1500);

 red_leds_off();

 _delay_ms(1500);

55

 }

 // TODO: Check to see if there is more memory available

 // If there is, change to sector 0. If there isn't trigger an out of memory error.

 }

 }

 // At this point we should now be at the start of a fresh page (All tests must start at byte 0

of a fresh page)

 // Update the EEPROM Config Page

 eeprom_pageinquestion = EEPROM_CONFIGURATION_PAGE;

 EEPROM_FlushBuffer();

 findCurrentEepromAddr(&EeBufPtr);

 // Load up the 7 values before writing them out to EEPROM

 eeprom_buffer[NEXT_TEST_NUM] = nextTestNum + 1; // Increment the test ID number

 nextAvailableSector = current_test.stop[0];

 eeprom_buffer[NEXT_AVAILABLE_SECTOR] = nextAvailableSector;

 nextAvailablePage = current_test.stop[1];

 eeprom_buffer[NEXT_AVAILABLE_PAGE] = nextAvailablePage;

 nextAvailableByte = 0x00; // Always start at byte 0 on the page

 eeprom_buffer[NEXT_AVAILABLE_BYTE] = nextAvailableByte;

 eeprom_buffer[4] = 0x00; // These are currently unused

 eeprom_buffer[5] = 0x00;

 eeprom_buffer[6] = 0x00;

 EeWriteBuffer(&EeBufPtr); // Load and write the buffer

 // Reset some variables

 flash_buffer_is_full = 0; // Reset the variable for good measure (but we should never have to)

 flash_buffer_index = 0;

 flash_current_buffer = 0;

 nextTestNum++; // Get ready to write to the next test

 // Update the current_test structure

 current_test.start[0] = nextAvailableSector;

 current_test.start[1] = nextAvailablePage;

 current_test.start[2] = nextAvailableByte;

 for (int i = 0; i < 3; i++) {

 current_test.stop[i] = current_test.start[i];

 }

 yellow_leds_off();

 break;

 // Send a chunk of data back

 case 0x41:

 opcode = 0x00;

 // TODO:

 volatile uint8_t txbuffer[96];

 volatile uint8_t txindex = 0;

 uint8_t numberofsectorstoread = 0;

 uint8_t current_sector;

 uint8_t current_page;

 uint8_t current_byte;

 uint8_t end_sector;

 uint8_t end_page;

 uint8_t end_byte;

 current_sector = 0;

 current_page = 0;

 current_byte = 0;

 /***** Start new code *****/

 // Start our buffer index at zero

 txindex = 0;

 // TODO: This code is not capable of handling tests that loop around the end of the flash

 for (int i = 0; i < nextTestNum; i++) {

 /* Start by sending timestamp info for the current test */

 eeprom_pageinquestion = (i * 3); // Get info for the current test

 EEPROM_FlushBuffer();

 findCurrentEepromAddr(&EeBufPtr);

 // get the beginning of flash for test pointers

56

 current_sector = EeReadValue(EeBufPtr, 0);

 current_page = EeReadValue(EeBufPtr, 1);

 current_byte = EeReadValue(EeBufPtr, 2);

 // grab the high bytes of the time stamp

 txbuffer[txindex] = EeReadValue(EeBufPtr, 3);

 txindex++;

 // Check to see if we need to empty the transmitter buffer

 if (txindex == 96) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,96);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,96);

 }

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

 // Reset the txindex

 txindex = 0;

 }

 txbuffer[txindex] = EeReadValue(EeBufPtr, 4);

 txindex++;

 // Check to see if we need to empty the transmitter buffer

 if (txindex == 96) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,96);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,96);

 }

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

 // Reset the txindex

 txindex = 0;

 }

 txbuffer[txindex] = EeReadValue(EeBufPtr, 5);

 txindex++;

 // Check to see if we need to empty the transmitter buffer

 if (txindex == 96) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,96);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,96);

 }

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

 // Reset the txindex

 txindex = 0;

 }

 txbuffer[txindex] = 0x00;

 txindex++;

 // Check to see if we need to empty the transmitter buffer

 if (txindex == 96) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,96);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,96);

