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alternative was used since it is more amenable for application by ex-

tension workers.

Data requirements were found to be no more difficult to satisfy

in the quadratic programming model than in the presently used linear

programming models. The triangular probability distribution was

used in obtaining subjective estimates for the mean and variance of

prices and yields. Subjective methods for deriving covariances be-

tween incomes from farm enterprises were discarded as being difficult

to administer and subject to inconsistencies. A. regional correlation

matrix was used from which specific covariance estimates for individ-

uai decision problems were computed.

Seven cases were studied as a test of the computer programs and

the algorithm. Four of these cases were submitted from actual farm

situations by an extension agent. Output from the computer provided

each farmer with a report containing the composition of every efficient

plan, the pattern of resource use, the shadow prices of limiting re-

sources and confidence statements about achieving certain levels of

gross margin. The report was presented in tabular form, in graphic

form and as a set of algebraic equations. Although no extensive test

of acceptance by farm decision makers was made, results with the

four cases studied appeared encouraging.
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A QUADRATIC PROGRAMMING ALGORITHM FOR
DERIVING EFFICIENT FARM PLANS

IN A RISK SETTING

I. ENTERPRISE CHOICE UNDER UNCERTAINITY -
HISTORICAL AND PHILOSOPHICAL

DEVELOPMENTS

Advising Under Uncertainity - A Gap

Applied Farm Management by extension personnel has tradition-

ally been of a prescriptive nature. Risk and uncertainty largely have

been ignored.
1 Input and product prices and technical coefficients

have been assumed to occur with certainty. In general these coeffic-

ients have either been projections of historical data or expected values

(a long run implication) of random variables. partial budgets and

linear programming have been the principal planning tools used in this

problem-solving framework.

Extension workers sometimes are perplexed to find that clients

do not implement recommendations based on that combination of activ-

ities which will achieve a maximum expected net income. Often the

'Often the term "risk" is reserved for describing future events
which can be predicted in an actuarial sense and 'uncertainty" is used
to describe future events about which such empirical predictions can
not be made. In this thesis no such distinction between the two terms
will be made. Risk and uncertainty will be used interchangeably to
mean that the occurance of a future event is not known with certainty
but the decision-maker has, onthe basis of historical information or a
subjective feeling, some notion about the probability distribution of
the event.



2

client has chosen some modification that results in an income level

less than the optimum perceived by the extension worker.

This raises a question about the applicability and completeness

of extension advice. Might it be that the extension worker perceives

the decision maker's goals and objectives differently from what they

in fact are? Might this not be further magnified in an environment of

uncertainty where the decision maker stands the chance of economic

disaster? It is not so much a lack of theory that inhibits the solutQn

as it is in operational tools.

Evolution of Theory and Operational Planning Tools

During this century there has been rapid development of theory

and tools to solve management problems. Although there were some

writings (46) prior to the 19 20's, it was not until J. D. Black wrote

his now classic book Introduction to Production Economics (3) that

there emerged a systematic treatment of economics which pcused

on the use of marginal analysis criteria in agricultural decision mak-

ing. In his book, Black incorporated the ideas of: (a) statistical

methods applied to production relationships by Spiliman (40); (b)

statistical analyses using individual farm survey data by Tolley, Black

and Ezekiel (42) and; (c) neo-classical theory of the firm. This

marked the birth of experimentalist philosophy in agricultural
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economics, a blend of the empiricist2 and rationalist3 schools (27).

The experimentalist philosophy began to grow in the 1930's nurtured

by developments in the field of general economics including the contri-

butions of J. R. Hicks (22) who applied basic concepts of mathematics

to the theory of the firm. Developments in agricultural economics

followed with Heady's (19) integrative work in the late 1940's, which

was continued into the 1950's and 60's by his disciples. Once the con-

cepts of marginal analysis were refined and adopted for use, interest

of several agricultural economists, including Johnson (28) and Halter

(16) focused on the management processes of farmers.

While developments described above were taking place, a new

field called operations research, conceived by engineers, mathemati-

cians and statisticians was taking form. A major contributor to oper-

ations research was Dantzig (9) who in 1947 devised the simplex method

for optimizing linear functions subject to linear constraints. This tool

became known as linear programming. It was soon adopted for use in

agricultural economics because of its operational depth and simplicity

in solving production problems. In 1958 Dorfman, Samuelson and

Solow (11) provided an economic interpretation to linear programming.

2The empiricist philosophy is predicted on collecting "facts",
unhampered and unbiased by considerations of theory.

The rationalist philosophy contends that questions of theory
must be answered before facts are worthy of consideration.



ady and Candler (20) published their widely used

text book on applications of linear programming to solving economic

problems in agriculture.

Also during the l940's, a most productive era for economics,

Von Neuman and Morgenstern (44) revived the concept of cardinal

utility4 and introduced the theory of games. This rekindled an interest

in problems of risk and uncertainty which had been discussed in the

l920's by Knight (30) but had lacked a practical mechanism for appii-

cation. A. theorem concerning probabilities, proven nearly two cen

tunes ago by Thomas Bayes, an English mathematician and clergyman,

was brought to bear on decision problems. Since the 1950's, increased

emphasis has been placed upon theory. The names of Waid (45),

Hurwicz, as cited by Luce and Raiffa (32, p. 492), and Friedman and

Savage (1 5) stand as important contributors to the theory. Halter and

Dean (17) give an excellent treatment of the present state of decision

theory and its application to agriculture.

Computer technology development became an important precursor

of another new approach-simulation and systems analysis. Forrest-

er's (13) Industrial Dynamics is a notable contribution in this area.

The computer age made it feasible to perform the vast number of

4Neo-classical economists in the 1930's substituted ordinal util-
ity analysis using indifference curves for the cardinal measure of
pleasure and pain envisioned by the classicists. Von Neuman and
Morgenstern's concept of cardinal utility was something different. It
involved a preference ranking of risky alternatives.
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calculations, thus permitting widespread adoptions of the new techni-

que s.

Philosophy and Mechanism for Giving Planning Advice

Concurrent with advances in economic theory and methodology,

institutional structures emerged which fostered the dissemination of

knowledge. Passing of the Smith-Lever Act in 1914 established the

Co-operative Extension Service which had as an objective TT_ -to aid

in the diffusing among the people of the United States useful and prac-

tical information on subjects relating to agriculture and home econom-

ics, and to encourage application of the same-- lt (43, p. 343).

The extension worker serves as a resource upon which the de-

cision maker can draw to perform his function of management. Brad-.

ford and Johnson (5, p. 3) define management as a set of steps in the

process of thought and action.

riManagement is the intangible part of production which devel-
ops within the lives of men. It is first a mental process, a
concentration of desires, a will power. Management functions
when a farmer is (1) observing and conceiving ideas; (2) anal-
yzing with further observation; (3) making decisions on the
basis of the analysis; (4) taking action; and (5) accepting re-
sponsibilities. Management can be seen only through observ-
ing the decision making process and its results.

It is generally accepted by agricultural economists that the place of

the extension worker is in the steps of observation and analysis. His

function is to provide information and present alternatives. He aids in

problem definition and raises relevent questions; but making the



decision is clearly outside his domain. In practice there is not always

a sharp line between presenting alternatives and choosing a course of

action from among them. However, the distinction between the domain

of the decision maker and that of the advisor is clear in the fifth step

of accepting responsibility. The decision maker must live with the

consequences of his decision whether the result be success or failure.

While the traditional theory postulates economic man as one whose ob-

jectives are to maximize profit within a static dimension, the possibil-

ity of financial ruin may cause a real world man to behave in a niuch

different manner.

Problem and Purpose - Narrowing The Gap

Despite advancements in decision theory, there has been only

minor implementation of planning techniques that account for uncer-

tainty (41). Most planning techniques presently in use assume static,

certainty conditions. The objective of the decision maker is taken to

be maximum profit, usually measured as net income, or return to

labor and management. Solutions are generally given as a single best

plan, i. e. the one which results in maximum profit. Although an aura

of certainty surrounds the advice, the farmer may be given an esti-

mate of income variability associated with the plan. Furthermore

advice is often concluded with the statement, "This plan is only a

guide and you should apply your own judgment about how to use it.
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The farmer, if unversed in the particular analytical technique used

must either follow the advice blindly or be confused as to how he

should apply his judgment.

Farm management text books generally give a superficial treat-

ment to the topic of farm planning in the face of uncertainty. They

leave off with the notion that it is unwise to "put all of your eggs in one

basket. " Very little is said in a positive way about how one might

determine the proper number of baskets, or how to select the eggs to

be placed in them.

Objectives of the Study

A gap exists between theoretical developments in problem solv-.

ing under uncertainty and methodology for application of this theory in

a practical setting. This study will attempt to narrow that gap. The

prime objective is to develop a planning technique which actively5

accounts for uncertainty. Focus will be on the enterprise selection

problem with the basic method coming from Markowitz's (34) portfolio

selection criteria designed for use by investment consultants. This

problem in security analysis has much in common with the agricultural

problem of choosing the "correct" combination of enterprises. The

5The term "active" distinguishes this approach from the term
"passive" which refers to giving a single plan and including a state-
ment about its income variability.



similarity has been recognized by Freund (14), Carter and Dean (7),

How and Hazeil (26), Boussard (4) and others For methodology to

be operational from the decision makers point of view it should possess

several characteristics including (a) the problem it is designed to

solve must exist in the real world and answers must be worth at least

as much as the cost of getting them, (b) the decision maker for whom

the program is designed must recognize that he has the problem and

must be able to provide data for its solution, and (c) the answer to the

problem must be presented in such a form that the decision maker can

understand the various suggested actions. The development of operation-.

al tools which focus on enterprise selectionunder uncertainty remains to

be solved and it is to this end that the thesis is directed.

Plan of the Thesis

Chapter II initiates the inquiry with a review of ecnomic theory

under the assumption of certainty which is later relaxed to account for

crucial issues of uncertainty. The problem is first formulated in a

linear programming framework. Then as the concepts of uncertainty

are introduced, 'deterministic" assumptions of the linear model are

relaxed. This reformulation results in a quadratic programming

model. A two enterprise example is used to illustrate the transition

from traditional non-stochastic linear programming to a more real-

istic model of quadratic programming.



uses on operational aspects for implementing the

(jud.urd.L1c rnuuei.. .tn algorithm, with supporting computer program is

first developed. This is followed by problems of parameters estima-

tion. Requirements of accuracy, efficiency and simplicity in result

interpretation are borne in mind as the development proceeds.

Empirical testing is undertaken in the fourth chapter. This test

is restricted primarily to the computational accuracy and efficiency of

the algorithm. General conclusions and suggestions for further invest-

igation are the topic of the fifth and final chapter.
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II. THE ENTERPRISE SELECTION PROBLEM -
METHODOLOGY FOR SOLUTION

The enterprise selection problem is one of several issues which

economic theory seeks to answer. This is the question of what and

how much to produce. Initially, this chapter will examine the tradi-

tional certainty case employing the theory of production and marginal

analysis. These restrictive assumptions will be relaxed so that a

solution, first in the certainty case and finally in the uncertainty case,

will become operationally possible.

The Traditional Certainty Case

The Theory - Static Certainty

The theoretical framework within which the short-run enterprise

selection problem is solved comes directly from the theory of produc-

tion in a purely competitive market. Here the decision maker is

assumed to have perfect knowledge about factor and product prices but

does not have sufficient control in the markets to exert a pricing in-

fiuence. Further, it is assumed that this perfect knowledge extends

to the technical relationships between factor inputs and resulting pro-

ducts. These relationships are.expressed mathematically in a pro-

duction function (Zl, p. 72-75). The decision maker is left to choose

that combination of input and corresponding output levels which



maximizes his profit. Mathematically he is required to solve the

following maximization problem:

Max:6 1py - = Y

S. T:7 F(y1, y, x1, x) = 0

yi .0 i = 1,, n

x.>0 j=l,",m
where Y is profit

y. is the output of the ith product and p. its price

11

(2.1)

x. is the input level of the jth productive factor and r. its cost

F is the production function stated in implicit form and chosen

so that the non-negativity restrictions always held.

This set of simultaneous equations is usually solved through the appli-

cation of Lagrangian multipliers. The Lagrangian function (2, 2) is

formed and then partially differentiated with respect to its arguments.

R(y,x, X) = p.Y. -r.x. -

(2. 2)

where X is the Lagrangian multiplier.

6 The abreviation "Max:" denotes maximize.

7The abreviation "S. T:" denotes subject to.
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This establishes the first order condition for an extremum as shown

in (2. 3). The sufficient condition for the extreme value of Y to be a

maximum is that the matrix of second order cross partial derivatives

is negative definite when evaluated at the optimizing levels of y and

x. It is assumed that the production function is of such a nature that

the second order condition holds.

=p.-?-----= 0
ay. 1 ay.

aR aF- r, - X = 0 j = 1,..., m (2.3)
ax. ax.

1 3

aR
= F(y, ', y, x1, .", Xm) 0

Solution of the system of Equations (2. 3) demonstrates a funda-

mental concept of economics- -namely the principle of equimaginal

returns. The principle states that in order for profit to be maximum:

(a) the rate of transformation between any two products must

equal the ratio of their respective prices. Mathematically

this is:

ayk P

(2, 4)

(b) the rate of technical substitution between any two factors of

production must equal the ratio of their respective costs,

Mathematically this is:



13

ax. r
= (2.5)r.

S 3

(c) the marginal factor cost of any factor of production must

equal its marginal value product. Mathematically this is:

a

r. = (2.6)

Although all of the Equations (2.4), (2.5) and (2.6) must hold simuL-

taneously, the relationship expressed in Equation (2.4) directly answers

the question of what and how much to produce, the central issue of

this thesis.

Empirical Tools

The Econometric Production Function

The theory of production is rich in explanatory hypotheses about

economic phenomena and provides a rigorous framework within which

to "think through" economic problems. However, as an operational

tool it departs substantially from reality for providing specific an-

swers to a particular firm on questions of input and output levels. As

Dillon (2,p.l 03) points out, the estimation of response surfaces is beset by

difficulties, not the least of which are statistical problems of design

and measurement. Variability in response over time and space



14

further complicates the issue. These contribute to discrepancies that

exist between results obtained under controlled investigation and an

actual farm situation. Most response surface experimentation has

been conducted on a multiple input, single output basis. Data are

generally analyzed using a multiple regression routine with a single

equation model. This virtually eliminates investigation of joint pro-

duct relationships which form the very heart of the enterprise selection

problem. Intent of these remarks is not to discredit inter-disciplinary

work done on investigating production processes. Such work has pro-

duced many insights into agricultural production problems. However,

important as these functions may be for providing some of the data

useful in farm planning, they alone are not sufficiently powerful to

cope with the high level of complexity surrounding many farm units.

The Partial Budget

In the early stages of empirical tool development many opera_

tional difficulties were assumed away by describing the production

process in terms of straight line segments. The process was called

partial budgeting. It provides the simplest form of a linear production

function and is probably the most widely used empirical tool even

though it is not always presented in a formal written manner. The

main philosophy underlying the partial budget revolves around three

equations:
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(a) ADDED PROFIT = ADDED RETURNS - REDUCED RETURNS

(b) ADDED PROFIT = REDUCED COSTS - ADDED COSTS

(c) ADDED PROFIT = ADDED RETURNS - ADDED COSTS

Although there are no optimizing criteria built into the partial budget

as such, it is of interest to note that these equations do have a firm

basis in the fundamentals of profit maximization; see Equations (2.4),

(2.5) and (2.6). The usual method is to construct a number of partial

budgets and then compare the projected outcomes, i. e. added profits,

from each. The highest paying alternative, after due consideration is

given to other important factors not explicitally included in the budget,

can then be chosen.

Introduction of high-speed computers and diligent efforts by

Danzig (9) and others added, an optimizing technique to the rather

simple notion of partial budgets thereby producing the now well known

technique of linear programming.

Linear Programming

Linear programming is a mathematical concept defined as the

optimization (maximization or minimization) of a linear function in

several variables subject to a set of linear inequality constraints

(11, p. 8).
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Assumptions of Linear Programming

Since there is an abundance of writing on the subject of linear

programming both with respect to theory and application, a detailed

review will not be pursued here. Naylor (35) gives a particularly clear

and concise treatment of the relation between traditional theory of the

firm and linear programming. Certain assumptions about the relation

between inputs and outputs are basic to linear programming. It will

suit the purpose here to reproduce only its essential features.. The

list is adopted from Hillier and Lieberman (Z3). The basic assump-

tions are:

Proportionality: If one unit of the ith activity requires one unit

of the jth resource, then two units of the ith activity will require

two units of the jth resource. In terms of the calculus this means

that the marginal physical productivity of the jth resource in the

ith activity is constant over the interval of concern. At first

this appears to be a rather serious limitation of the model,

especially in view of the so-called principle of diminishing re-

turns. However, it is possible to preserve the essential non-

linear features in many cases through specification of several

activities over an appropriate size range.

Additivity: Engaging in one activity will in no way affect the per

unit profit of any other activity, nor will it affect the per unit
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resource requirement of any other activity. In the Carison (6,

p. 79) sense there is technical and economic independence be-

tween every pair of activities, between every pair of resources

and between all resources and activities.

Divisibility: Resources and activities must be perfectly divisible.

The implication of this assumption is optimum output levels and

their corresponding levels of resource use need not be in whole

numbers. For instance the solution may require that there be

1 0- 1 / 2 s ows rather than 1 0 or 11. Unfortunately there are no

good techniques to know, in general, whether to round up to 11

or down to 10 so as to minimize departure from the optimal

combination. 8

Deterministic: The linear programming model treats all of the

coefficients as though they were constants occuring with certain-

ty. In dealing with reality, it is seldom, if ever, that such a

degree of certainty exists. In actuality, the coefficients are

expected values of some random distribution but treated as

though they were non-stochastic.

8To resolve this difficulty one must go to the more elaborate
integer programming methods which are not yet highly developed.

9it is usual to use the expected value of the random variable,
although in some cases it may make sense to use the most frequently
occurring or modal value.



It is unlikely that there exist any situations that completely satis-

fy the assumptions of linear programming. However, there is a broad

set of management problems that come sufficiently close such that the

linear model gives reasonably satisfactory results.

The Enterprise Selection Problem in a Linear Programming Setting

The enterprise selection problem can be stated formally as the

linear program:

Max: =

S. T: a..y < G. 3 = 1,..., m (2. 7)

yi > 0 1 = 1..., n

where Y is total net income

y. is the level of the ith activity

p. is the net income per unit of the ith activity10

G. is the amount of the jth resource available

a. is the amount of the jth resource used in producing one unit

of the ith activity.

To examine some implications of linear programming in the

enterprise selection problem a numerical example has been chosen.

'°Net income is defined as the return above variable cost.
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A farmer has the opportunity to grow any combination of two crops as

long as he does not use more than a total of four acres of land or six

hours of labor. After deducting variable costs, crop one (y1) will re-

turn one dollar per acre, Crop two (y2) returns two dollars per acre.

It takes one hour of labor to grow an acre of the crop one and three

hours for an acre of crop two. This information is known with certain-

ty. The farmer wishes to get maximum return above variable cost.

The problem stated in linear programming terms is:

Max: y1 + 2y2 Y

S.T: y1 + 3y2 < 6
(2. 8)

+ y2 4

yl, Y2 0

The graphic solution to this problem is found in Figure 2. 1. Any

point in the area obb', or on its boundary represents a possible choice

as far as land is concerned. Likewise any point in the area oaa', or

on its boundary represents a possible choice as far as labor is con-

cerned. Any point in the areas adb or b'da', or on their upper

boundaries are infeasible, because such a combination would exceed

the quantity of labor or land available. Any point lying on or within

oadb' represents a feasible choice. The line cc' indIcates

11 This simple problem will be made more elaborate in succeeding
s e c t i on s as the concepts of risk are introduced. It is the intent to
provide the reader with a smooth transition to less familiar ground.
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Figure 2. 1. The linear programming problem.
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combinations of y1 and y2 yielding the same total return above

variable cost, in this case three dollars. Any line drawn parallel to

cc' and further from the origin represents a higher income. The high-

est income attainable is found on that line running parallel to cc' and

passing through point d. At this point income is five dollars. The

amount of land in crop one (y1) is three acres and in crop two (y2) one

acre. For those more elaborate linear programming problems which

contain more than two activities, a graphic solution becomes impos-

ibie. In such a case an algorithm called the simplex method is employ-

ed to obtain the income maximizing combination of activities. Several

good references are available which present the simplex method in de-

tail. Hillier and Lieberman's book (23) is elementary but thorough.

However, knowledge of linear programming, beyond what has been

discussed here is not essential for the reader to proceed.

Specification Problems in Linear Programming

The objective function in the numerical example of linear pro-

gramming used here was taken to be maximum profit. This is the

usual case in farm planning. Such an objective function may be an in-

adequate specification of the decision maker's goals. It may be that

the farmer has a "dislike" for some enterprises, even though they

appear to be generally profitable with farmers in the area. For in-

stance, he may simply 'not want a pig on the place. " This is easily
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handled by excluding 'pigs" as an activity or enterprise in the model.

Another specification error might arise as a result of the so-

called work-leisure concept. For a given production function, addi-

tional income can result only if additional labor is applied. As more

work is done, less time is available for leisure. This results in a

distinction between labor and managerial effort as production resources

and leisure, which forms the compliment of labor but is an ingredient

of consumption. This topic is pursued by Skitovsky (38, p. 142-147)

although not in the linear programming context. In a very real sense,

a farmer will wish to put in additional time only if the income derived

from it adds more to satisfaction than is lost from the leisure time

given up. In formulation of the numerical example of Equation (2. 8),

value of additional leisure was assumed implicitly to be zero. This

specification problem, when it exits, can be overcome by incorporating

an amount reflecting the salvage value of labor (28).

Decision making tools must of necessity be forward looking. 1 2

Consequently a third possible source of faulty specification results

from the deterministic assumption. In real life it is unlikely that all

of the information needed for decision making can be known with cer-

tainty. Even though payoffs and resource requirements of each activ-

ity are stated as parameters, they in fact are estimates--which by

1 20f course analytic use of linear programming is also made
in a posteriori sense.
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their very nature are found only in an environment of uncertainty.

Thus the linear programming solution to the enterprise selection prob-

lem in reality becomes that combination of activities which results in

maximum expected return. 13

If decision makers were maximizers of expected return, it

would not be necessary to focus attention on the randomness of coeffic-

ients in the model. However, in reality farmers do concern them-

selves with questions of failure and bankrupcy. Therefore it becomes

necessary to set the stage for examining conditions under which a

decision maker is a maximizer of expected profit and the conditions

under which he is not.

The Uncertainty Case

Theoretical Considerations

Utility Theory - The Preference for and Aversion to Risk

In 1943 Von Neuman and Morgenstern (44) reintroduced the con-

cept of cardinal utility. Their concept was quite different from the

cardinal utility of the early demand theory. In the early theory, car-

dinal utility was taken to be an absolute measure of pleasure and pain

131t may of course be that the estimate is the most frequently
occuring levelof per unit profit, in which case the objective
function is to maximize most likely profit rather than expected profit.
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(2, p. 523). The more recent concept was, instead, a preference

ranking of risky alternatives.

The Von Neuman-Mogenstern notion of the utility function pro-

ceeds from a set of basic assumptions which are quoted directly from

Chernoff and Moses (8, p. 82).

"AssumEtion 1. With sufficient calculation an individual faced

with two prospects P1 and P2 will be able to decide whether

he prefers prospect P1 to P2, whether he likes each equally

well, or whether he prefers P2 to P1.

Assumption 2. If P1 is regarded at least as well as P2 and

P2 at least as well as P3, then P1 is regarded at least as

well as P3.

Assumption 3. If P1 is prefered to P2 which is prefered to

P3 then there is a mixture of P1 and P3 which is prefered to

P2, and there is a mixture of P1 and P3 over which P2 is

prefered.

Assumption 4. Suppose the individual prefers P1 to P2 and

P3 is another prospect, Then we assume that the individual

will prefer a mixture of P1 and P3 to the same mixture of P2

and P .

If an individual satisfies the basic assumptions, then for every pros-

pect P there exists a corresponding utility number u(P). If the

prospects represent different levels of income Y then the result is a
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utility function for income. It has the following properties (17, P. 62).

Property 1. If Y1 is prefered to Y2 then u(Y1) > u(Y2).

Property 2. If Y1 occurs with probability p and Y2 with

probability l-p, then U = E(ü(Y)) = pu(Y1) + (l-p)u(Y2), where

Y is a random variable and U = E(ü(Y)) is its expected utility.

Property 3. The utility function is bounded, i. e. the utility

number to be assigned lies between positive and negative infinity.

Property 4. The utility function is monotone increasing.

From the monotonic property it is known that higher certain

incomes result in greater utility than do lower certain incomes. While

the first derivative is positive throughout, the second derivative may

be positive, negative or zero and accordingly the marginal utility of

income will be increasing, decreasing or constant. The three possible

shapes of the utility function are shown in Figures 2. 2, 2. 3 and 2. 4.

If a wide enough range in income is allowed, then the individual's

utility function will include each of the three stages (1 5).

To permit the utility function to be used for analysis, it can be

expressed as a Taylor series expansion about the fixed point of expect-

ed income E(Y) (17, p. 100).

u(Y) u(E(Y)) + rY-E(Y)] du(E(Y)) [Y-E(Y)]2 d2u(E(Y))
dY +

2
dY2

00

+ I [Y-E(Y)1
Li n!

dY'1 (2.9)n=3



u(Y)

Figure 2. 2.

Y

u(Y) u(Y)

Y

Utility function Figure 2.. 3.. Utility function Figure 2. 4. Utility function
for an individual for an individual for an individual
who prefers risk, who is a risk who is risk neutral.

aver ter.
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Taking the mathematical expectation of Equation (2. 9) results in

U = E[u(Y)1 E[u(E(y))i + E[Y-E(Y)] du(E(Y))
dY

+ E { (Y-E(Y))2] d2u(E(Y))
(2. 10)

dY2

00

+ Y -k- E[(yE(y))nJ d'1u(E(Y))
n! dYn

n= 3

where U is expected utility.

The terms of the expansion are made up of the derivatives of the

utility function and the moments of the random variable, i. e. income.

The first term E[u(E(Y))] reduces to u(E) which is the utility of

expected income, the second term E[Y-E(Y)] is zero, and the third

term

E [ (Y-E(Y))2] d2u(E(Y))
2

dY

is the product of the variance of income and the second derivative of

the utility function evaluated at the level of expected income E(Y). If

the random variable has no moments higher than the second or the

utility function has no derivatives of higher order than the second or

if both conditions hold then the remainder term of the Taylor series

summed from three toinfinity is zero. To permit analysis in the van-

ance expected income space it will be assumed that either or both of

these conditions hold. Then expected utility becomes a function of



expected income and variance as shown in Equation (2. 11).

1 d2u(E)U = u(E) +V (2.11)
2 dY2

where Y is the income variable

E is the expected income i. e. E E(Y)

u(E) is the utility of expected income

V is variance of income i. e. V = V(Y)

Equation (2. 11) can be rearranged such that variance becomes a

function of expected utility and expected income as shown by Equation

(2. 12).

V = 2[U
dY2

(2. 12)

0

For fixed levels of expected utility, say U , variance as a

function of expected income produces an indifference curve. Changing

the level of U results in a family of indifference curves. These

curves are presented graphically as U1, Ti2 and U3 on Figures

2. 5, 2. 6 and 2. 7. The shape of the indifference curves depends upon

whether the individual has increasing, decreasing or constant utility

for income.

is tics.

The family of indifference curves has the following character-

1. For any two alternatives, each with the same variance, the

one with the higher expected income will yield the greater



V V V

Figure 2. 5. Indifference curves
for an individual
who prefers risk
(increasing marginal
utility for money).

0

U2

Figure 2. 6. Indifference curves
for an individual
who is a risk averter
(decreasing marginal
utility for money).

Figure 2. 7. Indifference curves
for an individual
who is risk neutral
(constraint margin-
al utility for money). r'.
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expected utility.

2. For any two alternatives, a and b, each having the same

expected income:

(a) where the marginal utility of incomes is increasing the

alternative with the greater variance will yield the great-

er expected utility as shown in Figure 2. 5.

(b) where the marginal utility of income is decreasing the

alternative with the lower variance will yield the higher

expected utility as shown in Figure 2. 6.

(c) where the marginal utility of income is constant both

alternatives will have the same expected utility as shown

in Figure 2. 7.

These characteristics of the indifference curves are derived

from Equation (2. 11) and the monotonic property of the utility function.

It is possible for an indifference surface to exhibit all three forms of

indifference curves.

The theoretical framework for evaluating risky alternatives is

now complete and attention can be directed toward specifying enter-

prise alternatives in terms of their expected incomes and variances.

Feasible Enterprise Choices

Suppose that the income from a particular activity is a random

variable. The profitability of that activity is measured by expected
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income, and its riskiness by variance. 14 No higher moments than the

mean and variance are assumed. The expected income of a combina-

tion of activities is expressed as:

E E(Y) (2.13)

where is the expected income per unit of y..

ed as:

The variance of income of a-combination of activities is express-

V = V(Y) = Qy. + 2 r..Y.Y. (2. 14)

1=1 i=lj<i

where is the variance of income per tnit of y.

r. is the correlation coefficient between the incomes of y.
13 1

15and y..

These combinations of activities or enterprises can be viewed as alter-

natives or plans. There is an infinite number of alternatives, each

having the same expected income but different variances. Likewise

there is an infinite number of alternatives, each having the same

variance but different expected incomes. This raises the question

14The coefficient of variation, the ratio of the standard deviation
to the mean, is a better measure of riskiness. This notion will be
pursued later.

5The correlation coefficient r, measures the degree of statis-
ical interdependence between the incmes of the ith and jth activities.
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"Is there some rationale whereby this infinite number can be reduced

to a single superior alternative? Its answer is found in the Von

Neuman-Morgenstern utility theory.

Efficient Enterprise Choices

It has been shown that if a decision maker satisfies the basic

postulates of utility theory and is also a maximizer of expected utility,

he will choose from among alternatives having the same variance, the

alternative having the highest expected income. This problem is solved

mathematically by maximizing expected income subject to some fixed

level of variance.

Max: = E

S.T: + = V (2.15)
i=l 1=1 j<i

yi-.o
i= l,"°,n

The problem expressed in Equation (2. 15) can a.so be stated as

minimizing variance subject to some fixed level of expected income.
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Min:16 ay + r..Qy1y. = V
i=l i=1 j'(i

S.T: p.y. = E (2.16)

yi_o i= 1,",n

The form used in Equation (2. 16) will be required because of compu-

tational necessity, however, it is proper to view the problem in terms

of Equation (2. 15) because it allows for the three basic shapes of the

ttilit,r function.

