AN ABS TRACT OF THE THESIS OF

Leonard Bauer for the Doctor of Philosophy
(Name) (Degree)
in \qquad presented on \qquad 1970
(Major) (Date)
Title: A QUADRATIC PROGRAMMING ALGORITHM FOR DERIVING
EFFICIENT FARM PLANS IN A RISK SETTING
Abstract approved:

- Redacted for Privacy

Frank S. Conklin

The main focus was on developing an algorithm and supporting computer programs for use by extension personel to counsel farm managers on problems of enterprise choice.

Investigation was initiated from the complete certainty viewpoint of linear programming. Upon introducing uncertainty, ramifications of changing expected income, variance and the correlation coefficient between enterprises were explored. This was extended to develop a quadratic programming algorithm which resulted in complete algebraic specification of the efficiency frontier through integration of the Lagrangian multipliers.

The Von Neuman-Morgenstern utility analysis framework was posed for selecting the best alternative but dismissed as being cumbersome for practical application. A probability of loss function which places confidence intervals about the income level of each
alternative was used since it is more amenable for application by extension workers.

Data requirements were found to be no more difficult to satisfy in the quadratic programming model than in the presently used linear programming models. The triangular probability distribution was used in obtaining subjective estimates for the mean and variance of prices and yields. Subjective methods for deriving covariances between incomes from farm enterprises were discarded as being difficult to administer and subject to inconsistencies. A regional correlation matrix was used from which specific covariance estimates for individual decision problems were computed.

Seven cases were studied as a test of the computer programs and the algorithm. Four of these cases were submitted from actual farm situations by an extension agent. Output from the computer provided each farmer with a report containing the composition of every efficient plan, the pattern of resource use, the shadow prices of limiting resources and confidence statements about achieving certain levels of gross margin. The report was presented in tabular form, in graphic form and as a set of algebraic equations. Although no extensive test of acceptance by farm decision makers was made, results with the four cases studied appeared encouraging.

(C) 1971

Leonard Bauer

ALL RIGHTS RESERVED

A Quadratic Programming Algorithm for Deriving Efficient Farm Plans in a Risk Setting

by
Leonard Bauer

A THESIS

submitted to
Oregon State University
in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy
June 1971

Redacted for Privacy

Assistant Professor of Agricultural Economics in charge of major

Redacted for Privacy

Head of Department of Agricultual Economics

Redacted for Privacy

Dean of Graduate School

Date thesis is presented June 26, 1970

Typed by Barbara Eby for Leonard Bauer

ACKNOWLEDGEMENT

It was through the help of many individuals and groups that this work was made possible. Dr. Frank S. Conklin gave more than is required of a major professor by his encouragement and counsel throughout the study and especially in the latter stages of writing. Farmers and fellow extension workers in Alberta, Canada provided me with practical insights to the problem and Dr. Lloyd C. Rixe at Montana State University first exposed me to decision theory. Dr. Albert N. Halter of Oregon State University increasedmy knowledge of the theory and farmers in Oregon provided the testing ground for the program developed. The agricultural economics faculty and graduate students served as a sounding board and a source of new ideas. Mr. Stan Miles, Mr. Hugh Hickerson and Dr. Gene Nelson were of assistance in data collection and report design. Mr. Doyle Eiler made a major contribution in computer programming. The Computer Center provided a grant which made possible the writing and testing of the computer programs. To all of these individuals and groups I owe a great debt.

Finally, I must acknowledge the patience and sacrifice of my wife, June, my sons, Jim and Larry and my daughter, Judy, during our time in graduate school.

TABLE OF CONTENTS

I. ENTERPRISE CHOICE UNDER UNCERTAINTY - HISTORICAL AND PHILOSOPHICAL DEVELOPMENTS 1
Advising Under Uncertainty - A Gap 1
Evolution of Theory and Operational Planning Tools 2
Philosophy and Mechanism for Giving Planning Advice 5
Problem and Purpose - Narrowing the Gap 6
Objectives of the Study 7
Plan of the Thesis 8
II. THE ENTERPRISE SELECTION PROBLEM - METHODOLOGY FOR ITS SOLUTION 10
The Traditional Certainty Case 10
The Theory - Static Certainty 10
Empirical Tools 13
The Econometric Production Function 13
The Partial Budget 14
Linear Programming 14
Assumptions of Linear Programming 16
Enterprise Selection Problem in a Linear Programming Setting 18
Specification Problems in Linear Pro- gramming 21
The Uncertainty Case 23
Theoretical Consideration 23
Utility Theory - The Preference for and
Aversion to Risk 23
Feasible Enterprise Choices 30
Efficient Enterprise Choices 32
A Mathematical Technique for Deriving Efficient Choices 48
A Numerical Example 48
Methodological Complications and Their Resolution 65
Shadow Prices - Implications of Changes in Constraint Levels 73
Most Risky Alternatives 80
Selecting the "Best" Plan 81
The Von Neumann Morgenstern Utility function 81
Probability of Loss Function 86
III. THE GENERAL MODEL - ENTERPRISE SELECTION UNDER UNCERTAINTY 91
Algorithm for Solving the Generalized Enterprise Selection Problem 91
Description of the Model 91
Solving the Model 92
Slack Variables 92
Lagrangian Form and Kuhn- Tucker Conditions 96
Matrices of First Order Conditions 98
Partitions to Facilitate Inversion 98
Limits on Expected Income 105
Change of Basis 107
Identifying the Maximum Attainable Expected Income 112
Complications in Solution of the Model 113
The Initial Basis 113
The Zero Correlation Case 113
The Non-Zero Correlation Case 114
Positive Lower Limits on Real Activities 115
The Efficiency Frontier and Activity Equations 116
A Summary of the Algorithm 120
Parameter Estimation 124
Gross Margin - Defintion and Assumptions 125
Estimated Expected Values and Variance of Gross Margin 128
Estimating Covariances 133
IV. EMPIRICAL EXAMPLE AND RESULTS 139
Algorithm Development-Accuracy and Efficiency Comparisons 139
Tests of Applicability - Four Case Studies 141
Problem Specifications and Data Collection 141
Report and Interpretation of Results 145
Operational Costs 165
V. SUMMARY AND CONCLUSIONS 166
BIBLIOGRAPHY 170
APPENDIX A - LAGRANGIAN MULTIPLIERS AND TR ANSFORMATIONS 174
APPENDIX B - PROOF OF ASSERTIONS 179
APPENDIX C - FORMS FOR OBTAINING COST AND INCOME ESTIMATES 187
APPENDIX D - COMPUTER PROGRAMS 191
Program INPUT 192
Program PROCESS 198
Program OUTPUT 203
Program CORRELATE 213

LIS T OF FIGURES

Figure Page
2.1 The linear programming problem. 20
2. 2 Utility function for an individual who prefers risk. 26
2. 3 Utility function for an individual who is a risk averter. 26
2. 4 Utility function for andividual who is risk neutral. 26
2. 5 Indifference curves for an individual who prefers risk (increasing marginal utility for money). 29
2. 6 Indifference curves for an individual who is a risk averter (decreasing marginal utility for money). 29
2. 7 Indifference curves for an individual who is risk neutral (constant marginal utility for money). 29
2. 8 Iso-expected income and iso-variance in two dimensions. 34
2. 9 Expected income and variance in three dimensions. 36
2. 10 Activity level equations. 39
2. 11 The efficiency frontier. 39
2. 12 Behavior of the variance ellipse and expansion path with changes in the correlation coefficient. 43
2. 13 The variance ellipse and expansion path in the highly positive correlation case. 44
2. 14 Behavior of the efficiency frontier with changes in the correlation coefficient. 45
2. 15 Behavior of the iso-expected income line and theexpansion path with changes in the expected incomeof y_{1}.47
2. 16 Quadratic programming problem in two dimensions. 50
2. 17 Constraint set of the quadratic programming prob- lem in three dimensions. 51
2. 18 The complete efficiency frontier as a result of adding a constraint. 64
2. 19 Quadratic programming model - high positive correlation. 66
2. 20 The efficiency frontier as a result of trading con- straints. 74
2. 21 Response of variance to changes in expected income. 77
2. 22 Response of variance to changes in constraint levels. 77
2. 23 Shadow prices - the response in expected incomes to increases in resouce levels. 78
2. 24 The complete set of feasible alternatives. 82
2. 25 "Best" choice for risk preferring individual. 87
2. 26 "Best" choice for risk averting individual. 87
2. 27 "Best" choice for risk neutral individual. 87
2. 28 Probability of loss function. 88
3.1 The valid range of expected income. 106
3. 2 Quadratic model with positive lower limit con- straints. 117
3. 3 Efficiency frontier with positive lower limit con- straints. 117
3. 4 The triangular probability distribution function. 130
3.5 The triangular cumulative distribution function. 130

LIST OF TABLES

TablePage4. 1 Problem dimensions and computer costs. 140
5. 2 Monthly cash flow statement. 144
6. 3 Composition of antermediate plan. 161

A QUADRATIC PROGRAMMING ALGORITHM FOR DERIVING EFFICIENT FARM PLANS
 IN A RISK SETTING

I. ENTERPRISE CHOICE UNDER UNCERTAINITY HISTORICAL AND PHILOSOPHICAL DEVELOPMENTS

Advising Under Uncertainity - A Gap

Applied Farm Management by extension personnel has traditionally been of a prescriptive nature. Risk and uncertainty largely have been ignored. ${ }^{1}$ Input and product prices and technical coefficients have been assumed to occur with certainty. In general these coefficients have either been projections of historical data or expected values (a long run implication) of random variables. Partial budgets and linear programming have been the principal planning tools used in this problem-solving framework.

Extension workers sometimes are perplexed to find that clients do not implement recommendations based on that combination of activities which will achieve a maximum expected net income. Often the
${ }^{1}$ Often the term "risk" is reserved for describing future events which can be predicted in an actuarial sense and "uncertainty" is used to describe future events about which such empirical predictions can not be made. In this thesis no such distinction between the two terms will be made. Risk and uncertainty will be used interchangeably to mean that the occurance of a future event is not known with certainty but the decision-maker has, on the basis of historical information or a subjective feeling, some notion about the probability distribution of the event.
client has chosen some modification that results in an income level less than the optimum perceived by the extension worker.

This raises a question about the applicability and completeness of extension advice. Might it be that the extension worker perceives the decision maker's goals and objectives differently from what they in fact are? Might this not be further magnified in an environment of uncertainty where the decision maker stands the chance of economic disaster? It is not so much a lack of theory that inhibits the solution as it is in operational tools.

Evolution of Theory and Operational Planning Tools

During this century there has been rapid development of theory and tools to solve management problems. Although there were some writings (46) prior to the 1920's, it was not until J. D. Black wrote his now classic book Introduction to Production Economics (3) that there emerged a systematic treatment of economics which focused on the use of marginal analysis criteria in agricultural decision making. In his book, Black incorporated the ideas of: (a) statistical methods applied to production relationships by Spillman (40); (b) statistical analyses using individual farm survey data by Tolley, Black and Ezekiel (42) and; (c) neo-classical theory of the firm. This marked the birth of experimentalist philosophy in agricultural
economics, a blend of the empiricist ${ }^{2}$ and rationalist ${ }^{3}$ schools (27). The experimentalist philosophy began to grow in the 1930's nurtured by developments in the field of general economics including the contributions of J. R. Hicks (22) who applied basic concepts of mathematics to the theory of the firm. Developments in agricultural economics followed with Heady's (19) integrative work in the late 1940 's, which was continued into the 1950 's and 60's by his disciples. Once the concepts of marginal analysis were refined and adopted for use, interest of several agricultural economists, including Johnson (28) and Halter (16) focused on the management processes of farmers.

While developments described above were taking place, a new field called operations research, conceived by engineers, mathematicians and statisticians was taking form. A major contributor to operations research was Dantzig (9) who in 1947 devised the simplex method for optimizing linear functions subject to linear constraints. This tool became known as linear programming. It was soon adopted for use in agricultural economics because of its operational depth and simplicity in solving production problems. In 1958 Dorfman, Samuelson and Solow (11) provided an economic interpretation to linear programming.

[^0]In that same year Heady and Candler (20) published their widely used text book on applications of linear programming to solving economic problems in agriculture.

Also during the 1940 's, a most productive era for economics, Von Neuman and Morgenstern (44) revived the concept of cardinal utility ${ }^{4}$ and introduced the theory of games. This rekindled an interest in problems of risk and uncertainty which had been discussed in the 1920's by Knight (30) but had lacked a practical mechanism for application. A theorem concerning probabilities, proven nearly two centuries ago by Thomas Bayes, an English mathematician and clergyman, was brought to bear on decision problems. Since the 1950's, increased emphasis has been placed upon theory. The names of Wald (45), Hurwicz, as cited by Luce and Raiffa (32, p. 492), and Friedman and Savage (15) stand as important contributors to the theory. Halter and Dean (17) give an excellent treatment of the present state of decision theory and its application to agriculture.

Computer technology development became an important precursor of another new approach--simulation and systems analysis. Forrester's (13) Industrial Dynamics is a notable contribution in this area. The computer age made it feasible to perform the vast number of
${ }^{4}$ Neo-classical economists in the 1930's substituted ordinal utility analysis using indifference curves for the cardinal measure of pleasure and pain envisioned by the classicists. Von Neuman and Morgenstern's concept of cardinal utility was something different. It involved a preference ranking of risky alternatives.
calculations, thus permitting widespread adoptions of the new techniques.

Philosophy and Mechanism for Giving Planning Advice

Concurrent with advances in economic theory and methodology, institutional structures emerged which fostered the dissemination of knowledge. Passing of the Smith-Lever Act in 1914 established the Co-operative Extension Service which had as an objective "---to aid in the diffusing among the people of the United States useful and practical information on subjects relating to agriculture and home economics, and to encourage application of the same---" (43, p. 343).

The extension worker serves as a resource upon which the decision maker can draw to perform his function of management. Bradford and Johnson (5, p. 3) define management as a set of steps in the process of thought and action.
"Management is the intangible part of production which develops within the lives of men. It is first a mental process, a concentration of desires, a will power. Management functions when a farmer is (1) observing and conceiving ideas; (2) analyzing with further observation; (3) making decisions on the basis of the analysis; (4) taking action; and (5) accepting responsibilities. Management can be seen only through observing the decision making process and its results. "

It is generally accepted by agricultural economists that the place of the extension worker is in the steps of observation and analysis. His function is to provide information and present alternatives. He aids in problem definition and raises relevent questions; but making the
decision is clearly outside his domain. In practice there is not always a sharp line between presenting alternatives and choosing a course of action from among them. However, the distinction between the domain of the decision maker and that of the advisor is clear in the fifth step of accepting responsibility. The decision maker must live with the consequences of his decision whether the result be success or failure. While the traditional theory postulates economic man as one whose objectives are to maximize profit within a static dimension, the possibility of financial ruin may cause a real world man to behave in a much different manner.

Problem and Purpose - Narrowing. The Gap

Despite advancements in decision theory, there has been only minor implementation of planning techniques that account for uncertainty (41). Most planning techniques presently in use assume static, certainty conditions. The objective of the decision maker is taken to be maximum profit, usually measured as net income, or return to labor and management. Solutions are generally given as a single best plan, i. e. the one which results in maximum profit. Although an aura of certainty surrounds the advice, the farmer may be given an estimate of income variability associated with the plan. Furthermore advice is often concluded with the statement, "This plan is only a guide and you should apply your own judgment about how to use it. "

The farmer, if unversed in the particular analytical technique used must either follow the advice blindly or be confused as to how he should apply his judgment.

Farm management text books generally give a superficial treatment to the topic of farm planning in the face of uncertainty. They leave off with the notion that it is unwise to "put all of your eggs in one basket. " Very little is said in a positive way about how one might determine the proper number of baskets, or how to select the eggs to be placed in them.

Objectives of the Study

A gap exists between theoretical developments in problem solving under uncertainty and methodology for application of this theory in a practical setting. This study will attempt to narrow that gap. The prime objective is to develop a planning technique which actively ${ }^{5}$ accounts for uncertainty. Focus will be on the enterprise selection problem with the basic method coming from Markowitz's (34) portfolio selection criteria designed for use by investment consultants. This problem in security analysis has much in common with the agricultural problem of choosing the "correct" combination of enterprises. The

[^1]similarity has been recognized by Freund (14), Carter and Dean (7), How and Hazell (26), Boussard (4) and others, For methodology to be operational from the decision makers point of view it should possess several characteristics including (a) the problem it is designed to solve must exist in the real world and answers must be worth at least as much as the cost of getting them, (b) the decision maker for whom the program is designed must recognize that he has the problem and must be able to provide data for its solution, and (c) the answer to the problem must be presented in such a form that the decision maker can understand the various suggested actions. The development of operational tools which focus onenterprise selection under uncertainty remains to be solved and it is to this end that the thesis is directed.

Plan of the Thesis

Chapter II initiates the inquiry with a review of ecnomic theory under the assumption of certainty which is later relaxed to account for crucial issues of uncertainty. The problem is first formulated in a linear programming framework. Then as the concepts of uncertainty are introduced, "deterministic" assumptions of the linear model are relaxed. This reformulation results in a quadratic programming model. A two enterprise example is used to illustrate the transition from traditional non-stochastic linear programming to a more realistic model of quadratic programming.

Chapter III focuses on operational aspects for implementing the quadratic model. An algorithm, with supporting computer program is first developed. This is followed by problems of parameters estimation. Requirements of accuracy, efficiency and simplicity in result interpretation are borne in mind as the development proceeds.

Empirical testing is undertaken in the fourth chapter. This test is restricted primarily to the computational accuracy and efficiency of the algorithm. General conclusions and suggestions for further investigation are the topic of the fifth and final chapter.

II. THE ENTERPRISE SELECTION PROBLEM ME THODOLOGY FOR SOLUTION

The enterprise selection problem is one of several issues which economic theory seeks to answer. This is the question of what and how much to produce. Initially, this chapter will examine the traditional certainty case employing the theory of production and marginal analysis. These restrictive assumptions will be relaxed so that a solution, first in the certainty case and finally in the uncertainty case, will become operationally possible.

The Traditional Certainty Case

The Theory - Static Certainty

The theoretical framework within which the short-run enterprise selection problem is solved comes directly from the theory of production in a purely competitive market. Here the decision maker is assumed to have perfect knowledge about factor and product prices but does not have sufficient control in the markets to exert a pricing influence. Further, it is assumed that this perfect knowledge extends to the technical relationships between factor inputs and resulting products. These relationships are expressed mathematically in a production function (21, p. 72-75). The decision maker is left to choose that combination of input and corresponding output levels which
maximizes his profit. Mathematically he is required to solve the following maximization problem:

$$
\begin{array}{ll}
\text { Max: }{ }^{6} \quad \sum_{i=1}^{n} p_{i} y_{i}-\sum_{j=1}^{m} r_{j} x_{j}=Y \\
\text { S. T: } & \\
& F\left(y_{1}, \cdots, y_{n}, x_{l}, \cdots, x_{m}\right)=0 \\
& y_{i} \geq 0 \quad i=1, \cdots, n \\
& x_{j} \geq 0 \quad j=1, \cdots, m
\end{array}
$$

where Y is profit
y_{i} is the output of the ith product and p_{i} its price \mathbf{x}_{j} is the input level of the j th productive factor and r_{j} its cost F is the production function stated in implicit form and chosen so that the non-negativity restrictions always held.

This set of simultaneous equations is usually solved through the application of Lagrangian multipliers. The Lagrangian function (2, 2) is formed and then partially differentiated with respect to its arguments.

$$
\begin{equation*}
R(y, x, \lambda)=\sum_{i=1}^{n} p_{i} y_{i}-\sum_{j=1}^{m} r_{j} x_{j}-\lambda\left[F\left(y_{1}, \cdots, y_{n}, x_{1}, \cdots, x_{m}\right)\right] \tag{2,2}
\end{equation*}
$$

where λ is the Lagrangian multiplier.
${ }^{6}$ The abreviation "Max:" denotes maximize.
${ }^{7}$ The abreviation 'S. T:" denotes subject to.