 }

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

57

 // Reset the txindex

 txindex = 0;

 }

 txbuffer[txindex] = EeReadValue(EeBufPtr, 6);

 txindex++;

 // Check to see if we need to empty the transmitter buffer

 if (txindex == 96) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,96);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,96);

 }

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

 // Reset the txindex

 txindex = 0;

 }

 // Retrieve the rest of the timestamp info

 eeprom_pageinquestion = ((i * 3) + 1);

 EEPROM_FlushBuffer();

 findCurrentEepromAddr(&EeBufPtr);

 // Get the low bytes of the time stamp

 txbuffer[txindex] = EeReadValue(EeBufPtr, 0);

 txindex++;

 // Check to see if we need to empty the transmitter buffer

 if (txindex == 96) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,96);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,96);

 }

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

 // Reset the txindex

 txindex = 0;

 }

 txbuffer[txindex] = EeReadValue(EeBufPtr, 1);

 txindex++;

 // Check to see if we need to empty the transmitter buffer

 if (txindex == 96) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,96);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,96);

 }

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

 // Reset the txindex

 txindex = 0;

 }

 txbuffer[txindex] = 0x00;

 txindex++;

 // Check to see if we need to empty the transmitter buffer

 if (txindex == 96) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,96);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,96);

 }

58

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

 // Reset the txindex

 txindex = 0;

 }

 txbuffer[txindex] = EeReadValue(EeBufPtr, 2);

 txindex++;

 // Check to see if we need to empty the transmitter buffer

 if (txindex == 96) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,96);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,96);

 }

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

 // Reset the txindex

 txindex = 0;

 }

 txbuffer[txindex] = EeReadValue(EeBufPtr, 3);

 txindex++;

 // Check to see if we need to empty the transmitter buffer

 if (txindex == 96) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,96);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,96);

 }

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

 // Reset the txindex

 txindex = 0;

 }

 txbuffer[txindex] = 0x00;

 txindex++;

 // Check to see if we need to empty the transmitter buffer

 if (txindex == 96) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,96);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,96);

 }

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

 // Reset the txindex

 txindex = 0;

 }

 txbuffer[txindex] = 0x00;

 txindex++;

 // Check to see if we need to empty the transmitter buffer

 if (txindex == 96) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,96);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,96);

 }

59

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

 // Reset the txindex

 txindex = 0;

 }

 // Move to final page of info for the current test

 eeprom_pageinquestion = ((i * 3) + 2);

 EEPROM_FlushBuffer();

 findCurrentEepromAddr(&EeBufPtr);

 // Retrieve the ending sector, page, and byte for the current test

 end_sector = EeReadValue(EeBufPtr, 2);

 end_page = EeReadValue(EeBufPtr, 3);

 end_byte = EeReadValue(EeBufPtr, 4);

 // Initialize our connection to the flash

 PORTD_OUT &= ~(0x01); // SS low

 USARTD0_DATA = 0x03; // Request read access to the chip

 while(!(USARTD0_STATUS & 1<<5)); // Wait until there is more room in the transmit buffer

 USARTD0_STATUS = 1<<5; // Reset the DRE complete IRQ

 spi = USARTD0_DATA; // Read the returned byte

 USARTD0_DATA = current_sector; // Specify the sector

 while(!(USARTD0_STATUS & 1<<5)); // Wait until there is more room in the transmit buffer

 USARTD0_STATUS = 1<<5; // Reset the DRE complete IRQ

 spi = USARTD0_DATA; // Read the returned byte

 USARTD0_DATA = current_page; // Specify the page

 while(!(USARTD0_STATUS & 1<<5)); // Wait until there is more room in the transmit buffer

 USARTD0_STATUS = 1<<5; // Reset the DRE complete IRQ

 spi = USARTD0_DATA; // Read the returned byte

 USARTD0_DATA = current_byte; // Specify the byte

 while(!(USARTD0_STATUS & 1<<5)); // Wait until there is more room in the transmit buffer

