AN ABSTRACT OF THE THESIS OF

Leonard Bauer for the Doctor of Philosophy
(Name) (Degree)
in Agricultural Economics presented on  June 26, 1970
(Major) (Date)

Title: A QUADRATIC PROGRAMMING ALGORITHM FOR DERIVING

EFFICIENT FARM PLANS IN A RISK SETTING
Abstract approved: - Redaicted for Privacy
Frank S, Conklin

The main focus was on developing an algorithm and supporting
computer programs for use by extension personel to counsel farm
managers on problems of enterprise choice.

Investigation was initiated from the complete certainty viewpoint
of linear programming, Upon introducing uncertainty, ramifications
of changing expected income, variance and the correlation coefficient
between enterprises were explored. This was extended to develop a
quadratic programming algorithm which resulted in complete algebraic
specification of the efficiency frontier through integration of the
Lagrangian multipliers.

The Von Neuman-Morgenstern utility analysis framework was
posed for selecting the best alternative but dismissed as being cum-

bersome for practical application, A probability of loss function

which places confidence intervals about the income level of each




alternative was used since it is more amenable for application by ex-
tension workers.

Data requirements were found to be no more difficult to satisfy
in the quadratic programming model than in the presently used linear
programming models. The triangular probability distribution was
used in obtaining subjective estimates for the mean and variance of
prices and yields. Subjective methods for deriving covariances be-
tween incomes from farm enterprises were discarded as being difficult
to administer and subject to inconsistencies. A regional correlation
matrix was used from which specific covariance estimates for individ-
ual decision problems were computed.

Seven cases were studied as a test of the computer programs and
the algorithm. Four of these cases were submitted from actual farm
situations by an extension agent., Output from the computer provided
each farmer with a report containing the composition of every efficient
plan, the pattern of resource use, the shadow prices of limiting re-
sources and confidence statements about achieving certain levels of
gross margin, The report was presented in tabular form, in graphic
form and as a set of algebraic equations, Although no extensive test
of acceptance by farm decision makers was made, results with the

four cases studied appeared encouraging.




@ 1971

Leonard Bauer

ALL RIGHTS RESERVED




A Quadratic Programming Algorithm for
Deriving Efficient Farm Plans
in a Risk Setting

by

Leonard Bauer

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Doctor of Philosophy

June 1971




APPROVED:

Redacted for Privacy

Ass1stant Professor of Agricultural Economics

in charge of major

. 77
Redacted for Privacy

Head of'Department of Agricultual Economics

o

Redacted for Privacy

Dean of Graduate School

Date thesis is presented June 26, 1970

Typed by Barbara Eby for Leonard Bauer




ACKNOWLEDGEMENT

It was through the help of many individuals and groups that this
work was made possible. Dr. Frank S. Conklin gave more than is re-
quired of a major professor by his encouragement and counsel through-
out the study and especially in the latter stages of writing. Farmers
and fellow extension workers in Alberta, Canada provided me with
practical insights to the problem and Dr. Lloyd C. Rixe at Montana
State University first exposed me to decision theory. Dr. Albert N.
Halter of Oregon State University increased my knowledge of the theory
and farmers in Oregon provided the testing ground for the program
developed. The agricultural economics faculty and graduate students
served as a sounding board and a source of new ideas. Mr. Stan
Miles, Mr. Hugh Hickerson and Dr. Gene Nelson were of assistance
in data collection and report design. Mr. Doyle Eiler made a major
contribution in computer programming. The Computer Center pro-
vided a grant which made possible the writing and testing of the com-
puter programs. To all of these individuals and groups I owe a great
debt.

Finally, I must acknowledge the patience and sacrifice of my

wife, June, my sons, Jim and Larry and my daughter, Judy, during

our time in graduate school.




TABLE OF CONTENTS

1. ENTERPRISE CHOICE UNDER UNCERTAINTY -
HISTORICAL AND PHILOSOPHICAL DEVELOPMENTS
Advising Under Uncertainty - A Gap
Evolution of Theory and Operational Planning Tools
Philosophy and Mechanism. for Giving Planning
Advice
Problem and Purpose - Narrowing the Gap
Objectives of the Study
Plan of the Thesis

1I. THE ENTERPRISE SELECTION PROBLEM -
METHODOLOGY FOR ITS SOLUTION
The Traditional Certainty Case
The Theory - Static Certainty
Empirical Tools
The Econometric Production Function
The Partial Budget
Linear Programming
Assumptions of Linear Programming
Enterprise Selection Problem in a Linear
Programming Setting
Specification Problems in Linear Pro-
gramming
The Uncertainty Case
Theoretical Consideration
Utility Theory - The Preference for and
Aversion to'Risk
Feasible Enterprise Choices
Efficient Enterprise Choices
A Mathematical Technique for Deriving
Efficient Choices
A Numerical Example
Methodological Complications and Their
Resolution
Shadow Prices - Implications of Changes in
Constraint Levels
Most Risky Alternatives
Selecting the '"Best!'' Plan
The Von Neumann Morgenstern Utility
function
Probability of Loss Function

DN bt

0 4 o~

10
10
13
13
14
14
16

18

21
23
23

23
30
32

48
48

65
73
80
81

81
86




III, THE GENERAL MODEL - ENTERPRISE SELECTION

UNDER UNCERTAINTY 91
Algorithm for Solving the Generalized Enterprise
Selection Problem 91
Description of the Model 91
Solving the Model 92
Slack Variables 92
Lagrangian Form and Kuhn- Tucker Conditions 96
Matrices of First Order Conditions 98
Partitions to Facilitate Inversion 98
Limits on Expected Income 105°
Change of Basis 107
Identifying the Maximum Attainable
Expected Income 112
Complications in Solution of the Model 113
The Initial Basis 113
The Zero Correlation Case 113
The Non-Zero Correlation Case 114
Positive Lower Limits on Real Activities 115
The Efficiency Frontier and Activity Equations 116
A Summary of the Algorithm 120
Parameter Estimation 124
Gross Margin - Defintion and Assumptions 125
Estimated Expected Values and Variance of
Gross Margin 128
Estimating Covariances 133
Iv. EMPIRICAL EXAMPLE AND RESULTS 139
Algorithm Development--Accuracy and Efficiency
Comparisons 139
Tests of Applicability - Four Case Studies 141
Problem Specifications and Data Collection 141
Report and Interpretation of Results 145
Operational Costs 165
V. SUMMARY AND CONCLUSIONS 166
BIBLIOGRAPHY 170

APPENDIX A - LAGRANGIAN MULTIPLIERS AND
TRANSFORMATIONS 174

APPENDIX B - PROOF OF ASSERTIONS 179

APPENDIX C - FORMS FOR OBTAINING COST AND
INCOME ESTIMATES 187




APPENDIX D - COMPUTER PROGRAMS
Program INPUT
Program PROCESS
Program OUTPUT
Program CORRELATE

191
192
198
203
213



2.11

2.12

2.13

2.14

2.15

LIST OF FIGURES

The linear programming problem,
Utility function for an individual who prefers risk,

Utility function for an individual who is a risk
averter.

Utility function for an individual who is risk
neutral,

Indifference curves for an individual who prefers
risk (increasing marginal utility for money).

Indifference curves for an individual who is a risk
averter (decreasing marginal utility for money).

Indifference curves for an individual who is risk
neutral (constant marginal utility for money).

Iso-expected income and iso-variance in two
dimensions,

Expected income and variance in three dimensions.
Activity level equations.
The efficiency frontier,

Behavior of the variance ellipse and expansion path
with changes in the correlation coefficient,

The variance ellipse and expansion path in the highly

positive correlation case,

Page

20

26

26

26

29

29

29

34
36
39

39

43

44

Behavior of the efficiency frontier with changes in the

correlation coefficient,

Behavior of the iso-expected income line and the
expansion path with changes in the expected income

of Yl'

45

47




Figure Page
figure L2age

2.16 Quadratic programming problem in two dimensions. 50
2. 17 Constraint set of the quadratic programming prob-

lem in three dimensions. 51
2.18 The complete efficiency frontier as a result of

adding a constraint. 64
2.19 Quadratic programming model - high positive

correlation, 66
2. 20 The efficiency frontier as a result of trading con-

straints. 74
2,21 Response of variance to changes in expected income. 77
2,22 Response of variance to changes in constraint levels. 77
2.23 Shadow prices - the response in expected incomes to

increases in resouce levels. 78
2,24 The complete set of feasible alternatives. 82
2, 25 "Best' choice for risk preferring individual, 87
2, 26 "Best' choice for risk averting individual. 87
2. 27 ""Best' choice for risk neutral individual, 87
2,28 Probability of loss function, 88
3.1 The valid range of expected income. 106
3.2 Quadratic model with positive lower limit con-

straints. 117
3.3 Efficiency frontier with positive lower limit con-

straints, 117
3.4 The triangular probability distribution function. 130

3.5 The triangular cumulative distribution function. 130




Table

4,2

LIST OF TABLES

Problem dimensions and computer costs,
Monthly cash flow statement.

Composition of an intermediate plan.




A QUADRATIC PROGRAMMING ALGORITHM FOR
DERIVING EFFICIENT FARM PLANS
IN A RISK SETTING

1, ENTERPRISE CHOICE UNDER UNCERTAINITY -
HISTORICAL AND PHILOSOPHICAL
DEVELOPMENTS

Advising Under Uncertainity - A Gap

Applied Farm Management by extension personnel has tradition-
ally been of a prescriptive nature. Risk and uncertainty largely have
been ignored. ! Input and product prices and technical coefficients
have been assumed to occur with certainty. In general these coeffic-
jents have either been projections of historical data or expected values
(a long run implication) of random variables, Partial budgets and
linear programming have been the principal pla‘nning tools used in this
problem-solving framework,

Extension workers sometimes are perplexed to find that clients
do not implement recommendations based on that combination of activ-

ities which will achieve a maximum expected net income. Often the

1Often the term 'risk!" is reserved for describing future events
which can be predicted in an actuarial sense and ''uncertainty'' is used
to describe future events about which such empirical predictions can
not be made., In this thesis no such distinction between the two terms
will be made. Risk and uncertainty will be used interchangeably to
mean that the occurance of a future event is not known with certainty
but the decision-maker has, onthe basis of historical information or a
subjective feeling, some notion about the probability distribution of
the event,




client has chosen some modification that results in an income level
less than the optimum perceived by the extension worker.

This raises a question about the applicability and completeness
of extension advice, Might it be that the extension worker perceives
the decision maker's goals and objectives differently from what they
in fact are? Might this not be further magnified in an environment of
uncertainty where the decision maker stands the chance of economic
&isaster? It is not so much a lack of theory that inhibits the solution

as it is in operational tools,

Evolution of Theory and Operational Planning Tools

During this century there has been rapid development of theory
and tools to solve management problems. Although there were some
writings (46) prior to the 1920's, it was not until J. D. Black wrote

his now classic book Introduction to Production Economics (3) that

there emerged a systematic treatment of economics which focused

on the use of marginal analysis criteria in agricultural decision mak-
ing. In his book, Black incorporated the ideas of: (a) statistical
methods applied to production relationships by Spillman (40); (b)
statistical analyses using individual farm survey data by Tolley, Black
and Ezekiel (42) and; (c) neo-classical theory of the firm, This

marked the birth of experimentalist philosophy in agricultural



economics, a blend of the empiricist2 and rationalist3 schools (27).
The experimentalist philosophy began to grow in the 1930's nurtured
by developments in the field of general economics including the contri-
butions of J. R. Hicks (22) who applied basic concepts of mathematics
to the theory of the firm, Developments in agricultural economics
followed with Heady's (19) integrative work in the late 1940's, which
was continued into the 1950's and 60's by his disciples., Once the con-
cepts of marginal analysis were refined and adopted for use, interest
of several agricultural economists, including Johnson (28) and Halter
(16) focused on the management processes of farmers,

While developments described above were taking place, a new
field called operations research, conceived by engineers, mathemati-
cians and statisticians was taking form. A major contributor to oper-
ations research was Dantzig (9) who in 1947 devised the simplex method
for optimizing linear functions subject to linear constraints, This tool
became known as linear programming. It was soon adopted for use in
agricultural economics because of its operational depth and simplicity
in solving production problems. In 1958 Dorfman, Samuelson and

Solow (11) provided an economic interpretation to linear programming.

2The empiricist philosophy is predicted on collecting ''facts')
unhampered and unbiased by considerations of theory.

The rationalist philosophy contends that questions of theory
must be answered before facts are worthy of consideration,




In that same year Heady and Candler (20) published their widely used
text book on applications of linear programming to solving economic
problems in agriculture,

Also during the 1940's, a most productive era for economics,
Von Neuman and Morgenstern (44) revived the concept of cardinal
utility4 and introduced the theory of games, This rekindled an interest
in problems of risk and uncertainty which had been discussed in the
1920's by Knight (30) but had lacked a practical mechanism for appli-
cation, A theorem concerning probabilities, proven nearly two cen-
turies ago by Thomas Bayes, an English mathematician and clergyman,
was brought to bear on decision problems. Since the 1950's, increased
emphasis has been placed upon theory., The names of Wald (45),
Hurwicz, as cited by Luce and Raiffa (32, p. 492), and Friedman and
Savage (15) stand as important contributors to the theory, Halter and
Dean (17) give an excellent treatment of the present state of decision
theory and its application to agriculture,

Computer technology development became an important precursor
of another new approach--simulation and systems analysis. Forrest-

er's (13) Industrial Dynamics is a notable contribution in this area,

The computer age made it feasible to perform the vast number of

4Neo-clas’sical economists in the 1930's substituted ordinal util-

ity analysis using indifference curves for the cardinal measure of
pleasure and pain envisioned by the classicists. Ven Neuman and
Morgenstern's concept of cardinal utility was something different. It
involved a preference ranking of risky alternatives,



calculations, thus permitting widespread adoptions of the new techni-

ques.

Philosophy and Mechanism for Giving Planning Advice

Concurrent with advances in economic theory and methodology,
institutional structures emerged which fostered the dissemination of
knowledge. Passing of the Smith-Lever Act in 1914 established the
Co-operative Extension Service which had as an objective ''---to aid
in the diffusing among the people of the United States useful and prac-
tical information on subjects relating to agriculture and home econom-
ics, and to encourage application of the same---" (43, p. 343).

The extension worker serves as a resource upon which the de-
cision maker can draw to perform his function of management, Brad-
ford and Johnson (5, p. 3) define management as a set of steps in the
process of thought and action.

"Management is the intangible part of production which devel-

ops within the lives of men, It is first a mental process, a

concentration of desires, a will power, Management functions

when a farmer is (1) observing and conceiving ideas; (2) anal-
yzing with further observation; (3) making decisions on the
basis of the analysis; (4) taking action; and (5) accepting re-
sponsibilities, Management can be seen only through observ-
ing the decision making process and its results, "
1t is generally accepted by agricultural economists that the place of
the extension worker is in the steps of observation and analysis, His

function is to provide information and present alternatives. He aids in

problem definition and raises relevent questions; but making the
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decision is clearly outside his domain. In practice there is not always
a sharp line between presenting alternatives and choosing a course of
action from among them., However, the distinction between the domain
of the decision maker and that of the advisor is clear in the fifth step
of accepting responsibility. The decision maker must live with the
consequences of his decision whether the result be success or failure.
While the traditional theory postulates economic man as one whose ob-
jectives are to maximize profit within a static dimension, the possibil-
ity of financial ruin may cause a real world man to behave in a much

different manner,

Problem and Purpose - Narrowing. The Gap

Despite advancements in decision theory, there has been only
minor implementation of planning techniques that account for uncer-
tainty (41). Most planning techniques presently in use assume static,
certainty conditions. The objective of the decision maker is taken to
be maximum profit, usually measured as net income, or return to
labor and management. Solutions are generally given as a single best
plan, i. e, the one which results in maximum profit. Although an aura
of certainty surrounds the advice, the farmer may be given an esti-
mate of income variability associated with the plan, Furthermore
advice is often concluded with the statement, '"This plan is only a

guide and you should apply your own judgment about how to use it, "




The farmer, if unversed in the particular analytical technique used
must either follow the advice blindly or be confused as to how he
should apply his judgment, |

Farm management text books generally give a superficial treat-
ment to the topic of farm planning in the face of uncertainty. They
leave off with the notion that it is unwise to ''put all of your eggs in one
basket, ' Very little is said in a positive way about how one might
determine the proper number of baskets, or how to select the eggs to

be placed in them.
Objectives of the Study

A gap exists between theoretical developments in problem solv-
ing under uncertainty and methodology for application of this theory in
a practical setting, This study will attempt to narrow that gap. The
prime objective is to develop a planning technique which actively5
accounts for uncertainty, Focus will be on the enterprise selection
problem with the basic method coming from Markowitz's (34) portfolio
selection criteria designed for use by investment consultants. This
problem in security analysis has much in common with the agricultural

problem of choosing the ''correct'' combination of enterprises. The

5The term ''active' distinguishes this approach from the term
npassive'' which refers to giving a single plan and including a state-
ment about its income variability.




similarity has been recognized by Freund (14), Carter and Dean (7),
How and Hazell (26), Boussard (4) and others, For methodology to
be operational from the decision makers point of view it should possess
several characteristics including (a) the problem it is designed to
solve must exist in the real world and answers must be worth at least
as much as the cost of getting them, (b) the decision maker for whom
the program is designed must recognize that he has the problem and
must be able to provide data for its solution, and (c) the answer to the
problem must be presented in such a form that the decision maker can
understand the various suggested actions. The development of operation-
al tools which focus onenterprise selectionunder uncertainty remains to

be solved and it is to this end that the thesis is directed.

Plan of the Thesis

Chapter II initiates the inquiry with a review of ecnomic theory
under the assumption of certainty which is later relaxed to account for
crucial issues of uncertainty. The problem is first formulated in a
linear programming framework., Then as the concepts of uncertainty
are introduced, ''deterministic'' assumptions of the linear model are
relaxed. This reformulation results in a quadratic programming
model. A two enterprise example is used to illustrate the transition
from traditional non-stochastic linear programrning to a more real-

istic model of quadratic programming.
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Chapter III focuses on operational aspects for implementing the
quadratic model. An algorithm, with supporting computer program is
first developed. This is followed by problems of parameters estima-
tion. Requirements of accuracy, efficiency and simplicity in result
interpretation are borne in mind as the development proceeds.

Empirical testing is undertaken in the fourth chapter. This test
is restricted primarily to the computational accuracy and efficiency of
the algorithm, General conclusions and suggestions for further invest-

igation are the topic of the fifth and final chapter.
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II, THE ENTERPRISE SELECTION PROBLEM -
METHODOLOGY FOR SOLUTION

The enterprise selection problem is one of several issues which
economic theory seeks to answer, This is the question of what and
how much to produce. Initially, this chapter will examine the tradi-
tional certainty case employing the theory of production and marginal
analysis, These restrictive assumptions will be relaxed so that a
solution, first in the certainty case and finally in the uncertainty case,

will become operationally possible.

The Traditional Certainty Case

The Theory - Static Certainty

The theoretical framework within which the short-run enterprise
selection problem is solved comes directly from the theory of produc-
tion in a purely competitive market. Here the decision maker is
assumed to have perfect knowledge about factor and product prices but
does not have sufficient control in the markets to exert a pricing in-
fluence, Further, it is assumed that this perfect knowledge extends
to the technical relationships between factor inputs and resulting pro-
ducts., These relationships are expressed mathematically in a pro-
duction function (21, p. 72-75). The decision maker is left to choose

that combination of input and corresponding output levels which




where Y is profit

11
maximizes his profit. Mathematically he is required to solve the

following maximization problem:

n m
6
. - - Y
Max: Z piyi Z rjxj
i=1 j=1
S T-7 F( X ,*,x )=0
. . Yl, ) Yn, 1, ’ m - (2.1)

y. is the output of the ith product and P; its price
x. is the input level of the jth productive factor and rj its cost
F is the production function stated in implicit form and chosen
so that the non-negativity restrictions always held.
This set of simultaneous equations is usually solved through the appli-
cation of Lagrangian multipliers. The Lagrangian function (2, 2) is

formed and then partially differentiated with respect to its arguments.
n m
R(Y, X, \) = Z p.Y. - rjxj - X[F(Yl""’ Yn, xl,"',xm)]
i=1 j=1
(2. 2)

where M\ is the Lagrangian multiplier,

6

The abreviation '""Max:' denotes maximize.

7
The abreviation 'S, T:'" denotes subject to.
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This establishes the first order condition for an extremum as shown

in (2. 3).

The sufficient condition for the extreme value of Y to be a

maximum is that the matrix of second order cross partial derivatives

is negative definite when evaluated at the optimizing levels of y and

x. It is assumed that the production function is of such a nature that

the second order condition holds,

— =p.-AT— =0 i=1, ,h
ayl ! E)Y:'L
9R oF .
= - — = b0 2.3
ox, i )‘a j=1,¢,m (2. 3}
1
R

, .ee = 0
F(Yl, b4 Yn, xl, b4 xm)

Solution of the system of Equations (2. 3) demonstrates a funda-

mental concept of economics--namely the principle of equimarginal

returns,

(a)

(b)

The principle states that in order for profit to be maximum:
the rate of transformation between any two products must
equal the ratio of their respective prices. Mathematically

this is:
-— = e (2. 4)
the rate of technical substitution between any two factors of

production must equal the ratio of their respective costs,

Mathematically this is:
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90X, rs
== = (2. 5)
ox r,
s ]
(c) the marginal factor cost of any factor of production must
equal its marginal value product. Mathematically this is:
ayi
rj = Pirn. (2.6)

Although all of the Equations (2.4),(2.5)and (2.6 ) must hold simul-
taneously, the relationship expressed in Equation (2.4) directly answers
the question of what and how much to produce, the central issue of

this thesis.

Empirical Tools

The Econometric Production Function

The theory of production is rich in explanatory hypotheses about
economic phenomena and provides a rigorous framework within which
to ''think through' economic problems. However, as an operational
tool it departs substantially from reality for providing specific an-
swers to a particular firm on questions of input and output levels. As
Dillon (2,p.103) points out, the estimation of response surfaces is beset by

difficulties, not the least of which are statistical problems of design

and measurement. Variability in response over time and space
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further complicates the issue, These contribute to discrepancies that
exist between results obtained under controlled investigation and an
actual farm situation. Most response surface experimentation has
been conducted on a multiple input, single output basis. Data are
generally analyzed using a multiple regression routine with a single
equation model, This virtually eliminates investigation of joint pro-
duct relationships which form the very heart of the enterprise selection
problem. Intent of these remarks is not to discredit inter-disciplinary
work done on investigating production processes. Such work has pro-
duced many insights into agricultural production problems. However,
important as these functions may be for providing some of the data
useful in farm planning, they alone are not sufficiently powerful to

cope with the high level of complexity surrounding many farm units.

The Partial Budget

In the early stages of empirical tool development many opera-
tional difficulties were assumed away by describing the production
process in terms of straight line segments. The process was called
partial budgeting. It provides the simplest form of a linear production
function and is probably the most widely used empirical tool even
though it is not always presented in a formal written manner. The
main philosophy underlying the partial budget revolves around three

equations:
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(2a) ADDED PROFIT ADDED RETURNS - REDUCED RETURNS

(b) ADDED PROFIT REDUCED COSTS - ADDED COSTS

(c) ADDED PROFIT ADDED RETURNS - ADDED COSTS

Although there are no optimizing criteria built into the partial budget
as such, it is of interest to note that these equations do have a firm
basis in the fundamentals of profit maximization; see Equations (2.4),
(2.5) and (2.6). The usual method is to construct a number of partial
budgets and then compare the projected outcomes, i.e. added profits,
from each., The highest paying alternative, after due consideration is
given to other important factors not explicitally included in the budgét,
can then be chosen.

Introduction of high-speed computers and diligent efforts by
Danzig (9) and others added, an optimizing technique to the rather
simple notion of partial budgets thereby producing the now well known

technique of linear programming.

Linear Programming

Linear programming is a mathematical concept defined as the
optimization (maximization or minimization) of a linear function in

several variables subject to a set of linear inequality constraints

(11, p. 8).
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Assumptions of Linear Programming

Since there is an abundance of writing on the subject of linear
programming both with respect to theory and application, a detailed
review will not be pursued here. Naylor (35) gives a particularly clear
and concise treatment of the relation between traditional theory of the
firm and linear programming. Certain assumptions about the relation
between inputs and outputs are basic to linear programming. It will
suit the purpose here to reproduce only its essential features.. The
list is adopted from Hillier and Lieberman (23). The basic assump-
tions are:

Proportionality: If one unit of the ith activity requires one unit

of the jth resource, then two units of the ith activity will require
two units of the jth resource. In terms of the calculus this means
that the marginal physical productivity of the jth resource in the
ith activity is constant over the interval of concern. At first
this appears to be a rather serious limitation of the model,
especially in view of the so-called principle of diminishing re-
turns. However, it is possible to preserve the essential non-
linear features in many cases through specification of several
activities over an appropriate size range.

Additivity: Engaging in one activity will in no way affect the per

unit profit of any other activity, nor will it affect the per unit
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resource requirement of any other activity, In the Carlson 6,
p. 79) sense there is technical and economic independence be-
tween every pair of activities, between every pair of resources
and between all resources and activities.
Divisibility: Resources and activities must be perfectly divisible,
The implication of this assumption is optimum output levels and
their corresponding levels of resource use need not be in whole
numbers. For instance the solution may require that there be
10-1/2 sows rather than 10 or 11. Unfortunately there are no
good techniques to know, in general, whether to round up to 11
or down to 10 so as to minimize departure from the optimal
combination,

Deterministic: The linear programming model treats all of the

coefficients as though they were constants occuring with certain-
ty. In dealing with reality, it is seldom, if ever, that such a
degree of certainty exists. In actuality, the coefficients are
expected values of some random distribution but treated as

though they were non-stochastic,

To resolve this difficulty one must go to the more elaborate
integer programming methods which are not yet highly developed.

9It is usual to use the expected value of the random variable,
although in some cases it may make sense to use the most frequently
occurring or modal value.
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It is unlikely that there exist any situations that completely satis-
fy the assumptions of linear programming. However, there is a broad
set of management problems that come sufficiently close such that the

linear model gives reasonably satisfactory results.

The Enterprise Selection Problem in a Linear Programming Setting

The enterprise selection problem can be stated formally as the

linear program:

n
Max ZHiyi = Y
i=1
n
. T: ..y, < G, j =1, 000, 2,
S. T Zalin_GJ j=1 m (2. 7)
i=1
Y i O l:l,ooo,n

where Y is total net income
y. is the level of the ith activity
u, is the net income per unit of the ith activityl
G. is the amount of the jth resource available
a.. is the amount of the jth resource used in producing one unit
of the ith activity,
To examine some implications of linear programming in the

enterprise selection problem a numerical example has been chosen,

0
Net income is defined as the return above variable cost,
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A farmer has the opportunity to grow any combination of two crops as
long as he does not use more than a total of four acres of land or six
hours of labor, After deducting variable costs, crop one (yl) will re-
turn one dollar per acre, Crop two (YZ) returns two dollars per acre,
It takes one hour of labor to grow an acre of the crop one and three
hours for an acre of crop two. This information is known with certain-
ty. The farmer wishes to get maximum return above variable cost,

The problem stated in linear programming terms is:

Max: Yl + Zy2 = Y

S.T: y. + 3y, < 6
1 2 (2. 8)

A

A + Y, 4
v Y, 20

The graphic solution to this problem is found in Figure 2.1. Any
point in the area obb', or on its boundary represents a possible choice
as far as land is concerned. Likewise any point in the area oaa’', or
on its boundary represents a possible choice as far as labor is con-
cerned, Any point in the areas adb or b'da', or on their upper
boundaries are infeasible, because such a combination would exceed

the 'qu'antity of labor or land available, Any point lying on or within

oadb' represents a feasible choice, The line cc' indjcates

11 This simple problem will be made more elaborate in succeeding

sections as the concepts of risk are introduced. It is the intent to
provide the reader with a smooth transition to less familiar ground.
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Figure 2.1,

The linear programming problem,

20
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combinations of Y and Y, yielding the same total return above
variable cost, in this case three dollars. Any line drawn parallel to
cc' and further from the origin represents a higher income. The high-
est income attainable is found on that line running parallel to cc' and
passing through point d. At this point income is five dollars, The
amount of land in crop one (yl) is three acres and in crop two (YZ) one
acre. For those more elaborate linear programming problems which
contain more than two activities, a graphic solution becomes impos-
ible. In such a case an algorithm called the simplex method is employ-
ed to obtain the income maximizing combination of activities, Several
good references are available which present the simplex method in de-
tail, Hillier and Lieberman's book (23) is elementary but thorough.
However, knowledge of linear programming, beyond what has been

discussed here is not essential for the reader to proceed.
Specification Problems in Linear Programming

The objective function in the numerical example of linear pro-
gramming used here was taken to be maximum profit, This is the
usual case in farm planning. Such an objective function may be an in-
adequate specification of the decision maker's goals. It may be that
the farmer has a 'dislike' for some enterprises, even though they
appear to be generally profitable with farmers in the area. For in-

stance, he may simply 'mot want a pig on the place. ' This is eé,sily
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handled by excluding 'pigs'' as an activity or enterprise in the model.

Another specification error might arise as a result of the so-
called work-leisure concept. For a given production function, addi-
tional income can result only if additional labor is applied. As more
work is done, less time is available for leisure. This results in a
distinction between labor and managerial effort as production resources
and leisure, which forms the compliment of labor but is an ingredient
of consumption. This topic is pursued by Skitovsky (38, p. 142-147)
although not in the linear programming context. In a very real sense,
a farmer will wish to put in additional time only if the income derived
from it adds more to satisfaction than is lost from the leisure time
given up. In formulation of the numerical example of Equation (2, 8),
value of additional leisure was assumed implicitly to be zero. This
specification problem, when it exits, can be overcome by incorporating
an amount reflecting the salvage value of labor (28).

Decision making tools must of necessity be forward looking. 1
Consequently a third possible source of faulty specification results
from the deterministic assumption. In real life it is unlikely that all
of the information needed for decision making can be known with cer-
tainty. Even though payoffs and resource requirements of each activ-

ity are stated as parameters, they in fact are estimates--which by

1

2 . . C
Of course analytic use of linear programming is also made
in a posteriori sense,
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their very nature are found only in an environment of uncertainty,

Thus the linear programming solution to the enterprise selection prob-
lem in reality becomes that combination of activities which results in
maximum expected return,

If decision makers were maximizers of expected return, it
would not be necessary to focus attention on the randomness of coeffic-
ients in the model. However, in reality farmers do concern them-
selves with questions of failure and bankrupcy. Therefore it becomes
necessary to set the stage for examining conditions under which a
decision maker is a maximizer of expected profit and the conditions

under which he is not,

The Uncertainty Case

Theoretical Considerations

Utility Theory - The Preference for and Aversion to Risk

In 1943 Von Neuman and Morgenstern (44) reintroduced the con-
cept of cardinal utility, Their concept was quite different from the
cardinal utility of the early demand theory. In the early theory, car-

dinal utility was taken to be an absolute measure of pleasure and pain

3 . .
It may of course be that the estimate is the most frequently
occuring level of per unit profit, ih which case’the objective -
function is to maximize most likely profit rather than expected profit.
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(2, p. 523). The more recent concept was, instead, a preference
ranking of risky alternatives.
The Von Neuman-Mogenstern notion of the utility function pro-
ceeds from a set of basic assumptions which are quoted directly from
Chernoff and Moses (8, p. 82).

nAssumptionl, With sufficient calculation an individual faced

with two prospects P1 and P2 will be able to decide whether

he prefers prospect P1 to P, whether he likes each equally

well, or whether he prefers P2 to Pl.

Assumption 2. If P1 is regarded at least as well as P2 and

P_. at least as well as P

2 3 then P1 is regarded at least as

well as P3.

Assumption 3. If P1 is prefered to Pz’f which is prefered to

P3 then there is a mixture of P1 and P3 which is prefered to

PZ, and there is a mixture of P1 and P3 over which P2 is

prefered,

Assumption 4, Suppose the individual prefers P1 to P2 and

P3 is another prospect, Then we assume that the individual
will prefer a mixture of P1 and P3 to the same mixture of P2
d P_."
an 3
If an individual satisfies the basic assumptions, then for every pros-

pect P there exists a corresponding utility number u(P). If the

prospects represent different levels of income Y then the resultis a
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utility function for income. It has the followingv’properties (17, p. 62).

Property 1. If Y1 is prefered to Y

>
5 then u(Yl) u(YZ).

Property 2. If Y1 occurs with probability p and Y2 with

probability 1-p, then U= E(u(Y)) = p“u(Yl) + (1 -p)u(YZ), where

Y is a random variable and U = E(u(Y)) is its expected utility,

Property 3. The utility function is bounded, i. e. the utility

number to be assigned lies between positive and negative infinity,

Property 4. The utility function is monotone increasing.

From the monotonic property it is known that higher certain
incomes result in greater utility than do lower certain incomes. While
the first derivative is positive throughout, the second derivative may
be positive, negative or zero and accordingly the marginal utility of
income will be increasing, decreasing or constant, The three possible
shapes of the utility function are shown in Figures 2. 2, 2.3 and 2. 4.

If a wide enough range in income is allowed, then the individual's
utility function will include each of the three stages (15).

To permit the utility function to be used for analysis, it can be

expressed as a Taylor series expansion about the fixed point of expect-

ed income E(Y) (17, p. 100).

2 2
w(Y) = wEY)) +[Y-E(Y)] d“‘dEW)) L -E]T dhw(E)
Y 2 2
dy
2 n
" Z L [y-py® 2EX)
' dy (2.9)

n=3
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Taking the mathematical expectation of Equation (2. 9) results in

du(E(Y))

U = E{u(M] = E[wEM)] +E[Y-EWM]—7g

+ E[(Y-E(Y))

2
Z]M (2.10)

dY2

00

1 n
+Z ar E[(Y-E(Y))]

n=3

d"W(E(Y))

ay”

where U is expected utility.