This establishes the first order condition for an extremum as shown in (2.3). The sufficient condition for the extreme value of Y to be a maximum is that the matrix of second order cross partial derivatives is negative definite when evaluated at the optimizing levels of y and x. It is assumed that the production function is of such a nature that the second order condition holds.

$$
\begin{align*}
& \frac{\partial R}{\partial y_{i}}=p_{i}-\lambda \frac{\partial F}{\partial y_{i}}=0 \quad i=1, \cdots, n \\
& \frac{\partial R}{\partial x_{i}}=r_{j}-\lambda \frac{\partial F}{\partial x_{j}}=0 \quad j=1, \cdots, m \tag{2.3}\\
& \frac{\partial R}{\partial \lambda}=F\left(y_{1}, \cdots, y_{n}, x_{l}, \cdots, x_{m}\right)=0
\end{align*}
$$

Solution of the system of Equations (2.3) demonstrates a fundamental concept of economics--namely the principle of equimarginal returns. The principle states that in order for profit to be maximum:
(a) the rate of transformation between any two products must equal the ratio of their respective prices. Mathematically this is:

$$
\begin{equation*}
-\frac{\partial y_{i}}{\partial y_{k}}=\frac{p_{k}}{p_{i}} \tag{2.4}
\end{equation*}
$$

(b) the rate of technical substitution between any two factors of production must equal the ratio of their respective costs. Mathematically this is:

$$
\begin{equation*}
-\frac{\partial x_{j}}{\partial x_{s}}=\frac{r_{s}}{r_{j}} \tag{2.5}
\end{equation*}
$$

(c) the marginal factor cost of any factor of production must equal its marginal value product. Mathematically this is:

$$
\begin{equation*}
r_{j}=p_{i} \frac{\partial y_{i}}{\partial x_{j}} \tag{2.6}
\end{equation*}
$$

Although all of the Equations (2.4),(2.5) and (2.6) must hold simultaneously, the relationship expressed in Equation (2.4) directly answers the question of what and how much to produce, the central issue of this thesis.

Empirical Tools

The Econometric Production Function

The theory of production is rich in explanatory hypotheses about economic phenomena and provides a rigorous framework within which to "think through" economic problems. However, as an operational tool it departs substantially from reality for providing specific answers to a particular firm on questions of input and output levels. As Dillon (2, p. 103) points out, the estimation of response surfaces is beset by difficulties, not the least of which are statistical problems of design and measurement. Variability in response over time and space
further complicates the issue. These contribute to discrepancies that exist between results obtained under controlled investigation and an actual farm situation. Most response surface experimentation has been conducted on a multiple input, single output basis. Data are generally analyzed using a multiple regression routine with a single equation model. This virtually eliminates investigation of joint product relationships which form the very heart of the enterprise selection problem. Intent of these remarks is not to discredit inter-disciplinary work done on investigating production processes. Such work has produced many insights into agricultural production problems. However, important as these functions may be for providing some of the data useful in farm planning, they alone are not sufficiently powerful to cope with the high level of complexity surrounding many farm units.

The Partial Budget

In the early stages of empirical tool development many operational difficulties were assumed away by describing the production process in terms of straight line segments. The process was called partial budgeting. It provides the simplest form of a linear production function and is probably the most widely used empirical tool even though it is not always presented in a formal written manner. The main philosophy underlying the partial budget revolves around three equations:
(a) ADDED PROFIT = ADDED RETURNS - REDUCED RETURNS
(b) ADDED PROFIT = REDUCED COSTS - ADDED COSTS
(c) ADDED PROFIT = ADDED RETURNS - ADDED COSTS Although there are no optimizing criteria built into the partial budget as such, it is of interest to note that these equations do have a firm basis in the fundamentals of profit maximization; see Equations (2.4), (2.5) and (2.6). The usual method is to construct a number of partial budgets and then compare the projected outcomes, i. e. added profits, from each. The highest paying alternative, after due consideration is given to other important factors not explicitally included in the budget, can then be chosen.

Introduction of high-speed computers and diligent efforts by Danzig (9) and others added, an optimizing technique to the rather simple notion of partial budgets the reby producing the now well known technique of linear programming.

Linear Programming

Linear programming is a mathematical concept defined as the optimization (maximization or minimization) of a linear function in several variables subject to a set of linear inequality constraints (11, p. 8).

Assumptions of Linear Programming

Since there is an abundance of writing on the subject of linear programming both with respect to theory and application, a detailed review will not be pursued here. Naylor (35) gives a particularly clear and concise treatment of the relation between traditional theory of the firm and linear programming. Certain assumptions about the relation between inputs and outputs are basic to linear programming. It will suit the purpose here to reproduce only its essential features. The list is adopted from Hillier and Lieberman (23). The basic assumptions are:

Proportionality: If one unit of the ith activity requires one unit of the jth resource, then two units of the ith activity will require two units of the j th resource. In terms of the calculus this means that the marginal physical productivity of the jth resource in the ith activity is constant over the interval of concern. At first this appears to be a rather serious limitation of the model, especially in view of the so-called principle of diminishing returns. However, it is possible to preserve the essential nonlinear features in many cases through specification of several activities over an appropriate size range.

Additivity: Engaging in one activity will in no way affect the per unit profit of any other activity, nor will it affect the per unit
resource requirement of any other activity. In the Carlson (6, p. 79) sense there is technical and economic independence between every pair of activities, between every pair of resources and between all resources and activities.

Divisibility: Resources and activities must be perfectly divisible. The implication of this assumption is optimum output levels and their corresponding levels of resource use need not be in whole numbers. For instance the solution may require that there be 10-1/2 sows rather than 10 or 11. Unfortunately there are no good techniques to know, in general, whether to round up to 11 or down to 10 so as to minimize departure from the optimal combination. ${ }^{8}$

Deterministic: The linear programming model treats all of the coefficients as though they were constants occuring with certainty. In dealing with reality, it is seldom, if ever, that such a degree of certainty exists. In actuality, the coefficients are expected values of some random distribution but treated as though they were non-stochastic. ${ }^{9}$
${ }^{8}$ To resolve this difficulty one must go to the more elaborate integer programming methods which are not yet highly developed.
${ }^{9}$ It is usual to use the expected value of the random variable, although in some cases it may make sense to use the most frequently occurring or modal value.

It is unlikely that there exist any situations that completely satisfy the assumptions of linear programming. However, there is a broad set of management problems that come sufficiently close such that the linear model gives reasonably satisfactory results.

The Enterprise Selection Problem in a Linear Programming Setting

The enterprise selection problem can be stated formally as the linear program:

$$
\begin{align*}
& \operatorname{Max}: \sum^{\mathrm{n}} \mu_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}=\mathrm{Y} \\
& \mathrm{i}=1 \\
& \text { S. T: } \sum_{i=1}^{n} a_{i j} y_{i} \leq G_{j} \quad j=1, \cdots, m \tag{2.7}\\
& y_{i} \geq 0 \quad i=1, \ldots, n
\end{align*}
$$

where Y is total net income
y_{i} is the level of the i th activity
μ_{i} is the net income per unit of the ith activity ${ }^{10}$
G_{j} is the amount of the j th resource available
$a_{i j}$ is the amount of the j th resource used in producing one unit of the ith activity.

To examine some implications of linear programming in the enterprise selection problem a numerical example has been chosen.
${ }^{10}$ Net income is defined as the return above variable cost.

A farmer has the opportunity to grow any combination of two crops as long as he does not use more than a total of four acres of land or six hours of labor. After deducting variable costs, crop one (y_{1}) will return one dollar per acre. Crop two $\left(y_{2}\right)$ returns two dollars per acre. It takes one hour of labor to grow an acre of the crop one and three hours for an acre of crop two. This information is known with certainty. The farmer wishes to get maximum return above variable cost. The problem stated in linear programming terms is:

$$
\begin{gather*}
\text { Max: } y_{1}+2 y_{2}=Y \\
\text { S. T: } y_{1}+3 y_{2} \leq 6 \tag{2.8}\\
y_{1}+y_{2} \leq 4 \\
y_{1}, y_{2} \geq 0
\end{gather*}
$$

The graphic solution to this problem is found in Figure 2.1. Any point in the area obb', or on its boundary represents a possible choice as far as land is concerned. Likewise any point in the area oaa', or on its boundary represents a possible choice as far as labor is concerned. Any point in the areas $a d b$ or $b^{\prime} d a^{\prime}$, or on their upper boundaries are infeasible, because such a combination would exceed the quantity of labor or land available. Any point lying on or within oadb' represents a feasible choice. The line cc' indicates

[^2]

Figure 2.1. The linear programming problem.
combinations of y_{1} and y_{2} yielding the same total return above variable cost, in this case three dollars. Any line drawn parallel to cc^{\prime} and further from the origin represents a higher income. The highest income attainable is found on that line running parallel to cc^{\prime} and passing through point d. At this point income is five dollars. The amount of land in crop one (y_{1}) is three acres and in crop two (y_{2}) one acre, For those more elaborate linear programming problems which contain more than two activities, a graphic solution becomes imposible. In such a case an algorithm called the simplex method is employed to obtain the income maximizing combination of activities. Several good references are available which present the simplex method in detail. Hillier and Lieberman's book (23) is elementary but thorough. However, knowledge of linear programming, beyond what has been discussed here is not essential for the reader to proceed.

Specification Problems in Linear Programming

The objective function in the numerical example of linear programming used here was taken to be maximum profit. This is the usual case in farm planning. Such an objective function may be an inadequate specification of the decision maker's goals. It may be that the farmer has a "dislike" for some enterprises, even though they appear to be generally profitable with farmers in the area. For instance, he may simply 'not want a pig on the place. " This is easily
handled by excluding "pigs" as an activity or enterprise in the model.
Another specification error might arise as a result of the socalled work-leisure concept. For a given production function, additional income can result only if additional labor is applied. As more work is done, less time is available for leisure. This results in a distinction between labor and managerial effort as production resources and leisure, which forms the compliment of labor but is an ingredient of consumption. This topic is pursued by Skitovsky (38, p. 142-147) although not in the linear programming context. In a very real sense, a farmer will wish to put in additional time only if the income derived from it adds more to satisfaction than is lost from the leisure time given up. In formulation of the numerical example of Equation (2.8), value of additional leisure was assumed implicitly to be zero. This specification problem, when it exits, can be overcome by incorporating an amount reflecting the salvage value of labor (28).

Decision making tools must of necessity be forward looking. 12 Consequently a third possible source of faulty specification results from the deterministic assumption. In real life it is unlikely that all of the information needed for decision making can be known with certainty. Even though payoffs and resource requirements of each activity are stated as parameters, they in fact are estimates--which by

[^3]their very nature are found only in an environment of uncertainty. Thus the linear programming solution to the enterprise selection problem in reality becomes that combination of activities which results in maximum expected return. ${ }^{13}$

If decision makers were maximizers of expected return, it would not be necessary to focus attention on the randomness of coefficients in the model. However, in reality farmers do concern themselves with questions of failure and bankrupcy. Therefore it becomes necessary to set the stage for examining conditions under which a decision maker is a maximizer of expected profit and the conditions under which he is not.

The Uncertainty Case

Theoretical Considerations

Utility Theory - The Preference for and Aversion to Risk

In 1943 Von Neuman and Morgenstern (44) reintroduced the concept of cardinal utility. Their concept was quite different from the cardinal utility of the early demand theory. In the early theory, cardinal utility was taken to be an absolute measure of pleasure and pain

[^4](2, p. 523). The more recent concept was, instead, a preference ranking of risky alternatives.

The Von Neuman-Mogenstern notion of the utility function proceeds from a set of basic assumptions which are quoted directly from Chernoff and Moses (8, p. 82).
"Assumption 1. With sufficient calculation an individual faced with two prospects P_{1} and P_{2} will be able to decide whether he prefers prospect P_{1} to P_{2}, whether he likes each equally well, or whether he prefers P_{2} to P_{1}.

Assumption 2. If P_{1} is regarded at least as well as P_{2} and P_{2} at least as well as P_{3}, then P_{1} is regarded at least as well as P_{3}.

Assumption 3. If P_{1} is prefered to P_{2} : which is prefered to P_{3} then there is a mixture of P_{1} and P_{3} which is prefered to P_{2}, and there is a mixture of P_{1} and P_{3} over which P_{2} is prefered.

Assumption 4. Suppose the individual prefers P_{1} to P_{2} and P_{3} is another prospect, Then we assume that the individual will prefer a mixture of P_{1} and P_{3} to the same mixture of P_{2} and $P_{3} .{ }^{\prime \prime}$

If an individual satisfies the basic assumptions, then for every prospect P there exists a corresponding utility number $u(P)$. If the prospects represent different levels of income Y then the result is a
utility function for income. It has the following properties (17, p. 62).
Property 1. If Y_{1} is prefered to Y_{2} then $\mathrm{u}\left(\mathrm{Y}_{1}\right)>\mathrm{u}\left(\mathrm{Y}_{2}\right)$. Property 2. If Y_{1} occurs with probability p and Y_{2} with probability $l-p$, then $U=E(\ddot{u}(Y))=p u\left(Y_{1}\right)+(l-p) u\left(Y_{2}\right)$, where Y is a random variable and $U=E(u(Y))$ is its expected utility. Property 3. The utility function is bounded, i. e. the utility number to be assigned lies between positive and negative infinity. Property 4. The utility function is monotone increasing.

From the monotonic property it is known that higher certain incomes result in greater utility than do lower certain incomes, While the first derivative is positive throughout, the second derivative may be positive, negative or zero and accordingly the marginal utility of income will be increasing, decreasing or constant. The three possible shapes of the utility function are shown in Figures 2. 2, 2. 3 and 2. 4. If a wide enough range in income is allowed, then the individual's utility function will include each of the three stages (15).

To permit the utility function to be used for analysis, it can be expressed as a Taylor series expansion about the fixed point of expected income $E(Y)(17, p .100)$.

$$
\begin{align*}
u(Y)= & u(E(Y))+[Y-E(Y)] \frac{d u(E(Y))}{d Y}+\frac{[Y-E(Y)]^{2}}{2} \frac{d^{2} u(E(Y))}{d Y^{2}} \\
& +\sum_{n=3}^{\infty} \frac{1}{n!}[Y-E(Y)]^{n} \frac{d^{n} u(E(Y))}{d Y^{n}} \tag{2.9}
\end{align*}
$$

Taking the mathematical expectation of Equation (2.9) results in

$$
\begin{align*}
U=E[u(Y)]= & E[u(E(Y))]+E[Y-E(Y)] \frac{d u(E(Y))}{d Y} \\
& +E\left[(Y-E(Y))^{2}\right] \frac{d^{2} u(E(Y))}{d Y^{2}} \tag{2.10}\\
& +\sum_{n=3}^{\infty} \frac{1}{n!} E\left[(Y-E(Y))^{n}\right] \frac{d^{n} u(E(Y))}{d Y^{n}}
\end{align*}
$$

where U is expected utility.
The terms of the expansion are made up of the derivatives of the utility function and the moments of the random variable, i. e. income. The first term $E[u(E(Y))]$ reduces to $u(E)$ which is the utility of expected income, the second term $E[Y-E(Y)]$ is zero, and the third term

$$
E\left[(Y-E(Y))^{2}\right] \frac{d^{2} u(E(Y))}{d Y^{2}}
$$

is the product of the variance of income and the second derivative of the utility function evaluated at the level of expected income $E(Y)$. If the random variable has no moments higher than the second or the utility function has no derivatives of higher order than the second or if both conditions hold then the remainder term of the Taylor series summed from three to infinity is zero. To permit analysis in the variance expected income space it will be assumed that either or both of these conditions hold. Then expected utility becomes a function of
expected income and variance as shown in Equation (2.11).

$$
\begin{equation*}
U=u(E)+\frac{1}{2} v \frac{d^{2} u(E)}{d Y^{2}} \tag{2.11}
\end{equation*}
$$

where Y is the income variable
$E \quad$ is the expected income i. e. $\quad E=E(Y)$
$u(E)$ is the utility of expected income
V is variance of income i. e. $V=V(Y)$
Equation (2.11) can be rearranged such that variance becomes a function of expected utility and expected income as shown by Equation (2.12).

$$
\begin{equation*}
V=2[U-u(E)] / \frac{d^{2} u(E)}{d Y^{2}} \tag{2.12}
\end{equation*}
$$

For fixed levels of expected utility, say U°, variance as a function of expected income produces an indifference curve. Changing the level of U° results in a family of indifference curves. These curves are presented graphically as $U_{1}^{\circ}, U_{2}^{\circ}$ and U_{3}° on Figures 2. 5, 2. 6 and 2.7. The shape of the indifference curves depends upon whether the individual has increasing, decreasing or constant utility for income.

The family of indifference curves has the following characteristics.

1. For any two alternatives, each with the same variance, the one with the higher expected income will yield the greater

Figure 2.5. Indifference curves for an individual who prefers risk (increasing marginal utility for money).

Figure 2.6. Indifference curves for an individual who is a risk averter (decreasing marginal utility for money).

Figure 2.7. Indifference curves for an individual who is risk neutral (constraint marginal utility for money). N
expected utility.
2. For any two alternatives, a and b, each having the same expected income:
(a) where the marginal utility of incomes is increasing the alternative with the greater variance will yield the greater expected utility as shown in Figure 2. 5.
(b) where the marginal utility of income is decreasing the alternative with the lower variance will yield the higher expected utility as shown in Figure 2.6.
(c) where the marginal utility of income is constant both alternatives will have the same expected utility as shown in Figure 2. 7.

These characteristics of the indifference curves are derived from Equation (2.11) and the monotonic property of the utility function. It is possible for an indifference surface to exhibit all three forms of indifference curves.

The theoretical framework for evaluating risky alternatives is now complete and attention can be directed toward specifying enterprise alternatives in terms of their expected incomes and variances.

Feasible Enterprise Choices

Suppose that the income from a particular activity is a random variable. The profitability of that activity is measured by expected
income, and its riskiness by variance. ${ }^{14}$ No higher moments than the mean and variance are assumed. The expected income of a combination of activities is expressed as:

$$
\begin{equation*}
E=E(Y)=\sum_{i=1}^{n} \mu_{i} y_{i} \tag{2.13}
\end{equation*}
$$

where μ_{i} is the expected income per unit of y_{i}
The variance of income of a combination of activities is expressed as:

$$
\begin{equation*}
V=V(Y)=\sum_{i=1} \sigma_{i}^{2} y_{i}^{2}+2 \sum_{i=1}^{n} \sum_{j<i}^{n} r_{i j} \sigma_{i} \sigma_{j} y_{i} y_{j} \tag{2.14}
\end{equation*}
$$

where σ_{i}^{2} is the variance of income per unit of y_{i}
$r_{i j}$ is the correlation coefficient between the incomes of y_{i} and $\mathrm{y}_{\mathrm{j}}{ }^{15}$

These combinations of activities or enterprises can be viewed as alternatives or plans. There is an infinite number of alternatives, each having the same expected income but different variances. Likewise there is an infinite number of alternatives, each having the same variance but different expected incomes. This raises the question
${ }^{14}$ The coefficient of variation, the ratio of the standard deviation to the mean, is a better measure of riskiness. This notion will be pursued later.
${ }^{15}$ The correlation coefficient $r_{i j}$ measures the degree of statisical interdependence between the inctmes of the ith and jth activities.
'Is there some rationale whereby this infinite number can be reduced to a single superior alternative? Its answer is found in the Von Neuman-Morgenstern utility theory.

Efficient Enterprise Choices

It has been shown that if a decision maker satisfies the basic postulates of utility theory and is also a maximizer of expected utility, he will choose from among alternatives having the same variance, the alternative having the highest expected income. This problem is solved mathematically by maximizing expected income subject to some fixed level of variance.

$$
\begin{align*}
& \text { Max: } \sum_{i=1}^{n} \mu_{i} y_{i}=E \\
& \text { S. T: } \sum_{i=1}^{n} \sigma_{i}^{2} y_{i}^{2}+\sum_{i=1}^{n} \sum_{j<i}^{n} r_{i j} \sigma_{i} \sigma_{j} y_{i} y_{j}=v^{\circ} \tag{2.15}\\
& y_{i} \geq 0 \quad i=1, \cdots, n
\end{align*}
$$

The problem expressed in Equation (2.15) can a.so be stated as minimizing variance subject to some fixed level of expected income.

$$
\begin{array}{ll}
\text { Min: } & \sum_{i=1}^{n} \sigma_{i}^{2} y_{i}^{2}+\sum_{i=1}^{n} \sum_{j<i}^{n} r_{i j} \sigma_{i} \sigma_{j} y_{i} y_{j}=v \\
\text { S. T: } & \sum_{i=1}^{n} \mu_{i} y_{i}=E^{\circ} \tag{2.16}
\end{array}
$$

$$
\mathrm{y}_{\mathrm{i}} \geq 0 \quad \mathrm{i}=1, \cdots, \mathrm{n}
$$

The form used in Equation (2.16) will be required because of computational necessity, however, it is proper to view the problem in terms of Equation (2.15) because it allows for the three basic shapes of the utility function.