For graphic interpretation, the number of activities initially will

be restricted to two. A more general model will be introduced later.

To proceed it will be helpful to examine the mathematical form of the

expected income and variance functions, In the two activity case the

expected income and variance equations are:

and

E p1y1 + i2y2 (2.17)

22
V cTy + 2rOjJ2y1y2 + 02y2 (2. 18)

The expected income function is linear. It is shown graphically

as line segment cc' cm Figure .2. 8with expected iixome fixed at level E

16 The abreviation "Mm" denotes minimize,
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Figure 2. 8. Iso-expected income and iso-variance in two dimensions.
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This is an iso-expected income line since any combination of y1 and

y2 that lies on cc has the same expected income, Varying the level

of income produces a family of parallel iso-expected income lines, A.

fixed expected income level E° is presented in the three dimensional

graph of Figure 2. 9 as the plane ccTf'f.

The variance function is an elliptic paraboloid(37,p.329). This is so

because the correlation coefficient r lies between positive and nega-

tive unity making the term OO(l -r2) always positive (24, p. 67).

For a fixed level of variance, say V the equation can be shown

in two dimensions as the iso-variance ellipse in Figure 2, 8. Varying

the level of variance produces a family of iso-variance ellipses. Such

a family forms the elliptic paraboloid in Figure 2. 9. The correlation

coefficient serves to rotate the ellipses in the y1, y2 activity plane.

If r = 0, then the degree of rotation is zero and if < the y1

axis becomes the major axis, To maintain perspective in later graphic

analyses the activity with the higher variance will be denoted y2.

Incorporating Equations (2, 17) and (2. 18) into the Lagranian

form results in:

22 22R(y1,y2,X) = 01y1 + 2rcT1cr2y1y2 + cT2y2 - x[E - 1y1 - t2y2J

(2, 19)
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Figure 2. 9. Expected income and variance in three
dimensions.
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Partially differentiating Equation (2. 19) with respect to its arguments

and setting the results equal to zero yields the first order equations for

a minimum. 17
It is momentarily assumed that r is such that the non-

negativity restrictions are fulfilled.

+ ZrG12y2 + 0
ay1

ay2 - 2rff12y1 + 2y2 + = 0 (2. 20)

aR 0

= i1y1+i2y2-E = 0

Solving this set of simultaneous linear equations for y1, y2 and

. results in a number of relationships which have a familiar counter-

part in production theory. These include the expansion path, the activ-

ity equations and the efficiency frontier,

The expsion path. In Figure 2. 8 line cc is the infinite number

of alternatives having the same expected income but different variance.

The contour vv represents the infinite number of alternatives having

the same variance but different expected incomes. The tangency of

vv' to cc' at the point e is the combination of y1 and y2 at where,

for the given level of expected income, variance is as small as poss-

ible. This is the solution to Equation (2. 19). Varying the level of ex-

pected income results in a locus of tangency points tracing out the

minimum variance expansion path.

1 7Since variance is a positive definite quadratic form, the suffic-
ient conditon for a minimum is also satisfied.



This forms the line segment o& in Figure 2. 8. In the two activity

ca3e the equation for the expansion path derived from Equation (2. 20)

is given by:

0 -

y2 j1if2 - r201 (2.21)

The Activity Equations. Each of the activity variables are de-

rived from the set of Equations (2. 20) as linear functions of expected

income. In the two activity case the equations are:

-

y1 22 22]E
Zrif1if2F.L11.t2 + 112if1

(2. 22)
o(OHi -rif1)112 2y2=[22 22]E
- r0102p.12 + I12°l

Graphic presentation of the equations is found in Figure 2. 10.

These equations show the level of the activity (decision) variables for

each level of expected income such that minimum variance is attained.

These equations are analogous to supply functions in production theory.

The Lagrangian form in Equation (2. 19) requires that E be held

fixed at some level E. However, since any E> 0 will satisfy the

Lagrangian function, E will be looked upon as a non-negative continu-

ous variable in the activity equations.. This permits specification of

y1 and y2 for all possible levels of E.
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Figure 2, 10. Activity 1.evei equations.
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Figure 2. 11. The efficiency frontier.
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The Efficiency Frontier. There exists a functional relationship

between expected income and variance which can be specified exactly

in algebraic form by making use of an important but much overlooked

feature of the Lagrangian multiplier. This relationship will be refer-

red to as the efficiency frontier. The Lagrangian multiplier is the

rate of change in the objective function with respect to a change in the

level of the constraint. 18 In the present problem, the Lagrangian

multiplier'9 is the increase in variance, attributable to an increment

in expected income. Its algebraic form is:

22 22a102(1-r )
]E (2.23)dV r

22-x = = 2 2
- 2rcT I2L + 21

Like the activity equations, the Lagrangian multiplier is a con-

tinuous function of expected income. Since the Lagrangian multiplier

is the first derivative of the efficiency frontier, its antiderivative or

integral 20 will be the algebraic equation of the efficiency frontier.

1
8A more detailed interpretation is to be found in the appendix.

'9Because of the formulation it is actually the negative of the
Lagrangian multiplier that represents the rate of change.

20Because of the variance form is centered at zero the constant
term in the integral is zero,
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zocr(1-r2)
2 2' SEdE=

- 2r1212 + 21I.L1 2

2
(1 - r

2
2]E2

- 2r1212 +

41

(2. 24)

The curve oe of Figure 2. 11 is the efficiency frontier. Every alter-

native whose expected income and variance is given by a point interior

to oe is dominated by an alternative which has the same variance but

a higher expected income. For example point a is dominated by

point b. The efficiency frontier is the locus of expected income-

variance points of dominant alternatives. These dominant alternatives

are the efficient plans from the total listing of the feasible enterprise

choices.

The efficiency frontier is similar to the total variable cost curve

in production theory with variance being analogous to cost and ex-

pected income analogous to output.

The parameters of the variance and expected income equations

have a direct bearing upon the composition of efficient plans and upon

the shape and position of the efficiency frontier. Results of varying

the parameters in the two activity model are stated as assertions.

Assertion 1. As the correlation coefficient r is increased

from 0 to 1, the variance ellipse elongates and its major axis
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rotates in a clockwise direction from an angle e 0 to at
° 21most 0 -45 As r decreases from 0 to -1, the variance

ellipse again elongates but the major axis rotates in a counter

clockwise direction from an agie 8 = 0 to at most 0 = +45.

Figure 2. 12 displays these results.

Assertion 2. As r increases to a number larger than the ratio

of the coefficient of variation of the least risky activity to the

most risky activity, Q/p., the equation of the most risky activ-

ity and the expansion path take on negative first derivatives.

Let this critical value of r where the derivative becomes nega-

tive be denoted r

Assertion 3. As r increases from -1 to r the least risky

activity replaces the most risky one. At values of r greater

than or equal to r complete specialization in the least risky

activity will take place, This is shown in Figure 2. 1 3.

Assertion_4. An increase in r from -1 to r causes the

efficiency frontier to rise more steeply with the consequence

that, for any level of expected income the variance is increased.

This is shown in Figure 2, 14.

Assertion 5. An increase in the expected income of an activity

21 The major axis of the variance ellipse, when r 0, is the axis
of the activity y. having the smallest variance. All statements con-
certhng the angle' of rotation are made from this perspective.



Figure 2. 1 2. Behavior of the variance ellipse and expansion path with
changes in the correlation coefficient.
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Figure 2. 13. The variance ellipse and expansion path in the
highly positive correlation case.
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will cause that activity to become relatively less risky with the

consequence that it will replace the other activity. This is shown

in Figure 2.15. With further: increase in the activity's expected

income r will become equal to r. At that point complete

specialization occurs in this now least risky activity.

Assertion 6. An increase in the expected income of an activity

will cause the efficiency frontier to rise less steeply with the

consequence that for any level of expected income, variance is

decreased,

Assertion 7. An increase in the variance of an activity will

cause that activity to become relatively more risky with the

consequence that it will be replaced by the other activity. With

further increases in the activity's variance r* will become

equal to r . At that point complete specialization occurs in the

other activity which is now least risky.

Assertion 8. An increase in the variance of an activity will

cause the efficiency frontier to rise more steeply with the con-

sequence that for any level of expected income the variance is

increas ed,

Proof of these assertions is found in the appendix.
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A Mathematical Technique for Deriving
the Efficient Enterprise Choices

A Numerical Example

To tie the linear model and the risk minimization together it is

well to return to the numerical example of the static certainty problem

summarized in Equation (Z. 8) and to modify it by accounting for risk.

The profit per unit of activity figures will now be random variables

with expected value of one dollar and standard deviation of two dollars

for enterprise crop one (y1) and expected value of two dollars and stand-

ard deviation of three dollars for crop two (y2). The correlation co-

efficient between the incomes of the crops is zero. Crop one requires

one hour per acre and crop two requires three hours.. The farmer is

limited to six hours of labor and four acres of land. Production con-

straints and variability of income must be considered simultaneously

in formulating efficient combinations of the two crops. The objective

of this problem becomes one of finding that combination of crops which

will minimize variance for each level of expected income subject to

specified resource constraints. The problem is expressed aigebraical-

ly as Equation (2, 25).

Miii: 4y + 94 = v

S. T: y1 + 2y2 = E (2. 25)

y1 + 3y2 < G1 6
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yl + Y2 < = 4

yl,y2 0 (2.25)

To illustrate the problem graphically in two dimensions, the

variance ellipse of Figure 2. 8 is superimposed on the production con-

straints of Figure 2, 1 with the resulting Figure 2, 16. In the three

dimensional case the reader is asked to visualize the elliptic parabo-

bid of Figure 2. 9 superimposed in the constraint set of Figure 2. 17.

Because the Lagrangian multiplier technique does not permit

inequality constraints, disposal or slack activities are introduced to

change each inequality to an equality. The transformed set is Equa-

tion (2. 26):

Mm: 4y2 + 9y

S. T: y1 + 2y2

+ 3y2 + y3

y1+ y2 +y4

yl

2
y

=v

= = 6

= G2 = 4

-y5 = G3 = 0

= G4 = 0

y3,y4,y5,y6 0

where y3 represents unused labor

represents unused land

(2. 26)



Figure 2. 16. Quadratic programming proMem in two dimensions.
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Figure Z. 17. Constraint set of the quadratic programming
problem in three dimensions.
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y5 and y6 are required by the Lagrangian technique to

insure that the real activities y1 and y2 will

not become negative.

Equation (2. 26) can now be expressed as the Lagrangian function (2. 27),

R(y1y6,X0,X1,"X4) = 4y +9y - X0[E-y1-2y2]

-X1fG1-y1-3y2-y3]-X 2[G2-y1-y2-y4]

>3-G3+y1-y51 X4.G4+y2_y6]

(2. 27)
where X is the Lagrangian multiplier of the expected income

constraint.

X1'" \4 are Lagrangian multipliers of the resource constraints.

The non-negativity requirements for the slack variables (y3, y4,

y5 and y6) cause this traditional Lagrangian procedure to break down

because non-feasible solutions occur. This procedural difficulty is

overcome by employing the Kuhn-Tucker conditions (31). These opti-

mality conditions require that if a Lagrangian multiplier is positive

the slack variable must be zero and if the Lagrangian multiplier is

zero the slack variable must be greater than or equal to zero. If the

objective function is a positive definite quadratic form and if the con-

straints are linear then the optimum is also a minimum.

The solution to the constrained variance minimization problem

is obtained by partially differentiating Equation (2. 27) with respect to
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its arguments and setting the results equal to zero. The resulting

first order conditions are shown in Equation (2. 28). The matrix form

is shown in Equation (2. 29). In the matrix it should be noted that

0
has been moved to the position immediately following FR/F3y2.

This row and column transposition will prove useful for solving the

system. The solution is obtained by inverting the matrix and appears

as Equation (2. 30). Equatibns for the activity levels, expansion path

and efficiency frontier are obtained by carrying out the multiplication

of the inverted system. These are specified in Equation set (2. 31).

aR = 8y1+X0+X1+2-3 = 0

= l8y2+Z0+3\1 +2-X4 = 0

aR xl 0

= x2 = 0

(2. 28)
= x3 0

8R
= x4 = 0

5= y1+2y2-E = 0

aR
= y1 + 3y2 + y3 - = 0

DR y1+y2+y4-G2 = 0
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ax
- +G3 = 0

(2. 28)
cont.

ax4 = +G4 = 0

Inspection of Equation set (2. 31) reveals some interesting inf or-

mation about the problem. Real activities y1 and y2 are linear func-

tions of expected income. The slope of the efficiency frontier is repre-

sented by -X It is this equation which can be integrated to obtain the

equation for the efficiency frontier. Slack activities y3, y4, y5 and y6

are represented by linear equations also. The equations must be re-

stricted by the value E takes on so that they remain non-negative.

A level of expected income exceeding 50/11 requires more than

the six hours of labor available. This violates the non-negativity re-

striction on y3. A level of expected income exceeding 100/17 requires

more than four acres of land hence violating the restriction on y4.

Since labor becomes limiting at a lower level of expected income,' the

upper limit on E is 50/11. A. level of expected income less than zero

would require y1 and y2 to be negative, a violation of the conditions

of the problem. This is reflected by y5 and y6 being forced nega-

tive if E were allowed to take on values less than zero. If E is

restricted to the interval 0<E<50/ll the Kuhn-Tucker conditions

are satisfied and variance minimizing combinations of crop one and

crop two are assured. In Figure 2. 16 the point & corresponds to

E = 50/11 and point e corresponds to E = 100/17. But is 50/11
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22
NR 9/25 NR NR NR NR 0 0 0 0 0

NR NR 8/25 NR NR NR NR 0 0 0 0 0

/25 8/25 -72/25 -33/25 -17/25 9/25 8/25 0 0 0 0 E

NR NR -33/25 NR NR NR NR 1 0 0 0 0

NR NR -17/25 NR NR NR NR 0 1 0 0 0

NR NR 9/25 NR NR NR NR 0 0 1 0 0

NR NR 8/25 NR NR NR NR 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0
G1

0 0 0 0 1 0 0 0 0 0 0
G2

0 0 0 0 0 1 0 0 0 0 0
-G3

0 0 0 0 0 0 1 0 0 0 0

yl

y2

0

y3

y4

y5

xl

(2. 30)

22
U'

Note NR denotes not relevant.
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y1
9

=

y2
8

=

=
72 E

y3=--E+G1,E<j-1-,G1=633 50

y4 =
17-gE+G2 1 00E<j-- G2=4

9y5 = --E-G3 , E>0, G3=0 (2.31)

8= gEG4 , E>O, G4=O

= 0

= 0

= 0

= 0

the maximum expected income that can be produced on this farm? It

is not, for the linear programming problem presented earlier showed

that E could be increased to a maximum of five dollars. The question

of how to increase E while fulfilling the minimum variance require-

ment must now be answered.

Even though all of the available labor supply is utilized at the

level of E = 50/11 only 34/11 acres of land are used leaving a sur-

plus of 10/11 acres, Is it not possible that the composition of the plans

could be changed so that additional expected income may be obtained



through greater use of the surplus land resource? The answer is yes.

It can not be achieved by movement from et to e since this would

violate the labor constraint but it can be achieved by movement along

the labor constraint boundary from e' to d. This allows a further

increase of expected income without violating any conditions of the

problem. Mathematically this is accomplished by setting y3, the

slack activity for labor equal to zero in the Lagrangian function of

Equation (2. 27). The amended Lagrangian form appears as Equation

(2. 32) with the assurance that the Kuhn-Tucker conditions will be ful-

filled.

R(y11y2,y4,y5,y6,0,X1X4)

= 4y + 9y - X0[E-y1-2y2] - X1{G1-y1-3y2] - X2[G2-y1-y2-y4]

- X3[_G3+y1_y5] - X4fG4+y2y6I

(2.32)

The first order conditions are displayed in matrix Equation

(2. 33), inverted to produce Equation (2. 34) yielding solution Equation

(2. 35), Note that and have been moved into position

immediately following DR/Ely2.
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= 3E -2G1

y2 = -E+G1

66E - 50G1 , E>Z2/5 , = 6

= 66E - 50G1 , E>50/1l , G1 = 6

y3 = 0

y4 = - ZE + G1 + E <5 , G = 6, = 4 (2. 35)

= 3E - 2G1 - G3 , E>4 , = 6, G3 = 0

= -E+G1 -G4, E<6, G1=6, G4=0

X. 0
2

= 0

= 0

The Equations (2. 35) are linear functions of E. Values of E greater

than five would require more than the four acres of available land thus

causing the slack variable y4 to become negative. Values of E less

than 50/11 would result in the Lagrangian multiplier X becoming

negative and violating the minimum variance requirement. The valid

range of E is established as 50/il <E <5. The absolute maximum

level Qf expected income consistent with the land and labor constraints
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is five dollars as determined by linear programming. The expansion

path, activity equations and Lagrangian multiplier equations resulting

from the two step solution to the variance minimization problem are

shown in Equations (2. 36), (2. 37) and (2. 38).

The expansion path23

8 <i-y2 = jy1 , OY1
(2. 36)

1 18<y <3y2 = 2 -y1,
11 1

The activity equations

9 500 <E <-y1 = E,

E<5y1 = 3E - 12,
(2. 37)

y2 2E, 50
= 0<E<-11

y2 = -E+6,

The Lagrangian multiplier equations

72 50
= -gE 0<E<j-j-

(2.38)
50= 90E 396,

23The expansion path equation does not appear directly in the
solution to the system of equations. It is obtained indirectly by elim-
inating E from the activity equations and expressing y2 as a func-
tion of y1.
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50= 0, 0<E<j-j-
(2. 38)

50= 66E - 300, fi-<E<5 cont.

The algebraic form of the efficiency frontier is derived by solv-

ing the differential Equations (2. 39) which are formed by the Lagrangian

multiplier.

dV = EdE, 0<E<---
11

(2. 39)

dV = (90 - 66G1)dE + (-66E + 50G1)dG1 ,

The anti-derivative or integral of Equation (2. 39) results in the alge-

braic specification of the efficiency frontier as Equation (2. 40)

The efficiency frontier

V = --E2, 0<E<--
11

(2. 40)

V = 45E2 - 66EG1 + 25G1, --<E<5, G1 = 6

Figure 2. 18 displays the efficiency frontier graphically as two parabo-

las with d'e'd being nested in oe'e. The curve oe'd is the efficiency

frontier. The segment e'e is a series of points that can not be attain-

ed because of the labor constraint. The segment dte' is a series of

inferior points dominated by points on the segment oeTd and not part

of the efficiency frontier.
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V

Figure Z. 18. The complete efficiency frontier as a result
of adding a constraint.

E
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The problem stated as Equation (2. 25) is now solved. A. simpli-

fied problem was used to facilitate understanding and clarity. Even in

the simple two activity model procedural complications can arise and

these become the next order of business.

Methodological Complications and Their Resolution

One major difficulty is that the initial basis may be elusive. In

assertion two it is noted that high positive values of the correlation

coefficient r caused the expansion path to have a negative slope in the

y1, y2 plane. In this example r = 3/4. Suppose r 7/8 rather

than zero as has been assumed in the example. Then the expansion

path becomes the negatively sloped line segment oe" in Figure 2. 19.

This results in a revision of the original example with the minimum

variance objective function becoming

Mm: 4y +--y1y2 + 9y = V (2.41)

The supply of land and labor are not affected by this change hence the

constraint remains the same as before. The Lagrangian function is

set up, its first order conditions derived, and the system is solved

with results appearing in Equation (2. 42).



yz

yl

Figure 2. 19. Quadratic programming model - high positive correlation.
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y1
3

=

Y2
11=j--E
135 ,E>O

27 32

5
= -1--E+G2, 64E<j- G2=4

y5 = 3
- - G3 , E<O, G3 = 0 (2.42)

=
11--E-G4 , E>0, G4=O

xl = 0

xz = 0

x3 = 0

x4 = 0

For a plan to be feasible it is required that real activities y1

and y2 be greater than or equal to zero. Since slack activities, y5

and y6, were introduced to represent y1 and y2 in the Lagrangian

formuiation,the range of E must be restricted so that y5 and y6

remain non-negative. In Equation (2. 42) it is noted that a positive

value of E forces y5 to be negative and a negative value of E

forces y6 to be positive. Thus the Kuhn-Tucker conditions hold only

at the point E = 0. To resolve the difficulty the same procedure as

was followed in the previous section where labor became limiting can

be applied. This requires setting y5 = 0 and moving along the y2



axis in Figure 2. 19 resulting in complete specialization in the least

risky activity in accordance with assertion three. Mathematically it is

required that the Lagrangian function is set up with y5 = 0 , the first

order conditions derived and the system solved with the results appear-

ing in Equation (2. 43).

y1 = 0

1 1y2 = E-G3

= -E-G3 , E>O, G3=O

= E + 2G3 , E >0, G3 = 0

= - E + G3 + G, E >0, = 6, G3 = 0

= - E - G3 + G2, E <4, G2 4, G3 0

(2. 43)
= 0

= E - G3 - G4, F >0, G3 = 0, G4 = 0

= 0

= 0

= 0

x4 = 0

Since y5 was set equal to zero, y1 is automatically set to zero. The

basis is valid only on the interval 0 <E <4. This establishes the ex-

pansion path as the segment oa falling on the y2 axis in Figure 2. 19.



At point a the labor supply is exhausted and E = 4. The only way to

increase E further is to move along the labor boundary from point a

to d in Figure 2. 19. This requires y3, the slack activity represent-

irig surplus labor to be set equal to zero. Movement from a to d

can not occur unless the real activity y1 is allowed to be positive

which requires that y5 be reintroduced into the system24. This re-

suits in an amended Lagrangian function where y3 is set equal to zero

and y5 is replaced. The system is solved as before with results

shown in Equation (2. 44).

= 3E - 2G1

y2 = -E+G1

= 27E--G1

xl = -E-8G1

E>3, =6

32E>-j-. G1=6
(2. 44)

y3 = 0

y4 = - ZE + + G2, E <5, G1 = 6, G2 = 4

y5 = 3E - 2G1 - G3, E >4, = 6, = 0

y6 = - E + - G4 , E <6, = 6, G4 = 0

241n terms of the matriceshaving both y3 and y5 set equal to
zero would produce a singular system. In this problem there can not
be more than n-i effective production constraints,where n is the
number of real activities. In linear programming there can be as
many constraints as real activities, however, here the income con-
straint uses up one row and column of the matrix.
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X2 0

= 0 (2.44)
C ont.

0

Note that now the lower limit of E is four dollars and the upper

limit is five dollars. The lower limit occurs at point a in Figure

2. 19 where y1 was introduced at a positive level. The upper limit

occurs at point d where the land supply is exhausted as indicated by

its slack variable y4 becoming zero. The level of expected income

bf five dollars has been reached. From both the graphs and a soiu-

tion identical to that obtained with linear programming, it can be ob-

served that the maximum attainable E has been reached. But what

assurance is there that the maximum attainable E has been attained?

This can be checked mathematically by noting from Equations (2.44) that

the only possible way for expected income to increase is for land to be

fully utilized. For land to be fully utilized requires that its slack

activity y4 be set to zero. But this can not be done in the two activity

model because there must not be more than one resource fully utilized

at one time. There is one possible way to proceed and that is to allow

y3, the slack activity of labor to become positive. The Lagrangian

function is amended to exclude y4 and include y3 at positive levels.

The solution of the system is shown in Equation (2. 45).



y1 = 4E+G2

1 1y2 =

-K0 =

K2 = E - 4G2

G>2, G2=4

E>64_-.-, G2=4

y3 = E+4G2+G1. E<8, G1 =6, G2=4

y4 = 0

1y5 = E + G2 - G3, E <8, G2 = 4, G3 = 0

= E-G2-G4, E>4, G2=4, G4=O

K1 = 0

K3 = 0

K4 = 0

71

(2. 45)

Checking the equations it is found that for the Kuhn- Tucker con-

ditions to hold E must be greater than or equal to 64/5. At the

same time E must not exceed eight. It is impossible that these re-

strictions hold simultaneously. Thus it is established that trading the

labor constraint for the land constraint is not permissable. Since no

other trades are possible there is no way expected income can be in-

creased. This assures that the level of E attained in the previous

valid basis is in fact the maximum possible. From a graphic stand-

point movement along the land constraint boundary from point d
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toward b' reduces E. Conversely movement d toward b violates

the labor constraint.

The stepwise procedure just completed produces the equations

for the expansion path, the activity levels, the Lagrangian multipliers

and the efficiency frontier.

The expansion path

y1 = 0, O<y2< 2
(2. 46)

1y2 = 2 - -y1, 0 < y1 < 3

The activity equations

yl = 0 O<E< 4

= 3E-12, 4<E<5
(2. 47)

y2 = E, O<E< 4

y2 = -E+6, 4<E<5

The Lagrangian multiplier equations

= 0<E< 4
27= --E - 81, 4<E< 5

= 0, O<E< 4
(2. 48)27= -1-E-48, 4<E<5

= E, O<E< 4

= 0, 4<E<5
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The efficiency frontier

V = O<E< 4
(2. 49)

V=-E2-8lE+l44,4<E<5

The efficiency frontier can be graphed in the expected income

variance coordinate system. This is done in Figure 2. 20. Points on

line segments d'f and ff are infeasible since they violate the land

and labor constraints. The line segment ofd is the efficiency frontier,

Comparison of Figures 2. 18 and 2. 20 reveals an important difference.

In both cases variance is described in terms of parabolas. In the case

of Figure 2. 18 where a constraint was simply added to form the sec-

ond basis there is a smooth transition from the curve oe'e to the

curve d'ed. In the case of Figure 2. 20 where it was necessary to

trade constraints there is a sharp corner at point f where the basis

change occurs. In both cases the efficiency frontier is completely

defined on the interval 0 < E < 5.

Shadow Prices - Implications of
Changes in Constraint Levels

Thus far the problem perspective has been mainly in the activ-

Ity space. Similar to the dual of linear programming, the problem

also can be specified in the constraint space. In the context of vari-

ance minimization this is in the expected income - production resource



Figure Z. 20. The efficiency frontier as a result of trading
constraints.
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coordinate system. Although not all of the ramifications of the dual

problem will be pursued, the matter of shadow prices deserves

special attention.

In Equation (2. 24) the method for algebraically specifying the

efficiency frontier was given in the absence of production constraints.

A numerical derivation was presented in Equation (2. 40) which in-

ciuded resource constraints. The generalized form of Equation (2. 40)

is Equation (2. 50).

V =E2 -bEG G2k 2 k (2. 50)

where a, b and c are elements taken from the inverse matrix. For

example, see Equation (2. 34) where a = 90, b = 66 and c = 50.

The total differential of the variance function is

dV = (aE bGk)dE + (-bE + cGk)dGk (2. 51)

where aE bGk

av-bE + cGk
aGk

The partial derivatives are the negatives of the Lagrangian multi-

pliers. Because of the solution procedure and the nature of the van-

ance function, the Lagrangian multiplier associated with the expected

income constraint is never positive. Hence the partial derivative

= is never negative. This indicates that an increase in
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expected income, holding the level of the production constraint Gk

constant results in higher variance. The graphic interpretation of

is given in Figure 2. 21 as the slope of curve d'd" at the point d,

The Lagrangian multiplier associated with the production constraint is

required never to be negative. Accordingly, the partial derivative

= -X is never positive. If expected income is held constant, an

increase in the level of the kth resource will reduce variance since

this allows the decision maker to expand in the direction of a less

risky activity. The graphic interpretation of _Xk is shown in Figure

2. 22 as the slope of curve g"g' at point d.

One additional ramification bears investigation. What will be

the effect upon expected income if variance is held fixed and the con-

straint level is increased. This is shown by the derivative

dE aV/aGk bE cGk
(2. 52)

dGk aV/aE aE bGk

Extending the arguments used earlier to verify the algebraic sign of

and it follows that dE is non-negative and an increase in
aGk dGk

the level of the production constraint, holding variance constant, will

increase expected income. This is shown as the slope of the variance

ellipse at point d in Figure 2. 23. The magnitude of the derivative is

the value of an additional unit of the resource Gk and the interpreta-

tion is similar to the shadow price of linear programming. However

a major difference exists. In linear programming the shadow price is
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Figure 2. 21. Response of variance to
changes in expected
income.
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Figure 2. 22. Response of variance to changes
in constraint levels.
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Figure 2. 23. Shadow prices - the response in expected income to
increased resource levels.

Gk
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a constant, valid over the range of the basis. But here the shadow

price Equation (2. 52), although valid over the range of the basis, is a

non-linear function of expected income and resource level. In the

numerical example, the shadow price for labor was 5/9. Although

approximately indicating the increase in expected income resulting

from an addition of one hour of labor, the addition of another 100 hours

certainly would not add 500/9 to expected income. It can be seen

from Figure 2. 23 and confirmed by the second derivative of the iso-

variance curve, Equation (2. 53),

d2E (b2 - ac)E < 0 (2.53)
dG (bE cGk)2

that the shadow price of the resource becomes progressively less as

the level of the resource is increased. Thus greater caution must be

exercized in interpreting shadow prices from the quadratic model than

with the linear programming model.

The following assertions review the implications of changing

constraint levels in the variance minimization problem.

Assertion 9. For a specified level of production constraints,

any increase in expected income occurs only by greater risk as

measured by an increase in variance. This results from the

positive slope of tie efficiency frontier.



Assertion 10. For a specified level of expected income, any in-

crease in the level of a limiting production constraint, holding

all other production constraints fixed, will reduce risk as

measured by decreased variance.

Assertion 11. For a specified level of variance, an increase in

the level of a limiting production constraint, holding all other

production constraints fixed, will increase expected income.

Most Risky Alternatives

The discussion thus far has centered on the lower boundary of

the feasible set consisting of the least risky enterprise choices.

Attention should also be focused on another set of enterprise choices,

those which are most risky. This establishes the upper boundary and

completely defines the feasible set of alternatives. The upper bound-

ary is the maximum variance frontier and results from movement

along the segment oh' in Figure 2. 16, the axis of the most risky activ-

ity y1, and then along the land constraint from b' to d. This traces

the locus of variance maximizing points and can be expressed alge-

braicaily in the expected income - variance coordinate system as

Equation (2. 54).

V = 4E2, 0<E< 4

V = 13E2 - 136E + 400, 4< E < 5

(2. 54)
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The entire set of feasible alternatives appears in Figure 2. 24 as

the area oedh including its boundary. The lower boundary oed is

the expected income - variance locus of least risky alternatives. The

upper boundary ohd is the locus of most risky alternatives.