The terms of the expansion are made up of the derivatives of the
utility function and the moments of the random variable, i, e, income,
The first term E[u(E(Y))] reduces to u(E) which is the utility of
expected income, the second term E[Y-E(Y)] is zero, and the third
term

2] dzu(E(Y))

2
dy

E[(Y-E(Y))

is the product of the variance of income and the second derivative of
the utility function evaluated at the level of expected income E(Y). If
the random variable has no moments higher than the second or the
utility function has no derivatives of higher order than the second or
if both conditions hold then the remainder term of the Taylor series
summed from three toinfinity is zero., To permit analysis in the vari-
ance expected income space it will be assumed that either or both of

these conditions hold. Then expected utility becomes a function of
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expected income and variance as shown in Equation (2,11).

2
_ 1,4 u(E)
U = u(E)+2V > (2.11)

dy

where Y is the income variable
E is the expected income i, e, E = E(Y)
u(E) is the utility of expected income
A" is variance of income i,e. V = V(Y)
Equation (2. 11) can be rearranged such that variance becomes a

function of expected utility and expected income as shown by Equation

(2.12).
dzu(E)
vV = Z[U-u(E)]/—Z- (2.12)
dy
For fixed levels of expected utility, say U , variance as a

function of expected income produces an indifference curve. Changing
the level of U results in a family of indifference curves., These

o o

curves are presented graphically as Ul’ U2 and U; on Figures
2.5, 2.6 and 2, 7. The shape of the indifference curves depends upon
whether the individual has increasing, decreasing or constant utility
for income,

The family of indifference curves has the following character-
istics.,

1. For any two alternatives, each with the same variance, the

one with the higher expected income will yield the greater
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expected utility,
2, For any two alternatives, a and b, each having the same
expected income:
(a) where the marginal utility of incomes is increasing the
alternative with the greater variance will yield the great-
er expected utility as shown in Figure 2. 5.
| (b) where the marginal utility of income is decreasing the
| alternative with the lower variance will yield the higher
expected utility as shown in Figure 2.6.
(c) where the marginal utility of income is constant both
alternatives will have the same expected utility as shown
in Figure 2. 7.
These characteristics of the indifference curves are derived
from Equation (2.11) and the monotonic property of the utility function.
It is possible for an indifference surface to exhibit all three forms of
indifference curves,
The theoretical framework for evaluating risky alternatives is
now complete and attention can be directed toward specifying enter-

prise alternatives in terms of their expected incomes and variances.

Feasible Enterprise Choices

Suppose that the income from a particular activity is a random

variable. The profitability of that activity is measured by expected
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. . s . 14 .
income, and its riskiness by variance, No higher moments than the
mean and variance are assumed. The expected income of a combina-

tion of activities is expressed as:

E = E(Y) = zpiyi (2.13)

where p, is the expected income per unit of Vs
i
The variance of income of a combination of activities is express-

ed as:

n n
2 2
= = 0- 2 o— .
VIS ) O¥ 4y ) TGSy, (2. 14)

i=1 i=1j<i

where 0'2 is the variance of income per unit of A
i

r..is the correlation coefficient between the incomes of A

1)

5
and y,.l
J

These combinations of activities or enterprises can be viewed as alter-
natives or plans. There is an infinite number of alternatives, each
having the same expected income but different variances, Likewise

there is an infinite number of alternatives, each having the same

variance but different expected incomes. This raises the question

14The coefficient of variation, the ratio of the standard deviation

to the mean, is a better measure of riskiness, This notion will be
pursued later, ’

15The correlation coefficient r, measures the degree of statis-

ical interdependence between the incbmes of the ith and jth activities.
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'"Is there some rationale whereby this infinite number can be reduced
to a single superior alternative? Its answer is found in the Von

Neuman-Morgenstern utility theory.

Efficient Enterprise Choices

It has been shown that if a decision maker satisfies the basic
postulates of utility theory and is also a maximizer of expected utility,
he will choose from among alternatives having the same variance, the
alternative having the highest expected income. This problem is solved
mathematically by maximizing expected income subject to some fixed

level of variance,

i’i
i=1
n n n
S 0'2 2 0.0 = ) 2
.T: Z B +Z zrijijyiyj =V (2.15)
i=1. i=l j<i

The problem expressed in Equation (2.15) can a:so be stated as

minimizing variance subject to some fixed level of expected income,.
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n n n
16 22
0] =
Min z 01Yi + z Zrij A jyiyj v
i=1 i=1 j<i
S.T: Zpiyi = E (2.16)
i=1
y.>0 i=1, ,n

The form used in Equation (2.16) will be required because of compu-
tational necessity, however, it is proper to view the problem in terms
of E quation (2, 15) because it allows for the three basic shapes of the
utility function.

For graphic interpretation, the number of activities initially will
be restricted to two. A more general model will be introduced later.
To proceed it will be helpful to examine the mathematical form of the
expected income and variance functions, In the two activity case the

expected income and variance equations are:

E = kY, oY, (2.17)
and
2 2 2 2
Vv = 0 0 o
v 1Y1 + 21'0'1 Zylyz + Y5 (2.18)

The expected income function is linear, It is shown graphically

(-]

as line segment cc' on Figure 2.8 with expected income fixed at level E .

16

The abreviation '""Min:'" denotes minimize,.
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Figure 2, 8. Iso-expected income and iso-variance in two dimensions,
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This is an iso-expected income line since any combination of ¥, and
Y, that lies on cc' has the same expected income. Varying the level
of income produces a family of parallel iso-expected income lines, A
fixed expected income level Ec> is presented in the three dimensional
graph of Figure 2,9 as the plane cc'f'f,

The variance function is an elliptic paraboloid(37,p.329). Thisis so
because the correlation coefficient r lies between positive and nega-
tive unity making the term O'f(fz(l-rz) always positive (24, p. 67).

For a fixed level of variance, say Vo the equation can be shown
in two dimensions as the iso-variance ellipse in Figure 2. 8. Varying
the level of variance produces a family of iso-variance ellipses, Such
a family forms the elliptic paraboloid in Figure 2. 9. The correlation
coefficient serves to rotate the ellipses in the RS activity plane,

If r =0, then the degree of rotation is zero and if 0'1 < 02 the Y,
axis becomes the major axis, To maintain perspective in later graphic
analyses the activity with the higher variance will be denoted Y,

Incorporating Equations (2.17) and (2. 18) into the Lagranian

form results in;

2 2 2 2 o
-0 2r0. O v - \[E - .
R(y, 1V, M) +210.0,y.y, +0,y, | MYy HZYZ]

171 1271

(2,19)



Figure 2. 9. Expected income and variance in three
dimensions,
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Partially differentiating Equation (2, 19) with respect to its arguments
and setting the results equal to zero yields the first order equations for

.. 17 )
a minimum. It is momentarily assumed that r is such that the non-

negativity restrictions are fulfilled.

aR
oy

I
o

H

2
20)y, + 210, @

172Y2 T A

]
o

2
— = 2r0.0
0, 2y1+20'2y2+)\p2 (2. 20)

9R °
an oMYy te¥y - B =0
Solving this set of simultaneous linear equations for Y0 Y, .and
A results in a number of relationships which have a familiar counter-
part in production theory. These include the expansion path, the activ-

ity equations and the efficiency frontier,

The expansion path. In Figure 2, 8line cc' is the infinite number

of alternatives having the same expected income but different variance.
The contour vv' represents the infinite number of alternatives having
the same variance but different expected incomes. The tangency of

vv'! to cc' at the point e’ is the combination of yl and v, at where,
for the given level of expected income, variance is as small as poss-
ible, This is the solution to Equation (2.19). Varying the level of ex-
pected income results in a locus of tangency points tracing out the

minimum variance expansion path,

Since variance is a positive definite quadratic form, the suffic-
ient conditon for a minimum is also satisfied.
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This forms the line segment oe' in Figure 2. 8, In the two activity
case the equation for the expansion path derived from Equation (2. 20)
is given by:
o 0. - 0
M1 = ™™

1
y, = &)
2 o, pla

(2.21)
5 -

The Activity Equations, Each of the activity variables are de-

rived from the set of Equations (2. 20) as linear functions of expected

income. In the two activity case the equations are:

0 (0 u - r0
2Oy - 0ky)
no= 202 _ 2000 + ZGZ]E
Mi¥2 ~ 1 2MiM2 THEY
(2. 22)
0 (0 u -r0
-0 Tk - 7000 -
Yo, = 173 2 2

2
0% . 0. O o
BiPa 7 TV Yokt T HY

Graphic presentation of the equations is found in Figure 2, 10,
These equations show the level of the activity (decision) variables for

each level of expected income such that minimum variance is attained,

These equations are analogous to supply functions in production theory.

The Lagrangian form in Equation (2, 19) requires that E be held

fixed at some level E ., However, since any E > 0 will satisfy the
Lagrangian function, E will be looked upon as a non-negative continu-
ous variable in the activity equations. This permits specification of

y. and v, for all possible levels of E,

1
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The Efficiency Frontier, There exists a functional relationship

between expected income and variance which can be specified exactly
in algebraic form by making use of an important but much overlooked
feature of the Lagrangian multiplier., This relationship will be refer-
red to as the efficiency frontier, The Lagrangian multiplier is the
rate of change in the objective function with respect to a change in the
level of the constraint, 18 In the present problem, the Lagrangian
multiplier19 is the increase in variance, attributable to an increment
in expected income. Its algebraic form is:

2 2 2
200 -
01 2(1 r )

dE [202 2r0. 0 + JE (222
BV T 1 2M M2 TR

Like the activity equations, the Lagrangian multiplier is a con-
tinuous function of expected income. Since the Lagrangian multiplier
is the first derivative of the efficiency frontier, its antiderivative or

integral 20 will be the algebraic equation of the efficiency frontier,

18A more detailed interpretation is to be found in the appendix,

Because of the formulation it is actually the negative of the
Lagrangian multiplier that represents the rate of change.

0 . .
Because of the variance form is centered at zero the constant
term in the integral is zero,
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2
20'20'2(1 -r )

2 2r0. 0 + 202
M2 " 1 2M1H2 T HT
(2. 24)
2.2 2
010'2(1 -1 ) 5

[ 26 _ 2200 + GZ]E
B2 ” 1 2MM2 T HY

The curve oe of Figure 2,11 is the efficiency frontier, Every alter-
native whose expected income and variance is given by a point interior
to oe is dominated by an alternative which has the same variance but
a higher expected income, For example point a is dominated by
point b, The efficiency frontier is the locus of expected income-
variance points of dominant alternatives. These dominant alternatives
are the efficient plans from the total listing of the feasible enterprise
choices,

The efficiency frontier is similar to the total variable cost curve
in production theory with variance being analogous to cost and ex-
pected income analogous to output,

The parameters of the variance and expected income equations
have a direct bearing upon the composition of efficient plans and upon
the shape and position of the efficiency frontier, Results of varying
the parameters in the two activity model are stated as assertions,

Assertion 1. As the correlation coefficient r is increased

from O to 1, the variance ellipse elongates and its major axis
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o

rotates in a clockwise direction from an angle 6 = 0 to at

° 2
most 0 = -45 , 1 As r decreases from 0 to -1, the variance

ellipse again elongates but the major axis rotates in a counter
clockwise direction from an agle 0 = Oo to at most 0 = +45°.
Figure 2,12 displays these results,

Assertion 2, As r increases to a number larger than the ratio
of the coefficients of variation of the least risky activity to the
most risky activity, O'i/p_i, the equation of the most risky activ-

ity and the expansion path take on negative first derivatives,

Let this critical value of r where the derivative becomes nega-

da

o
B

tive be denoted r ,

Assertion 3, As r increases from -1 to r" the least risky

activity replaces the most risky one. At values of r greater

than or equal to r’ complete specialization in the least risky

activity will take place, This is shown in Figure 2.13.

e
<

3

Assertion 4, An increase in r from -1 tor causes the
efficiency frontier‘ to rise more steeply with the consequence
that, for any level of expected income the variance is increased.
This is shown in Figure 2, 14.

Assertion 5, An increase in the expected income of an activity

The major axis of the variance ellipse, when r = 0, is the axis
of the activity y, having the smallest variance., All statements con-
cerning the anglé of rotation are made from this perspective,




Figure 2.12, Behavior of the variance ellipse and expansion path with
changes in the correlation coefficient,
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Figure 2,13, The variance ellipse and expansion path in the
highly positive correlation case,

vy
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Figure 2. 14. Behavior of efficiency frontier with changes
in the correlation coefficient,
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will cause that activity to become relatively less risky with the
consequence that it will replace the other activity, This is shown

in Figure 2.15. With further increase in the activity's expected

KA

o<

income r will become equal to r. At that point complete
specialization occurs in this now least risky activity.
Assertion 6. An increase in the expected income of an activity
will cause the efficiency frontier to rise less steeply with the
consequence that for any level of expected income, variance is
decreased.

Assertion 7. An increase in the variance of an activity will
cause that activity to become relatively more risky with the
consequence that it will be replaced by the other activity, With
further increases in the activity's variance r* will become
equal to r . At that point complete specialization occurs in the
other activity which is now least risky.

Assertion 8. An increase in the variance of an activity will

cause the efficiency frontier to rise more steeply with the con-
sequence that for any level of expected income the variance is
increased,

Proof of these assertions is found in the appendix.
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Figure 2.15. Behavior of the iso-expected income line and the
expansion path with changes in the expected income
of vy
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A Mathematical Technique for Deriving
the Efficient Enterprise Choices

A Numerical Example

To tie the linear model and the risk minimization together it is
well to return to the numerical example of the static certainty problem
summarized in Equation (2. 8) and to modify it by accounting for risk.
The profit per unit of activity figures will now be random variables
with expected value of one dollar and standard deviation of two dollars
for enterprise crop one (yl) and expected value of two dollars and stand-

ard deviation of three dollars for crop two (y,). The correlation co-

2
efficient between the incomes of the crops is zero. Crop one requires
one hour per acre and crop two requires three hours., The farmer is
limited to six hours of labor and four acres of land. Production con-
straints and variability of income must be considered simultaneously
in formulating efficient combinations of the two crops., The objective
of this problem becomes one of finding that combination of crops which
will minimize variance for each level of expected income subject to
specified resource constraints, The problem is expressed algebraical-
ly as Equation (2, 25).

Min: 4yf + 9y: =V

S, T: Y, + ZYZ = E (2. 25)

< =
yl+3y2 _Gl 6



>
V0¥, 20 (2. 25)

To illustrate the problem graphically in two dimensions  the
variance ellipse of Figure 2. 8 is superimposed on the production con-
straints of Figure 2.1 with the resulting Figure 2.16. In the three
dimensional case the reader is asked to visualize the elliptic parabo-
loid of Figure 2. 9 superimposed in the constraint set of Figure 2.17.

Because the Lagrangian multiplier technique does not permit
inequality constraints, disposal or slack activities are introduced to

change each inequality to an equality. The transformed set is Equa-

tion (2, 26):
2 2
Min: 4y +9y2 =V
S. T: v, +Zy2 = E
Y, 37, ¥, =G =6
- - (2. 26)
LR Yy =G, =4
Yl —Y5 = G3 = O
2
y " ¥, = Gy =0

>
V3 ¥y Ve Vg 2 0

where Y, represents unused labor

Y4 represents unused land




Figure 2.16. Quadratic programming problem in two dimensions.

0s
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Figure 2.17. Constraint set of the quadratic programming
problem in three dimensions.




Ve and y6 are required by the Lagrangian technique to

insure that the real activities ¥ and Y, will
not become negative,
Equation (2, 26) can now be expressed as the Lagrangian function (2, 27),
R(y, *** )\)\-")\)—42+92)\['E 2y . ]
1T Ve e M TNy T AT H Y, - Al By -2y,
BRI IR S FYRLPI S AR

ARGty -y ] -n FG, ty -y ]

(2.27)
where X\ 0 ' is the Lagrangian multiplier of the expected income
constraint,
)\1"' )\4 are Lagrangian multipliers of the resource constraints,

The non-negativity requirements for the slack variables (y3, y4,
Vg and y6) cause this traditional Lagrangian procedure to break down
because non-feasible solutions occur. This procedural difficulty is
overcome by employing the Kuhn-Tucker conditions (31). These opti-
mality conditions require that if a Lagrangian multiplier is positive
the slack variable must be zero and if the Lagrangian multiplier is
zero the slack variable must be greater than or equal to zero, If the
objective function is a positive definite quadratic form and if the con-
straints are linear then the optimum is also a minimum.

The solution to the constrained variance minimization problem

is obtained by partially differentiating Equation (2, 27) with respect to
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its arguments and setting the results equal to zero. The resulting
first order conditions are shown in Equation (2. 28). The matrix form
is shown in Equation (2, 29). In the matrix it should be noted that
AR/AN 0 has been moved to the position immediately following HR/ayz.
This row and column transposition will prove useful for solving the
system. The solution is obtained by inverting the matrix and appears
as Equation (2.30). Equations for the activity levels, expansion path

and efficiency frontier are obtained by carrying out the multiplication

of the inverted system. These are specified in Equation set (2. 31).

——=8y1+>\0+>\1+>\2->\3 = 0

= 18y2+2)\0+3)\1+>\2—)\4

1]
o
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—_— = - = O
ax Y Yy * Gy

(2. 28)
3R cont,
—_— = - =0
ax, Yot + Gy

Inspection of Equation set (2, 31) reveals some interesting infor-
mation about the problem. Real activities Y and y, are linear func-
tions of expected income. The slope of the efficiency frontier is repre-
sented by -\ 0 It is this equation which can be integrated to obtain the
equation for the efficiency frontier. Slack activities Y30 Yy Vs and Ve
are represented by linear equations also. The equations must be re-
stricted by the value E takes on so that they remain non-negative.

A level of expected income exceeding 50/11 requires more than
the six hours of labor available, This violates the non-negativity re-
striction on Y3 A level of expected income exceeding 100/17 requires
more than four acres of land hence violating the restriction on Yy
Since labor becomes limiting at a lower level of expected income, the
upper limit on E is 50/11. A level of expected income less than zero
would require ¥, and Y, to be negative, a violation of the conditions
of the problem. This is reflected by Vg and y6 being forced nega-
tive if E were allowed to take on values less than zero. If E is
restricted to the interval 0 < E <50/11 the Kuhn-Tucker conditions
are satisfied and variance minimizing combinations of crop one and
crop two are assured, In Figure 2,16 the point e' corresponds to

E = 50/11 and point e corresponds to E =100/17. Butis 50/11




(2. 29)
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v, 7 25 B
8
Y, = 25 B
72
"‘o‘st
33 0
B E(———, =
Y3 25 B+ Gy 110 G =6
17 100
_ e — <——- =
v, s E+G, E<==, G, = ¢
y. = = E-G E>0, G, =0 (2.31)
5 25 3 =Y Mg ¥
-2 E.G E>0, G, =0
Yo = 25 &7 Vg 0 TV Yy T
\. = 0
1
= 0
P
\. = 0
3
N = 0
4

the maximum expected income that can be produced on this farm? It
is not, for the linear programming problem presented earlier showed
that E could be increased to a maximum of five dollars, The question
of how to increase E while fulfilling the minimum variance require-
ment must now be answered,
Even though all of the available labor supply is utilized at the

level of E = 50/11 only 34/11 acres of land are used leaving a sur-
plus of 10/11 acres. Is it not possible that the composition of the plans

could be changed so that additional expected income may be obtained
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through greater use of the surplus land resource? The answer is yes,
It can not be achieved by movement from e' to e since this would
violate the labor constraint but it can be achieved by movement along
the labor constraint boundary from e' to d. This allows a further
increase of expected income without violating any conditions of the
problem. Mathematically this is accomplished by setting V3 the
slack activity for labor equal to zero in the Lagrangian function of
Equation (2. 27). The amended Lagrangian form appears as Equation

(2. 32) with the assurance that the Kuhn- Tucker conditions will be ful-

filled,

R 1 1 t 3 1 ,X ...K
(Yl Yy Yy Vg Ve )‘o 1 4)

—42+92x[E 2y.] -\ _[G 3y.] - _[G
AT SR ol AR FYRR SR AR FY RN P AR SN

- - ty - - -
LR AL PR A
’ (2.32)
The first order conditions are displayed in matrix Equation
(2.33), inverted to produce Equation (2, 34) yielding solution Equation

(2.35). Note that aR/8\ . and 9gR/~\

0 1 have been moved into position

immediately following aR/ayz.
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(2.33)
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Y, :3E-2G1

yzz-E+G1

-7\0=66E-50G1 ,Ezzz/s,Glzé

N, = 66E - 50G, ,E_>_50/11,G1:6
Y3=0

v, = - 2E+G, +G,, E§5,G1:6, G, =4 (2.35)
Vg = 3E-2G, -G, , E>4,G1:6, G, =0
Vo = -E+G, -G, , E<6,G =6 G, =0
A, = 0

A, =0

N, =0

The Equations (2, 35) are linear functions of E Values of E greater
than five would require more than the four acres of available land thus
causing the slack variable A to become negative. Values of E less
than 50/11 would result in the Lagrangian multiplier )\1 becoming

negative and violating the minimum variance requirement. The valid
range of E is established as 50/11 <E <5. The absolute maximum .

level of expected income consistent with the land and labor constraints
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is five dollars as determined by linear programming, The expansion

path, activity equations and Lagrangian multiplier equations resulting

from the two step solution to the variance minimization problem are

shown in Equations (2. 36), (2. 37) and (2. 38).

The expansion path23
8 18
= = < < —
Y2 =910 05V
(2.36)
1 18
= 2 -y, —K< <3
Y2 37 11 =N =
The activity equations
9 50
= == <E < —
vy %25 B 0SE<q
50
= 3E-12, ——< EK<
"1 be T Ese
(2.37)
y = i E O0<E<—
2 25 7 T =T —
50
= - E —<EK<
Y2 o TTSELS
The Lagrangian multiplier equations
_XO = Z—;E, OiE(TS%
(2.38)
A. = 90E - 396 §9<E<5
0 1= =

23
The expansion path equation does not appear directly in the

solution to the system of equations. It is obtained indirectly by elim-
inating E from the activity equations and expressing y, asa func-
tion of Y-
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A, = 0, 0<E<2
(2.38)
A, = 66E - 300, 2X<E<s cont.

The algebraic form of the efficiency frontier is derived by solv-

ing the differential Equations (2. 39) which are formed by the Lagrangian

multiplier,
72 50
dVv = == EdE, 0<E< =
25 Ok, OsE <
(2.39)
dV = (90 - 66G )AE + (-66E + 50G,)dG , 2 <E<5

The anti-derivative or integral of Equation (2. 39) results in the alge-
braic specification of the efficiency frontier as Equation (2, 40)

The efficiency frontier

v - 2g% g<e<
50 -7 1
(2. 40)
50
vV o= 45E2-66EG1 +25c;12, TSE<5 G =6

Figure 2. 18 displays the efficiency frontier graphically as two parabo-
las with d'e'd being nested in oe'e. The curve oe'd is the efficiency
frontier, The segment e'e is a series of points that can not be attain-
ed because of the labor constraint, The segment d'e' is a series of
inferior points dominated by points on the segment oe'd and not part

of the efficiency frontier,
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Figure 2,18,

B

The complete efficiency frontier as a result
of adding a constraint,
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The problem stated as Equation (2. 25) is now solved. A simpli-

fied problem was used to facilitate understanding and clarity. Even in
the simple two activity model procedural complications can arise and

these become the next order of business.

Methodological Complications and Their Resolution

One major difficulty is that the initial basis may be elusive. 1In

assertion two it is noted that high positive values of the correlation

coefficient r caused the expansion path to have a negative slope in the

sk
‘ VoY, plane, In this example r = 3/4 Suppose r = 7/8 rather

1

[ than zero as has been assumed in the example, Then the expansion
path becomes the negatively sloped line segment oe' in Figure 2.19.
This results in a revision of the original example with the minimum

variance objective function becoming

. 2
Min: 4y1 + E—l— y

2
=y, ¥, + 9y, = V (2. 41)

1

The supply of land and labor are not affected by this change hence the
constraint remains the same as before. The Lagrangian function is

set up, its first order conditions derived, and the system is solved

with results appearing in Equation (2. 42).




Figure 2.19. Quadratic programming model - high positive correlation.

99
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3
v = -gE
1
= —E
Y2 7 16
135
- = —— K >
M 32 » E20
27 32
= -—E+G., E<—, =
Y3 e EtGy B9, G =6
5 64
=z - == < = =
Y, = E+G, E<>, G,=4
- .3g.¢ E<0, G. =0 (2. 42)
Yg = g~ " M3 I M3 T .
- Me g E>0, G, =0
Yo = 16 4 =Y My =
=0
M
A, = 0
N, = O
Ay = O

For a plan to be feasible it is required that real activities Y,
and v, be greater than or equal to zero. Since slack activities, Vg
and Y, were introduced to represent yl and v, in the Lagrangian
formulation,the range of E must be restricted so that Vg and Y
remain non-negative. In Equation (2. 42) it is noted that a positive
value of E forces Vg to be negative and a negative value of E
forces Y to be positive. Thus the Kuhn- Tucker conditions hold only
at the point E = 0, To resolve the difficulty the same procedure as
was followed in the previous section where labor became limiting can

be applied. This requires setting = 0 and moving along the
PP q Vg g ¥,




68

axis in Figure 2. 19 resulting in complete specialization in the least

risky activity in accordance with assertion three, Mathematically it is

required that the Lagrangian function is set up with Vg = 0, the first
order conditions derived and the system solved with the results appear-

ing in Equation (2. 43).

-0
Y
1 1
Y, = 7 E-3G;
9 3
- = - - - ,E>O, =
Ng = SE-3G; >0, G, = 0
. = 2E+2G E>0, G. =0
3 T 4 3 » M2 Mg T
. . 3r. s s6 L E>0, G =6, G, =0
Y3 7 72 2 3 1P 2T M T M3 T
- lg lg 6.  E<4, G. =4, G, =0
Yg = T2F 723 2r M2 My TR Mg T
(2. 43)
=0
Vs
Ll Lo G . E>0, G.=0,G =0
Yo = 2 2 P37 Mg TLY M3 T My T
A, = 0
1
M2 oo
Ny = O
Ny = O

Since Vg was set equal to zero, Y, is automatically set to zero, The

basis is valid only on the interval 0 <E <4, This establishes the ex-

pansion path as the segment oa falling on the Y, axis in Figure 2. 19.
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At point a the labor supply is exhausted and E = 4, The only way to
increase E further is to move along the labor boundary from point a
to d in Figure 2.19. This requires Vs the slack activity represent-
ing surplus labor to be set equal to zero. Movement from a to d
can not occur unless the real activity A is allowed to be positive
which requires that Vg be reintroduced into the system24. This re-
sults in an amended Lagrangian function where Y3 is set equal to zero
and Vg is replaced. The system is solved as before with results

shown in Equation (2. 44).

= 3E -2
Y G
v, = -E+G1
27
- = 27E - — G , E> 3, =
)‘o E 5 G > G1 6
A -—Z-ZE 8G E>ié G, =6
1 2 R | T =9 7 1 T
(2. 44)
= 0
Y3
= - < = =
Y, 2E+G1+G2,E_5, G1 6, GZ 4
= 3 -2 - > = =
Ve E G1 G, , E > 4, Gl 6, G3 0
= - E - E < = =
e +G, -G, <6, G, 6, G, =0

4In terms of the matrices having both y_ and y_ set equal to
zero would produce a singular system. In this problem there can not
be more than n-1 effective production constraints,where n is the
number of real activities, In linear programming there can be as
many constraints as real activities, however, here the income con-
straint uses up one row and column of the matrix.
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)\2 = 0
)\3 = 0 (2.44)
cont.
A =
4 0

Note that now the lower limit of E is four dollars and the upper
limit is five dollars. The lower limit occurs at point a in Figure
2,19 where Y, was introduced at a positive level. The upper limit
occurs at point d where the land supply is exhausted as indicated by
its slack variable A becoming zero. The level of expected income
of five dollars has been reached. From both the graphs and a solu-
tion identical to that obtained with linear programming, it can be ob-
served that the maximum attainable E has been reached. But what
assurance is there that the maximum attainable E has been attained?
This can be checked mathematically by noting from Equations (2.44) that
the only possible way for expected income to increase is for land to be
fully utilized. For land to be fully utilized requires that its slack
activity A be set to zero. But this can not be done in the two activity
model because there must not be more than one resource fully utilized
at one time. There is one possible way to proceed and that is to allow
Y3 the slack activity of labor to become positive. The Lagrangian

function is amended to exclude A and include V3 at positive levels.

The solution of the system is shown in Equation (2. 45).
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1
Yl —2E+G2
1 1
v, = 7 E-36G,
5 5
- = - - > =
7\0 2E 4G2 , G> 2, G2 4
5 64
:—E- > e— =
7\2 n 4G2 ,E_S,GZ 4
= - —_— < = =
Vq E+2G2+G1,E 8, G1 6, G2 4
= 0 2.45
Y4 ( )
1
= o - - < = =
Vs SE+G,-G,, E<8, G,=4, G, =0
—LE--l-G -G, E>4, G =4, G, =0
Yo = 2 2 2T g TS My TR My T
N = 0
1
7\3=O
N, = 0
4

Checking the equations it is found that for the Kuhn- Tucker con-
ditions to hold E must be greater than or equal to 64/5. At the
same time E must not exceed eight, It is impossible that these re-
strictions hold simultaneously, Thus it is established that trading the
labor constraint for the land constraint is not permissable, Since no
other trades are possible there is no way expected income can be in-
creased. This assures that the level of E attained in the previous
valid basis is infact the maximum possible, From a graphic stand-

point movement along the land constraint boundary from point d
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toward b' reduces E. Conversely movement d toward b violates
the labor constraint,

The stepwise procedure just completed produces the equations
for the expansion path, the activity levels, the Lagrangian multipliers
and the efficiency frontier,

The expansion path

y, = 0, 0<y_ < 2
! e (2. 46)
= 2-= 0< <3
The activity equations
y, = 0, 0<E< 4
Y, = 3E-12, 4<E<S5
1 (2. 47)
= -—E, < E < 4
v, =780
Y, = - E+6, 4<E<S5
The Lagrangian multiplier equations
-\, = 9—E, 0<E< 4
0 2 -
27
- = —E - <
)\O > E-81, 4<E<S5
)\1 =0, 0<E< 4
27 (2. 48)
A\, = —E-48, 4<E<5
1 2 - -
A, = 2E 0<E< 4
37 47 7=
A, = 0,4<E<S5
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The efficiency frontier

vV o= %EZ, 0<E< 4
(2.49)
vV o= 521E2-81E+144, 4<E<S5

The efficiency frontier can be graphed in the expected income
variance coordinate system. This is done in Figure 2, 20. Points on
line segments d'f and ff' are infeasible since they violate the land
and labor constraints, The line segment ofd is the efficiency frontier,
Comparison of Figures 2.18 and 2. 20 reveals an important difference,
In both cases variance is described in terms of parabolas., In the case
of Figure 2.18 where a constraint was simply added to form the sec-
ond basis there is a smooth transition from the curve oe'e to the
curve d'e'd, In the case of Figure 2, 20 where it was necessary to
trade constraints there is a sharp corner at point f where the basis
change occurs. In both cases the efficiency frontier is completely

defined on the interval 0 < E < 5,

Shadow Prices - Implications of
Changes in Constraint Levels

~

Thus far the problem perspective has been mainly in the activ-
ity space. Similar to the dual of linear programming, the problem
also can be specified in the constraint space. In the context of vari:-

ance minimization this is in the expected income - production resource
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Figure 2, 20, The efficiency frontier as a result of trading
constraints,
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coordinate system. Although not all of the ramifications of the dual
problem will be pursued, the matter of shadow prices deserves
special attention.

In Equation (2. 24) the method for algebraically specifying the
efficiency frontier was given in the absence of production constraints,
A numerical derivation was presented in Equation (2. 40) which in-
cluded resource constraints. The generalized form of Equation (2. 40)

is Equation (2, 50).

a 2 c 2
V=ZE -bEGHS Gy (2. 50)
where a,b and ¢ are elements taken from the inverse matrix., For

example, see Equation (2. 34) where a =90, b=66 and c = 50.

The total differential of the variance function is

dV = (aE - ka)dE + (-bE + ch)dG (2. 51)

k

vV
where aE - ka = 9E - -)\O

The partial derivatives are the negatives of the Lagrangian multi-
pliers. Because of the solution procedure and the nature of the vari-
ance function, the Lagrangian multiplier associated with the expected
income constraint is never positive. Hence the partial derivative

| \
%E = - )\O is never negative. This indicates that an increase in

-
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expected income, holding the level of the production constraint Gk

constant results in higher variance. The graphic interpretation of
-)\O is given in Figure 2, 21 as the slope of curve d'd" at the point d,
The Lagrangian multiplier associated with the production constraint is

required never to be negative. Accordingly, the partial derivative

BBTV = -)\k is never positive. If expected income is held constant, an
k

increase in the level of the kth resource will reduce variance since
this allows the decision maker to expand in the direction of a less

risky activity, The graphic interpretation of -\ is shown in Figure

k
2. 22 as the slope of curve g''g' at point d.