For graphic interpretation, the number of activities initially will be restricted to two. A more general model will be introduced later. To proceed: it will be helpful to examine the mathematical form of the expected income and variance functions. In the two activity case the expected income and variance equations are:

$$
\begin{equation*}
\mathrm{E}=\mu_{1} \mathrm{y}_{1}+\mu_{2} \mathrm{y}_{2} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{V}=\sigma_{1}^{2} y_{1}^{2}+2 r \sigma_{1} \sigma_{2} y_{1} y_{2}+\sigma_{2}^{2} y_{2}^{2} \tag{2.18}
\end{equation*}
$$

The expected income function is linear. It is shown graphically as line segment cc^{\prime} on Figure.2.8.with expected income fixed at level E°.
${ }^{16}$ The abreviation "Min:" denotes minimize.

Figure 2. 8. Iso-expected income and iso-variance in two dimensions.

This is an iso-expected income line since any combination of y_{1} and y_{2} that lies on cc^{\prime} has the same expected income。 Varying the level of income produces a family of parallel iso-expected income lines. A fixed expected income level E° is presented in the three dimensional graph of Figure 2.9 as the plane $c^{\prime} f^{\prime} f_{0}$

The variance function is an elliptic paraboloid(37, p.329). This is so because the correlation coefficient r lies between positive and negative unity making the term $\sigma_{1}^{2} \sigma_{2}^{2}\left(1-r^{2}\right)$ always positive (24, p.67).

For a fixed level of variance, say V° the equation can be shown in two dimensions as the iso-variance ellipse in Figure 2. 8. Varying the level of variance produces a family of iso-variance ellipses. Such a family forms the elliptic paraboloid in Figure 2.9. The correlation coefficient serves to rotate the ellipses in the y_{1}, y_{2} activity plane. If $r=0$, then the degree of rotation is zero and if $\sigma_{1}<\sigma_{2}$ the y_{1} axis becomes the major axis. To maintain perspective in later graphic analyses the activity with the higher variance will be denoted y_{2}.

Incorporating Equations (2.17) and (2.18) into the Lagranian form results in:

$$
\begin{equation*}
\mathrm{R}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \lambda\right)=\sigma_{1}^{2} \mathrm{y}_{1}^{2}+2 \mathrm{r} \sigma_{1} \sigma_{2} \mathrm{y}_{1} \mathrm{y}_{2}+\sigma_{2}^{2} \mathrm{y}_{2}^{2}-\lambda\left[\mathrm{E}^{\circ}-\mu_{1} \mathrm{y}_{1}-\mu_{2} \mathrm{y}_{2}\right] \tag{2.19}
\end{equation*}
$$

Figure 2.9. Expected income and variance in three dimensions.

Partially differentiating Equation (2.19) with respect to its arguments and setting the results equal to zero yields the first order equations for a minimum. ${ }^{17}$ It is momentarily as sumed that r is such that the nonnegativity restrictions are fulfilled.

$$
\begin{align*}
& \frac{\partial \mathrm{R}}{\partial \mathrm{y}_{1}}=2 \sigma_{1}^{2} \mathrm{y}_{1}+2 \mathrm{r} \sigma_{1} \sigma_{2} \mathrm{y}_{2}+\lambda \mu_{1}=0 \\
& \frac{\partial \mathrm{R}}{\partial \mathrm{y}_{2}}=2 \mathrm{r} \sigma_{1} \sigma_{2} \mathrm{y}_{1}+2 \sigma_{2}^{2} \mathrm{y}_{2}+\lambda \mu_{2}=0 \tag{2.20}\\
& \frac{\partial \mathrm{R}}{\partial \lambda}=\mu_{1} \mathrm{y}_{1}+\mu_{2} \mathrm{y}_{2}-\mathrm{E}^{\circ}=0
\end{align*}
$$

Solving this set of simultaneous linear equations for y_{1}, y_{2} and λ results in a number of relationships which have a familiar counterpart in production theory. These include the expansion path, the activity equations and the efficiency frontier.

The expansion path. In Figure 2. 8 line cc^{\prime} is the infinite number of alternatives having the same expected income but different variance. The contour v^{\prime} ' represents the infinite number of alternatives having the same variance but different expected incomes. The tangency of vv' to cc^{\prime} at the point e^{\prime} is the combination of y_{1} and y_{2} at where, for the given level of expected income, variance is as small as possible. This is the solution to Equation (2.19). Varying the level of expected income results in a locus of tangency points tracing out the minimum variance expansion path.
${ }^{17}$ Since variance is a positive definite quadratic form, the sufficjent conditon for a minimum is also satisfied.

This forms the line segment oe' in Figure 2. 8. In the two activity case the equation for the expansion path derived from Equation (2. 20) is given by:

$$
\begin{equation*}
\left.\mathrm{y}_{2}=\frac{\sigma_{1}}{\sigma_{2}}\right)\left(\frac{\mu_{2} \sigma_{1}-\mathrm{r}_{1} \sigma_{2}}{\mu_{1} \sigma_{2}-\mathrm{r}_{2} \sigma_{1}}\right) \mathrm{y}_{1} \tag{2.21}
\end{equation*}
$$

The Activity Equations. Each of the activity variables are derived from the set of Equations (2.20) as linear functions of expected income. In the two activity case the equations are:

$$
\begin{align*}
& y_{1}=\left[\frac{\sigma_{2}\left(\sigma_{2} \mu_{1}-r \sigma_{1} \mu_{2}\right)}{\mu_{1}^{2} \sigma_{2}^{2}-2 r \sigma_{1} \sigma_{2} \mu_{1} \mu_{2}+\mu_{2}^{2} \sigma_{1}^{2}}\right] E \\
& y_{2}=\left[\frac{\sigma_{1}\left(\sigma_{1} \mu_{2}-r \sigma_{2} \mu_{1}\right)}{\mu_{1}^{2} \sigma_{2}^{2}-r \sigma_{1} \sigma_{2} \mu_{1} \mu_{2}+\mu_{2}^{2} \sigma_{1}^{2}}\right] E \tag{2.22}
\end{align*}
$$

Graphic presentation of the equations is found in Figure 2. 10. These equations show the level of the activity (decision) variables for each level of expected income such that minimum variance is attained. These equations are analogous to supply functions in production theory.

The Lagrangian form in Equation (2.19) requires that E be held fixed at some level E°. However, since any $E \geq 0$ will satisfy the Lagrangian function, E will be looked upon as a non-negative continuous variable in the activity equations. This permits specification of y_{1} and y_{2} for all possible levels of E.

Figure 2.10. Activity level equations.

Figure 2.11. The efficiency frontier.

The Efficiency Frontier. There exists a functional relationship between expected income and variance which can be specified exactly in algebraic form by making use of an important but much overlooked feature of the Lagrangian multiplier. This relationship will be referred to as the efficiency frontier. The Lagrangian multiplier is the rate of change in the objective function with respect to a change in the level of the constraint. ${ }^{18}$ In the present problem, the Lagrangian multiplier ${ }^{19}$ is the increase in variance, attributable to an increment in expected income. Its algebraic form is:

$$
\begin{equation*}
-\lambda=\frac{d V}{d E}=\left[\frac{2 \sigma_{1}^{2} \sigma_{2}^{2}\left(1-r^{2}\right)}{\mu_{1}^{2} \sigma_{2}^{2}-2 r \sigma_{1} \sigma_{2} \mu_{1} \mu_{2}+\mu_{2}^{2} \sigma_{1}^{2}}\right] E \tag{2.23}
\end{equation*}
$$

Like the activity equations, the Lagrangian multiplier is a continuous function of expected income. Since the Lagrangian multiplier is the first derivative of the efficiency frontier, its antiderivative or integral ${ }^{20}$ will be the algebraic equation of the efficiency frontier.
${ }^{18}$ A more detailed interpretation is to be found in the appendix.
19
Because of the formulation it is actually the negative of the Lagrangian multiplier that represents the rate of change.
${ }^{20}$ Because of the variance form is centered at zero the constant term in the integral is zero.

Hence

$$
\begin{align*}
& \mathrm{V}=\int \mathrm{dV}=\left[\frac{2 \sigma_{1}^{2} \sigma_{2}^{2}\left(1-\mathrm{r}^{2}\right)}{\mu_{1}^{2} \sigma_{2}^{2}-2 \mathrm{r} \sigma_{1} \sigma_{2} \mu_{1} \mu_{2}+\mu_{2}^{2} \sigma_{1}^{2}}\right] \int \mathrm{EdE} \tag{2,24}\\
& \mathrm{~V}=\left[\frac{\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\mathrm{r}^{2}\right)}{\mu_{1}^{2} \sigma_{2}^{2}-2 r \sigma_{1} \sigma_{2} \mu_{1} \mu_{2}+\mu_{2} \sigma_{1}^{2}}\right] \mathrm{E}^{2}
\end{align*}
$$

The curve oe of Figure 2.11 is the efficiency frontier. Every alternative whose expected income and variance is given by a point interior to oe is dominated by an alternative which has the same variance but a higher expected income. For example point a is dominated by point b. The efficiency frontier is the locus of expected incomevariance points of dominant alternatives. These dominant alternatives are the efficient plans from the total listing of the feasible enterprise choices.

The efficiency frontier is similar to the total variable cost curve in production theory with variance being analogous to cost and expected income analogous to output.

The parameters of the variance and expected income equations have a direct bearing upon the composition of efficient plans and upon the shape and position of the efficiency frontier. Results of varying the parameters in the two activity model are stated as assertions.

Assertion 1. As the correlation coefficient r is increased from 0 to 1 , the variance ellipse elongates and its major axis
rotates in a clockwise direction from an angle $\theta=0^{\circ}$ to at most $\theta=-45^{\circ} .^{21}$ As r decreases from 0 to -1 , the variance ellipse again elongates but the major axis rotates in a counter clockwise direction from an agle $\theta=0^{\circ}$ to at most $\theta=+45^{\circ}$. Figure 2.12 displays these results.

Assertion 2. As r increases to a number larger than the ratio of the coefficients of variation of the least risky activity to the most risky activity, σ_{i} / μ_{i}, the equation of the most risky activity and the expansion path take on negative first derivatives. Let this critical value of r where the derivative becomes negative be denoted r.

Assertion 3. As r increases from -1 to r^{*} the least risky activity replaces the most risky one. At values of r greater than or equal to r^{*} complete specialization in the least risky activity will take place. This is shown in Figure 2. 13. Assertion 4. An increase in r from -1 to r^{*} causes the efficiency frontier to rise more steeply with the consequence that, for any level of expected income the variance is increased. This is shown in Figure 2. 14.

Assertion 5. An increase in the expected income of an activity

The major axis of the variance ellipse, when $r=0$, is the axis of the activity y_{i} having the smallest variance. All statements concerning the angle of rotation are made from this perspective.

Figure 2. 12. Behavior of the variance ellipse and expansion path with changes in the correlation coefficient.

Figure 2.13. The variance ellipse and expansion path in the highly positive correlation case.

Figure 2.14. Behavior of efficiency frontier with changes in the correlation coefficient.
will cause that activity to become relatively less risky with the consequence that it will replace the other activity. This is shown in Figure 2.15. With further increase in the activity's expected income r^{*} will become equal to r. At that point complete specialization occurs in this now least risky activity. Assertion 6. An increase in the expected income of an activity will cause the efficiency frontier to rise less steeply with the consequence that for any level of expected income, variance is decreased。

Assertion 7. An increase in the variance of an activity will cause that activity to become relatively more risky with the consequence that it will be replaced by the other activity. With further increases in the activity's variance r^{*} will become equal to r. At that point complete specialization occurs in the other activity which is now least risky.

Assertion 8. An increase in the variance of an activity will cause the efficiency frontier to rise more steeply with the consequence that for any level of expected income the variance is increased.

Proof of these assertions is found in the appendix.

Figure 2.15. Behavior of the iso-expected income line and the expansion path with changes in the expected income of y_{1}.

A Mathematical Technique for Deriving the Efficient Enterprise Choices

A Numerical Example

To tie the linear model and the risk minimization together it is well to return to the numerical example of the static certainty problem summarized in Equation (2.8) and to modify it by accounting for risk. The profit per unit of activity figures will now be random variables with expected value of one dollar and standard deviation of two dollars for enterprise crop one (y_{1}) and expected value of two dollars and standard deviation of three dollars for crop two $\left(y_{2}\right)$. The correlation coefficient between the incomes of the crops is zero. Crop one requires one hour per acre and crop two requires three hours. The farmer is limited to six hours of labor and four acres of land. Production constraints and variability of income must be considered simultaneously in formulating efficient combinations of the two crops. The objective of this problem becomes one of finding that combination of crops which will minimize variance for each level of expected income subject to specified resource constraints. The problem is expressed algebraically as Equation (2.25).

$$
\begin{align*}
& \text { Min: } 4 y_{1}^{2}+9 y_{2}^{2}=V \\
& \text { S.T: } y_{1}+2 y_{2}=E \tag{2.25}\\
& y_{1}+3 y_{2} \leq G_{1}=6
\end{align*}
$$

$$
\begin{align*}
& \mathrm{y}_{1}+\mathrm{y}_{2} \leq \mathrm{G}_{2}=4 \\
& \mathrm{y}_{1}, \mathrm{y}_{2} \geq 0 \tag{2.25}
\end{align*}
$$

To illustrate the problem graphically in two dimensions, the variance ellipse of Figure 2.8 is superimposed on the production constraints of Figure 2.1 with the resulting Figure 2.16. In the three dimensional case the reader is asked to visualize the elliptic paraboloid of Figure 2. 9 superimposed in the constraint set of Figure 2.17.

Because the Lagrangian multiplier technique does not permit inequality constraints, disposal or slack activities are introduced to change each inequality to an equality. The transformed set is Equation (2.26):

$$
\begin{array}{rlrl}
\text { Min: } 4 y^{2}+9 y_{2}^{2} & & =V \\
\text { S. T: } y_{1}+2 y_{2} & & =\mathrm{E} \\
\mathrm{y}_{1}+3 \mathrm{y}_{2}+\mathrm{y}_{3} & =\mathrm{G}_{1}=6 \\
\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{4} & =G_{2}=4 \\
\mathrm{y}_{1} & =G_{3}=0 \\
\mathrm{y}^{2}-y_{5} & =\mathrm{y}_{6} & =G_{4}=0
\end{array}
$$

$$
y_{3}, y_{4}, y_{5}, y_{6} \geq 0
$$

where y_{3} represents unused labor
y_{4} represents unused land

Figure 2.16. Quadratic programming problem in two dimensions.

Figure 2.17. Constraint set of the quadratic programming problem in three dimensions.

$$
\begin{aligned}
y_{5} \text { and } y_{6} & \text { are required by the Lagrangian technique to } \\
& \text { insure that the real activities } y_{1} \text { and } y_{2} \text { will } \\
& \text { not become negative. }
\end{aligned}
$$

Equation (2.26) can now be expressed as the Lagrangian function (2.27).

$$
\begin{align*}
\mathrm{R}\left(\mathrm{y}_{1} \cdots \mathrm{y}_{6}, \lambda_{0}, \lambda_{1}, \cdots \lambda_{4}\right)= & 4 \mathrm{y}_{1}^{2}+9 \mathrm{y}_{2}^{2}-\lambda_{0}\left[E-y_{1}-2 y_{2}\right] \\
& -\lambda_{1}\left[G_{1}-y_{1}-3 y_{2}-y_{3}\right]-\lambda_{2}\left[G_{2}-y_{1}-y_{2}-y_{4}\right] \\
& -\lambda_{3}\left[G_{3}+y_{1}-y_{5}\right]-\lambda_{4}\left[G_{4}+y_{2}-y_{6}\right] \tag{2.27}
\end{align*}
$$

where $\lambda_{0} \quad$ is the Lagrangian multiplier of the expected income constraint.
$\lambda_{1} \cdots \lambda_{4}$ are Lagrangian multipliers of the resource constraints. The non-negativity requirements for the slack variables $\left(y_{3}, y_{4}\right.$, y_{5} and y_{6}) cause this traditional Lagrangian procedure to break down because non-feasible solutions occur. This procedural difficulty is overcome by employing the Kuhn-Tucker conditions (31). These optimality conditions require that if a Lagrangian multiplier is positive the slack variable must be zero and if the Lagrangian multiplier is zero the slack variable must be greater than or equal to zero. If the objective function is a positive definite quadratic form and if the constraints are linear then the optimum is also a minimum.

The solution to the constrained variance minimization problem is obtained by partially differentiating Equation (2.27) with respect to
its arguments and setting the results equal to zero. The resulting first order conditions are shown in Equation (2.28). The matrix form is shown in Equation (2.29). In the matrix it should be noted that $\partial R / \partial \lambda_{0}$ has been moved to the position immediately following $\partial R / \partial y_{2}$. This row and column transposition will prove useful for solving the system. The solution is obtained by inverting the matrix and appears as Equation (2.30). Equations for the activity levels, expansion path and efficiency frontier are obtained by carrying out the multiplication of the inverted system. These are specified in Equation set (2.31).

$$
\begin{array}{ll}
\frac{\partial \mathrm{R}}{\partial \mathrm{y}_{1}}=8 \mathrm{y}_{1}+\lambda_{0}+\lambda_{1}+\lambda_{2}-\lambda_{3} & =0 \\
\frac{\partial \mathrm{R}}{\partial \mathrm{y}_{2}}=18 \mathrm{y}_{2}+2 \lambda_{0}+3 \lambda_{1}+\lambda_{2}-\lambda_{4} & =0 \\
\frac{\partial \mathrm{R}}{\partial \mathrm{y}_{3}}=\lambda_{1} & =0 \\
\frac{\partial \mathrm{R}}{\partial \mathrm{y}_{4}}=\lambda_{2} & =0 \\
\frac{\partial \mathrm{R}}{\partial \mathrm{y}_{5}}=\lambda_{3} & =0 \\
\frac{\partial \mathrm{R}}{\mathrm{y} 6}=\lambda_{4} & =0 \tag{2.28}\\
\frac{\partial \mathrm{R}}{\partial \lambda_{0}}=\mathrm{y}_{1}+2 \mathrm{y}_{2}-\mathrm{E} & =0 \\
\frac{\partial \mathrm{R}}{\partial \lambda_{1}}=\mathrm{y}_{1}+3 \mathrm{y}_{2}+\mathrm{y}_{3}-\mathrm{G}_{1} & =0 \\
\frac{\partial \mathrm{R}}{\partial \lambda_{2}}=\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{4}-G_{2} & =0
\end{array}
$$

$$
\begin{array}{ll}
\frac{\partial R}{\partial \lambda_{3}}=-y_{1}+y_{5} & +G_{3}
\end{array}=0
$$

Inspection of Equation set (2.31) reveals some interesting information about the problem. Real activities y_{1} and y_{2} are linear functions of expected income. The slope of the efficiency frontier is represented by $-\lambda_{0^{\circ}}$. It is this equation which can be integrated to obtain the equation for the efficiency frontier. Slack activities y_{3}, y_{4}, y_{5} and y_{6} are represented by linear equations also. The equations must be restricted by the value E takes on so that they remain non-negative.