 USARTD0_STATUS = 1<<5; // Reset the DRE complete IRQ

 spi = USARTD0_DATA; // Read the returned byte

 // We now have an open connection to the flash chip

 // All we have to do is send it a dummy byte and it will return the next byte of flash in

line

 // Start by sending two junk bytes to preload our receive buffer

 USARTD0_DATA = 0x00; // Send a dummy byte

 while(!(USARTD0_STATUS & 1<<5)); // Wait until the DRE is finished

 USARTD0_STATUS = 1<<5; // Reset the DRE complete IRQ

 spi = USARTD0_DATA; // Junk

 USARTD0_DATA = 0x00; // Send a dummy byte

 while(!(USARTD0_STATUS & 1<<5)); // Wait until the DRE is finished

 USARTD0_STATUS = 1<<5; // Reset the DRE complete IRQ

 spi = USARTD0_DATA; // Junk

 // Determine the number of sectors to read

 if (end_sector >= current_sector) {

 numberofsectorstoread = (end_sector - current_sector) + 1; // We always have to read from

at least one sector

 } else {

 // In this case, we must have looped around the end of flash

 numberofsectorstoread = (FLASH_NO_SECTORS - current_sector) + end_sector + 1; // We still

need to read from at least one sector

 }

 // Read all full sectors in the test

 while (numberofsectorstoread > 1) {

 // In this case, we know that we need to read the entire sector

 do {

 // Prepare to read the current page

 current_byte = 0; // Reset the byte index

 // We need to start from the current page and continue to read the rest of the sector

 do {

 // We need to grab the test data

 USARTD0_DATA = 0x00; // Send a dummy byte

 while(!(USARTD0_STATUS & 1<<5)); // Wait until the DRE is finished

 USARTD0_STATUS = 1<<5; // Reset the DRE complete IRQ

 txbuffer[txindex] = USARTD0_DATA; // Place the byte in the buffer

 // Increment our counters

 txindex++;

 // Check to see if we need to empty the transmitter buffer

60

 if (txindex == TX_BUFFER_SIZE) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,TX_BUFFER_SIZE);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,TX_BUFFER_SIZE);

 }

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

 // Reset the txindex

 txindex = 0;

 }

 current_byte++; // Move to the next byte in the page

 } while (current_byte != 0); // This will become zero on the 256th iteration (i.e. when

we are done with the current page)

 // Increment the current page

 current_page++;

 } while (current_page != 0); // The current page will wrap around to 0 when the sector has

been completely read

 // Decrement the remaining number of sectors

 numberofsectorstoread--;

 }

 // When the numberofsectorstoread reaches 1, we know that we are on a partial sector

 // Now we need to read all the remaining pages that are 100% full

 while (current_page < end_page) {

 current_byte = 0; // Reset the byte index

 // We need to read the entire page of flash

 do {

 // We need to grab the test data

 USARTD0_DATA = 0x00; // Send a dummy byte

 while(!(USARTD0_STATUS & 1<<5)); // Wait until the DRE is finished

 USARTD0_STATUS = 1<<5; // Reset the DRE complete IRQ

 txbuffer[txindex] = USARTD0_DATA; // Place the byte in the buffer

 // Increment our counters

 txindex++;

 // Check to see if we need to empty the transmitter buffer

 if (txindex == TX_BUFFER_SIZE) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,TX_BUFFER_SIZE);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,TX_BUFFER_SIZE);

 }

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

 // Reset the txindex

 txindex = 0;

 }

 current_byte++; // Move to the next byte in the page

 } while (current_byte != 0); // This will become zero on the 256th iteration (i.e. when we

are done with the current page)

 // Increment the current page

 current_page++;

 }

 // Lastly, we just need to finish reading the final page

 do {

 USARTD0_DATA = 0x00; // Send a dummy byte

 while(!(USARTD0_STATUS & 1<<5)); // Wait until the DRE is finished

 USARTD0_STATUS = 1<<5; // Reset the DRE complete IRQ

 txbuffer[txindex] = USARTD0_DATA; // Place the byte in the buffer

 // Increment our counters

 txindex++;