Selecting the "Best" Plan

The Von Neumann Morgenstern Utility Function

All possible enterprise choices from the least to the most risky

have been specified. It is from this infinite set that the "best one"

is to be chosen. But how is this choice made? The appropriate choice

is the one which best meets the objectives of the decision maker.

These objectives are specified in the utility function of Equation (2. 1 2).

There are three possible shapes of the utility function. Consider

three decision makers. Each is faced with the same set of enterprise

choices but one has a preference for risk, the second has an aversion

for risk and the third is risk neutral.

Decision maker one prefers risk and has the utility function,

u1(Y) = Y2, 0 < Y < 10 (2. 55)

251n the literature the feasible set of alternatives is frequently
described as a "cigar shaped" convex set. It is true as stated by
Stoval (41) that the maximum variance need not occur at the maximum
attainable expected income. However, since the upper boundary re-
suits from specialization in the most risky activity and since variance
is a homogeneous function of second degree it follows that the maxi-
mum variance frontier must increase at an increasing rate contrary
to the convex set in Stovali's diagram.
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Figure 2. 24. The complete set of feasible alternatives.
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Decision maker two is a risk averter and has the utility function

u2(Y) = 20Y - Y2, 0 < Y < 10 (2. 56)

Decision maker three is risk neutral and has the utility function

(Y) = bY, 0 < Y < 10 (2. 57)
3

Decision maker one, acting rationally to maximize his expected

utility chooses the combination of enterprises represented by point h

on Figure 2. 25 where expected income is four and variance is 64.

The highest indifference curve attainable by decision maker one is

passing through point h. An indifference curve passing through any

other point representing a feasible combination would result in lower

expected utility and any indifference curve representing greater ex-

pected utility can not be achieved. If, however, decision-maker one

had a utility function like the one represented by indicating a more

cautious gambler the expected utility maximizing point would be point

d which is also the maximum expected income combination.

Assertion 12. Decision makers who have a preference for risk

will choose either that combination of enterprise representing

maximum attainable expected income or a combination lying on

the upper boundary of the feasible choices depending upon the

intensity of the gambling spirit as reflected by the marginal

utility of income.



Decision maker two, acting rationally to maximize his expected

utility selects the enterprise combination represented by point g on

Figure 2. 26. The highest indifference curve which will be in or on the

feasible set is U2 which is tangent at point g. Mathematically, point

g can be derived by substituting the variance Equation (2. 40) into the

expected utility Equation (2, 11) to establish Equation (2. 58) where ex-

pected utility is a function of expected income.

72 2 50
U2 2OE-E2--E 0<E<j-j-

(2. 58)

U2 = ZOE - E2 - (45E2 39E + 900), f-<E <5

Differentiating (2. 58) with respect to E and setting the result

equal to zero establishes the expected utility maximizing value of ex-

pected income to be 4, 0984 with variance 24. 1875. 26 The activity

levels are y1 = 1.4745 andy2 = 1.3115.

Assertion 13. Decision makers who are risk averters will choose

a combination of activities which results in a level of expected

income and variance lying on the lower boundary of the feasible

set. The choice will lie farther from the maximum attainable

26 . . .The second derivative of the expected utility function (2, 58) is
always negative thus assuring that maximum expected utility is achiev-
ed. If the expected utility function for decision maker one had been set
up in the same way it would be found that setting the derivative equal
to zero does not achieve a maximum because of the shape of his utility
function. It becomes necessary to evaluate his expected utility function
at the extreme points d and h on Figure 2. 24 to determine which
yields the greater expected utility.



expected income point (the linear programming solution) as the

feeling of aversion to risk, measured by the marginal utility for

income becomes more intense.

Decision maker three, acting rationally to maximize his expected

utility, selects the enterprise combination represented by point d on

Figure 2. 27. Being risk neutral, variance is not an argument in the

utility function. The choice which maximizes his expected utility is

the one which maximizes his expected income and is identical to the

optimum solution derived in linear programming.

Assertion 14. Decision makers who are risk neutral will choose

that combination of activities which results in the maximum ex-

pected income plan as derived by linear programming.

The solution procedure for deriving efficient enterprise combin-

ation will not provide the decision maker who prefers risk with the

information he requires. For the risk neutral decision maker, not all

of the information provided is needed and linear programming yields

the required solution more efficiently. However, empirical observa-

tion on the behavior of farmers indicates that a significant portion,

like decision maker two are concerned with the chances of bankruptcy

and failure (36) and act accordingly.



Probability of Loss Function

Decision makers probably do not think of utility functions per se.

However they are frequently familiar with probability statements such

as those associated with weather forecasting. This suggests a possible

substitute for the utility function which involves expressing efficient

enterprise alternatives in terms of the probability of losses. The

probability of loss function is a set of confidence statements about

achieving various levels of income. The task of constructing the con-

fidence bands becomes manageable if one assumes that the income

from every efficient plan is normailydistributed with mean E and

variance V. Then one can use Equation (2. 59) to compute, for every

level of expected income E, the critical value Y such that there is

probability a that the actual level of income Y will not be less than

Y i.e. P(Y < Y) = a.

Y=E+NV (2.59)

where Y is the critical level of income

N is the factor from the standard normal density function

(24 p. 370) taken at the desired probability level a.

Figure 2, 28 displays the confidence statements about achieving

actual levels of income for each of the alternative plans available.

For example, suppose the plan represented by a level of expected
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income E was selected. Then there is probability such that the

income in a specific year will be less than Y . Because of the symetry

properties of the normal density function the confidence band for a. 5

is a rayline from the origin. For a< . 5 the confidence band will

have the characteristic shape shown in Figure 2. 28. There is an in-

finite number of such confidence bands for 0 < a<5, however present-

ing bands for a few selected points like a (.01, .05 .10 .20 .30,

40 and . 50) should be ample to allow the decision maker to choose an

acceptable level of expected income and hence an acceptable combina-

tion of enterprises.

The individuals age, health and propensity to gamble have a

bearing on the ultimate choice he makes. He may also wish to guaran-

tee that income for his family to live on, after discharging fixed cash

obligations, does not fail below a specified amount. In the case of

indebtedness he may not be the sole decision maker; his banker, too

may influence the choice especially where potentially high income

plans are also highly variable causing an abrupt downturn of the confi-

dence bands.

The factors of age, health, debt position and the gambling spirit

are also the same factors which formed the corner stones of the utility

function. 27 Estimation of the utility function, although a worthwhile

27The probability of loss function approach will not provide the
decision maker who has a preference for risk with the required infor-
mation since it is derived solely from the lower boundary of the feas-
ible set of plans.



endeavor for predicting decision maker behavior, seems less efficient

from the extension advising view-point than to present the decision

maker with all the relevant choices and let him select the one which is

best on the basis of confidence statements surrounding each plan.

The enterprise selection problem formulated in this chapter has

now been solved. To keep the problem and its solution understandable,

only two activities were considered, however for the model to have prac-

tical relevance it must be able to handle problems of greater dimen-.

sion. The extension of the model to the more general case will be the

concern of the next chapter.
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III. THE GENERAL MODEL - ENTERPRISE
SELECTION UNDER UNCERTAINTY

AN ALGORITHM TO SOLVE FOR THE
SET OF EFFICIENT PLANS

Attention was directed in the previous chapter to the mathemati-

cal requirements of the variance minimization problem. A numerical

example was used to give a preview of the general method to follow.

Although two activities were used for simplicity the model must be

expanded to include more than two activities if it is to have relevance

for farm decision makers. Consequently the two and three dimensional

graphs of Chapter II wili be inadequate for explaining the solution of

the problem. It will still be possible to interpret the efficiency fron-

tier, the activity equations and the probability of loss function graph-

icaily.

Description of the Model

The multi-dimensional risk minimization problem stated in

matrix form as:

Mm: y'XyV

S. T: 'y = E

ay<G

y>O

(3.1)
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where y is an nxl vector of the decision variables i. e. activity

levels

y' is the transpose of y

X is an nxn variance-covariance matrix of the incomes per

unit of activity

V is the variance of total income

is an nxl vector of expected incomes per unit of activity

and i' its transpose

E is the total expected income

a is an mxn matrix of resource requirements per unit of

activity

G is an mxl vector of available resources.

The full matrix specification of Equation (3. 1) is presented in

Equation (3. 2).

Solving the Model

Introduction of Slack Variables

Each inequality of Equation (3. 1) or (3. 2) must be transformed

into an equality by introducing disposal or slack activities. The non-

negativity constraints on the real activites are also transformed into

equations.



Mm:

2
1y2 °i2 in

(IZO 2n

if if if2
fl

in 2n n

S.T:
[L1L2" !LI y1

y2

= E

a1 a2 a G1

a2 a22 a2 y2

a am2 a Gm

yl 0

y2 0

= V

(3. 2)



Upon transformation, the problem is re-written as:

Mm: y'Xy = V

S. T: y = E

[a:I] = G

y.o

where y is now (Zn+m) x 1

X is now (2n+m) x (Zn+m)

p is now (Zn+m) x 1

a:I is now (n+m) x n

G is now (m+n) x 1

94

(3. 3)

The expanded form appears as Equation (3. 4). The m+n addi-

tional elements in y are slack activities. The first m of these

account for resource non-use and the remaining n of them account

for the non-negativity constraints on real activities. The variance-

covariance matrix X is expanded in dimension from n to (2n-fm)

to account for the variances and co-variances of the slack activities

which are assumed to be zero. The matrix i has beenincreased in length

from n to (Zn+m) to account for the expected incomes of the slack

activities which are also assumed to be zero. The matrix a is first

augmented by an nxn negative identity matrix. These negative co-

efficients insure that the real activity levels will not fall below their

lower limits. The matrix a is again augmented by an (n+m) x (n+m)
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identity matrix to account for the slack variables. The vector G is

increased in length from m to m+n with the additional elements

explicitly accounting for lower bounds on the real activities which may

be zero or positive.28 With these amendments to the formulation of

Equation (3. 1), the problem is in proper form for applying the Lag ran-

gian multiplier technique.

For convenience in notation assume that the n equations re-

quired for insuring non-negative values for y1.. y are already pres-

ent in the matrix a and vector G of Equation (3. 1). Then the dimen-

sions of the matrices after introducing slack activites are as follows:

y is (n+m)xl

a is nxm

F1
is (n+m) x 1

G is mxl

X is (n+m)x(n+m)

The Lagrangian Form and the Kuhn-Tucker Conditions

The Lagrangian form is:

R(y, = y1Xy - ,.0fE_1y) - XJ[G-(a:I)y} (3. 5)

28A positive lower bound on a real activity requires that the
corresponding element in the vector G be entered as a negative num-
ber. The reader may wish to refer to Equation (2. 30) for clarification
on this point.
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where is a scaler representing the Lagrangian multiplier

attached to the income constraint

X is an mxl vector of Lagrangian multipliers attached to

the production constraints

and all other variables are as previously defined

The presence of non-negativity constraints on slack variables

causes the traditional Lagrangian multiplier technique to be ineffective

unless the Kuhn-Tucker conditions are observed. The Kuhn-Tucker

theorems state that y is an optimum solution to the minimization

problem of Equation (3. 5) if and only if the matrix X is positive

definite and the following conditions hold:

if y1 > 0

n m
aRthen

k
Zr.kyky. + XOk + X.ak. = 0, k=1," ,n

i=l j=l

if y1 = 0

n m

then + Ok +).ak.> , k=l,",n

if X.>0
naR\then g-:- L a±Y - = 0 j=1, , m

i= 1



if X. = 0

then = a.y. - G. <0, j=l," , m
i=l

yO, i=l,",n

X.>O, j=l,",m3
Partially differentiating R(y,

'
X) with respect to its arguments

and setting the derivatives to zero results in the first order conditions

as expressed in the matrix of simultaneous linear Equations (3. 6). In

Equation (3. 6), E is a variable and is allowed to take on only those

values which satisfy the Kuhn- Tucker condition.

Matrices of the First Order Conditions

Partitions to Facilitate Inversion

Solving the system of equations is routine but formidable even

for second generation computers. A modest problem of ten activities

and fifty constraints requires inverting a 121 x121 matrix. However,

because of the position of zeros and its symetry,the matrix can be

partitioned to reduce the magnitude of the inversion routine.

To facilitate partitioning,the same row operation of Equation

(2. 29) is performed to move the vector Ft' into position n+l. To

maintain symetry, a column operation is performed to move the vector
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into column position n+1. The result appears as matrix Equation

(3. 7). The resulting matrix is then partitioned accQrding to the dashed

lines through the matrix system.

For convenience in manipulation let the matrix of Equation (3. 7)

be abreviated as

then

where

and

and

rAll Alil

A =J ----- 1----- (3.8)
LAZ1 A2j

1
EB11 Bizi

A = B =-------- (3.9)

L B21 B22J

Bli = [All - Al2A221A21]1 (3. 10)

B12 = -B11Al2A22' (3. 11)

B22 = A22'-A22'B12 (3. 12)

Referring to Equation (3. 7) note that A22 is of the form
0 Ii

A22
= I

(3. 13)
I o1

A221 = A22 (3. 14)

Further note that Al 2 is of the form

Al2 = [0:a] (3.15)
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and likewise because of symetry

I0
A21 = Al2' = (3, 16)

La'

Substituting the facts of Equations (3. 13), (3. 14), (3. 15) and

(3. 16) into Equations (3. 10), (3. 11) and (3. 12) results in:

Bli = All' (3.17)

B12 = -A.11[a:0] = [b:01 (3.18)

[b7
B21 = B12' = (3. 19)

t0j

ra'Ail-'a ii [ia'b ii
B22 =1 I = I I

(3.20)

oj L' oJ

and finally

TAll 0 a' fiii' b 0

A' = 0 0 I = b' -a'b I = B

La' i 0 Lo i 0

(3. 21)

Since only A.11' must be found, the matrix to be inverted has

been reduced from order n+2m+1 to order n+l and is now of man-

ageable size. The full form of the inverted system of Equation (3. 7)

is expressed as Equation (3. 22). Note the strategic location of zero

elements in the resultant vector G. Since the inverted matrix in

Equation (3. 22) is to be postmultiplied by the vector G, every column
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corresponding to a zero element in G can be ignored, thus further

simplifying the calculations required. The inverted system with the

non-relevent elements removed is displayed in matrix Equation (3. 23).

Carrying out the indicated multiplications of Equation (3. 23) yieidsthe.

linear functions in E for each of the activities and the Lagrangian

multipliers of Equation (3. 24).

y. = z01E i=1,",n

-X0 = -w0E
(3. 24)

y . = b .E+G. j=1,... m
n+J n+1 J

= 0 j=1, ,m

If the first n elements in column n+1 of matrix Bil are positive

i. e. z0. ) 0 for i = 1, , n, then all of the real activity levels will be

positive for positive values of E. 29

Limits on Expected Income

The linear Equations (3. 24) are presented in the graph of Figure

3. 1. The line segments oc and od are representative activity equa-

tions and line segments ef and gh represent the levels of slack

activities. To insure that the Kuhn- Tucker conditions are not violated

one must establish the range over which E is valid. If E exceeds

29The first n elements will be positive if there is zero correla-
tion between the incomes of the activities. This will be discussed
more fully in a later section.
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the magnitude of, the slack activity represented by the line ef will be

forced negative, This establishes the upper limit on E, denoted

SMIN, as being the minimum of the maximum values E can take on.

The lower limit on E, denoted SMAX, is established as the maximum

of the minimum values E can take on. As E is increased along the

expansion path to the point E = SMIN, the level of a real activity in-.

creases to the point where a particular resource becomes exhausted.

The corresponding slack activity then takes on a level of zero. To

proceed into the next basis the level of the slack activity must be main-

tamed at zero to assure complete use of the limiting resource.

Change of Basis

To initiate the next basis let the limiting resource be denoted as

the kth resource. The slack activity k representing the kth

resource is set at zero. The revised problem is expressed in the

Lagrangian form and differentiated to form the matrix of the next basis

shown in Equation (3. 25). This matrix differs from Equation (3.6)

only in that the (n+k)th row and the (n+k)th column are removed.

To facilitate solution of the system the vectors i' and a

are moved from position n+m+l and n+m+k+l to position

n+l and n+ respectively. This is done also for vectors p.

and ak to esult in matrix Equation (3. 26). The dashed lines show

where the partitioning is done for ease of inversion. The sub matrix
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All is now of order n+2 as opposed to n+l in Equation (3. 7). It is

the variance-covariance matrix multiplied by two and bordered by the

vectors and ak. The same procedure of inversion again is follow-

ed and those columns which are to be multiplied by zeros in the vector

G can be ignored. The relevant part of the inverted system is dis-

played in Equation (3. 27). The activity equations and the equations for

the Lagrangian multipliers which result from performing the indicated

multiplication found in Equation (3. 28).

Again the limits of E, SMIN and SMAX, are found by examining

each equation in the set (3. 28). The lower limit of E is the upper

limit on E from the previous basis. Smaller values of E than the

lower limit are not permissible since this would cause the Lagrangian

multiplier attached to the kth resource to become negative, violating

the Kuhn-Tucker conditions. The upper limit of E represents the

point where another constraint becomes limiting. To proceed, the

slack associated with the limiting resource must be set to zero and a

new basis formed.

After several resource constraints have become limiting it be-

comes considerably more likely that the upper limit of E may be

determined by a Lagrangian multiplier being forced to zero. This

means that a resource constraint is no longer binding and the slack

variable associated with it must be reintroduced into basis. This re-

quires that the row and column in the sub-matrix Al 1 which contain
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(3. 28)

the coefficients of the limiting resource must be restored to their orig-.

inal places in submatrices Al2 and A21. Once this is done the sys-

tern can be solved.

Identifying the Maximum Attainable Expected Income

The procedure continues until there is one less limitating con-

straint than there are real activities. Having more effective con-

straints than this number causes the sub-matrix All to be singular.

Unfortunately this does not mean that the maximum attainable E has

been reached. It may be possible to increase E by trading a presently

limiting constraint for the one whose slack activity was forced to zero

by E = SMIN in the basis. The entering constraint is identified as

the one whose slack has gone to zero but there is no direct method to

determine the constraint to be removed. Since there is a relatively

small number of effective constraints it is possible by trial and error

to find the one, if it exists, which allows E to increase. If there are no
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constraints that can be released then there is no feasible way that a

larger value of E can be attained. A.t that point the maximum attain-

able E is reached and the problem is solved.

Complications in Solution of the Model

The Initial Basis

The Zero Correlation Case

In the case of zero correlation between the income of real activ-

ities all real activities will be in the initial basis. The necessary con-

dition for this is that the first n elements of the (n+l )th column of

the sub-matrix Bil be positive. That this condition will always be

fulfilled when r.. = 0 for all i j can be verified by observing that

where

since

2(n+k)+1 n-iBil = (-1) 2 >0, k=1,",n
k, n+1

i= 1

D is the determinant of All

n

D [
2(n+k)+i n-i 2 r/o2]< 0= (-1) 2

i= 1
k= 1

(1)2(n+k)+i
= -1 and k>
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The Non-Zero Correlation Case

In the more usual case where the correlation coefficients are

not all zero the conditions for including all of the activities in the initial

basis are notnecessarilyfulfilled.. With the two activity case a nega-

tively sloped expansion path results when the coefficient r is suffic-

iently large. In the two activity model of Chapter II it was easy to

identify the offending real activity as being the most risky one and the

problem easily remedied by setting the slack variable representing the

lower limit constraint of the real activity to zero. In the more general

case, the identification of offending activities is not as straight forward.

In the present algorithm, a trial and error procedure is employed to

find the initial basis when activities are correlated. The procedure is

to set all real activities except the least risky one equal to their lower

limits. Since the problem is to minimize risk it seems reasonable

that the least risky activity is a most likely candidate for the initial

basis. The matrix All is inverted and the relevant range for E is

determined. If SMIN exceeds SMAX then the initial basis is found

and contains only the least risky real activity. It is more likely that

the initial basis will include more than one real activity especially if

there are several real activities to be considered. If SMAX exceeds

SMIN the Kuhn-Tucker conditions are violated because a Lagrangian
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multiplier attached to the lower limit constraint of a real activity is

forced negative. This requires that the slack activity attached to the

lower limit constraint must be introduced into the system thereby

allowing the real activity to exceed its lower bound. Once this is done

the resulting matrix All is inverted again and the quantities SMIN

and SMAX computed. If SMA.X still exceeds SMIN, the source of

the conflict must be located and the proper modifications made. It

may be a Lagrangian multiplier that is forced negative or it may be a

slack activity that was introduced at a positive level that causes the

conflict. In the former case, the particular constraint must be made

non-effective by introducing the slack activity while in the latter, the

particular constraint must be made effective by removing the slack

activity. As soon as a situation is encountered where SMIN exceeds
30SMAX. a starting basis is established and the solution may proceed.

Positive Lower Limits on Real A.ctivities

If there are positive lower limits on some real activities, it is

not necessarily true that SMAX computed from the initial basis is the

minimum attainable expected income. This can be demonstrated by

30This trial and error method has worked satisfactorily during
the testing procedure of the algorithm. However, there is a danger of
cycling such that the initial basis will not be found. Should such an
event occur one could set the level of E at some level greater than
the absolute minimum satisfying the production constraints and solve
using a standard quadratic programming technique such as the Frank
and Wolfe simplex method.
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imposing lower limit constraints on Figure 2. 16 as in Figure 3. 2.

The initial basis is not changed from what it is was in the numerical

example, however, the valid expansion path in this initial basis is he'

rather than oe'. Expected income could be reduced by moving from

h to o' along the lower limit constraint of y1 . The entire efficiency

frontier in the positive lower limit case is diagrammed as the segment

ohed in Figure 3. 3. To establish the minimum attainable E the

same procedure of trading constraints as was done in checking to see

if the maximum attainable E had been reached would have to be

applied, only in reverse order. Since it is of minor practical rele-

vance to locate the absolute minimum point on the efficiency frontier

such procedures will not be pursued further.

The Efficiency Frontier and Activity Equations

Once the various inverses have been computed, the variance

function can be expressed in terms of expected income and resource

levels by making use of the Lagrangian multiplier equations. If one

partitions the sub-matrix Bil further into four sub-matrices and

denotes the sub-matrix of order k+l, where k is the number of effec-

tive constraints, in the southwest corner as W, then W contains all of

the information about the Lagrangian multipliers. The equations

representing the Lagrangian multiplier is expressed in matrix form

as Equation (3. 39). The exact differential dV is expressed as
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Figure 3. 2. Quadratic model with positive
lower limit constraints.

V d

Figure 3. 3. Efficiency frontier with positive
lower limit constraints.
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31 * *
The notation means that G1 is an effective production con-

straint. They are listed in the same order as constraint vector G ex-
cept that the non-iimiting ones are removed. is the Lagrangian
multiplier attached to G
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Equation (3.40) and its solution is given by Equation (3. 41). Equa-

tion (3. 42) for the efficiency frontier in the variance-expected income

plane is determined by substituting the actual numerical values for the

production constraint levels into Equation (3. 41) and observing the

proper limits on E.:

V = aE2+a2E+a3 (3.42)

where a, a2 and a3 are constants similar to , bGk and in Equation (2.50).

The complete frontier is described by a series of parabolas all

having the general form of Equation (3. 42). The parabolas from later

bases will be nested in the parabolas of earlier bases or intersect with

them depending upon whether the later basis was constructed by addi-

tion or deletion of a constraiht or whether it was formed by trading

one constraint for another.

The level of the ith real activity is expressed as

= 31.E + i = 1, , n (3. 43)

where is a constant resulting from holding all constraint

levels fixed

6li is the slope of the activity equation.

The magnitude of 131. indicates the stability of the solution at a

particular point in E. For instance, if differs greatly from zero,

32
A more formal interpretation of Lagrangian Multipliers and the

solution of the differential equation is given in the appendix.
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then small changes in E bring about large changes in y. . As the

solution nears the maximum attainable E, high paying, high risk

activities begin to dominate the solution precipitating major changes

in the efficient plans.

Slack activity levels are represented by

n+j 1, n+j 2, n+j = m (3. 44)

in the case where the jth resource is not an effective constraint. In

the case where the jth resource is an effective constraint the Lagran-

gian multiplier equation is

= .E + 3 . j = 1,..., m (3. 45)
j 1,n+j

Since slack activities represent unused resources, and because

of drastic changes in the composition of the plans as the maximum

attainable E is approached there may be major changes in the re-

source use pattern.

A Summary of the Algorithm

At this point it appears useful to summarize, briefly, the steps

involved in solving the variance minimization problem. These steps

correspond to the computer program which was developed as part of

this research project. The computer program appears in the appendix.
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STEP I:

(a) Set up the matrices of the problem as in Equation (3, 4),

(b) Move the vector of means into the position n+l in the

matrix All. See Equation (3, 7).

(c) Identify the real activity having the lowest coefficient of

variation,

(d) Make all of the lower limit production constraints on the

real activities limiting33except the one identified in Step 1(c),

34(e) Solve the system.

(f) Compare SMIN and SMAX. If SMIN is greater than

SMA.X go to Step II. If SMIN is less than or equal to

SMAX go to Step 1(g).

(g) There is a conflict among the activities. If the conflict is

due to a Lagrangian multiplier being forced to zero go to 1(i).

33Making the constraint limiting: Suppose the kth production
constraint has become exhausted as indicated by a slack variable being
forced to zero, then the following row and column operations must be
performed to make it a limiting constraint.

(a) strike out the row and column representing the slack activity
and its coefficient,

(b) Move the row vector and the column vector containing the
production coefficients of the limiting resource from its original posi-
tion in A2l and Al2 to its proper position in All, as specified in
the discussion immediately following Equation (3. 25).

34Solving the system: This refers to finding the inverse matrix
B which is postmuitiplied by the vector G to find the parameters of
the activity and the Lagrangiai multiplier equations and the limits
SMIN and SMAX.
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(h) Make the indicated constraint a limiting constraint. Go to

Step 1(e).

(i) Make the indicated constraint non-limiting. Go to Step

1(e).

STEP II

(a) Record the number of the basis and the parameters of the

activity equations, Lagrangian multiplier equations and the

variance equation.

(b) Identify the constraint of concern at SMIN. If a slack van-

able has been forced to zero, go to Step 11(c). If a Lagran-

gian multiplier has been forced to zero, make the constraint

non-limiting and go to Step 1(e).

(c) If there are n-2 or fewer limiting constraints make the

constraint identified in Step 11(b) limiting and go to Step 1(e).

If there are already n-i limiting constraints in the basis

go to Step III.

STEP III:

(a) Make the constraint identified in Step 11(b) limiting.

35Making a constraint non-limiting: Suppose the kth resource
is no longer limiting as indicated by a previously positive Lagrangian
multiplier being forced to zero. Then the following row and column
operations must be performed to make it a non-limiting constraint.

(a) Move the row vector and the column vector containing the pro-
duction coefficients of the resource from the position in All to its
original position in Ai2 and AZi.

(b) Replace the row and column representing the slack variable
and its coefficient.
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(b) Make the constraint having the smallest Lagrangian multiplier

as evaluated at SMIN in Step 11(b) non-limiting.

(c) Solve the system.

(d) Compare SMIN and SMAX. If SMIN is greater than

SMAX go to Step II. If SMIN is less than or equal to SMAX

go to Step 111(e).

(e) If all of the n-i limiting constraints in the basis of Step

11(c) have been made non-limiting one by one, and there has

been no increase in E go to Step 111(g). If there are still

some constraints which have not been tried, go to Step

111(f).

(f) Retain the constraint made limiting just prior to Step 111(c).

Make the constraint, having the next largest Lagrangian

multiplier to the one just attempted, non-limiting. Go to

Step 111(c).

(g) The absolute maximum E has been reached and the problem

is solved.
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Parameter Es timati on

Error in decisions can result from two sources. No matter

how accurate the information about a particular situation, erroneous

conclusions can result from faulty reasoning. It has been the purpose

of Chapter II and the first part of Chapter III to develop a methodologi-

cal framework such that this type of error is minimized. However,

no matter how accurate, precise or elegant the reasoning framework

may be, a second source of error can result from misinformation or

faulty data. It is this second source of error upon which the remainder

of the chapter is focused.

The confidence that can be placed ultimately on the efficient plans

depends in no small way upon the reliability of the estimates of the

parameters. Thus it becomes necessary to examine ways by which

these numerical values can be found so that they communicate the im-

pressions of the decision-maker about the future prices and yields in

an accurate and simple manner.

Resource requirements and resource limits continue to be con-

sidered non-stochastic. These are the elements of the matrix a and

36Error in this context refers to whether the choice was consis-
tent with the goals and aspirations of the decision maker not whether
the desired result was obtained. Suppose an individual having certain
fixed debt commitments chooses a plan where the probability of bank-
ruptcy is but 1%. Yet a catastrophe strikes and he loses his farm.
This is not an error in decision making but rather the consequence of
the random disturbance that has caused his failure.
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the vector G of Equation (3. 1). Since these elements are identical to

those encountered in linear programming, the problems pertaining to

their estimation, are not discussed here. The means, variances and

covariances of real activities do present new problems and merit the

attention of this thesis. The quest for the elements of the matrix X

and vector begins with a definition of gross margin.

Gross Margin - Definitions and Assumptions

Gross margin is defined as gross income less variable costs,

where gross income refers to the physical yield multiplied by the

market price. Variable costs, assumed non-stochastic, are direct

production costs and do not include overhead or fixed costs, Gross

margin used here is synonymous with the term 'net price" used by

Heady and Candler (20, p. 112), The contribution of the ith activity

or enterprise to the total gross margin of the farm is expressed as:

= Y1P - y.c. = Y1(P - c.) (3.46)

where Y. is the gross margin contributed by the ith activity

is the level of the ith activity,

q. is the per unit yield of the ith activity,

is the price per unit of yield of the ith activity,

and c. is the variable cost per unit of the ith activity.
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The quantities q. and p. are random variables and shall be

assumed stochasticaily independent, Such an assumption is not incon-.

sistent with that made in perfect competition where the actions of an

individual do not affect the market in the aggregate. Letting:

Z.

where Z. is gross income

(3. 47)

and applying the appropriate statistical theorems (24, p. 148) it follows

that:

E(Z.) E(q.p.) E(q.)E(p.)
1 11 1 1

where E(Z.) is expected gross income per unit of activity,

E(q) is expected yield per unit of activity,

and E(p.) is expected price per unit of yield.