A level of expected income exceeding $50 / 11$ requires more than the six hours of labor available. This violates the non-negativity restriction on y_{3}. A level of expected income exceeding 100/17 requires more than four acres of land hence violating the restriction on y_{4}. Since labor becomes limiting at a lower level of expected income, the upper limit on E is 50/11. A level of expected income less than zero would require y_{1} and y_{2} to be negative, a violation of the conditions of the problem. This is reflected by y_{5} and y_{6} being forced negative if E were allowed to take on values less than zero. If E is restricted to the interval $0 \leq E \leq 50 / 11$ the Kuhn-Tucker conditions are satisfied and variance minimizing combinations of crop one and crop two are assured. In Figure 2.16 the point e^{\prime} corresponds to $E=50 / 11$ and point e corresponds to $E=100 / 17$. But is 50/11
(2. 29)

$$
\begin{align*}
& y_{1}=\frac{9}{25} \mathrm{E} \\
& \mathrm{y}_{2}=\frac{8}{25} \mathrm{E} \\
& -\lambda_{0}=\frac{72}{25} \mathrm{E} \\
& \mathrm{y}_{3}=-\frac{33}{25} \mathrm{E}+\mathrm{G}_{1}, \mathrm{E} \leq \frac{50}{11}, \mathrm{G}_{1}=6 \\
& \mathrm{y}_{4}=-\frac{17}{25} \mathrm{E}+\mathrm{G}_{2}, \mathrm{E} \leq \frac{100}{17}, \mathrm{G}_{2}=4 \\
& \mathrm{y}_{5}=\frac{9}{25} \mathrm{E}-\mathrm{G}_{3}, \mathrm{E} \geq 0, \mathrm{G}_{3}=0 \tag{2.31}\\
& \mathrm{y}_{6}=\frac{8}{25} \mathrm{E}-\mathrm{G}_{4}, \mathrm{E} \geq 0, \mathrm{G}_{4}=0 \\
& \lambda_{1}=0 \\
& \lambda_{2}=0 \\
& \lambda_{3}=0 \\
& \lambda_{4}=0
\end{align*}
$$

the maximum expected income that can be produced on this farm? It is not, for the linear programming problem presented earlier showed that E could be increased to a maximum of five dollars. The question of how to increase E while fulfilling the minimum variance requirement must now be answered.

Even though all of the available labor supply is utilized at the level of $E=50 / 11$ only $34 / 11$ acres of land are used leaving a surplus of $10 / 11$ acres. Is it not possible that the composition of the plans could be changed so that additional expected income may be obtained
through greater use of the surplus land resource? The answer is yes. It can not be achieved by movement from e^{\prime} to e since this would violate the labor constraint but it can be achieved by movement along the labor constraint boundary from e^{\prime} to d. This allows a further increase of expected income without violating any conditions of the problem. Mathematically this is accomplished by setting y_{3}, the slack activity for labor equal to zero in the Lagrangian function of Equation (2.27). The amended Lagrangian form appears as Equation (2.32) with the assurance that the Kuhn- Tucker conditions will be fulfilled.

$$
\begin{align*}
& \mathrm{R}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{4}, \mathrm{y}_{5}, \mathrm{y}_{6}, \lambda_{0}, \lambda_{1} \cdots \lambda_{4}\right) \\
= & 4 y_{1}^{2}+9 y_{2}^{2}-\lambda_{0}\left[E-y_{1}-2 y_{2}\right]-\lambda_{1}\left[G_{1}-y_{1}-3 y_{2}\right]-\lambda_{2}\left[G_{2}-y_{1}-y_{2}-y_{4}\right] \\
& -\lambda_{3}\left[-G_{3}+y_{1}-y_{5}\right]-\lambda_{4}\left[-G_{4}+y_{2}-y_{6}\right] \tag{2.32}
\end{align*}
$$

The first order conditions are displayed in matrix Equation
(2.33), inverted to produce Equation (2.34) yielding solution Equation (2.35). Note that $\partial R / \partial \lambda_{0}$ and $\partial R / \partial \lambda_{1}$ have been moved into position immediately following $\partial R / \partial y_{2^{\circ}}$

$$
\left[\begin{array}{cccccccccc}
8 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & -1 & 0 \tag{2.33}\\
0 & 18 & 2 & 3 & 0 & 0 & 0 & 1 & 0 & -1 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\mathrm{l}^{2} \\
\mathrm{E} \\
\mathrm{G}_{1} \\
0 \\
0 \\
\mathrm{y}_{2} \\
\lambda_{0} \\
\lambda_{1} \\
\mathrm{y}_{4} \\
\mathrm{y}_{5} \\
\mathrm{y}_{6} \\
\lambda_{2} \\
\lambda_{3} \\
\lambda_{4} \\
0 \\
\mathrm{G}_{2} \\
-G_{3} \\
-G_{4}
\end{array}\right]
$$

$$
\left[\begin{array}{cccccccccc}
\mathrm{NR} & \mathrm{NR} & 3 & -2 & \mathrm{NR} & \mathrm{NR} & \mathrm{NR} & 0 & 0 & 0 \tag{array}\\
\mathrm{NR} & \mathrm{NR} & -1 & 1 & \mathrm{NR} & \mathrm{NR} & \mathrm{NR} & 0 & 0 & 0 \\
3 & -1 & -90 & 66 & -2 & 3 & -1 & 0 & 0 & 0 \\
-2 & 1 & 66 & -50 & 1 & -2 & 1 & 0 & 0 & 0 \\
\mathrm{NR} & \mathrm{NR} & -2 & 1 & \mathrm{NR} & \mathrm{NR} & \mathrm{NR} & 1 & 0 & 0 \\
\mathrm{NR} & \mathrm{NR} & 3 & -2 & \mathrm{NR} & \mathrm{NR} & \mathrm{NR} & 0 & 1 & 0 \\
\mathrm{NR} & \mathrm{NR} & -1 & 1 & \mathrm{NR} & \mathrm{NR} & \mathrm{NR} & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 \\
G_{1} \\
0 \\
0 \\
0 \\
0 \\
G_{2} \\
-G_{3} \\
\lambda_{1} \\
\mathrm{y}_{4} \\
\mathrm{G}_{4}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mathrm{y}_{5} \\
\mathrm{y}_{6} \\
\lambda_{2} \\
\lambda_{3} \\
\lambda_{4}
\end{array}\right]
$$

$$
\begin{aligned}
& y_{1}=3 E-2 G_{1} \\
& y_{2}=-E+G_{1} \\
& -\lambda_{0}=66 E-50 G_{1}, E \geq 22 / 5, G_{1}=6 \\
& \lambda_{1}=66 E-50 G_{1}, E \geq 50 / 11, G_{1}=6 \\
& y_{3}=0 \\
& y_{4}=-2 E+G_{1}+G_{2}, E \leq 5, G_{1}=6, G_{2}=4 \\
& y_{5}=3 E-2 G_{1}-G_{3}, E>4, G_{1}=6, G_{3}=0 \\
& y_{6}=-E+G_{1}-G_{4}, E \leq 6, G_{1}=6, G_{4}=0 \\
& \lambda_{2}=0 \\
& \lambda_{3}=0 \\
& \lambda_{4}=0
\end{aligned}
$$

The Equations (2.35) are linear functions of E. Values of E greater than five would require more than the four acres of available land thus causing the slack variable y_{4} to become negative. Values of E less than $50 / 11$ would result in the Lagrangian multiplier λ_{1} becoming negative and violating the minimum variance requirement. The valid range of E is established as $50 / 11 \leq E \leq 5$. The absolute maximum level of expected income consistent with the land and labor constraints
is five dollars as determined by linear programming. The expansion path, activity equations and Lagrangian multiplier equations resulting from the two step solution to the variance minimization problem are shown in Equations (2.36), (2.37) and (2.38).

The expansion path ${ }^{23}$

$$
\begin{align*}
& \mathrm{y}_{2}=\frac{8}{9} \mathrm{y}_{1}, 0 \leq \mathrm{y}_{1}<\frac{18}{11} \\
& \mathrm{y}_{2}=2-\frac{1}{3} \mathrm{y}_{1}, \frac{18}{11} \leq \mathrm{y}_{1} \leq 3 \tag{2.36}
\end{align*}
$$

The activity equations

$$
\begin{align*}
& \mathrm{y}_{1}=\frac{9}{25} \mathrm{E}, 0 \leq \mathrm{E}<\frac{50}{11} \\
& \mathrm{y}_{1}=3 \mathrm{E}-12, \frac{50}{11}<\mathrm{E} \leq 5 \\
& \mathrm{y}_{2}=\frac{8}{25} \mathrm{E}, 0 \leq \mathrm{E} \leq \frac{50}{11} \tag{2.37}\\
& \mathrm{y}_{2}=-\mathrm{E}+6, \frac{50}{11} \leq \mathrm{E} \leq 5
\end{align*}
$$

The Lagrangian multiplier equations

$$
\begin{align*}
& -\lambda_{0}=\frac{72}{25} \mathrm{E}, 0 \leq \mathrm{E}<\frac{50}{11} \tag{2.38}\\
& -\lambda_{0}=90 \mathrm{E}-396, \frac{50}{11} \leq \mathrm{E} \leq 5
\end{align*}
$$

23
The expansion path equation does not appear directly in the solution to the system of equations. It is obtained indirectly by eliminating E from the activity equations and expressing y_{2} as a function of y_{1}.

$$
\begin{align*}
& \lambda_{1}=0,0 \leq E<\frac{50}{11} \tag{2.38}\\
& \lambda_{1}=66 E-300, \frac{50}{11} \leq E \leq 5
\end{align*}
$$ cont.

The algebraic form of the efficiency frontier is derived by solving the differential Equations (2.39) which are formed by the Lagrangian multiplier.

$$
\begin{align*}
& d V=\frac{72}{25} E d E, \quad 0 \leq E<\frac{50}{11} \tag{2.39}\\
& d V=\left(90-66 G_{1}\right) d E+\left(-66 E+50 G_{1}\right) d G_{1}, \frac{50}{11} \leq E \leq 5
\end{align*}
$$

The anti-derivative or integral of Equation (2.39) results in the algebraic specification of the efficiency frontier as Equation (2.40)

The efficiency frontier

$$
\begin{align*}
& V=\frac{72}{50} E^{2}, 0 \leq E<\frac{50}{11} \\
& V=45 E^{2}-66 E G_{1}+25 G_{1}^{2}, \frac{50}{11} \leq E \leq 5, \quad G_{1}=6 \tag{2.40}
\end{align*}
$$

Figure 2. 18 displays the efficiency frontier graphically as two parabolas with d'e'd being nested in oe'e. The curve oe'd is the efficiency frontier. The segment $e^{\prime} e$ is a series of points that can not be attained because of the labor constraint. The segment $d^{\prime} e^{\prime}$ is a series of inferior points dominated by points on the segment oe'd and not part of the efficiency frontier.

Figure 2.18. The complete efficiency frontier as a result of adding a constraint.

The problem stated as Equation (2.25) is now solved. A simplified problem was used to facilitate understanding and clarity. Even in the simple two activity model procedural complications can arise and these become the next order of business.

Methodological Complications and Their Resolution

One major difficulty is that the initial basis may be elusive. In assertion two it is noted that high positive values of the correlation coefficient r caused the expansion path to have a negative slope in the y_{1}, y_{2} plane. In this example $r=3 / 4$. Suppose $r=7 / 8$ rather than zero as has been assumed in the example. Then the expansion path becomes the negatively sloped line segment oe" in Figure 2. 19. This results in a revision of the original example with the minimum variance objective function becoming

$$
\begin{equation*}
\operatorname{Min}: 4 y_{1}^{2}+\frac{21}{2} y_{1} y_{2}+9 y_{2}^{2}=V \tag{2.41}
\end{equation*}
$$

The supply of land and labor are not affected by this change hence the constraint remains the same as before. The Lagrangian function is set up, its first order conditions derived, and the system is solved with results appearing in Equation (2.42).

Figure 2.19. Quadratic programming model - high positive correlation.

$$
\begin{aligned}
& y_{1}=-\frac{3}{8} E \\
& y_{2}=\frac{11}{16} E \\
& -\lambda_{0}=\frac{135}{32} E \quad, E \geq 0 \\
& y_{3}=-\frac{27}{16} E+G_{1}, E \leq \frac{32}{9}, G_{1}=6 \\
& y_{4}=-\frac{5}{16} E+G_{2}, E \leq \frac{64}{5}, G_{2}=4 \\
& y_{5}=-\frac{3}{8} E-G_{3}, E \leq 0, G_{3}=0 \\
& y_{6}=\frac{11}{16} E-G_{4}, E \geq 0, G_{4}=0 \\
& \lambda_{1}=0 \\
& \lambda_{2}=0 \\
& \lambda_{3}=0 \\
& \lambda_{4}=0
\end{aligned}
$$

For a plan to be feasible it is required that real activities y_{1} and y_{2} be greater than or equal to zero. Since slack activities, y_{5} and y_{6}, were introduced to represent y_{1} and y_{2} in the Lagrangian formulation, the range of E must be restricted so that y_{5} and y_{6} remain non-negative. In Equation (2.42) it is noted that a positive value of E forces y_{5} to be negative and a negative value of E forces y_{6} to be positive. Thus the Kuhn- Tucker conditions hold only at the point $E=0$. To resolve the difficulty the same procedure as was followed in the previous section where labor became limiting can be applied. This requires setting $y_{5}=0$ and moving along the y_{2}
axis in Figure 2. 19 resulting in complete specialization in the least risky activity in accordance with assertion three. Mathematically it is required that the Lagrangian function is set up with $y_{5}=0$, the first order conditions derived and the system solved with the results appearing in Equation (2.43).

$$
\begin{aligned}
& y_{1}=0 \\
& y_{2}=\frac{1}{2} E-\frac{1}{2} G_{3} \\
& -\lambda_{0}=\frac{9}{2} E-\frac{3}{4} G_{3}, E \geq 0, G_{3}=0 \\
& \lambda_{3}=\frac{3}{4} E+2 G_{3}, E \geq 0, G_{3}=0 \\
& y_{3}=-\frac{3}{2} E+\frac{1}{2} G_{3}+G_{1}, E \geq 0, G_{1}=6, G_{3}=0 \\
& y_{4}=-\frac{1}{2} E-\frac{1}{2} G_{3}+G_{2}, E \leq 4, G_{2}=4, G_{3}=0 \\
& y_{5}=0 \\
& y_{6}=\frac{1}{2} E-\frac{1}{2} G_{3}-G_{4}, E \geq 0, G_{3}=0, G_{4}=0 \\
& \lambda_{1}=0 \\
& \lambda_{2}=0 \\
& \lambda_{3}=0 \\
& \lambda_{4}=0
\end{aligned}
$$

Since y_{5} was set equal to zero, y_{1} is automatically set to zero. The basis is valid only on the interval $0 \leq E \leq 4$. This establishes the expansion path as the segment oa falling on the y_{2} axis in Figure 2. 19.

At point a the labor supply is exhausted and $E=4$. The only way to increase E further is to move along the labor boundary from point a to d in Figure 2.19. This requires y_{3}, the slack activity representing surplus labor to be set equal to zero. Movement from a to d can not occur unless the real activity y_{1} is allowed to be positive which requires that y_{5} be reintroduced into the system ${ }^{24}$. This results in an amended Lagrangian function where y_{3} is set equal to zero and y_{5} is replaced. The system is solved as before with results shown in Equation (2.44).

$$
\begin{align*}
y_{1} & =3 E-2 G_{1} \\
y_{2} & =-E+G_{1} \\
-\lambda_{0} & =27 E-\frac{27}{2} G_{1}, E \geq 3, G_{1}=6 \\
\lambda_{1} & =\frac{27}{2} E-8 G_{1}, E \geq \frac{32}{9}, G_{1}=6 \\
y_{3} & =0 \tag{2.44}\\
y_{4} & =-2 E+G_{1}+G_{2}, E \leq 5, G_{1}=6, G_{2}=4 \\
y_{5} & =3 E-2 G_{1}-G_{3}, E \geq 4, G_{1}=6, G_{3}=0 \\
y_{6} & =-E+G_{1}-G_{4}, E \leq 6, G_{1}=6, G_{4}=0
\end{align*}
$$

24 In terms of the matrices having both y_{3} and y_{5} set equal to zero would produce a singular system. In this problem there can not be more than $n-1$ effective production constraints, where n is the number of real activities. In linear programming there can be as many constraints as real activities, however, here the income constraint uses up one row and column of the matrix.

$$
\begin{align*}
& \lambda_{2}=0 \\
& \lambda_{3}=0 \tag{2.44}\\
& \lambda_{4}=0 \tag{cont.}
\end{align*}
$$

Note that now the lower limit of E is four dollars and the upper limit is five dollars. The lower limit occurs at point a in Figure 2. 19 where y_{l} was introduced at a positive level. The upper limit occurs at point d where the land supply is exhausted as indicated by its slack variable y_{4} becoming zero. The level of expected income of five dollars has been reached. From both the graphs and a solution identical to that obtained with linear programming, it can be observed that the maximum attainable E has been reached. But what assurance is there that the maximum attainable E has been attained? This can be checked mathematically by noting from Equations (2.44) that the only possible way for expected income to increase is for land to be fully utilized. For land to be fully utilized requires that its slack activity y_{4} be set to zero. But this can not be done in the two activity model because there must not be more than one resource fully utilized at one time. There is one possible way to proceed and that is to allow y_{3}, the slack activity of labor to become positive. The Lagrangian function is amended to exclude y_{4} and include y_{3} at positive levels. The solution of the system is shown in Equation (2.45).

$$
\begin{align*}
& y_{1}=-\frac{1}{2} E+G_{2} \\
& y_{2}=\frac{1}{2} E-\frac{1}{2} G_{2} \\
& -\lambda_{0}=\frac{5}{2} E-\frac{5}{4} G_{2}, G \geq 2, G_{2}=4 \\
& \lambda_{2}=\frac{5}{4} E-4 G_{2}, E \geq \frac{64}{5}, G_{2}=4 \\
& y_{3}=-E+\frac{1}{2} G_{2}+G_{1}, E \leq 8, G_{1}=6, G_{2}=4 \\
& y_{4}=0 \tag{2.45}\\
& y_{5}=-\frac{1}{2} E+G_{2}-G_{3}, E \leq 8, G_{2}=4, G_{3}=0 \\
& y_{6}=\frac{1}{2} E-\frac{1}{2} G_{2}-G_{4}, E \geq 4, G_{2}=4, G_{4}=0 \\
& \lambda_{1}=0 \\
& \lambda_{3}=0 \\
& \lambda_{4}=0
\end{align*}
$$

Checking the equations it is found that for the Kuhn-Tucker conditions to hold E must be greater than or equal to $64 / 5$. At the same time E must not exceed eight. It is impossible that these restrictions hold simultaneously. Thus it is established that trading the labor constraint for the land constraint is not permissable. Since no other trades are possible there is no way expected income can be increased. This assures that the level of E attained in the previous valid basis is in fact the maximum possible. From a graphic stand point movement along the land constraint boundary from point d
toward b^{\prime} reduces E. Conversely movement d toward b violates the labor constraint.

The stepwise procedure just completed produces the equations for the expansion path, the activity levels, the Lagrangian multipliers and the efficiency frontier.

The expansion path

$$
\begin{align*}
& \mathrm{y}_{1}=0,0 \leq \mathrm{y}_{2}<2 \\
& \mathrm{y}_{2}=2-\frac{1}{2} \mathrm{y}_{1}, 0 \leq \mathrm{y}_{1} \leq 3 \tag{2.46}
\end{align*}
$$

The activity equations

$$
\begin{align*}
& y_{1}=0,0 \leq E<4 \\
& y_{1}=3 E-12,4 \leq E \leq 5 \\
& y_{2}=\frac{1}{2} E, 0 \leq E<4 \tag{2.47}\\
& y_{2}=-E+6,4 \leq E \leq 5
\end{align*}
$$

The Lagrangian multiplier equations

$$
\begin{align*}
-\lambda_{0} & =\frac{9}{2} E, 0 \leq E<4 \\
-\lambda_{0} & =\frac{27}{2} E-81,4 \leq E<5 \\
\lambda_{1} & =0,0 \leq E<4 \\
\lambda_{1} & =\frac{27}{2} E-48,4 \leq E \leq 5 \tag{2.48}\\
\lambda_{3} & =\frac{3}{4} E, 0 \leq E<4 \\
\lambda_{3} & =0,4 \leq E \leq 5
\end{align*}
$$

$$
\begin{align*}
& V=\frac{9}{4} E^{2}, 0 \leq E<4 \tag{2.49}\\
& V=\frac{27}{2} E^{2}-81 E+144,4 \leq E \leq 5
\end{align*}
$$

The efficiency frontier can be graphed in the expected income variance coordinate system. This is done in Figure 2.20. Points on line segments d 'f and ff' are infeasible since they violate the land and labor constraints. The line segment ofd is the efficiency frontier. Comparison of Figures 2.18 and 2. 20 reveals an important difference. In both cases variance is described in terms of parabolas. In the case of Figure 2.18 where a constraint was simply added to form the second basis there is a smooth transition from the curve oe'e to the curve d'e'd. In the case of Figure 2.20 where it was necessary to trade constraints there is a sharp corner at point f where the basis change occurs. In both cases the efficiency frontier is completely defined on the interval $0 \leq E \leq 5$.