One additional ramification bears investigation. What will be
the effect upon expected income if variance is held fixed and the con-

straint level is increased. This is shown by the derivative

BV/BGk bE - ch

dE
dG, T T 8V/eE aE - bGy_ (2. 52)

Extending the arguments used earlier to verify the algebraic sign of

%lEf:_ and 82; it follows that de

the level of the production constraint, holding variance constant, will

is non-negative and an increase in

increase expected income. This is shawn as the slope of the variance
ellipse at point d in Figure 2, 23. The magnitude of the derivative is
the value of an additional unit of the resource Gk and the interpreta-

tion is similar to the shadow price of linear programming., However

a major difference exists, In linear programming the shadow price is
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a constant, valid over the range of the basis. But here the shadow
price Equation (2, 52), although valid over the range of the basis, is a
non-linear function of expected income and resource level. In the
numerical example, the shadow price for labor was 5/9. Although
approximately indicating the increase in expected income resulting
from an addifion of one hour of labor, the addition of another 100 hours
certainly would not add 500/9 to expected income, It can be seen
from Figure 2. 23 and confirmed by the second derivative of the iso-

variance curve, Equation (2. 53),

2 2
dE _ (b -ac)k _ 4 (2. 53)
4G

(bE - CGk)Z

2
k
that the shadow price of the resource becomes progressively less as
the level of the resource is increased. Thus greater caution must be
exercized in interpreting shadow prices from the quadratic model than
with the linear programming model.

The following assertions review the implications of changing
constraint levels in the variance minimization problem,

Assertion 9. For a specified level of production constraints,

any increase in expected income occurs only by greater risk as

measured by an increase in variance. This results from the

positive slope of the efficiency frontier,
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Assertion 10. For a specified level of expected income, any in-

crease in the level of a limiting production constraint, holding
all other production constraints fixed, will reduce risk as
measured by decreased variance,

Assertion 11. For a specified level of variance, an increase in

the level of a limiting production constraint, holding all other

production constraints fixed, will increase expected income.
Most Risky Alternatives

The discussion thus far has centered on the lower boundary of
the feasible set consisting of the least risky enterprise choices,
Attention should also be focused on another set of enterprise choices,
those which are most risky. This establishes the upper boundary and
completely defines the feasible set of alternatives, The upper bound-
ary is the maximum variance frontier and results from movement
along the segment ob' in Figure 2,16, the axis of the most risky activ-
ity vy and then along the land constraint from b' to d. This traces
the locus of variance maximizing points and can be expressed alge-
braically in the expected income - variance coordinate system as
Equation (2. 54).

v = 4E% 0<E< 4

(2. 54)

13E% - 136E + 400, 4<E< 5

<
"
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The entire set of feasible alternatives appears in Figure 2, 24 as

the area oedh including its boundary. 25 The lower boundary oed is
the expected income - variance locus of least risky alternatives, The

upper boundary ohd is the locus of most risky alternatives.
Selecting the '"Best" Plan

The Von Neumann Morgenstern Utility Function

All possible enterprise choices from the least to the most risky
have been specified. It is from this infinite set that the '"best one"
is to be chosen, But how is this choice made? The appropriate choice
is the one which best meets the objectives of the decision maker.
These objectives are specified in the utility function of Equation (2. 12).

There are three possible shapes of the utility function. Consider
three decision makers, Each is faced with the same set of enterprise
choices but one has a preference for risk, the second has an aversion
for risk and the third is risk neutral.

Decision maker one prefers risk and has the utility function,

2
ul(Y)zY,OiY_<_10 (2. 55)

In the literature the feasible set of alternatives is frequently
described as a ''cigar shaped'' convex set. It is true as stated by
Stoval (41) that the maximum variance need not occur at the maximum
attainable expected income., However, since the upper boundary re-
sults from specialization in the most risky activity and since variance
is a homogeneous function of second degree it follows that the maxi-
mum variance frontier must increase at an increasing rate contrary
to the convex set in Stovall's diagram.
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Figure 2, 24, The complete set of feasible alternatives,
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Decision maker two is a risk averter and has the utility function

w,(Y) =207 - ¥4 0< ¥ <10 (2. 56)

Decision maker three is risk neutral and has the utility function

u (¥) = 10Y, 02 Y < 10 (2.57)

Decision maker one, acting rationally to maximize his expected
utility chooses the combination of enterprises represented by point h

on Figure 2. 25 where expected income is four and variance is 64.

[+

The highest indifference curve attainable by decision maker one is U1

passing through point h, An indifference curve passing through any
other point representing a feasible combination would result in lower

expected utility and any indifference curve representing greater ex-

pected utility can not be achieved, If, however, decision-maker one
had a utility function like the one represented by U;k indicating a more
cautious gambler the expected utility maximizing point would be point
d which is also the maximum expected income combination,

Assertion 12, Decision makers who have a preference for risk

will choose either that combination of enterprise representing
maximum attainable expected income or a combination lying on
the upper boundary of the feasible choices depending upon the

intensity of the gambling spirit as reflected by the marginal

utility of income,
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Decision maker two, acting rationally to maximize his expected

utility selects the enterprise combination represented by point g on

o

|

|

Figure 2.26. The highest indifference curve which will be in or on the
feasible set is U_ which is tangent at point g. Mathematically, point

2

expected utility Equation (2, 11) to establish Equation (2. 58) where ex-

pected utility is a function of expected income.

u, = ZOE—EZ-—Z—S-EZ 05E<‘;’—f
(2. 58)
2
u, = 20E - E° - (45E -39E+900),1§195E55

g can be derived by substituting the variance Equation (2, 40) into the
Differentiating (2. 58) with respect to E and setting the result
; equal to zero establishes the expected utility maximizing value of ex-
| 2

pected income to be 4. 0984 with variance 24.1875. 6 The activity

levels are v, = 1.4745 and Y, = 1.3115.

Assertion 13. Decision makers who are risk averters will choose

a combination of activities which results in a level of expected
income and variance lying on the lower boundary of the feasible

set. The choice will lie farther from the maximum attainable

26

The second derivative of the expected utility function (2. 58) is
always negative thus assuring that maximum expected utility is achiev-
ed, If the expected utility function for decision maker one had been set
up in the same way it would be found that setting the derivative equal

to zero does not achieve a maximum because of the shape of his utility
function, It becomes necessary to evaluate his expected utility function
at the extreme points d and h on Figure 2. 24 to determine which
yields the greater expected utility.
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expected income point (the linear programming solution) as the
feeling of aversion to risk, measured by the marginal utility for
income becomes more intense,

Decision maker three, acting rationally to maximize his expected
utility, selects the enterprise combination represented by point d on
Figure 2. 27. Being risk neutral, variance is not an argument in the
utility function, The choice which maximizes his expected utility is
the one which maximizes his expected income and is identical to the
optimum solution derived in linear programming.

Assertion 14. Decision makers who are risk neutral will choose

that combination of activities which results in the maximum ex-

pected income plan as derived by linear programming.

The solution procedure for deriving efficient enterprise combin-
ation will not provide the decision maker who prefers risk with the
information he requires. For the risk neutral decision maker, not all
of the information provided is needed and linear programming yields
the required solution more efficiently. However, empirical observa-
tion on the behavior of farmers indicates that a significant portion,
like decision maker two are concerned with the chances of bankruptcy

and failure (36) and act accordingly.
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Probability of Loss Function

Decision makers probably do not think of utility functions per se.
However they are frequently familiar with probability statements such
as those associated with weather forecasting. This suggests a possible
substitute for the utility function which involves expressing efficient
enterprise alternatives in terms of the probability of losses. The
probability of loss function is a set of confidence statements about
achieving various levels of income. The task of constructing the con-
fidence bands becomes manageable if one assumes that the income
from every efficient plan is normally distributed with mean E and
variance V.~ Then one can use Equation (2, 59) to compute, for every
level of expected income E, the critical value Y* such that there is

probability « that the actual level of income Y will not be less than

Y ie. P(Y< Y )=«

*

Y = E+Na~fv (2. 59)

e

where Y is the critical level of income
Na is the factor from the standard normal density function
(24 p. 370) taken at the desired probability level o.
Figure 2. 28 displays the confidence statements about achieving

actual levels of income for each of the alternative plans available.

For example, suppose the plan represented by a level of expected
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Figure 2, 28. Probability of loss function,
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income Eo was selected, Then there is probability o;:< such that the
income in a specific year will be less than Y*. Because of the symetry
properties of the normal density function the confidence band for a=.5
is a 45o rayline from the origin, For «<.5 the confidence band will
have the characteristic shape shown in Figure 2, 28. There is an in-
finite number of such confidence bands for 0 < a<5, however present-
ing bands for a few selected points like o= (.01, .05 .10 .20 .30,
.40 and . 50) should be ample to allow the decision maker to choose an
acceptable level of expected income and hence an acceptable combina-
tion of enterprises,

The individuals age, health and propensity to gamble have a
bearing on the ultimate choice he makes., He may alsé wish to guaran-
tee that income for his family to live on, after discharging fixed cash
obligations, does not fall below a specified amount. In the case of
indebtedness he may not be the sole decision maker; his banker, too
may influence the choice especially where potentially high income
plans are also highly variable causing an abrupt downturn of the confi-
dence bands,

The factors of age, health, debt position and the gambling spirit

are also the same factors which formed the corner stones of the utility

27
function, Estimation of the utility function, although a worthwhile

27 :
The probability of loss function approach will not provide the

decision maker who has a preference for risk with the required infor-
mation since it is derived solely from the lower boundary of the feas-
ible set of plans,
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endeavor for predicting decision maker behavior, seems less efficient
from the extension advising view-point than to present the decision
maker with all the relevant choices and let him select the one which is
best on the basis of confidence statements surrounding each plan,

The enterprise selection problem formulated in this chapter has
now been solved. To keep the problem and its solution understandable,
only two activities were considered, however for the model to have prac-
tical relevance it must be able to handle problems of greater dimen-
sion, The extension of the model to the more general case will be the

concern of the next chapter.
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111, THE GENERAL MODEL - ENTERPRISE
SELECTION UNDER UNCERTAINTY

AN ALGORITHM TO SOLVE FOR THE
SET OF EFFICIENT PLANS

Attention was directed in the previous chapter to the mathemati-
cal requirements of the variance minimization problem. A numerical
example was used to give a preview of the general method to follow,
Although two activities were used for simplicity the model must be
expanded to include more than two activities if it is to have relevance
for farm decision makers. Consequently the two and three dimensional
graphs of Chapter II will be inadequate for explaining the solution of
the problem. It will still be possible to interpret the efficiency fron-
tier, the activity equations and the probability of loss function graph-

ically.

Description of the Model

The multi-dimensional risk minimization problem stated in
matrix form as:

Min: y"'Xy =YV

(3.1)
S.T: p'y=E



where vy

G
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is an nx1 vector of the decision variables i. e. activity
levels

is the transpose of y

is an nxn variance-covariance matrix of the incomes per
unit of activity

is the variance of total income

is an nx1 vector of expected incomes per unit of activity
and u' its transpose

is the total expected income

is an mxn matrix of resource requirements per unit of
activity

is an mx1 vector of available resources,

The full matrix specification of Equation (3.1) is presented in

Equation (3. 2).

Solving the Model

Introduction of Slack Variables

Each inequality of Equation (3.1) or (3. 2) must be transformed

into an equality by introducing disposal or slack activities. The non-

negativity constraints on the real activites are also transformed into

equations,
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Upon transformation, the problem is re-written as:

Min: y'Xy = V

(3.3)
S.T: p'y = E

[a:I] = G
y20
where y is now (2n+m) x1
X is now (2n+m) x (2n+m)
M is now (2n+m) x 1
a:lis now (n+tm)xn
G is now (m+n) x 1
The expanded form appears as Equation (3,4). The m+n addi-
tional elements in y are slack activities, The first m of these
account for resource non-use and the remaining n of them account
for the non-negativity constraints on real activities. The variance-
covariance matrix X is expanded in dimension from n to (2n+m)
to account for the variances and co-variances of the slack activities
which are assumed tobe zero. ' The matrix p has beenincreasedinlength
from n to (2n+m) to account for the expected incomes of the slack
activities which are also assumed to be zero. The matrix a is first
augmented by an nxn negative identity matrix. These negative co-
efficients insure that the real activity levels will not fall below their

lower limits. The matrix 'a is again augmented by an (n+m)x (n+m)
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identity matrix to account for the slack variables. The vector G is
increased in length from m to m+n with the additional elements
explicitly accounting for lower bounds on the real activities which may
be zero or positive.28 With these amendments to the formulation of
Equation (3.1), the problem is in proper form for applying the Lagran-
gian multiplier technique.

For convenience in notation assume that the n equations re-
quired for insuring non-negative values for yl--- y, are already pres-
ent in the matrix a and vector G of Equation (3.1). Then the dimen-

sions of the matrices after introducing slack activites are as follows:

y is (n+m) x1
a is nxm
p ois (n+m) x 1
G is mxl

X is (n+m)x (n+m)

The Lagrangian Form and the Kuhn-Tucker Conditions

The Lagrangian form is:

R(y, Ao M) = ¥'Xy = N[E-p'y) - VG- (a:D)y] (3. 5)

8A positive lower bound on a real activity requires that the
corresponding element in the vector G be entered as a negative num-
ber. The reader may wish to refer to Equation (2. 30) for clarification
on this point,
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where A\ is a scaler representing the Lagrangian multiplier
attached to the income constraint
A is an mx1 vector of Lagrangian multipliers attached to
the production constraints
and all other variables are as previously defined
The presence of non-negativity constraints on slack variables
causes the traditional Lagrangian multiplier technique to be ineffective
unless the Kuhn- Tucker conditions are observed., The Kuhn- Tucker
theorems state that ’)r>:< is an optimum solution to the minimization

problem of Equation (3. 5) if and only if the matrix X is positive

definite and the following conditions hold:

if y, >0
n m
then R 2 0q + N + N.a =0, k=1 n
oy, ikik'k'i oMk ™S B
i=1 j=1
if y =0
1 Yk
n m
then—a:&— 2r .. 0.Q + N +z)\a > 92, k=l,++,n
ay.  /, “Tikik’i'k T "otk S
k
i=1 j=1
if A >0
n
aR
o - V. -G. =0, j=1, -,
then % z ai]Y1 GJ j=1 m
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if Xx.=0
)
n
AR .
P dehe - < = cee
then oh Zaijyi GJ._O, j=1, ', m
i=1

Yizo, i:]-, **t,n

.20, j=1,***, m
j=

Partially differentiating R(y, xo, \) with respect to its arguments
and setting the derivatives to zero results in the first order conditions
as expressed in the matrix of simultaneous linear Equations (3.6). In
Equation (3.6), E is a variable and is allowed to take on only those

values which satisfy the Kuhn-Tucker condition.

Matrices of the First Order Conditions

Partitions to Facilitate Inversion

Solving the system of equations is routine but formidable even
for second generation computers. A modest problem of ten activities
and fifty constraints requires inverting a 121 x121 matrix., However,
because of the position of zeros and its symetry,the matrix can be
partitioned to reduce the magnitude of the inversion routine,

To facilitate partitioning,the same row operation of Equation

(2. 29) is performed to move the vector p' into position n+l. To

maintain symetry, a column operation is performed to move the vector




(3.6)
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p into column position n+l. The result appears as matrix Equation
(3. 7). The resulting matrix is then partitioned accqording to the dashed
lines through the matrix system.
For convenience in manipulation let the matrix of Equation (3. 7)

be abreviated as

All | Al12
A =f----5---- (3. 8)
A21 | A22
then
. Bll | Bl2
A" = B s---- - (3.9)
B21 | B22
where
-1 -
Bll = [All - A12A227 A21] 1 (3.10)
Bl2 = -Bl1Al12A227" (3.11)
and
-1 -1
B22 = A22 " -A22 "Bl2 (3.12)
Referring to Equation (3. 7) note that A22 is of the form
0 I
A22 = (3.13)
I 0
and
A22"t - A2 (3. 14)

Further note that Al2 is of the form

A12 = [0:.a] (3.15)



and likewise because of symetry

0
A21 = Al2' = |--- (3.
a’
Substituting the facts of Equations (3.13), (3.14), (3.15) and
(3. 16) into Equations (3.10), (3.11) and (3.12) results in:
-1
Bll = All (3.
B12 = -A.11'1[a:o] = [b:0] (3.
b!
B21 = Bl12' = |-- (3.
0
-1
a'All "a I -a'b I
B22 = = (3.
I 0 I 0
and finally

- —'1_ _ 1

All 0 a 1 &111 b 0
L 0 I = b' -ab I| = B

| a! I 0] | 0 I 0]
(3.
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16)

17)

18)

19)

20)

21)

Since only Al 1-1 must be found, the matrix to be inverted has

been reduced from order n+2m+l to order n+l and is now of man-

ageable size, The full form of the inverted system of Equation (3. 7)

is expressed as Equation (3. 22). Note the strategic location of zero

elements in the resultant vector G. Since the inverted matrix in

Equation (3. 22) is to be postmultiplied by the vector G, every column
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corresponding to a zero element in G can be ignored, thus further
simplifying the calculations required. The inverted system with the
non-relevent elements removed is displayed in matrix Equation (3, 23).
Carrying out the indicated multiplications of Equation (3. 23) yields. the:
linear functions in E for each of the activities and the Lagrangian

multipliers of Equation (3. 24).

v, = zOlE i=l,+,n
-)\O = —WOOE
(3. 24)
y =b .E+G, j=l,:-,m
n+) n+j ]
\. = 0 j=1, -+, m

If the first n elements in column n+l of matrix Bll are positive
i.e. z_.,>0 for i=1,+--,n, then all of the real activity levels will be

01
- . 29
positive for positive values of E.

Li.mits on Expected Income

The linear Equations (3. 24) are presented in the graph of Figure

3.1. The line segments oc and od are representative activity equa-
tions and line segments ef and gh represent the levels of slack
activities, To insure that the Kuhn- Tucker conditions are not violated

one must establish the range over which E is valid, If E exceeds

2

9The first n elements will be positive if there is zero correla-
tion between the incomes of the activities., This will be discussed
more fully in a later section.



106

,
e—l
| Z
—
- p
(0] wn)
%
A 8 |
3 |
i
2 |
O
<
I
|
] |
C
la
|
|
|
|
O v ) | v L f hl '—E

Figure 3.1. The valid range of expected income.




107
the magnitude of, the slack activity represented by the line ef will be
forced negative., This establishes the upper limit on E, denoted
SMIN, as being the minimum of the maximum values E can take on,
The lower limit on E, denoted SMAX, is established as the maximum
of the minimum values E can take on, As E is increased along the
expansion path to the point E = SMIN, the level of a real activity in-
creases to the point where a particular resource becomes exhausted,
The corresponding slack activity then takes on a level of zero. To
proceed into the next basis the level of the slack activity must be main-

tained at zero to assure complete use of the limiting resource,

Change of Basis

To initiate the next basis let the limiting resource be denoted as
the kth resource. The slack activity Yn+k representing the kth
resource is setat zero., The revised problem is expressed in the
Lagrangian form and differentiated to form the matrix of the next basis
shown in Equation (3. 25). This matrix differs from Equation (3. 6)
only in that the (n+k)th row and the (n+tk)th column are removed.

To facilitate solution of the system the vectors u' and ai{
are moved from position ntm+l and n+tm+tk+l to position

ntl and n+2 respectively. This is done also for vectors u
and a, to result in matrix Equation (3.26). The dashed lines show

k

where the partitioning is done for ease of inversion.. The sub matrix -
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All is now of order n+2 as opposed to n+l in Equation (3. 7)., It is
the variance-covariance matrix multiplied by two and bordered by the
vectors pu and a. The same procedure of inversion again is follow-
ed and those columns which are to be multiplied by zeros in the vector
G can be ignored. The relevant part of the inverted system is dis-
played in Equation (3. 27). The activity equations and the equations for
the Lagrangian multipliers which result from performing the indicated
multiplication found in Equation (3. 28).

Again the limits of E, SMIN and SMAX, are found by examining
each equation in the set (3. 28). The lower limit of E is the upper
limit on E from the previous basis., Smaller values of E than the
lower limit are not permissible since this would cause the Lagrangian
multiplier attached to the kth resource to become negative, violating
the Kuhn- Tucker conditions. The upper limit of E represents the
point where another constraint becomes limiting. To proceed, the
slack associated with the limiting resource must be set to zero and a
new basis formed,

After several resource constraints have become limiting it be-
comes considerably more likely that the upper limit of E may be
determined by a Lagrangian multiplier being forced to zero. This
means that a resource constriaint is no longer binding and the slack

variable associated with it must be reintroduced into basis, This re-

quires that the row and column in the sub-matrix All which contain
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Y, = inE + zkin iz 1,n

M = Yook Yo%k

MoT Yo WGk (3. 28)
Yn+j = bn+1,jE+bn+2, in+Gj j=1,%,k-1, k+l,***, m

A, = 0 j=1,+, k-1, ktl,***, m

the coefficients of the limiting resource must be restored to their orig-
inal places in submatrices Al2 and A2l. Once this is done the sys-

tem can be solved,.

Identifying the Maximum Attainable Expected Income

The procedure continues until there is one less limitating con-
straint than there are real activities, Having more effective con-
straints than this number causes the sub-matrix All to be singular.
Unfortunately this does not mean that the maximum attainable E has
been reached. It may be possible to increase E by trading a presently
limiting constraint for the one whose slack activity was forced to zero
by E = SMIN in the basis. The entering constraint is identified as
the one whose slack has gone to zero but there is no direct method to
determine the constraint to be removed. Since there is a relatively
small number of effective constraints it is possible by trial and error

to find the one, if it exists, which allows E to increase. Ifthere areno
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constraints that can be released then there is no feasible way that a
larger value of E can be attained, At that point the maximum attain-

able E is reached and the problem is solved.

Complications in Solution of the Model

The Initial Basis

The Zero Correlation Case

In the case of zero correlation between the income of real activ-
ities, all real activities will be in the initial basis, The necessary con-
dition for this is that the first n elements of the (n+l)th column of
the sub-matrix Bll be positive, That this condition will always be

fulfilled when ri]. = 0 for alli# j can be verified by observing that

2(ntk)+1 ,n-1 “k
= (- > oo
Bllk, ntl (-1) 1' ll U /Uk 0, k=1,

D is the determinant of All

where

[( 1)2(n+k)+1 n-1 Z-l—r O.Z/O_

1

g
?TM:*

since

(-2 ) and oy > 0
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The Non-Zero Correlation Case

In the more usual case where the correlation coefficients are
not all zero the conditions for including all of the activities in the initial
basis are notnecessarily fulfilled., With the two activity case a nega-
tively sloped expansion path results when the coefficient r is suffic-
iently large. In the two activity model of Chapter II it was easy to
identify the offending real activity as being the most risky one and the
problem easily remedied by setting the slack variable representing the
lower limit constraint of the real activity to zero. In the more general
case, the identification of offending activities is not as straight forward.
In the present algorithm, a trial and error procedure is employed to
find the initial basis when activities are correlated. The procedure is
to set all real activities except the least risky one equal to their lower
limits. Since the problem is to minimize risk it seems reasonable
that the least risky activity is a most likely candidate for the initial
basis. The matrix All is inverted and the relevant range for E is
determined. If SMIN exceeds SMAX then the initial basis is found
and contains only the least risky real activity. It is more likely that
the initial basis will include more than one real activity especially if

there are several real activities to be considered. If SMAX exceeds

SMIN the Kuhn-Tucker conditions are violated because a Lagrangian




115
multiplier attached to the lower limit constraint of a real activity is
forced negative. This requires that the slack activity attached to the
lower limit constraint must be introduced into the system thereby
allowing the real activity to exceed its lower bound. Once this is done
the resulting matrix All 1is inverted again and the quantities SMIN
and SMAX computed. If SMAX still exceeds SMIN, the source of
the conflict must be located and the proper modifications made. 1t
may be a Lagrangian multiplier that is forced negative or it may be a
slack activity that was introduced at a positive level that causes the
conflict. In the former case, the particular constraint must be made
non-effective by introducing the slack activity while in the latter, the
particular constraint must be made effective by removing the slack
activity, As soon as a situation is encountered where SMIN exceeds

SMAX, a starting basis is established and the solution may proceed.

Positive Lower Limits on Real Activities

If there are positive lower limits on some real activities, it is
not necessarily true that SMAX computed from the initial basis is the

minimum attainable expected income. This can be demonstrated by

30This trial and error method has worked satisfactorily during

the testing procedure of the algorithm, However, there is a danger of
cycling such that the initial basis will not be found, Should such an
event occur one could set the level of E at some level greater than
the absolute minimum satisfying the production constraints and solve
using a standard quadratic programming technique such as the Frank
and Wolfe simplex method.
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imposing lower limit constraints on Figure 2,16 as in Figure 3, 2,

The initial basis is not changed from what it is was in the numerical
example, however, the valid expansion path in this initial basis is he!
rather than oe'. Expected income could be reduced by moving from

h to o' along the lower limit constraint of Y - The entire efficiency
frontier in the positive lower limit case is diagramfned as the segment
o'he'd in Figure 3.3, To establish the minimum attainable E the

same procedure of trading constraints as was done in checking to see

if the maximum attainable E had been reached would have to be

applied, only in reverse order, Since it is of minor practical rele-

vance to locate the absolute minimum point on the efficiency frontier
|
|

such procedures will not be pursued further,
The Efficiency Frontier and Activity Equations

Once the various inverses have been computed, the variance
function can be expressed in terms of expected income and resource
levels by making use of the Lagrangian multiplier equations. If one
partitions the sub-matrix Bll further into four sub-matrices and
denotes the sub-matrix of order k+1, where k is the number of effec-
tive constraints, in the southwest corner as W, then W contains all of
the information about the Lagrangian multipliers, The equations

representing the Lagrangian multiplier is expressed in matrix form

as Equation (3.39). The exact differential dV is expressed as

e
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(3. 39)
=
E
G,
1
o= av
G
(3. 40)
.
E
sk
G
1
=V
GF
k
(3. 41)

* *
The notation G_ means that G_ is an effective production con-
They are listed in the same order as constraint vector G ex-

)\#; is the Lagrangian



119

Equation (3.40) and its solution is given by Equation (3. 41). 32 Equa-

plane is determined by substituting the actual numerical values for the
production constraint levels into Equation (3. 41) and observing the
proper limits on E.:

V:ozE2+ozE+oz (3.42)
1 2 3
cG

. a
where o, o anda, are constants similar to — bG, and

1" 2 3 2 k

tion (3. 42) for the efficiency frontier in the variance-expected income
in Equation (2.50),

The complete frontier is described by a series of parabolas all

|

} having the general form of Equation (3.42). The parabolas from later
bases will be nested in the parabolas of earlier bases or intersect with
them depending upon whether the later basis was constructed by addi-

| tion or deletion of a constraint or whether it was formed by trading

one constraint for another.

The level of the ith real activity is expressed as

v, = [31iE+L32:.l i=1,¢°,n (3.43)

where @Zi is a constant resulting from holding all constraint
levels fixed
’Bli is the slope of the activity equation.

The magnitude of Bli indicates the stability of the solution at a

14 differs greatly from zero,

} particular point in E, For instance, if B
32

‘ A more formal interpretationof Lagrangian Multipliers and the
| solution of the differential equation is given in the appendix.

e
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then small changes in E bring about large changes in Vs - As the
solution nears the maximum attainable E, high paying, high risk
activities begin to dominate the solution precipitating major changes
in the efficient plans,

Slack activity levels are represented by

y .. =B +p j=1,, m (3. 44)

E .
n+j 1, ntj 2, ntj

in the case where the jth resource is not an effective constraint. In
the case where the jth resource is an effective constraint the Lagran-

gian multiplier equation is

N, = B j=1,e, m (3. 45)

E
J 1, nt) TP

2, ntj

Since slack activities represent unused resources, and because
of drastic changes in the composition of the plans as the maximum
attainable E is approached there may be major changes in the re-

source use pattern,
A Summary of the Algorithm

| At this point it appears useful to summarize, briefly, the steps
involved in solving the variance minimization problem. These steps

correspond to the computer program which was developed as part of

this research project. The computer program appears in the appendix,
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STEP 1I:

(a) Set up the matrices of the problem as in Equation (3.4).

(b) Move the vector of means into the position n+l in the
matrix All. See Equation (3. 7).

(c) Ildentify the real activity having the lowest coefficient of
variation,

(d) Make all of the lower limit production constraints on the
real activities 1imiting33except the ;one identified in Step I(c).

(e) Solve the system. 34

(fy Compare SMIN and SMAX, If SMIN is greater than
SMAX go to Step 11, If SMIN is less than or equal to
SMAX go to Step I(g).

(g) There is a conflict among the activities. If the conflict is

due to a Lagrangian multiplier being forced to zero go tolI(i).

3Ma,king the constraint limiting: Suppose the kth production
constraint has become exhausted as indicated by a slack variable being
forced to zero, then the following row and column operations must be
performed to make it a limiting constraint.

(a) strike out the row and column representing the slack activity
and its coefficient.

(b) Move the row vector and the column vector containing the
production coefficients of the limiting resource from its original posi-
tion in A2l and Al2 to its proper position in All, as specified in
the discussion immediately following Equation (3. 25).

34Solv:lng the system: This refers to finding the inverse matrix
B which is postmultiplied by the vector G to find the parameters of
the activity and the Lagrangian multiplier equations and the limits
SMIN and SMAX,




(h)
(1)

STEP II:

@)
|

(b)

(c)

STEP III:

(2)

122
Make the indicated constraint a limiting constraint, Go to
Step I(e).
o1 . e 35
Make the indicated constraint non-limiting. Go to Step

I(e).

Record the number of the basis and the parameters of the
activity equations, Lagrangian multiplier equations and the
variance equation,

Identify the constraint of concern at SMIN, If a slack vari-
able has been forced to zero, go to Step II(c). If a Lagran-
gian multiplier has been forced to zero, make the constraint
non-limiting and go to Step I(e).

If there are n-2 or fewer limiting constraints make the
constraint identified in Step II(b) limiting and go to Step I(e).
If there are already n-1 limiting constraints in the basis

go to Step 111,

Make the constraint identified in Step II(b) limiting,

5Making a constraint non-limiting: Suppose the kth resource
is no longer limiting as indicated by a previously positive Lagrangian
multiplier being forced to zero. Then the following row and column
operations must be performed to make it a non-limiting constraint,

(a) Move the row vector and the column vector containing the pro-
duction coefficients of the resource from the position in All to its
original position in Al2 and AZ2l.

(b) Replace the row and column representing the slack variable
and its coefficient,



(b)

(c)

(d)

(e)

(f)

(g)
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Make the constraint having the smallest Lagrangian multiplier
as evaluated at SMIN in Step II(b) non-limiting.
Solve the system,
Compare SMIN and SMAX, If SMIN is greater than
SMAX go to Step II. If SMIN is less than or equal to SMAX
go to Step IlI(e).
If all of the n-1 limiting constraints in the basis of Step
II(c) have been made non-limiting one by one, and there has
been no increase in E go to Step IlI(g). If there are still
some constraints which have not been tried, go to Step
III(f).
Retain the constraint made limiting just prior to Step III(c).
Make the constraint, having the next largest Lagrangian
multiplier to the one just attempted, non-limiting. Go to
Step III(c).
The absolute maximum E has been reached and the problem

is solved.
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Parameter Estimation

Error in decisions36 can result from two sources., No matter
how accurate the information about a particular situation, erroneous
conclusions can result from faulty reasoning., It has been the purpose
of Chapter II and the first part of Chapter III to develop a methodologi-
cal framework such that this type of error is minimized, However,
no matter how accurate, precise or elegant the reasoning framework
may be, a second source of error can result from misinformation or
faulty data, It is this second source of error upon which the remainder
of the chapter is focused.

The confidence that can be placed ultimately on the efficient plans
depends in no small way upon the reliability of the estimates of the
parameters, Thus it becomes necessary to examine ways by which
these numerical values can be found so that they communicate the im-
pressions of the decision-maker about the future prices and yields in
an accurate and simple manner,

Resource requirements and resource limits continue to be con-

sidered non-stochastic, These are the elements of the matrix a and

Error in this context refers to whether the choice was consis-
tent with the goals and aspirations of the decision maker not whether
the desired result was obtained. Suppose an individual having certain
fixed debt commitments chooses a plan where the probability of bank-
ruptcy is but 1%. Yet a catastrophe strikes and he loses his farm,
This is not an error in decision making but rather the consequence of
the random disturbance that has caused his failure.
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the vector G of Equation (3.1). Since these elements are identical to
those encountered in linear programming, the problems pertaining to
their estimation, are not discussed here, The means, variances and
covariances of real activities do present new problems and merit the
attention of this thesis. The quest for the elements of the matrix X

and vector u begins with a definition of gross margin.
Gross Margin - Definitions and Assumptions

Gross margin is defined as gross income less variable costs,
where gross income refers to the physical yield multiplied by the
market price., Variable costs, assumed non-stochastic, are direct
production costs and do not include overhead or fixed costs, Gross
margin used here is synonymous with the term ''net price'' used by
Heady and Candler (20, p. 112), The contribution of the ith activity

or enterprise to the total gross margin of the farm is expressed as:

Y., = - = - _
i V9P - V6 Yi(qipi ci) (3. 46)

where Yi is the gross margin contributed by the ith activity,
y. is the level of the ith activity,

q. is the per unit yield of the ith activity,

p is the price per unit of yield of the ith activ'ity,

and c is the variable cost per unit of the ith activity.
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The quantities 9, and p, are random variables and shall be
assumed stochastically independent. Such an assumption is not incon-
sistent with that made in perfect competition where the actions of an

individual do not affect the market in the aggregate, 37 Letting:

where Zi is gross income
and applying the appropriate statistical theorems (24, p. 148) it follows

that:

E(Zi) = E(qipi) = E(qi)E(pi) (3. 48)

where E(Zi) is expected gross income per unit of activity,

E(q.) is expected yield per unit of activity,
i

and E(pi) is expected price per unit of yield.