Furthermore:

V(Z.) = V(q.)V(p.) + V(q.)[E(p.)] 2 + V(p.)[E(q.)] 2

where V(Z.) is variance of gross income per unit of activity,

V(q.) is variance of the yield per unit of activity,

V(p.) is variance of the price per unit of yield.

(3. 48)

(3. 49)

37it is recognized that this may lead to some difficulty in the case
where yield is highly dependent upon some variables such as weather
and the total supply of the commodity in question comes from a small
geographic area. Such a case might indicate a high correlation be-
tween an individuals yield and the price he receives. This, however,
is thought to be the exception rather than the rule.
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X. = Z. - c. (35O)
1 1 1

then X. is a random variable representing the gross margin contribut-

ed by one unit of the ith enterprise. From this relationship one can

define:

and

E(X.) = E(q.)E(p.) - E(c.) (3, 51)
11 1 1 1

= V(X.) = V(Z.) (3. 52)

where .i. is expected gross margin contributed by the ith activity

and its variance.

Extending these relationships to include the entire farming oper-

ation results in equations

and

E = E(Y) (3.53)

V = V(Y) = + 2 (3. 54)

i=l i=1 j<l

All of the results obtained thus far in this section are completely

general and do not depend upon the parent distribution of prices, yields

or gross margin.
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Estimated Expected Value and Variance of Gross Margin

One possible source for estimating gross margin parameters is

aggregated time series data of prices and yields, While such series

have their place in predicting response in the aggregate, they give a

downward bias to variance estimates for farm planning studies because

the aggregation process "averages out' variability, (12), Also they

carry with them the implied assumption that history will repeat itself.

For estimates to be relevant, the data source should be closer to the

individual farm situation. Another possible source is historical data

recorded by the farmer himself. Unfortunately farmers do not as a

rule keep such detailed listings of yields and prices and they may wish

to consider engaging in new enterprises about which they could not

possibly have recorded the information. They do, however, often

have strong subjective notions about the profitability and riskiness of

various enterprises, Since the prime purpose is to organize the

decision maker's information so that the efficient enterprise combina-

tions can be derived, it is necessary only to have him quantify his

impressions about future prospects of each enterprise.

Engineers, (23, p. 229) under similar circumstances of forward

planning in critical path analysis are concerned in completing a project

in optimum time. To do so requires coordinated scheduling of inter-

related sub-activities. Decision makers are asked to provide three
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estimates of the completion time of the sub-activities: (a) the most

optimistic; (b) the most likely; and (c) the most pessimistic completion

time. These estimates specify a "beta' distribution of the completion

time. MacCrimmon and Ryavec (33) in their review of the assumptions

underlying critical path analysis suggest that the triangular distribu-

tion results in about the same degree of error38 as does the beta dis-

tribution but has a much simpler mathematical form. It is not neces-

sary. as required of the beta distribution, to solve for the roots of a

cubic equation to obtain the parameters.

The probability density function of the triangular distribtuion is:

f(x)
2(x-a)

= , a<x< m(m- a)(b-a)

2(b-x) m<x<b (3.55)(b-m)(b-a)

= 0 otherwise

where x is the random variable

a and b are the end points

m is the most frequently occuring value,

The triangular density function is graphed in Figure 3, 4. The

triangular cumulative frequency distribution is:

38There are two kinds of errors involved, First the random
variable of concern may not be from either a beta or a triangular dis-
tribution. Secondly errors may result in estimating the parameters.
It is the errors in estimation that are of concern here,
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Figure 3. 4. The triangular probability distribution
function.
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x

Figure 3. 5. The triangular cumulative distribution function.



F(x) = 0 x< a

2(x-a) a<x< m(m-a)(b-a)

1
(b-x)2

- ,m<x<b(b- m)(b- a)

=1 b< x

The cumulative distribution function is graphed in Figure 3. 5.

The mean of the triangular distribution is:

p. = (a + m + b)

From the partial derivatives

.a .a>0
aa' Rm' b
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(3. 56)

(3. 57)

(3. 58)

it can be noted that increases in the estimates of a, m, or b cause

increases in the mean,

The variance of the triangular distribution is

o2 [(b-a)2 (m-a)(b-m)] (3, 59)

From the partial derivatives

acT2

aa 0, >0
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>0 form> (3,60)am 2

02 a+b
am < 0 for m <

it can be noted that increases in a reduce variance, increases in

b increase variance and increases in m will either increase or de-

crease variance depending whether m lies to the right or the left

of the midpoint between a and b

If a , m , and b are respectively the most pessimistic,

most likely and most optimistic estimates for price or yield, then the

triangular distribution quantifies, the decision makers impressions

about profitability and risk of the enterprises he is considering. The

decision maker could be asked to give the three estimates for gross

income. However, it is felt that he will, in most cases, give clearer

thought to the problem if asked for the price and yield components

separately. Once the price and yield estimates are obtained, their

corresponding means and variances come directly from Equations

(3. 57) and (3, 59), After an estimate for variable costs has been made,

the mean and variance of gross margin follow directly from Equations

(3,51) and (3,52).

It is important that the questions concerning the three points of

the distribution be asked in the proper time context, For instance,
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one would expect different answers, probably leading to a lower van-

ance, if the planning horizon were for next year as opposed to a longer

run of say 10 years. This approach will allow the decision maker to

subjectively account for factors that exert an influence on the future

behavior of gross margin.

The expected values of gross margin establish the elements of

the vector in Equation (3. 1). The variance estimates of gross

margin establish the elements on the main diagonal of the matrix X,

The estimation of covariances, i. e, the off-diagonal elements of X

poses a more difficult problem.

Estimating Covariances

Empirical evidence indicates substantial degrees of correlation

between certain farm enterprises, To account for this interdepend-

ency, an estimate of the covariance must be made,

Ideally, one should construct a subjective joint probability den-

sity function involving gross margins of all enterprises to be consider-

ed. Through integration, the mean, variance and covariance would

be derived, The covariance term is given by:

0.. = r. 0.cr. (3.6].)ij ihij
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where Q. is the covariance between the ith and jth activities,

r. is the correlation coefficient between the ith and jth
13

activities,

is the standard deviation of the ith activity,

0. is the standard deviation of the jth activity,

TheexpressioninEquation (3.61) is general and does notde-

pend upon any specific density function. Since the values 0. and 0.

have been established by the triangular distribution one need be con-

cerned only with estimation of the correlation coefficients.

Farmers often think in terms of worst, best and most likely out-

comes hence do not have difficulty in estimating the triangular distri-

bution. However they find it virtually impossible to answer questions

concerning enterprise interdependency.

If there are n enterprises, then n(n-1)/2 correlation coeffic-

ients must be specified. Not only must the correlation coefficients lie

between negative and positive unity, they must also form a positive

definite matrix. While this matrix could be established through an inter-

view in the simple case of two or even three enterprises, the task be-.

comes impossible for the decision maker as more activities are added.

An alternate method is suggested by Markowitz (34, p. 100). To

39The estimates a, m, and b can be thought of as describing a
marginal triangular distribution. If one assumes stochastic independ-
ence, then the joint distribution is the product of the marginal distri-
butions. Such an assumption implies that the enterprises are un-
correlated.
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find the covariance between two securities, s. and s., the simple
1 3

linear regression coefficient of each of the security on some common

element such as an index of business activity is used resulting in:

0-.. = b.b.V(I) (3. 62)
13 1 3

where 0-.. is the covariance between s. and s,
13 1 3

I is the common element index,

b..and b. are the simple linear regression coefficients on the

index I,

V(I) is the variance of index I.

The diversity of farming enterprises makes it difficult to establish a

common element index to be used in estimating the covariance 0-...
1J

For example, should weather be chosen as the common element one

notes that the introduction of irrigation might make a crop uncorre-

lated with rainfall. It does not necessarily follow that the irrigated

crop is then uncorrelated with dryland crops.

A third alternative is to use historical price and yield data. If

an individual has such a series for the enterprises he wishes to con-

sider, then it is advisable to use his data. In most cases individual

data is non-existant and one is required to resort to aggregate time

series. Added t o the variance bias discussed earlier, the e is the

possibility of time trends in the data, These trends may be the result

of technological advances, long run weather patterns, business cycles
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and other causes. The longer the series the more likely the presence

of trends. Due to the short run nature of the problem, interest here is

only in the random elements and it may be necessary to remove the influence

of time. This can be done in a number of ways. One method is to

determine the regression equation of time on the gross income of each

activity by the least squares technique. The deviations of the observ-

ed gross incomes from those predicted by the regression equation can

be computed. The resulting deviations are interpreted as the random

disturbances and the correlation coefficients are computed according

to the following formulation:

T

Ydd/j itjt
t= 1r,. = ______________ (3.63)

1) IT T

Vdt d

t=1 t=1

where r is the coefficient of correlation between the ith and jth
ii

enterprise gross incomes,

d. is the deviation of the ith enterprise in the tth year
it

from the regression line of the gross income,

is the deviation of the jth enterprise in the tth year

from the regression line of the gross income.

Computation of the correlation matrix is described in matrix notation

as:

R = QD'DQ (3.64)
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where R is the NxN correlation matrix.

D is the TxN matrix of deviations and D' is its transpose,

Q is an NxN diagonal mati ix containing on its main diagonal

the elements

1

i=1,",N

N is the number of enterprises considered,

T is the number of observations on each enterprise.

The matrix R, can be constructed for the region in which the

decision maker resides. The correlation matrix for the decision

maker, denoted by R is constructed by transfering the relevant

rows and colums representing the enterprises of interest from the

regional matrix R to the individuaiis matrix R. The matrix X is

obtained by premultiplying and postmuitipiying R by a diagonal

matrix composed of the standard deviations of each enterprise.

For clarity the matrix in full is:

0 1 r1 0

X = . . . . . (3.65)

_0
°

r1 . . 0

where X is the variance- covariance matrix of Equation (3. 1),

is the standard deviation of the ith activity,
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and n is the number of activities.

The matrix R which results from the product DD is positive

semi-definite (1, p. 141) and has rank not exeeding the minimum

dimension of D. Since the nxn matrix X is required to be positive

definite there can be no more enterprises considered by an individual

than there are observations in the time series used to construct the

matrix D,

Usually there are more enterprises in a given region than there

are years of data about their gross margins. Advances in technology

bring about changes in farming practices from one time period to

another thereby shortening the time period for which a complete set

of data can be obtained. For example, bush beans were unheard of

prior to the introduction of mechanical harvestors about 10 years ago.

They are now steadily replacing the pole-type varieties which required

hand labor. This will limit the entire set of observations to 10 years,

In summary, data requirements of the enterprise selection

problem can be met by using the triangular distribution as a subjective

measure of the mean and variance of prices and yields. The mean

estimates establish the vector . The variance estimate are combin-

ed with the appropriate rows and column of a regional correlation

matrix derived from time series data to construct the matrix X.



139

IV. EMPIRICAL EXAMPLES AND RESULTS

Algorithm Development--Accuracy
and Efficiency Comparisons

The computational procedures discussed earlier were incorpor-

ated into a sequence of three computer programs. 40 The first pro-

gram, called INPUT, prepares the data for use of the second program,

called PROCESS, which solves the problem. 41 The third program,

called OUTPUT, prepares the report in graphs and tables for use by

the decision maker. Numerous hypothetical examples were used in

the early development stage with the chief role played by a problem,

(see Case 1, Table 4.1), adapted from the Oregon Farm Management

Game (39). To verify the accuracy of results obtained by the algorithm

under deveiopmenta comparison was made to a standard quadratic

programming routine. The composition of plans obtained at the se-

lected points on the efficiency frontier were identical for both methods.

Later in the development a problem reported by Carter and Dean (7),

(see Case 2 in Table 4.1), was used as a further check on accuracy and

to obtain a comparison on efficiency.

cal.

The solution values were identi-

40The programs were written in Fortran IV and run on a Control
Data Corporation 3300 computer under 0S3, a time sharing Executive
System at Oregon State University.

41The program PROCESS will accommodate up to 10 real activ-
itiès and 99 production constraints.



Table 4. 1. Problem dimensions and computer costs.

Test Problems Wiliamette Valley Farms

Case Case Case Case Case Case Case
One Two Three Four Five Six Seven

No. of Activities 7 7 8 9 10 9 4

Total Constraints 23 10 15 48 46 43 37
land 15 7 11 20 22 19 9
labor 8 0 4 12 12 12 12
irrigation water 0 0 0 4 0 0 4
capital 0 0 0 12 12 12 12

Total Inversions 21 --- 26 39 22 26 12
valid bases 12 12 11 19 9 16 7
inversions for initial basis 0 - - - 8 9 4 2 2

Total Computer time (seconds) 94. 804 96.672 157. 963 235. 576 187. 300 219. 475 79. 21
input --- --- 6.662 6. 035 10. 121 9. 739 7.67
process --- --- 62. 541 176. 985 108. 217 117, 394 23.62
output --- --- 88. 800 52. 556 68. 962 92, 342 48,92

Total Computer Cost (dollars) 10.66 1.1.65 21.51 24. 75 20.40 23,64 12, 78
cost of report only --- --- 11.62 8. 82 9. 98 12,42 8. 29

I-

0
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Carter and Dean obtained only a number of points on the frontier

in just under three minutes of computing time, The algorithm devel-

oped here accomplished the task in about half the time (95 seconds),

Furthermore, the exact algebraic equation of the entire frontier was ob-

tamed. Consequently if one wishes to do more extensive utility analysis

requiring the entire frontier, itisnotnecessarytouse some regression.

tehcnique as an approximation (17, p. 200), A final check on accuracy

was made against results obtained by How and Hazeil (26), (see Case 3

in Table 4,1). The algorithm they used also specified only a finite

number of points on the frontier and seemed to violate a number of the

production constraints.

In each of the three cases tested, the results obtained by the aigo-

rithm under development were identical or superior to those obtained

by the other methods, This made it possible to attempt the solution

of real world management problems submitted by farmers in the

Willamette Valley of Oregon.

Tests of Applicability - Four Case Studies

Problem Specifications and Data Collection

Four farm operators submitted crop enterprise selection prob-

lems for solution.

Case 4 was submitted by a Yamhill County, Oregon partnership

interested in determining the advisability of renting
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additional land and deciding upon the optimal combina-

tion of crops should the renting prove advantageous.

Case 5 was submitted by a Polk County, Oregon farmer inter-

ested in the optimum combination of irrigated and dry-

land crops.

Case 6 was submitted by a Polk County, Oregon farmer inter-

ested in the optimum combination of dryland crops.

Case 7 was submitted by the Agricultural Representative of a

bank on behalf of a Marion County, Oregon farmer having

similar interest to those expressed in Cases S and 6.

Since these were crop farms, located in the Willamette Valley

using similar cultural practices, the production coefficients were also

similar. Cerealgrains, grass seeds,legume seeds and more intensive

crops like beans and strawberries were considered, The basic con-

straints were identical for all farms, and included four categories;

land, labor, irrigation water and operating capital. The land con-

straint consisted of two classes; irrigated and dry land. In addition

there was a maximum and a minimum acreage limit on each crop,

Labor coefficients and constraints were specified by month, Irrigation

water requirements and constraints were established for the critical

season beginning with May and ending with September. Total annual

operating costs per acre for each crop were obtained separately for

machinery and equipment operation, fertilizer, spray and dust, seed,
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supplies and miscellaneous cash costs. These costs were then ailo-

cated to the month in which they normally occur to establish the oper-

ating capital requirements. The percentage of the revenue to be re-

ceived in each month was recorded to establish a cumulative cash flow

statement per acre for each crop. As an example of this procedure,

suppose a particular crop required an expenditure of five dollars in

January, $15. 00 in February, $10. 00 in March, $25.00 in April and

$35. 00 in October, and the produce was sold in November fo $150. 00.

The resulting cumulative cash flow statement for this example appears

as Table 4. 2. The cumulative cash flow concept is incorporated into

the model by addition of a column vector in the matrix a. A maxi-

mum limit on cumulative operating capital permitted for the farm

throughout the operating year was imposed.

While production constraints in either the quadratic or linear

programming models are the same t h e r e is a difference in formu-

lating the objective function. The objective function in this quadratic

programming was to minimize variance. Hence, one must also obtain

variance and covariance estimates in addition to the normal linear

programming requirements, Farmers frequently think in terms of an

interval rather than a point estimate (47) when asked about prices and

yields, If one interprets this interval to be the interval ab in the

triangular distribution of Figure 3. 4, and asks the additional question

about the most likely yield or price, then estimates for mean and
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Table 4. 2. Monthly cash flow statement.

Monthly Cumulative
Month Cash42 Cash43

Flow Flow

January 5. 00 5. 00

February 15. 00 20. 00

March 10. 00 30. 00

April 25. 00 55. 00

May 0. 00 55. 00

June 0. 00 55. 00

July 0. 00 55. 00

August 0. 00 55. 00

September 0. 00 ss. 00

October 35. 00 90. 00

November -150. 00 -60. 00

December 0. 00 -60. 00

42Positive numbers indicate an outflow of cash while negative
numbers indicate an inflow,

43 . .Positive numbers indicate that there has been a cumulative net
outflow while negative numbers indicate a cumulative net inflow.
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variance are established. Since farmers usually go through such a

thought process anyway, the only additional requirement is to record

their pessimistic, optimistic and most likely estimates of price and

yield. Thus data collection is no more difficult for the quadratic model

than for linear programming.

Production coefficients, price and yield data and resource con-

straint levels were obtained for each of the farms using the forms

appearing in the appendix. A regional correlation matrix for the

Wiliamette Valley was prepared from a 10 year aggregate time series

on 46 different crop enterprises.

Report and Interpretation of Results

The program OUTPUT was designed to provide a report which

could be interpreted by farm decision makers. The report for Case

4 follows. Although this represents a real farm, the names Smith and

Jones are ficticious.

The data was obtained from the files of D. L. Rassmis son and
H. G. Ottaway, County Extension Agents, Marion County, Salem,
Oregon. The regional correlation matrix was computed with the pro-
gram CORRELATE, a copy of which appears in the Appendix.
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MR. SMITH AND JONES
SMFWHERE ORE.

DFAR MR SMIIH AND JONES

TE FOLLOWING REPORT GIVES A DFTAILFD DESCPIPTIbN OF EFFIrIENT PLANS FOR YOUR
FARM RUS!PJESS. THE PLANS ARE ARRANGFD IN ORDER OF TNCR!ASNG PROFTARILITY.
PROFITARILITY IS MEASURED Y EXPECTFD CR3SS MARTN. C,RSs MARGIN IS THE DOLLAR
V'*LUF CF PRODUCTION AFTER THE VARTARLE COSTS SUCH AS PIJEL,FFRTIL!ZER, REPAIRS,
FTC. HAVE RFFN DEDUCTED. HE 1rPM -!FXPErTED. VALUE IS USEr TO IWDICAIF THAT WE
ARE DEALJWG WITH THE AVEpAGE' YEAR. NOtHING IS SAID ABOU+ THE GROSS MARGIN FOR
A SPECIFIC YEAR. AS THE EXPECTED GprSS MARGIN Op PAYOFF OF A PLAN INCREASES, so
DOES ITS RISKINESS. HCwEVrR, TkE PLANS ARE SO C0NSTPUCTEO THAT AT A SPECIFIC
LEVEL 0F EXPECTED GPOS5 MARGIN, THE RISK TS AS SMALL AS T+ CAN BE. THIS IS WHY
THE PLANS ARE SAID TO BE EFFICIENT. AS FXPFCTEO GROSS MARIN IS INCREASED, THE
GrNERALNATURE OF THE PLAN MUS+ CHAwGE. FOR EXAMPLE, THE OwER PAVING, LESS
RTSKVCPS BECOME REPLAC6 BY HIGHER PAYING, B,'iT MORE RTKv ONES. AS THE
COMPUSITTOM OF THE PLAN Cc4ANGES. SOME RFSOURCES FOP EXALF LABOR OR OPERATING
CAPITAL, My BECOME LIMITING. WHEN THIS HAPPENS A NW PLAPi iS MADE. NEW
PLANS APE CONSTRUCTED UNTIL THERE IS NC WAY IN WHICH ExPFTFD GROSS MARGIN CAN
RF TMCRASED FURTHER. IN RDER TO DETERMINE ALL EFFICIENT P ANS A STEP BY
STEPPROCEURE IS FOLLOWED. THCCMOSITICN OF THE PLAN AMD ITS PAYOFF AND
RISKINESS IS GIVEN AT THE E:No F EACH STEP. WHILE EACH OF THE PLANS IS EFFICIENT
I REMAINS FOR YOU TO DECIDE WHICH ONE IS REST. SELECT THAT PLAN WHICH FOR YOU
HAS THE MOST ACCEPTABLE COMBINATION OF EXPFCTED GROSS MARGIN AND RISK.

THE REPORT IS DIVIDED INTO A NUMBER CF DARTS.

PART ONF S A SUMMARY OF AL THE STEPS. THE PLAN AS IT EXiSTS Ay THE END OF EACH
STEP IS GIVEN. THIS SUMMAy SHOWS THE EXPETED RCSS MAPGN, THE RISKINESS AND
THE NUMBER OF ACRES IN EArH CRP. YOU WYLL ALSO FIND A STATEMENT SHOWING THE
AMOUNT OF RESOURCES USED AND THE VUE oF ONE MbRE UNIT OF THE RESOURCE,

PART TWO IS DESIGNED TO HFLP YOU CHOOSE YOUR RET PLAN. RFMFMBEP THAT EXPECTED
GROSS MARGIN IS A LONG_RUN_AVERAGE CONCFPT, AND SAYS NOTHING DIRECTLY ABOUT NEXT
VAR. IN THIS SECTION YOU ARE GIVEN THE PROBABILITIES OR CHANCES THAT NEXT
YFAR, GRQSS MARGIN WILL rXCEE A SPECIFIED AMOINT. THIS STATEMENT IS MADE FOR
EACH OF THE PLANS OF PART ONE.

PART THREE GIVES THE COMPLETE sPECIICATICN FROM WHICH ANY POSSIBLE PLAN CAN BE
CALCuLATED. THE PLANS, AN THEIR RESPECT!Vr PAYOFFS AND RiSKINESS APE GIVEN AS
EGUATTONS. TO DETERMINE ANY PLAN YOU NErD ONLY LUG THE PROPER VALUES INTO THE
EGUATIONS.

PART FOUR PRESENTS THE ENTIRE SET OF EFFICIENT LANS IN GnAPHTC FORM. IT ALLOWS
YIJ C AT A GLANCE, tHE CHARAcTERSTTCS CF EACH POSIRLE EFFICIENT PLAN.

IT IS HÔPE THAT THE FOLLOWING INFORMATION WILL RE OF VALUE TO YOU AS YOU PLAN
YOUR utu FARMING ACTIVT!ES.

YOURS TRUL



PART ONE

SUMMARY or E#FICXENI FARM PLANS

A STATEMENT OF THE LEVELS OF ACTIVITIER AND TUE EXP' V'FF

NAME OF UNITI PLAN I PLAN 2 1 PLAN 1 1 PAN 4 1 PLAN 5 PLAN 6 1 PLAN 7 1 PLAN A PLAN
-

A 7T CROP I I I I I TI I I I I I I 1 1 1TWHEAT AC I 29.On 1 29.00 1 29.00 I 29.00 7 29.00 1 29.00 1 29.00 1 29.00 7 29.00IREF) CLOVER AC I -0.00 I -0.00 1 -0.00 I -0.00 7 -0.00 7 0.00 1 .0.00 1 -0.00 I -0.00TALFALA IRO AC I 37.65 I 50.00 1 50.00 I 44.23 I 40.10 I 30.36 7 21.44 1 0 1 .00 1TALFALrA DRY AC 1 15.36 I 23.23 7 27.06 I 40.46 7 50.00 7 50.00 50.00 1 50.00 1ICORN SILASE AC I -o. 1 .00 7 .0.fl 7 5.77 1 9.90 I 19.64 I 22.56 1 50fl0 I 50.00 IAC I b0.0n I So.00 7 S0.00 I 50.00 I 52. 1 101.71 7 141.11 7 143.92 1 144.00 1ICRCW 05653 AC 1 -0.00 I -0.00 1 .0.00 I -0.00 I -0.00 T .00 1 5.45 7 3.31 1 4.47 1TLm7RY VETCH AC I 3.17 I 7.90 1 8.86 I 11.69 1 13.44 1 9.56 1 4.44 7 1 2.5? 17P174T0 BEANS AC I 50.On I Sfl.00 1 50.001 S0.00 1 50.00 7 50.00 1 30.00 7 5n.oO 1 50.00 II I I I I I I I I I II FAD SR MARS 551 18718.35 I 20553.81 1 20833.07 1 ,2367.?8 I 23382.66 I 27318.83 1 30124.56 1 3R5655 1 32884.18 1I SI 0EV 551 1041.04 I 1130.69 1 1146.52 1 1.38.88 1 1315.69 7 7502.03 I 1829.00 7 2110.08 I 2113.58 I

-J



PART ONE CONTINUED

A STATEMENT OF THE AMOUNT OF EACH RESOURCE USED AND THE F*PFCTED PAYOFF

I NAME OF UNIT' PLAN I PLAN 2 1 PLAN 3 I PLAN 4 PLAN 5 T PLAN 6 1 PLAN 7 t PLAN B PLAN BIRESOURCE I I T I T II I z
TTJAN LAB HR 0 0 1 0 2.02 3.46 I 6.88 T 13.34 1 21.01 I 21.81IFEB LAB HR 0 0 I 0 2.02 3.46 I 6.88 1 1.90 1 17.30 I 17.50THAPCH LAB HR 13.37 13.69 I j3.79 16.09 18.16 1 31.07 1 40.01 T 49.89 1 49.80!AP#TL LAB HP 20.00 20.00 1 20.00 I 20.00 20.90 1 40.69 1 56.44 1 5757 37.60I I I I ITHAI LAB HR 188.22 208.23 T 212.04 226.04 236.22 I 242.14 246.37 T 24939 I 249.40TJUN! LAS HR 141.80 160.79 160.69 162.32 163.32 I 164.88 164.96 1 170.36 170.25IJULY LAB HR 184.73 22A.48 230.50 238.28 243.34 T 229.91 232.78 I 200.39 201.47161)6 LAB HR 226.24 289.24 261.53 I p64.96 268.96 I 295.18 33.75 1 303.80 303.36ISEPT LAB MR 99.49 109.74 110.32 117.20 121.97 1 128.41 tfl.Q, 152.04 131.51I I I I IODd LAB HR 24.62 29.46 30.42 1 34.9Q 31.94 1 38.04 36.25 1 4339 41.86TNOV LAD HR 57.4fl 37.40 37.40 1 61.73 65.73 1 92.82 110.76 1 132.47 132.90TOEd LAS HR 2.90 2.90 2.90 4.02 6.36 1 9.78 iO.60 2040 20.40THAI WATER 41 200.00 200.00 200.00 1 200.00 I 200.00 1 200.00 200.00 T 20n.oO 1 200.00IJUNE WATER AT 350.61 400.00 400.00 I 400.00 400.00 1 800.00 400.00 400.00 400.00O

I ITJULY WATER A! 350.61 400.00 400.00 I 400.00 400.00 0 400.00 400.00 1 400.00 400.00 1TAUG WATER AX 350.61 400.00 400.00 1 400.00 400.001 400.00 1 400.00 1 400.00 400.00TJAN CAP SI 0 0 0 1 -283.06 -488.94 1 -9O.39 -1432.58 T -367494 -2731.27TFED CAP 55 0 0 1 0 I -570.12 -977.88 I .1940.78 -2846.98 1 -5144.94 .8201.21THARCH CAP 5% 1029.09 1017.87 I 1087.83 1 '61.80 -303.44 1 .1167.15 .1371.75 1 53t026 1 -5350.87o I I T ITAPRIL CAP 85 1474.09 1 1522.87 1332.83 I 706.80 161.63 T .261.90 -75.89 1 -4029.37 -4069.26 1THAI CAP 55 1378.98 548.06 393.91 1 504.58 -1098.46 I -654.18 -201.22! -l72.19 -1792.06 IIJUNE CAP 85 1610.54 827.19 677.36 I -206.27 .790.69 I .35980 11.58 1 -1472.31 1 -1516.82 1IJULY CAP 55 309.3o .1821.54 -206.90 I ..3076.21 -3742.33 I .2885.70 .2315.05 1 t6469 .2689.43 1TAUB CAP 5$ I -416.30 -6399.38 -673.99 I ..7945.88 -883545 1 .965338 1 -10420.46 1 -103'0.12 -10367.98 1I I I I I I ITSEPT CAP 55 20053.57 -22164.05 -22496.51 1 -'333.29 1 -24418.24 1 2716S.33 1 .29389.90 1 -29211.14 -29186.14 ITOCT CAP 5$ 19117.82 -21052.16 -21380.68 .2360.67 1 -23202.69 I -23979.28 1 .28232.64 1 28266.07 -28247.07INOV CAP 5$ *18945.34 .20890.68 -21108.20 .22486.90 I -23325.77 T -28718.69 I .29036.99 I 3o38499 .30354.83IDEC CAP 55 -18693.47 -0527.74 .20807.19 .72382.71 I .23358.40 1 '7?81.50 T .30076.86 I -32810.77 -32838.73TORY LAND AC I 97.73 110.13 114.90 1 131.15 1 144.69 1 190.27 1 230.00 1 230.00 230.00 1I I I I I 0TIPS LAND AC 87.65 100.00 100.00 100.00 1 100.00 0 100.00 1 100.00 0 100.00 100.00THAI WHT AC 29.00 29.00 29.00 1 29.00 I 29.00 1 29.00 T 29.00 1 29.00 29.00THAI 80 CLOy AC -0.00 0 .0.00 -0.00 I 01 0 1 -0.00 0 -0.00 .0.00THAI ALF 180 AC 37.63 50.00 50.00 I 44.33 I 40.10 1 30.36 1 77.44 1 .Q0 1 .00THAI ALE DRY AC 15.56 23.23 27.04 I 40.46 1 50.00! 50.00 1 50.00 1 50.00 50.00I I I T I I ITHAI CORN AC 1 0 0 0 5.77 T 9.90 T 19.64 1 22.56 So.oO 30.00 1THAI BLY AC I 50.00 5o.00 50.00 50.00 I 52.25 T 101.71 T 141.11 1 143.92 164.00THAI OR OR AC 1 0 .0.00 0 I 0 1 0 1 5.45 1 3.51 4.47 ITHAI VE1CH AC 1 3.17 7.90 8.86 11.69 1 13.44 T 9.56 1 4.44 1 3.57 2.5? 1THAI REANS AC I 50.On 50.00 50.00 50.00 1 50.00 1 50.00 1 30.00 1 5n.0 50.00 1I i I T I T I ITHTN WH1 AC 1 -29.00 -29.00 -29.00 .20.00 1 -29.00 T .20.00 1 -79.00 T .29.00 -29.00 1IHIP4ROCLDV ACT 0 0 01 01 01 0? (II 0 111IMPI ALE 196 AC I 37.65 50.00 50.00 44.23 I 40.10 T 3o.36 T 77.44 1 .00 0MTN ALE DRY AC 1 15.56 23.23 21.04 1 40.46 I 50.00 1 50.00 I 50.00 1 50.00 50.00 ITHIN CORN AC 1 0 0 I .77 I 9.90 1 19.64 1 22.56 T 50.00 50.00 1I I I I 1 1 1THIN PLY AC I -50.Oô -50.00 -50.00 I .50.00 1 -47.75 1.71 1 41.11 I 43g2 44.00 1THIN OR OR AC I 0 0 DI 0 T 01 0! 5.45 T 3.51 6.471THIN V!TCH AC I 3.17 7.90 9.86 1 11.69 I 13.44 T 9.56 1 4.44 1 3.57 3.5?THIN REANS AC 1 50.00 50.00 so.00 I 50.00 I 50.00 1 50.00 1 50.00 I Sn.O I 50.00 1I t I I I I I I II EXO OR HARO 551 18718.35 20553.81 20833.07 1 22367.28 I 23582.66 1 7131883 7 30124.56 1 3,85655 I 32884.38 I7 STD 0Ev 551 1041.04 1130.69 1 1146.52 1 1238.88 1 1315.69 1 1592.03 1 1879.00 T 2110.08 1 2113.58 I---------------------------------------------------------