Shadow Prices - Implications of Changes in Constraint Levels

Thus far the problem perspective has been mainly in the activity space. Similar to the dual of linear programming, the problem also can be specified in the constraint space. In the context of vari.ance minimization this is in the expected income - production resource

Figure 2. 20. The efficiency frontier as a result of trading constraints.
coordinate system. Although not all of the ramifications of the dual problem will be pursued, the matter of shadow prices deserves special attention.

In Equation (2.24) the method for algebraically specifying the efficiency frontier was given in the absence of production constraints. A numerical derivation was presented in Equation (2.40) which included resource constraints. The generalized form of Equation (2.40) is Equation (2.50).

$$
\begin{equation*}
V=\frac{a}{2} E^{2}-b E G_{k}+\frac{c}{2} G_{k}^{2} \tag{2.50}
\end{equation*}
$$

where a, b and c are elements taken from the inverse matrix. For example, see Equation (2.34) where $a=90, b=66$ and $c=50$. The total differential of the variance function is

$$
\begin{equation*}
d V=\left(a E-b G_{k}\right) d E+\left(-b E+c G_{k}\right) d G_{k} \tag{2.51}
\end{equation*}
$$

where $a E-b G_{k}=\frac{\partial V}{\partial E}=-\lambda_{0}$

$$
-b E+c G_{k}=\frac{\partial V}{\partial G_{k}}=-\lambda_{k}
$$

The partial derivatives are the negatives of the Lagrangian multipliers. Because of the solution procedure and the nature of the variance function, the Lagrangian multiplier associated with the expected income constraint is never positive. Hence the partial derivative $\frac{\partial V}{\partial E}=-\lambda_{0}$ is never negative. This indicates that an increase in
expected income, holding the level of the production constraint G_{k} constant results in higher variance. The graphic interpretation of $-\lambda_{0}$ is given in Figure 2. 21 as the slope of curve $d^{\prime \prime} d^{\prime \prime}$ at the point $d_{\text {。 }}$ The Lagrangian multiplier associated with the production constraint is required never to be negative. Accordingly, the partial derivative $\frac{\partial V}{\partial G_{k}}=-\lambda_{k}$ is never positive. If expected income is held constant, an increase in the level of the k th resource will reduce variance since this allows the decision maker to expand in the direction of a less risky activity. The graphic interpretation of $-\lambda_{k}$ is shown in Figure 2. 22 as the slope of curve $\mathrm{g}^{\prime \prime} \mathrm{g}$ ' at point d .

One additional ramification bears investigation. What will be the effect upon expected income if variance is held fixed and the constraint level is increased. This is shown by the derivative

$$
\begin{equation*}
\frac{d E}{d G_{k}}=-\frac{\partial V / \partial G_{k}}{\partial V / \partial E}=\frac{b E-c G_{k}}{a E-b G_{k}} \tag{2.52}
\end{equation*}
$$

Extending the arguments used earlier to verify the algebraic sign of $\frac{\partial V}{\partial E}$ and $\frac{\partial V}{\partial G_{k}}$ it follows that $\frac{d E}{d G_{k}}$ is non-negative and an increase in the level of the production constraint, holding variance constant, will increase expected income. This is shown as the slope of the variance ellipse at point d in Figure 2. 23. The magnitude of the derivative is the value of an additional unit of the resource G_{k} and the interpretation is similar to the shadow price of linear programming. However a major difference exists. In linear programming the shadow price is

Figure 2. 21. Response of variance to changes in expected income.

Figure 2. 22. Response of variance to changes in constraint levels.

Figure 2. 23. Shadow prices - the response in expected income to increased resource levels.
a constant, valid over the range of the basis. But here the shadow price Equation (2.52), although valid over the range of the basis, is a non-linear function of expected income and resource level. In the numerical example, the shadow price for labor was 5/9. Although approximately indicating the increase in expected income resulting from an addition of one hour of labor, the addition of another 100 hours certainly would not add 500/9 to expected income. It can be seen from Figure 2. 23 and confirmed by the second derivative of the isovariance curve, Equation (2.53),

$$
\begin{equation*}
\frac{d^{2} E}{d G_{k}^{2}}=\frac{\left(b^{2}-a c\right) E}{\left(b E-c G_{k}\right)^{2}}<0 \tag{2.53}
\end{equation*}
$$

that the shadow price of the resource becomes progressively less as the level of the resource is increased. Thus greater caution must be exercized in interpreting shadow prices from the quadratic model than with the linear programming model.

The following assertions review the implications of changing constraint levels in the variance minimization problem.

Assertion 9. For a specified level of production constraints, any increase in expected income occurs only by greater risk as measured by an increase in variance. This results from the positive slope of the efficiency frontier.

Assertion 10. For a specified level of expected income, any increase in the level of a limiting production constraint, holding all other production constraints fixed, will reduce risk as measured by decreased variance.

Assertion ll. For a specified level of variance, an increase in the level of a limiting production constraint, holding all other production constraints fixed, will increase expected income.

Most Risky Alternatives

The discussion thus far has centered on the lower boundary of the feasible set consisting of the least risky enterprise choices. Attention should also be focused on another set of enterprise choices, those which are most risky. This establishes the upper boundary and completely defines the feasible set of alternatives. The upper boundary is the maximum variance frontier and results from movement along the segment ob' in Figure 2.16, the axis of the most risky activity y_{l}, and then along the land constraint from b^{\prime} to d. This traces the locus of variance maximizing points and can be expressed algebraically in the expected income - variance coordinate system as Equation (2.54).

$$
\begin{align*}
& V=4 E^{2}, 0 \leq E<4 \tag{2.54}\\
& V=13 E^{2}-136 E+400,4 \leq E \leq 5
\end{align*}
$$

The entire set of feasible alternatives appears in Figure 2. 24 as the area oedh including its boundary. ${ }^{25}$ The lower boundary oed is the expected income - variance locus of least risky alternatives. The upper boundary ohd is the locus of most risky alternatives.

Selecting the "Best" Plan

The Von Neumann Morgenstern Utility Function

All possible enterprise choices from the least to the most risky have been specified. It is from this infinite set that the 'best one" is to be chosen. But how is this choice made? The appropriate choice is the one which best meets the objectives of the decision maker. These objectives are specified in the utility function of Equation (2.12).

There are three possible shapes of the utility function. Consider three decision makers. Each is faced with the same set of enterprise choices but one has a preference for risk, the second has an aversion for risk and the third is risk neutral.

Decision maker one prefers risk and has the utility function.

$$
\begin{equation*}
u_{1}(Y)=Y^{2}, 0 \leq Y \leq 10 \tag{2.55}
\end{equation*}
$$

${ }^{25}$ In the literature the feasible set of alternatives is frequently described as a "cigar shaped" convex set. It is true as stated by Stoval (41) that the maximum variance need not occur at the maximum attainable expected income. However, since the upper boundary results from specialization in the most risky activity and since variance is a homogeneous function of second degree it follows that the maximum variance frontier must increase at an increasing rate contrary to the convex set in Stovall's diagram.

Figure 2. 24. The complete set of feasible alternatives.

Decision maker two is a risk averter and has the utility function

$$
\begin{equation*}
u_{2}(Y)=20 Y-Y^{2}, 0 \leq Y \leq 10 \tag{2,56}
\end{equation*}
$$

Decision maker three is risk neutral and has the utility function

$$
\begin{equation*}
u_{3}(Y)=10 Y, 0 \leq Y \leq 10 \tag{2.57}
\end{equation*}
$$

Decision maker one, acting rationally to maximize his expected utility chooses the combination of enterprises represented by point h on Figure 2. 25 where expected income is four and variance is 64. The highest indifference curve attainable by decision maker one is U_{1}° passing through point h. An indifference curve passing through any other point representing a feasible combination would result in lower expected utility and any indifference curve representing greater expected utility can not be achieved. If, however, decision-maker one had a utility function like the one represented by U_{1}^{*} indicating a more cautious gambler the expected utility maximizing point would be point d which is also the maximum expected income combination.

Assertion 12. Decision makers who have a preference for risk will choose either that combination of enterprise representing maximum attainable expected income or a combination lying on the upper boundary of the feasible choices depending upon the intensity of the gambling spirit as reflected by the marginal utility of income.

Decision maker two, acting rationally to maximize his expected utility selects the enterprise combination represented by point g on Figure 2. 26. The highest indifference curve which will be in or on the feasible set is U_{2}° which is tangent at point g. Mathematically, point g can be derived by substituting the variance Equation (2.40) into the expected utility Equation (2.11) to establish Equation (2.58) where expected utility is a function of expected income.

$$
\begin{align*}
& U_{2}=20 E-E^{2}-\frac{72}{50} E^{2} \quad 0 \leq E<\frac{50}{11} \tag{2.58}\\
& U_{2}=20 E-E^{2}-\left(45 E^{2}-39 E+900\right), \frac{50}{11} \leq E \leq 5
\end{align*}
$$

Differentiating (2.58) with respect to E and setting the result equal to zero establishes the expected utility maximizing value of expected income to be 4.0984 with variance $24.1875 .^{26}$ The activity levels are $y_{1}=1.4745$ and $y_{2}=1.3115$.

Assertion 13. Decision makers who are risk averters will choose a combination of activities which results in a level of expected income and variance lying on the lower boundary of the feasible set. The choice will lie farther from the maximum attainable
${ }^{26}$ The second derivative of the expected utility function (2.58) is always negative thus assuring that maximum expected utility is achieved. If the expected utility function for decision maker one had been set up in the same way it would be found that setting the derivative equal to zero does not achieve a maximum because of the shape of his utility function. It becomes necessary to evaluate his expected utility function at the extreme points d and h on Figure 2.24 to determine which yields the greater expected utility.
expected income point (the linear programming solution) as the feeling of aversion to risk, measured by the marginal utility for income becomes more intense.

Decision maker three, acting rationally to maximize his expected utility, selects the enterprise combination represented by point d on Figure 2.27. Being risk neutral, variance is not an argument in the utility function. The choice which maximizes his expected utility is the one which maximizes his expected income and is identical to the optimum solution derived in linear programming.

Assertion 14. Decision makers who are risk neutral will choose that combination of activities which results in the maximum expected income plan as derived by linear programming.

The solution procedure for deriving efficient enterprise combination will not provide the decision maker who prefers risk with the information he requires. For the risk neutral decision maker, not all of the information provided is needed and linear programming yields the required solution more efficiently. However, empirical observation on the behavior of farmers indicates that a significant portion, like decision maker two are concerned with the chances of bankruptcy and failure (36) and act accordingly.

Probability of Loss Function

Decision makers probably do not think of utility functions per se. However they are frequently familiar with probability statements such as those associated with weather forecasting. This suggests a possible substitute for the utility function which involves expressing efficient enterprise alternatives in terms of the probability of losses. The probability of loss function is a set of confidence statements about achieving various levels of income. The task of constructing the confidence bands becomes manageable if one assumes that the income from every efficient plan is normally distributed with mean E and variance V. Then one can use Equation (2.59) to compute, for every level of expected income E, the critical value Y^{*} such that there is probability α that the actual level of income Y will not be less than Y^{*} i. e. $P\left(Y<Y^{*}\right)=\alpha_{0}$

$$
\begin{equation*}
\mathrm{Y}^{*}=\mathrm{E}+\mathrm{N}_{\alpha} \sqrt{\mathrm{V}} \tag{2.59}
\end{equation*}
$$

where Y^{*} is the critical level of income
N_{α} is the factor from the standard normal density function (24 p. 370) taken at the desired probability level α.

Figure 2. 28 displays the confidence statements about achieving actual levels of income for each of the alternative plans available. For example, suppose the plan represented by a level of expected

Figure 2. 25. "Best" choice for risk preferring individual.

Figure 2. 26. "Best" choice for risk averting individuals.

Figure 2. 27. 'Best" choice for risk neutral individual.

Figure 2. 28. Probability of loss function.
income E° was selected. Then there is probability α^{*} such that the income in a specific year will be less than Y^{*}. Because of the symetry properties of the normal density function the confidence band for $\alpha=.5$ is a 45° rayline from the origin. For $\alpha<.5$ the confidence band will have the characteristic shape shown in Figure 2.28. There is an infinite number of such confidence bands for $0<\alpha \leq 5$, however presenting bands for a few selected points like $\alpha=(.01, .05 .10$. 20 . 30, .40 and .50) should be ample to allow the decision maker to choose an acceptable level of expected income and hence an acceptable combination of enterprises.

The individuals age, health and propensity to gamble have a bearing on the ultimate choice he makes. He may also wish to guarantee that income for his family to live on, after discharging fixed cash obligations, does not fall below a specified amount. In the case of indebtedness he may not be the sole decision maker; his banker, too may influence the choice especially where potentially high income plans are also highly variable causing an abrupt downturn of the confidence bands.

The factors of age, health, debt position and the gambling spirit are also the same factors which formed the cocner stones of the utility function. 27

27
The probability of loss function approach will not provide the decision maker who has a preference for risk with the required information since it is derived solely from the lower boundary of the feasible set of plans.
endeavor for predicting decision maker behavior, seems less efficient from the extension advising view-point than to present the decision maker with all the relevant choices and let him select the one which is best on the basis of confidence statements surrounding each plan.

The enterprise selection problem formulated in this chapter has now been solved. To keep the problem and its solution understandable, only two activities were considered, however for the model to have practical relevance it must be able to handle problems of greater dimension. The extension of the model to the more general case will be the concern of the next chapter.

III. THE GENERAL MODEL - ENTERPRISE SELECTION UNDER UNCERTAINTY

AN ALGORITHM TU SOLVE FOR THE SET OF EFFICIENT PLANS

Attention was directed in the previous chapter to the mathematical requirements of the variance minimization problem. A numerical example was used to give a preview of the general method to follow. Although two activities were used for simplicity the model must be expanded to include more than two activities if it is to have relevance for farm decision makers. Consequently the two and three dimensional graphs of Chapter II will be inadequate for explaining the solution of the problem. It will still be possible to interpret the efficiency frontier, the activity equations and the probability of loss function graphically.

Description of the Model

The multi-dimensional risk minimization problem stated in matrix form as:

Min: $y^{\prime} X y=V$
S. T: $\mu^{\prime} y=E$

$$
\begin{aligned}
a y & \leq G \\
y & \geq 0
\end{aligned}
$$

where y is an $n \times l$ vector of the decision variables i. e. activity levels
y^{\prime} is the transpose of y
X is an $n \times n$ variance-covariance matrix of the incomes per unit of activity

V is the variance of total income
μ is an nxl vector of expected incomes per unit of activity and μ^{\prime} its transpose
E is the total expected income
a is an $m \times n$ matrix of resource requirements per unit of activity
G is an $m \times l$ vector of available resources.

The full matrix specification of Equation (3.1) is presented in Equation (3.2).

Solving the Model

Introduction of Slack Variables

Each inequality of Equation (3.1) or (3.2) must be transformed into an equality by introducing disposal or slack activities. The nonnegativity constraints on the real activites are also transformed into equations.

Min:
$\left[y_{1} y_{2} \cdots y_{n}\right]\left[\begin{array}{cccc}\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 n} \\ \sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 n} \\ \cdot & \cdot & & \cdot \\ \cdot & \cdot & & \cdot \\ \cdot & \cdot & \cdots & \sigma_{n}^{2} \\ \sigma_{l n} \sigma_{2 n} & \cdots & \end{array}\right]\left[\begin{array}{c}y_{1} \\ y_{2} \\ \cdot \\ \cdot \\ y^{n}\end{array}\right]=v$
S. T:

$$
\left[\begin{array}{lll}
\mu_{1} \mu_{2} & \cdots & \mu_{\mathrm{n}}
\end{array}\right]\left[\begin{array}{c}
y_{1} \tag{3.2}\\
\mathrm{y}_{2} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{y}_{\mathrm{n}}
\end{array}\right]=E
$$

$$
\begin{gathered}
{\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdots & a_{m n} \\
a_{m 1} & a_{m 2} & \cdots & {\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right] \leq\left[\begin{array}{c}
G_{1} \\
G_{2} \\
y_{2} \\
\cdot \\
\cdot \\
G_{m}
\end{array}\right] \geq\left[\begin{array}{l}
y_{1} \\
\cdot \\
y_{n}
\end{array}\right]} \\
0 \\
\cdot \\
0
\end{array}\right]}
\end{gathered}
$$

Upon transformation, the problem is re-written as:

$$
\begin{gathered}
\text { Min: } y^{\prime} X y=V \\
\text { S. T: } \mu^{\prime} y=E \\
{[a: I]=G} \\
y \geq 0
\end{gathered}
$$

where y is now ($2 \mathrm{n}+\mathrm{m}$) x l
X is now $(2 \mathrm{n}+\mathrm{m}) \times(2 \mathrm{n}+\mathrm{m})$
μ is now ($2 \mathrm{n}+\mathrm{m}$) $\times \mathrm{l}$
a:I is now ($\mathrm{n}+\mathrm{m}$) $\times \mathrm{n}$
G is now $(\mathrm{m}+\mathrm{n}) \times \mathrm{l}$
The expanded form appears as Equation (3.4). The $m+n$ additional elements in y are slack activities. The first m of these account for resource non-use and the remaining n of them account for the non-negativity constraints on real activities. The variancecovariance matrix X is expanded in dimension from n to ($2 \mathrm{n}+\mathrm{m}$) to account for the variances and co-variances of the slack activities which are assumed to be zero. The matrix μ has been increased in length from n to $(2 n+m)$ to account for the expected incomes of the slack activities which are also assumed to be zero. The matrix a is first augmented by an $n x n$ negative identity matrix. These negative coefficients insure that the real activity levels will not fall below their lower limits. The matrix a is again augmented by an $(n+m) x(n+m)$

$$
\begin{align*}
& {\left[\begin{array}{lllll}
\mu_{1} & \cdots & \mu_{n} & 0 & \cdots
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
\cdot \\
\cdot \\
y_{n} \\
y_{n+1} \\
\cdot \\
\cdot \\
\dot{y}_{n+m}
\end{array}\right]=E} \tag{3.4}\\
& {\left[\begin{array}{llll:llll}
a_{11} & a_{12} & \cdots & a_{1 n} & 1 & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & a_{2 n} & 0 & 1 & \cdots & \cdots \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & 0 & 0 & \cdots & 0 \\
\hdashline-1 & 0 & \cdots & 0 & 0 & 0 & \cdots & \cdots \\
0 & -1 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & & & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & -1 & 0 & 0 & \cdots & \cdots
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\vdots \\
y_{n} \\
y_{n+1} \\
y_{n+2} \\
\vdots \\
y_{n+m}
\end{array}\right]=\left[\begin{array}{l}
G_{1} \\
G_{2} \\
\vdots \\
G_{m} \\
-G_{m+1} \\
-G_{m+2} \\
\vdots \\
-G_{m+n}
\end{array}\right]} \\
& {\left[\begin{array}{c}
y_{n+1} \\
\vdots \\
\mathrm{y}_{\mathrm{n}+\mathrm{m}}
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
\vdots \\
0
\end{array}\right]}
\end{align*}
$$

identity matrix to account for the slack variables. The vector G is increased in length from m to $m+n$ with the additional elements explicitly accounting for lower bounds on the real activities which may be zero or positive. ${ }^{28}$ With these amendments to the formulation of Equation (3.1), the problem is in proper form for applying the Lagrangian multiplier technique.