61

 // Check to see if we need to empty the transmitter buffer

 if (txindex == TX_BUFFER_SIZE) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,TX_BUFFER_SIZE);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,TX_BUFFER_SIZE);

 }

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

 // Reset the txindex

 txindex = 0;

 }

 current_byte++; // Move to the next byte in the page

 } while (current_byte <= end_byte);

 // If we reached here then we are done sending the contents of the current test

 // Tack on an additional 4 bytes of FF

 for (int k = 0; k < 4; k++){

 txbuffer[txindex] = 0xFF; // Put a byte of FF into the buffer

 txindex++;

 // Check to see if we need to empty the transmitter buffer

 if (txindex == TX_BUFFER_SIZE) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,TX_BUFFER_SIZE);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,TX_BUFFER_SIZE);

 }

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

 // Reset the txindex

 txindex = 0;

 }

 }

 } // end for loop through each test

 PORTD_OUT |= 0x01; // Release SS line

 // Tack on an additional 4 bytes of FFs (this way we send 8 FFs at the end)

 for (int k = 0; k < 4; k++){

 txbuffer[txindex] = 0xFF; // Put a byte of FF into the buffer

 txindex++;

 // Check to see if we need to empty the transmitter buffer

 if (txindex == 96) {

 opcode = 0x88; // This opcode means that the module is waiting on the GUI

 // Time to send the data

 transceiver_send_data(txbuffer,96);

 while (opcode != 0x41) {

 if (opcode == 0x42) { // We have received a request to retransmit the data

 opcode = 0x00;

 transceiver_send_data(txbuffer,96);

 }

 }; // Wait

 // Reset the opcode

 opcode = 0x00;

 // Reset the txindex

 txindex = 0;

 }

 }

 // Send any remaining buffer contents

 if (txindex != 0) {

 transceiver_send_data(txbuffer, 96);

 }

 // Fill the transceiver buffer with FFs

 for (int i = 0; i < 96; i++) {

 txbuffer[i] = 0xFF;

62

 }

 // If the computer requests additional data, we feed it FFs.

 // From what I can see, the computer seems to always request one more packet than it needs.

 while (opcode != 0x41) { }; // Wait until we get the request

 // Send the computer a packet of FFs

 transceiver_send_data(txbuffer,96);

 break;

 // Check for errors

 case 0x50:

 opcode = 0x00;

 uint8_t error_status[7] = {0, 'e', 'r', 'r', 'o', 'r', '\0'};

 // Transmit the info back to base

 transceiver_send_data(error_status, 7);

 break;

 // If the opcode is already 0x00 there's no need to continue

 case 0x00:

 break;

 // Erase Memory

 case 0x10: // TODO: check to make sure this works just like button

 opcode = 0x00;

 red_leds_on();

 EEPROM_FlushBuffer();

 for (int i = 0; i < 64; i++) {

 for (int j = 0; j < 4; j++) {

 EEPROM_WriteByte(i, (unsigned char)(j & EEPROM_BYTE_ADDRESS_MASK), 0x00);

 }

 }

 eeprom_pageinquestion = EEPROM_CONFIGURATION_PAGE;

 findCurrentEepromAddr(&EeBufPtr);

 // Load up the 7 values before writing them out to EEPROM

 eeprom_buffer[NEXT_TEST_NUM] = 0x00;

 eeprom_buffer[NEXT_AVAILABLE_SECTOR] = 0x00;

 eeprom_buffer[NEXT_AVAILABLE_PAGE] = 0x00;

 eeprom_buffer[NEXT_AVAILABLE_BYTE] = 0x00;

 eeprom_buffer[4] = 0x00;

 eeprom_buffer[5] = 0x00;

 eeprom_buffer[6] = 0x00;

 EeWriteBuffer(&EeBufPtr); // Load and write the buffer

 eeprom_pageinquestion = ZERO; // Preload information for the first test

 findCurrentEepromAddr(&EeBufPtr);