Furthermore:

2 2.
V(Z,) = V(@)V(p) + V@)ER)]” + V(p)[E@)]"  (3.49)

where V(Zi) is variance of gross income per unit of activity,
V(qi) is variance of the yield per unit of activity,

V(pi) is variance of the price per unit of yield,

7I’c is recognized that this may lead to some difficulty in the case
where yield is highly dependent upon some variables such as weather
and the total supply of the commodity in question comes from a small
geographic area. Such a case might indicate a high correlation be-
tween an individuals yield and the price he receives. This, however,
is thought to be the exception rather than the rule,

R
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Letting:

X = Z, - c (3. 50)

then Xi is a random variable representing the gross margin contribut-

ed by one unit of the ith enterprise, From this relationship one can

define:

By = E(Xi) = E(qi)E(pi) - E(Ci) (3.51)
and

2
Ui = V(Xi) = V(Zi) (3.52)

where . is expected gross margin contributed by the ith activity
i
and 0'i its variance,

Extending these relationships to include the entire farming oper-

ation results in equations

n
E = E(Y) = Zuiyi (3.53)
i1
and
n n n
V—V(Y)—ZZGZ+ZZZ 0.0 (3. 54)
= =/, Vi Yi¥i%3%; 55 y
i1 i=1 j<1

All of the results obtained thus far in this section are completely
general and do not depend upon the parent distribution of prices, yields

or gross margin,
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Estimated Expected Value and Variance of Gross Margin

One possible source for estimating gross margin parameters is
aggregated time series data of prices and yields. While such series
have their place in predicting response in the aggregate, they give a
downward bias to variance estimates for farm planning studies because
the aggregation process ''averages out'' variability, (12). Also they
carry with them the implied assumption that history will repeat itself,
For estimates to be relevant, the data source should be closer to the
individual farm situation. Another possible source is historical data
recorded by the farmer himself, Unfortunately farmers do not as a
rule keep such detailed listings of yields and prices and they may wish
to consider engaging in new enterprises about which they could not
possibly have recorded the information. They do, however, often
have strong subjective notions about the profitability and riskiness of
various enterprises, Since the prime purpose is to organize the
decision maker's information so that the efficient enterprise combina-
tions can be derived, it is necessary only to have him ‘quantify his
impressions about future prospects of each enterprise,

Engineers, (23, p. 229) under similar circumstances of forward
planning in critical path analysis are concerned in completing a project
in optimum time. To do so requires coordinated scheduling of inter-

related sub-activities., Decision makers are asked to provide three
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estimates of the completion time of the sub-activities: (a) the most
optimistic; (b) the most likely; and (c) the most pessimistic completion
time. These estimates specify a '"beta' distribution of the completion
time. MacCrimmon and Ryavec (33) in their review of the assumptions
underlying critical path analysis suggest that the triangular distribu-
tion results in about the same degree of error38 as does the beta dis-
tribution but has a much simpler mathematical form. It is not neces-
sary;as required of the beta distribution, to solve for the roots of a
cubic e\quation to obtain the parameters,

The probability density function of the triangular distribtuion is:

. _2(x-a)

f(X) = (m-a)(b-a) s a._<_x< m
- ﬁ)—_a) , m<x<b (3. 55)
=0 otherwise

where x is the random variable
a and b are the end points
m is the most frequently occuring value,
The triangular density function is graphed in Figure 3, 4. The

triangular cumulative frequency distribution is:

3 . .
8There are two kinds of errors involved, First the random

variable of concern may not be from either a beta or a triangular dis-
tribution. Secondly errors may result in estimating the parameters,
It is the errors in estimation that are of concern here.
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F(x)
A
b
T 7 X
0 a m b
Figure 3.4. The triangular probability distribution
function,
F(x)
}
T ep——
12e > X
0 a

Figure 3. 5,

The triangular cumulative distribution function,
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F(x) = 0 . x< a
= L.a)_ a<x<m
(m-a)(b-a) T —
2 (3.56)
(b-x)
= - —— < <
L - Bom)(boa) @ MSXSP
=1 , b< x
The cumulative distribution function is graphed in Figure 3, 5,
The mean of the triangular distribution is:
1
p:g‘(a+m+b) (3.57)
From the partial derivatives
dp Bm Ao, (3.58)

da

it can be noted that increases in the estimates of a, m, or b cause
increases in the mean,

The variance of the triangular distribution is

o -

2
T [b-2)" - (m-a)(b-m)] (3. 59)

From the partial derivatives

= <0, & >0



132

and
80’2 a+b
—_— > > — (
P 0. for m > (3.60)
2
a0 a+b
Py, <0 for m < 5

it can be noted that increases in a reduce variance, increases in

b increase variance and increases in m will either increase or de-
crease variance depending whether m lies to the right or the left
of the midpoint between a and b .

If a, m, and b are respectively the most pessimistic,
most likely and most optimistic estimates for price or yield, then the
triangular distribution quantifies, the decision makers impressions
about profitability and risk of the enterprises he is considering. The
decision maker could be asked to give the three estimates for gross
income., However, it is felt that he will, in most cases, give clearer
thought to the problem if asked for the price and yield components
separately. Once the price and yield estimates are obtained, their
corresponding means and variances come directly from Equations
(3.57) and (3.59). After an estimate for variable costs has been made,
the mean and variance of gross margin follow directly from Equations
(3.51) and (3.52).

It is important that the questions concerning the three points of

the distribution be asked in the proper time context, For instance,
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one would expect different answers, probably leading to a lower vari-
ance, if the planning horizon were for next year as opposed to a longer
run of say 10 years. This approach will allow the decisiocn maker to
subjectively account for factors that exert an influence on the future
behavior of gross margin,

The expected values of gross margin establish the elements of
the vector u in Equation (3.1). The variance estimates of gross
margin establish the elements on the main diagonal of the matrix X,
The estimation of covariances, i.e. the off-diagonal elements of X

poses a more difficult problem.
Estimating Covariances

Empirical evidence indicates substantial degrees of correlation
between certain farm enterprises. To account for this interdepend-
ency, an estimate of the covariance must be made.

Ideally, one should construct a subjective joint probability den-
sity function involving gross margins of all enterprises to be consider-
ed. Through integration, the mean, variance and covariance would

be derived. The covariance term is given by:
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where 0',], is the covariance between the ith and jth activities,
1
rij is the correlation coefficient between the ith and jth
activities,

0':,l is the standard deviation of the ith activity,

O'J_ is the standard deviation of the jth activity,

The expressionin Equation (3.61) is general and does not de-
pend upon any specific density function. Since the values Oi and 0'j
have been established by the triangular distribution one need be con-
cerned only with estimation of the correlation coefficients, 39

Farmers often think in terms of worst, best and most likely out-
comes hence do not have difficulty in estimating the triangular distri-
bution, However they find it virtually impossible to answer questions
concerning enterprise interdependency.

If there are n enterprises, then n(n-1)/2 correlation coeffic-
ients must be specified, Not only must the correlation coefficients lie
between negative and positive unity, they must also form a positive
definite matrix, While this matrix could be established through aninter-
view in the simple case of two or even three enterprises, the task be-

comes impossible for the decision maker as more activities are added.

An alternate method is suggested by Markowitz (34, p. 100). To

39The estimates a, m, and b can be thought of as describing a

marginal triangular distribution, If one assumes stochastic independ-
ence, then the joint distribution is the product of the marginal distri-
butions. Such an assumption implies that the enterprises are un-
correlated,



135

find the covariance between two securities, s, and s, the simple
1 ]
linear regression coefficient of each of the security on some common

element such as an index of business activity is used resulting in:

0.. = b.b V(] (3.62)
1] 1]

where o-ij is the covariance between 5 and Sj’
I is the common element index,
bi,and b], are the simple linear regression coefficients on the
index 1],

V(I) is the variance of index I,

The diversity of farming enterprises makes it difficult to establish a
common element index to be used in estimating the covariance O'i],.
For example, should weather be chosen as the common element one
notes that the introduction of irrigation might make a crop uncorre-
lated with rainfall. It does not necessarily follow that the irrigated
crop is then uncorrelated with dryland crops.

A third alternative is to use historical price and yield data. If
an individual has such a series for the enterprises he wishes to con-
sider, then it is advisable to use his data, In most cases individual
data is non-existant and one is required to resort to aggregate time
series, Added to. the variance bias discussed earlier, there is the

possibility of time trends in the data, These trends may be the result

of technological advances, long run weather patterns, business cycles



136

and other causes., The longer the series the more likely the presence

of trends. Due to the short run nature of the problem, interest here is

only in the random elements and itmaybenecessary to remove the influence
of time. This can be done in a number of ways. One method is to
determine the regression equation of time on the gross income of each
activity by the least squares technique. The deviations of the observ-
ed gross incomes from those predicted by the regression equation can
be computed. The resulting deviations are interpreted as the random
disturbances and the correlation coefficients are computed according

to the following formulation:

T
Z d d.
it jt
t=1
r. = 3.63
i = = ( )
z d,Z Z d,Z
it it
t=1 t=1
where rij is the coefficient of correlation between the ith and jth
enterprise gross incomes,
dit is the deviation of the ith enterprise in the tth year
from the regression line of the gross income,
d't is the deviation of the jth enterprise in the tth year
J

from the regression line of the gross income,
Computation of the correlation matrix is described in matrix notation

as:

R = QD'DQ (3. 64)



where R
D

32

N

T
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is the NxN correlation matrix
is the TxN matrix of deviations and D' is its transpose,

is an NxN diagonal matrix containing on its main diagonal

the elements

is the number of enterprises considered,

is the number of observations on each enterprise,

The matrix R, can be constructed for the region in which the

decision maker resides.

The correlation matrix for the decision

sk
maker, denoted by R is constructed by transfering the relevant

rows and colums representing the enterprises of interest from the

*
regional matrix R to the individual's matrix R . The matrix X is

obtained by premultiplying and postmultiplying Ra‘ by a diagonal

matrix composed of the standard deviations of each enterprise.

For clarity the matrix in full is:

where X

0.
i

(3. 65)

is the variance-covariance matrix of Equation (3, 1),

is the standard deviation of the ith activity,
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and n is the number of activities.

The matrix R which results from the product D'D is positive
semi-definite (1, p. 141) and has rank not exeeding the minimum
dimension of D, Since the nxn matrix X is required to be positive
definite there can be no more enterprises considered by an individual
than there are observations in the time series used to construct the
matrix D,

Usually there are more enterprises in a given region than there
are years of data about their gross margins. Advances in technology
bring about changes in farming practices from one time period to
another thereby shortening the time period for which a complete set
of data can be obtained. For example, bush beans were unheard of
prior to the introduction of mechanical harvestors about 10 years ago.
They are now steadily replacing the pole-type varieties which required
hand labor. This will limit the entire set of observations to 10 years,

In summary, data requirements of the enterprise selection
problem can be met by using the triangular distribution as a subjective
measure of the mean and variance of prices and yields., The mean
estimates establish the vector . The variance estimate are combin-
ed with the appropriate rows and column of a regional correlation

matrix derived from time series data to construct the matrix X,
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Iv. EMPIRICAL EXAMPLES AND RESULTS

Algorithm Development--Accuracy
and Efficiency Comparisons

The computational procedures discussed earlier were incorpor-
ated into a sequence of three computer programs. 40 The first pro-
gram, called INPUT, prepares the .data for use of the second program,
called PROCESS, which solves the problem. 41 The third program,
called OUTPUT, prepares the report in graphs and tables for use by
the decision maker. Numerous hypothetical examples were used in
the early development stage with the chief role played by a problem,
(see Case 1, Table 4.1), adapted from the Oregon Farm Management
Game (39). To verify the accuracy of results obtained by the algorithm
under development,a comparison was made to a standard quadratic
programming routine, The composition of plans obtained at the se-
lected points on the efficiency frontier were identical for both methods.
Later in the development a problem reported by Carter and Dean (7),
(see Case 2 in Table 4.,1), was used as a further check on accuracy and
to obtain a comparison on efficiency. The solution values were identi-

cal,

40 . .
The programs were written in Fortran IV and run on a Control

Data Corporation 3300 computer under OS3, a time sharing Executive
System at Oregon State University.

41 The program PROCESS will accommodate up to 10 real activ-
ities and 99 production constraints,



Table 4.1. Problem dimensions and computer costs.

Test Problems

Willamette Valley Farms

Case Case Case Case Case Case Case
One Two Three Four Five Six Seven
No. of Activities 7 7 8 9 10 9 4
Total Constraints 23 10 15 48 46 43 37
land 15 1 11 20 22 19 9
labor 8 0 4 12 12 12 12
irrigation water 0 0 0 4 0 0 4
capital 0 0 0 12 12 12 12
Total Inversions 21 --- 26 39 22 26 12
valid bases 12 12 11 19 9 16 7
inversions for initial basis 0 - 8 9 4 2 2
Total Computer time (seconds) 94.804 96.672 157.963 235.576 187. 300 219.475 79.21
input --- --- 6.662 6. 035 10.121 9. 739 7.67
process --- -—- 62.541 176.985 108.217 117.394 23.62
output - --- 88. 800 52.556 68. 962 92,342 48.92
Total Computer Cost (dollars) 10. 66 11.65 21.51 24. 175 20. 40 23.64 12,78
cost of report only --- --- 11.62 8. 82 9.98 12.42 8. 29

ov1
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Carter and Dean obtained only a number of points on the frontier
in just under three minutes of computing time., The algorithm devel-
oped here accomplished the task in about half the time (95 seconds).
Furthermore, the exact algebraic equation of the entire frontier was ob-
tained, Consequently if one wishes to do more extensive utility analysis
requiring the entire frontier, itis notnecessarytouse some regression,
tehcnique as an approximation (17, p. 200), A final check on accuracy
was made against results obtained by How and Hazell (26), (see Case 3
in Table 4.1). The algorithm they used also specified only a finite
number of points on the frontier and seemed to violate a number of the
production constraints,

In each of the three cases tested, the results obtained by the algo-
rithm under development were identical or superior to those obtained
by the other methods., This made it possible to attempt the solution
of real world management problems submitted by farmers in the

Willamette Valley of Oregon.

Tests of Applicability - Four Case Studies

Problem Specifications and Data Collection

Four farm operators submitted crop enterprise selection prob-
lems for solution,
Case 4 was submitted by a Yamhill County, Oregon partnership

interested in determining the advisability of renting
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additional land and deciding upon the optimal combina-
tion of crops should the renting prove advantageous.
Case 5 was submitted by a Polk County, Oregon farmer inter-
ested in the optimum combination of irrigated and dry-
land crops.
Case 6 was submitted by a Polk County, Oregon farmer inter-
ested in the optimum combination of dryland crops.
Case 7 was submitted by the Agricultural Representative of a
bank on behalf of a Marion County, Oregon farmer having
similar interest to those expressed in Cases 5 and 6,
Since these were crop farms, located in the Willamette Valley
using similar cultural practices, the production coefficients were also
similar, Cereal grains, grass seeds,legume seeds and more intensive
crops like beans and strawberries were considered., The basic con-
straints were identical for all farms, and included four categories;
land, labor, irrigation water and operating capital. The land con-
straint consisted of two classes; irrigated and dry land. In addition
there was a maximum and a minimum acreage limit on each crop.
Labor coefficients and constraints were specified by month, Irrigation
water requirements and constraints were established for the critical
season beginning with May and ending with September. Total annual

operating costs per acre for each crop were obtained separately for

machinery and equipment operation,v fertilizer, spray and dust, seed,
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supplies and miscellaneous cash costs., These costs were then allo-
cated to the month in which they normally occur to establish the oper-
ating capital requirements. The percentage of the revenue to be re-
ceived in each month was recorded to establish a cumulative cash flow
statement per acre for each crop. As an example of this procedure,
suppose a particular crop required an expenditure of five dollars in
January, $15. 00 in February, $10. 00 in March, $25, 00 in April and
$35. 00 in October, and the produce was sold in November for $150. 00.
The resulting cumulative cash flow statement for this example appears
as Table 4, 2. The cumulative cash flow concept is incorporated into
the model by addition of a column vector in the matrix a, A maxi-
mum limit on cumulative operating capital permitted for the farm
throughout the operating year was imposed,

While production constraints in either the quadratic or linear
programming models are the same, there is a difference in formu-
lating the objective function, The objective function in this quadratic
programming was to minimize variance. Hence, one must also obtain
variance and covariance estimates in addition to the normal linear
programming requirements, Farmers frequently think in terms of an
interval rather than a point estimate (47) when asked about prices and
yields. If one interprets this interval to be the interval ab in the
triangular distribution of Figure 3,4, and asks the additional question

about the most likely yield or price, then estimates for mean and
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Table 4. 2. Monthly cash flow statement,

Monthly Cumulative
Cest e
January 5.00 5. 00
February 15.00 20, 00
March 10. 00 30. 00
April 25, 00 55,00
May 0. 00 55,00
June . 0. 00 55,00
July 0.00 55, 00
August 0. 00 55. 00
September 0. 00 55,00
October 35. 00 90. 00
November -150. 00 -60, 00
December 0. 00 -60. 00

2 s 1 . .
Positive numbers indicate an outflow of cash while negative
numbers indicate an inflow,

3 . . s .
Positive numbers indicate that there has been a cumulative net
outflow while negative numbers indicate a cumulative net inflow,
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variance are established. Since farmers usually go through such a
thought process anyway, the only additional requirement is to record
their pessimistic, optimistic and most likely estimates of price and
yield. Thus data collection is no more difficult for the quadratic model
than for linear programming,

Production coefficients, price and yield data and resource con-
straint levels were obtained for each of the farms using the forms
appearing in the appendix, A regional correlation matrix for the
Willamette Valley was prepared from a 10 year aggregate time series

on 46 different crop enterprises,

Report and Interpretation of Results

The program OUTPUT was designed to provide a report which
could be interpreted by farm decision makers. The report for Case
4 follows, Although this represents a real farm, the names Smith and

Jones are ficticious.

The data was obtained from the files of D. L. Rassmisson and
H. G. Ottaway, County Extension Agents, Marion County, Salem,
Oregon. The regional correlation matrix was computed with the pro-
gram CORRELATE, a copy of which appears in the Appendix,
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MR, SMITH AND JCNES
SOMFWHERE CRE.

NFAR MR, SMITH AND JCNES

THE FOLILSWING REPCRT GIVES A DFTAILED DESCRIPTIZN GF EFFI~IENT PLANS FOR YCUR
FARM RUSINESSs THE PLANS ARE ARRANGFD IN CRDER OF INCREASTNG PRSCFITABILITY.
RGFITARILITY IS MEASURED RY EXPECTED rg SS MAngtN. GRNSS MARGIN 1S THE DOLLAR
VALLUE CF PRODUCTICN AFTER THE VARTARLE cCSTS SUCH AS FUEL.FFRTILIZER. REPAIRS,
FTCe HAVE AEEN DEDUCTED. THE TFRM ~FXPECTED= VAL UE 1S USEn TC INDICATE THAT WE
ARE NEA ING WITH THE ~AVERAGE~ YEAR, NCTHING IS _SAID ARCUT THE GRNSS MARGIN FoR
A SPFCIFIC_YEAR. AS THE EXPECTED GR*SS MARGIN CR PAYCFF OF A PLAN INCREASESs SO
NBES ITS RISKINESS. HCWEVFR, THE PLANS ARE SC CANSTRUCTED THAT AT A SPECIFIC
LFVEL CF EXPECTED GRCSS MARGIN, THE RISK 1S AS SMALL AS 1T CAN BE, THIS IS WHY
THE PLANS ARE SAID T BE FFFICIENT. AS FXPECTED GR2SS MARAIN IS INCREASEDs THE
GENERAL NATURE OF THE PLAN_MUST CHANGE, FCR EXAMPLF. THE | OWER PAYINB, LFSS
RTSKY CROPS RECCME REPLAC:D BY HIGHFR PAYING, euT MORE R1&Ky CNES, AS THE
chP”SITIuN OF THE PLAN CHANGESo SCME RFSOURCES, FCR EXAMPLF LAROR SR CPERATING
rAP!TAL, MAY BECCOME L!MIT;NG. WHEN THIS HAPPENS A NEW PLAN TS MADE, NEW

PLANS ARE CONSTRUCTED UNTTL THERE 1§ NC WAY IN WHICH EXPFATED GROSS MARGIN CAN
BF INCREASED FURTHER. IN SRDER T2 DFTERMINF ALL EFFICIENT PIANS A STEP BY

STEP _PRSCEQURE IS FOLLD wen. THE CCMPCSITISN OF THE PLAN AND ITS PAYCFF AND
RISKINESS IS GIVEN AT THE END oF EACH STEP, WHILE EACH OF THE PLANS IS EFFICIENT
1T REMAINS FOR YSU TS DECINE WHICH SNE 1S REST, SELECT THAT PLAN WHICH FZR YSU
HAS THE MCST ACCEPTABLE COMBINATICN OF EXPFCTED GRSSS MARAIN AND RISK,

THE REPZRT IS DIVIDED INTS A NUMBER OF PARTS,

PART CNF IS A SUMMARY OF ALL TWE STFPS. THE PLAN AS IT EXiSTS AT THE END OF EACH
STEP IS GIVENe THIS SUMMARY SHOWS THE EXPECTED GROSS MARGN, THE RISKTINESS AND
THE NUMRER_CF ACRES IN EACH CROP, YSU WILL ALSC FIND A STATEMENT SHOWING THE
AMSUNT CF RESCURCES USED AND THE VA UE oF SNE MoRE UNIT OF THF RESCURCE.

PART TW2 IS DESIGNED TC HFLP YSU CHSSSE YSUR BEST PLAN, RFMEMBER THAT EXPECTED

GR”SS MARGIN IS A LvNG RUN_AVERAGE CCNCFPT, AND SAYS NCTHING NDIRECTLY ABCUT NEXT
YEAR, IN THIS SECTICN YCu ARE GIVEN THE PR“BABILITIES CR AHANCES THAT NEXT

YFAR' ss MARGIN wILL FXCEER A SPECIFIED AMSUNT, THIS eTATEMENT IS MADE FCR
MFACH “F THE PLANS OF PART CNE .

PART THREE BIVES THE CCMPLETE SPECIFICATION FRCM WHICH ANY PCSSIBLE PLAN CAN BE
CALCULATED. THE PLANS, ANA THEIR RESPECTIVE PAYGFFS AND RISKINESS ARE GIVEN AS
FQUAT!uNS. TC DETERMINE ANY PLAN Yot NEFD ONLY PLUG THE PRCPER VALUES INTS THE
‘EQUATIONS,

PART FOUR PRESENTS THE ENTIRE SET CF EFFICIENT PLANS IN GnAPHIC FORM, IT ALLCWS
YCU TS KNOWe AT A GLANCE, THE CHARACTERTSTICS OF EACH PCselalE EFFICIENT PLAN,

IT 1S H‘PED THAT THE F‘LL‘N!NG INFCRMATICN WILL BE OF VALNE TC vYSU AS YSU PLAN
YSUR FUTURE FARMING ACTIVITIES,

YSURS TRULYS



PART CONE

SUMMARY CF EFFICIENT FARM P|ANS

A STATEMENT oF THE LEVELS OF ACTIVITIES AND THE EXPEFTEN BDpv<fFF

1 NAME COF UNITI
1 CRCP

1

TWHEAT AC
IRED CLGVER  AC
TALFALFA IRG AC
TALFALFA DRY AC
1CSRN SiLAGE  ac
AL ac
ISRCH BRASS  AC
HATRY VETCH AC
TPINTS BEANS AC

1
T EXP GR MARG §SI
1 ST DEV $$)

24 2 3 2t e = a4 et =t 24 e

PLAN  §

29400
=0+00
37.65
15.56
=0.2"
50400
=0.00

3.17
$6.0n

18718435
1041,04

1
1
1
1
I
I
I
1
I
I
I
1
1
1
I

PLAN 2

29,00
=0,00
50,00
23,23

+00
50.00

20553,81
1130.69

29.00
=0+00
50.00
27.04
07
50.00
«0+00

8.86
50400

20833.07
1166,52

29.00
=0¢00
46423
40046

877
50.00
=000
11469
50400

22367.28
1238.88

PLAN -]

29.00
=0.00
40410
50.00

9.90
52,2
=0.00
13.44
50.00

23%582,66
1315,69

PLAN 6

29,00
~0.00
30,36
50,00
19,64
101,71
.00
9,56
50,00

27318,83
1592,03

PLAN 7

30124,.56
1879.00

32856, 5%
2110,08

e L R TR PO TP DR

|
]
[
[
|
'

PLAN L]

2.82
5nenn

32884.38
2113.%8

e e e e L e P e Y S R o

L1



PARY ONE CONTINUED

A STATEMENT OF THE AMOUNY OF £ACH RESSURCE

USED AND THE

EXPFCTED PAYCFF

1 NAME OF UNITI PLAN 1 I PLAN 2 I PLAN 3 1 PLAN & I PLAN 8 t PLAN & 1 PLAN 7 1 PLAN 8 1 PLAN 9 1
1 RESOURCE 1 1 1 1 1 1 1 1 1 1
1 1 1 1 I 1 1 1 T I | 1
TJAN LAB MR 1 01 01 ot 2.02 1 3.46 1 6.88 1 13.34 1 21,01 1 21,97 1
IFER LAR HR 1 01 o1 01 2.02 1 3,46 1 6.88 1 T.90 1 17,50 1 17.80 1
IMARCH LAB MR 1 13.22 1 13.69 1 f3.”9 1 16009 1 18,16 1 31,07 1t 40,01 1 49,89 1 69.90 1
1APRIL LAB MR | 20400 1 2n.00 1 20400 § 20.00 1 20,90 t 40,69 1 86,64 1 57,57 1 57.60 1
1 1 1 1 I 1 1 1 1 1 1
IMAY LAB HR 1 188,27 1 208,23 1 272404 1 226004 1 236,22 1t 242,14 1 266,37 1 269,39 1 249,40 1
1JUNE LAB HR 1 14].80 1 160479 1 160.89 1 162032 1 163,32 1 164,88 1 166,96 1 170,36 1 170,28 1
1JULY LAB HR 1 18a.78 | 226448 1 230.%0 1 238.28 1 263,54 1 229,91 t 232,78 1 200,89 1 201,67 1
1AUG LAR HR T 226424 1 259,26 1 261.%3 1 264496 1 268.96 1 295,78 1 323,75 1 302,80 1 303,34 I
1SEPT LAB HR 1 99,49 { 109,74 1 1i0.32 : 117.20 { 121.97 1 128,41 1 127,97 1 152,14 ; 151,51 §
) 1 1 1 1 1

1SCT LAB HR 1 26462 1 29.46 1 30e42 I 34,90 1 37,94 1 38,04 1 36,28 1 42,39 1 41,86 1
INGV LAR HR 1 57.40 1 87440 1 57,40 1 61.73 1 65,73 1 92,82 1 110,76 132,47 1 132,80 1
{DEC LAB HR 1 2.90 1 2490 1 2490 1 4692 1 6436 1 9.78 1 10.80 1 20,60 1 20440 1
IMAY WATER Al 1 200400 1 200,00 1 200400 1 200400 1 200,00 1 200,00 1 200,00 1 200,00 1 200.0n 1
TJUNE WATER Al I 350.61 ; 400400 1 400+00 { 400400 } 400,00 1 400,00 1 400,00 1 600,00 1 400.00 {
1 1 1 1 1 1 1

T1JULY WATER Al 1 350.61 1 400400 1 400.00 1 400400 1 400400 Y 400,00 1 400400 1 400,00 1 400.00 1
TAUG WATER Al 1 350.61 1 400400 1 400,00 1 400:00 1 400.00 | 400,00 1 400,00 1 400,00 1 400400 1
1JAN CAP $s$ 1 nt o1 nl =285.06 1 =488.94 1 =970,39 1  «1432.58 T =2674,96 1  =2731,27 1
IFER CAP s 1 o1 01 o1 %7012 1 -977,88 1 =1940,78 1 =2546,98 1 ~5146,96 1 =5201,27 1
IMARCH CAP L LI 1029.09 1 1077.87 1 107,83 1 261,80 1 =303,46 T ~1187,15 1  <1331.78 |  %310,26 1  -5350,87 I
1 1 1 1 1 I 1 1 ) 1 1
TAPRIL CAP ss 1 1474409 1 1522487 1 1532.83 1 706480 1 161,63 1 261,90 1 =75.89 1 =4029,37 1  =4069.26 I
IMAY cAp $s 1 1378.95 1 548,06 1 393,93 1 “504488 I  =1098.46 1 -654,18 1 "201422°1  =1752,19 1  =1792,08 1
1JUNE CAP $s$ 1 161054 1 827,19 1 677.36 1 =206427 1 «790,69 | «359,80 1 71.38 1 =1472,31 1 -1816,.82 |
TJULY CAP s I =309.29 1 ~1821.56 1  =2076.90 1  <3076.21 1 <3742,33 | 2885.70 | =2315,05 1  «2664,39 1  -2689,43 1
1AUG CAP $$ 1 ~4416030 1 <6399,38 T  ~6745.99 I  -7945.88 I <BR35.45 1 ©9652,38 1 ~1042046A 1 <1N0360,12 1 =10367.98 I
1 1 1 1 I 1 1 1 1 R I
ISEPT CaP $$ 1 =20053.57 I -22164405 1 =22696481 1 .23%83,29 1 =24478,24 1 =27165.53 1 .29389,90 1 =29211,14 1 «29186.14 1
15CT cAP $$ 1 <19117.A2 1 <21052,16 I =21350.6R I 222360.67 1 -23202,68 | =25979,28 | «28282,64 1 =20266,07 1 -28247,07 |
INCv CAp $$ 1 =18965,34 I .20899,68 I <21108.20 I .52486,90 I -23%35.77 1 =26718,69 1 <29026,99 1 <3n384,99 1 <30384,8) 1
1DEC CcaP $$ 1 ~18693.47 1 <20527.74 1 =20807.19 I «32362.71 1 =23558.40 I =?7281,50 T +30076.86 1T <=32810,77 1 =32838,75 1|
IORY LAND AC 1 97.73 1 110413 1 114.90 § 13118 1 164,69 1 190,27 1 230,00 t 230,00 1 230,00 1
1 1 1 1 1 1 1 1 1 1
T1IRG LAND ac 1 87.6% 1 100,00 1 100.00 I 10000 1 100,00 ¥ 100,00 1 10000 1 100,00 1 100.00 1
TMAX WHT ac 1 29,00 I 29,00 1 29.00 1 29.00 I 29,00 1 29,00 1 29.00 1 29,00 1 29.00 I
IMAX RD CLOV AC 1 =0.00 1 01 «0400 I *0¢00 1 o1 01 =0400 1 *0,00 1 =0.00 1
TMAX ALF IRG aC 1 37465 1 %50.00 1 §0.00 1 44023 1 40.10 1 30,36 1 27464 1 $00 1 «00 1
TMAX ALF DRY aC 1 1556 1 23.23 1 27.06 1 40.06 1 50.00 t 50,00 1 50.00 1 50,00 1 50.00 1
I 1 1 1 1 1 1 1 1 1
IMAX CORN aC 1 o1 01 ol 5.77 1 9.90 } 19,64 1 22.56 1 50,00 1 $0.00 1
TMAX ALY ac 1 50400 1 $0+00 1 50.00 1 50«00 1 82,25 1 101,71 1t 14101y T 143,92 1 164400 1
IMAX SR GR ac 1 nt ot =0.00 1 [ ot o1 5448 1 3.51 1 447 1
TMAX VETCH ac 1 317 1 7490 1 B.86 1 11469 1 13.44 1 9,56 1 boba 1 1,87 1 282 1
;MAX REANS aC { 50.00 } 50.00 } 50400 } 50400 } $0.00 1 50.00 ; $0.00 1 50,00 1 50400 ;

1 1 1

IMIN wHT ac t 29,00 1 =29.00 1 =29.00 1 =~29400 ! =29.00 1 «29,00 1 =29.00 1 =29,00 1 29,00 I
IMIN RD CLOV AC 1 nl o1 0l nt o1 ot 0t o1 o1
IMIN ALF IRG AC 1 37.6% 1 50400 1 50s00 1 44421 1 40.10 1 30,36 1 2T.66 1 «00 1 nt
TMIN ALF DRY AC 1 15.86 1 23.23 | 27406 40e4b 1 50.00 1 50,00 1 50.00 1 50,00 1 50.00 1
IMIN CORN ac 1 ot o1 o1 8.77 1 9.90 1 19,64 1 22456 1 50,00 1 50.00 1
1 _ 1 1 1 1 1 1 1 1 1 I
TMIN BLY AC I ~50.00 1 =50.00 1 ~50.00 1 =50+00 1 =47,75 1 1.71 1 41 1 1 43,92 1t 44eN0 1
IMIN OR GR aC 1 At 01 o1l o1l 01 01 5.65 1 1,51 1 647 I
IMIN VETCH ac 1 317 1 7490 1 8486 1 11069 1 13.44 1 9.56 1 4a06 1 .57 1 2.82 1
TMIN BEANS AC 1 S5n.00 ; 50.00 1 50400 { S$0.00 1 50.00 | 50,00 I 50.00 1 Sn.n0 1 Sn.nn 1
1 1 1 I 1 1 1 1 1
T EXP GR MARG $SI  18718.35 1  20553.81 U  20833.07 1  22167.28 1 23582,66 1 27318,83 T 30124456 T  37856,56 | 32886438 |
1 STD DEV [13 1041.06 1 113069 1 1146.52 1 123R,88 I 1315.69 ¢ 1592,03 1 1829,00 1 ?11n.08 1 2113.%8 1