For convenience in notation assume that the n equations required for insuring non-negative values for $y_{1} \cdots y_{n}$ are already present in the matrix a and vector G of Equation (3.1). Then the dimensions of the matrices after introducing slack activites are as follows:

$$
\begin{aligned}
& y \text { is }(n+m) \times 1 \\
& a \text { is } n \times m \\
& \mu \text { is }(n+m) \times 1 \\
& G \text { is } m \times l \\
& X \text { is }(n+m) \times(n+m)
\end{aligned}
$$

The Lagrangian Form and the Kuhn-Tucker Conditions

The Lagrangian form is:

$$
\begin{equation*}
R\left(y, \lambda_{0}, \lambda\right)=y^{\prime} X y-\lambda_{0}\left[E-\mu^{\prime} y\right)-\lambda^{\prime}[G-(a: I) y] \tag{3.5}
\end{equation*}
$$

28 A positive lower bound on a real activity requires that the corresponding element in the vector G be entered as a negative number. The reader may wish to refer to Equation (2.30) for clarification on this point.
where λ_{0} is a scaler representing the Lagrangian multiplier attached to the income constraint
λ is an mxl vector of Lagrangian multipliers attached to the production constraints
and all other variables are as previously defined

The presence of non-negativity constraints on slack variables causes the traditional Lagrangian multiplier technique to be ineffective unless the Kuhn- Tucker conditions are observed. The Kuhn- Tucker theorems state that y^{*} is an optimum solution to the minimization problem of Equation (3.5) if and only if the matrix X is positive definite and the following conditions hold:

$$
\begin{aligned}
& \text { if } y_{k}^{*}=0 \\
& \text { then } \frac{\partial R}{\partial y_{k}}=\sum_{i=1}^{n} 2 r_{i k} \sigma_{i} \sigma_{k} y_{k} y_{i}+\lambda_{0} \mu_{k}+\sum_{j=1}^{m} \lambda_{j} a_{k j}=0, k=1, \cdots, n \\
& \text { if } y_{k}^{*}=0 \\
& \text { then } \frac{\partial R}{\partial y_{k}}=\sum_{i=1}^{n} 2 r_{i k} \sigma_{i} \sigma_{k} y_{i} y_{k}+\lambda_{0} \mu_{k}+\sum_{j=1}^{m} \lambda_{j} a_{k j} \geq \rho, k=1, \cdots, n \\
& \text { if } \lambda_{j}>0 \\
& \text { then } \frac{\partial R}{\partial \lambda j}=\sum_{i=1}^{n} a_{i j} y_{i}-G_{j}=0, j=1, \cdots, m
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } \lambda_{j}=0 \\
& \text { then } \frac{\partial R}{\partial \lambda_{j}}=\sum_{i=1}^{n} a_{i j} y_{i}-G_{j} \leq 0, j=1, \cdots, m \\
& y_{i} \geq 0, i=1, \cdots, n \\
& \lambda_{j} \geq 0, j=1, \cdots, m
\end{aligned}
$$

Partially differentiating $\mathrm{R}\left(\mathrm{y}, \lambda_{0}, \lambda\right)$ with respect to its arguments and setting the derivatives to zero results in the first order conditions as expressed in the matrix of simultaneous linear Equations (3.6). In Equation (3.6), E is a variable and is allowed to take on only those values which satisfy the Kuhn-Tucker condition.

Matrices of the First Order Conditions

Partitions to Facilitate Inversion

Solving the system of equations is routine but formidable even for second generation computers. A modest problem of ten activities and fifty constraints requires inverting a 121×121 matrix. However, because of the position of zeros and its symetry, the matrix can be partitioned to reduce the magnitude of the inversion routine.

To facilitate partitioning, the same row operation of Equation (2.29) is performed to move the vector μ^{\prime} into position $n+1$. To maintain symetry, a column operation is performed to move the vector
μ into column position $n+1$. The result appears as matrix Equation (3, 7). The resulting matrix is then partitioned according to the dashed lines through the matrix system.

For convenience in manipulation let the matrix of Equation (3.7) be abreviated as

$$
\mathrm{A}=\left[\begin{array}{c:c}
\mathrm{Al1} & \mathrm{Al} 2 \tag{3.8}\\
\hdashline \mathrm{~A} 21 & \mathrm{~A} 22
\end{array}\right]
$$

then

$$
A^{-1}=B=\left[\begin{array}{c:c}
\mathrm{B} 11 & \mathrm{~B} 12 \tag{3.9}\\
\hdashline \mathrm{~B} 21 & \mathrm{~B} 22
\end{array}\right]
$$

where

$$
\begin{align*}
& \mathrm{B} 11=\left[\mathrm{A} 11-\mathrm{A} 12 \mathrm{~A} 22^{-1} \mathrm{~A} 21\right]^{-1} \tag{3.10}\\
& \mathrm{~B} 12=-\mathrm{B} 11 \mathrm{~A} 12 \mathrm{~A} 22^{-1} \tag{3.11}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{B} 22=\mathrm{A} 22^{-1}-\mathrm{A} 22^{-1} \mathrm{~B} 12 \tag{3.12}
\end{equation*}
$$

Referring to Equation (3.7) note that A22 is of the form

$$
\mathrm{A} 22=\left[\begin{array}{ll}
0 & \mathrm{I} \tag{3.13}\\
\mathrm{I} & 0
\end{array}\right]
$$

and

$$
\begin{equation*}
\mathrm{A} 22^{-1}=\mathrm{A} 22 \tag{3.14}
\end{equation*}
$$

Further note that Al2 is of the form

$$
\begin{equation*}
\mathrm{Al} 2=[0: a] \tag{3.15}
\end{equation*}
$$

and likewise because of symetry

$$
\text { A21 }=\text { Al } 2^{\prime}=\left[\begin{array}{c}
0 \tag{3,16}\\
--- \\
a^{\prime}
\end{array}\right]
$$

Substituting the facts of Equations (3.13), (3.14), (3.15) and
(3.16) into Equations (3.10), (3.11) and (3.12) results in:

$$
\begin{align*}
& \mathrm{B} 11=\mathrm{Al1}^{-1} \tag{3.17}\\
& \mathrm{~B} 12=-\mathrm{A} 11^{-1}[\mathrm{a}: 0]=[\mathrm{b}: 0] \tag{3.18}\\
& \mathrm{B} 21=\mathrm{B} 12^{\prime}=\left[\begin{array}{c}
\mathrm{b}^{\prime} \\
-1 \\
0
\end{array}\right] \tag{3.19}
\end{align*}
$$

$B 22=\left[\begin{array}{cc}a^{\prime} A_{11}^{-1} a & I \\ I & 0\end{array}\right]=\left[\begin{array}{cc}-a^{\prime} b & I \\ I & 0\end{array}\right]$
and finally

$$
A^{-1}=\left[\begin{array}{ccc}
A l l & 0 & a \tag{3.21}\\
0 & 0 & I \\
a^{\prime} & I & 0
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
A 11^{-1} & b & 0 \\
b^{\prime} & -a^{\prime} b & I \\
0 & I & 0
\end{array}\right]=B
$$

Since only Al1 ${ }^{-1}$ must be found, the matrix to be inverted has been reduced from order $n+2 m+1$ to order $n+1$ and is now of manageable size. The full form of the inverted system of Equation (3.7) is expressed as Equation (3.22). Note the strategic location of zero elements in the resultant vector G. Since the inverted matrix in Equation (3.22) is to be postmultiplied by the vector G, every column

$$
\begin{aligned}
& \text { (3. 23) }
\end{aligned}
$$

corresponding to a zero element in G can be ignored, thus further simplifying the calculations required. The inverted system with the non-relevent elements removed is displayed in matrix Equation (3.23). Carrying out the indicated multiplications of Equation (3.23) yields the linear functions in E for each of the activities and the Lagrangian multipliers of Equation (3.24).

$$
\begin{array}{rlr}
y_{i} & =z_{01} E & i=1, \cdots, n \\
-\lambda_{0} & =-w_{00} E & \tag{3.24}\\
y_{n+j} & =b_{n+j} E+G_{j} & j=1, \cdots, m \\
\lambda_{j} & =0 & j=1, \cdots, m
\end{array}
$$

If the first n elements in column $n+1$ of matrix $B l l$ are positive i. e. $z_{0 i}>0$ for $i=1, \cdots, n$, then all of the real activity levels will be positive for positive values of E. ${ }^{29}$

Limits on Expected Income

The linear Equations (3.24) are presented in the graph of Figure 3.1. The line segments $o c$ and od are representative activity equations and line segments ef and gh represent the levels of slack activities. To insure that the Kuhn- Tucker conditions are not violated one must establish the range over which E is valid. If E exceeds

29
The first n elements will be positive if there is zero correlation between the incomes of the activities. This will be discussed more fully in a later section.

Figure 3.1. The valid range of expected income.
the magnitude of, the slack activity represented by the line ef will be forced negative. This establishes the upper limit on E, denoted SMIN, as being the minimum of the maximum values E can take on. The lower limit on E, denoted SMAX, is established as the maximum of the minimum values E can take on. As E is increased along the expansion path to the point $E=$ SMIN, the level of a real activity increases to the point where a particular resource becomes exhausted. The corresponding slack activity then takes on a level of zero. To proceed into the next basis the level of the slack activity must be maintained at zero to assure complete use of the limiting resource.

Change of Basis

To initiate the next basis let the limiting resource be denoted as the k th resource. The slack activity y_{n+k} representing the k th resource is set at zero. The revised problem is expressed in the Lagrangian form and differentiated to form the matrix of the next basis shown in Equation (3.25). This matrix differs from Equation (3.6) only in that the $(\mathrm{n}+\mathrm{k})$ th row and the $(\mathrm{n}+\mathrm{k})$ th column are removed.

To facilitate solution of the system the vectors μ^{\prime} and a_{k}^{\prime} are moved from position $n+m+1$ and $n+m+k+1$ to position $n+1$ and $n+2$ respectively. This is done also for vectors μ and a_{k} to result in matrix Equation (3.26). The dashed lines show where the partitioning is done for ease of inversion. The sub matrix

60 I

All is now of order $n+2$ as opposed to $n+1$ in Equation (3.7). It is the variance-covariance matrix multiplied by two and bordered by the vectors μ and a_{k}. The same procedure of inversion again is followed and those columns which are to be multiplied by zeros in the vector G can be ignored. The relevant part of the inverted system is displayed in Equation (3.27). The activity equations and the equations for the Lagrangian multipliers which result from performing the indicated multiplication found in Equation (3. 28).

Again the limits of E, SMIN and SMAX, are found by examining each equation in the set (3.28). The lower limit of E is the upper limit on E from the previous basis. Smaller values of E than the lower limit are not permissible since this would cause the Lagrangian multiplier attached to the k th resource to become negative, violating the Kuhn- Tucker conditions. The upper limit of E represents the point where another constraint becomes limiting. To proceed, the slack associated with the limiting resource must be set to zero and a new basis formed.

After several resource constraints have become limiting it becomes considerably more likely that the upper limit of E may be determined by a Lagrangian multiplier being forced to zero. This means that a resource constraint is no longer binding and the slack variable associated with it must be reintroduced into basis. This requires that the row and column in the sub-matrix All which contain

$$
\left[\begin{array}{c}
E \tag{3.27}\\
G_{k} \\
G_{1} \\
\vdots \\
\vdots \\
G_{k-1} \\
G_{k+1} \\
\cdot \\
\cdot \\
G_{m}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
\cdot \\
\vdots \\
y_{n} \\
\lambda_{0} \\
\lambda_{k} \\
\vdots \\
\vdots \\
y_{n+k-1} \\
y_{n+k+1} \\
\cdot \\
\cdot \\
y_{n+m} \\
\lambda_{1} \\
\vdots \\
\dot{\lambda_{m}}
\end{array}\right]
$$

(3. 27)

$$
\begin{array}{rlrl}
y_{i} & =z_{0 i} E+z_{k i} G_{k} & & i=1, n \\
\lambda_{0} & =w_{00} E+w_{0 k} G_{k} & & \\
\lambda_{k} & =w_{0 k} E+w_{k k} G_{k} & & \tag{3.28}\\
y_{n+j} & =b_{n+1, j} E+b_{n+2, j} G_{k}+G_{j} & j=1, \cdots, k-1, k+1, \cdots, m \\
\lambda_{j} & =0 & j=1, \cdots, k-1, k+1, \cdots, m
\end{array}
$$

the coefficients of the limiting resource must be restored to their original places in submatrices Al 2 and A 21 . Once this is done the system can be solved.

Identifying the Maximum Attainable Expected Income

The procedure continues until there is one less limitating constraint than there are real activities. Having more effective constraints than this number causes the sub-matrix All to be singular. Unfortunately this does not mean that the maximum attainable E has been reached. It may be possible to increase E by trading a presently limiting constraint for the one whose slack activity was forced to zero by $E=$ SMIN in the basis. The entering constraint is identified as the one whose slack has gone to zero but there is no direct method to determine the constraint to be removed. Since there is a relatively small number of effective constraints it is possible by trial and error to find the one, if it exists, which allows E to increase. If there are no
constraints that can be released then there is no feasible way that a larger value of E can be attained. At that point the maximum attainable E is reached and the problem is solved.

Complications in Solution of the Model

The Initial Basis

The Zero Correlation Case

In the case of zero correlation between the income of real activities, all real activities will be in the initial basis. The necessary condition for this is that the first n elements of the $(n+1)$ th column of the sub-matrix Bll be positive. That this condition will always be fulfilled when $r_{i j}=0$ for all $i \neq j$ can be verified by observing that

$$
\operatorname{Bll}_{k, n+1}=(-1)^{2(n+k)+1} 2^{n-1} \frac{\mu_{k}}{D} \prod_{i=1}^{n} \sigma_{i}^{2} / \sigma_{k}^{2}>0, k=1, \cdots, n
$$

D is the determinant of All
where

$$
\mathrm{D}=\sum_{\mathrm{k}=1}^{\mathrm{n}}\left[(-1)^{2(\mathrm{n}+\mathrm{k})+1} 2^{\mathrm{n}-1} \mu_{\mathrm{k}}^{2} \prod_{\mathrm{i}=1}^{\mathrm{n}} \sigma_{\mathrm{i}}^{2} / \sigma_{\mathrm{k}}^{2}\right]<0
$$

since

$$
(-1)^{2(\mathrm{n}+\mathrm{k})+1}=-1 \text { and } \mu_{\mathrm{k}}>0
$$

The Non-Zero Correlation Case

In the more usual case where the correlation coefficients are not all zero the conditions for including all of the activities in the initial basis are not necessarily fulfilled. With the two activity case a negatively sloped expansion path results when the coefficient r is sufficiently large. In the two activity model of Chapter II it was easy to identify the offending real activity as being the most risky one and the problem easily remedied by setting the slack variable representing the lower limit constraint of the real activity to zero. In the more general case, the identification of offending activities is not as straight forward. In the present algorithm, a trial and error procedure is employed to find the initial basis when activities are correlated. The procedure is to set all real activities except the least risky one equal to their lower limits. Since the problem is to minimize risk it seems reasonable that the least risky activity is a most likely candidate for the initial basis. The matrix All is inverted and the relevant range for E is determined. If SMIN exceeds SMAX then the initial basis is found and contains only the least risky real activity. It is more likely that the initial basis will include more than one real activity especially if there are several real activities to be considered. If SMAX exceeds SMIN the Kuhn-Tucker conditions are violated because a Lagrangian
multiplier attached to the lower limit constraint of a real activity is forced negative. This requires that the slack activity attached to the lower limit constraint must be introduced into the system thereby allowing the real activity to exceed its lower bound. Once this is done the resulting matrix $A l l$ is inverted again and the quantities SMIN and SMAX computed. If SMAX still exceeds SMIN, the source of the conflict must be located and the proper modifications made. It may be a Lagrangian multiplier that is forced negative or it may be a slack activity that was introduced at a positive level that causes the conflict. In the former case, the particular constraint must be made non-effective by introducing the slack activity while in the latter, the particular constraint must be made effective by removing the slack activity. As soon as a situation is encountered where SMIN exceeds SMAX, a starting basis is established and the solution may proceed.

Positive Lower Limits on Real Activities

If there are positive lower limits on some real activities, it is not necessarily true that SMAX computed from the initial basis is the minimum attainable expected income. This can be demonstrated by
${ }^{30}$ This trial and error method has worked satisfactorily during the testing procedure of the algorithm. However, there is a danger of cycling such that the initial basis will not be found. Should such an event occur one could set the level of E at some level greater than the absolute minimum satisfying the production constraints and solve using a standard quadratic programming technique such as the Frank and Wolfe simplex method.
imposing lower limit constraints on Figure 2.16 as in Figure 3. 2. The initial basis is not changed from what it is was in the numerical example, however, the valid expansion path in this initial basis is he' rather than oe'. Expected income could be reduced by moving from h to o^{\prime} along the lower limit constraint of y_{1}. The entire efficiency frontier in the positive lower limit case is diagrammed as the segment o'he'd in Figure 3.3. To establish the minimum attainable E the same procedure of trading constraints as was done in checking to see if the maximum attainable E had been reached would have to be applied, only in reverse order. Since it is of minor practical relevance to locate the absolute minimum point on the efficiency frontier such procedures will not be pursued further.

The Efficiency Frontier and Activity Equations

Once the various inverses have been computed, the variance function can be expressed in terms of expected income and resource levels by making use of the Lagrangian multiplier equations. If one partitions the sub-matrix Bll further into four sub-matrices and denotes the sub-matrix of order $k+1$, where k is the number of effective constraints, in the southwest corner as W, then W contains all of the information about the Lagrangian multipliers. The equations representing the Lagrangian multiplier is expressed in matrix form as Equation (3.39). The exact differential $d V$ is expressed as

Figure 3. 2. Quadratic model with positive lower limit constraints.

Figure 3. 3. Efficiency frontier with positive lower limit constraints.

$$
\left[\begin{array}{cccc}
w_{00} & w_{01} & \cdots & w_{0 k} \tag{3.39}\\
w_{01} & w_{11} & \cdots & w_{1 k} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
w_{0 k} & w_{1 k} & \cdots & w_{k k}
\end{array}\right]\left[\begin{array}{c}
E \\
G_{1}^{*} \\
\vdots \\
\cdot \\
G_{k}^{*}
\end{array}\right]=\left[\begin{array}{c}
\lambda_{0} \\
\lambda_{1}^{*} \\
\cdot \\
\cdot \\
\cdot{ }_{2}^{*} \\
\lambda_{k}
\end{array}\right]
$$

$$
\left[E G_{1}^{*} \ldots G_{k}^{*}\right]\left[\begin{array}{cccc}
-\frac{1}{2} & 0 & \cdots & \cdot \tag{3.41}\\
0 & -\frac{1}{2} & \cdots & 0 \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
0 & 0 & \cdot & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{cccc}
w_{00} & w_{01} & \cdots & w_{0 k} \\
w_{01} & w_{11} & \cdots & w_{1 k} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
w_{0 k} & w_{1 k} & \cdots & w_{k k}
\end{array}\right]\left[\begin{array}{c}
E \\
G_{1}^{*} \\
\cdot \\
\cdot \\
\cdot \\
G_{k}^{*}
\end{array}\right]=V
$$

${ }^{31}$ The notation G_{1}^{*} means that G_{1}^{*} is an effective production constraint. They are listed in the same order as constraint vector G except that the non-limiting ${ }_{*}$ ones are removed. λ_{1}^{*} is the Lagrangian multiplier attached to $\mathrm{G}_{1}{ }^{*}$.

Equation (3.40) and its solution is given by Equation (3.41). ${ }^{32}$
Equation (3.42) for the efficiency frontier in the variance-expected income plane is determined by substituting the actual numerical values for the production constraint levels into Equation (3.41) and observing the proper limits on E:

$$
\begin{equation*}
V=\alpha_{1} E^{2}+\alpha_{2} E+\alpha_{3} \tag{3.42}
\end{equation*}
$$

where α_{1}, α_{2} and α_{3} are constants similar to $\frac{a}{2}, b G_{k}$ and $\frac{c G_{k}}{2}$ in Equation (2.50).
The complete frontier is described by a series of parabolas all having the general form of Equation (3.42). The parabolas from later bases will be nested in the parabolas of earlier bases or intersect with them depending upon whether the later basis was constructed by addition or deletion of a constraint or whether it was formed by trading one constraint for another.