PART ON! CONTINUED

STATPM!P47 or THE VALUE OF AN AfIOTITONAL UNIT OF RESOURer

I NAME OP UNIT! PLAN I I PLAN 2 1 PLAN 3 1 PlAN 4 I PLAN 5 T PLAN 6 1 PLAN 7 ! PLAN A I PLAN 9 ITJANLAI HP! 0! 0! 01 0! 01 01 0! 0! 0!TF!RLAR HP! 0! 01 01 01 0! 01 Dl 0! 0!!MARCNLAfl HRI 0! 0! DI II (1! 01 (1! 01 0!TAPRILLAS HP! II! 0! 0! 0! 0! 01 DI 0! 0!!MAYLA8 HP! 01 0! DI 01 fl 01 Dl 01 111I I I I I I I I I IYJUNELAR HP! 0! 01 01 01 0! 01 (91 0! DIIJULY LAP HR 1 n 1 0 1 0 1 0 1 0 1 0 T 0 1 0 I 0 1TAUGLAP HP! 0! 01 0! 0! 0! 01 Dl 01 (1!!SEPTLAB HRI 0! 01 nI 01 0! 01 0! 0! 0!TOCYLAR HP! 0! 01 0! 01 0! 0! (IT 0! Cl!I I I I I I I I I I ITNOVLAR HP! QI 0! 01 01 01 01 01 0! 01TOECLAP HP! 0! 01 01 0! 0! 0? II 0! 1(1TNAYWAT!P 4!! 0! 0! (II 01 0! 0! 01 0! 0!IJUNEWATER 61! 0! 01 DI 0! 01 0! 01 0! 01IJULYWATER All 0! 0! 0! 01 (9! 0! 01 01 II!I I I I I I I I I I ITAUAWAEP A!! 01 01 DI 01 0! 0! 0! 0! 0!IJANCAP IA! (II 01 01 0! 0! 0! 01 01 Cl!IP!PCAP U! 0! 01 0! 0! 0! 0! 0? 0! 01!MARCHCAP U! 01 01 0! DI (11 0! 01 01 DIT*PR!LCAP III 01 0! 0! 01 0! 01 CIT OT 0!I I I I I I I I I I IYMAYCAP II! 01 01 0! 01 01 0! 0! 0! 0!!JUWECAP 18! 01 0! 0! 01 OT Oy 01 0! 01!JULYCAP III 01 01 01 0! 0! 0 (9! 0! (9!!AIJ9CAP 18! 0! Dl 0! 0! 01 0 0! 01 1)!IS!PFCAD 11! o! 0? 0! 0! 0! 0! 01 0! 0!I I I I I I I I I I ITCCFCAP UI o! 01 0! 0! 0! 01 CIT 0! 0!INOYCAP II! 0! 01 01 0! 0! 0! 01 0! DI!D!CCAP 1$! nI 0 0! 0! 0! 0! ((1 0! 0!TORY LAND AC 1 D I 0 1 0 1 0 I 0 1 0 1 (9 1 17.45 1 23.35 11119 LAND AC 1 o 1 0 I 3.63 1 P.34 I 10.31 1 18.95 1 71.9! T 47.86 1 66.?? 1I I I I I I I I I ! IIMAXWH! AC! 0! 01 01 0! 0! 0! 01 0! II!!MAKRDCLCV AC! 3! 01 0! 0! or 0! 01 01 CI!MAXALPIRO AC! oX 01 0! 0! 01 01 01 01 19!THAI ALP DRY AC 1 3 1 0 1 CI 1 0 1 0 1 21.29 1 75.83 1 28.26 I 24.0:1 1INAXCOPH AC! oh 0! DI 0! (3! 01 01 0! C!I I I I I I 1 1 I IIMAXPLY AC! DI 01 0! 0! 01 0! 0! 0! C!!MAXORGR AC! (II 0! 0! 01 0 0! (9! 0!!MAXV!TCH AC! I 0! 0! 0! (91 01 Dl 01 01THAT PFANS AC 1 0 1 90.44 I 85.93 I 94.68 1 102.8! 1 127.50 1 131.90 I 97.05 1 75rR I!M!N WHT AC 1 198.72 1 130.45 ! 113.66 I 110.40 1 104.95 1 4989 I 16.53 1 9.66 1 (( ItHIN RD CLOy AC 1 197.79 1 4'?.33 1 400.36 I :166.01 1 338.67 1 176.73 1 136.29 1 i1A.97 1 98.63 IIHTNALPIRG AC! 3! 0! Dl 0! 01 01 (T 0! 17.33!!M!NALPDRY AC! 3! 01 0! 0! 01 01 DI 01 0!THIN CORN AC 1 76.33 I 11.23 1 -0.00 1 0 1 0 1 0 T CI 1 0 1 fl ITHIN PLY AC I 5.90 1 9.92 1 9.94 1 n 1 0 1 0 ! CI 1 0 I 0 I
1 1 1 1 1 1

1 1 1 1 1
!M!N OP OR AC 1 167.01 1 73.42 T 64.18 I 57.65 I 31.49 1 0 1 (9 I IIM!NVETCH AC! DI 0! 01 0! 01 -

0!ININREANS AC! 0! 191 01 01 01 (II 0! 01I
1

I 1 1 T I
I !

1 ElI OR HARD T! il18.33 1 20553.81 1 20833.07 1 ,2367.28 1 23582.66 1 77318.83 1 30I4.56 I 3:1P5455 ! 37886.33 1I ITO 19EV 11! 1041.04 I 1130.69 1 1146.5? I 1238.88 1 1319.69 1 1592.03 1 11,9.00 1 711o.08 I 7113.33 I



PARr ON! CONTINUED

A STATEMENT THE LEVELS CF ACTIvITI3 ANTI THE EXP!CTEO DAY',FF

I NAME CF UNIT! PLAN 10 I PLAN 11 I PLAN 12 I PIAN 1 I PLAN 14 I PLAN 5 I PLAN 14 1 PLAN 17 1 PLAN 13 PLAN 19 II CROP I I I I I I I I I II I I I 1 1 1 I I I
IIWNEAT AC 1 54.61 I 62.03 1 67.00 1 67.00 1 67.00 67.00 1 67.00 t 67.00 1 67.00 IIREI) CLOVER AC I -0.01) -0.00 1 -0.00 I .11.013 1 .0.00 1 -0.00 1 28.72 1 50.00 1 50.00 1 100.00!TALFALPA 1913 AC I .01) 1 .00 I .00 I .00 I .00 1 .00 1 .00 1 OO I .0 .00 1TALFALIA DRY AC 1 50.On I 50.00 1 50.00 1 50.00 1 50.00 50.00 1 50.00 5ô0 1 13.1)0 13.001ICORN SILAS! AC I 5Ô.00 I 30.00 1 0.D0 1 50.00 1 50.00 1 50.00 30.01) 5o0 1 50.00 IIRARLEY AC 1 124.24 I 117.97 1 1r3.00 1 105.65 1 105.63 1 82.49 1 30.00 T 5.o0 1 50.00 1 50.00 1TORCH ORASS AC 1 1.19 1 .00 1 .0.00 1 7.35 1 7.35 T 30.51 1 43.00 T 63.00 1 100.00 1 100.00 ITHAIRY VETCH AC I .00 I .0.00 1 .0.00 I 0.00 I -0.00 1 0.00 1 .0.00 1 0.fl0 1 .0.110 1 o.00TPINTO REANS AC I 50.00 1 50.00 1 50.00 I 30.01) I 50.00 1 50.00 1 71.29 I .0 I .110 1 .00I I I I I I I I I I I II EAR OR MARS 851 34466.43 1 34913.34 1 35225.39 I 15344.90 I 35344.90 1 35722.39 T 37457.37 1 39350.68 I 38895.65 1 38914.54 1I 570 11EV SST 2357.07 1 2433.17 I 2493.01 I 2326.31 I 2526.17 1 70.11 I 4490.47 1 9574.16 I 6341.30 1 9449.14 1

01
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PART ONE CONTINUED

A STATEMENT OF THE VALUE Or AN ADDITIONAL UNIT OF RESOURCE
C VALUE

I NAME OF UNIT! PLAN 10 I PLAN 11 I PLAN 12 1 PlAN 1 PLAN 14 PLAN 1.5 ! PLAN 16 1 PLAN 17 I PLAN 15 I PLAN 10IJ*NLAS HP! 0! 0! 0! 0 01 0! 01 0! 0! oIFESLAR HP! (II 01 1! 0 0 0 flY 0! 0!IMARCHIAB HP! Cl! 0! 0! 0 0 01 fiT 0! DIIAPPILLAP HP! 1 01 01 (1.! 0 0 fiT 0! ClIHAYLAP HP! r,I 0! 0! 0! 0 0 01 0! 0I I I I I I I !TJUN!LAP HP! 0! 0! 0 01 0 01 01 01 Cl 0IJULYLAR HP! 0 01 (1! 01 0 01 0 01 0TAUGLAR NP! fi 01 0 0! 0 01 0 0!
I,TSEPT LAP HP! 0 0 1 0 I 0 1 0 0 0 I nIOCT LAP HR 1 0 0 1 0 0 1 0 0 0 1 ClI I I I ITNCVLAB HP! 0 0 0 0 0 OT 0 0! 0TOECLAR HP! CC 0 0 0 0 01 0 01 0 nIMAY WA7ER 61 1 0 Cl 0 1 0 0 1 0 1 0 1 Cl!JUNE WATER Al I CC 0 0 1 0 I 0 0 1 C) 0 ! Cl?JULV WATER Al I 0 0 0 1 0 1 0 0 I 0 0 1 Cl oI I I ITAUG WATER Al 1 0 0 0 0 1 0 0 1 0 0 I 0IJAN CAP 55 1 (1. 0 Cl 1 0 1 0 0 1 Cl 0 0YFEOCAP 5%! Cl 0! 01 0! 0 0! 0 01 Cl!MAPCH CAP PS I 0 0 0 I 0 1 0 0 I 0 0 1 0 0YAPRIL CAP $5 ! 0 0 0 1 0 0 1 0 0 1 ClI I 1

1 1 I ITHAYCAP PS! 0 0 0 01 0 01 DI 01 0 0IJUN! CAP 5$ I Cl 0 0 0 0 0 1 0 1 0 1 0 0!JULY CAP 5$ I fl I 0 0 0 0 0 1 CC ! 0 ! Cl1*UGCAP 55! Cl! 0 0 0 0 0! 01 0! 015!PTCAP PSI (CI 0 0 Cl 0 01 01 0! Cl! nI I ! I I ITOCTCAP 551 01 0 0 01 0 01 01 0 0!INOVCAP 851 0! 0 0! 0! 0 01 Dl 01 ClIDEC CAP 55 I C) I 0 0 0 0 0 1 fi 0 I (CTORY LAND AC 1 33.00 1 35.86 37.23 48.55 48.55 55.84 T 58.55 60.65 ! 61.61 61,11.1188 LAND AC ! 96.41 ! 102.28 1A.34 148.18 148.18 146.81 T 143.83 141.40 I 152.14 192.60I I ! I I ITHAI WHY AC 1 0 1 0 1 0 28.10 1 28.10 45.80 1 53.71 51.72 I 54.29 ! 61.01THAXPOCLOVAC! 0! 0 0! CC! 0 01 01 01 ClTHAI ALF IRO AC 1 n I 0 0 1 0 ! Cl 0 0 0 ! ClTHAI ALF DRY AC 1 12.90 I 11.14 10.00 ! 5.67 I 5.67 1 2.88 1 2.19 35 I Cl oTHAI CORN AC I n 1 0 Cl ! 0 1 0 28.10 40.98 42.17 1 35.511 1 1 1 I TTMAXRLY AC! Cl! 0 0! 01 0 01 0 0 ClTHAI OR OR AC I Cl ! 0 0 1 0 ! 0 0 0 0 1 Cl 14.22TMAXVFT'CH AC! (1! 01 0! 01 0 0 fi 0! CC! 3THAI PEANS AC ! S2.5 1 47.51 43.46 1 0 0 0 T 0 T 0 1 (C 1 0IHINWHT AC! DI 0 DI 01 0 01 01 0! Cl!IHIN RD CLOy Ac I 60.41 I cl.79 81.66 1 36.53 ! 36.51 1 0 ! 0 1 0 1 0 1 ë ITHIN ALF 180 AC I 34.48 I 18.57 41.10 I 68.25 I 68.28 1 57.36 1 49.1! T 49.25 1 57.51 1 100.12 IYMINALFIIPYAC! DI 0 Cl! 01 01 01 fiT 0! 31 Cl!TM!NCORN AC CT! OT 0! 0! 01 0! fiT 0! Cl! 0!TM!N PLY AC 1 0 I 0 1 0 I 0 1 Cl 1 0 1 Cl I 1.56 1 2.69 1 1.50I I ! ! I !
I I

! ITHIN OR OP AC I D ! 0 1 1.32 1 0 1 0 0 1 0 1 0 I 0 1 0 ITHIN VETCH AC Cl I .91 1 1.85 1 8.24 1 8.24 12.53 T 15.28 1 11.25 I 18.40 ! 13.3'THIN PEANS AC 0 ! 0 I 0 I C) ! 0 0 1 0 1 0 1 7.69 1 4ó.61 I1 I I I I I I T T LI EIP OR MAPO 55! 34466.43 1 34913.34 1 35225.15 1 5144.9O 1 35344.00 35722.39 1 11457.37 1 38150.68 1 18895.88 C 3R974,.. I (ICI SI!) 0EV 551 2357.0, ! 2435.17 1 2493.01 I 2526.11 I 2526.11 T 2740.11 1 4490,47 T 5S1A,j6 I 6341.80 1 9449.16 1



PART TWO

PRORAB!LITV STAtEMENTS AROUT ATTAINING SPECIFIED LEVELS CF ArTUAL GROSS MARGIN FOR A GIVEN LEVEL OF EXPEC1FO GGOSS Mr,IN

I I I
1 1 I -------------
YPLANI tSP GR MAR I 1% 1

I I I
I II 18718.35 I 16296.17 I

21 26553.81 1 17923.64 I
I 3! 20633.07 1 18165.46 I
1 41 22367.28 I 19484.77 I
I I I I
1 5! 23582.66 I 20521.44 I
1 61 27315.83 I 23614.65 I
1 71 30124.56 1 25669.04 1
I RI 32856.55 1 27941.02 I
1 91 32884.38 I 27966.73 I
I I I
1 10! 34466.43 1 28982.23 1
1 11! 34913.34 I 29246.03 I
1 12! 3522.16 1 29424.68
T 131 38344.90 1 29467.26 1
1 141 38344.90 1 29467.26 11.1 1

1 15! 38122.39 1 29346.97 1
1RI 374S7.37 1 21009.40 I

1 171 38350.68 I 25376.64 I
1 181 38895.65 1 24140.18 1
I 091 38974.54 1 06969.17 1

PROBAR!LITYLEVIL

551 00%! 2051

I I I
17005.84 1 17384.05 1 17842.00 1
18693.83 1 19104.61 1 19601.99
18947.09 1 19363.56 1 1986,7.93 0
20329.3? 1 20179.41 1 21324.39 1

I I I
21418.38 I 21896.34 1 22475.11 1
24699.98 1 25278.32 1 25978.66
27115.87 I 27780.34 1 29584.92
29398.46 1 30j52.06 I 31080.28
29407.58 I 30115.41 1 31105.18

I I

30589.0% I 31445.37 I 32492.28
30906.49 1 31791.41 1 32862.91
31124.17 1 32629.88 1 33126.58
1189.3 I 32107.11 1 33218.37

31189.38 1 32107.11 1 31218.37
I I

31214.90 1 32210.39 1 33415.76
30070.58 1 31701.94 1 33677.30
29117.90 1 31203.72 1 33686.61
28463.38 1 30761.36 1 33S8.12
23430.67 1 26863.851 31020.21

3051 40%! 50%?

1
1

18165.56 I 18457.05 18718.35 1
19953.41 1 20270.00 20553.81
20224.27 1 2043.30 20833.07
21709.43 1 22056.32 22367.28 1

22884.03 1 23252.43 23582.66
26473.46 I 26919.23 I 27318.83
29153.37 1 29668.49 30124.86 1
31136.09 32326.92 32856.35 1
31762.01 1 32353.88 32984.38

I
I

33214.83 1 33874.61 34466.43 1
33619.94 I 14301.96 34913.38
33901.39 I 36599.49 35225.18 I
34003.51 I 34710.83 38344.90 T
34003.81 1 34110.83 35344.90 1

I I
34267.39 1 35038.62 35722.39
33072.93 I 36330.26 37457.97 1
38389.74 1 16981.07 38950.68 1
35528.16 I 17303.86 38895.65
33957O3 1 38602.80 38914.54 1

01
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PART V4RU CONTINUED

DETAILED DESCRIPTION OF EFFICIENT PLANS IN EQUATION FORM CONTINUED

THIS PLAN WAS GENERATED DURING STEP 16
IT IS VALID FOR VALUES CF ElF GR MARO FROM S722.9910 37437.37
ALL EQUATIONS PERTAINING TO THIS PLAN ARE EVALUATED AT UP MARG 37451.37
THE VARIANCE EQUATION

I
ALPWAI I

1
ALPHA? I

-- -

AL;uA3 I VARIANCE I
-

STD OEVI
1.786378 I

1

-123432.09,236 1 2137219775.375000 I
I

201642M.So I 4490.47 1

THE ACTIVITY EDUATIONS
I NC CF
O ACTIVITY

j NAME CF
I ACTIVITY

UNTIl
I

GETAI I 8ETA2 I LEVEL OF II I ACTIVITY I

I
O

O

1 IWHEAT
I

A I I
-0.000000 I I

67.000001 I I
67.00 I

O

2
3

jRED CLOVER
jALFALFA ORG

Ac I
At 1

.016533 I -391.315859 I 28.12 I
O 4 IALFALFA DRY 41 1

.000000 I
-0.000000 1

-0.000004 1
30.000001 I

.00 I
O I I 30.00

I
5 !CORN SILAGE AC 1 .000000 I I

49.999999 1 I
50.00 I

I
6
7

IRARLEY
laRCH GRASS

Ar 1
A I

-0.018723 I 751.398047 I 30.00 1
I 8 IHAIRY VETCH AC I

.018725 1
-0.000000 I

-638.398048 1 63.00 1
I 9 IPINTO REAMS Ac I -0.016553 I

.000001 I
641.315866 1

-0.00 1
21.28 1

u-I



THE RESOURCE 5OUATIONS
I NO OF I NAME OF UNI7I B!TAI
I CONSTRAINT I CONSTRAINT BETA2 I LEVEL OF I VALUE OF I

CONSTRAINT I LAGRANOTAN I

0
I
EXP OR HAlO 551

I
-3.572757 1 123432.099236

I
1 -10393.01I TJAN LAB HR -o.ojs7 I 1620.696049 919.50 1 0 I2 ZFEB LAB HP .0.090000 I 9*2.300000 9*2.50 1 03 IMAICH LAB HR .001*73 1 *59.960196 959.50 1 0 1

4
I
APRIL LAB

I
HR I

I
.007490 I 699.4401*1 I

9*0.00 I I
0 I5 IMY LAB HR I O5337 1 -256.245193 8fl3.93 06 ZJUNE LAB HR .093311 I 711.736*24 89574 1 0 I1J'LY LAB HR -0.012621 I 1199.522308 727.0* 1 0 IS AU0 LAB HP I oe57 I .320.653398 749.6* I 0 II I I9 ISEPT LAB HR .000000 I *49.999999 *50.00 I 0 110 OCT LAB HR I -0.069528 1060.271991 928.13 1 0 I11 WOV LAB HR I 014111 365.214435 893.79 1 0 112 JOEC LAB HR 1 -0.000000 975.800000 915.80 I 0 I13 THAT WATER 47 I 066212 1365.263468 1114.88 1 0 I

T I4 jJUW WATER A .0000O 799.999993 600.00 1 0 IIS JULY WATER AT .066212 -1165.269444 7j4.66 0 116 ;AUG WAlER At 1 .066212 1765.263444 714.8* 1 0 17 JAN CAP is I 2.960142 -76312.874992 94988.75 0 118 FEB CAP is I 2.960742 -74042.575032 3665S75 1 0 1
jMARCH19 CAP ft 2.576688 -60541.431203 35968.52 020 1APR11. CAP iS 1 2.749942 .67234.573519 35523.92 1 0 I21 IMAY CAP ft I 3.443183 -94565.038691 34462.4* 0 I22 IJUNE CAP ft 1 3.415884 -99752.409632 34167.82 0 I23 IJULY CAP is I 3.330522 -89651.789518 35100.82 1 0 I

24 IIUO CAP ii 1 2.597110 1 .56658.762796 40622.14 1 0 125 Z$EPT CAP is I .1.655250 113552.962879 5354994 1 0 126 TOCT CAP is I .1.751578 117377.288973 I 511*7.17 0 I27 INOV CAP ft 1 .2.060902 125117.689925 53169.14 I 0 I28 IDEC CAP is I .995231 25134.542040 62413.56 t 0 1I I
I I29 DRY LAND Ac I 215.749898 -7472818.549731 0 608605.12 I30 IIRO LAND AC I 504.675677 -17419551.780762 0 I 1491876.01 I31 MA* WHI A 1 211.006041 .7945614.749756 0 I 558217.01 132 IMAX RD CLOY A I -0.016539 691.315859 71.2* y 0 193 48X ALP IRe A 1 -0.000000 100.000004 100.00 I 0 I
I I34 MAX ALP DRY A I 6.157530 -207860.043182 0 1 22764.84 1CORN AC I 177.5?946A -6229870.937031 0 T 423916.11 136 4AX aLT A 1 .01*725 -521.398041 1*0.00 1 0 13 41 OR OR Ac I -0.018723 138.398040 97.00 1 038 THAI VETCH A I .000000 49.999990 50.00 1 0

39
I
IMAK BEANS

I
AC 1 .016553 -591.315866 I

26.72 1
I

0 140 THIN WHY A 1 -0.000000 38.000001 98.00 1 0 I41 114TH RD CLOY Ac I .0j6553 1 -591.315859 28.72 1 042 IMIN ALP 110 AC 1 159.119668 I -3443504.453491 0 518707.43 143 jMIN ALP DRY AC 1 .0.090000 I 50.000001 50.00 T 0 14 II CORN AC I .000000 I 49.099990 50.00 1 0 1I I I
7 I45 114TH SLY AC I -0.018723 1 701.396047 .0.00 7 046 114TH OR OR A I .018725 1 -638.308049 43.00 7 0 147 IMIN VETCH AC 1 61.240406 1 -2131093.122314 0 1 158811.47 I48 THIN BEANS AC 1 .0.016339 I 641.31586A 21.28 7 0 1

01
01
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The report begins with a letter which outlines the results to be

presented, defines the terminology used and describes the main con-

cepts the farmer will encounter. As the letter indicates, the report

is divided into four parts. The reader is now asked to put himself in

the farmers position as he reads the approximate discussion during

interpretation of the report to Mr. Smith and Mr. Jones.

Part one deals with the composition and attributes of the

efficient plans. Here you are given the number of acres planted

to each crop and the gross margin you can expect as a conse-

quence. You are also given the standard deviation of gross

margin which indicates the riskiness of the plan. In your re-

port, 19 plans are presented. Plan one has an expected gross

margin of $18, 718, 35 and standard deviation of $1041, 04, The

plans are arranged in order of increasing expected gross mar-

gin. As expected gross margin increases,standard deviation

increases at an increasing rate. The absolute maximum expected

gross margin and the maximum standard deviation occur at plan

19. For example in plan 19 gross margin is $38, 974. 54 and

standard deviation is $9449. 16. This indicates that about two

thirds of the time you will find gross margin lying within one

standard deviation of its expected level i, e. , in the range from

$Z9, 525. 38 to $48, 423. 70. Note the rapid increase in standard

deviation from plan 18 to plan 19. This is because 50 acres
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was transferred from corn silage, a high paying low risk crop,

to red clover, a slightly higher paying crop than corn silage but

a considerably more risky one. The net gain in expected gross

margin was $78. 89 while standard deviation has increased

$3107. 36. Since the composition of the plans changes as ex-

pected gross margin increases so does the amount of each re-

source used. Those resources which are completely used up

have a shadow price attached to them. The shadow price mdi-

cates the value of one more unit of limiting resource. Note at

plan 17 the value of an additional unit of irrigated land is $143.40

indicating the approximate amount by which expected gross mar-

gin would increase if one acre were added. The shadow prices

must be interpreted with caution because they are valid only over

a small range.

Part two is prepared as an aid in helping you select the Hbestll

plan. Since you are the decision maker, and you must live with

the outcome of your actions the choice of the Hbesth plan can be

made only by you.. The probability statements in part two can,

however, help you make the choice by pointing out the chances

of failure. For example if you choose plan 19 your gross mar-

gin will be $38, 974. 54 on the average, however in any given

year you stand one chance in 100 that your gross margin will be

less than $16, 989. 17, On the other hand, if you were to choose
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plan 12 your expected gross margin is only$35, 225. 18. However

it is much less risky since there is one chance in 100 that gross

margin will fall below $29, 424. 68. Probability statements are

also made for the 5, 10, 20, 30, 40 and 50% levels. You will

notice that expected gross margin is $38, 895. 65 which is only

$78. 89 less than the maximum possible expected gross margin.

However, the variability of gross margin is much less under

plan 18 than plan 19 as reflected by the fact that there is a 1%

chance of gross margin falling below $24, 140. 18. Your own

personal circumstances and your willingness to take chances

are the factors important in deciding upon the proper plan. How-

ever, any of the 19 plans carries with it the assurance that there

is no less risky way in which you can produce that level of ex-

pected income.

Part three describes the plans in equation form. If, for

example, you wish to choose a plan having an expected gross

margin somewhere between that given for plan 15 and plan 16

you can determine the acres in each crop and the amount of Un-

used resources according to the formula:

ACRES (BETA 1)x(EXP GR MAR) + (BETA 2)

If you wish to know the variability of the plan use the formula:
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VARIANCE = (ALPHA 1 )x(EXP GR MAR)x(EXP GR MAR)

+ (ALPHA 2)x(EXP GR MAR) + (ALPHA 3)

For example, if you evaluated the equations at an expected gross

margin of $36,500, about midway between plan 15 and plan 16

you would find the result as shown in Table 4. 3 under the head-

ing of plan 15a,

Part four is composed of three graphs. The first graph

shows the degree of riskiness for every level of expected gross

margin. Note that as expected gross margin becomes higher the

riskiness as measured by standard deviation increases more

rapidly. The second graph shows the composition of the plans

for every level of expected gross margin, You can read the

number of acres in each crop directly from the graph, If you

wish to determine the composition of plan 15a you need only

draw a vertical line at the expected gross margin of $36, 500 and

read the number of acres in each crop directly on the vertical

axis of the graph. It is also interesting to note the drastic

changes in the composition of plans as the maximum expected

gross margin is approached. The third graph displays the prob-

ability statements tabulated in part two, If you pick a specific

level of expected gross margin on the horizontal axis you can

read the levels oti the vertical axis, below which actual gross
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Table 4. 3. Composition of an intermediate plan.

Name of Crop Units Plan 15a

wheat ac 67. 00

red clover ac 12. 87

alfalfa irg ac 0. 00

alfalfa dry ac 50. 00

corn silage ac 50. 00

barley ac 67. 94

orch. grass ac 45. 06

hairy vetch ac 0. 00

pinto beans ac 37. 13

EXP GR MARG $ 36, 500

Std. Dev. $ 3442. 95



164

margin will fall at the 1, 5, 10, 20, 30, 40 and 50% probability

levels, For example, suppose you wish to determine the level

below which gross margin will fall five times in 100 for plan 15a,

First find $36, 500 on the horizontal axis then draw a vertical line

up to the five percent probability curve and then across to the

vertical axis where you can read $30, 836. 35, Thus if you choose

plan iSa there is a five percent chance that your gross margin

in a specific year will fall below $30, 836. 35. Usually farmers

have fixed cash commitments such as debt payments and family

living costs. In such a case it may be more appropriate to de-

duct these costs from the gross margin figures before examining

probability of loss graph. The second set of axis on the graph

are with respect to net income. In your case there is a $10, 000

rental payment and $5, 000 repayment on a loan for irrigation

equipment, Hence, if you choose plan iSa there is a five per-

cent chance of having less than $15, 836. 35 of net income. This

figure is read from the net income axis.

After some deliberation, the partners chose plan 1 7 as best' in

their circumstances. They were in agreement that the added expected

gross margin that would accrue in choosing plan 18 or plan 19 over

plan 17 was not sufficient, in their opinion, to compensate for the in-

crease in standard deviation, Their choice of plan 1 7 was reinforced

by examination of the probability of loss graph with the knowledge that
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there would be a $1 5,000 dollar fixed cash commitment.