8% 1



PART CSNE CONTINUED
A STATFMENT SF THE VALUE OF AN ANDITYSNAL

UNIT CF RESCURCF

1 NAME oF UNITI PLAN 1 I PLAN 2 I PLAN 3 I PIAN & T PLAN S 1 PLAN 6 I PLAN 7 I PLAN @ I PLAN 9 I
TJAN LA HR 1 ol o1 ol o1 o1 01 o1 01 01
1FER LAR HR 1 0l o1 nl o1 o1 or 0y 01 0y
IMARCH LAB HR 1 0l 01 nlI 01 [ ] (38 { or 01 01
TAPRIL LaAB HR 1 01 o1 01 o1 o1 01 ny 01 L §
IMAY LAg HR 1 01l o1 0l 0l 01 o1 nr 01 0y
T 1 1 1 1 I 1 1 1 1 1
TJUNE LABR HR 1 01 o1 ol o1 o1 01 o 01 01
1JULY LAR HR 1 0l 01 o1 o1l 0t 0 nt 01 n1
1AUG LAB HR 1 0l o1 o1l o1 o1 01 [ | 0 06X
1SEPT LAB HR 1 0ol 01 [ I § o1 o1 o1 [ 2 4 01 nI
18CT LAR HR 1 01 01 01l o1 01 01 0t 01 ot
1 1 I 1 1 1 1 1 ] 1 1
TINOV LaAB HR I o1 [0 | o1 o1 o1 01 [ I § 01 01
1DEC LAB HR | nl o1 o1 o1l o1 01 01 01 01
TMAY WATER Al I 01 01 01 o1 01 01 01 01 n1
TJUNE WATER Al 1 nl o1 ol o1 01 o1 [ 01 01
TJULY WATER Al 1 01 o1 o1 o1 0or o1 0ot 01 01
1 1 I 1 1 I 1 1 1 1 1
TAUG WATER Al 1 o1l 01 ol ot o1 01 o1 01 01
1JAN CAP [ 13 o1 01 ol o1 ot ot 0t 01 01
1FER CAP $S 1 [ § 01 ol o1 o1 01 or 071 01
IMARCM CAP $S 1 01 01 0l o1l [ { 01 01 07 01
TAPRIL cAP $S$ 1 n1 o1 0l 0l o1 o [ | 01 01
I 1 1 1 1 I 1 1 \ 1 I
TMAY CAP $S 1 ol o1 ol o1 o1 01 ot 01 o1
IJUNE cap $$ 1 o1 0o ol oI [ | 01 o 01 01
1JULY CaAP S 1 01 o1 01 o1 01 01 L 4 01 01
1AUG CAP $S 1 o1l ot o1l o1 or 01 nt 01 o1
1SEPT Cap s 1 01l o1 01 01 o1 01 or 01 o1
1 1 1 1 1 I 1 1 1 1 I
1CCT cAP $$ 1 01l o1 o1l o1 01 01 [ ] 01 o1
INCV cap $S 1 o1l o o1l o1 o1 01 o1 01 01
1DEC CAP $s 1 nlI 01 ol ol 01 01 L 01 01
INDRY LAND AC 1 nl [ § ol o1 01 01 01 17.45 1 23,38 1
11RG LAND AC Y nlI o1l 3.63 1 B84 1 10,31 1 18,95 1 21.91 1 47,086 1 66,27 1
1 1 1 1 1 1 1 1 1 1 I
TMAX WHTY AC I o1 ot o1l o1l o1 01 o1 01 t1
IMAX RD CLCV AC I 01 01 nl o1l o 01 [ § 01 €1
IMAX ALF IRG aAC | 0l o1 0l o1l 0o 01 or 01 [\ ¢
TMAX ALF DRY AC 1 0l o1 0l 01 o1 21,29 1 25,83 ¢ 28,26 1 24401 1
IMAX CORN AC Y nl 01 n1 o1l 01 o1 0 01 1
1 1 1 1 1 I 1 ! 1 1 I
IMAX BLY AC I ot o1 o1l ot or 01 or 07 c1
IMAX OR GR AC 1 0l 01 nl o1l n g 01 nr 01 o1
TMAX VETCH AC 1 ol o1 nl ol 0 [V { L3 01 61
TMAX RFEANS AC T nlI 8n.44 1 85,95 I 94.68 I 102.81 1 127,50 1 131.90 v 97,05 1 T8,%¢ 1
TMIN WHT AC 1 198.72 1 13n445 1 11Re86 1 110040 I 104,95 1 49,89 1 16.55% ¢ A,66 1 I
IMIN RD CLEV AC T 79778 1 477433 1 400,34 I 16601 1 338.67 1 176,73 1 136.2R 1 11A,07 1 98,48 1
IMIN ALF IRG AC T n1 o1 01 01 [ § 01 ny 01 12.8/ 1
IMIN ALF DRY aAC I nt o1 0l o1 o1 01 nr [0 { 01
IMIN CCRN AC 1 76437 1 11.23 1 =000 1 01 01 0t 0t 01 [
TMIN ALY AC 1 Se9n 1 3.92 1 1e34 1 n1t LI | 01 or 01 ny
1 1 1 1 1 I 1 T 1 1 1
IMIN SR @R AC 1 167403 I T3.42 1 64218 1 5765 1 S1.49 1 [ { 0 v 01
IMIN VETCH AC 1 nl 01 o1 o1l [ ¢ N 01
IMIN BREANS AC 1 a i o1 ol 01 ol 0o nt 01 n1
1 A 1 b 1 1 v 1 \J 1 1
1 EXP GR MARG ¢T? 1671843% 1 20553.81 1 2083%.,07 I 2236728 1 23%82.66 1 27318,83 1 30124.56 3>854,5% 1 328684,38 T
T STO DEV L1 )1 1061406 I 1130.69 1 1146452 1 123R.8R8 1 1315,69 1 1592,01 1 1829.00 v ?110,08 1 2113.%8 1

6v1



PART ONE CONTINUED
A STATEMENT oF THE

LEVELS CF ACTIVITIES AND THE EXPECTED PAY~FF

1 NAME CF UNITI PLAN 10 I PLAN 11 I PLAN 12 1 PIAN 13 T PLAN 14 1 PLAN 15 1 PLAN 18 v PLAN {7 1 PLAN 18 1 PLAN 19 1
1 CRSP 1 1 1 1 I 1 1 1 I 1 1
1 1 1 1 1 1 1 1 1 1 1 1
TWHEAT AC 1 S4e6) 1 62,03 1 67.00 1 67.00 1 67,00 1 67,00 1 67.00 1 67,00 1 67,00 I 67,00 1
IRED CLOVER AC 1 0400 I «0.00 1 =000 1 =000 1 «0.00 1 =0,00 1 28,72 1 50,00 1 50.00 1 100.00 1
TALFALPA IRG AC I «00 1 «00 1 200 1 00 1 «00 1 .00 1 «00 7 .00 1 ono 1 «00 1
TALFALFA DRY AC T 50.00 I 50.00 1 5000 1 S0s+00 1 50,00 1 50,00 t 50,00 1 50,00 1 13.00 1 13.00 1
TCORN SILAGE AC I 50.00 1 50.00 1 ®0.00 I S0.00 I 50,00 1 50,00 t 50,00 Y 50,00 1 5000 1 o1
TRARLEY AC 1 124024 1 117,97 1 17300 1 10%.65 1 105,65 1 82,49 1 %0.00 1 50,00 t S0.00 1 0,00 1
TCRCH GRASS AC I 1.1% 1 «00 1 =0.00 1 7435 1 7438 1 30,51 1 63,00 1 63,00 1 100.0n0 1 100.00 I
THAIRY VETCH AC 1 «0n 1 0400 1 =0.00 1 =000 I 0,00 1 *0,00 ¥ =0.00 1 =0,00 1 =N.00 1 «0400 1
TPINTS REANS AC 1 5000 1 50,00 1 80,00 I S0e00 1 50.00 1 50,00 1 ?1.28 1t 00 1 00 T «00 1
1 1 - 1 1 1 1 1 1 1 1 1 1
T EXP GR MARG $SI 34466043 1  36913.34 I  35238.,18 I  15344.90 I 35344,90 T 35722.39 T 37487,37 1 3r350,68 T  38895.85 I  38974.%4 I
1 STD DEV £131 2357.07 1 263%,77 1 2493,01 ! 2526417 1 2%26,17 1 2760,11 1 4490.67 1 8576,16 | 6341400 1 944694148 1

04t



PART ONE CONTINUED
A STATEMENT OF THE

AMEUNT OF EACH RESSHRCE

USED AND THE

ExerCYEN PAYSFF

1 NAME COF UNIT] PLAN 10 I PLAN 71 1 PLAN 12 1 P1AN 13 1 PLAN 14 1 PLAN 15 T PLAN 16 1 PLAN 17 1 PLAN 18 I PLAN 19 1
1 RESCURCE 1 1 1 1 1 Y ' 1 1 1 1
1 1 1 1 1 1 T 1 T 1 1 1
TJAN LAB HR T 18,68 1 17,50 1 1750 1 24485 1 24.85 1 48,01 1t 80.50 1 80,50 1 117.8%0 7 100.00 1
1FER LAR HR 1 17.50 1 17.50 1 17.50 1 17.50 1 17450 1 17,50 1 17.50 1t 17,50 1 17.%0 1 n1
TMARCH LAB HR 1 47492 1 47430 1 46480 1 46007 1 46,07 1 43,75 1y 40450 1 4n,50 1 46420 1 26.70 1
TAPRIL LAB HR T 49,70 1 47,19 1 45.20 1 42426 1 42426 1 33,00 1 20400 1 20,00 1 20400 : 20400 1
Y 1 1 1 1 1 1 T T 1 1
IMAY LaB HR I 247442 1 246,80 1 246,30 1 245487 1 265,57 1 243,25 1 194,08 1 160,00 1 123.00 1 118.00 1
TJUNE LaB HR 1 170.00 I 170,00 1 170400 1 170e00 1 170,00 1 170,00 1 166,26 1 160,00 1 160,00 1 150.00 1
TJULY LAR HR 1 19230 1 19000 1 150400 1 2064469 1 204469 1 2%1,02 1 272,92 1 261,00 1 288,40 1 210440 1
TAUG LAR HR 1 305.77 1 306400 1 3né.00 ! 204.83 1 304,53 1 299,90 1 2%0432 1 218,60 1 216470 1 139.70 1
ISEPT LAR HR 1 150400 1 150,00 1 150400 I 150.00 1 150,00 1 150,00 Y 150,00 1t 150,00 1 150400 } 150.00 1
1 1 1 1 1 1 1 1 1 1 1
1SCT LaB HR T 55438 1 89,72 1 62+70 1 63443 1 63,43 1 65,75 1 71.87 1t 74,00 1 74,00 I 61450 1
TNOV LAR HR 1 13949 1 161491 1 142490 1 139496 1 139,96 1 130,70 1 106,21 ¢ 97,70 1 97,70 1 60420 1
IDEC LAR HR 1 22496 1 23.70 1 26+20 1 26020 1 244,20 1 26,20 1 24420 1 26,20 1 26420 1 8e70 1
IMAY WATER Al 1 200400 1 200,00 1 200.00 1 200.00 1 200.00 1 200,00 1 aS.12 1 .00 1 .00 1 00 1
TJUNE WATER AT | 400400 1 400,00 1 400400 1 40nenn 1 400400 1 «00,00 1 4n0.00 1 400,00 1 400.00 ; 400400 I
1 1 1 1 1 1 1 1 1 1 1
TJULY WATER Al I 400400 1 400400 1 400400 1 400400 I 400400 1 400,00 1 285.12 1 200,00 1 200.00 1 «00 1
1AUG WATER Al 1 400400 1 40000 1 40N«no 1 400400 1 400,00 1 400,00 1 285,12 1 200,00 1 200400 1 .00 I
TJAN CaP $S 1 <2537.27 1 «2470,00 1  «2470.00 1  .2899.08 I ~2899,08 I <4251,90 T  <93R8.75 T «11789.20 I =13950.00 1 «17120.00 1
1FER caAP $5 1 ~5007.22 1  «4940.00 T  =6940.00 I 5369,08 I =5369,08 1 <6721.90 1 .11858,75 | =14259.20 | ~16420.00 T 17120400 1
IMARCH CAP $$ 1 -5192.96 1 25140445 I <5139,61 I  _5466.71 I =5666,71 T -6498,00 1 -10968,52 1 =13200.37 I +14392.26 I ~12247.26 1
1 1 1 1 1 1 1 1 T 1 1 1
TAPRIL CAP $$ 1 ~4087.22 I =4090.53 1  «4133.91 1  4526.60 1 =4526,40 1  -5763,86 I -10523.52 T =17764,37 1 «=13947.26 [ 11802426 I
IMAY CAP $S 1 181595 I 1821413 1  <1866.01 1  -2260.70 I =2260.71 T =3505,11 | «04B2,48 T =12618.37 I =12208.78 1 =12080.78 1
T1JUNE capP $$ 1 -1551.98 1  <1557,13 1 1602401 I  -1996,71 I =1996.71 1 <3241,11 1 <9167,62 T -12265.87 [ =11aB6.78 I «11630.78 1
1JULY cap $$ I ~2742.1R I  <2751,63 1  «2706,%1 I  .3163.95 | =3163,95 1 <4322,41 1 <10100482 T =-17178.64 1 =11888.01 | =11218,8] I
TAUG CAP $3 1 ~10684460 I =10778%,21 1 <10842.80 I =10908+63 1 ~10908.63 1 ~11116,19 T «)5622.14 T =1A745,28 1 <16569,68 } ~16407.69 I
1 1 1 1 1 1 1 1 1 1 1
1SEPT CAP $$ 1 =31388.24 T <32027.76 1 <=32430.8% 1 =32187.65 1 =32187.656 T «31421,82 1 «28549.96 T =27217,77 1 25504467 1 <25274,68 1
15CT cap $3 1 =30002.84 1 «3050R.74 I -30831.87 I -30877.43 I =30577,43 1 =29806,74 1 <26767,77 1 =28316.86 1 +23863.79 1 =23390.80 1
INOV CAP $S I =32141480 I 232659,49 1 <32972,53 I =12651.82' 1 «32651,82 | =31640,68 I .20149.14 | =28647 88 T <24775,75 I 216%0.76 |
IDEC CAP $$ 1 =34620427 T <34B67,09 1 35179,13 I =35301¢39 1 =35301,39 1 =15686,85 1 37413.56 1 ~3R292,45 1 +38836,1% | =386881.3% I
IDRY LAND AC 1 230400 1 230.00 1t 230400 1 230.00 1 230.00 1 230,00 1 230,00 1 230,00 1 230.00 } 230400 1
1 1 1 1 1 1 1 1 1 1 1
TIRG LAND AC 1 100.00 1 100.00 1t 100.00 1 100+00 T 100.00 ! 100.00 1 100,00 1 100,00 1 100.00 1 100400 1
TMAX WHY AC I 56467 1 672,03 1 67.00 1 67.00 1 67,00 1 67,00 1 67400 1 67,00 1 67.00 1 67.00 1
IMAX RD cLCV AC I 0400 1 «0+00 1 =0.00 1 =0+00 1 =0.00 I =0.00 1 28,72 1 Sn.00 1 80.00 1 100400 1
TMAX ALF IRG AC 1 «00 1 00 1 «00 1 00 1 200 1 <00 1t «00 1 .00 1 nn 1 W00 1
IMAX ALF DRY AC T So.0n 1 50400 1 50400 1 50s00 1 50.00 1 50,00 1 50.00 1 50,00 1 13.00 ; 13400 1
1 1 1 1 1 1 1 1 1 1 1
ITMAX CORN AC 1 50400 1 50400 1 5000 1 S0e00 I 50.00 1 50,00 1 50400 1 . 50.00 1 50.00 1 0400 1
IMAX ALY AC 1 124424 1 117.97 1 113.00 1 105.65 1 105,65 1 82,49 1 %0,00 1 50.00 1 S50.00 1 50.00 1
IMAX SR GR AC Y 115 1 «00 1 =000 1 Te38 1 Te35 1 30,51 1 £3,00 1 63,00 1 100.00 1 100.00 1
IMAX VETCH AC T o1 01 =0.00 1 =0e00 I =0400 =0,00 1 =0.00 7 =n,00 1 =000 I =040n 1
TMAX REANS AC 1 5000 1 50400 1 50.00 I Snenn 1 S0.00 1 50,00 1 ?1.2R 1 .00 1 oNO 1 000 1
1 1 1 1 1 ' 1 1 T 1 1 1
IMIN WHY AC 1 =3.30 1 4403 1 9.00 1 900 I 9.00 1t 9,00 1 9.00 t 9,00 1 9.n0 1T 9400 I
TMIN RD CL3V AC 1 [ 01 0ol o1 0t [ ] 28,72 1 50,00 1 50.00 1 100,00 1
IMIN ALF IRG AC I 0l o1 01 01 [} 01 ot 01 01 0l
IMIN ALF DRY AC I So.0n 1 50.00 1 50.0n 1 S0e00 1 So.00 1 50.00 t S0.00 v 50,00 1 13.00 1 13.00 1
TMIN CCRN AC 1 Sn.00 1 Sn.00 1 She00 I Sneno 1 50.00 1 50,00 1 50.00 50,00 1 Sneno 1 «0e00 I
1 1 1 1 1 1 1 1 Y 1 1

TMIN BLY AC 1 24424 1 17,97 1 13.00 1 5¢65 1 5.65 ¢ -17,51 1 =50.00 1 =50,00 1 ~50.00 1 =50400 ;
IMIN CR GR AC 1 1,15 1 400 1 01 Te38 1 7.35 1 30,51 1 63,00 1 63,00 t 100,00 1 1060.00 1
TMIN VETCH AC I nt 01 01 01 or 01 o1 01 nt P
IMIN REANS AC 1 50.00 1 50,00 1 50,00 } Sn.00 1 S0.00 1 50,00 1 ?l.2R 1 .00 1 N1 01
1 1 1 1 1 1 1 ' 1 1

T EXP GR MARG ST 34666443 1  34913.36 !  35225.18 I 35344090 T 35344.90 1 35722,39 T 37457,37 1 3a350,68 1 38895,65 1 38974454 ;
T STO DEV (134 2357.07 1 2635,77 1 2493.01 1 2526417 1 2526417 1t 2740,11 1 6490,47 T 5576,16 1 6341,R0 1 9449416 1
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PART ONE CONTINUED

A STATEMENT SF THE VALUE GF AN ADDITISNAL

UNIT CF RESCURCF

E vALUE

1 NAME OF UNITI PLAN 10
1JAN LAB HR 1 [
1FER LAR HR T 0
IMARCH LAB HR 1 0
TAPRIL LAB HR | 0
IMAY LAB HR T 0
1 1
1JUNE LAB HR 1 [
TJULY LAR HR 1 0
1AUG LAR HR 1 0
1SEPT LAB HR T o
;acr LAR HR 1 0
1
INCV LAB HR 1 [
TDEC LAR HR T 0
TMAY WATER Al 1 0
TJUNE WATER Al 1 0
TJULY WATER Al 1 0
1 . 1
TAUG WATER Al 1 0
TJAN cap sS 1 0
TFEB cap sS 1 0
IMARCH CAP $S 1 [
TAPRIL CAP ss 1 0
1 1
TMAY cAP $s 1 [4
1JUNE cap ss 1 )
1JULY cap ss 1 0
1AUG caP sS 1 o
18EPT CaAP $S 1 0
1 1
12CT cap ss I 0
INSV caP $S 1 0
IDEC cAP sS 1 n
INRY LAND aC 1 33.99
TIRR LAND aC 1 96463
1 1
TMAX WHT aC 1 0
TMAX RD CLOV A€ 1 0
TMAX ALF IRG AC I 0
TMAX ALF DRY aC 1 12.90
TMAX CSRN aC 1 0
1 1
TMAX ALY aC 1 0
TMAX OR GR AC 1 0
TMAX VETCH ac 1 0
TMAX REANS ac 1 52454
IMIN WHY ac 1 0
IMIN RD CLOV aAC I 60+47
TMIN ALF IRG AC I 34068
IMIN ALF DRY AC I n
IMIN CCRN AC 1 n
TMIN RLY AC 1 0
1 1
TMIN SR GR AC 1 )]
TMIN VETCH AC 1 0
TMIN BEANS AC I o
1 1
T EXP GR MARG SSI  34466.43
1 STH DEV $$1 2357.07

1
1
1
1
1
1
I
1
1
1
I
1
1
I
1
1
1
1
I
1
1
1
I
1
I
1
1
1
1
1
I
1
1
1
I
1
1
1
1
1
1
1
I
1
1
1
1
1
1
I
I
I
1
1
I
1
I
I
I
1

PLAN 11

OO0 ©0OO0O00OQ 0O0OO0OOoOo 00000 00000 D000 O

35,86
102,28

«91
]

34913434
243%,77

I
I
I
I
I
I
I
I
I
I
1
1
I
1
1
1
I
1
I
1
1
I
I
1
1
1
1
I
1
I
1
I
I
1
I
I
1
I
I
I
I
1
1
I
1
1
1
1
I
1
I
T
1
I
1
I
1
1
I
1

PLAN 12

2092000

200 D20000 20000 205000 209000

-
~
-
N
w

1.32
188
0

3522%.18
2493.01

I
I
1
I
I
I
I
I
I
1
I
I
I
1
I
I
1
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I

PLAN 11

= X-N-] 092000 0OD0D00 DOOOO OOD200 Q2020

4855
148,18

Be24
0

5944490
2526417

PLAN 14 1 PLAN 1S
[ [
01 [}
o1 [
ot 0
o1 [
1
0t [
o1t 0
o1 [}
01 [
01 [
1
o1 0
o1 [}
[ 0
o1 [}
01 0
1
ot [}
01 0
0t 0
o1 [}
ot 0
1
o1 0
[ 0
[ [}
[ 0
o1 0
1
o1 0
o1 0
o1 0
48,55 1 55,84
148,18 ¢ 146,81
1
28,10 1 45,80
o1 0
0 [}
S.67 1 2.88
01 28,10
1
07 [}
o [}
o1 [}
01 [}
01 [
36453 1 [
68,28 1 57,36
01 [
01 [}
01 [
1
0t [
8,24 1 12,53
01 [
1
35344,90 1 3%5722,39
2826,17 1 PT40,11

BTt 0ttt 1t it ot 2 8 0t et b = et o 0o b 2t b b g b o b ot b b o P b 0 b bt ot 7t e b 3t 0t

PLAN 16

209000 209000 209000

200 209000 20020
e it i e B R R e e B R R R R R R R T L R e el e e L T i it LD

58,54
143,53

53. 7

2.19
40498

49,7

209090~0 209020020

0
15.28
o]

374%7.37
4490,47

PLAN 17

OO0 00000 ©OOOoOoOo o000 [=-2~-¥-N-) 00000

60,65
163,40

53,72
0
0

235
42.37

0
17,25
0

3R3I50,68
]574,16

I
I
I
I
1
1
I
I
I
1
1
I
I
I
I
I
I
1
I
1
I
I
I
1
I
I
I
1
1
I
I
I
I
I
I
1
1
I
I
I
I
I
1
I
I
1
1
I
I
I
I
1
1
I
I
I
I
1
1
I

PLAN 1a

200 2009000 020000 20300 Q9090920 Q20300

61061
152,14

54439

38895.65
6341 ,.R0

PLAN 19

20000 2.2:0200 290 9:Q 209220

29292090

Qo 2020292
Indaied et it e L R e L e Rl e e e L e T L g L T O P O U

1442

220N

-
[=]
=
.
—
~

0

159

[}
13,38
40467

38974454
449,16
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PART TWe

PROBABILITY STATEMENTS ABOUT ATTAINING SPECIFIED LEVELS OF arTuaL GR3SS MARGIN F2R

A GIVEN LEVEL OF EXPECTFD ARSSS Mamgln

1 1 1 PROBARILITY LEVEL 1
1 1 1 -t
TPLANI EXP GR MAR I is 1 S% 1 10% 1 20% 1 30% ! 60y 1 S0% t
1 1 _ 1 I | 1 1 1 1 _ 1 1
1 11 18718,35 I 16296,17 1 17005.84 1 17384,05 1 17842,00 1 18165,56 1 18457.08 1 18718.35 1
T 21 -20553.81 I 17923,06 1 18693,83 1 19104461 T 19601,99 T 19953,41 T  20270.00 I 20553,81 t
I 31 20833,07 1 18165.,46 1 18947.05 1 19363.56 |  19847.93 1 20224,27 1 20548.30 1  20833,07 1
1 (34 22367.28 1 19484,77 1 20329.,32 1 20779.,41 7 21324,39 1 21709.43 1 2205632 1 22367.28 1
1 1 1 1 1 1 1 1 1 1
1 L34 23%82,66 1 20521.44 1 21418.35 1 216896,34 1 22675,11 1 22884,03 1 23252443 1 23582.86 1
1 61 27310.83 1 23614,6% | 24699,94 1 2%278,32 1 2%978,66 1 264T3,46 1 26919.23 1 27318,83 1t
I 71 30124,56 1  25869,04 T 27115.87 1  27780.36 | 285864,92 1 29153,37 I  29665,49 1  30124.%6 1
1 BI  328%6,55 1 27947,02 1 29385.46 I 301%2,06 1 31080,28 T  31736,09 T  32328.92 I 32856.%5 1
1 L 32884,38 1 27966.73 1 29607.58 1 30178.,41 1 31105.18 1 31762,07 1 32353,88 1 32884,38 1
1 1 1 1 1 . 1 1 1 1 1
T 101  34666.43 1 28982.,23 I 30%89,08 1 31445,37 1 32482,25 T 33214483 1  33874,81 1  34466.43 1
1 111 34913.,34 1 29266,03 1 30906449 1 31791.41 7 32862,91 1 33619,94 1 34301.98 1 34913.34 1
T 121 38228,18 1 29424,68 1  31124.1% 1 32429.88 | 33126,86 1 33901.39 1 34599,43 I  35228,38 1
T 131 3%344,90 1 29467,26 ] 31189,3% | 32107,11 1 33218,37 T 34003,51 I 36710483 I  35144.90 T
T 141 38344,.90 1 29667,26 1 3118%5.3% | 32107,11 1 33218,37 1 34003,.51 1 34710483 1 35344.90 T
1 1 1 1 1 1 1 1 1 1
T 181 38722.39 ! 29346,97 1 31214.90 1 32?10.39 1 33415,76 1 34267439 1 35034462 1 38722.39 1
1 161 37457.37 1 27009.40 I 30070.5% 1 31701.94 1 33677,30 1 35072,93 1 36330.26 1 37457,37 1
T 171 38350,68B I 25376,64 1 29177.90 1 31203,72 1 336%6,67 1  35389.74 1  369%1,07 1 38380.58 1
T 181 3R89%,65 1 24140,18 1 28463438 1 30767.%6 1 31857,12 ¢ 3%528,16 1 37303.88 1 38895,85 1
T 191 38974454 1 16989,17 1 23430.67 1  2663,5% 1 31020,23 T 33957,03 1  18602.80 I  38976.84 1

€61



PART THREE CONTINUED
DETAILED DESCRIPTION OF EFFICTENT PLANS IN EQUATION FORM CONTINUED

THIS PLAN WAS GENERATED DURING STEP 16
IT IS VALID FSR VALUES CF EXp GR MARG PROM 572243970 37457.37

ALL FQUATISNS PERTAINING T3 THIS PLAN ARE EVALUATED AT EXP ga MARG = 37457,37
THE VARIANCE EQUATION

1 ALPHAT 1 ALPHAZ 1 ALPHA3 1 VARTANCE 1 STD OFV I
1 1 1 . 1 1 1
1 1.786378 1 ~123632,099236 ! 2137219775,875000 1 20164284.50 1 4490447

THE ACTIVITY EQUATIONS

1 NO CF § NAME OF  UNiTI BETA} 1 BETA2 1 LEveL OF 1

T ACTIVITY 1 ACTIVITY 1 1 1 ACTIVITY 1

1 i 1 1 1 1

1 1 IWHEAT a¢ 1 =0.000000 I 67.000001 1 67400 1

1 2 {RED CLOVER ac I 4016553 1 «591,3158%9 1 28,72 1

1 3 JALFALFA IRG ¢ I «000000 1 =0.000004 1 «00 1

1 4  IALFALFA DRY ¢ I =0,000000 1 50,000001 I %0,00 1

1 1 1 1 1 1

1 5 JCORN SILAGE A¢ I +000000 1 49.999999 | 80400 1

1 6  JBARLEY Ac 1 =0,01872% 1 751.398067 | 80,00 1

1 7  JORCH GRASS ac I 2018728 1 =638,398048 | 63,00 1

1 8  IMAIRY VETCH A€ I =0,000000 I +000001 I =0400 Y

1 9  IPINTO BEANS Ac I =0,016553 I 641,315866 1 ?1.28 1

val



THE RESOURCE FQUATIONS
1 NO

OF I NAME OF UNiT1 8ETAL 1 BETA2 1 LEVEL OF 1 VALUE oF I
1 CONSTRAINT [ CONSTRAINT 1 1 1 CONSTRAINT I LAGRANGYAN t
1 1 1 1 1 1
1 0 EXP GR MARG  ssi =3,872787 1 123432,099236 1 1 =10393.97 |
1 1 JAN LAB HR 1 =0.,018725 1 1620.898049 | 919,50 ¢ 01
! 2 FEB LAB HR 1 =04090000 982.500000 1 982,50 1 01
1 3 MARCH LAB HR 1 «001873 I 889.360196 1 959,50 1 01
1 1 1 1 1 1
1 . APRIL LAB HR 1 «007490 1 899.44078] 1 980,00 1 01
1 ] MAY LAB HR 1 «028387 1 =256,245193 | 808,98 { 01
1 6 JUNE LAB HR 1 «003317 I T11.736824 | 838,74 ¢ 01
H 7 JULY LAB HR 1 =0.012621 I 1199.822308 1 727,08 1t 01
1 L] AUG LAB HR 1 «020878 1 320653398 | T49.68 1 01
1 ) 1 1 1 1 1
1 9 SEPT LAB HR 1 «000000 1 849.999993 1 850,00 1 01
1 io OCT LAB HR 1 =0+003528 I 1060271391 1 978,13 1 01
1 1 NCV LAB HR 1 «016111 1 365.214438 893,79 1 o1
1 12 DEC LAB HR 1 =0,000000 I 975.800000 1 975,80 1 01
1 13 MAY WATER (328 «066212 : ©1365.263464 1 116,88 1t 01
1 1 1 1 1
1 14 JUNE WATER A7 I «000000 1 799.999993 600,00 1 01
7 18 JULY WATER A1 I «066212 1 *1785.263444 1 714,88 1 01
1 16 AUG WATER Al 1 0066212 1 =1765.263444 1 Ti4.88 | 01
1 17 JAN CAP ss 1 24960742 1 «T6512.874992 | 343088,78 | 01
1 18 FEB CAP ss 1 2,960742 1 =~T4042,875032 | 36858,75 01
1 B 1 R 1 1 1 1
1 9 MARCH CAP ss 1 2.876688 I =60347,431203 | 35968,52 01
1 20 APRIL CAP ss I 2.743342 1 ~67234,873819 1 35523,52 | 01
1 21 MAY CAP ss 1 0445103 1 =94365,038691 1 34482,46 | 01
1 22 JUNE CAP ss I 3,415884 1 «93782,409632 | 36167,62 01
1 23 JULY CAP ss I 3,330522 i =896581,789818 1 35100,82 | 071
1 1 1 1 1
1 26 AUG cAP ss 1 2.%97110 I ~56650,762796 1 40622.14 1 01
1 [1] SEPT CAP ss 1 ~1.688280 1 118552,362879 1 $3549,94 01
1 26 OCT CAP ss 1 «1,781878 I 117377,288973 | S1767,77 1 01
1 27 SV CAP ss 1 «2.000902 1 128117.689328 1 83169.14 1 01
1 28 DEC CAP ss I «995231 } 2%134,842040 | 62413,%6 1 01
1 1 ! 1 1 1
1 29 DRY LAND A¢ 1 21547496898 1 =7472818.845731 1 o1 608605.12 1
1 20 1IRG LAND ag 1 504.878677 1 ~17419581,780762 1 o1 1491876,07 1
1 31 MAX WHT A 1 211.006047 1 ~7348514.769756 | 01 888217.0) 1
1 32 MAX RD CLOV Ac I ~0.0165%3 1 6910315859 ¢ 71.28 7 01
1 33 MAX ALF IRG A T =04000000 } 100.000006 1 100,00 01
1 1 i 1 1 1
1 34 MAX ALF DRY Af I 60157530 1 =207860.043182 1 01 22784.R4
1 35 MAX CORN ac 1 1774829466 1 =~6223870.957031 1 [ 425916411 1
1 36 MAX BLY Ac 1 «018725% 1 ~521,398047 1 180,00 1 0t
1 7 MAX SR GR ac 1 =0.01872% 1 738,398049 1 37.00 01
1 38 MAX VETCH At 1 «000000 1 49,999999 1 50,00 I (81
1 1 1 1 1 1
1 39 MAX BEANS ac 1 «016583 1 ~591,315866 1 28.72 1 01
1 40 MIN WHY Ac 1 =0.000000 I 38,000001 t 38,00 1 01
1 41  [MIN RD CLOV Ac I +0165853 1 ~591.315889 1 28,72 1 o1
1 42 MIN ALF IRG A¢ I 159.1196868 1 =5643504.45349] 1 0t 51870748 1
1 43 MIN ALF DRY A¢ I =0,000000 1 50.000001 1 50,00 1 01
1 s MIN CORN Ac } +000000 } 490999999 1 20,00 | 1
1 1 1 1
1 %] MIN BLY AL 1 ~0.018725 1 701.398047 1 =0400 1 o1
1 46 MIN SR GR ac 1 «0187258 1 =638,398049 1 63,00 1 01
1 34 MIN VETCH Ac 1 610240406 1 =213%093.122314 1 01 158811.47 1
1 48 MIN BEANS Ac 1 =0,076583 1 641.315866 1 21428 1 0t

qql
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Standard deviation of gross margin in $1000

5.0

10.0 15.0 20.0 25.0 30.0

35.0
Expected gross margin in $1000
THE EFFICIENCY FRONTIER
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The report begins with a letter which outlines the results to be
presented, defines the terminology used and describes the main con-
cepts the farmer will encounter. As the letter indicates, the report
is divided into four parts. The reader is now asked to put himself in
the farmers position as he reads the approximate discussion during
interpretation of the report to Mr, Smith and Mr. Jones,

"Part one deals with the composition and attributes of the
efficient plans. Here you are given the number of acres planted
to each crop and the gross margin you can expect as a conse-
quence, You are also given the standard deviation of gross
margin which indicates the riskiness of the plan. In your re-
port, 19 plans are presented. Plan one has an expected gross
margin of $18, 718. 35 and standard deviation of $1041, 04, The
plans are arranged in order of increasing expected gross mar-
gin, As expected gross margin increases,standard deviation
increases at an increasing rate. The absolute maximum expected
gross margin and the maximum standard deviation occur at plan
19. For example in plan 19 gross margin is $38,974.54 and
standard deviation is $9449. 16. This indicates that about two
thirds of the time you will find gross margin lying within one
standard deviation of its expected level i, e., in the range from

$29,525. 38 to $48, 423, 70. Note the rapid increase in standard

deviation from plan 18 to plan 19. This is because 50 acres
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was transferred from corn silage, a high paying low risk crop,
to red clover, a slightly higher paying crop than corn silage but
a considerably more risky one. The net gain in expected gross
margin was $78. 89 while standard deviation has increased
$3107. 36. Since the composition of the plans changes as ex-
pected gross margin increases so does the amount of each re-
source used. Those resources which are completely used up
have a shadow price attached to them, The shadow price indi-
cates the value of one more unit of limiting resource. Note at
plan 17 the value of an additional unit of irrigated land is $143. 40
indicating the approximate amount by which expected gross mar-
gin would increase if one acre were added. The shadow prices
must be interpreted with caution because they are valid only over
a small range.