The level of the ith real activity is expressed as

$$
\begin{equation*}
y_{i}=\beta_{1 i} E+\beta_{2 i} \quad i=1, \cdots, n \tag{3.43}
\end{equation*}
$$

where $\beta_{2 i}$ is a constant resulting from holding all constraint levels fixed
$\beta_{1 i}$ is the slope of the activity equation.
The magnitude of $\beta_{1 i}$ indicates the stability of the solution at a particular point in E. For instance, if $\beta_{l i}$ differs greatly from zero, 32

A more formal interpretation of Lagrangian Multipliers and the solution of the differential equation is given in the appendix.
then small changes in E bring about large changes in y_{i}. As the solution nears the maximum attainable E, high paying, high risk activities begin to dominate the solution precipitating major changes in the efficient plans.

Slack activity levels are represented by

$$
\begin{equation*}
y_{n+j}=\beta_{1, n+j} E+\beta_{2, n+j} \quad j=1, \cdots, m \tag{3.44}
\end{equation*}
$$

in the case where the j th resource is not an effective constraint. In the case where the j th resource is an effective constraint the Lagrangian multiplier equation is

$$
\begin{equation*}
\lambda_{j}=\beta_{1, n+j} E+\beta_{2, n+j} \quad j=1, \cdots, m \tag{3.45}
\end{equation*}
$$

Since slack activities represent unused resources, and because of drastic changes in the composition of the plans as the maximum attainable E is approached there may be major changes in the resource use pattern.

A Summary of the Algorithm

At this point it appears useful to summarize, briefly, the steps involved in solving the variance minimization problem. These steps correspond to the computer program which was developed as part of this research project. The computer program appears in the appendix.

STEP I:

(a) Set up the matrices of the problem as in Equation (3.4).
(b) Move the vector of means into the position $\mathrm{n}+\mathrm{l}$ in the matrix All. See Equation (3.7).
(c) Identify the real activity having the lowest coefficient of variation.
(d) Make all of the lower limit production constraints on the real activities limiting ${ }^{33}$ except the one identified in Step I(c).
(e) Solve the system. 34
(f) Compare SMIN and SMAX. If SMIN is greater than SMAX go to Step II. If SMIN is less than or equal to SMAX go to Step $I(g)$.
(g) There is a conflict among the activities. If the conflict is due to a Lagrangian multiplier being forced to zero go to $I(i)$.
${ }^{33}$ Making the constraint limiting: Suppose the kth production constraint has become exhausted as indicated by a slack variable being forced to zero, then the following row and column operations must be performed to make it a limiting constraint.
(a) strike out the row and column representing the slack activity and its coefficient.
(b) Move the row vector and the column vector containing the production coefficients of the limiting resource from its original position in A2l and Al2 to its proper position in All, as specified in the discussion immediately following Equation (3.25).
${ }^{34}$ Solving the system: This refers to finding the inverse matrix B which is postmultiplied by the vector G to find the parameters of the activity and the Lagrangian multiplier equations and the limits SMIN and SMAX.
(h) Make the indicated constraint a limiting constraint. Go to Step I(e).
(i) Make the indicated constraint non-limiting. 35 Go to Step I(e).

STEP II:
(a) Record the number of the basis and the parameters of the activity equations, Lagrangian multiplier equations and the variance equation.
(b) Identify the constraint of concern at SMIN. If a slack variable has been forced to zero, go to Step II(c). If a Lagrangian multiplier has been forced to zero, make the constraint non-limiting and go to Step $I(e)$.
(c) If there are $\mathrm{n}-2$ or fewer limiting constraints make the constraint identified in Step $I I(b)$ limiting and go to Step $I(e)$. If there are already $n-1$ limiting constraints in the basis go to Step III.

STEP III:
(a) Make the constraint identified in Step II(b) limiting.
${ }^{35}$ Making a constraint non-limiting: Suppose the kth resource is no longer limiting as indicated by a previously positive Lagrangian multiplier being forced to zero. Then the following row and column operations must be performed to make it a non-limiting constraint.
(a) Move the row vector and the column vector containing the production coefficients of the resource from the position in All to its original position in Al 2 and A2l.
(b) Replace the row and column representing the slack variable and its coefficient.
(b) Make the constraint having the smallest Lagrangian multiplier as evaluated at SMIN in Step $\mathrm{II}(\mathrm{b})$ non-limiting.
(c) Solve the system.
(d) Compare SMIN and SMAX. If SMIN is greater than SMAX go to Step II. If SMIN is less than or equal to SMAX go to Step III(e).
(e) If all of the $n-1$ limiting constraints in the basis of Step II(c) have been made non-limiting one by one, and there has been no increase in E go to Step $\operatorname{III}(g)$. If there are still some constraints which have not been tried, go to Step III(f).
(f) Retain the constraint made limiting just prior to Step III(c). Make the constraint, having the next largest Lagrangian multiplier to the one just attempted, non-limiting. Go to Step III(c).
(g) The absolute maximum E has been reached and the problem is solved.

Parameter Estimation

Error in decisions ${ }^{36}$ can result from two sources. No matter how accurate the information about a particular situation, erroneous conclusions can result from faulty reasoning. It has been the purpose of Chapter II and the first part of Chapter III to develop a methodological framework such that this type of error is minimized. However, no matter how accurate, precise or elegant the reasoning framework may be, a second source of error can result from misinformation or faulty data. It is this second source of error upon which the remainder of the chapter is focused.

The confidence that can be placed ultimately on the efficient plans depends in no small way upon the reliability of the estimates of the parameters. Thus it becomes necessary to examine ways by which these numerical values can be found so that they communicate the impressions of the decision-maker about the future prices and yields in an accurate and simple manner.

Resource requirements and resource limits continue to be considered non-stochastic. These are the elements of the matrix a and
${ }^{36}$ Error in this context refers to whether the choice was consistent with the goals and aspirations of the decision maker not whether the desired result was obtained. Suppose an individual having certain fixed debt commitments chooses a plan where the probability of bankruptcy is but 1%. Yet a catastrophe strikes and he loses his farm. This is not an error in decision making but rather the consequence of the random disturbance that has caused his failure.
the vector G of Equation (3.1). Since these elements are identical to those encountered in linear programming, the problems pertaining to their estimation, are not discussed here. The means, variances and covariances of real activities do present new problems and merit the attention of this thesis. The quest for the elements of the matrix X and vector μ begins with a definition of gross margin.

Gross Margin - Definitions and Assumptions

Gross margin is defined as gross income less variable costs, where gross income refers to the physical yield multiplied by the market price. Variable costs, assumed non-stochastic, are direct production costs and do not include overhead or fixed costs. Gross margin used here is synonymous with the term "net price" used by Heady and Candler (20, p. 112). The contribution of the ith activity or enterprise to the total gross margin of the farm is expressed as:

$$
\begin{equation*}
Y_{i}=y_{i} q_{i} p_{i}-y_{i} c_{i}=y_{i}\left(q_{i} p_{i}-c_{i}\right) \tag{3.46}
\end{equation*}
$$

where Y_{i} is the gross margin contributed by the ith activity。
y_{i} is the level of the i th activity,
q_{i} is the per unit yield of the i th activity,
p_{i} is the price per unit of yield of the ith activity,
and $\quad c_{i}$ is the variable cost per unit of the i th activity.

The quantities q_{i} and p_{i} are random variables and shall be assumed stochastically independent. Such an assumption is not inconsistent with that made in perfect competition where the actions of an individual do not affect the market in the aggregate. ${ }^{37}$ Letting:

$$
\begin{equation*}
Z_{i}=q_{i} p_{i} \tag{3.47}
\end{equation*}
$$

where Z_{i} is gross income
and applying the appropriate statistical theorems (24, p. 148) it follows that:

$$
\begin{equation*}
E\left(Z_{i}\right)=E\left(q_{i} p_{i}\right)=E\left(q_{i}\right) E\left(p_{i}\right) \tag{3.48}
\end{equation*}
$$

where $E\left(Z_{i}\right)$ is expected gross income per unit of activity,
$E\left(q_{i}\right)$ is expected yield per unit of activity,
and $\quad E\left(p_{i}\right)$ is expected price per unit of yield.
Furthermore:

$$
\begin{equation*}
V\left(Z_{i}\right)=V\left(q_{i}\right) V\left(p_{i}\right)+V\left(q_{i}\right)\left[E\left(p_{i}\right)\right]^{2}+V\left(p_{i}\right)\left[E\left(q_{i}\right)\right]^{2} \tag{3.49}
\end{equation*}
$$

where $V\left(Z_{i}\right)$ is variance of gross income per unit of activity,
$V\left(q_{i}\right)$ is variance of the yield per unit of activity,
$V\left(p_{i}\right)$ is variance of the price per unit of yield.

37
It is recognized that this may lead to some difficulty in the case where yield is highly dependent upon some variables such as weather and the total supply of the commodity in question comes from a small geographic area. Such a case might indicate a high correlation between an individuals yield and the price he receives. This, however, is thought to be the exception rather than the rule.

Letting:

$$
\begin{equation*}
X_{i}=Z_{i}-c_{i} \tag{3,50}
\end{equation*}
$$

then X_{i} is a random variable representing the gross margin contributed by one unit of the ith enterprise. From this relationship one can define:

$$
\begin{equation*}
\mu_{i}=E\left(X_{i}\right)=E\left(q_{i}\right) E\left(p_{i}\right)-E\left(c_{i}\right) \tag{3.51}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{i}^{2}=\mathrm{V}\left(\mathrm{X}_{\mathrm{i}}\right)=\mathrm{V}\left(\mathrm{Z}_{\mathrm{i}}\right) \tag{3.52}
\end{equation*}
$$

where μ_{i} is expected gross margin contributed by the ith activity and $\quad \sigma_{i}^{2}$ its variance.

Extending these relationships to include the entire farming operation results in equations

$$
\begin{equation*}
\mathrm{E}=\mathrm{E}(\mathrm{Y})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mu_{\mathrm{i}} \mathrm{y}_{\mathrm{i}} \tag{3.53}
\end{equation*}
$$

and

$$
\begin{equation*}
V=V(Y)=\sum_{i=1}^{n} y_{i}^{2} \sigma_{i}^{2}+2 \sum_{i=1}^{n} \sum_{j<1}^{n} y_{i} y_{j} \sigma_{i} \sigma_{i j} r_{i j} . \tag{3.54}
\end{equation*}
$$

All of the results obtained thus far in this section are completely general and do not depend upon the parent distribution of prices, yields or gross margin.

Estimated Expected Value and Variance of Gross Margin

One possible source for estimating gross margin parameters is aggregated time series data of prices and yields. While such series have their place in predicting response in the aggregate, they give a downward bias to variance estimates for farm planning studies because the aggregation process "averages out" variability, (12). Also they carry with them the implied assumption that history will repeat itself. For estimates to be relevant, the data source should be closer to the individual farm situation. Another possible source is historical data recorded by the farmer himself. Unfortunately farmers do not as a rule keep such detailed listings of yields and prices and they may wish to consider engaging in new enterprises about which they could not possibly have recorded the information. They do, however, often have strong subjective notions about the profitability and riskiness of various enterprises. Since the prime purpose is to organize the decision maker's information so that the efficient enterprise combinations can be derived, it is necessary only to have him quantify his impressions about future prospects of each enterprise.

Engineers, (23, p. 229) under similar circumstances of forward planning in critical path analysis are concerned in completing a project in optimum time. To do so requires coordinated scheduling of interrelated sub-activities. Decision makers are asked to provide three
estimates of the completion time of the sub-activities: (a) the most optimistic; (b) the most likely; and (c) the most pessimistic completion time. These estimates specify a 'beta' distribution of the completion time. MacCrimmon and Ryayec (33) in their review of the as sumptions underlying critical path analysis suggest that the triangular distribution results in about the same degree of error ${ }^{38}$ as does the beta distribution but has a much simpler mathematical form. It is not necessary; as required of the beta distribution, to solve for the roots of a cubic equation to obtain the parameters.

The probability density function of the triangular distribtuion is:

$$
\begin{align*}
f(x) & =\frac{2(x-a)}{(m-a)(b-a)}, \quad a \leq x<m \\
& =\frac{2(b-x)}{(b-m)(b-a)}, \quad m \leq x \leq b \tag{3.55}\\
& =0 \quad \text { otherwise }
\end{align*}
$$

where x is the random variable
a and b are the end points
m is the most frequently occuring value.
The triangular density function is graphed in Figure 3. 4. The triangular cumulative frequency distribution is:

38
There are two kinds of errors involved. First the random variable of concern may not be from either a beta or a triangular distribution. Secondly errors may result in estimating the parameters. It is the errors in estimation that are of concern here.

Figure 3.4. The triangular probability distribution function.

Figure 3.5. The triangular cumulative distribution function.

$$
\begin{array}{rlrl}
F(x) & =0 & & x<a \\
& =\frac{(x-a)^{2}}{(m-a)(b-a)} & & a \leq x<m \\
& =1-\frac{(b-x)^{2}}{(b-m)(b-a)} & & \tag{3.56}\\
& & m \leq x \leq b \\
& =1 & & b<x
\end{array}
$$

The cumulative distribution function is graphed in Figure 3.5.
The mean of the triangular distribution is:

$$
\begin{equation*}
\mu=\frac{1}{3}(a+m+b) \tag{3.57}
\end{equation*}
$$

From the partial derivatives

$$
\begin{equation*}
\frac{\partial \mu}{\partial a}, \frac{\partial \mu}{\partial m}, \frac{\partial \mu}{\partial b}>0 \tag{3.58}
\end{equation*}
$$

it can be noted that increases in the estimates of a, m, or b cause increases in the mean.

The variance of the triangular distribution is

$$
\begin{equation*}
\sigma^{2}=\frac{1}{18}\left[(b-a)^{2}-(m-a)(b-m)\right] \tag{3,59}
\end{equation*}
$$

From the partial derivatives

$$
\frac{\partial \sigma^{2}}{\partial a}<0, \frac{\partial \sigma^{2}}{\partial b}>0
$$

and

$$
\begin{align*}
& \frac{\partial \sigma^{2}}{\partial m}>0 \text { for } m>\frac{a+b}{2} \tag{3.60}\\
& \frac{\partial \sigma^{2}}{\partial m}<0 \text { for } m<\frac{a+b}{2}
\end{align*}
$$

it can be noted that increases in a reduce variance, increases in
b increase variance and increases in m will either increase or decrease variance depending whether m lies to the right or the left of the midpoint between a and b.

If a, m, and b are respectively the most pessimistic, most likely and most optimistic estimates for price or yield, then the triangular distribution quantifies, the decision makers impressions about profitability and risk of the enterprises he is considering. The decision maker could be asked to give the three estimates for gross income. However, it is felt that he will, in most cases, give clearer thought to the problem if asked for the price and yield components separately. Once the price and yield estimates are obtained, their corresponding means and variances come directly from Equations (3.57) and (3.59). After an estimate for variable costs has been made, the mean and variance of gross margin follow directly from Equations (3.51) and (3.52).

It is important that the questions concerning the three points of the distribution be asked in the proper time context. For instance,
one would expect different answers, probably leading to a lower variance, if the planning horizon were for next year as opposed to a longer run of say 10 years. This approach will allow the decision maker to subjectively account for factors that exert an influence on the future behavior of gross margin.

The expected values of gross margin establish the elements of the vector μ in Equation (3.1). The variance estimates of gross margin establish the elements on the main diagonal of the matrix X. The estimation of covariances, i. e. the off-diagonal elements of X poses a more difficult problem.

Estimating Covariances

Empirical evidence indicates substantial degrees of correlation between certain farm enterprises. To account for this interdependency, an estimate of the covariance must be made.

Ideally, one should construct a subjective joint probability density function involving gross margins of all enterprises to be considered. Through integration, the mean, variance and covariance would be derived. The covariance term is given by:

$$
\begin{equation*}
\sigma_{i j}=r_{i h} \sigma_{i} \sigma_{j} \tag{3.61}
\end{equation*}
$$

where $\sigma_{i j}$ is the covariance between the ith and j th activities,
$r_{i j}$ is the correlation coefficient between the i th and j th activities,
σ_{i} is the standard deviation of the ith activity,
σ_{j} is the standard deviation of the j th activity,
The expression in Equation (3.61) is general and does not depend upon any specific density function. Since the values σ_{i} and σ_{j} have been established by the triangular distribution one need be concerned only with estimation of the correlation coefficients. ${ }^{39}$

Farmers often think in terms of worst, best and most likely outcomes hence do not have difficulty in estimating the triangular distribution. However they find it virtually impossible to answer questions concerning enterprise interdependency.

If there are n enterprises, then $n(n-1) / 2$ correlation coefficients must be specified. Not only must the correlation coefficients lie between negative and positive unity, they must also form a positive definite matrix. While this matrix could be established through an interview in the simple case of two or even three enterprises, the task becomes impossible for the decision maker as more activities are added.

An alternate method is suggested by Markowitz (34, p. 100). To
${ }^{39}$
${ }^{9}$ The estimates a, m, and b can be thought of as describing a marginal triangular distribution. If one assumes stochastic independence, then the joint distribution is the product of the marginal distributions. Such an assumption implies that the enterprises are uncorrelated.
find the covariance between two securities, s_{i} and s_{j}, the simple linear regression coefficient of each of the security on some common element such as an index of business activity is used resulting in:

$$
\begin{equation*}
\sigma_{i j}=b_{i} b_{j} V(I) \tag{3.62}
\end{equation*}
$$

where $\sigma_{i j}$ is the covariance between s_{i} and s_{j},
I is the common element index,
b_{i} and b_{j} are the simple linear regression coefficients on the index I,
$V(I)$ is the variance of index I.
The diversity of farming enterprises makes it difficult to establish a common element index to be used in estimating the covariance $\sigma_{i j}$ For example, should weather be chosen as the common element one notes that the introduction of irrigation might make a crop uncorrelated with rainfall. It does not necessarily follow that the irrigated crop is then uncorrelated with dryland crops.

A third alternative is to use historical price and yield data. If an individual has such a series for the enterprises he wishes to consider, then it is advisable to use his data. In most cases individual data is non-existant and one is required to resort to aggregate time series. Addedto the variance bias discussed earlier, there is the possibility of time trends in the data. These trends may be the result of technological advances, long run weather patterns, business cycles
and other causes. The longer the series the more likely the presence of trends. Due to the short run nature of the problem, interest here is only in the random elements and it may be necessary to remove the influence of time. This can be done in a number of ways. One method is to determine the regression equation of time on the gross income of each activity by the least squares technique. The deviations of the observed gross incomes from those predicted by the regression equation can be computed. The resulting deviations are interpreted as the random disturbances and the correlation coefficients are computed according to the following formulation:

$$
\begin{equation*}
r_{i j}=\frac{\sum_{t=1}^{T} d_{i t} d_{j t}}{\sqrt{\sum_{t=1}^{T} d_{i t}^{2} \sum_{t=1}^{T} d_{j t}^{2}}} \tag{3.63}
\end{equation*}
$$

where $r_{i j}$ is the coefficient of correlation between the ith and j th enterprise gross incomes,
$d_{i t}$ is the deviation of the ith enterprise in the thear from the regression line of the gross income,
$d_{j t}$ is the deviation of the j th enterprise in the th year from the regression line of the gross income.

Computation of the correlation matrix is described in matrix notation as:

$$
\begin{equation*}
R=Q D^{\prime} D Q \tag{3.64}
\end{equation*}
$$

where R is the $N x N$ correlation matrix
D is the $T x N$ matrix of deviations and D^{\prime} is its transpose,
Q is an NxN diagonal matrix containing on its main diagonal the elements

$$
\sqrt{\sum_{t=1}^{T} d_{i t}^{2}} \quad i=1, \cdots, N
$$

N is the number of enterprises considered,
T is the number of observations on each enterprise.
The matrix R, can be constructed for the region in which the decision maker resides. The correlation matrix for the decision maker, denoted by R^{*} is constructed by transfering the relevant rows and colums representing the enterprises of interest from the regional matrix R to the individual's matrix R^{*}. The matrix X is obtained by premultiplying and postmultiplying R^{*} by a diagonal matrix composed of the standard deviations of each enterprise.