Operational Costs

Once an algorithm is operational, it is the human time involved in

setting up the problem, collecting the data and preparing it for corn-
45puter processing that tends to be the most expensive item. This is

true regardless of whether quadratic or linear programming is used

since they take about the same set up time. Approximately seven

hours were required for each of the four cases studied. This included

three hours for data collection, two hours for computer input prepara-

tion and three hours for discussion and interpretation of results with

the farmer. The computer cost alone is likely to be in the range of

$20. 00 - $30. 00 depending upon the dimensions of the problem. About

one-half of the computer cost represents printing the report and draw-

ing the graphs. Since the equations for each step are of limited use to

the farmer, the program OIJTPUT contains the facility to suppress

printing this part of the report. Further computer cost could be elim-

mated by not plotting the activity level graph since the large amount of

information tends to be confusing to the farmer.

These costs are exclusive of the overhead cost in developing
the algorithm.
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V. SUMMARY AND CONCLUSIONS

The main objective of this research was to develop an operation-

al tool for solving the enterprise selection problem under conditions of

uncertainty. The central purpose was to develop an algorithm amen-

able to use by extension workers and/or farm management consultants

as they counsel farmers on problems of enterprise choice. To accom-

push this, the problem was formulated as the minimization of variance

subject to a level of expected income and a set of production con-

straints. It was found that by making use of some important proper-

ties of Lagrangian multipliers, properly constrained by the Kuhn-

Tucker conditions, one could compute the entire array of efficient

choices.

This permitted presentation of all relevant alternatives to the

farm decision maker rather than the single expected income maxiniiz-

ing plan of linear programming. which is not infrequently sub-optimal

when evaluated in light of the decision makers risk preference.

The framework of analysis used here is comparable to Marko-

witzTs (34) portfolio selection method designed for use by investment

consultants. Houthakker's (25) capacity method of solving quadratic

programs provided many insights into procedures that were ultimately

built into the program. The algorithm developed in this research is

problem specific and deal only with minimizing positive definite
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46
quadratic forms containing no linear components. Previous existing

quadratic programming algorithms provided only a finite number of

solution points on the efficiency frontier (7, 26). The algorithm devel-

oped here provides exact algebraic specification for the frontier.

In the theory portion of the thesis, a two dimensional model was

developed and used to provide a transition from the traditional cer-

tainty framework to the more realistic uncertainty environment in

which decision makers find themselves. Variations in the model para-

meters O, and r demonstrated the sensitivity to change in the

efficient plans and emphasized the error that is introduced by ignoring

uncertainty. Capital restriction, debt payments, family living re-

quirements and other fixed cash commitments become important con-

siderations in the decision problem. The adage 'fixed costs have no

bearing upon short run decisions ' is simply not true if the decision

maker is confronted with variations in income.

To test its applicability, the algorithm was used to solve enter-

prise selection problems submitted by four farmers, The results

appeared encouraging. The data requirements, although substantial,

were no more difficult to satisfy than for the linear programming

model where uncertainty is assumed non-existent, Crop enterprise

selection problems lend themselves particularly well to the method

used. Livestock enterprise choice problems could be handled in the

46 The algorithm will not maximize a quadratic form,



same way, although difficulties could arise because the algorithm

cannot accommodate transfer equations which may be needed to account

for activities like home grown feed.

The results, although appearing more difficult to interpret be-

cause of the presence of probability statements can be given in a more

realistic setting, and were no more difficult for the farmers to corn-

prehend than the non-stochastic linear programming case. Suggestions

made by the farmers have been incorporated into the report with the

result that it is more understandable and meaningful to the decision

maker. Results of this study indicate additional areas for research.

The algorithm is defibient in at least two areas; (a) the initial

basis is found by a trial and error approach which could result in

cycling; and (b) it is not possible to include transfer equations in

the model. These two unanswered questions could prove to be inter-

esting and fruitful avenues of exploration.

Additional computational efficiencies could undoubtedly result

from revisions in the three computer programs.47 Clerical time

needed for organizing data and key punch time could certainly be re-

duced by streamlining the input routine. The report form which has

benefited from comments of farmers and colleagues could stand further

47
The writer does not claim more than a rudimentary knowledge

of computer programming, and although the programs have benefited
immeasurably by others more gifted in the field, some inefficiencies
no doubt remain.
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improvement.

An empirical question surrounds the triangular distribution and

its ability to transmit the farmerts impressions about the future per-

forniance of price and yield variables. The data needs of the triangu-

lar distribution are small compared to more elaborate methods of

establishing subjective probability density functions, but no direct

check has been made on the reliability of the estimates. Additional

work in this area is warranted. Extending the subjective probability

concept to the joint distribution case poses a difficult but interesting

question. The subjective establishment of correlation coefficients was

dismissed because of the burden placed upon the respondent and be-

cause of the high chance for inconsistencies. Perhaps the dismissal

was premature and additional investigation could result in practical

methods for accomplishing the task.

Questions of practical relevance and acceptability also remain.

It is in this area that additional research efforts need be expended to

evaluate whether or not the research in this thesis has narrowed the

gap between theoretical developments and practical application by

providing an operationally feasible quadratic programming algorithm.
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APPENDIX A

LAGRANGIAN MULTIPLIERS AND TRANSFORMATIONS

Lagrangian multipliers are used frequently in the main body of

the thesis. A general statement about their behavior and interpretation

may be of value to the reader who wishes to pursue the topic further.

Consider the general problem:

Miii or Max G(X , X X ) G
1 2 n

S.T: K. - F(X ,X X ) = 0 =1, m<n
1 2 n

The Lagrangian form is:

R(X, X) = G(X1 Xn) + X.[K. - F(X1" x]

and the first order condition becomes:

i
l

= 0 i = 1, n

= K. - F.(X .. X ) = 0 j = 1,m
ax. i

From the objective function it follows that the exact differential of

G is:
n

dG -- dx.
L1 X 1

i=1
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and from the constraints:

n
OF.

dK. dx. j=1,m

In the first order conditions it was established that:
m

OF.

OX.
1-1,n

1
j=1

Substituting this information into the differential of G establishes that

dG

m
OF.

\T 1
L j0X
j=1

Changing the order of summation results in:
m fl

-' OF.
dG = ) X. ) -- dX

Li JL. 8X.
j=1 j=1

1

which upon simplification yields:

m

dG = X.dK.Li]]
j=l

dX.
1

If G is a positive definite quadratic form in X and F is a

set of linear equations in X, then the first order conditions resulting

from minimizing G subject to F can be expressed as:



2 2
:

aF aF

a ax x

2 2 8F aF xaG 3G i 1axx' 2ni ax n nn

aF 0 ... 0
1 1

1
1 n

8Fm m
ax

1
axn

ti

0

K
1

Km
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Note that and are constants. Further more the

matrix is symetric and non-singular if n> m and there are no linear

dependencies in F.

This system has a solution for X , ", X and X ,", X
1 n 1 m

which can be obtained from the inverted system:

C11 C11 a11 aim 0

C C 'a a 0
I1_

_!__1--------a a 'b .b K
11 ni 11 im 1

a ..a b b K1 m nm ml nm m

xl

xo

xm
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Inthecasewhere m=3, n>3

dG = X1dK1 + X2dK2 + X3dK3

where X =b K+b K+b K
1 11 1 12 2 13 3 8K1

= b K +b K +b K
2 12 1 22 2 23 3 8K2

-ix = b K +b K +b K
3 13 1 23 2 33 3 8K3

then

and

hence

G(K1K2K3) = ç(b K + b12K2 + B13K3)dK1 + g1(K2K3)
11 1

b K2
11 +b KK +b KK +g(KK)
2 1212 1313 123

8G(K1K2K3) ag1(K2K3)

8K2
- b12K1 +

8K
= b12K1 + b22K2 + b33K3

ag1(K2,K3)

8K2
- b22K2 + b23K3

and
b22K

g1(K2,K3) = -i--- + b23K2K3 + g2(K3)

thus

b
2

b32
G(K1K2K3) =

+g2(K3)
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and

8G(K1K2K3) 8g2(K3)

8K3
- b13K1 +b23K2+ K

= b13K1 +b23K2+b23K3

hence

8g2(K3) b33
2= bK3 => g2(K3) = 2K3 + K0

Finally

b11
2

b22
2G(K1K2K3) = ---K1 +--K3 -fb1 2K1K +b13K1K3 +b23K2K3 +K0

For m> 3 the s-ame step by step procedure can be followed to

transform G(X) to G(K) with the general results:

Km) = 5 b.kK.Kk
j=1 k=l
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APPENDIX B

PROOF OF ASSERTIONS

Proof of Assertion 1: The direction of rotation is found directly from

the derivative of the angie 0 with respect to r.

The rotation equation is:
2rif if

tan 20 1 2, where - < e <
if2

1 2
2 2and if-if<O

then

if cos2ZOi2__ <0ar
if2

1 2

hence the direction of rotation is clockwise as r increases.

The properties of elongation are found by examining the ellipse

in the rotated coordinate system. Let

V = Ay' + + Cy

where A = J2cos20 + Zrif1cr2sinocoso + 0sin20

B = 0 since the angle 0 is so chosen

C sin2O - Zrif1if2sin0 cos 0 + ifcos20

V = the variance

yy = the activity levels in the rotated coordinate system,

A < C since - < 0 < and if2 <
4 4 1



1 80

Then the vertices of the ellipse are at (± '[V/A , 0) in the y)
coordinate system. Let

then

where

K = [V/A48

2 2cos 0 - sin e-= [rff 0 cos2ze(
2

- sinOcosOsin2ZO]dr 1 2 2

2 1

= [ vIh/Z[ocosZe + Zrcr(T2sinocoso + osin2ey312

The derivative must be evaluated under two cases:dr

Case 1: where r is positive

and

then

r > 0 => - < 0 < 0 => sine < 0, cos e >0

e > sin e

2
2 cos20 - sin 0) > sinOcos 0 sin2ZOcos 28( o2o2

2 1

hence > 0 and the conclusion that the ellipse elongates as r

increases from 0 to 1 holds,

Case 2: where r is negative

r< 0 => 0< o< => sin0>0,cos0>0,cos20>sin2O

48Since only the positive quadrant is of concern the negative root
need not be considered.



then

coszze(c05 _ -_slne)< sinOcos8sin22O
12

2
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hence < 0 and the conclusion that the ellipse elongates as r

decreases from 0 to -1 holds.

Proof of Assertion 2: It is required to determine the limits on the

correlation coefficient so that the expansion path and the activity equa-

tions will not have a negative slope.

There are two cases to be evaluated:

Case 1: for

if2(021 - rcT12)
> 022- 2r1 21 +

0 CT

it must be that r < (-.)/(---) = k
2 '1

Case 2: for

cyo-iit2 - rif2)
> 022

(Fi0 - 2r1if212 +

0 if
it must be that r < (--)/(-) k

1 2
2

Note also that k1k2 = 1.

Now let r be the smaller of and k2, then r is the ratio
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of the coefficients of variation of the least risky activity to the

most risky activity Only if r < r will y1, y2 > 0 and if

y1, y2 > 0 then the expansion path has a positive slope.

Proof of Assertion 3: The direction of substitution due to variations in

the correlation coefficient can be known by taking the derivative of the

expansion path with respect to r.

if1 - r1if2
= 1('-)( - r1j.2O1

ay2 0 (IL201 - +

}y1(){
(1if2 - r2if1)2

if if2 ay2 ay1 if2 if
If --)> () then - >0 and similarly - < 0. If () >

ar ar

8y2 ay1
then < 0 and similarly > 0 . Thus increases in r cause

ar ar
increases in the least risky activity.

Proof of Assertion 4: The shift of the efficiency frontier can be de-

duced from the change in the slope of frontier with respect to varia-
dV

tions in r. This is done by examing the derivative of -K= j-

20if2(l-r)E
dE 22lif2 - 2rif1if212 +



dV 22 22
[r2

l0.2 + F.L201
- r(0.0. )+i]

1

where 4TE
>0

20.2 222
2 ZrO10.2IL1.t2 +L2cJ1)

recalling that

0. 0. Cr CT

k = (-)/(--) and k2 = (--)/--)
1 ii i 1z

then arranging the terms accordingly

dv
= 0.10.212[r2 - rk1 - rk2 + 1]

Now define r as the minimum of k1 and k2 and note that

0 < r* < 1 since k1k2 1 and k1, k2> 0. Suppose r* = k1, then

Thus

dV
*Cr10212 2 * *2 r + r[r r - rr

*r
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dV * *a() = (1 - rr )(r - r)
*

dV
r

*
hence if -1 < r < r then

a()
> 0 Thus, increases in r causear

the efficiency frontier to rise more steeply throughout.
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Proof of Assertion 5: This assertion is established from the derivative

of the expansion path. First consider that

cJy11(l-r2)
>0au2 -r21)2

Thus, increases in cause increases in y2. Next consider that

2Gy12(r - 1)
<0

au1 - r2)2
Thus, increases in cause decreases in y2.

Proof of Assertion 6: This assertion is established from the deriva-
dVtive of with respect to

dV -400(1-r2)E1i2(r - r)
2 22(ff - 2r1212 +

dV
* dEIf r < r then < 0. Thus, increases in (or p2) cause the

efficiency frontier to rise less steeply throughout.

Proof of Assertion 7: This assertion is established from the deriva-

tives of the expansion path. First consider

02l 2-r201 )2 1212 21 )+(2 0-ri2Oj -r10)J

(1 0
*letting r and noting that 0< r*< 1 and -1 < r < r* then

2 I'1
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2 2 *

(if2-r2)2 [21(r - r) - r)]< 0

Thus, increases in cause decreased in y2 . Second consider

aoi - rt2Oj )2
[(2L20j -ri1

0 (F

letting r = and noting that 0 < r < 1 and -i < r <
I_L2 tL1

then

ay2 yl 2 *

a - r21)2
(r - r) + - r)] > 0

Thus, increases in 0 cause increases in y2.

Proof of Assertion 8: The proof of the assertion follows from the de-

rivative of the slope of the efficiency frontier.

dVa() 4if0(i - r2)E 2 2
2 2(O - 2rif212 +

0 if* 2 1 . * *letting r = ()/() and noting 0 < r < 1 and -1 < r < r then
2 1

4if2if3(1 -r2)E (r*_r)
1 2

= >022 222
(ii - 2rOjOt1t2 +



Thus, increases in cause the slope of the efficiency frontier to be

steeper throughout.



APPENDIX C

FORMS FOR OBTAINING COST
AND INCOME DATA

NAME

ADDRESS

187

REMARKS: DATE



I. AVAILABLE RESOURCES

A.. Land Available for Crops (acres)

Class I Class II Class III Total

B. Labor Available for Crops (hours per month)

Month Ooerator Family Hired Total
January
February
March_________

May
June___________

September
October
November___________
December

C. Irrigation Water (acre inches per month)

Month Jan Feb Mar Apr May June July Aug Sept Oct Nov De

Amount

D. Operating Captial ($$)

MAXIMUM EXPOSURE



Price Estimate Yield Estimate Land Restrictions
Crop
Name

Most
Pessimistic

Most
Like'y

Most
Optimistic

Most
Pessimistic

Most
Likely

Most
Optimistic

Land
Class

Max.
Acres

Mm.
Acres

I-I

0

z

0
txJ

z

0

H
I-

0
z



A. Labor Required (Hours per acre per month)
Month Jan Feb March April May June July
Hours per

A.cre

B. Irrigation Water Requested (Acre inches per acre per month)
Month Jan Feb March prii May June July
A.c r e
inches per

C. Operating Capital Required ($$ per acre and % per month)

Month of Revenue or EItem mount _____ _______ ______ran Feb March April May June
crop sales

Total
mach. equij

ci)

0

ci)

Gross Margin

I.

Aug Sept Oct Nov Dec

Aug Sept Oct Nov Dec

H
0
z
c11

ense in %
Fuiv IAu ISeot I Oct INov IDec

'0
0
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APPENDIX D

COMPUTER PROGRAMS



C

C
C
C

C

C

C
C

C

C

C
C

C
C
C

C
C
C
C

C

C

C
C
C
C
C

C
C

C

C
C

C
C

C
C
C

C
C
C

C
C

C
C
C
C

C
C
C
C
C

C
C

PROGRAM TNP'JT
THIS PROGRAM IS TM! FIRST CF THREE PROGRAMS rlFSTr,NrP TO 5J VF THE
FARM NTFRPRISE SELFTION UNDER UMCFPTATNTY PCBI FM THIS PPCflPAM
PREPARES THE DATA FOP INPUT TtTC THE SECOND PPOG'A !ND!R CERTAIN
OPTIONS REGARDING CORRELATN COEFFICIENTS, YOU 1Li NEED THE
MASTER CORRELATION MATRIX PREPARED Py PROr,PAM CCPRrp ATE AND FILED
FOR ACCESS BY THIS PRCGRM.

INSTRUCTIONS FOP SFiT!NG lIP pPUI FYI.!

SET lIP OF CONTROL CARD

COLUMN 1-2, ENTER N, THE MO. CF NS7RA1NT iAX q9
COLUMN 3-4, ENTFR N, THE MO. CF CITVITIFS MAX 10
COLUMN c, LEAVE BLANK OR 7ERC
COLUMN , ENTER 1 TF YOU WISH IC UE TRTNLF oTSTN FOP

PRICE AND YIELD DATA
ENTER 2 iF YOU WISH TO USE MFAH AND VARIANCE

ESTIMATES FOP PRICE ANn YIELD DATA
ENTER 3 iF YOU WISH TO USE PcS MARGIN DATA

FOR EACH ACTiVITY
COLUMN 7, ENTER BLANK OR ZERO
COLUMN R, ENTER I TF YU WISH TO USE 'lASTER CORRELATION

ENTER 2 TF YU WISH TO USE 7FP CORRELATION
ENTER 3 iF YOU WISH O SUPPLY OWN CORRELATION

COLuMN Q, ENTER BLANK R ZERO
COLuMN 10. ENTER 0 ZERO) IF YCtu DC NOT w'S EQUATIONS

FOR EFFICIENCY FPCNTIF, AND ACTIVITY
I E VEL S.

ENTER 1 IF YOU WISH HESE EnliAIONS.

SET IJP OF LABEL CARDS

YCIJ MUST HAVE EXACTLY M.N.2 LAVEL CARDS. PPEPAp- lAPEL CARDS
FIRST FOR ACTIVT1TES THEPl FOP CONSTRAINTS, THFi rOP CLIENT
IDENTIFICATION AND ADDRESS. I, SIlCCEErING SETT'Nq RE SURF TO
FOLLOW EXACTLY THE SAME ORDER AS YOU 0 TN LARrI S.

COLUMN i-h, ENTER tAME CF ACTIVITY CR CCsSTPAINT
COLUMN 4, EiTER PLANK, DC NOT !JIFR ZEnC
COLUMN j5, ENTER uNITS SUCH S ACRES, ORS, ETC.
COLUMN j77, ENIFR RLANW
COLUMN 21-??, IF YOU ENTERED ? CR 3 TN )'MN P OF THE

CONTROL CAPO LEAVE RLAMS. r yOU ENTERED
1 TN COLUMN P CF THE CONTPOt CAPDSTHFN VU
MUST ENTER ACTTVTT TDFNTTFT-ATION Ac TI
APPEARS IN MASTER (OPRFLATICH MATRTX.

PREPARE LAFL CARDS FOR ACTTV!TIFS FIRST, HFN FOR THF
CONSTRAINTS, YOp SHOuLD NOW HAVE HeN CAPflS NOW PREPARE A
NAME CARD

COLUMN 1-h, EJTER NAME CE YOUR CLIENT.

NOW PREPARE AN ADDRFS CARD

COLUMN i-fe, EjTER ADDRESS CF YOUR LIFMT.

MPLETES THE LAPEL rARDS. THE BALANCE OF HF DATA MuST
RED TN FPEE FCRM, SEPARATE EACH ENTRY WtTH A COMMA I,)
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00001
0000?
00003
00004
00005
0000A
00007
()000P
0000q
00010
00011
00012
00013
00014
00015
00016
00017
0001P
00019
00020
00021
00022
00023
00024
00025
00026
00027
0002R
00029
00030
00031
00032
00033
00034
00035
00036
00037
0003R
00039
00040
00041
00042
00043
00044
00045
00046
00047
0004R
00049
00050
00051
00052
00053
00054
00055
00056
00057
0005R
00059



C CR BLANKS.

C SET UP CF PRICE AND YIELD DATA.

r IF YOU EWTPED IN COLUMN A CF CONTROL CA0 YOU MUST
SUPPLY PARAMETERS OF PRICE AND YjELD FOR T'!ANGULAP

r ISTRIBIiTp.j AND AN ESTIMATE FOR VARIABLE OçT. FOR YOUR
r CONVENIENC USE A SEPARATE CARD CR EACH ATTVTTY. MAKE
C SURE THAT QU PUT CARDS W EXACTLY SAME OPER AS LABELS.
C FOR EACH ACTIVITY ENTER THE REQUyPEO DA,A N THE
C FOLLOWING bROER, SEPARA1ING EACH ENTRY BY RLANKS CR COMMA
C
C MOST PESSIMISTYC PRICE

MOST LIKELY PRICE
C MOST CPTIMTSTIC PRICE
C MOST PESSIMISTIC YIELD
C MOST LIKELY YIELD
C MOST OPTIMISTIC YIELD
C VARIABLE CST PEP UNIT OF ACTIVITY
C
C IF YOU ENTERED IN COLUMN A OF CNTROL CAD YOU MUST
C SUPPLY MEAP.I AND VARIANCE ESTIMATES FOR DRTE AND YIELD
C AND AN ESTiMATE FOR VARIABLE COST. FOR YCUD CONVENIENCE
C USE A SEPARATE CARD FOR EACH ACTTVITY. MAKr 5URE THAT YOU

PUT CARDS TI EXACTLY SAME ORDER As LABELS. FOR EACH
C ACTIVITY EJTER tHE pQUIPED DATA jN THE FOlLOWING ORDER
C SEPARATING EACH ENTRY BY BLANKS OP COMMA.
C
C MEAN PRICE
C MEAN YIELD
C iARIANCE OF PRYCE
C VARIANCE OF YIELD
C VARIABLE CCST PER UNIT F ACTTVTY
C

-
C IF YOU ENTERED 3 IN COLUMN A OF CONTROL CARD YOU MUST
C SUPPLY MEAN AND STANDARD DEVIATIONS OF 9ROS MARGIN FOR
C EACH ACTIVITY. FIRST ENTFR THE MFAN GROSS MARGIN FOR
C EACH ACTIVfTY IN EXACTLY SAME ORDER AS ACTVTTIES ARE
c IN LABEL CAPDS.SEPARATING EACH EjTRY BY BLANKS OR COMMA.
C THEN ENTER STANIARD DEVIATIONS O GROSS MAGTN OF EACH
C ACTIVITY INEXACTLY SAME ORDER AS ACTIVTTIFS ARE ON LABEL
C CARDS SEPAPATINr, EACH EN7RY BY BLANKS O COMMA.

C THE PRICE AND YTELO DATA SHOULD NOW BE COMPLETE. ON A NEW CARD
C FNTER 9999
C
C SET UP CF CORRELATION MATRIX.
C
e IF YOU ENTERED IOR 3 IN COLUMN OF CONTROL CARD THE

CORRELATION MATRIX S AUtOMATICALLY PRERAR,D
C
C IF YOU ENTERED 2 IN COLUMN 8 OF CONTROL CARD, THEN YOU
C MUST SUPPL THE UPPER TRiANGLE OF ANN-DIMrNSIONAL

CORRELATION MATRIX. ENTER THE ELEMENTS BY ROw. WHEW
C YOU HAVE ENTERED THE REQUIRED ELEMENTS. ENTER 9999 O A
C NEW LINE.
C
C THIS COMPLETES THE CORRELATION DATA.
C SET UP CF COEFFICIENT MAIPIX AAI2.
C ENTER ACTIVITIES AND RESOURCES IN EXACTLY SAME ORDER AS
C LABEL CARDS, FOR THE COEFFICIENT MATRIX ACTIVITIES APE
C ROWS AND RESOURCES ARE COLUMNS, FOP THE FIRST ACTIVITY
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00060
00061
00062
00Q63
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00oqI
00092
000
00094
00095
00096
00097
00098
00099
001 OQ
00101
00102
00i0
00104
00105
001 0
00107
00108
00109
0011 Q
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121



C

C
C

C

C
C
C
C
C
C

in

20

21
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ENTER RESOIIRCE REQUIREMENTS ON HOWEVER MANY CARDS NEEDED 00122
SEPARATING EACH ENTRY BY PLANKS OR COMMA. EPEAT UNTIL 00123
ALL ACTIVITIES ARE OMPLFTE, YOU SHOULD MvE AN NXM 00124
MATRIX wtT'4 THE RIGHT SQUARE PORION AN NXN NEGATIVE 00125
IDENTITY MATRIX. ON A NEW CARD ENTER 999 00126

THIS COMPLETES THE COEFFICIENT MATRIX 00127
00)2R

SET UP OF RECUPCE LEVEL VECTOR r,G 00129
ENTER ALL OF THE RESOURCE LEVELS. MAKE sURr THAT THE 00130
LAST N ELEMENTS APE EITHP 7ERO OR NEGAIVW NUMBERS. WHEN 00131
YOU HAVE ENTERED EVEPY ELEMENT, ENTER 9999 ON A NEW LINE. 00132

00133
YOU HAVE NOW ENTERED ALL F THE OATA, AS A FINAl CHECK MAKE 00134
SURE ALL DATA LINES CONFORM T THE OREP OF THE LABEL CARDS. 00135
NOW FILE THE DATA AND GOOn LUëK 00136

00137
0013R
00139
00140

DIRECTORY OF LCGICAUNIf NUMAERS 00141
LUN 1 DA7A FILE 00142
LUN 2 CORRElATION MATRIX FILE 00143
LUN 3 LETTER FILE 00144
LUN 4 1 FILE (STORES INFORMATION OR PROGRAM OUTPUT) 00143
LUN 5 FILE (STORES.TNTOPMATION FOR INPUT TO PROGRAM 00146

PROcESS 00147
LUN 6 Z PLOT ( PLOTTER) 00148
LUN 34 LP (LINE PRYNTEP) 00149
LIJN 61 TELETPE OUTPUT. 0O1

00151
- 00152

DIMENSION PARAMC20,7),RLAR(127,2),M(122)RP(30,3o), 00153
00154

2,TDSLK(100),IDAAI2(100) 00155
READ(i,1000) M,N,IHAVE1,IHAVE,IWWT 00156
N1N.1 00157
N2=N.2 00158
NMW.M 00139
NM1.MM.1 00160
NM2.NM42 00161
WRI!E(4) M,N,N1,t42,NM,NMI.NM2,IHAvEI.IHAVE2,TWANT 00162
WRI! (5) _M,N,N1 ,P12,NM,NMI,NM2, IHAVE2 00163
DC 00164.0_II,NM2
READ(1i1OO1)(RLAR(Ij),J1,2MD() 00165
WRIT(4)RLAB 00166
GO t(20130,40),IHAVE1 00167DC 21 I1,N OOIARD21j1,7 00169
PARAM(I.J).FFIN(1) 00170
KCHCKFFtN(1) 00171
IF(KCHECK.NE.9999) O TO 990 0017?
WRITE (4) _PARAM 00173
DO 221.1,N 00174
AMEAN(I,i)*(PARAM(!,1).PARAM(T,2) .PARAM(I3) )/3.0 00175
AMEAN(I,)s(PARAM(14).PARAM(,5).PARAM(I,é))3.O 00176
_VR!I,1)f((PARAMII,3)-PApAM(I.1))e*2(PARAM(!,2).PAPAM(!,i), 00177
1'PAPAM(I,3)-PARAM(Y,2) )/18.O 00178
_VARJI,2).((PARAMjI,A;-PARAM(I14))**2(PARAM(T,S).PAPAM(T,4)) 00179
i*SP4AM(I,6),PARAM(!,5) )1/18.fl O08Q

00181_yR(!,3).VAP(I,1)*VAR(I,?),VARCI,I)*AMEAN(!,2)**2.vAR(I,2)
1'AMAN(I,1)2 00182
AMEAP.J(I,3).AMEAN(I,T)*AMEAN(T,2) 00183



77
C

In

11

I,

31
C

4n
41

4p

43
C

44

45

50

51
C

60

61

C

7'.,

71
C

72

AILIEAr4C! 4) =APjE4N(I ,-pApAMU,7)
VAR(T ,4)SQRT (VAR (1.3))
IF DESIRED A WRITE STATEMENT CAN GO HERE
GC TC 44
DC 31 I1,N
Dr f Ji,3
AMEAN(I ,J) EFIN(j)
DC 3 I'l,N
DC 3 J1.2
VAR(j,J)SFFIN(1)
KCHECI(FFiN(1)
!F(KCHECK.NE.9999) e 10 991
00 33 11,N
AMEAW(T,4)AMEAN(I,1,
AMFAN(I ,3)ZAMEAN(I ,t) 'AP4EAN(T,2)
AMEAP4(I ,4)AMEAN(I ,AMEAN(!.4)

1AMEAN(I,1)°2
VAR(j,4)SQRT(VAR(1,3))
IF OESIRED A WRITE STATEMENT CAN GO HERE
GO 10 44
DC 41131,N
AMEAW(I,4)FFIN(1)DO 4 tiN
VAR(T,4).F'FIN(l)
KCHECKaFFIN(1)
IF(KCHEC(<.NE.9999) 10 992
00 43 Iz1,N
DC 43 j.j,3
AMEAWU,j)S0.O
vAR(T,JO.0 -
IF ESIRED A WRITE STATEMENT CAN GO HERE
CONTi IUE
WR!T (34z1005)045tz1,N
WRITE(34,1003)
WRflT(4) AMEAN
wRlt(4>vAR
GO 70 (50,60,70),IHAVE2
RW!ND 2
REAf 2) RR
O 51 ta1,N
!TMD(I)
DO 51 J.1,N
J,JaMJ)
CORR(T,J)aRR(It,JJ)
IF IESIPED A WRITE STATEMENT CAN GO HERE
Go To 72
DC 61 I.1,N
D 6Jsx,N
CORR(I,J).FFIN(1)
CRRjj,I)aCOBR(I,J)
KCHECK.FFIN(1)
IF(KCHECK.NE.9999) GQ TO 993
IF ESIRED A WRITE STATEMENT CAN GO HERE
GO TO 72..
DC 71 Ia1,N
00 71 J.j,N
CCRRIT,J)P0.0
IF(I.0.J) CCRR(t,J).l,0
IF DESIRED A WRITE STATEMENT CAN GO HERE
CONTNIJE

195

00184
00185
00186
00187
00188
00189
00190
00191
00192
00 93
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
0021
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
0023 1
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
0043
00244
00245