Parttwois prepared as an aid inhelping you select the ""best"
plan, Since you are the decision maker, and you must live with
the outcome of your actions the choice of the 'best' plan can be
made only by you.. The probability statements in part two can,
however, help you make the choice by pointing out the chances
of failure., For example if you choose plan 19 your gross mar-
gin will be $38, 974. 54 on the average, however in any given
year you stand one chance in 100 that your gross margin will be

less than $16, 989.17. On the other hand, if you were to choose
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plan 12 your expected gross margin is only$35, 225, 18. However
it is much less risky since there is one chance in 100 that gross
margin will fall below $29, 424, 68. Probability statements are
also made for the 5, 10, 20, 30, 40 and 50% levels, You will
notice that expected gross margin is $38, 895, 65 which is only
$78. 89 less than the maximum possible expected gross margin,
However, the variability of gross margin is much less under
plan 18 than plan 19 as reflected by the fact that there is a 1%
chance of gross margin falling below $24, 140'. 18. Your own
personal circumstances and your willingness to take chances
are the factors important in deciding upon the proper plan. How-
ever, any of the 19 plans carries with it the assurance that there
is no less risky way in which you can produce that level of ex-
pected income,

Part three describes the plans in equation form. If, for
example, you wish to choose a plan having an expected gross
margin somewhere between that given for plan 15 and plan 16
you can determine the acres in each crop and the amount of un-

used resources according to the formula:

ACRES = (BETA1)x(EXP GR MAR) + (BETA 2)

If you wish to know the variability of the plan use the formula:
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VARIANCE = (ALPHA 1)x(EXP GR MAR)x(EXP GR MAR)

+ (ALPHA 2)x(EXP GR MAR) + (ALPHA 3)

For example, if you evaluated the equations at an expected gross
margin of $36,500, about midway between plan 15 and plan 16

you would find the result as shown in Table 4, 3 under the head-
ing of plan 15a.

Part four is composed of three graphs., The first graph
shows the degree of riskiness for every level of expected gross
margin, Note that as expected gross margin becomes higher the
riskiness as measured by standard deviation increases more
rapidly. The second graph shows the composition of the plans
for every level of expected gross margin. You can read the
number of acres in each crop directly from the graph. If you
wish to determine the composition of plan 15a you need only
draw a vertical line at the expected gross margin of $36, 500 and
read the number of acres in each crop directly on the vertical
axis of the graph., It is also interesting to note the drastic
changes in the composition of plans as the maximum expected
gross margin is approached. The third graph displays the prob-
abil ity statements tabulated in part two, If you pick a specific
level of expected gross margin on the horizontal axis you can

read the levels on the vertical axis, below which actual gross
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Table 4. 3. Composition of an intermediate plan.

Name of Crop Units Plan 15a
wheat ac 67.00
red clover ac 12, 87
alfalfa irg ac : 0. 00
alfalfa dry ac 50. 00
corn silage ac 50. 00
barley ac | 67.94
orch, grass ac 45, 06
hairy vetch ac 0. 00
pinto beans ac 37.13
EXP GR MARG $ 36,500

Std. Dev. $ 3442, 95
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margin will fall at the 1, 5, 10, 20, 30, 40 and 50% probability
levels, For example, suppose you wish to determine the level
below which gross margin will fall five times in 100 for plan 15a,
First find$36, 500 on the horizontal axis then draw a vertical line
up to the five percent probability curve and then across to the
vertical axis where you can read $30, 836.35, Thus if you choose
plan 15a there is a five percent chance that your gross margin
in a specific year will fall below $30, 836, 35. Usually farmers
have fixed cash commitments such as debt payments and family
living costs. In such a case it may be more appropriate to de-
duct these costs from the gross margin figures before examining
probability of loss graph. The second set of axis on the graph
are with respect to net income. In your case there is a $10, 000
rental payment and $5, 000 repayment on a loan for irrigation
equipment, Hence, if you choose plan 15a there is a five per-
cent chance of having less than $15, 836, 35 of net income, This
figure is read from the net income axis, "

After some deliberation, the partners chose plan 17 as !'best'' in
their circumstances. They were in agreement that the added expected
gross margin that would accrue in choosing plan 18 or plan 19 over
‘plan 17 was not sufficient, in their opinion, to compensate for the in-
crease in standard deviation, Their choice of plan 17 was reinforced

by examination of the probability of loss graph with the knowledge that
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there would be a $15,000 dollar fixed cash commitment,

Operational Costs

Once an algorithm is operational, it is the human time involved in
setting up the problem, collecting the data and preparing it for com-
puter processing that tends to be the most expensive item. This'is
true regardless of whether quadratic or linear programming is used
since they take about the same set up time, Approximately seven
hours were required for each of the four cases studied. This included
three hours for data collection, two hours for computer input prepara-
tion and three hours for discussion and interpretation of results with
the farmer, The computer cost alone is likely to be in the range of
$20, 00 - $30. 00 depending upon the dimensions of the problem., About
one-half of the computer cost represents printing the report and draw-
ing the graphs, Since the equations for each step are of limited use to
the farmer, the program OUTPUT contains the facility to suppress
printing this part of the report. Further computer cost could be elim-
inated by not plotting the activity level graph since the large amount of

information tends to be confusing to the farmer,

45
These costs are exclusive of the overhead cost in developing

the algorithm,
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V. SUMMARY AND CONCLUSIONS

The main objective of this research was to develop an operation-
al tool for solving the enterprise selection problem under conditions of
uncertainty, The central purpose was to develop an algorithm amen-
able to use by extension workers and/or farm management consultants
as they counsel farmers on problems of enterprise choice. To accom-
plish this, the problem was formulated as the minimization of variance
subject to a level of expected income and a set of production con-
straints. It was found that by making use of some important proper-~
ties of Lagrangian multipliers, properly constrained by the Kuhn-
Tucker conditions, one could compute the entire array of efficient
choices,

This permitted presentation of all relevant alternatives to the
farm decision maker rather than the single expected income maximiz-
ing plan of linear programming which is not infrequently sub-optimal
when evaluated in light of the decision makers risk preference,

The framework of analysis used here is comparable to Marko-
witz's (34) portfolio selection method designed for use by investment
consultants, Houthakker's (25) capacity method of solving quadratic
programs provided many insights into procedures that were ultimately
built into the program. The algorithm developed in this research is

problem specific and deal only with minimizing positive definite
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quadratic forms containing no linear components, Previous existing
quadratic programming algorithms provided only a finite number of
solution points on the efficiency frontier (7, 26). The algorithm devel-
oped here provides exact algebraic specification for the frontier.

In the theory portion of the thesis, a two dimensional model was
developed and used to provide a transition from the traditional cer-
tainty framework to the more realistic uncertainty environment in
which decision makers find themselves., Variations in the model para-
meters 0, u and r demonstrated the sensitivity to change in the
efficient plans and emphasized the error that is introduced by ignoring
uncertainty, Capital restriction, debt payments, family living re-
quirements and other fixed cash commitments become important con-
siderations in the decision problem, The adage 'fixed costs have no
bearing upon short run decisions'' is simply not true if the decision
maker is confronted with variations in income,.

To test its applicability, the algorithm was used to solve enter-
prise selection problems submitted by four farmers. The results
appeared encouraging. The data requirements, although substantial,
were no more difficult to satisfy than for the linear programming
model where uncertainty is assumed non-existent. Crop enterprise
selection problems lend themselves particularly well to the method

used. Livestock enterprise choice problems could be handled in the

The algorithm will not maximize a quadratic form.
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same way, although difficulties could arise because the algorithm
cannot accommodate transfer equations which may be needed to account
for activities like home grown feed.

The results, although appearing more difficult to interpret be-
cause of the presence of probability statements can be given in a more
realistic setting, and were no more difficult for the farmers to com-
prehend than the non-stochastic linear programming case, Suggestions
made by the farmers have been incorporated into the report with the
result that it is more understandable and meaningful to the decision
maker, Results of this study indicate additional areas for research,

The algorithm is deficient in at least two areas; (a) the initial
basis is found by a trial and error approach which could result in
cycling; and (b) it is not possible to include transfer equations in
the model., These two unanswered questions could prove to be inter-
esting and fruitful avenues of exploration.

Additional computational efficiencies could undoubtedly result
from revisions in the three computer prograrns.47 Clerical time
needed for organizing data and key punch time could certainly bg re-
duced by streamlining the input routine. The report form which has

benefited from comments of farmers and colleagues could stand further

47
The writer does not claim more than a rudimentary knowledge

of computer programming, and although the programs have benefited
immeasurably by others more gifted in the field, some inefficiencies
no doubt remain,
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improvement,

An empirical question surrounds the triangular distribution and
its ability to transmit the farmer's impressions about the future per-
formance of price and yield variables., The data needs of the triangu-
lar distribution are small compared to more elaborate methods of
establishing subjective probability density functions, but no direct
check has been made on the reliability of the estimates. Additional
work in this area is warranted. Extending the subjective probability
concept to the joint distribution case poses a difficult but interesting
question. The subjective establishment of correlation coefficients was
dismissed because of the burden placed upon the respondent and be-
cause of the high chance for inconsistencies. Perhaps the dismissal
was premature and additional investigation could result in practical
methods for accomplishing the task,

Questions of practical relevance and acceptability also remain,
It is in this area that additional research efforts need be expended to
evaluate whether or not the research in this thesis has narrowed the
gap between theoretical developments and practical application by

providing an operationally feasible quadratic programming algorithm,
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APPENDIX A
LAGRANGIAN MULTIPLIERS AND TRANSFORMA TIONS

Lagrangian multipliers are used frequently in the main body of
the thesis, A general statement about their behavior and interpretation
may be of value to the reader who wishes to pursue the topic further,

Consider the general problem:

Min or Max: G(X_ ,X_.*"* X ) = G
1 2 n

S.T: K, - F(X_,X_ X ) =0 j=1, m<n
i 1" 2 n -

The Lagrangian form is: m

R(X,\) = G(X1 Xn) +Z )\][K] - F(Xl... Xn]
=1

and the first order condition becomes:

m
F
bR _ 3G xa.—o i=1,n
9X. ~ aXx, joax, = -
1 1 . 1
1=1
AR
— = K, - F/(X X) =0 -1,
ey ] J(1 n) j m

G is:
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and from the constraints:

% oF,

dK, = —1 ax i =1,
j 33 i m

i=1
In the first order conditions it was established that:

m

oF.
8G i .
= - Y\, — i=1,n
0X. /[, ) 8X.
1 =1 1
]:

Substituting this information into the differential of G establishes that

Changing the order of summation results in:

m n
aF,
dG = Z N, —L ax
J 9X, i
j:1 j:l 1
which upon simplification yields:
m
dG = z N dK,
b ]
j=1

If G is a positive definite quadratic form in X and F is a
set of linear equations in X, then the first order conditions resulting

from minimizing G subject to F can be expressed as:



Note

2 ]
8% Bh
X 80X ' X
Py 1a | 9 )
]
]
]
2 L 8F
9 G : 9 1
2 :
BX 1 aXn
n '
1
)
oF X 0o -
. 1 .
9X ;
n 1
]
]
|
BF _ :
Y 0 -
n 1
BZG
that——8X 9% 5%
r s ]

oF

:

29X

A

Iy
—

K
m

oF,
and — are constants, Further more the
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matrix is symetric and non-singular if n> m and there are no linear

dependencies in F,

This system has a solution for Xl, o, Xn

which can be obtained from the inverted system:

C

11...

C

11

0
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= xldK1~+X2dK2~+X
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In the case where m =3, n>3

dK

{ 3703
’ 9G
h = b K +b K. = 2%
1 where A 115 T P52 st oK
_ . 3G
' )‘2 - b12K1+b22K2+b23K3 - aK2
9G
= b = —
Ny b K b, K, by gK, oK,
then
GK K, Kj) = S'(buKl th K, + B gKy)dK) + g (K K,)
b11K12
= Tz TR K K, P K Ky g (KK
and
9G (K. K_K.) og. (K_K.)
15253 115253
= b — L2 .
oK 1251 oK b Ky + b, K, + bR,
hence
9g, (K,, K,)
1 B2 B
oK = by, K, +b,5K,y
and
bzng
g (K Ky) = —5— +D0,,K Ky +g,(Ky)
thus
| b b
11..2 232
KK)-—-1K“b KK._+b L2 b
G(K K K;) = ==K +b K K, +b ;K K +—57K, +b K Ky
re,(K,)

e
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and

3G(K K_K,) 8g (K,)
L 23 = b K +b K+—u=b K +b_,K_+b__K

8K3 1371 232 9K3 1371 2372 2373

hence

5g.(K.) b
2% 332
oK, by Ky => g,(K;) = 5K+ K,

Finally

b b
)=—1-le+—7:51<2+10 K K_+b K K, +b_ K K, +K

G(KIK 2 2 3 12712 13 1°3 2323 0

2 3

For m >3 the same step by step procedure can be followed to

transform G(X) to G(K) with the general results:
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APPENDIX B

PROOF OF ASSERTIONS

Proof of Assertion 1: The direction of rotation is found directly from

the derivative of the angle © with respect to r,

The rotation equation is:

| Zr0'10'2
| tan 20 = S5 where --E(G(E
’ 0'1 - 0'2
} and O'f - 0'2< 0
then
g0 2
pe _ 1 2% %
or 0_2 ) 0_2
1 2

hence the direction of rotation is clockwise as r increases,
The properties of elongation are found by examining the ellipse

in the rotated coordinate system. Let

2 2
vV = Ayl +By1y2+Cy2
2 2 . 2 . 2
where A = 0 cos 6 + 2r0'10'zs1necose + 0'251n (3]
B = 0 since the angle 6 1is so chosen
C = 02 sinZG - 2r0 O0_sin® cos @ + O'ZCOSZG
1 12 2
V = the variance
y'l y'z = the activity levels in the rotated coordinate system.

A< C since -%< e<£ and 012< 0';
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Then the vertices of the ellipse are at (+ NV/A, 0) in the (y'l, yé)

coordinate system. Let

48
K = NV/A
then
dK 2 cosze sinze 2
— = & [r0 0_cos 26( - ) - sinBcos 6sin” 26
dr 1 2 O_Z ) 0Z
2 1
where

1/2[ -3/2

® = [O'IZO'gV] O'lzcosze + ZrO'IO'Zsinecose + O'gsinze]

dK
The derivative E must be evaluated under two cases:

Case 1: where r is positive

r>0 => -Ic 6 <0 => sin6< 0, cosp>0

4
and
cosze > sinze
then
2 2
. 2 - si
r0_0_cos 26 (COS 6 - sin e) > sin@cos @ sinzze
1 2 2 2
02 - 01

d
hence —d% >0 and the conclusion that the ellipse elongates as r
increases from 0 to 1 holds,
Case 2: where r is negative

r< 0 => 0< 0 < % => sin@ >0, cos@ > 0, cosze>sin26

48 .. - . .
Since only the positive quadrant is of concern the negative root

need not be considered,
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then
2 cosze i Ze 2
r0 O_cos 20( - S8 ) < sin@cos Osin 20
1 2 2 2
0,-9

hence % < 0 and the conclusion that the ellipse elongates as r

decreases from 0 to -1 holds,

Proof of Assertion 2: It is required to determine the limits on the

correlation coefficient so that the expansion path and the activity equa-
tions will not have a negative slope.
There are two cases to be evaluated:

Case 1: for

0 (0.p - r0
oy, A S LY >
OE |, 2.2 2.2
oc - 0 )
(0 0y = 2rpy 0,0, +,00)
o, 9
it must be that r < (—)/(—) = k
| By, M 1
‘ 2 M
| Case 2: for
?
| - ]
9y, _ Oy - 705m)) - 0
9E 22 2.2
- o
(0)0y = 270, Oop py +150))
o, o,
it must be that r < (—)/(—) = k
L 2

Note also that klkZ = 1,

1o 53

S 3
Now let r be the smaller of k1 and kZ’ then r is the ratio

k
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of the coefficients of variation of the least risky activity to the
most risky activity Only if r < r* will Y0 Y, >0 and if
Y Y, >0 then the expansion path has a positive slope,

Proof of Assertion 3: The direction of substitution due to variations in

the correlation coefficient can be known by taking the derivative of the
expansion path with respect to r.

1) o - )

1,21 T ™M e

y, = v,
0 -rp 0
2 L0, w0 - ey

)

) 0 -u 0 o o
o, (_1_){(”2 1 -4 0w %)
ar 10 0.0 - .G )2
Koz 7 TH2T
)
1 72 9y, . 9y, o, 9
If <=)> (—) then — >0 and similarly —= < 0. If (—)>(—)
M M or or M M
1 2 2 1
ay 9y

2 o . .
then v < 0 and similarly 3—1:1— > 0. Thus increases in r cause

increases in the least risky activity.

Proof of Assertion 4: The shift of the efficiency frontier can be de-

duced from the change in the slope of frontier with respect to varia-

dv

tions in r. This is done by examing the derivative of -)\O= aE

2 2
av ZO'fO'Z(l-r VE

dg =~ 2.2
0% - 2r0. 0
0, - 270, 0o

P
)
M2 TEY
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d 2.2 2.2
8(=) O, +p
d 2 1 2 21
P 8[r” - (54 ) +1]
1 2Mte2
where
40%0%E
1 2
d = >0
202 222

recalling that

7, 9 9 G
k| = (/) and k, = (/)
| 0 T

then arranging the terms accordingly

dv
%4
ar=§0-l ZHHZ[I‘ - -I‘k2+l]

E

Now define r as the minimum of k1 and k2 and note that

3
< < i k. = d k ,k_>0,
0 r 1 since k1 > 1 an 1 55 0

*
Suppose r :kl, then

1
k2 =~z Thus
T

dv
a(dE) ) §0102H1H2 [rzr* *2 N >{=]
pye = = - rr ~Tr+r
r
T
8(‘3‘%;)= @—url—z(l - rr )(r -r)
dv
8(&)
hence if -1 < r< r then Py > 0., Thus, increases in r cause

the efficiency frontier to rise more steeply throughout.
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Proof of Assertion 5;: This assertion is established from the derivative

of the expansion path., First consider that

2 2
39y, Oy p (-1
= >0

: 2
2 (plcz ---rpzol)

Thus, increases in cause increases in . Next consider that
’ ) 2

‘ 2 2
9y, Olyluz(r -1)

= <0
ou

2
Lo (kg0 =m0

Thus, increases in W, cause decreases in Y,

Proof of Assertion 6: This assertion is established from the deriva-

tive of av with respect to M-

dE
dv 2 *
B(dE) i -4 1O_Z(l—r )Epz(r - r)
op 2.2 2_2.2
0. -2r0. 0 )
! () 0y - 270, Oopypy +1,0))
dv
£ a(:i—E-)
If r<r then ™ < 0. Thus, increases in My (or pz) cause the

1
efficiency frontier to rise less steeply throughout,

Proof of Assertion 7;: This assertion is established from the deriva-

tives of the expansion path. First consider

®Y, 19
- A O -rp O )20 O -ty OV u O —ru O
"0 RO rn )2““1%(“1 5Ty 0 42 O -rp 0 ) (k0 -1 O))]

217 27Ty

) 0)
letting r's = (——2-)/(——1-) and noting that 0<r*< 1 and -1<r<r then

b2 ™



Thus, increases in 0'2 cause decreased in v, - Second consider

8y Y
2

2 _ T -1y O ) O -1 O 0 q

50 > (2,0 -mp, O) (10, rp O+ rp 0k 0 -rp 0)]

C(u 0 - ru O
1 05 - Ty 0)

o 0
(‘_2)/(L) and noting that 0 < r " <1 and l<r<r.

Ky B

letting r

then

3
72 = 71 [b.0% (x - 1) + 2051 )] >0
2 Y\ - BP0V % = T

9 -
) 02(“102 rpz(fl) r

Ll \ ¥}

Thus, increases in 0'1 cause increases in Y,

Proof of Assertion 8: The proof of the assertion follows from the de-

rivative of the slope of the efficiency frontier,

dv . 2
dv ¢ 21 -
38 40,0,0 -7 E (W202 20 0 o ]
50 2.2 z 229G 0mp,
. i)
! (k)0 - 270 O by + 150
sk 0-2 0-1 sk Sk
letting r = (—)/(—) and noting 0< r <1 and -1<r<r then
Fa M
dv 2,3 2
av g - -
L A L il .
50 22 2.2

% . 2000 2
1 ()05 - 210 Op iy + 0 ,0,)



Thus, increases in 0'1

steeper throughout.
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cause the slope of the efficiency frontier to be
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FORMS FOR OBTAINING COST
AND INCOME DATA

ADDRESS

REMARKS:

DATE
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I. AVAILABLE RESOURCES

A. Land Available for Crops (acres)

Class 1

Class 1I

Class III

Total

Owned

Rented

Total

B. Labor Available for Crops (hours per month)

Month Operator

Family

Hired

Total

January

February

March

April

May

June

July

August

September

October

November

December

C. Irrigation Water (acre inches per month)

188

Month |Jan |[Feb [Mar] Apr

May

June

July

Aug

Nov

Deg

Amount

Sept T()ct

D. Operating Captial ($$)

MAXIMUM EXPOSURE

—




Crop
Name

Price Estimate

Yield Estimate

Land Restrictions

Most
Pessimistic

Most
Likely

Most
Optimistic

Most
Pessimistic

Most
Likely

Most
Optimistic

Land
Class

Max,
Acres

Min,
Acres

'II

NOILVIWYOANI HWODNI 404D

681



A. Labor Required (Hours per acre per month)

B.

Month

Jan

Feb

March

April

May

June

July

Aug

Oct

Nov

Dec

Hours per

Acre

Segt

Irrigation Water Requested (Acre inches per acre per month)

Month

Jan

Feb

March

April

May

June

July

Sept

Oct

Nov

Dec

Acre

inches per

lAcre

C. Operating Capital Required ($$ per acre and % per month)

Item

[Amount

Month of Revenue or Ex

pense in %

Jan

Feb

March

April

May

June

July [Aug

Sept | Oct

Nov

Dec

crop sales

Jrevenue

Total

expense

mach, equip

fertilizer

sprav, dus

f

doan jo suwuepN

seed

supplies

Total

Gross Margin

TII

"FOJd NOILVIWIOJINI ISNAdAXH

061
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COMPUTER PROGRAMS
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PRCGBRAM INPUT .

THIS PRCGRAM IS THE FIRST CF THREF PRIGRAMS MESTGMED TA SCI VF THE

FARM ENTERPRISE SELFCTICN UNDFR UMCFRTAINTY PRTBI FM, THTS PRIOGRAM

PREPARES THE DATA FAR INPUT INTC THF SECOMD PRCGRAH, IINPER CFRTAIN

CPT1CZNS REGARDING CARRELATICN CCEFFICIENTS, YoU fTLs NEFD THE

MASTFR CCRRELATICN MATRIX PREPAREN Ry PROGRAM CLRRE| ATF AND FILED
SR ACCESS BY THIS PRCGRAM,

INSTRUCTICNS FCR SFTTING 1P INPUT FIIF
SET UP CF CONTRAL CARD

COLUMN 1=2, ENTFR M, THE NC. OF CCNSTRATMTe MAX §9
COLUMN 3=4, ENTFR N, THE NC, OF ACTIVITIFS wmAX 10
CSLUMN 5, LEAVE BLANK #R 7ERC _
CSLUMN &, ENTFR 1 TF YZU WISH TC USE TRTANALF NISTN FOR
PRICF AND YIFLD DATA
ENTER 2 TF YoU WISH T2 USE MFA~ AND yARTANCE
FSTIMATFS FG R PRICE Ann YIFLN DATA
ENTFR 3 TF YoU WISH TC USE GRNgS MARGIN NATA
FCR FACH ACTTVITY
COLUMN 7, ENTER BLANK SR 7ERC
COLUMN B, ENTFR 1 IF YU WISH TC USE “ASTEQ GCRRFLATISN
ENTFR 2 TF YSU WISH T8 USE 7FR~ GORRFLATION
ENTER 3 TF YZU WISH TS SUPPLY ~Wxn GORRFLATICN
CCLUMN 9, ENTFR BLANK 2R ZERS
COLUMN 10, ENTFR 0 (ZER3) IF YC[j DS NCT wrSu FQUATIONS
FCR FFFICIENCY FRCNTTF? AND ACTIVITY
LEVELS. .
ENTFR 1 TF YaU WISH THESE EntiatIANS,

SET 0P CF LAREL CARDS
sU MHST HAVE E!ACTLY MeN+e2 LAVFL CARNDS. PREPARe | AREL CARDS
FIRST FOR ACTIVITIES, THEN FZR CANSTRAINTS, THFE'! £CR CLTENT
IDENTIFICATIAN AND ANNRESS. IN SUCCEENING SE~TTIANG RE SURF T2
FCLLCW FXACTLY THE SAME CRDER AS YCU RS IN LamF) S,

COLUMN 12713, ENTER NAME CF ACTIVITY CR €5HSTRAINT

COLUMN 749 ENTER RLANK,s NC NCT ENTER 7Fn3

COLUMN 15-76y ENTER UINITS SUCH AS ACRES, 0!IRSy ETC.

CCLUMN 172504 ENTFR RLANK

CCLUMN 21=724 IF YCS1) ENTERED 2 SR 3 IN ACLUMN R oF THE
CCNTRCI CARD LEAVE RLANMKS, te y8i) ENTERED
1 IN C2LUMN 8 CF THF CSNTRC) CARNGTHEN YSU
MUST EMTER ACTIVITY INENTIFTAATISN A 1T
APPEARS IN MASTER FGRRFLATIS: MATRYX,

PREPARE LARFEL CARDS FCR ACTIVITIFS FIRST, *HEN FOR THE

CONSTRAINTS, YOUI SHAULD wN3W HAVE MeN canans, NCW PRFPARF A

NAME CARD

COLUMN  1=14s ENTER NAME OF YaUR CLIFNT.
NCW PREPARF AN ADDRFe&S CaRN
CCLUMN  1=716y ENTER ADDRFSS SF YalIR FLIFNT.

THIS CCMPLETES THE LAREL rARDS. THE BALANGE AF +HF NATA MUST
RE ENTERED IN FREE FCRMe SEPARATF EACH ENTRY wTTu A COMMA ()
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00001
00007
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00033
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
0005
00052
00053
00054
00055
000%6
00057
00058
00089
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SR BLANKS, : 00060
. 3 - ) 00061

SET uP CF PRICE AND YIELD DATA. 00062
) 00063

IF YCU ENTFRED 1 IN GCLUMN 6 CF GONTRCL CARD YSU MUST 00064
SUPPLY PARAMETERS CF PRIGE AND YIELD FCR ToIANGUL AR 00065
DISTRIBUTISN AND AN FSTIMATE FCR_VARIABLE ~CST. FSR YSUR 00066
CONVENIENCF USE A SEPARATE CARD FCR EACH AATIVITY, MAKE 00067

SURE THAT yGU PUT CARDS TN FXACTLY SAME CRNER AS LABELS, 00068

FCR EACH ACTIVITY ENTER THE REQUTRED DATA N THE 00069
FCLLCWING SRDER, SEPARATTNG EACH ENTRY BY ALANKS CR GCMMA 00070
00071

MBST PESSIMISTIC PRICE 00072

MSST LIKELY PRICE 00073

MCST CPTIMISTIC PRICE 00074

MOST PESSIMISTIC YIELD 00075

MCST LIKELY YIELD 00076

MZST CPTIMISTIC YTELD 00077

VARIABLE C2ST PER UNIT oF ACTIVITY 00078

: ) . 00079

IF yCU ENTFRED 2 IN ¢CLUMN 6 CF GOCNTRCL €APD YSU MUST 00080
SUPPLY MEAN AND VARTANCE ESTIMATES FGR ORIAE AND YTELD 00081

AND AN ESTYMATE FOR VARIABLF COST. FSR YOUR AONVENTENCE 00082

USE A SEPARATE CARD FCR EACH ACTIVITY. MAKE SURE THAT YSU 00083

PUT CARDS TN EXACTLY SAME CRDER AS LABELS, F3R EACH 60084
ACTIVITY ENTER THE RFQUIRED DATA IN THE FZiLZWING SRDER 0008%
SEPARATING EACH ENTRY BY BLANKS SR CCMMa, 00086

- 00087

MEAN PRICE 00088

MEAN YIELD B 00089

VARIANCE CF PRYTCE 00090

VARIANCE 5F YIELD ] 00091

VARIABLE Ca2ST PER UNIT CF ACTIVITY 00092

P . . 00093

IF yCu ENTFRED 3 IN CCLUMN & OF CONTRSL CARD YOU MUST 00094
SUPPLY MEAN AND STANDARD DEVIATIONS GF GRSSS MARGIN FOR 00095

EACH ACTIVITY, FIRST ENTFR THE MgAN GRCSS MARGIN FCR 00096

EACH ACTIVITY IN EXACTLY SAME CRDER_AS ACTTVITIES ARE 00097

IN LABEL CARDS+SEPARATING EACH EMTRY BY BLANKS CR COMMA, 00098

THEN ENTER STANDARD NEVIATICNS OF GRGSS MARGIN CF EACH 00099
ACTIVITY IN EXACTLY SAME CRDER AS ACTIVITIFS ARE CN LABEL 00100
CARDS SEPARATING EACH ENTRY RY BLANKS CR CAMMA, 00101

. . - . 00}02
THE PRICE AND YTELD NATA SHOULD NCW BE CCMPLFETE, CN A NEW CARD 00]03
FNTER 9999 00104
. L 00108
SET UP CF CCRRE|ATICN MATRIX. 0006
L L o 00107

IF YCU ENTFRED 1 CR_3 IN_CCLUMN a CF CONTRAL CARD THE 00108
CCRRELATICM MATRIX IS AUTCMATICALLY PREPARED 00109
. .. 00110

IF YOU ENTERED 2 IN COLUMN 8 CF CCNTRCL CARD, THEN Yau 00111

MUST SUPPLY THE UPPER TRYANGLE CF AN N=NDIMeNSICSNAL 00112
CORRELATICN _MATRIXe ENTER THE ELEMENTS BY nOwe WHEN 00113

YOU HAVE ENTERED THE REQUIRED ELEMENTSe ENTER 9999 ON A 00114

NEW LINE. 00118

. R 00116
THIS CCMPLETES THE CGRRELATICN DATA. 00117
SET UP OF CSEFFICIENT MATRIX AAl2, 00118
ENTER ACTIVITIES AND RESTURCES IN EXACTLY SAME CRDER AS 00119
LABEL CARDS, FCR THE CCEFFICIENT _MATRIX ACTIVITIES ARE 00120

RCWS AND RFSCURCES ARE C3LUMNS, FCR THE FIRST ACTIVITY 00121
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ENTER RESCIIRCE REQUIREMENTS CN H”NEVER MANY CARDS NEFEDED
SEPARATING EACH_ENTRY BY BLANKS SR CCMMA, AEPEAT UNTIL
ALL ACTIVITIES ARE @SMPLFTE, YCU SHOULD HAVE AN NXM
MATRIX WITH THE RIGHT SQUARF PCRTICN AN NXN NEGATIVE
I0ENTITY MATRIX, CN A NEw CARD ENTER 9999

THIS CCOMPLETES THE CSEFFICIENT MATRIX

SET UP OF RESvUDCE LEVEL VECT2R GG
ENTER ALL 2F THE RESSURCE LEVELS, MAKE SuURe THAT THE
LAST N ELEMENTS ARE EITHER 7ERC OR NEGATIVF NUMBERS, WHEN
YCU HAVE ENTERED EVERY ELEMFNTs FNTER 9999 ON A NEW LINE,

YCU HAVE NCw ENTERED ALL oF THE nATA. AS A FINAI CHECK MAKE

SURE ALL DATA LINES CONFORM TC THE CRRER OF THME LABEL CARDS,
CW FILE THE DATA AND 602N LUCK

DIRECTCRY CF LCGICAL _UNIT NUMRERS

LUN 1 = DATA FILE

LUN 2 = CCRRELATICN MATRIX FILF

LUN 3 = LETTER FILE . . ,
LUN 4 = FILE  (STCRES INFCRMATICN £CR PRCGRAM CUTPUT)
LUN S = FILE  (STCRES INTCRMATICN FCR INPUT T3 PRCGRAM
B , PROCESS)

LUN 6 = PLCT  ( PLCTTER)

LUN 3¢ = LP (LINE PRINTER)

LUN 61 = TELETYPE CUTPUT,

D!MENSIVN PARAM(ZOo?)-RLAB(IZ?-Z).MD(IZZ) RR{50+¢50) ,
lC”RR(ZO-ZO) All(ZOogo) AAlZ(ZO-lon)oGG(lOO)-VAR(?O.A) AMEAN (2044)
ZvIDSLK(lOO)vleAIZ(IOO)

READ(I 1000) MyN, IHAVEY THAVES s IWANT

N1=Ne]

N2aN+2
NMaNeM

NM]1=aNMa]

NMZ-NMOZ

WRITE(4) MyN, NllNZlNMlNMloNMZ'IHAVEl'IHAVFZOINANT

NRITE(S) MaN, N1yN2yNMsNMT sNM2, THAVE2

DS 10 Ill-NMZ

READ(111001)(RLAB(I.J)-J-I-Z).MD(I)

WRITE (4) RLAB
65 131 20,30.«0) THAVE]

Dv 21 I=),N
DS 21 J=147
PARAM(IoJ)lFFIN(l)

KCHECK=FFIN(])

IF (KCHECK 4NE ,9999) 6GS TC 990
WRITE (4) _PARAM
DS 22 I=]4N
AMEAN(I 1)'(PARAM(I l)oPARAM(roZ)oPARAM(I 3)) /3.0
AMEAN(I-Z)!(PARAM(I.«)oPARAM(t-S)oPARAM(I,b))/3.0

_VAR{I91)m((PARAM(143)=PARAM(I¢1)) #8224 (PARAM(1,2)=PARAM(I]))
19 (PARAM(1+3) =PARAM(1,2})) /18,0

VARjI.z)-((PARAM;I.&)-PARAMtx.a))noa.(PAnAM(x 5)aPARAM(I94))
1 (PARAM(1+6) =PARAM(145))) /18,0

_VYAR(1+3)=VAR(T9]1)®VAR(I+2) +VAR(I+]) ®AMEAN(T+2) %#24aAR(1,2)
1#AMEAN{(I,1) ##2

AMEAN(I93)SAMEAN{I,1)®AMEAN(T,2)
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00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145%
00146
00147
00148
00149
00180
00151
00152
00153
00154
00185
00156
00157
00188
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00189
00181
00182
00183



??