 // Load up the 7 values before writing them out to EEPROM

 eeprom_buffer[0] = 0x00; // The starting sector

 eeprom_buffer[1] = 0x00; // The starting page

 eeprom_buffer[2] = 0x00; // The starting byte

 eeprom_buffer[3] = 0x00; // Timestamp data... this doesn't have to be initialized to anything

in particular

 eeprom_buffer[4] = 0x00; // Timestamp data... this doesn't have to be initialized to anything

in particular

 eeprom_buffer[5] = 0x00; // Timestamp data... this doesn't have to be initialized to anything

in particular

 eeprom_buffer[6] = 0x00; // Timestamp data... this doesn't have to be initialized to anything

in particular

 EeWriteBuffer(&EeBufPtr); // Load and write the buffer

 eeprom_pageinquestion = 2; // Preload ending information for the first test

 findCurrentEepromAddr(&EeBufPtr);

 // Load up the 7 values before writing them out to EEPROM

 eeprom_buffer[0] = 0x00; // The period

 eeprom_buffer[1] = 0x00; // The period

 eeprom_buffer[2] = 0x00; // Ending sector

 eeprom_buffer[3] = 0x00; // Ending page

 eeprom_buffer[4] = 0x00; // Ending byte

 eeprom_buffer[5] = 0x00; // Eratta

 eeprom_buffer[6] = 0x00; // Eratta

 EeWriteBuffer(&EeBufPtr); // Load and write the buffer

 // Request write permission on the external flash

 PORTD_OUT &= ~(0x01); // SS low

63

 USARTD0_DATA = 0x06; // Request write permission

 while(!(USARTD0_STATUS & 1<<6)); // Wait until the TX is finished

 USARTD0_STATUS = 1<<6; // Reset the TX complete IRQ

 spi = USARTD0_DATA;

 spi = USARTD0_DATA; // Immediately read the next byte

 PORTD_OUT |= 0x01; // Release SS line

 // Issue bulk erase command

 // I hope you didn't want anything on the chip!

 PORTD_OUT &= ~(0x01); // SS low

 USARTD0_DATA = 0xC7; // Bulk erase command

 while(!(USARTD0_STATUS & 1<<6)); // Wait until the TX is finished

 USARTD0_STATUS = 1<<6; // Reset the TX complete IRQ

 spi = USARTD0_DATA;

 spi = USARTD0_DATA; // Immediately read the next byte

 PORTD_OUT |= 0x01; // Release SS line

 // Reset the volatile pointers

 // (EEPROM has already been updated)

 eeprom_pageinquestion = EEPROM_CONFIGURATION_PAGE;

 EEPROM_FlushBuffer();

 findCurrentEepromAddr(&EeBufPtr);

 nextTestNum = EeReadValue(EeBufPtr, NEXT_TEST_NUM);

 nextAvailableSector = EeReadValue(EeBufPtr, NEXT_AVAILABLE_SECTOR);

 nextAvailablePage = EeReadValue(EeBufPtr, NEXT_AVAILABLE_PAGE);

 nextAvailableByte = EeReadValue(EeBufPtr, NEXT_AVAILABLE_BYTE);

 // Update the current_test structure

 current_test.start[0] = nextAvailableSector;

 current_test.start[1] = nextAvailablePage;

 current_test.start[2] = nextAvailableByte;

 for (int i = 0; i < 3; i++) {

 current_test.stop[i] = current_test.start[i];

 }

 _delay_ms(8000);

 red_leds_off();

 yellow_leds_off();

 break;

 /*

 This case is used to provide the computer with information about the module's current memory

usage.

 We include information about the next available byte, where the memory is first utilized

 (this location could change depending on whether or not wear-leveling is implemented),

 and the total device capacity (including already used bytes).