196

WRITF(34,1006) 00246
00 104 t1,N 00247

fl4 WPIT(34,1003) I,(CRR(I,J),Jj,N, 00248
WPIT (l CORP 00249DO 80 I1,N 00250DO RJi,N 00251

P CR(T,J).CCRR(!,J)VAR(J.4) 00252RI J1,N 00253
D 81 I1,N 00254

R CORR(!,J)CORR(I,J)VAR(T,4) 00255
8 ii,N 00256DR Jj,N 00257

P A11(I,J)2.000RR(T,J) 00258DR3 II,N 0025983 AU(I,Nl)ZAMEAN(I,4) 002600084 Ji,N 0026j84 A11(PIt,J).AMEAN(J,4) 00262
A11(M1,N1)x0.0 00263
IF ESTRE0 A WRITE stATEMENT eAN O sERE 00264
WP!TE(34,1007) 00265

Ix1N1 00266
105 WPITF(34,1003) I,(Al1U,J).J.1,NI) 00267WITE(4) All 00268

WRITE(5) All 00269
DC 90 I1,N 00270DO9PJ.,M - 00271QO AA12(I,J)sFF!NU) 00272
KCHCKzFFIN(l) - 00273
IF(KCNECK.NE.9999) (3 TO 00274

r IF DESIRED AERITE TATEAENT AN (30 EPE 00275
WRTT(34,1002) 00276D;106 J.1,M 00277106 WRITE(34,1003) J,(AA12(I,J),T.1,N, 00278
WPITE(4) AA12 00279WI!c5)_AAl2 00280
DO 91 Ii,M 00281

91 G(I1sFP!N(1I 00282kçHKuFFtN(l 00283
IF(KC,4ECK.NE.9999) (3C rO 995 00284

C IQES!RED A WRITE STATEMENT AN (30 MERE 00285
WPITE(34,1009) 00286DC07 I.1,M 00287

107 WRITE(34,1003) I,GGi) 00288
WDZTF(4) 00 00289
WRITE(S) 00 00290

00291
Ir(IHAVE2.EQ.3) GO o 1OR 0029?MNsM.N 00293
MNleN+l 00294QlO9!.l,MN 00295109 It:AAl2m.I 00296
ACVe9999999. 00297
DQ 1.10 I'l,N

00298
IF(VAR(I,4)/AMEAWU,4).GE.ACV, GO 10 110 00299
ACV.vAR(I ,4)/AMEAN (y4) 00300

-- MINI 00301110 CpN!INUE. 00302
DQ.111 I1,N 00303
!F(MjN.NE,I)GO TO 112 00304
IDAAI2(MNI)1+MN 00305
GO flI 00306

112 KRK1 00307



197

InSLKK)I.MN 00308
111 CNTINUE 00309

WRITE(S) K - 00310
WPITF(5)IDAAI2 00311
WRITE(S) IDSLP( 00312

00313
WPIT(61,1017) K 00314
WRTTF(61,1017) (IDAAI2(I),IR1,MK) 00315
WQITE61t10l7) (IOSLK(I),I1,k) 00316

1017 FRMAT(/1OI4/10I4/jflI4,1OI4) 00317
108 WPITF(61,1004) (RLAR(NMI,j),J.1,2) 00318

GO 70 999 00319
900 WRTTF(61,l010) 00320

GTO 998 - 00321
001 WRITE(61,1011) 00322

GOTO 998 00323
QOP WRITE(61,1012) 00324

GCTO 998 00325Q03 WOITE(61,1013) 00326
GOb 99 00327004 WPI1T(61,1014) 00328

00329
905 WRITF(61,1015) 00330

GOIC 99g 00331
998 WP!TE(A1,1016) 00332

GC TC 999 00333
1000 FORMAT(512) 00334
iflol FCRMAT(2A8,4X,I2) 00335
j002 FRMAT(1 TH !NeUTMATRX AAI2) 00336
1003 FCRMAT(1X,I2,10F12,2) - 00337
J004 FRMAT(1X,2A8*Y0tJP jNPUT jS PREPARED) 00338
1005 FCRMAT(1THE MEANS AND VARIANES 00339
1006 FORMAT(LTHE COVARIANCE MATRIX*) 00340
1007 FORMAT(1THE INPUT MATRIX. AAI1 00341
iño8 FCRMAT( THE ORIGINAL INPUT 1ATA) 00342
j009 FORMAT(#1 THE INPUT MATRIX GG*) 00343
1010 FORMAT( ERROR IN THE INPUT OF THF PARAMETERS OF THW* 00344

1* TRIANGULAR DISTRIpuTXO) 00345
1011 FRMAT( ERROR IN THE YIELD AND PRICE PAPMETER YNP"T) 00346
1012 FORMAT( ERROR IN T GROSS !NCCM INPUTø 00347
1013 FcRMAT( ERROR IN THE COPRELATTON_COFFFICIENT !NDUT 00348
1014 FORMAT(* ERROR IN THE PRODUCTION COEFFICIENT TNPUT* 00349
1015 FORMAT(* ERROR IN THE AVAILABLE RESOURCES tNPtJT* 0035Q
1016 FORMAT(# CALCULATION NOT COMPLETEn, CHECK THE INfl!C4T!D DATA*) 00351
009 CALL EXIT 00352

END 00353



198

PPOGRAM PROCESS
00001

A11,Al2,AA12G,GRG,SyDSLK,TDAA1,K,K1,'4K,4Kl, 00002
_CMCN
1BI1K.R11KKs

00003
00004- - -

IN1 ,N2,NK1,NK2,NM1,NK,SMAX.SMTW,IMAX.TMIN 00005E0UIALENC (Alljl,1) ,B1i(l) 00006
1 (A412(1,l) cu,i 00007

A11t2Q,2OL(2),MM?0)18(20),Al2(2O.l0O), 00008
_DjP'Ft'jSICN

1R11(1),R1P((20,20),((20,100),P11KX(20,20) 000092.r,(itj0),RG(121),(12j)
00010

3,TN(100) .IDAA12(100,,TOSLK (100) 00011
4,AA1?(20,100),GG(100) 000126,OUTI(7) ,0U12(21,3) ,OLJI'3(100,4) 00013
,P(J.i),ACT(l21) 00014

7,IDSLKR(100) ,tOARl2flOO) 00015r QEADING OF ORIGINAL DATA ***************Ø****** 00016
REAO(S) M,P4,N1,N,NM,NM1,NM2,yHAVF2 00017RFAO(5) All

00018RFA(5) AA12
00019READt5) GG
00020SSMTNZO.0
00021ICuNTzO
00022
00023IF(IHAVE2.EQ.3) GO O 62Ôó 00024READ(S) K
00025READ5) IDAA12
00026REA5) IDSLK
00027OC TO 6300
00028600 DO 2 11,M
00029
0003Q2 !flAAi2(I)I
00031600 ITP-0
00032S5MW0.
000336000 K1RK.l
00034
00035M1mi4.K-1
00036

NIzP4.1
00037
00038
00039
00040NM1N,M.1
00041NKP4.I(
00042CALL. COMPUT
00043CQN7M)E,
00Q44IF(5MIN-SMAX) 2lÔl.101,ö3 00045204 WRTTE(34,1013) !STE
00046C EPRCR MESSAGE
000471Ô13 FCRMAT(*1 SMAX IS OPEATER THAW SHIN DURING ST!P* I3 00048cALL EXIT
000492fl3 I$TIS1EP1 ooósC(JTIU)BSMIN
000sCUT1(2).SMAX
000sOtJT13)a.S*Rl1K(1,N1)
0005301JT114)aO.
000sO ?05Ix1,
000,5
000s205 CUT1(4)..Bl1K(1.II).G(I).OUT1(4) 00057

OUTl15)0.
00058D 206 I.1,K
00059W*0.
00060



199
DC 207 J=1,K

0006i
00062207

Jj.).N1
WG(J)*B11K(I,1,JJ),W 00063

00064CVT1(5)W4O(JT1! 00065
00066
00067OJTH7)SQRI1C'JTl(6)) 00068DC P I1,N1
00069
00070

CU12(1,1)UStl)
00071

CtJ12(T,2)IRG(I)
00072

70R CUT2(1,3)CUT2(1,1)*CUT1(l)C1T2(T2t
00073

DC 2ô9 IgN2,NKI

00074
111-Nl
Jj=!FiSLK(II)

0007573(jj,1)S(I)
0007
00077

CtJT3(JJ,2)RG(t)
00078700

3UT3(jJ,3)O.0
CU13(JJ,4) CtJT3(jJ.1) OLJ11 (1) .CUT3 (JJ,2) 00079DC 210 tNK2,NM1

00080
00081

1TIMK1
00082

JJ!10AAl(11)
00083CUT3(JJ,i)S(I)
00084

CIJT(JJ,2)RG(1)
CUT3(JJ,3)CUT3(JJ,1)CUT1 (1).UT3(JJ.2) 00085

00086
210 CUT3(jJ,4)0.0

00087
WPI1T(4) ISTEP

000
W1TE(4) 3UTj

00089
WPITF(4) CUT2

00090
WPI1E4)CUI3

00091WRIIE(61,9000) I$TE,SMI!
00092

9000 FCRMAT( STEP* 13 #r 1S*F0.2
00093

2101 IF(M.EQ.K1.AND.IMXN.GT.NKI)211,212
00094

212 XPD0
CALL SELECT(IM1N,IYN,KNC) 000957 6000

00096
00097

ii DC?13 !1t
00098213

JJ!1N1
ACI!1) S(JJ) e5MINoR JJ)

00Q99DC 214 I.1,K
00100
00101

D 219 JaI,K
IF(AcT(1?.LE.ACT(J) ,214.215 00102215 SVACT!I)

00103
00104AcTWACT(J)
00105

ACT Lfl*SAVE

00106
5V1DSLK(I)

00107IDSLKW$IDSLK(J)
00108

S(J)SAVE
00109

214 CCMT11UE

00110
SSM11.SMIN

00111
JMIW1MXN

001122155
Q 155 js1K
t0SLR(J)10SLK(J) 003D 2152 Jzl,MK

00114
oous

2152 1PA8121J)*IDAAI2(J)
00116

DC 2151 T1,,(

OOfl$2153
QQ23 4E1.K
1pSI.(J)i.1DSLKR(J)

00118P ?5 J.1,MK
001192154 I0A42(J),ID4Bl2(J
00120
00121

0!1

00122
1IaI.M1



200

JMINJJMINS 00123
CALL SELECT(II,JM!NNC) O0i2'
CALL CCMPUT - 00125
IF (SMIN.GE.SMAX)21A,2151 00126
1F (SMTN.GE.SSMIN)20i,2151 00127

ic1 CCNTMIJ 0012R
1STFP9999 00129
WPITF(4) ISTEP 00139
RFWINr) 4 00131
CALL EXIT 00132
END 00133

00134
C S(J8R1JTINE CCMPuTE TS TO RE IMSERED HERE 00135

SIJRROUTINE COMPUT 00136-

CCMMCN 00137
IRJ1K,R11KK, 0013R

00139
INI, N2,NK1,NK2.NMl,w,sMAx,SMyN,IMAx.IM!N 00140
EUTvALENCE A11(1,i, .811(n), (AAl2(1,1),(1,1) ) 00141
_DMNsIOP A112o,2o),L120),MM(2o)tB(20,,a12(20,loo); 00142
B11Cl),8llK(20,20),C(20,1O0),p11KK(20.2O) 00143

2.r,(100),RG(121),S(lpl) 00144
3,1N110) ,IDAAI2(1001,,IDSLK(lQfl).. 00145
4,AA1?(20,100),GG(100,, RLAR(122,2) 00146
5,R(121),ACT(121) 00147
RFWIND S 00148
REAU(5) M,N.N1,N2,NM,NM1.NM2,HAVF2 00149
READ(S) All 00150
RFAD(5) AA12 00151
READJS) GG 00152

C ADD CCNSTRAINTS TO All 00153
IPNzN1 00154
D TJZ1,K 00155
JJ !IJ((J) 00156D2 !al,N 00157
Aj1(j,IDN+1)SAAI2(!,JJ) 005R
A1l(!DN+1,I).AA12(T,JJ) 00159
IDNaTDN+1 00j60
DC 3 INi,NKl 00161DJ.N1,NK1 00162
Ai1(!,J).0. 00163

C SF1 UP Al2 00164DC4J1MK 00165JlDAAl(J) 00166004 I1,N 00167
4 Aj2(j,J)AA12(I,JJ) 00168DC S TN.NK1 00169

DC 5 JR1,MK 00170
5 Aia(T,J)0. 00171
C S1 U! 6 00172

Q _Ia1,k 00173
I7.TSLKSI) 00174

6 QLU.GG(!I) 001751K1 - 00176
-- DC 7TK1,M 00177
10 CONTINUE 00178

PQ @_J1,K 00179
IcI9SLKcJ)-IK) 8,9,8 OO8Q

9 IKa.1
00181

GO 10 00182
R CNTTNUE 00183

G(I)aGGUK) 00184



12

ic
C

16
C

17
C

14

21

20

18

lw=T.1
CALL ARRAY (.,NK1,NK,20,20,A11.A1fl
CALL ARRAY (2,NK1,MK,20,j00,Al2,Al2)
CALL 'INV (Rl1,NK1,rFT,L,MM)
MFSSARF FOR SINGIJLAD MATRIX

00 31 j*,NK
DO It IvNt,NK1
TRJi(i*(J..1) .1
RI1KUA)vRll (IR)
IAvT+1
C1-i.0
CALL SMPY(BUK,C1,R1IKK,K3,NKj,O)
CALL MPRD(B11KK,Al2,C,K11NK1,O.0.MK)
CALL ARRAy(1,Kl,NK1,2012fl,R1II,B1P()
CAL,ARRAY(1 ,K1 ,MK,70,1OO.C,C
DO l2JI,NK1
R(J)*0.
S'JRi1(1'J)
DC 1,2 Ivl,K
Rr,(J) vRG(J),Rj1K(I,J)*6(I)
D 13 JZNK2,NM1
JJ*J.4-1
R(I(J) vA(jJ)
J.)vJNK1
S(J).0 C 1!JJ)
D 13,ISJ,K
Re, ( J) vRG ( +C t 1+1, JJ) 6 (1
DC 14 Ia1,NM1
IF(S)) 15,16,17
pU)..RG(I)/$(I)

FMUcT BE LESS THAN R(T) ::zttussg:::Is$u:*ttl
IN (j) vi

GT 14
,P(I)v9999999.

VALID FOR ALL Ee.**e*e*..*ea.*e*****eea*e**e*e*S

cy 14,
R(1)v.RG(I)/S(1)

F MUST RE GREATER THAN P(t)****************************
I!J(I3
CONTMUE
D4AX!O
IMINvO
SMAXv-9999999.
SM I .9999999.

1RXaN2,NM1
IF(tW(I)2) 19,18,20
IWIR(I)SM!N)21 .18,18
SMIMvRCI)
IMT!lvT
QQ,T18
IF(R(I)SMAX) 18,18,22
SMAXR(1)
IMAXT
CQ7JWUE,
WRIT!(61,9000) SMIN,SMAX

9000 FCRMAT( FROM COMPUj SMIN I SMAX *2F20.2
RFTURN
END

201

OOlRc
0018
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00201
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
0023
00231
00232
00233
00?34
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244



In

"1

7

I

3

4

2

S

A

20

C

9001

O2

SIJBCLJTINE SELECT Tc IC RE IicERTF0 00245
S',RPCUTINE SELECT(JMN,IMIN,kNC) 00246

CCMMCP.J Al1,Al2,4Al2,GG,G,RG,S,1D5K,Tfl4A1,K,K1,4K,MIq, 00247
jR1K.R11KK, 0024A

00249
VI1 ,M?,NKI ,NK2,NMj,Ni,SM&X,SMTM,1MAX 00250

00251
nTMF?JSTCN A11(2o,2o),L(2j,),MM(20),R(2o),Aj2c20,lr)0), 00252

00253
2G(100),RG(121),S(121), 00254
IIN(100),104412(100).TDSLK(100), 00255
4A412j20l00) ,GG(l00\, 00256
SR(121).ACT(121) 00257
EQUTVALENCE(A11(1,1).P11U)),(A412(1.1),C(1,1)) 00258
IF(IMTN.GT.NK1)10,1 00259
JJTMjNNK1 00260
IflSL(K.1)ZIDAA12(JM 00261
DC 1tIJJ,MK 00262
IQAA12(I)IDAA12(T.i) 00263
K.K.1 00264
jF(KNC.EO.1)7.20 00265
IMIN.JM!N 00266
JP4iN-N1 00267
!TzMK,1KNC 00268
D ?Tz1,MK 00269
IF(IOAA12(II-1) ,GT,SLKJJ) )3,4 00270
IflAAi2(!T)!DAA12(!.1) 00271

00272
C IC 2 00273
IPAA12(II)IDSLK(JJ) 00274
GO f 5 00275
CONTIIIUE 00276
CNTTNUE 00277
DC 6IJj,K 00278
IflSL(t),I0SLK(I.1) 00279

00280
CCNTTMtJE
KM*MK 00282
WQIIE(61,9001) (t0AAi(i)t!1.kM) 00283
WPIIE(61,9001) (IDSLK(!),T.1. 00284
FMA/i0t3/10I3/fj3 00285
RETURN 00286
END. 00287

FINIS 00288



In

11

17
C

100

101

102

103

O 3

PRO(AM O(JTPUT 00001
CM'4O1 IARRY(12) ,ARAY(27) .LARELS(63t ,N,XSTEP,MINC3,MAXC1,MAXr2, 00002

EqAX.O(JTl ,OUI,CI;T3,NiNT 00003
PFAL T'4C3,MAXCl,MAXC2 00004
C"MMO.J/DATA/CONST (7) 00005
r)TMFNSION CIJT1(7),O,rr2(2i.3),fUT3(l00,4),PARTi(122,i0),PAPT2(7) 00006

I ,pLETTFR50,10) ,RLARI122,2) 00007
?,PAPA4(?0,7) ,AMEAN(,0,4) ,VAR(?0,4) ,CORR(20,20), 0000P
IAIH?0,20),AA12(20,loO),Gc,(100) 00009
E0(JTVALENCE (PART1(I,1),p4R17(1)) 00010
PFAn4) M,N,N1,N2,NM,NM1,NM2,y44VF1,THAVE2,1WANT 00011
PFAOC4) RLAB 00012
1F(T4AVE1.GT.l) GO j 9 00013
RFAOC4) PARAM 000
RFAn4) AMEAN 00015
RFAr4) VAR 00016
RAfl(4) CCPR 00017PFAr)(4) All 00018
REAO(4) AA12 00019
RFA0(4) GG 00020
RFWTND 3 00021
IPAGF'l 000??
RFAr)(3,1OQ05)((RLETTFR(I,J),Jl,10),TR1,50) 00Q23
WPT1T(34,1000I) (RLAR(NM1,J),Jr1,2),IP4GE 00024
IPAc,F=IPAGE.l 00025
WRTTF(34,l0002) (pLAR(NM2.J),J1,2) 00026
WPI1T(34,10003) (RLA(NMl,J),Jl,2) 00027
WRITF(34,l0006) 00028
lF(IWANT.EQ.1) 00029
WRTTE(34,10000)((RLFTTER(I,J),Jal,10),!Ul,48) 00030
GOb 12 00031
WPITE(34,l0000)((RLFTTER(T,J),JR1,10),I.l,35) 00032
WRITE(34,100O0) (RLErrER(So,J,,Jal.l0) 00033
WRIT 34,10000H(RLFTTERU,J),JR1,1O),T41,48) 00034
CONTINUE 00035
PREPARATION 3F PART ONE 00036
MTNC3zMAXClMAXC20 00037
KCC=1 00038

00039
REWDID 5 00040RA4) ISTEP 00041
I(1sTEP.EQ.9999.ANo.I.EQ.9) tC TO 113 00042
ITSTEP,EQ.9999) 104,101 00043
IaTSTEP-KC 00044KSTEpISTEP 00045RAfl(4) Cull 00046
REAo4) CUT2 00047
READC4) 0UT3 00048
WRITE(S) ISTEP 00049WPXT(5) CUll 00050
WPTTF(5) CUT2 00051
WRITE(S) OUT3 00052
MAXC2NCUT1 (7 00053
EMA.UT1 (1) 00054DC 102 Jl,N 00055IF(UT2(J,3) .GT.MAxMAxc1z,,T2:j,3 00056PART1 (J,I)OUT2(J,3 00057
DC 103 JBN1,NM 00058JJJ:N 00059PAPT(J,)CUT3(JJ,3) 00060



PAP (NM1, I)=CUT1 (1
PAP (W2, I)ECUTI (7)
lIP 1040 JN1,NM
JJ3j_I4

)) ,1102
1041 PAPTI(J.I)G6(JJ)+PAPT1(J,I)

GC TC 1040
)047 PARjI(J,!)=GG(JJ')..pApTj(J,I)
V4O CPP.JTT'4IJE

i()46 J1,M
JlJ!!M2.J

1146

IF(T.E0.9) 106,100
1fl4 11T

KPKç.1
LPKC.II
Kr=kC .9
IFO(CC.EQ.1) 105,106

105 WPITF(34,1009) !PAGF
tA(F=TPAGE, 1
WPI1'E (34 1011)
KCC=I(CC. 1

IC 107
106 WRITF(34,101O) !PAG

IPAC,EuIPAGE1
107 WRITF(34,1012)

WPITF (34, 1001)
WRITF(34,1003) (TP,TPKP.LP)
W#ITF (34,1004)
WRII(34,1002)
DC 108 J1,N

108 WPITF34,1006RL48(J,JJ),JJ.j,2),(PAPTI(J,I),I.l,IT)
WPITF (34, 1002)

WRJTE(34,1007) (PARri(NM1;I) ,Ial,IT)
WPITE(34,jO0)(PAR71(NM2,T),Ti.1,Iy)
WRITE (34, 100Q)
WPITF(34,l0lO) IPAGF
IPAI3E.IPAGE.1
WRITF(34, 1013)
WPITF (34, 1001)
WPITE(34,1003) (IP,TrzKP,(p)
WPITE(34, 1005)
WRIT(34,1002)
LcC!0
LC0
DC 109 JzN1,NM
JIJ*.J4N

LçCr(CC. 1
Lc'L.c.l
IiLCC.EQ.40 110,111

110 LCC0
LC,Q,
WPIT(34,100O)
WIT(34,101Q) IPAGr
IPAC,EaIPAGE 1
wAIT!34,1014
WRITE ( 34, 1001)
WPITE(34,1003) (IP,TP.KP,LP)
WRITE (34, 1005)
WRITE (34,1002)
G1 109

111 Ir(LC.E0,5) 112,109

204

00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
0008()

00081
00082
00083
00084
00085
00096
00097
00098
00099
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
0010!
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
001j4
00115
00116
0017
00118
00119
00120
00121
00122



112

I iF,

315

1020

1021

313

L C z()

WPIT(34,1002)
WRITF(34,1006)(RLAA(J,JJ),JJaf,2),(p4Rtl(J,7),IRl,yy)
WPIT!(34,1002)
WPITI(34,1007) (PART1 (NM1,T) ,Tal,tT)
WIT!(34,1008) (PART (NM2,T) ,Tal ,IT)
WIT (34,1000)
WPITF(34,1010) TPAF
IPAtFaIPAGE+1
WPIT!(34,102Q)
W3i'F (34,1001)
WDITE34,l003) (IP,IKp,(p)

00 115 J=1,M
JNJ.N
JJJW'l2oJ
LCC=!,CCo1
LrLC.1
Ir(Lce.LT.40) W TO 116
L.:cn
LCx0
WIT(34, 1000)
WPITF(34,1010) IPAG!
IPAGETPAGE+1

(34 1021)
WITF (34, 1001)
WtTF(34,i003) (IP,Tc.KP,LP)
WPITF (34, 1005)
WPITF(34,1002)
WPITF (34,1000)

r 115
I!(LC.LT.S) 00 10 115
LC0
W811!(34,1002)
WRITE (34, 1006) (PLAn (JN,JJ) ,JJi.1,2), (PAPT1 (JJJ, I) , !1, Ti,
WPIT!(34,1002)
WTE(34,1007) (PART1'(NM1, .1.1,!!)
WRITE(34,100R) (PART1 (NM2,T) ,!1,T!)
WPITE(34,1000)
FORMAT(*0 A 5TATEM!pr OF THE VALUF O AN 0DTTIONAL UN
1. RE5URCE*)
FORMAT(0 A STATEMENT OF THE VALUE OF AN ADDITIONAL U'417
I # P5URc( CONT I NUE0)
IF1TSIEP.EQ.9999) 1i3.10
CctfjNUE
WPTT!(61,12000)
PREPRATTON OF PART TWO
REWIND 5
WPZT(34,200O) IPAGF
IPAGEaTPAGE I
WPT!(34,2003)
WRIT! (34 2009)
WR!(34,2005)
wIT(34,2oo)
WRIT! (34,2007)
wjT(34,2o1Q
WQITF(34.2011)
LCQ
LCCaO
00200 I1,KSTEP
R!AnS) ISTEP

OF

OF

O 5

00123
00124
00125
00126
00121
00128
OO12Q
00130
00131
00132
00133
00134
00135
00136
00137
0013R
00139
00140
00141
00142
00143
00144
00145
00146
00 47
00148
0014Q
00I5
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
0069
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00182
00181
00182
00183
00184



1

02
703

nri

C

30?

303

304

RrAfl) IJT1
REAr5) CUT2
PFAr)(5! C'JTI
P&RT7()IjT1 (1)-2,1?67*CAJT1 (7)
IF(DAPT2(l).LT,MTNC3) MINC3PART2(1)
PART?(2)3LJT1(1)_1.A45Q*,JT1 (7)

(7)
PART7(4)CU11(1)..0,q41$*IJT1 (7)
PART?S)CUTi (1)..0.11ouT1(7)
PART7(6)CUT1 (1)-0.10UT17)
PART(7)CUT1 (1).0, 0O'OuTl (7)
LCCLCC.l
LrLC.1
I'(LçC.EQ.4O) 201,20?
LCC0
LC0
WPITr(34,2001) TPAGr
IA!=1PA3E+1
WPITF(34,2004)
WPiT(34,2009)
WPITF (34,2005)
WPITF(34,2006)
WTTF (34,2007)

IF ( 34 , 2010)
WRI1'F(34,2011)
GC T 200
IF(Lc.:Q.5) 203,200
LC0
WPITr(34,2011)
wQTTF(34,200R) I,OtJrI
WRITF(34,2010)

(1), (PART2(J) ,Jal,7)
0Es tHE CLIENT WANPAR+ THRFE
IFUWANT.EQ.1) 300,400
PREPARATTCN CF PART THREE
REWINO S
WPITF:(61,12001)
o ,i IRR,KSTEP
REAn(S) ISTF:P

R!AI)(5) iiT2
PEAt)(5) CUT3
IF(T,EQ.i) 302,3O3
W6Urr(34,300Q) IPAGF
IPAGETPAGE+1
WRIt(34,3002)
GTC 304
WRIt(34,3001) TPAGF
IDA(E.TPAGE.1
WQIT!(34,3003)
WPZTr(34,3004) I
WPIT(34,3005) CUT1?
WQIT(34,3006) CUTIU)
WR lIE ( 34, 3007)
WRIT(34,3011)

IF ( 34, 3012)
WRIT(34,3013)
W!7!(34,3014) (C(JTI cJ
wPIT(34,30l1)
WRITE (34,300)
WRIr(34,3015)
WITF(34,3016)
WRITE(34,3011)

S,uUT1 (1)

,J.3,7)

O6

0016
0017
00
OOlRq
00190
001Q1
00192
00193
00194
00195
00196
00197
001 9R
00199
00200
00201
00202
00203
00204
00205
00206
00207
0020R
00209
00210
00211
002 2
00213
00214
00215
00216
00217
OO21R
00219
00220
00221
00222

00224
00225
0O22
00227
0022
00229
00230
00231
00232
00233
00214
00235
00236
00237
0023R
00239
00?4Q
00241
00242
00243
00244
00245
00246



310

307

301
400

1000
1001
1(102

ln0'
1004
1005
1006
1007
i 10

1009
1010
1011
1012

WPITF (34,3019)
LC0
Do 5 J1,NL#L.l
IrcLc.EQ.5) 306,305

W!TF(34,3019)
WOITr(34,3020)J, (RLAR(J,JJ) (CUT2CJ,JJ) el)
WPTTF(34,3011)
WPITF(34,3009) IPAG
IDA(E.TPAGE+1
WPITE(34,3017)
WPITF(34,301)

VT! (34,3011)
WPI1'F (34, 3019)
WRITr(34,3021) (CUT2CN1,JJ),JJuil,3)
Lr1
LCC0
DC 307 Jal,M
JN J.N
LCLC.1
L CC CC I

IF(LCC.E0.40) 308,309
VC 0
LrZO
WpIT(34,30l0) IPAGE
IoAc,!r!PAGE.1
WPITE(34,3011)
WPIT!(34,3017)
WRIT! (34,3019)
WRTT!(34,3011)
WP11E34!3019)
GO IC 307
I(It.F0.5) 310,307
LCO
WRIT(34,3019)
WPITE(34,3O20) J,(PLAB(JN.JJ),JJ1,2),(CtJr3(J,J.J,
WRiT! (34,3011)
CPN!TNUE
CON! p.JUE
WPTTr6I,12002)
THE PLCTTING ROIJT!NF FITc HEPF
CALLPLCT
FORMAT(135(*-)
FCPMAT(*O135(**))
FCRMAI(* I I*9( T#))
FOPU4T( I NAME CF UN!TI*9(* PLAN I3# 1*))
FCRMAT( I CRCP !*0*
FCRMAT(# I RESOuRCE I9 1*))
FCRMAT( I*2A8*I9(11,2iI Ii))
FORMAT( I EXP GR MARO %%I*9F11.2* *))
FORMT(_I STO 0EV cI*9eF11,2 Ia))
FCRMAT(*1PART CNE*11A(ø g)øPAE T1)
F(1RMAT(IPART OW CWTZNI)D#1tu8(* )PAGE*T3)
FORMAT(*0ASUMMARY Cr EFFICIENT FAM PLANSø)

_FPM4T(ôA STATEMEN CF THE LFVELq CF ACTIVITIES
1PAYCFF)

,JJal '4)