3n

31

3?

43
44

45

50

o
Ll |

~ Oy
LVE i

AMEAN(I.«):AMEAN(I-1)-PAnAM(1 T
VAR(!.“):SQRT(VAR(I.B))
IF NESIRED A WRITE STATEMENT CAN GC HERE
Gu Tu b4
DS 31 I=1,N
D& 31 J=1,3 _
AMEAN(TI9 J)=FFIN(])
S 32 I=1¢N
DS 32 J=ly2
VAR(I+J)=FFIN(])
KCHECK=FFIN({1) o
IF(KCHECK.NE.9999) 62 TC 991
DS 33 I=)1,yN
AMEAN(!v6)=AMEAN(I'?)
AMEAN(Iv3)'AMEAN(I-!)'AMEAN(I-Z)
AMEAN(Ioh)‘AMEAN(I.1)-AMEAN(I &)
AR(Io3)-VAR(Ivl)*VAR(Ic?)OVhR(I-l)GAMEAN(!fQ)'“QovaR(IoZ)
I*AMEAN(I 1) #a2
VAR(1+4)aSQRT(VAR(1,3))
IF nESIRED A WRITE QTATEMENT CAN GC HERE
GA TA
D2 4] I'loN ) -
AMEAN(Ioa)IFFIN(l)
DS 42 I=1,N
VAR(Ioh)-FFIN(l)
KCHECK=FFIN(I) o
IF (KCHECK,NE,9999) 42 TC 992
DZ 43 I=],N
DS 43 U=m)1,3
AMEAN(14]))=0,0
VAR(I'J)IO'O
IF DESIRED A WRITE §TATEMENT CAN GC HERE
CONTINUE
WRITE (34,1005)
DG 48 Is]4N _ . _ ; .
WRITE(3‘H1003) To (AMEAN(T9J) 0 UB194) s (VAR(TsJ) 9 JmY)44)
WRITE (4) AMEAN
WRIIE(Q) VAR
B T2 (50160970) s IHAVE2
REWIND 2
READ{2) RR
D¢ 51, I=1,N
IJ-MQ(I)_
DS S1 J=1.N
JURMD {J)
CoRR{I+J)2RR(IT4JN)
IF DESIRED A WRITE STATEMENT CAN GC HERE
6o TS T2
Do 61 1=1,N
DS 61 _JsmIHN
C“RR(I-J)-FFIN(I)
CCRRIJy 1) =CORR (T 4J)
KCHECK=FFIN(])
IF(KCHECK NE,.9999) G TO 993
IF DESIRED A WRITE QTATEMENT CAN GC HERE
Gs T3 T2
¢ 71 I-l-N
Dc 71 J=1yN ~
C"RR(IoJ)-o.O
IF(I EQeJ) C"RR(I-J):I 0
IF DESIRED A WRITE ﬁTATEMENT CAN GC HERE
CNTINUE
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00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
001958
00196
00197
00198
00199
00200
00201
00202
00203
00204
002058
00206
00207
00208
00209
00210
00211
00212
00213
00214
0021s
00216
00217
00218
00219
00220
00221
00222
00223
00224
0022%
00226
00227
00228
00229
00230
00231
00232
00233
00234
00238
00236
00237
00238
00239
00240
00241
00242
00243
00244
00248



104

a0

R

R?
/3

R4

e}

108

n

WRITE (34,1006)
D“ 104 I=lsN ) L .
WQITF(3‘0'IOO3) I, (CCRR(I'J) sJmleN)
WRITE (4) CCRR
Do RO I=] 4N
DS 80 J=14N
C”RP(IoJ)leRR(I.J)&VAR(Jnk)
DC 81 J=]14N
Du Sl 1=]1,N
C”RR(I.J)ICvRR(I J)*VAR(I.“)
D& R2 I=],4N
DC B2 JaIyN
All(!oJ):ZoO’CORR(T.J)
DZ_83 Is1yN
All(! N1)=AMEAN(144)
DC _84 J’loN
All(Nch)!AMEAN(Jc4)
Al1(N1sN1)=0,0
IF DESIRED A WRITE STATEMENT ¢AN GC HERE
HRITE(36 1007}
DS_10% I=1sN1
HRITF(3“ 1003) l'(All(I’J)OJ-lINl)
WRITE (4) All
WRITg(S)“All
DC 90 I=]14N
D2 90 Jm) oM
AAlZ(IlJ)!FFIN(l)
KCHECK=FFIN(1)
IF (KCHECK,NE,9999) G“ TS 994
IF _DESIRED A ERITE QTATEMENT CAN G HERE
HRITE(34o1002)

$.106 JslM
HRITF(36 1003) Jo(AAIZ(I.J)-I-lyN)
WRITE(4) AA12
HRITE(5) AAl?2
D2 91 I1=14M
GG(I)=FFIN(1)
KCHECK=FFIN{1)
1F (KCHECK (NE,9999) G" 7C 995
IF _DESIRED A WRITE STATEMENT CAN GO HERE
HRITE(36 1009)

107 IslM e
HRITE(36 1003) 1,G6(1)
WRITE (4) GG
WRITE(5) GG
K=0
IF (IHAVE2.EQ.3) G0 T5 10a
MN=MeN
MNIIMN‘I
0z 109 lulvMN
IDAAIZ(I)-I
ACV=9999999,
D2 110 I®1sN 5
IF(VAR(lyﬁ)/AMEAN(ng) GE.ACV) G2 T2 110
ACVaVvAR (I, 4)/AMEAN(!,4)
MIN!!
CONTINUE
DG 111 I=lN .
IF(MIN.NE.I) 6C TC 112
lnAAlZ(MNl)'IOMN
63 T” 111
K-K¢1

i o
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00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
0026
00262
00263
00264
00265
00266
00267
00268
00269
00279
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286
00287
00288
00289
00290
00291
00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00308
00306
00307



107
108

990
901
992

993

INSLK(K)zT+MN

CVNTINUE

WRITE(S5) K _

WRITE (5) IDAA2

WRITF(5) IDSLK

MKaMeK

WRITE(61,1017) K

WRITE(61,1017) (IDAAlz(I).Isl MK)

WRITE(61,1017) (IDSLK(I)4f=dox)
F“RMAT(/1014/1016/1016/1014)

WRITF(61,1004) (RLAR(NM1 o) o Ju]+2)

G To 999

WRITE(61,1010)

G2 T2 998

WRITE(61,1011)

G T2 998

WRITE (61,1012)

G2 TC 998

wnITF(el 1013)

G2 _TC 998

WRITE(61,1014)

GC.TC.998

wRITF(él 1015)

GC _TC 998

NPITE(&! 1016)

GC TS 999

FORMAT (512)

F‘RMAT(ZABO“XlIE)

FSRMAT (#]1 THE INPUT MATRIX AAT2#)

FORMAT (1X912410F12,2) o ‘
F*RMAT(!X.ZAeiY UR INPUT 1S PREPApeoﬁ)
F~RMAT(*1THE MEANS AND VARTANGES#)

FORMAT (#] THE CCVARTANCE MATRIX#)

FORMAT (#1THE INPUT MATRIX, AAll #)

F“RMAT(#; THE CRIGINAL INPUT nATA!)

FCRMAT (#1 THE INPUT MATRIX GG#)

_FORMAT(# ERRCR IN THE INPUT oF THE PARAMETERS OF THr#
1 TRIANGULAR DISTRIRUTIvNi)

FARMAT (# ERRCR IN THE YIELD AND PRICE PARAMETER TNP!IT#)
F"RMAT(! ERRCR IN THE GROSS INCOME INPUT#)
FZRMAT (# ERRCR IN THE CCRRELATICN CCEFFICIENT INOUT)
FCRMAT (# ERRCR IN THE PRGDUCTICN fCEFFICIENT INPUT#)
FSRMAT (# ERRCR IN THE AVAILARLE RESOURCES INPUT#)

F"RMAT(# CALCULATIOM NCT CCMPLETED, CHECK THE INNDICATED DATA®)

CALL EXIT
END
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00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325%
00326
00327
00328
00329
00330
00331
00332
00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348
00349
00359
00351
00352
00353



PRCGRAM PRCCESS R .

CCMMON A119A12,AA12,66,6,RGsS, !DSLKyIDAAl?.K.KllMK.MK]o
1BI1K.R11KKs
lNon
INIQN?'NKIoNK?oNMl'NK,SMAXoSM[N'IMAXoIMIN

_EQUIVALENCE (A11(1,1)+B17(1))

II(AAIZ(I.I)»C(lol))

_DIMENSICN All(?o 20),L(2Q)oMM(ZO),B(?O)cAlZ(?O'lﬂO)q
1911(1)lBllK(ZOoZO)vP(?O’lOO)oHllKK(?O.?O)
?cG(lQO’lRG(l?l)oS(l?)) )
30IN(100)QIDAA12(100)oIDSLK(IOO)
4,AA12(205100) +66(100)
6OCUTI(7).GUT2(21 3). UT3(]°°04)

S'R(IZI)OACT(lzl)
79!DSLKB(100),IDABI?(IOO)

¢ READING OF “RIGINAL DATA Sansonstdaistansateanietds

6200

6300
6000

208

RFAO(S) MyN ’N10N29NM'NM10NM29THAVF2
READ(5) All

READ(S) AAl2

READ(S) GG

SSMIN’0.0

ICvUNT=O

KeO ) .. ..
IF(IHAVEZ.EQ.3) 6C T2 6200
READ(S) K

READ(S) iDAAl2

READ(S) JOSLK

6C T2 6300

02 2 Is14M

IDSLK(I)=0

IDAAYI2(1) =]

ISTEP=0

SSMIN=O,

KlsKel

MK.M.K

MKIHM-K-I

Nl=Nel

N2aNe2

NK1eNeKe]

NK2sNeKe2

NMlaNoMOI

NK=N+K

CaLL _ COMPUT

CONTINUE

IrgsutN-SMAX) 2101,2101+263
WRITE(34,1013) 1STEP

RSR MESSAGE

F"RMAT(‘I SMAX 1s GREATER THAN SMIN DURING STEP# 13)
CALL _EXIT

ISTEP'ISTEP‘I

uUTl(l)'SMIN

vUTl(Z)'SMAX
vUTl(3)'-.5’BllK(loNl)
SUT1(4)=0,

DS 205 I=lsK

!IlloNl .
SUT1(4)2BlIK(1yI1)#G(1)eUTT (4)
UUTI!S).OO

DS 206 IsliK

W=0,
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00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00038
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
0005}
00052
00053
00054
0005%
00056
00057
00058
00089
00060



207

206

208

200

02 207 J=14+K

JJIsJeN]
W=G(J)#B11K(Te1,4UJ) ew
WzWeg (1) , .
SYT115)=welUT1 (5)
SUT] (5)==,5%3UT] (5)

SUT1(6)=3UT1 (3) #3UTT (1) #4243UF1 (4) #CUT] (1) «3UT1 (8)

SUTT (7)=SQRT (CUT] (6))

DS 208 I=1sN}

SuT2(141)=S(D)

CUT2(142)=RG (1) L B
SUT2(T193)=0UT2(1,1)a3UTY (1) s00T2(F42)
DE 209 1=N24NK1

II=I-_N1 i

JJsIDSLK(II)

SUTI(JJe1)=S(1)

SUT3(JJs2)BRG(T)

SuT3(ydeymp=0,0 S
SUTI (JJs4)=CUTI (JJeT) *SUTT (1) 4CUTI (UyYy2)
DZ 210 I=NK2,NM]

I1=]~NK]

JJ=IDAALZ(I])

SUT3(JJel)eS(I)

SUT3(UJe2)=RG(T) e o
SUT3(JJ93)38UT3(UJs 1) *CUTT (1) 4CUTA(UU2)
SUT3(JJ+4)=0,0

WRITE (4) ISTEP

WRITE (4) CUT)

WRITF(4) CUT2

WRITE(4) CUT3

WRITE (61,9000) ISTEF,SMIN
FORMAT (# STEP# I3 #F IS#F20,2) .
IF(NgEQeK14AND & IMIN,GTNK1) 2114212
KNC=0 B L.

CALL SELECT(IMIN,IMINyKN2)

62 TC 6000 :

DC 213 I=14K

JJETeNY . .

ACT(1)=S(JJ) #SMINRG (JJ)

DS 214 I=lseK

DS 214 Jmlek -

IF(ACT (1) oLELACT (J)) 2149215
SAVE=ACT (1)

ACT (1) ®ACT (J)

ACT(J)=mSAVE

SAVE=IDSLK(I)

INSLK (1) sIDSLK (J)

IDSLK (J) sSAVE

CONTINUE

SSMINESMIN

JMINS=IMIN

Dg 2155 J=lsk :
IDSLKB(J)=IDSLK ()

DS 2152 JmleMK

INAB12(J)=IDAAL2 (J)

D¢ 2151 I=l,K

0C 2153 y=1sK

IDSLK (J)=IDSLKA ()

DC 2156 JsloMK

IDAA12 (J)=IDABY2 (J)

KNC=]

I1=74NY

199

0006 1
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
0008
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00}05
00106
00107
00108
00109
00110
00111
00112
00113
00114
0011%
00116
00117
00118
00119
00120
0012}
00122



21k
2181

'e]

.t

i

O

e }
[« ]}

JMINz JMINS

caLL SELECT(I!'JMIN.KNv)
CALL CCMPUT

IF (SMIN, GE.SMAX)ZIS.lel
IF(SMINoGEoSSMIN)ZO’ 2151
CANTIN”E

1STEP=9999

WRITF(&4) ISTEP

REWIND &

caLL EXIT

END

SUBRSUTINE CCMPUTE 1§ TO BE INSERTED HERE
SUBR"UTINE CoMPUTY
ON A11+A12,AA12,GGyGoRGyS, IDSLK, IDAAL124KyK1 oMK, MKY
IBIIK Bl1lKKy
INgM,
lva N20NK1vNK29NMloNKtSMAXoSM!NOIMAX IMIN
EQUIVALENCE (A11(147)+B11(1))(AAT211¢1) oE(1yi))
_DIMENSICN All(ZOoZO),LQZO)9MM(20)!B(20)'AIZ(ZOlIOO)o
lBll(l)oBllK(ZOlZO)vCiZOllOO):BllKK(ZOoZO)
?oG(lOO)-RG(lZl)yS(l’I’
39IN1100).IDAAIZ()OOI,IDSLK(IQO)
49AA12(204100)+6G(100) RLAB(I??.Z)
SeR(]121)+ACT(121)
REWIND 5 o o
READ(S) MoNsN1gN29NM4NM] yNM2 4 THAVE2
READ(5) All
READ(5) AAl2
READ(S) GG
ADD CCNSTRAINTS TC A1) =
IDNINI
D" J=l,K
JJ IIDSLK(J)
D" 2 I=]1,yN
AT1(Tv10N¢1) =AAT2 (1, ud)
A11(IDN#1,1)=AAL12(],0J)
IDNIIDN‘I
DC 3 IlNltNKl
DZ_3_J=N1yNK1]
All(IvJ)IOO
SET upP Al2
) JIIQMK
JJ’!DAA!Z(J)
D2 &4 _I=1,N
AIZ!IQJ)!AAIQ(I'JJ,
D2 5 T=N]oNK]
Dv 5 J.l'MK
AIZ(IQJ)IOO
SET uP G
Du I-l K
11=15SLK (1)
G(1)=GG(ID)
IK'I
I.KIQM
C'NTINUE
D% 8 J=ml,K
IF(IDSLK(J) IK) 849,8
IKaTKe1
a5 15 10
CONTINUE
G(I)=GG(IK)

200

00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00185
00156
00157
00158
00159
00160
0016)
00162
00163
00164
0016%
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184



N

12

F

R(I)==RG(I1)/S(]) ce e oL
C FE MUST BE LESS THAN R(T) tterasssstssssetess
IN(]) =]
- 62.T¢ 14
1 _ R(I)=9999999, . L
C VALID F2R ALL EOstananoantnosstinanisstnsstsnns]
IN(T)=2
G2 .TS 14 .
R(I);-RG(I)/S(I)_ oL X o L )
MUST RE GREATER THAN CESSRL I I 2T Y F'Y Y PV IY YV wea
IN(])=3
CONTINUE
IMAX=0
IMIN=0O
SMAX2=9999999,
SMIN=9999999,

b gl
- D

NN
N

9000

Tk=Tkel oL _
CALL, ARRAY (29NK19NK]1920,209A119A]71)
CALL ARRAY (24NK1sMK42041009A124A12)
CALL MINV (B11sNK1sNFT oL ¢MM)
MFSSAGE FCR SINGULAP MATRIX

Ta=]_

DS 11 J=1.NK]

DS 11 _T=N1sNK}

1R=NKI# (J=1) 1

B11K(TA)=B11(1IR)

TA=1As1

Cl==1.0 - . .
CALL, SMPY(B11KyClyB11KKsK1sNK],0)
catL MPRD(BllKKoAlZpCoKl,NKl999095K)
CALL ARRAY(14K1yNK1420420,811KsB17K)
CALL _ARRAY(1,K1,4MK,5041004C+C)

DS 12 J=1,NK]

RG(J) =0,

S(J)=2R11K (1))

0C 12 Is1,K L
RG(J)=RG (J) +B11K (1+7,J)#5(1)

DS 13 JaNK2yNM)

JJzJ=N=1

RG (J) =6 (JJ)

JJ=J=NK1

S(J)=C(14JJ)

213 1=K - .
RG(J)8RG (J) +C(Tel9J))*G(])

DE 14 I=14NM]

IF(S(T)) 15916417

DC. 1R I=N2ysNM)
IF(IN{T)=2)1918,20_
IF(R(1)=SMIN)21,18,18
SMINaR(I)

IMIN=T

6 70 18, e
IF(R(1)=SMAX)18,18,22
SMAX=R (1)

IMAX=T

CONTINUE ..
WRITE (61,9000) SMIN,SMAX

FSRMAT (# FROM COMPUT SMIN § SMAX #2F20.2

RETURN
END

)

201

00185
00186
00187
00188
00189
00190
00191

00192
00193
00194
00195
00196
00197
00198
00199
00200
00201

00202
00203
00204
00205
00206
00207
00208
00209
00210
00211

00212
00213
00214
00215
00216
00217
00218
00219
00220
00221

00222
00223
00224
00225
00226
00227
0022a
00229
00239
00231

00232
00233
00234
00238
00236
00237
00238
00239
00240
00241

00242
00243
00244



c

1

=i

9001

SUBRSUTINE SELECT 1S_TC RE INSERTFD MERE
SHBRCUTINE SELECT (UMIN, IMINJKNC)

CCMMCN Al19A125AA12,6GyG4RGeSyIDSLKeINAALZ 4K oK1 oK, MK o
1BT1R3B11KK

INsMy . ) .

INY o NP 9NKY 9 NK2 ¢ NM] g NK ¢ SMAX ¢ SMIN » IMAX

nrMFNSIUN A!1(20.20).L(20).MM(ZO).B(ZO).A12(20-100).
1911(1)cBl!K(zocZQ)-P(ZOvIOO).R!!KK(ZO.ZO).
26(100).96(!21).5(121).
?IN(IOO)oInAAIZ(IOO).IDSLK(IOO)-
4AA1?1200!00)-GG(!003.
SR(121) +ACT(121)
EQUTVALENCE (A1) (191) 4BIY(1)) 5 (AA12(1,1)4CLY01))

IF (IMINGGTeNK1)1091

JU=TMIN=NK] o

INSLK(K+1)=IDAAL12(J.)

DC 11 IT=gJeMK oL

IDAAI2(T1)=IDAAL2 (1)

KeKel .

IF(KNC.EQel) 7920

IMIN=JMIN

JJ!IMIN-N]

T1=MKe+ 1~KNC

DS 2 I=1,MK o ,

IF(InAA!Z(II 1) 46T, IDSLK(JJ)) 396
lnAAlZ(II)SIDAA!Z( Tel)

II-!I 1

GC T¢ 2 .o
INAAYT2(T1) =IDSLK (JJ)
GS Tg 5

CCNTINUE

CONTINUE

D¢ 6 ISJJvK
InSLK(I)-IDSLK(Io!)
KaK-l

CONTINUE

KMEM=K .
NRITE(6!,9001)(IDAA1?(
WRITE (61,9001) (IDSLK (1)
FCRMAT (/1013/1013/1013
RETURN

END __

FINIS

1)y I=1 kM)
Yo1mlek)
)

202

00245
00246

00247
00248
00249
00250
00281
00252
00253
00254
00258
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
60269
00270
0027
00272
00273
00274
002758
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285%
00286
00287
00288



Ll
D

—
Ll |

PRCGRAM JUTPUT
COMMON TARRY (12) yARRAY (25) yLARELS (63) yN9KSTEP,MINC3,MAXC] | MAX(2,
1 EMAXoCSUT1yCUT2+C11IT34NINT

REAL MINC3sMAXC]MAXC2

CoMMSN/DATA/CSONST (T)

NIMENSICN ”“Tl(7)luHTZ(Zl.B)o“UT3l100y6)oPARTl(l??.!O)oPART?(T)
1+RLETTER(50+10) ,RLAR(122,2)
?.PAPAM(?0.7).AMEAN(:O.«).VAR(?o.a).c'nntzo.ZO)-
3411(20+20) 9AA2(204100) +66 (100)

EQUIVALENCE (PART1(1,1) ¢PART2(1))

RFAN (4) MgNyN1oN29yNMyNM]L sNM29 THAVE ] s THAVE2 » IWANT

RFAN(4) RLAB B

IF (THAVE1.GT,1) GC 75 9

RFAN(4) PARAM

RFAD(4) AMEAN

RFAD (4) VAR

RFAN (4) CCRR

RFAN(4) Al)

REAN (4) AAY2

RFAD (&) GG

RFWIND 3

IPAGF=1

RFAD(3o10005)((RLETTFR(I.J)oJ-l 10) s I=1+50)

WRITE (34, 10001)(RLAn(NM1.J)o1:1.2)-IPAGE

1PAGF=1PAGES1

WRITE (34, 10002)(RLAR(NMZ.J)oJ-IoZ)

WRITE (34, 10003) (RLARINM1 ,J) s Jmls2)

WRITF (34,10006)

IF(IWANTLEQe1) 10911 L L

WRITE (34, 10000)((RLFTTER(IoJ).J-l.lO)oI-l 48)

62 T“ 12

NPITE(36 10000)((RLFITER(IOJ)oJ'lolO)’I.1035)

wRITE(36 10000)(RLETTER(SOoJ)oJ-loIO)

WRITE (34410000) ((RLFTTER(14J) 3J=1410) s 1m4],48)

SNTINUE

PREPARATICN OF PART ONE

MthaauAXCI-MAxczao

KCC=1

KCIQ

REWIND S

READ (&) ISTEP ‘ o

IF (ISTEP,EQs9999,ANN,1.EQ.9) 65 TS 113

IF(ISTEP, €Q+49999) 1M4+101

I-ISTEP-KC

KSTEP=ISTEP

REAN{&4) CUT1

READ (&) CuT2

READ(4) CUT3

WRITE(5) ISTEP

WRITF(S5) CUT]

WRITF(5) CUT2

WRITF(S) SUT3

MAXC2=SUT1(7)

EMAX=0UTY (1)

¢ 1n2 JuleN

IF(UT2(Js3) 6T, MAxrl)MAxc13~uT2(J.3)

PARTY (JsT)23UT2(J4s3)
DC 103 J=sN1sNM
JJxJ=N .
PARTI (Je1)BSUT3(JJs )

203

00001
00002
00003
00004
00005
00006
00007
0000R
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021

00022
00023
00024
00025
00026
00027
00028
00029
00030
00031

00032
00033
00034
00038
00036
00037
00038
00039
00040
00041

00042
00043
00044
00045
00046
00047
00048
00049
00050
00051

00082

00053

00054
00058

00056

000%7

00058

00059




1041
142
1040

1n46

104

1n%

106

107

108

-
ot
o

[ d]
-
Y—

PARTY (NM141)=CUT] (1)
PARTl(NMZoI):vUTl(7)

NS 10640 JaN1,4NM

JUzg-N I
IF(6G(JJ)) 1041,1047,1047
PART}(JOI)’GG(JJ)OPARTI(JOI)
62 T2 1040

PARTI (Js1) 266G (JJ)=PARTI (e1)
C“NTINUE

(2191 1066 JsleM

JAJ=NMP e g

AQTI(JJJ.I):-UUT3(lo“)/“UTZ(N193)

IF(1,EQ.9) 1044100
II=I_

KP=KCe]l

LP=KC+11

KC=KC4+9 .
IF(KCC.EQel) 105,104
WPITF(3“ 1009) I1PAGF
IDAGFSIPAGE01
WRITE(34,1011)
KCC=KCC+1

62 15 107 )
WRITF(34,1010) IPAGF
IPAGE!IPAGE‘I
WRITF(34,1012)
WPITF(36.1001) .
WRITE (34,1003) (1P, iPsKP,LP)
WRIIE(36,100«)

WRITE (34,1002)

DS . 108 J=1sN

WRITF(36,1006)(RLAB(J»JJ)cJJalt?)o(PARTl(JoI)oIl1 1)

WRITE (34,1002)

WPITE(3601007)(PART1(NM1 Ielsly I
WRITE (34, lOOB)(PARTl(NMZgI)oI-l I

WRITE (34,1000) ,
WRITE (34,1010) IPAGF
IPAGEIIPAGE*!
WRITF(34,1013)
WRITF(36,1001)
WRITE(3441003) (1P 15aKP s} P)
WRITE(34,1005)
WRITE(36olOOZ)

LCCHO

LC=O .

DS 109 JxN1y¢NM

JN= JoN

LCC‘LCC*I

LC=LCel L
IF(LCC.EQ.40) 1109111
LcC=0

LC=Q

WRITE(36g1000) L
WPITE(3“.IOIQ) 1PAGF
IPAGE=IPAGE+]
WRITE(36 1014)
wnITE(B“,IOOI)
WPITE(3“,1003)(IP»IP-KP»LP)
WRITE (34,1005)
WRITE(36 1002)

G” T; 109 -
IF(LC.EQ 5) 112,109

204

00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00]14
0011%
00116
00117
00118
00119
00120
0012
00122




112

100

1020 _FSRMAT(#0 A STATEMENT COF THE vALUF

1021

[¢] —

dl

LE=0

WOITF (34,1002)

WPITF(34 1006)(RLAB(JoJJ)eJJ!]'Z)'(pART!(JoI)oI'1 T1)
WOITE (34,1002)

WRITE (34, 1007)(PART1(NM1 I)ol:l II)
WRITE (34, lOOE)(PARTltNMZ.I).r-I 1)
WRITF (34,1000)

WRITF (34,101Q) IPAGF
IPAPF:IPAGE‘I

WDITP(3“ 1020)

WRITF (34,1001)

W°ITF(16 lOO?)(IPoIb:KPoIP)
Molot T3

Lez=} _

NDe 115 J=leM

JN=JeN

JJJ:NM?‘J

LCC=LCC°1

LesLCel , -
IF(LCCaLT«40) BC TC 116
L.cC=n

LC=Q

wnITE(36 1000)
NPITF(34o1010) IPAGF
IPAGE=TPAGE+)

WRITE (34,102])

wntrptaa 1001)

NPITF(36 1003) (1P, 15aKPyLP)
WRITE (34,1005)

WRITE (34,1002)

w»xrr(3a 1000)

G5 T¢ 115 -
IF(LC.LT 8) 6C TC 118

LC=20

WRITE (34,1002)

WRITE (3441006) (RLABTJNyJJ) 9 JJm192) 4 (PARTY(JJJS 1) s IxToT D)

WRITE (34,1002)
wnxrz(36,1007)(PART\(NMl,x).xnl Imn
WRITE (34 1008) (PARTT(NM2,1)vI=lys1T)
WRITE (34,1000}

1# RESSURCE®)

FCRMAT (#0 A STATEMENT SF THE vALUE SF AN ADDITIONAL UNIT

1# _RESSURCE CONTINUED®)

IF(I%TEP £Q.9999) 1139100
NIINUE

WRITE(61,12000)

PRE’ARATICN OF PART Twg

REWIND S o

WRITF (34,2000) IPAGF

IPAGE'IPAGE‘!

WRITE (34,2003)

WRITE (34,2009)

WRITE (34,2008%)

WRITE (34,2008)

WRITE (34,2007)

WRITE (34,201Q)

WRITE (34,2011)

LC=Q_

LCC=0

pa 200 I1s19KSTEP

REAN(S) ISTEP

SF AN ADDITIONAL UNIT

205

00123
00124
00125
00124
00127
00128
00129
00130
00131
00132
00133
00134
00135
N013s
00137
001328
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
001585
00186
00187
00158
00159
00160
00161
00162
00163
00164
00165
00]66
001647
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184



2

’2n2
203

200

300

302

303

304

RFAN(8) suUT]

REAN(5) CUT2

RFAN{(S) CUT3
PART2(1)=CUT1(1)=2,3267%3UT1(7)
IF(PART2(1).LT, MINC?) MINC3I=PART2(})
PART2(2)=CUT]1(1)=1,6450%3UT1 (7)
PART?(3)=0UT] (1)«1,2817%3UT1 (7)
PART2(4)=aCUT] (1) =0, R418%3UT1 (7)
PART2 (5)23UT] (1) =0, =3lo~ UT!(7)

LFC:LCP‘I

Le=LCed

IF(LCCsEQ.40) 201+202

LCC=0

Le=0 R

WRITF (34,200)) IPAGF
IDAqrslPAGE¢l

WRITF (34,2004)

WRITF(34-2009)

WDITF(34.2005)

wnxrr(3a.2006)

WRITE (36,2007)

WRITE (34,2010)

WRITF (34,2011)

G” o 200

IF(lc.EQ S) 203,200

LC=Q

NPITF(34.201!) o . _ 3
WRITE (3492008) T,CUTT (1), (PART2(J) 4JslsT)
WRITE {34,2010)

DCES THE CLIENT wANT PART THRFE
IF(IWANT EQ.1) 300-400
PREPARATIVN CF PART THREE
REWIND S

wp:rr(el.lzool)

D5 301 IsleKSTEP

REAN(S) ISTEP

READ(S) SUT1

READ(S) oUT2

RFAO(S) ouT3

IF(! EQ.!) 302-303

WRITE (34,300Q) 1PAGE
IPAGE=TPAGE+]

WRITE (34,3002)

6C _TC 304 '
WRITE(34,300]) IPAGF
IPAGE=TPAGE«]

HRITE(3403003)

WRITE(36,3004) T
WRITF (34,3005) SUT1(2),3uT1(1)
WRITE (34,3006) SUT1(Y)

WRITE (34,3007)

wn;rgcaa.aOll)

WRITE (34,3012)

WRITE (34,3013)

WRITE (3443014) (SUTT () yJmn3s7)
WRITE (36,3011)

wRITE(34o3OOB)

WRITF (34,3015)

WRITE (34,3011)

206

00185
00186
00187
001Aa
00189
00190
00191
00192
00197
00194
00195
00196
00197
00158
00199
00200
00201
00202
00203
00204
0020%
00206
00207
00208
00209
00210
00211
00212
00213
00214
0021%
00216
00217
00218
00219
00220
00221
00222
n0223
00224
00228
00226
00227
00228
00229
00230
0023}
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246



3Nk

Ing

308

WRITE (34,3019)
LC=0_
D¢ 305 J=lsN
Lr-Lrol
IF(LCL.EQ,S) 306,305
LCSQ
WRITFE (34,3019)
WOITF (3443020} Js (RLAR(JsJJ) 0JJ=]92) 4 (SUT21JsJd} v 0daie)
WRITE (34,4301))
WRITF (34,3009) IPAGF
IPAGESTPAGE+]
wp115(34.3017)
WRITF (34,3018)
WRITF(34.3011)
WRITF(34,3019)
WRITF (34,3021) (SUT2(N1,JJ) s JJals3)
LP-l
LCC=0
NS 30T JaleM
JN= jeN
Lr=LC01 _
LECmLCCel _
IF(LCC.EQ.40) 3089300
LeC=0
Le=Q L
WRITE (34,43010) IPAGF
1PAGF=TIPAGE +]
WRITE (34,3011)
WRITF(34,3017)
WRITE (34,3018)
WRITE (34,3011
WRITE (34,53019)
GS T2 307
IF(LC.FQ,5) 310,307
LC=0
WRITE(34,3019)
wnITE<34.3020) Jo (RLAB (UNsJJ) 4 JJ2T02) 4 (SUTI(UsJd) 0 U Jm1 s4)
WQITE(34.3°11)
C‘NTINUE

CSNTINUE
HRITF(GloIZOOZ) o
THE PLOTTING RSUTINF FITS MERF
CALL PLOT
FORMAT (# #135(#=g))
FGRMAT(¢O¢I35(¢-¢))

FORMAT (# 1 I#9(s Iy
F2RMAT (# I NAME oF UNITI#O(# BLAN #132 1#))
FORMAT{# T CROP I#9 (2 1))
FSRMAT(# T RESCURCE 129 (# I#))

F‘RMAT(i I#2AB# 129 (FI1,2% 1#))

FSRMAT(# I EXP GR MARG $S$I#9(F11,.2# 1#))
FARMAT (#_1 STD DEV $SI1291F11,22 14))
F~RMAT<¢1PART CNE#171A(# #) #PAGE tra)

FORMAT (#1PART ONE CONTINJED#1A8(#_ #) 2PAGE #13)
F*RMAT(*OASUMMARY OF EFFICIENT FARM PLANS*)

_FORMAT (#0A STATEMENT OF THE LEVELS OF ACTIVITIES ANN THE EXPECTED

IPAYVFF*)

_FCRMAT (#0A STATEMENT OF THE AMSUNT OF EACH RESCURCE USED AND THE

IEXPECTED PAYSFF #)

FSRMAT (#0A STATEMENT OF THE AMCUNT SF EACH RESCURGE USED AND THE

1EXPECTED PAYSFF CONTINUEDS®) -
FSRMAT (#0IPLANI EXP GR MAR I 1% 1 5% 1

10%

207

00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
002%9
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286
00287
00288
00289
00290
00291
00292
00293
00294
0029%
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308



2009
2010
2000
2001
2008
2003

2004
2008
200A
2011
000
301
3n0?