 */

 case 0x70:

 opcode = 0x00;

 uint8_t mem_info[9];

 // We can check how much memory we've used by looking at the last written sector/page/byte of

the current test

 // On initialization, this is set from internal EEPROM and subsequent tests update this number

so it should always be valid

 mem_info[0] = current_test.stop[0];

 mem_info[1] = current_test.stop[1];

 mem_info[2] = current_test.stop[2];

 // Retrieve information about where the first test begins

 eeprom_pageinquestion = 0; // Information about the start Sector, Page, and Byte for test 0

will always be on page 0

 EEPROM_FlushBuffer();

 findCurrentEepromAddr(&EeBufPtr); // You should never have to change this line. It's only

here to utilize the circular buffer

 mem_info[3] = EeReadValue(EeBufPtr, 0); // Contains the starting sector of the first test

 mem_info[4] = EeReadValue(EeBufPtr, 1); // Contains the starting page of the first test

 mem_info[5] = EeReadValue(EeBufPtr, 2); // Contains the starting byte of the first test

 // Include information about our device

 // We actually send the maximum index of each sector, page, and byte. (NOT the actual number

of sectors, pages, and bytes)

 // i.e. The sectors go from 0 to 31

 mem_info[6] = (FLASH_NO_SECTORS - 1);

 mem_info[7] = (FLASH_NO_PAGES - 1); // Prevent overflow

 mem_info[8] = (FLASH_BYTES_IN_PAGE - 1); // Prevent overflow

 // Transmit the info back to base

 transceiver_send_data(mem_info, 9);

64

 break;

 // Return a single sample from each channel

 case 0x60:

 realtime_buffer_index = 0; // Use to keep track of which sample we are on

 uint8_t realtime_buffer[16]; // Create an array to hold the current sample

 // Two channels need to be dumped

 // Grab the actual samples

 for (int i = 0; i < 8; i++) { // TODO: Fix hardcoded number of channels

 PORTD_OUT &= ~(1 << 4);

 // Send a dummy byte

 SPID_DATA = 0x00;

 while(!(SPID_STATUS & (1<<7))) { } // Wait for the SPI transaction to finish

 spi = SPID_DATA; // This is is the top 8 msb of our sample

 SPID_DATA = 0x00; // Start the background transaction again

 isloaded = 0x00;

 do { // Store the first byte while waiting for the second

 if (isloaded == 0x00) {

 isloaded = 0x01;

 realtime_buffer[realtime_buffer_index] = spi;

 realtime_buffer_index++; // Increment the index

 }

 } while(!(SPID_STATUS & (1<<7))); // While waiting for the 8 lsb to show up

 spi = SPID_DATA; // This is now the 8 lsb of our sample

 // Store the second half of our sample

 realtime_buffer[realtime_buffer_index] = spi;

 realtime_buffer_index++; // Increment the index

 PORTD_OUT |= (1 << 4); // Pull SS High

 _delay_us(3); // Small delay (this is actually shorter than 1us due to the clock change from

2MHz to 8MHz)

 // The delay is absolutely necessary!! If it is too short you will get giberish

 } // Transmit the info back to base

 transceiver_send_data(&realtime_buffer[4], 12); // Start sending data from index location 2

 break;

 //Ping

 case 0xF0:

 opcode = 0x00;

 _delay_ms(1); // Delay needed because the dongle can't send/receive too fast

 uint8_t pong[5] = {'p', 'o', 'n', 'g', '\0'};

 transceiver_send_data(pong, 5);

 break;

 default:

 break;

 }

 SLEEPCPU(); // Since the transceiver is interrupt driven, any transceiver activity will wake the

CPU from sleep

 }

return 0;

}

65

 APPENDIX E: EXTRA.H HEADER FILE

/*

 This file was written by Justin Goins

*/

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/sleep.h>

#include <util/delay.h>

#ifndef MYSTRUCTURES

 #define MYSTRUCTURES 0

 #define SLEEPCPU() asm("sleep" "\n\t")

 #define INTEN() asm("sei" "\n\t")

 #define INTDIS() asm("cli" "\n\t")

 /* Transceiver definitions */

 #define OPERATING_CHANNEL 0xF

 #define PAN_ID 0xBEEF

 #define SHORT_ADDRESS 0x1001 // Originally 0x1001

 #define DEST_ADDRESS 0x0001

 #define TX_BUFFER_SIZE 96

 /* EEPROM definitions */

 #define EEPROM_NO_PAGES 64

 #define EEPROM_BYTES_IN_PAGE 32

 // Masking out the byte address in a page

 #define EEPROM_BYTE_ADDRESS_MASK 0x1f

 #define EEPROM_CONFIGURATION_PAGE 60 // This is the EEPROM page that contains system defaults, etc