ANO THE EXPECTED

1013 FORMAT(#OA STATEMENt CF tHE AMOUNt CF EACH RESCUPCF U5ED AND THE
1EP!TE0.PAYOFF*)

1014 FCRMAT(#OA STATEMENT CF THE AMOUNT OF EACH RESOUCF USED AND THE
1EPETED PAYOFF CCNfNtJEna)

2nD? FCRMAT(0IPLANI EXP r,R MAR 1 1% 1 5 T 10%

O7

00247
00248
00249
00250
0025
00252
00253
00254
00255
002S
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00767
0026
00760
00270
00271
00272
00273
00274
00275
00276
00277
00275
00279
002
00281
00252
00283
00284
00285
00286
00287
00258
00789
00290
00291
00292
00793
00294
00295
0029
00297
00298
00299
00300
00301
00302
00303
00304
00305
003
00307
00308



208

II 20% I 30% I 40% I 50% 1*) 00309
20fl9 FORMATC#0*11O*)) 00310
00 FRMAT(*11O(*-*)) 003fl
7000 FRM4T(*1PART TWO*94(* )*PAGr *13) 00312
7001 FORMAT(*IPART TW CMTINU!D54(* *)*PAGE *13) 00313
7fl0 FORMAT(* I *!3I*8(rll,2* 1*)) 00314
7003 FRMAT(#óPRO8ABILIT STATEMENTS AROUT ATTINING cPrIrI!D LEVFLS 0 00315

F ACTUAL GROSS MARGiN FOP A GIVEN LEVEL OF EXPECTEO GROSS MARGIM*) 0031A
7o04 FOR T(*0PR0RARTLIT STATEMENTS CONTIWUED) 00317
2fl(V FrRMAT(* I I I#26(* *)*PR0BRILyTY LFVEL*47( *)*T*) 0031R
7rr) FRMAT(* I I I*90(*-*)T) 00319'oii FORMAT(* I I*8(* 1*)) 00320
3000 FRM4T(*1PART THREE117( )*PAGE *13) 00321
3001 FRMAT(#1PART THREE CONTIWUED*107* *)*PAE *13) 00322
3o02 FOPMAT(*ODETAILED D!sCRIION 0F EFFICIENT PLANS TN EOUATTON FORM 00323

1*) 00324
3001 FCRMATC*0DETAILEO DFSCRIPTION OF FFFICIENj PLANS IN EOUATTON FORM 00325

1CONTTNUED*) 00326
3004 FRMAT(*0THIS PLAN WAS GENERATED ñURTNG STEP *13) 00327
T0fl5 FORMT(* IT IS VALIn FOR VALUES 0 FXP GR MARG FRCMF,6.2*TO*E26.2 00328

1) 00329
3006 F-RM#T(*OALL EOUATT-NS PERTAINING TO THIS PLAN ARE rVALUATEO AT EX 00330

IP GR MARG *F26.2) 00331
3007 FCRMAT(#ÔTHE VARIAN EQIJATION*) 00332
300R FRMAT(*0THE ACTIVITY EQIJATIONS*) 00333
3009 FCRMAT(*ITHE RESOURiF EQu4TIOw5*1,O(* *)*PAGE *13) 00334
3010 FORMAT(*THE REsUp Q(JATIOWS CONTTNUED*90(* *)*PAGF *13) 00335
011 FRMAT(*0 *131(*_)) 00336
3012 FRMAT(# I*i5C* *)*ALPHA1 *isc* *)*ALPHA2 1* 00337

llc(**)*ALPHA3 I16(* *)*VARIANCF I*17* *)*S1 riEv 1*) 0033R
3013 FCRMAT( I*5(* !*) 00339
3014 FRMT(* I*3(F2,6* T*),2qF24.2* !*)) 00340
3015 !ORMAT( I NO OF I NAME OF UW!TI*i6( *)*rTAi 1* 00341

i16(*)*RETA2 i*Te* )LEjEL OF 1*) 00342
3016 FORMATC* I ACTIVITY I ACTIVYTY I*?5(* *)*T*5(* **T* 00343

i1(*g)*ACTIVITY I* 00344
3017 !RMAT( I NO OF I NAME OF UNIT1*16(*#)*RFTAI 1* 00345

116(* *)*BETA2 1*14* *)*LEVEL or I*ii* #*vALIE * 00346
2OF J) 00347

3018 EQPMAT(* I CONSTRAINT I CONSTRAINT 1*5(* *)*I*5t* *)*T* 00348
114( *)*CONSTPAINT T14(* *)*IAGRAWt3IAN 1*) 00349

3019 FCRMAT(* I*12(* )**16(* *)*T25c* )*I*25(* )*I*'5( *)*T* 0035012* *)*j*) 00351
3020 FORMT(* I *13* I*2A8*y2(F24,6* U),2(F26.?* 7*)) 00352
3021 !CRMAT(* I 0 IEXP GR MARA ss!* 00353

1r4.6 I*F24,6 I I*F24.2* 7*) 00354
10000 !pRM!(*_*10A8) 00355
10001 FCRMAT(*1MR. *2A8,56(* *)*PAG! *13) 00356
10002 FORMAT(* *2A8) - 00357
1000 FRMAT(*ÔDEAR Mp *A8) 00358
19O0 FCRMAT(10A8) 00359
10006 FRMAT(*0*) 00360
1200Q FRMAT(* YOU ARE NOW GOING INTO PRT TWO ) 00361
12001 FRMAT(* YOU AR NOW GQING INTO PART THREE *) 00362
12002 FRMAT(* YOU HAVE NOW COMPLETED PERT THREE AND TM! PEPCRT*) 00363

CALL EXIT 00364
END 00365
S!JBRCUTINE PLOT 00366
_COMM0J TARRY(12,ARPAY(22,LARELS63),N,KSTEP,MINC3.MAXC1,MAXC2, 00367
1 MAX,OtJT1(7),UT?(21,3),OU+3(100,4),NINT 0036R
DIMENSION RLABEL(30, 00369
EOUIVALEWCE CLABELS,RLABFL) 0037Ô
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PFAL *IINC3,I.IAXC1,MAXC2 0037
CM1CJ/0ATA/CCNST(7 00372
OATA (CCWST-2,3267,-1 .6450.-I .2817,..841R,,c31o,2510,,00fl0 00371
OTMFNSICN ESIJR(21).cTD(21).E(101),A(I01.2o),P21,7, 00374
PFwN0 5 00375
NINT=?fl 00176
NT'JT1NINT+1 00377

( 0017R
r p.JTTIALTZATTCN CR C-4ART 7 00379

00190
IAPQYU=IARRY4rI
1AR(11#PRY(90 003
!AP9Y(A)=1 00383
ARPY(7)3 00384

00395
1AR9YfS16 00386

00387
IAR9YUO)6 0039R
TAPPY(11)xIARRY(12)8 00389
Ri.A9EL(11)8HXPFC1'r) 0010Q
PLA9FL(12)RH (,RSS N 0039
PAPrL(j3)8HARGIN TN 00392
RLARFL(14)6H 51000 00393
IARFI.S(62)30 00394
PLA9FL(21)RHTHE EFFT 00395
RLARFL(22)8HCIENCY F 00396
RLARFL (?3) Z7NRCNTTFP 00397
LAR!LS(63)23 00399
RLAP!L (1) 8HSTANDApi 00399
Ri49L(2)8H DEvTAT 00400
RLA8!L(3)8HCN CF r,p 00401
RLARFL(4=8HOSS MARr, 00402
PLARL(5).8HTN TN 00403
L4R!LS(11)Z3H000 00404
LRLS(61)43 00405
IF (FNAX.GT.20.) GC IC 5 00406
APRAy(7)ARRAY(11)2ARR4Y(15)aARRA)4RRAV(12)ARPAY(16).S 00407
G IC 40 00408

S IF (F'IAX.GI.50.)GC 10 7 00409
00410

L4RLS(62}26 00411
RLAAEL(14)*6H S 0041?
RLA8L(15)27HIM IN ; 00413
LBLS(61)39 00414
G 1 40 00415

7 IF (MAXGT.100,) GO IC 10 00416
APRAY(7).ARRAY(11)ARRA')ARRAY(R)4RRAY(17)AR9Y(16)2. 00417
L4PrLS(62)26 00418
RL48!LU4)*6H S 00419
RLA8rL(15)7HIN TN 5 00420
LRLS(61)E39 00421

7o 40 00422
10 IF (MAX.GI.25O00.) GO IC 20 00423

ARRAY(7)ARRAY(1)zARRAY(8)APRAYU6)K100O. 00424
APRAY11).ARRAY(12)1. 00425

I 40 00426
20 IF (FMAX,GT.100000, GO IC 30 00427

ApRAY(7)zARRAY(15)ARAY (8)4pRAY(16) 500ñ. 00428
ARPAY(11)aARRAYU2)5. 00429
GO TO 40 00430

30 ARRAV(7)xARRAY(j5)5ARRAYR)4PRAY(16)=10OflO. 00431
APRAY(11)4RRAVC12).10. 00432



210
4( ARRAY(1)EMAX 00433

APRAy(3)rARRAY(4)APRAy(5)RARRAY(A)APRAY(9)EARRAY(1O)ARP(t3 00434
APRAY(14)ZARRAY(17)PRM(1o)e

ARRAY(1Q)EMAX 0043f,
APRAY(20)SMAXC2 00437
APRAY(?1)ARRAY(2)*i.
APRAY(7)&IAXC2 0041Q50 Ii1'17 0044
CALL FOk)1P(I,5HFTLF ) 00441fl CMTTPJIJE 0044RFAñ (5) ISTEP 00443
RF4r) (5) OUTj 00444RFAr(5) CUT2 00445
READ (5) tJT3 00446
STn(1)rSoPT(CtJT1g3)CuT1(2)*tJT1C?)oUT1(4)*oUT1(2)4ouT1()) t0447
CALL MLT!PLT(CUTI(2),STD) 0044REUCUT1(Z) 00440060 I1,N 0045

Ar)
00451

t DO ICT1,KSTEP 00452IT1=TCT.1 00453E(ICII)LQUTI (1) 004540 70 I1,N 006557r) A(!CT1,1)OtJ12(!,3) 00456ETNC(UT (1)-Olin () )/NTWT 00457
ô J1,N1NT 0045RESU5(J)Cl.iT1 (2).(J-1)'EINC 00459

STD(J)XSQRT(OUT1(3)SUB(J)*ESUA(J)CUT1(4)*!SUB(J)eC1iTl(5)) 0046000 8 Ka,7 00461
RD P(J,K)E5UR(J) .00NSn(K)sTD(J 00462IARRY(2)NINT1 00463IARRY().0 00464

ESUR(JTNT1)OUT1 (1) 00465
S'TDU4TNT1)OIJT1 (7) 0046600 85 ((LI,? 0046785 P(NTWII,K)LCl(T1(1) .CCNST(K)*CtlT1(7) 00468

LL_GRAPH (ESUB,STD 00469tRR!2)1 0047IARPY(5)L16 00471CALL SRAPH(OtJTI (1) .JTi (7)) 00472DO 90 JL1,7 00473
0047490 WRtTE(IJ) SR(K)p(K,j),KL,N1HTl) 00475Ir(TCT.Ea.KSTEP) G 73 100 00476

READ S) ISTEP 00477READ (5) OUT1 00478READ (5) OUT2 00479RAO (5) OUT3 00460100 CONTINUE 00481C 0O4C INITIALIZATION R CHART 1 00483
00484ARRY(1)zN 00485

XARPY(2)KSTEPo1 00486IARRY(5)!16 00487RLABEL(21)L8HTHE ACT! o04RLA8EL(22)R8HVITY LFV 00489LABELS (45) 3HELS 00490LARELS(63)19 0049jRI4RL(I).8HLEVEl 00492RLARLC2).8H ACTIVIT 00493RLAREL(3)L8HY IN AC 00494
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LARELS(7)a2HS 00495
LARFLS(6j)26 o04
IF (iAXC1.GT.50.) G TO lOS 00497
ApRAy(R)ARRAY(12)APRAY(16)a1
c,o 10 130 0049Qmc IF (MAXC1.GTSIOO.) r0 10110 00500
ARRAY(R)ARRAY(12)aARRAY(16)a0. 00501
GO 13Q 00502

110 IF (MAXC.GT.l00O.) C TC_12o ooso
ARRAY (R) .ARRAY (17)=ARRAY(16).?O. 00504
G 10 130 00505

120 ARRA(8)ARRAY(16)s100. 00506
RLARrL(3)a8HY IN 100 00507
RLAPFL(4)6H ACRES OOSOR
LAR!L5(61)*30 ooSog
ARRAYU2)1. 0051010 APRAY(2)=MAXC1 00511ARRAy(20)MAXC1 00512
CALL MLTIPLT(F_,A(1,i)) 00513
DC 140 Iz2,N 00514
CALL GRAPH(E,A(1,!)) 00515

140 CONTINUE 00516
C 00517
r jNITIALTZAIION rOR CHART OOS1Q
C 00519

IARRY(1)7 00520
!ARRY(2)=NIT1 00521

00522IARRY(P)3 00523
RLAREL(21)*8HTHE PRO1 00524
PLAREL (22) *$HARtLIT 00525
RLAREL(23)*7HOF LOSS
LAR!LSj (63) 23 00527
RLAPF1(1).8HACTUAL G 0O5
RLARFL(?).BHROSS MAP 0052QPLAREL(3)8HGtN IN ooso
LAPLS(7)a4H1000 00531LA8rLS(6i)2R 00532
AMIN.MIN1 (0s,MINC3) oO53
ALEWREMAX.AMIN 00534
I! (A.ENG.GT,50.) T 142 00535
ARRAY (8).ARRAY (12) ARRAY (16)zI 0036
LARE.S(61).24 00537
GO TO 149 OOSIR

142 IF (A.ENG,GT.1OQ,) r,O 10 143 0053R
ARRAY(8)ARRAY(12).ARRAY(16).. 00540LABSC6i)a24

00541GO O 49 00542
143 I (AIENG.GT.1000.) GO TO 144 00543

APRAY(8)zARRAY(16)zAPRAY(12)S0. 00544LARqS(61)a24 00545
GO 10 149 00546144 IF (ALENG.GT.25000,) GO TO 146 00547
ARRAY()RARRAY(16)l00O. 0056R
ARRAC12)*1. 00549
GO 10 149 00550

146 I! (ALENG.GT.1OQ000,IGO 10 I47 00551ARRAY(8) RARRAY (16)aS000.
00552AqR4y(12)a5.
00553

GO 10 149 00554167 ARRAY(R) .ARRAY (16) .i00ó0 00555
ARRAY(12).10. 00556
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14Q CCNTTJ(JE 00557
1TEMPAM!N/ARRAY(6) oocc
ATEMPAPRAY(6)1TE-MD OOSSQ
IF (lINC.LT.ATEMP) ATEMr'zATEMP-1 00560
APRAY(10)uARPAY()4)ARRAY(4)ATEMP 00561
ARRAy(2)MAX-ARRAY4) 00562
ADRAY(18)MIN1 (0.,MDIC3) oos
ARRAy (20) EMAX 00c66
or'. i0 1=11,17 00565

1O RFWIND i 00566
REAr) (11) (ESUB(K),(K,1),K.j,NIN11) 00567
CALL ML7TPLT(ESU,P) 0056
IAPRY(2)*1 00569
IARFY(S)16 0057Q
CALL RAPH(ES'1R(4DT1) ,P (N!NT, 1)
DC 160 t=2,KSTEP 00572
RA0 (11) (EStJR(K),D(K,1).K=l,NINI1) 005fl
IARRY(2)ZNINT1 00574
!APRY(5)0 00575
CALL GRAPH(ESUB,P) 00576
TARRY(2)1 00577
TARPY(5).16 00578V

CALL r,RAPH(ESUR(NINfl),P(NINTI,1)) 00579
)A0 CPNTINUE V OOSMO

170 IGRAPH=2,7 00581
C 10 !al,KSTEP
1J1(RAPHe1O oos
RFAr)(IJ) (ESUB(K),p(K,1),K=1,NTNr1) 005R4
lARRY (2) =N1 Nil 00585
IRRY5)=0 00566
CALL GRAPH(E5UB,P) 00587
jARRY(2)z1 OO5RR
IR9(5)=16 00589V

CALç GRAPH(EsUR(NINh),P(NINTI,1), 00590
170 CNTINUE

VVV 00591
I! IAX!SXY(0,0,0,0,0,0,0,0,0,0.0,0)) 180,180 00592

io o iqo 1=11,17 00593
V CALL UNEQIJIP(I) 00594
iO COIITINLJE 00595

R7I1RM 00596
00597
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PPGR4M CORRELATE 0000k
T'4!S PROGRAM IS OESTGNED TO COMPUTE A CORRELATION MPTRIX OF THE 00002
GROSS MARGINS CF CROPINGACTIVITIES. YOU HAVE THE TTON OF
RFMOVTNr, THE 1NFLUPE Cr TIME BY CORRELATING THE nVyATION5 FROM 00006
A LINEAR TREND REGRFSS!ON EQUATION. THE RESULTINR CORRELATION 00005
MTRX BECOMES 4 SOURCE CF DATA tINDER CERTAIN OPTyOiS CF 00004
PROGRAM INPUT. 00007

0000$
IwSTRLJCTTCNS FOR SFTTNG UP INPUT FILE. 0000R

00010
SET UP OF CONTROL CARD 00011

- 00012
COLUMN 1- 2e ENTER WCROP, THE NC. OF CPOPR MAX 50 00013

3- 4, ENTER NYEAR, THE NO. CF YFARS, MAX 10 00014
5- , ENTER MINYrAR. THE FIRST YFAD yN SFRIES 00015
R-12, ENTER wAXYrAR, THE LAST YEAR 1w SERIES 00014

MKE StJRE tHAT THE nIFFERENe RETWEEN 00017
MfNYEAR ANfl MAxYEAR IS 9 OP lEsS. 0001$

13-, LEAVE $LANK 000I
SET tip CF LABEL CARDS 00020
YOU MUST HAVE EXACTLY NCPOP LABELS. PREPARE t.A$WL CARD FOR 00021
EACH CROP ANO MAKE SURE TO USE SAME OPOER FOR SuCCEEDING 00022
SECTIONS 00023

COLUMN 1., EJTER NAME CF CRCP 00024
COLUMN 1. ENTER PLAN. flO NOT ENTER ZERO 00025
COLUMN ENTER RRTCF UNITS, FOR EXAMPlE *S$/TCN 00026
COLUMN 25-2, ENtER IEL UNITS, FOR EXAMPlE TON/ACRE* 00027
COLUMN 33..Rñ, LFAVE PLANK 0002$

ET UP OF PRICE MATRIX. 00029
YOU MuST HAVE TE SAME OROER yN THE PICE MATRIX AS YOU 00030
HAVE IN THE LABEL CApflS. tHE PRICE MATRIX IS NCOD X MYEAR. 00031
FOR EACH ACTIVItY ENTER PRICE FOR EACH YEAR SEPARATING FACH 00032
ENTRY BY BLANKS CR A COMMA. WEN YOU HAVE COMPLiTFO ALL PRICE 00033
DATA ENTER 9999 P4 A NEW iAR0. THIS CMPLETES PRICE MATRIX. 00034

00035
5ET UP OF YIELO MATRYX. 00036
YOU MUSTHAVE T $AM ORER N THE YjELO MATRIX AS YOU 00037
HAVE IN THE LAPFL CADS. THE YIELD MATRIX IS NROP X NYEAR. 0003$
FOR EACH ACTIVITY ENTER YyELD FOR EACH YEAR SEPARATING EACH 0003R
ENTRY BY BLANKS CR A COMMA. WwEN YOU MAVE COMPLrTFD ALL YIELD 00040
DATA ENTER 9999 ON A NEW ARD THIS COMPLETES Y+ELD MATRIX. 00041

00042
YOU HAVE NOW ENTERED ALL OF THE nATA. AS A FINAl. CHECK MAKE 00043
SIJPE ALL OATA LINES ONFORM THE ORDER F THF LARFL CAROS. 00044
wow PILE THE DATA ANfi GCC LUCK. 00045

00046
DIRETORY CF LCGICAi UNIT NUMPERS 00Q47

0004$
LIJN DATA FILE 00049
1,11W 2 OUTPUT FILE ( CORRELATION MATRIX) 00050
1UN 34 LP LINE PRINTER) 00051
LUN 60 TELETYPE INPUT 00052
LUN 61 TELETYPE OUTPUT

00054
DIMENSION RNAM(50,4,,PRX&(50,1O),YIFLD(50,10),GRCSqCSO,1o), oonss
ISUMISO) ,TSIJM(50) ,XTX(50,S0) .TGROSS(SO,10) ,xX1xXt50.0, 00056
2CORRISO,50) ,STD(50 ,xRAR'cS0) 00057
3,S(50),SS(50),ST(50),TSTAT(50,A(50),P(S0) 0005$
E0UIVALENCt(SUM1),5t1))tfTSUM11),SS(1)),jST1),S7flf1) 0005*
E')U!VALEWCE (XXTXX(1,1),PRICc1,j)),CXTX(1,1),YjrLrt(1,1)), 00060



214

1CCCRP(1,1),GRCSS(1.1)) 00061
RFA(l 10O0) MCRCP,MYEAR,NINYFAR,MAXYFAP 00062
n In J21,NCROP 00061

1 RFAD(t.1001) (RWAM(J,T),Il,41 00064
Do J1,NCRCP 00065
DC fl !1,NYEAR 00066' PRTCV(,J,I)FFIW(1) 00067
HCKFF!N(1) 000AR

1FC4ECK.NE.9999) DC 10 990 00069DC 3r) j,NCRCP
00070DC 40 t1,NYE#R
00071(' YIEL(J,I)*F!IN(1) 00072

KCHCK=FFTN(1) 00071
IF(kF:CK.NF.9999) flO 10 991 00074
DC 4r) J=j,NCROP 00075

4ñ j=j,NYAR 0007640 (iPCsS(,1,1)ZPRICE(J,h*YILD(j.1) 00077
WPIIF(34,1003) 0007R
WPIT(34,1004) (Ij,IT*MINyEAP,MAXYrAR) 00079
WQITF(14,1005) 000ROLC0 000R1

so J1,NCR0P 00Q2LrILC.1 000R3
tF(LC.D,5) 51,50 000R4ci ro 000R5
WRITF(34,1005) oon0 WPI134,1006)(RNAP4(J,JJ),JJul,3),(PP!CE(J,I),Iz1,NyE4P) 000R7
00 p J1,NCROP 00088P0 Rr.4AMj,3)RNAM(J,4) 00089
WRItE (34,1007) 00090
W#1734,1004) CI1,11=MINFAP.MAXYFAP 00091
WRIT!(34,1005) 00092
Lc=o 00093

J.i,NCROP 00094LCLC+1 00095
1Lr.EQ.5) 61,60 000QA

61 LC0 00097
WRIIE(34,1005) 00098AD WPI4,1006)(RNAM(J,JJ),JJ,3),(YTLD(J,I),1).jvAR) 00099
WPIT(34,100R) 00100
WR11F34,1004) (IT,tT.MINEAR,wAXYrAR 00101
W1!(34!100S) 00102DC 70 jal,NCRCP 00103

fLC.1 00104IF(LC.0,S) 71,70 0010571 LQ 00106
WPTTF(34,1005) 0010770 WD!1F(34,1009)(RNAM(J,JJ).JJ.1,2).(G9OSS(J,I),I$1,NAP) 0008

1000 FRMA1(2I2,2t4) 00109
1001 FRMAT(4A8)

00110100? FCR)AAI(* YOU CAN NOW CUE YC,,R DATA*) 001111003 RMAT(i ANNUAL AVEPAG CCP DRICFs) 00i121007 FR4AT(*1 ANNUAL AVERAGE CROP Y1ELD) 001131,0R FORMAT(*1 ANNUAL AVERADE DROSS CPP INO&4E*) 001141004 rpMAT(*0#24(* ).10(* *T4)) 00115
14103 FRUAT(* #)

001j61006 F'RMAT(1X,3A8,j0F1O.2) 00I71009 FPMAT(1X,2A8 S/AE*1flF10,2) 001181010 FMT(* *12* t2* *3F15.A* *2AR) 00119
1011 FRMAT(* *12* I *F15.6,304 *)* *2A8* ,S *AR) 001201012 FCRMAI(*1CROP VS CRP CoR CEF 510 Dry 00121* MEAN GROSS *)

00122



Z15

WPITF(i1,1016) 00123
RF4fl(0,10O0) KILL 00124G i (2000,3000,4000),KILL 00125fl0 VRZ)YAR
Yrfl=YR-1.0

00127Y'?=YR-2,0
001?TYP(YR,l.0)/2,0 n0i'

Tc=YRe (YR.1 .0) * (2.0*YP,1 .0) /A0
TrS=(TST**2/YR)/YR1

00131TAP=T/YR 00132
D ?Q0 J1,NCROP 00113

00134
00135?0 ST(J)aO,0 0013A

fl 701 Jrl,NCROP 001370 2o? I1,NYEAR
0013R

S(j)eS(J),GRCSS(J,T) 00140
S CM SSJ) ,GROSS(.I,I)**2 00141fl2 ST(J) vST(J)+r,RCSS(JT)*I 00147
XRAR(j)S(J)/YR 00141
SS (J)=(SS(J)-S(J) **/vR) /YP1 00144
ci (j (ST(J) -StJ)T,YR) /YR1 00145RCJ)ST(J)/TCS 00146
A(J)*XBAR(J)HCJ)*TRAR 00147
TcTATCJ)aB(J)/SQRT(CSS(J)_RJ,*ST(JH/(TCc*vR2)) 0014QDC 203 I1,NYEAP 00149703 GPCSS(j,I)GRCSS(J,T)-A(J)-ACJ)*t 00150701 CrMTjrItPE

00151
WRITF(34,1021) 00152
WPTTF(34,1022)

00153DO 2 J=1,NCRCp 00154SS)SQRT(SS(J)) 0015506 Wp7Trç34IO19) (RNAM,JJ),JJ.f,2),xPAR(J)s$(J) DO1SA1.071 FCRMAT(*l MEAN AND 5TANOAPD DEVIATION OF GROSS TNMF*) 00157102? FCRMATC0NAME CF CRP30* #*MEAN *10(* *)*STO rEV*) OOISR
WRITF(34,1017) 00159
WRITE(34,101R) 0016QDC 204 J=1,NCROP

00161204 WRITF(34,1019)CRMAMCJ,JJ),JJ.1,2).A(J),B(J),TSTAT( fl 00167WRITEC34,1020)
00163Wq1TE34,1004) (II,TTTMTNYEAR,MAXYFAR 00164Doó J1,NCROP
00165205 WRIIF(34,1009)(RNAM(j,JJ),JJz1,2),(GPCSS(J,I),I.l,MVEAP) 001661017 FOPMAT(*IREGRESS!ON ON TTME*, 00161loiR FORMATC*ONAME CF CROP30(* #ALPA * ooiI1P( *)*RETA *13 )*T-STATtS1'IC) 001691ol FCRMAT(1X,2A8*SS/ACF *376.6) 001101020 FCRMAT(#1DEVIATICNS CF ATUAL GROSS INCOME FROM FXPrCTED* 001711* GP$S INCCME*)
001721016 THE GROSS TMCOMFSTATEMEP.)T IS PREPARED / 00173

_FORT(*
1* F you WANT To CWrCK nATA +YPE oi */ 001747* IF' you WANT ORDINARY CORRELATION TYPE ..02._*/ 001753* F' YOU WANT TO RMCVE THE TIME INFLUENEE TYPE o- */ 001764* TYPE THE NtIMBEP TN AN 'q!2 FIELD ) 00177300 D jon J=1,NCROP

00178100 S!JM(J).0,0
00179Do !,i 1.1,MYEAR

DO mi J1,NCROP
00181tot SUM(J)RGROSS(J,I).SUM(J)

CALL ARRAY(2,NCROP,NyEAR,50,Ifl,GRCSS,GRCSS) 00183
CALL MTRA(GROSS,TGRCSS,NCpOP,NYEAR,0) 00184
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CALL MpR0(GRCSS,T(ROSS,XXTXX,NCR,NYEAR,0,0,CiP1 001
CALLl1PASUM,TSJP,NCPOP,l.0)
CALL MPPflSIJM,T5tIM,YTX.NCPOP,1,0,0,NCROP) OO1R7
YFAR'JYEAR 00)RRyAR=1 ./YEAR 001P9
CALL SMPY(XTX,YEAR,YTX,NCROP,CROP,0) 001fl
CALL 'ASUR(XXTXX,XTX,CORR,WCROP,4CPOP,0,Q
YFARJYFAR 00192YrAQ1./(YAR-1.) 00193
CALL SMPY(COPP,YAR.CCRR,NCPOP,NCROP,0) 00194CALL ARRAY(1,NCRP,.ROP.50.c.COPP,CCRR) 00IIn? j1,NCRCP 0019

001971'l? STDCJ)SQRI(CCRP(J,1)) 0019P
0 Tn3 Js1,NCROP

001Q
103 T1,NCROP 00200

I13 CORP(J,I)CRR(J,I)/STD(T) 00?fl1
r 104 11,NCRCP 0020200 1ñ4 jl,NCROP

1fl4 C0RR(j,I)CCRP(J,I)/STD(J) 00?04WPITF(2) CORP 00205YrAPgNYAR oon00 105 jal,MCROP O0?071n5 XRAPJSUM(J)/YFAR 0020PLCO
nopoqLrC=ô
00?10

WPTTF(34,1012)
00?l1WPIT(34,1005) 00212

D 1ñ6 I1,MCROP 00? 1300 106 JI,NCROP 00214LCLC1 00215LCCLCC.1 00?tIF(LC.FQ.5) 107,1OR 00217107 L0
OO2IRWiT34,1005)
00219jnP IF(Lr.C.E0.45) 109,10 002201rQ LCQ 0022LCCO 002!

WPITF(34,10l2)
0022HO !F(!.E0.J) 111,112 00224111 WP1TF(34,1010)I,j,CRR(J.T),S1DJ),XRAR(!), 002251(RNAMU,I1>,II1,2) 00726

GO 106
00227112 I,J,CORP(J,I) , RNAMfI.tT) ,111,2), 00?_WE(34,1011)

I (PNAM(J,JJ),JJ1,2) 00229mA CONTNIJE 00230999 00?190 WRITE'(61,1013)
00232GJ 999
00233OQI WPITE(61,1014) 002347 999 002352000 WRITc61,1OO2) 00236n3 FpRMAT* THERE 1$ A CARD ERROR IN THF PR1E jNPU+* 002371fl14 F0RMAT( THERE IS A AR0 ERROR IN TWF yI.r pPUT* 00239Q9 CALL EXIT
00Z39END
00240