3003

3004
3005

3006

007
3008
309
3N10
011
M2

3n13
30146
s
3016
3017

St |l it [y | el §
i J1e X Me 11
[« X N= N
0000
ad N =i

y
(=]
[=4
Q
n

¥

it 20% 1 30% 1 40% 1 %50% 1)

FARMAT (202110 (#e%))

F”RMAT(* 2110 (#=g))

FORMAT (#1PART TW0#94(# #)2PAGF #173)

FORMAT (21PART Two C"NTINUED#R&(* #)#PAGE #13)

F‘RMAT(* 1 *IB#I*B(F11 2* 1))

F“PMAT(*OPR BABILITY STATEMENTS ARSUT ATTAINING SPFRIFIED LEVFLS ¢
1F ACTUAL GRCSS MARGIN FCR A GIVEN LEVEL OF EXPECTEN GRCSS MARGIN#)

FCRMAT (#OPRCBABILITY STATEMENTS CZNTINUEDZ)

FARMAT (# 1 1 1226 (% #)#PROBABILITY LFVEL#4T(# #)#12)
FORMAT (2 1 I 1#90 (#.2) 212)

FCRMAT (# 1 128(2# 1#))

FARMAT (#1PART THREE#]17(# #)#PAGE 213)

FARMAT (#1PART THREE CONTINUED#107 (% #)#PA@E #13)

FZRMAT (#0DETAILED DESCRIPTICN CF EFFICIENT PLANS IN EQUATISN FC

1#)

F”RMAT(#ODETAILED DFSCRIPTISN CF FFFICIENT PLANS IN EQUATICN FCRM
lC“NTYNUED#)

F‘RMAT(#OTHIS PLAN wAS GENERATED NURING STEP #17)

FCRMAT(# IT IS VALIN FOR VALUFS OF EXP GR MARG FRCOMaF26,24T0#F26,2
1)

FSRMAT (#0ALL EQUATISNS PERTAINING TS THIS PLAN ARE FVALUATED AT EX
1P GR MARG =#F26, 2)

FSRMAT (#0THE VARTANCE EQUATICON#)
FARMAT (#QTHE ACTIVITY EQUATIONS#)
FORMAT (#) THE RESCURCE EQUATICNS#100(# #)#PAGE #13)
FCRMAT (#]THE RESCURAE EQUATIONS CANTINUED#90(# #)#2aGE #13)
FORMAT (20 #1311 (#2=2))
FCRMAT (# 1215(# #)#ALPHAY T#15(# #) #ALPHA2 T#
118 (2_#)#ALPHA3  1276(# #)#VARIANCF I1#17(# #)#2STD nEv 1#)
FORMAT (# 125 (# 1))
FORMAT (# 1#3(F24,62 T4)92(F24,2% 14))
FARMAT(# 1 NC CF_ I NAME CF  UNITI#16(# #)#BFTA] 14
116(#_#)#BETA? 1#76(2 2)#LEVEL oF 1#)
FSRMAT (# 1 ACTIVITY 1 ACTIVITY 1225 (% #) #7405 (2 #)#1#
116(#_2)#ACTIVITY 13) . . . i
FORMAT(# 1 Ng OF 1 NAME CF UNITI#16(# #)#BETA{ 1#
116(# #)#BETA2 I#14(% 2)ALEVEL CF 1#14(x #)#VALNE #
2#0F %)
Ecnuirti 1 CONSTRAINT 1 CONSTRAINT 1425 (% #) #1255 (# #)21#
114(# #)#CCNSTRAINT 121402 #) 2 AGRANGIAN I#)
FORMAT (# T#12(# #)#7#16(# #) 2122512 #)21#25(# #) 21455 (# #)#1#
1252 _#)#12) L L .
FARMAT (# 1 #1132  1#2AB#1#2(F24,6% 12)412(F24,22 14))
FORMAT (# 1 0 1ExP GR MARA  sslg# ) )
IFR4,62 1#F24,6% 1 1#F2442¢ 1%)
0 FORMAT (# #10A8)
FORMAT (#IMRe #2A8450(# #)2PAGF #13)
FORMAT (# #2A8)
FGRMAT(iooEAR MR, #2A8)
5 FORMAT (10A8)
5 FORMAT (#0%)

11t e
v
[= B=]
o0
10

12001
12002

FCRMAT (# YOU ARE NCw GCING INTC PART TWS #)

FORMAT (# YOU ARE NCw GCING INTC PART THRER #)

F*RMAT(# YOU HAVE Now CCMPLETFD PART THREE AND THE REPORT#)

CALL EXIT

END

SUBRSUTINE PLCT

_CTMMSN TARRY (12) yARRAY (22) s LABELS (63) yNsKSTEP yMINC3,MAXC1,MAXC2,
1 _ EMAXsCUTL(T) 4BUT2 (21931 9CUTI(100,4) yNINT

DIMENSICN RLABEL(30)

EQUIVALENCE (LABELS,RLABEL)

208

00309
00310
00311
00312
00313
00314
00315
00314
00317
00318
00319
00320
00132}
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331
00332
00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348
00349
00380
00351
00352
00353
003%4
00385
00356
00387
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370




o~y

20

REAL MINC3sMAXC1,MAXEC2
C‘MM“N/DATA/CVNST(T)

DATA (CCNST=e2, 3?67.-! 6&500-1 2817--.8615.-.53!0.- 25109-,000n0)

DIMFNSIVN ESUR(21)saTD(21) +E(101) 4A(101420) 3P (217
REWIND 5

NYNT 20

NINTT=NINT+)

INTTIALTZATICN FOR CHART 2

IAPQY(I):IARRY“‘):I

1ARRY {3V =1ARRY (9) =0

1ARRY (6) =]

1ARRY (7) =3

TARRY (2) =)

TARRY (S5)=16

TARRY (R) =2

1ARRY (10) =6

1ARRY (11)=1ARRY (12)=18

R|.ABFL (11)a8HEXPECTFN

RLARFL (12)=RBH GRASS M

RLARFL (13) =8HARGIN TN

RLAREL (14)=6H $1000

LABFLS(62)=30

RLAREL (21) 2BHTHE EFFT

RUARFL (22)=BHCIENCY F

RLAREL (23) STHRCNTIFR

LABELS(63)=223

RlAREL(l):SHSTANDAPn

RIAREL (2)=8H DEVIATT

RLABEL (3) =BHCN CF GR

RLARF| (4)=BHCSS MARG

RLAREL (5) aBHIN IN $1

LABELS (11)=3HN00

LABFLS(61)'63 .

IF (EMAX,6T«20.) GBS TC 5

ARRAY (7)=ARRAY (11) 2ARRAY (15) #ARRAY (B) =ARRAY (12) ®ARRAY (16) 2,5
GS TC 40

IF (FMAX,GT.50,) GC TS 7
ARRAY(?)-ARRAY(II)-APRAY(IS)=ARRAY(8)-ARRAY(IZ)BARDAY(!é)-!.
LABELS (62) =26

RILABEL (14)26H $

RLAREL ({15)2THIN IN &

LABELS(61)=39

G TS 40 }

IF (EMAX,6T.100,) G5 TS 10
ARRAY(?)-ARPAY(ll)aARRAY(IS)IARRAY(8)=ARRAY(1?)=ARQAY(16)=2.
LABELS (62) =26

RLAREL (14)®6H §

RLARFL (15)®7HIN IN &

LABELS(61)=39

G2 TS 40

IF (EMAX ,6T4250004+) 6C TS 20

ARRAY (7) mARRAY (15) =ARRAY (8) =ARRAY (16) 21000,
AnRAv(l!).ARpAY(lZ)-l.

¢ T2 40

IF (EMAX,6T.100000.) GZ T2 39

ARRAY (7) sARRAY (15) =ARRAY (8) =ARRAY (16) 25000,
ARRAY (11)=ARRAY (12) =5,

GZ TS 40
ARRAV(7)IARPAY(15)IARRAY(B)BAPRAY(!6)=10000.
ARRAY ({11) =ARRAY (12) =10,
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0037
00372
n0373
00374
00375
00376
00377
00378
no37T9
00380
00381
00382
0083
00384
00385
N038¢
N003R7
00388
00389
0039Q
0039
00392
00392
00394
00195
00396
00397
00398
00399
00400
00401
00402
00401
00404
00405
00406
00407
0040R
00409
00410
00411
00412
00413
00414
00415
00416
00417
no4l1s
00419
00420
00421
00422
00423
00424
00425
00426
00427
004218
00429
00430
0043}
00432



4n

S0

AN

70

an

RS

90

[s e ¥o Xl

1

ARRAY (1) =EMAX

AnnAv(?)-ARRAY(a)-AnRAY(q)-ApnAY(s)-ARRAY(9)-ARRAY(1O)-ARRAV(13)-

ARRAY (14) =ARRAY (17)=ARRAY (18) =n,
ARRAY (19) sEMAX
ARRAY (20) =sMAXC2
ARRAY (?1) BARRAY (22) 7,
ARRAY (2) sMAXC?2
08 SO I=11s17
CALL EQUIP(I4SHFILF )
CONTINUE
RFAD (5) ISTEP
RFADN (S) QUT)
REAN (5) CSUT2
READ_(5) CUT3 X
STD(I)BSQRT(”UTI(3)»“UT1(2)' SUT1(2)+2UTY (4)#SUTL1(2)401T1 (8B)Y)
CALL MLTIPLT(CUTY (2),5TD)
Et1)=0UT] (2)
DS 60 I31N
Afl, r)-VUTZ(I 11)SE(T)e0UT2(1,2)
DS 100 1CT=1,KSTEP
I6T1=21CTe]
E(ICTI) =QUT1 (1)
ofvyo‘tal.N
ALICTII1)mCUT2(1,3)
EINC=(C UTl(l)-OUTl(7))/NINT
D2 RO JmlyNINT
ESUB(J)=ZUT1 (2) « (J=1) *EINC
STD(J)'SQPT(”UTI(3)DESUB(J)'E§UB(J)OVUT1(a)'FSUB(J)‘uHTI(S))
DS 8O K=},7
P(JoK)BEGUB (J) «CONST (K) #§TD (J)
TARRY (2) =NINT]
1ARRY (5) %0
ESUB(NINTI)'“UTI(I)
STD(NINT)) =CuT1(T)
DS 85 K=1,7
P(NINTloK)'vUTl(I’OC’NST(K)'”HTI(7)
CALL _GRAPH(ESUB,STD)
IARRY(Z):I
1ARRY (5) =16
CALL _GRAPHI(SUTI (1) 48UTT (7))
D2 90 J=1,7
IJIJOIO
WRITE (1)) (ESUB(K).P(KvJ)oKlloNINTl)
1F (ICTWEQ.KSTEP) G2 TS 100
RFAD (5) ISTEP
READ (5) 3UT]
RFAD (5) CUT2
READ (5) SUT3
CONTINUE

INITIALIZATION F3R CHART 7

TARRY (1) 2N
JARRY (2) aKSTEPe]1
IARRY (5) w16

RLARFL (2]1)=8HTHE ACTT
RLAREL (22)®8HVITY LFV
LABELS (65)=23HELS
LABELS (63) %19
RLABFL(I)-BHLEVEL oF
RLABEL (2)#8H ACTIVIT
RLAREL (3)=8HY IN ACR

210
00633
00436
00435
00436
00437
00438
00419
00660
00641
00642
00663
00464
00445
00666
N0667
00648
00649
00450
006451
006452
00453
00454
00455
006456
00457
006458
00459
00460
00461
00662
00463
00464
00468
00466
00467
00468
00469
00479
0047]
00472
00473
00474
00475
00676
00477
00478
00479
00480
00481
00482
00483
00486
00485
00486
00487
00488
00489
00490
00691
00492
00493
00694



108

120

130

(¢ Xe Ne R J}

142

LABELS(7)=2HES

LARELS (6]) =26

IF (MAXC1.67,50,) 62 T5 105
ApnAy(a)aARRAY(12)-AnRAY(16)-1.
G T3 130

IF (MAXC1.6T,100,) A5 TS 110
ARRAY (8) sARRAY (12) =ARRAY (16) =10,
GS T2 130

IF (MAX€1,6T.1000.) 68 Ts 120
ARRAY(R)IARRAY(I?)=ARRAY(16)-?O.
62 T2 130
ARRAY(B)-ARRAY(!G)IIOOo
RLABFL(3)-BHY IN 100

RLARFL (4)=6H ACRES
LARFLS(61)=30

ARRAY (12) =},

ARRAY (2)=MAXCY

ARRAY (20) aMAXC]

CALL _MLTIPLT(EsA(147))

DS 140 I=2yN

CALL _GRAPH(EsA(141))

CONT INUE

INITIALIZATION FSR CHART 1

IARRY(!):"

TARRY (2) =NINT1

1ARRY (5) =0

1ARRY (8) =3

RLABEL(ZI)'BHTHE PROR
RLABEL (22) ®8HABTLITY

RLAREL (23)®THCF LCSS
LABFLS(63)=223
RLABEL (1) =BHACTUAL 6
RLAREL (2) sBHRCSS MaAp
RLAREL(3)-BHGIN IN &
LABELS (7) s4H1000

LABELS(6])=28
AMINZMIN] (04 ¢yMINC3)
ALENG-EMAX-AMIN )

IF (ALENG.GT +50,) 68 To 142
ARRAY(8)-ARPAY(!?)IARRAY(16)-1.
LABEL S (61) =24

8C T¢ 149

IF (ALENG.GT.100,) 65 TC 163
ARRAY (8) 2ARRAY (12) =ARRAY (16} =2,
LABELS (61) =24

GC TS 149

IF (ALENG 87.1000+) 6C To 164
ARRAY(B):ARRAY(!6)IARRAV(12)'§00
LABELS(61) =224

GA TA 149

IF (ALENG.GT 25000,) GG TS 146
ARRAY (8) ARRAY (16) #1000

ARRAY (12) =1,

62 T2 1649 o
¢ {ALENG,GT,100000,) 65 T3 147
ARRAY(B):ARRAY(!6)!SOOO.

ARRAY (12) =5,

(], T5 149
ARRAY(B)-ARRAY(!&)IIOOOO

ARRAY (12)=l0,
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00495
00496
00457
00498
00499
00500
00501
00502
00503
00504
00505
00506
00807
N030R
00504
00510
00511
00512
00513
00814
00515
00516
00517
00518
00519
00520
0082}
00522
00523
00524
00525
00526
00527
00528
00529
00830
00531
00532
00533
00534
005135
00536
00537
0083R
00539
00540
00841
00842
00543
00544
00545
00546
00547
00548
00849
00550
005%]
00582
00853
00584
00585
00556




150

140

ce NTTNUE

ITEMP:AMIN/ARRAY(G)
ATEMD:ARRAY(G)'ITEMQ

IF (MINC3,LT +ATEMP) ATEMP=ATEMP=1
AnnAY(10)-ARRAY(14)-ARRAY(a).ATEMp
ARRAY(Z):EMAX-ARRAYla)
AQRAY(!B)tMIN!(O.oMTNC3)
APRAY(ZO):EMAX

D" 1‘50 1211417

REWIND I . ) , . .
READ (11) (ESUB(K) 4P (Kyl)+Ku1,NINTI)
CALL _MLTIPLT(ESURP)

IARRY (2) =]

1ARRY (5) =16

CaLL GRAPH(ESUB(NINTI) P(NINT1-!))
DC 160 I=2oKSTEP

READ (!!) (ESUB(K) 4B (K, l)-Kul NINTY)
IARRY(?):NINTI

IARRY(S)-O

CALL GRAPH (ESUB,P)

IARRY(Z):!

IARRY(S)-16

CALL GRAPH(ESUB(NINTI) P(NINT]-I))
CONTINUE

D2 170 IGRAPH=2,7

DO 170 I=leKSTEP

1J=1GRAPH+10

READ (IJ) {ESUB (K) 4P (K 1) «K=1,NINTY)
IARRY(Z):NINTI

1ARRY (5) =0

CALL GRAPH (ESUB,P)

IARRY(?):I

IARQY(S)I16

CALL GRAPH (ESUB (NINTI) 4P ININTI 1))
CSNTINUE

IF (AXISXY(030¢0+0+0+0+0+0¢04+0+0+0))
DS 160 I=11,17

CALL UNEQUIP (I}

C”NTINUE

RETURN

END

1804180

212

00557
0055A
00559
00560
00561
00562
00563
00564
00565
00566
00567
0056R
00569
00570
00571
00572
005713
00574
00575
00576
00577
00578
00579
00880
60581
00582
00883
00884
00585
00586
005A7
00%8R
00589
00590
00591
00892
00593
00594
00598
00596
00597



PRCGRAM CCRRELATE )
THIS PRCGRAM IS NESTGNED TC CSMPUTE A CCRRELATION MATRIX OF THE
2SS MARGINS CF CRAPING ACTIVITIFS, YOU HAVE THE sPTICN CF
RFM‘VING THE INFLUENGE OF TIMF BY €O RRELATING THE NEVIATIONS FROM
A_LINEAR TREND REGRFSSICN EQUATICN, THE RESULTING 0~RRELATISN
Marnxx BECCMES A SOIRCE OF DATA UNDER CERTAIN OPTISMS OF
CGRAM INPUT.

INSTRUCTICNS FCR SETTING UP INPUT FILE,
SET UP CF CONTRSL CARD

COLUMN 1= 24 ENTER NCRCPs THE NZ, OF CRCPey MAX S0
3= 4 ENTER NYEAR, THE Ng. CF YEARS» MAX 10
S« _8s ENTER MINYFAR, THE FIRST YEAD TN SFRIES
9=129 ENTER MAXYFARy THE LAST YFAR IN SERIFS
MAKE SURE THAT THE DIFFERENCE RETWEEN
__ MINYEAR ANPN MAXYEAR 1S 9 OR i ESS.
13=80y LEAVE RLANK
SET UP CF LABEL CARDS L ‘
Y"U MIIST HAVE EXACTLY NCR P LABELS. PREPARE ( ARrL CARD FCR
FACH CRCP AND MAKE SIJRE T2 USF SAME CRPER FOR sCAEEDING
SECTICNS S
CCLUMN  1=18y ENTER NAME _CF CRCP.
CCLUMN 14+ ENTER RLANKs DC NOT ENTER ZERS
COLUMN 17249 ENTER PRICF UNTTSs FCR EXAMPI'E #8$/TON#
COLUMN 25242, ENTER YIELR UNITSy FCR EXAMP|{'E #TON/ACRE®
CCLUMN 33«m0y LEAVE RLANK
QET UP CF PRICE MATR1X.
YOU MUST HAVE THE SAME CRPRER IN THE PRICE MATRIX AS YCU
HAVE IN THE LABEL cAnDs. THE PRICE MATRIX IS NC2OP X NYEAR,
F*R EACH ACTIVITY ENTER PRICE FOR EACH YEAR SEPARATING FACH
FNTRY BY BLANKS AR A CCMMA, WHEN YCU HAVE CoMPLETED ALL PRICE
DATA ENTER 9999 aN A NEW CARD, THIS CAMPLETES PRIcE MATRIX.

SET UP CF YIELD MATRIX.

YZU MUST HAVE THE SAME CRAER N THE Y{ELD MATRIX AS You

HAVE IN THE LABFEL CARDS, THE YIELD MATRIX 1S NEGRCP X NYEAR.
FCR EACH ACTIVITY ENTER YTIELD F2R EACH YEAR SFPARATING FACH
ENTRY BY BLANKS CR A CCMMA. WHEN YZU HAVE COMPLFTFD ALL YYELD
DATA ENTER 9999 &N A NEW CARD, THIS COMPLETES YFELD MATRIX,

/CU HAVE NCW ENTERED ALL &F THE NATA, AS A FINAL CHECK MAKE
SURE ALL NDATA LINES chFcaM T5 THE ORDER oF THE LABEL CARDS,
NCW FILE THE DATA AND GCEN LUCK.

DIRECTCRY CF LCGICAL UNIT NUMRERS

LUN 1 = DATA FT(LE
LUN 2 = SUTPUT FILE ( CORRELATICN MATRIX)
LUN 34 = LP  ( |'INE PRINTER)
‘ LUN 60 = TELETYPE INPUT
LUN 61 = TELETYPE CUTPUT

RO NDIIPRDIND DI IDINIOOONIIINDINO DD D DOIIFIONIIIIDIIIDNDIIIIIIINIDD

DIMENSICN RNAM(5094) PRICE(S0,10) ¢ YIFLD(50910) +GRCSE(50910) o
15uM550)-TSUM(SO),XTX(SO-so)-Tenvsstsn.lo).xxrxxtso.qO)o

CSRR (50950} 1STD(50) 4 XRAR(50)
3-5(50)9SS(50)95T(50).TSTAT(SO).A(§O).8(50)
EouvaLENCEtsUM(1).q:l)),tTSUM(l).SS(l)),gsT(J)osrncl))
EAUIVALENCE (XXTXX(VT41)sPRICE (101} ) o (XTX(T1913,YIFLAI1,1)),

213

00001
N0002
00003
00004
0000%
N0004&
00007
00008
N000N9
00010
00011
00012
00013
00014
00015
00016
00017
0001A
00n19
00020
00021
00022
00023
00024
00025%
00026
00027
00028
00n29
00030
00031
00032
00033
00034
00038
00036
00037
00038
00039
000#0
00061
00042
00043
00044
0004%
00066
00047
00048
00049
00050
00051
000%2
000%3
000%4
00088
000%6
00057
000%8
000%q
00040



in

40

st
50

RN

60

I(CuRﬂllcl)'GRvSS(l (3}
QFAhcl 1000) NCRCP.MYEAR MINYFARyMAXYFAR
Ds 10 J=14NCRCP - o
READ;I.IQOI)(RNAM(JoI)olaloa)
D5 29 J=]+NCRCP
DS 20 I=]14NYEAR
PnIrF(J-I)BFFIN(l)
KCHECK=FFIN(]) )
IF (KCHECK«NE,9999) 2 TC 990
D0 30 Jm)4NCRCP
D‘ ?0 I=1,NYEAR
YIELD(J-I)'FFIN(I)
KCHECK=FFIN(Y) o
!F(KrHECK NE.9999) 6z TC 991
ne 40 J=loNCRvP
nu an I=1.NYEAR
CSS () I)’PRICE(JoY)“YIELD(I 1)
wnITr(3a 1003)
WPITF(B« 1004) (114 IT=MINYEAR,MAXYFAR)
WRITE (34,41005)

LCSO

Ng SO Ja1sNCRCP
LP=LC01 )
IF(LC.EN.5) 51450
l.e=Q

WRITF (34,1005)

WRITF (34, 1006)(RNAM(J.JJ).JJ!!tB).(PRICE(J-I).!'1.MVEAR’
DS RQ J=14NCRCP

RNAM { Js3) =RNAM (4 4)

WRITE (34,1007

WRITE(16 1004) (ITs IY:MINYFAP.MAXYFAR’

WRITF (34,1005)

LC=0

DS 60 J=14NCRCP

LCaLCel .

Lexg

WRITF (34,1005)

WRITF (3441006) (RNAM(JsJJ) e JJel e3) 4 (YTELD (Js1) o Ix] ynYEAR)
WRITF (34,1008)

WRITF(36 1004) (11, ITaMINYEAR ,MAXYFAR)

WRITE (34,1005)

D2 70 J=m1.NCRCP

LgtLCOl R

IF(LC.EQ.S) 71470

LC=0

WRITE (34,1005) . _
WPITF(36 1009)(RNAM(JoJJ’.JJ!1oZ).(GR SS(Js1) s Im19MvEAR)
FCRMAT (2124214)

FRRMAT (4A8) . )
FCRMAT (# YOU CAN NCW CHEEK YQUR DaTA#)

FCRMAT(#] ANNUAL AVERAGE CRCP PRICES#)
F“RMAT(#l ANNUAL AVERAGE CRSP YIELDS#)
FORMAT (#) ANNUAL AVERAGF GRCSS CRSP INGOME#)
FURMAT(¢O$26(¢ #)9101(2 #14))

F”RMAT(# #)
FCRMAT(lXo3ABolOFlO 2)
FARMAT (1X2A8% SS/A(RE#IOFIO ?)

FCRMAT (2 #12¢# 212# #3F15.62  #2AR)
F‘RMAT(# £122 212# #F15.6,30(2 #)2  #2AR# yS #2Ap)
F”RMAT($1CR P VS CR2 CoRR COFF STD Drv #

1# MEAN GRQSS )

214

00061

00062
00063
00064
00065
00n66
00067
00068
00069
00070
00071

00072
00073
00074
00075
00074
00077
00078
00079
00080
00081

00082
000R3
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101

00}02
00103
00104
0010%
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115%
00116
00117
00118
00119
00129
00121
00122



200

207

203
2n1

206
1021
1022

204

205
J017
1018

1019
1020

1016

3000
100

WRITF(61,1016)
RFAN(60+1000) KILL ‘
G T (200093000.4000).K!LL
YR=NYEAR

YR1=YR=1,0

YR?2=YR=?2,0 A

T2YR& (YRe¢140)/2,0
TQ:YRO(YROI-O)’(Z O“YQOI 0)/6 0
Tr§=(7§-70°2/YR)/Y91
TnAR;T/YR

D& 200 J=19NCRSP

S(J)ﬂnao_

S§()=0.0

ST(J)=0.0

NS 201 J=lsNCRCP

D5 202 Is1eNYEAR

9(})=S(J)oGR"SS(JoI) i
SS(.1) %8S (J) ¢GRS 3SS .1y 1) #e>
ST(J) =ST(J) +GRCSS (U, 1) #1
XRAR (1) =S (J) /YR
SS(J)=(SS(J)=S(J)#&3/YR) /YR]
ST(JV=(ST(D =S(J)*T/YR) /YR1
Bt.))=sST(J)/TCS
A{J) =XBAR (J) =B (J) #TRAR
TSTAI(J)-B(J)/SORT((ﬂS(J)-B(J)'ST(J))/(TCsOYR?))
C 203 I=1sNYEAR
GRTSS(Je 1) =6RESS (JyT)=A(J) =B (J) *T
CONTINUE
WRITE(36,1021)
WRITF (34,1022)
o]} ?06 Jel+NCRSP
S%(J)SSORT(SS(J))
wnxrr¢34,1019)(RNAM(J.JJ).JJ-1.2) 2 XBAR (J) 4SS ()
FORMAT (#1 MEAN AND STANPARD DEVIATIVN CF GRZSS INCAME#)
FORMAT (#0NAME CF CR2P#30(# #) 2MEAN #10(# #)#STD NEV#H)
WRITE (34,1017)
WRITE(34,1018)
DS 2064 J=19NCRCP
WRITF (36, 1019) (RNAM U9 JJ) «JJmT92) 3A(J) +B () s TSTAT (.1}
WRITF (34,1020)
WRITE(34,41004) (IT1+1T=MINYEARMAXYFAR)
DS . 205 Js1yNCROP
WRITE (34, 1009)(RNAM(J-JJ)-JJ'!.?).(GRCSS(J.I).I!].MVEAR)
FORMAT (#1REGRESSTON N TIME#)
_FCRMAT (#ONAME CF CR~D=30(¢ #) 2ALPHA #
11R(# #)#BETA #13(# 2)#T=STATISTIC2)
FCRMAT (1X92AB#SS/ACRE #3F26.6)

F2RMAT (#1DEVIATICNS OF ACTUAL GRSSS INCCME FROM FXPeCTEN®

1# GR3SS INCCME#)

_FCRMAT (# THE GRZSS INCSME STATEMENT §S PREPARED #/
1# IF YCU WANT T2 CHECK DATA TYPE ~01~ #/

2% IF YCU WANT VRDIMARY CCRRELATICN TYPE 202~ #/

3% IF Y3 WANT TC REMCVE THE TIME INFLUENGE TYPE =na~ #/

4# TYPE THE NUMBER TN AN =12« FIEID #)
$ 100 JaleNCRCP

SUM(J)-O 0

o 101 I-lchEAR

Dt.l lnl J'l 'NCRAP

SUM(J)RGRVSS(J I)‘SHM(J)

CALL ARRAY (2, NCR‘P.NYEAR.SO 10yGRCSS4GRISS)
CALL MTRA (GR2 SSoTGR“SS.NCRCPONYEARtO)
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00123
00124
0012%
n01?6
00127
00128
00129
00130
00131
00132
001133
00134
00138
00134
001137
00138
00139
00140
00141
00142
00147
00144
0014%
00146
00147
0014A
00149
00150
00151
00152
00183
00184
00155
00186
00157
00188
001%0
00160
00161
00162
00163
00164
00]16%
00166
00167
00168
00169
00170
00171
00172
00173
00174
no1T7S
00176
00177
00178
00179
0018”0
0018
00}1A2
001a3
00184



102

103

104

108

107

198
109

990
991

2000
1013
1014
999

CALL MPRD (GRCSS » TGRASS ¢ XXTXX 4NCRCP ¢NYEAR s A 04 NCRAP)
CALLMTRA {SUM, TS!HMyNARSP 91 40)
CALL MPRD(SUMsTSUMyXTX4NERCP 4790979 NCRSP)
YFAR=NYEAR
YFAR=1,/YEAR
CaLL, SMPY(XTXsYEARsXTXyNCRSP 4NCROP»0)
CALL MSUB(XXTXX9XTX+CORRGNCRZP +NCRSP+0+0)
YFAR=NYEAR
YEAR=],/ (YEAR=1,)
CALL SMPY(CCRRyYEAR,CCRR,NCRZPyNCRSP,0)
CALL ARRAY(I.NCRsP.NCR~P.50.qn.cvRR.c RR)
NS 102 J=lsNCRZP
I=) .
STD(.)) =SQRT(CSRR(J4 1))
NZ 103 J=1sNCRCP
b 1n3 I=!lNCRSP . )
CSRR(Js 1) =CO RR(J.I)/STD(!)
P2 1064 I=1eNCRSP
D2 1064 Jz=1WNCRSP )
CSRR(JsI)=CORR(J, 1) /STD (L))
WRITE(2) CCRR
YFAR=NYEAR
NS 105 J=1sNCRCP
XRAR(J)=SUM(J) /YFAR
LC=0
LEC=d
WRITF (364,1012)
wnITr(34 100%)
DS 106 I=1sNCRCP
D2 106 J=IsNCRCP
LCalCel ~
LcC=L CCe} ‘ ~
IF(LC.EQ 5) 107,108
LC=0
WRITE (36,10085) .
IF(LEC.EQ.45) 1094170
LC=0
LrC:O
WRITF (34,1012)
IF(1,E0.0) 111,112 o o
wnITF(aa.IO!O)I,J.c SRR (Jy 1) 9STD(J) s XBAR(T)
l(RNAM(IoII)vIIHIoZ)
.12 106
WPITF(3“91°11) I’J P“RR(JOI)O(RNAM(IOII)'YI'I 2),
T (ANAM(JsJJ) s JU=],2)
CONTINUE
62_T2 999
WRITE(61,1013)
65_Ts 999
WPITF(61'1014)
62 T& 999
WRITE(61,1002)
FERMAT (# THERE IS A CARD FRRCR IN THF PRIGE INPUT#)
FﬂRMAT(! THERE IS A CARD ERReR IN THME YIELD INPUT#)
CALL EXIT
END
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00185
00184
00187
0018R
00189
00190
0019)
00192
00193
00194
00105
00196
00197
0019A
00199
00200
00701
00202
00203
00206
0020%
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
0021R
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
0023%
00236
00237
00238
00239
00240