 // EEPROM Byte Locations

 // (these numbers represent where the values are located within the EEPROM page)

 #define NEXT_TEST_NUM 0

 #define NEXT_AVAILABLE_SECTOR 1

 #define NEXT_AVAILABLE_PAGE 2

 #define NEXT_AVAILABLE_BYTE 3

 /* FLASH definitions */

 #define FLASH_NO_SECTORS 32

 #define FLASH_NO_PAGES 256

 #define FLASH_BYTES_IN_PAGE 256

 /* Definitions for device recognition */

 #define PARTCODE 0xFA

 #define SIGNATURE_BYTE_1 0x1E

 #define SIGNATURE_BYTE_2 0x97

 #define SIGNATURE_BYTE_3 0x44

 // Pin Definitions

 #define ADC_PORT PORTD

 #define ADC_PORT_OUTCLR PORTD_OUTCLR

 #define ADC_PORT_OUTSET PORTD_OUTSET

 #define ADC_SS_PIN (1 << 4)

 // Random Constants

 #define ZERO 0x00

 #define ONE 0x01

 #define DEFAULT_CAPTURE_TIME 10 // In seconds (must be four bytes or less)

 #define OP_CODE_OFFET 9 // Where the op code is in the packet

 #define DEFAULT_ADC_CHANNELS 0b00111111

 #define DEFAULT_SAMPLE_PERIOD 50 // In Hz (must be four bytes or less)

 /*

 Structures

 */

 typedef struct{

 volatile uint8_t start[3]; // This will have a sector, page, and byte number

 uint8_t timestamp_high[4];

 uint8_t timestamp_low[4];

 uint8_t duration[2];

 uint8_t adc_channels;

 uint8_t period[2];

 volatile uint8_t stop[3]; // This will have a sector, page, and byte number

 uint8_t errata[2]; // This is for future use

 } test_container;

#endif

66

 APPENDIX F: EEPROM_LEVELING.C SOURCE FILE

/**/

/* AVR101 "High endurance EEPROM storage" */

/* */

/* Filename: High_Endurance_EEPROM.c */

/* Date: 2002.08.15 */

/* Author: jllassen */

/* */

/* Modified: 2003.10.06 (raapeland) */

/* Modified: 2006.07.18 (raapeland) */

/* Modified: 2010.03.16 */

/* */

/* Compiler: IAR EWAVR 2.26C, IAR EWAVR 4.12A */

/**/

/*

 This file was heavily modified by Justin Goins in order to optimize EEPROM usage and ensure

compatibility with the XMEGA series.

 This file has also been changed to compile on AVR Studio 4.18.

*/

#include <stdlib.h>

#include "eeprom_leveling.h"

#include "eeprom_driver.h"

#include "extra.h"

#include "visual.h"

void findCurrentEepromAddr(unsigned int *EeBufPtr)

{

 unsigned char temp, prevstatus;

 unsigned int EeBufEnd;

 *EeBufPtr = 0; // Point to the status buffer slot 0 by default

 temp = 0; // start by pointing to status buffer slot 0

 prevstatus = 0; // This will hold whatever the old status value was

 EeBufEnd = *EeBufPtr + EE_STATUS_BUFFER_SIZE; // The first address outside the buffer

 // Identify the last written element of the status buffer

 do {

 prevstatus = EeReadBuffer(temp);

 *EeBufPtr = temp;

 temp++; // Increment to the next index

 if (temp == EeBufEnd) { // Break if end of buffer, so we don't compare out-of-bounds.

 break;

 }

 } while (EeReadBuffer(temp) == prevstatus + 1);

 *EeBufPtr = *EeBufPtr + EE_PARAM_BUFFER_SIZE; // Point to the last used element of the first

parameter buffer

 // If the status buffer is full of zeros, *EeBufPtr will return as 4 (which is the index of the

first byte of data)

}

// Return the specified byte from EEPROM

char EeReadBuffer(unsigned int address)

{

 return (char)EEPROM_ReadByte((unsigned char)eeprom_pageinquestion, (unsigned char)(address));

}

// Specialized function for use with the WHAM internal EEPROM format

char EeReadValue(unsigned int address, uint8_t specified_byte)

{

 return (char)EEPROM_ReadByte((unsigned char)eeprom_pageinquestion, (unsigned char)(address +

(specified_byte * EE_PARAM_BUFFER_SIZE)));

}

void EeWriteBuffer(unsigned int *address)

{

 unsigned char EeOldStatusValue;

 EeOldStatusValue = EeReadBuffer(*address - EE_PARAM_BUFFER_SIZE);

67

 (*address)++;

 if(*address == (EE_START + EE_PARAM_BUFFER_SIZE + EE_STATUS_BUFFER_SIZE))

 {

 // Wrap around if necessary.

 *address = EE_START + EE_STATUS_BUFFER_SIZE;

 }

 // Update the status buffer

 EEPROM_WriteByte((unsigned char)eeprom_pageinquestion, (unsigned char)(((*address) -

EE_PARAM_BUFFER_SIZE) & EEPROM_BYTE_ADDRESS_MASK), (EeOldStatusValue + 1));

 // Update the parameters in the EEPROM buffer

 for (int k = 0; k < EE_BYTES_PER_PAGE; k++) {

 //EEPROM_LoadByte((unsigned char)(((*address) + (EE_PARAM_BUFFER_SIZE * k)) &

EEPROM_BYTE_ADDRESS_MASK), k+1);

 EEPROM_WriteByte((unsigned char)eeprom_pageinquestion, (unsigned char)(((*address) +

(EE_PARAM_BUFFER_SIZE * k)) & EEPROM_BYTE_ADDRESS_MASK), eeprom_buffer[k]);

 }

}

68

 APPENDIX G: EEPROM LEVELING.H HEADER FILE

/*

 This file was written by Justin Goins

 Based on the AVR101 Application Note from Atmel.

*/

#include <stdlib.h>

#include <avr/io.h>

/**/

/* Define the number of levels in the buffer, */

/* - four levels will guarantee 400k writing of the parameter */

/**/

#define EE_PARAM_BUFFER_SIZE 4

#define EE_STATUS_BUFFER_SIZE EE_PARAM_BUFFER_SIZE

#define EE_BYTES_PER_PAGE 7

#define EE_START 0 // Where to start utilizing the EEPROM Page

/**/

/* Global variables: */

/* Initialize the parameter buffer pointers to be able to resume at the right location.*/

/**/

unsigned int EeBufPtr;

uint8_t eeprom_buffer[EE_BYTES_PER_PAGE]; // Using EEPROM wear leveling we can put 7 bytes per 32

byte page

uint8_t eeprom_pageinquestion; // This will be used to keep track of which EEPROM page to write

/**/

/* Prototyping of functions used */

/**/

void findCurrentEepromAddr(unsigned int *EeBufPtr);

char EeReadValue(unsigned int address, uint8_t specified_byte);

char EeReadBuffer(unsigned int address);

void EeWriteBuffer(unsigned int *address);

69

 APPENDIX H: DESIGN PHOTOGRAPHS

	INTRODUCTION
	CUSTOMER REQUIREMENTS
	TOP LEVEL BLOCK DIAGRAM
	DESIGN INFORMATION
	Battery Block
	Voltage Regulator Block
	Visual Indicator Block
	Flash Memory Block
	Transceiver Block
	Microcontroller Block
	16-bit ADC Block
	Accelerometer Block

	MICROCONTROLLER FIRMWARE
	PCB DESIGN
	DATA STRUCTURE IMPLEMENTATION
	CONCLUSION
	BIBLIOGRAPHY
	APPENDICES
	SCHEMATICS
	EQUATIONS
	PCB LAYOUT
	G2W10.C SOURCE FILE
	EXTRA.H HEADER FILE
	EEPROM_LEVELING.C SOURCE FILE
	EEPROM LEVELING.H HEADER FILE
	DESIGN PHOTOGRAPHS