For clarity the matrix in full is :

$$
X=\left[\begin{array}{llll}
\sigma_{1} & & & 0 \tag{3.65}\\
1 & \cdot & & \\
& \cdot & \\
0 & & \cdot & \sigma_{n}
\end{array}\right]\left[\begin{array}{llll}
1 & & \cdot & r_{1 n} \\
\cdot & \cdot & & \cdot \\
\cdot & & \cdot & \cdot \\
\cdot & & \cdot & \cdot \\
r_{1 n} & \cdots & \cdot & 1
\end{array}\right]\left[\begin{array}{llll}
\sigma_{1} & & & 0 \\
& \cdot & & \\
& \cdot & \\
0 & & & \sigma_{n}
\end{array}\right]
$$

where X is the variance-covariance matrix of Equation (3.1), σ_{i} is the standard deviation of the i th activity,
and $\quad \mathrm{n}$ is the number of activities.
The matrix R which results from the product $D^{\prime} D$ is positive semi-definite (1, p. 141) and has rank not exeeding the minimum dimension of D. Since the $n \times n$ matrix X is required to be positive definite there can be no more enterprises considered by an individual than there are observations in the time series used to construct the matrix D.

Usually there are more enterprises in a given region than there are years of data about their gross margins. Advances in technology bring about changes in farming practices from one time period to another thereby shortening the time period for which a complete set of data can be obtained. For example, bush beans were unheard of prior to the introduction of mechanical harvestors about 10 years ago. They are now steadily replacing the pole-type varieties which required hand labor. This will limit the entire set of observations to 10 years. In summary, data requirements of the enterprise selection problem can be met by using the triangular distribution as a subjective measure of the mean and variance of prices and yields. The mean estimates establish the vector μ. The variance estimate are combined with the appropriate rows and column of a regional correlation matrix derived from time series data to construct the matrix X.

IV. EMPIRICAL EXAMPLES AND RESULTS

Algorithm Development--Accuracy and Efficiency Comparisons

The computational procedures discussed earlier were incorporated into a sequence of three computer programs. ${ }^{40}$ The first program, called INPUT, prepares the data for use of the second program, called PROCESS, which solves the problem. ${ }^{41}$ The third program, called OUTPUT, prepares the report in graphs and tables for use by the decision maker. Numerous hypothetical examples were used in the early development stage with the chief role played by a problem, (see Case 1, Table 4.1), adapted from the Oregon Farm Management Game (39). To verify the accuracy of results obtained by the algorithm under development, a comparison was made to a standard quadratic programming routine. The composition of plans obtained at the selected points on the efficiency frontier were identical for both methods. Later in the development a problem reported by Carter and Dean (7), (see Case 2 in Table 4.1), was used as a further check on accuracy and to obtain a comparis on officiency. The solution values were identical.
${ }^{40}$ The programs were written in Fortran IV and run on a Control Data Corporation 3300 computer under OS3, a time sharing Executive System at Oregon State University.

41
The program PROCESS will accommodate up to 10 real activities and 99 production constraints.

Table 4.1. Problem dimensions and computer costs.

	Test Problems			Willamette Valley Farms			
	Case One	Case Two	Case Three	Case Four	Case Five	$\begin{aligned} & \text { Case } \\ & \text { Six } \end{aligned}$	Case Seven
No. of Activities	7	7	8	9	10	9	4
Total Constraints	23	10	15	48	46	43	37
land	15	7	11	20	22	19	9
labor	8	0	4	12	12	12	12
irrigation water	0	0	0	4	0	0	4
capital	0	0	0	12	12	12	12
Total Inversions	21	---	26	39	22	26	12
valid bases	12	12	11	19	9	16	7
inversions for initial basis	0	---	8	9	4	2	2
Total Computer time (seconds)	94. 804	96.672	157.963	235.576	187. 300	219.475	79.21
input	---	---	6.662	6.035	10.121	9. 739	7.67
process	---	---	62.541	176.985	108. 217	117.394	23.62
output	---	---	88.800	52.556	68.962	92.342	48.92
Total Computer Cost (dollars)	10.66	11.65	21.51	24. 75	20.40	23.64	12. 78
cost of report only		---	11.62	8.82	9.98	12.42	8.29

Carter and Dean obtained only a number of points on the frontier in just under three minutes of computing time. The algorithm developed here accomplished the task in about half the time (95 seconds). Furthermore, the exact algebraic equation of the entire frontier was obtained. Consequently if one wishes to do more extensive utility analysis requiring the entire frontier, it is not necessary to use some regression. tehenique as an approximation (17, p. 200). A final check on accuracy was made against results obtained by How and Hazell (26), (see Case 3 in Table 4.1). The algorithm they used also specified only a finite number of points on the frontier and seemed to violate a number of the production constraints.

In each of the three cases tested, the results obtained by the algorithm under development were identical or superior to those obtained by the other methods. This made it possible to attempt the solution of real world management problems submitted by farmers in the Willamette Valley of Oregon.

Tests of Applicability - Four Case Studies

> Problem Specifications and Data Collection

Four farm operators submitted crop enterprise selection problems for solution.

Case 4 was submitted by a Yamhill County, Oregon partnership interested in determining the advisability of renting
additional land and deciding upon the optimal combination of crops should the renting prove advantageous.

Case 5 was submitted by a Polk County, Oregon farmer interested in the optimum combination of irrigated and dryland crops.

Case 6 was submitted by a Polk County, Oregon farmer interested in the optimum combination of dryland crops.

Case 7 was submitted by the Agricultural Representative of a bank on behalf of a Marion County, Oregon farmer having similar interest to those expressed in Cases 5 and 6.

Since these were crop farms, located in the Willamette Valley using similar cultural practices, the production coefficients were also similar. Cerealgrains, grass seeds, legume seeds and more intensive crops like beans and strawberries were considered. The basic constraints were identical for all farms, and included four categories; land, labor, irrigation water and operating capital. The land constraint consisted of two classes; irrigated and dry land. In addition there was a maximum and a minimum acreage limit on each crop. Labor coefficients and constraints were specified by month. Irrigation water requirements and constraints were established for the critical season beginning with May and ending with September. Total annual operating costs per acre for each crop were obtained separately for machinery and equipment operation, fertilizer, spray and dust, seed,
supplies and miscellaneous cash costs. These costs were then allocated to the month in which they normally occur to establish the operating capital requirements. The percentage of the revenue to be received in each month was recorded to establish a cumulative cash flow statement per acre for each crop. As an example of this procedure, suppose a particular crop required an expenditure of five dollars in January, \$15.00 in February, \$10.00 in March, \$25.00 in April and $\$ 35.00$ in October, and the produce was sold in November for $\$ 150.00$. The resulting cumulative cash flow statement for this example appears as Table 4. 2. The cumulative cash flow concept is incorporated into the model by addition of a column vector in the matrix a. A maximum limit on cumulative operating capital permitted for the farm throughout the operating year was imposed.

While production constraints in either the quadratic or linear programming models are the same, there is a difference in formulating the objective function. The objective function in this quadratic programming was to minimize variance. Hence, one must also obtain variance and covariance estimates in addition to the normal linear programming requirements. Farmers frequently think in terms of an interval rather than a point estimate (47) when asked about prices and yields. If one interprets this interval to be the interval $a b$ in the triangular distribution of Figure 3.4, and asks the additional question about the most likely yield or price, then estimates for mean and

Table 4. 2. Monthly cash flow statement.
$\left.\begin{array}{lcc}\hline \text { Month } & \begin{array}{c}\text { Monthly } \\ \text { Cash } \\ \text { Flow }\end{array} & \begin{array}{c}\text { Cumulative } \\ \text { Cash }\end{array} \\ \text { Flow }\end{array}\right]$
${ }^{42}$ Positive numbers indicate an outflow of cash while negative numbers indicate an inflow.
${ }^{43}$ Positive numbers indicate that there has been a cumulative net outflow while negative numbers indicate a cumulative net inflow.
variance are established. Since farmers usually go through such a thought process anyway, the only additional requirement is to record their pessimistic, optimistic and most likely estimates of price and yield. Thus data collection is no more difficult for the quadratic model than for linear programming.

Production coefficients, price and yield data and resource constraint levels were obtained for each of the farms using the forms appearing in the appendix. A regional correlation matrix for the Willamette Valley was prepared from a 10 year aggregate time series on 46 different crop enterprises. 44

Report and Interpretation of Results

The program OUTPUT was designed to provide a report which could be interpreted by farm decision makers. The report for Case 4 follows. Although this represents a real farm, the names Smith and Jones are ficticious.

44
The data was obtained from the files of D. L. Rassmisson and H. G. Ottaway, County Extension Agents, Marion County, Salem, Oregon. The regional correlation matrix was computed with the program CORRELATE, a copy of which appears in the Appendix.

```
MR. SMITH AND JONES
    S:MFWHERE ORE.
OFAR MR. SMITH AND JONES
```

THF FOLLEWTNG REPCRT GIVES A DFTAILED DESCRIPTION GF EFFTOIENT PLANS FOR YOUR FARM RUSINESS. THE PLANS ARE ARRANGFD IN GRDER GF INCREASTNG PRGFiTABILITY. PROFITARILITY IS MEASURED RY EXPECTFD GROSS MARGIN. GROSS MARGIN IS THE DOLLAR VAL.UE GF PRODUCTION AFTER THE VARIARLE COSTS SUCH AS FUEL;FFRTILIZER, REPAIRS, FTC. HAVE AEEN DEDUCTED. THE TFRM GFXPEC̈TED - VALUE IS USEN TE INDTCATE THAT WE ARE DEALING WITH THE GAVERAGEm YEAR. NOTHING IS SAID AROUT THE GRESS MARGIN FSR A SPFCIFIC YEAR. AS THE EXPECTEO GRSSS MARGIN GR PAYOFF OF A PLAN INCREASES, SO ПAES ITS RİSKINESS. HOWEVFR, THE PLANS ARE SO CONSTRUCTED THAT AT A SPECIFIC LFVEL GF EXPECTED GROSS MARGIN: THE RISK IS AS SMALL AS TT CAN RE. THIS IS WHY THE PLANS ARE SAID TO BE EFFICIENT. AS EXPECTED GROSS MARGIN IS INCREASED. THE GFNERAL NATURE OF THE PLAN_MUST CHANGE, FGR EXAMPLE: THE, OWER PAYINGg LFSS RISKY CROPS BECEME REPLACED BY HIGHER PAYING, BITT MERE RTEKY ONES. AS THE COMPOSITICN OF THE PLAN CHANGES. SOME RFSOURCES' FER EXAMOLF LARGR GR GPERATING CAPITAL MÄY BECCME LIMITING. WHEN THIS HADPENS A NEW PLAN TS MADE. NEW PLANS ARE CONSTRUCTED IJNTIL THFRE IS NE WAY IN WHICH EXPFËTFD GROSS MARGIN CAN BF INCREASED FURTHER. IN GRDER TO DETERMINF ALL EFFICIENT PIANS A STEP BY STEP PRACEDURE IS FOLLOWED. THE COMPOSITION OF THE PLAN AND ITS PAYOFF AND RISKINESS IS GIVEN AT THE END OF EACH STEP. WHILE EACH GF THE PLANS IS EFFICIENT IT REMAINS FER YOU TE DECTIDE WHICH ONE IS REST. SELECT THAT PLAN WHICH FER YEU HÄS THE MOST ACCEPTABLE COMRINATION GF EXPFCTED GRESS MARGIN AND RISK.

THE REPGRË IS DIVIDED INTS A NUMBER GF DARṪS.

PART GNF İS A SUMMARY OF AĽL THE STFPS. THE PLAN AS IT EX TSTS AT THE END OF EACH STEP IS GIVEN. THIS SUMMARY SHOWS THE EXPECTTED GROSS MARGYN, THE RISKINESS AND THE NUMAER OF ACRES IN EAC̈H CROXP. YOU WTLL ALSC FIND A STATFMFNT SHOWING THE AMOUNT OF RESOURCES USED AND THE VÄIUE AF ONE MORE UNIT OF PHF RESCIJRCE.

PART TWO İS DESIGNED TO HFLP YSU CHEOSE YOUR BEST PLAN. REMFMBER THAT EXPECTED GROSS MARGIN IS A LONG RUN AVERAGE CONCFPT. AND SAYS NOTHTNG DIRECTLY ABCUT NEXT YEAR. IN THIS SECTION YOU ARE GIVEN THE PROBABILITIES GR PHANCES THAT NEXT YFAR, GRQSS MARGIN WILL FXCEEN̄ A SPECIFIED AMOIJNT. THIS STATEMENT IS MADE FER EACH OF THE PLANS OF PART ONE.

PART THREE GIVES THE COMPLETE SPECIFICATION FROM WHICH ANY DESSIBLE PLAN CAN BE CÄLCULATEED. THE PLANS, ANत̄ THETR RESPECFIVE PAYOFFS ANO RYSKINESS ARE GIVEN AS EQUATIONS. TO DETERMINE ANY PLAN YOUI NEFO ONLY PIUG THE PROPER VALUES INTS THE EOUATIIONS.

PÄRT FOUR PRESENTS THE ENT̄IRE ṠET SF EFFICIENT PLANS IN GOAPHIC FERM. IT ALLOWS YOU TO KNOW. AT A GLANCE, F̈HE CHARACTERT゙STICS OF EACH POSEIGLE EFFICIENT PLAN.
IT IS HEPED THAT THE FOLLOWING INFORMATTGN WILL BE GF VALIE TO YOU AS YOU PLAN YOUR FUTURE FARMINO ACTIVȲTIES.
yours truly.

PART ONE
SUMMARY CF EFEICIENT FARM PLANS
A statement ef the levels of activities and the experten agmoff

1 Name of	UNIT!	PLAN	PLAN	$!$	PLAN		Dind 4	1					
CRep				!	DaN	!		1	Lan 5	Plan	PLAN 7 1	Plan a	PLAN
TWHEAT	${ }_{\text {ac }} \mathrm{I}$	29.00	29.00	1	29.00	$\frac{1}{1}$	29.00	!	29.00 !	29.00	29.00	20.00	
IREn Clover	${ }_{\text {AC }}$	-0.0n	- 50.00	1	29.00 -0.00	1	-0.00	I	29,00	29.00 -0.00	29.001 -0.001	29.00 -0.00	29.00 -0.00
iALFALFA DRy	${ }_{\text {a }}{ }^{\text {c }}$	37.65 15.56	5 5 .00	,	50.00	1	44.23	1	40.10 1	30.36	77.44	01	
icern silage	${ }_{\text {ac }} 1$	-0.00	23.23	!	27.04	+	40.46	1	50.00 '	50.00	50.00	50.00 :	50.01
	${ }^{\text {AC }}$ I	so.on	50.00	1	50.00	1	50.00	1	9.901	19.64	22.56	50.00	50.80
IERCH GRASS	${ }^{\text {AC }}$	-0.0n	-0.00	1	-0.00	1	S0.00	1	52.25	101.71	141.11	143.921	144.0n
T:IAIPY VETCH	${ }^{A C}$	33.17	5.90	1	8.86	,	11.69	I	13.44	9.56	5.45 4.44	3.51 !	4.47 2.58
tPinte beans	AC I	50.00	5 C .00	I	50.00	,	50.00	i	50.00	59.00	50.00 ${ }^{4.4}$		Sn.8n
1 Exp or marg	ssi	18718,35	20553.81	I		1		$\frac{1}{1}$					
1 Sto nev	551	1041.04	1130.69	1	1146.58	1	123日.88	\mathfrak{l}	23502.66	$\begin{array}{r}77318.83 \\ \hline 592.03\end{array}$	30124,56 !	32856.55	328

part one continued
a statement of the amount of each rescurce used and the expfcted payeff

I NAME of	UNITI	Plan	1	PL		PLAN 3											
I Rescurce			1		1		1	plan	1	PLAN	1	Plan	1	PLAN		PLaN	lan
IJan lab			1				1		I		$\stackrel{1}{1}$!		
IPEA LAA	HR I		1	0				2.02	I		I	6.88	I	13.34	I	21.011	21.97
Imarch lab	HR I	13.23	1	13.69		13.79		16.09	1	3.66 18.16		6.88 11.07	!	P.90	+	17.50	17.50
1APRIL LAB	HR!	20.00	!	20.00	I	20.00		20.00		180.16	I	31.07 40.69	1	40.01		49.49	49.90
			1		!		1				1		1			57.57	57.60
f June lab	HR I	188.22	1	208.23	I	212.04	1	226.04		236.22	1	242.14	i	246.37	!	249.39	249.4
i july lab	HR I	181080 184.75	1	160.79	I	160.89	$\frac{1}{1}$	162.32		163.32	1	164.88	!	164.96	,	170.36	170.95
lave lab	HR i	226.24	1	2560.4 259	1	230.50 261.53	1	238.28 764.96		243.54	!	229.91	i	232.78	!	20 n .59	201.47
isept lab	HR !	99.49	1	109.74	i	110.32		117.20		268.96		295.78	I	323.75		302.n0	303.34
lect					1		1			121.97	$\frac{1}{1}$					152.14	151.51
incu lab	HR I	24.62 57.40	I	29.46	I	30.42	1	34.90		37.94	1	38.04	I	36.25	1	42.39	. 86
joec lab	HR I		1	2.90	1	37.40 2.90	1	61.73 4.92		65.73	I		+	110.76	1	132.47	132.30
tmay mater	${ }^{\text {AI }}$	2000.00	I	20n.00		200.00	1	200.00		200.00	I	200.00	?	10.80 20000		2 C .401	20.40
1 IJUNE WATER	AI!	350.61	?	400.00	I	400.00		400.00		400.00	!	400.00		200.00 000.00		200.00	200.06
1 JULY WAPER	al 1	35	1		$\frac{1}{1}$!				1		I		i		
savo water	AI 1	350.61	1	400.00		400.00		400.00		400.00	I	400.00	!	400.00	!	400.00	400.00
iJan cap	ss 1		1		1	-00.00	1	-285.06		400.00 -488.94	I	400.00 -970.39		- $\begin{array}{r}400.00 \\ -1432.58\end{array}$	1	400.00	$400.0 n$
1 MEB CAP	35		!		I		1	- 570.12		-977.88	1	-1940.78		-1432.58 -2546.98		-7674.94	-2731. ${ }_{\text {- }}$
ImARCH CAP	3s !	1029.09	1	1077.87	1	1087.83	1	>61.80		-303.44	1	-1167.15		-1331.75		-5310.26	-5201.27 -5350.87
lapril cap	ss 1	1474.	I	1522.87	$\frac{1}{1}$		$\frac{1}{1}$!		1		!		
1 mar cap	351	1378.98	1	548.06		+393.93	1	-504.58		-1098.46	I	-261.90		-75.89			40
IJUNE CAP	Ss	1610.54	,	827.19	1	677.36		-206.27		-1990.69	I	-639.18	I	-201.22 71.58		-1752.19	-1792.06
inuly cap laug cap	381 $\$ 81$	-309.29 -4416.30	1	-1821.54 -6390.38	1	-2076.90	1	-3076.21		-3742.33	I	-2885,70		-2315.05		-1472.31	-1516.82
		-4416.39						1945.88		-8835.45		-9652.38		-10420.6A		-10360.12	-10367.98
ISEPT CAP	551	-20053.57	1	-22164.05	1	-22496.51	1	-35583.29		-24478.24						-29211. ${ }^{4}$	
INCT CAP	58	-19117.82	1	-21052.16	1	-21350.6A	1	-23360.67		-23202.68		-23979.28		-29389.90		-29211.14	-29186.1
IDEC CAP	S5	-18965.34	1	-20899.68	I	-21108.20	1	-22486.90		-23525.77	$\underline{1}$	-76718.69	1	-29026.99	!	-3n384.99	-26247.07
lory land	${ }_{4}$	97.73	!	-20527.74 110.13	!	-20807.19	:	-72342.71 131.15		-23558.40		-27281.50		-30076.86		-32810.77	-32838.75
					1		!	131.15		146.69	$\frac{1}{1}$	190.27		230.00		230.00	230.00
imax wht	AC I AC	87.65	!	100.00 29000	$\frac{1}{1}$	100.00	1	100.00		100.00	I	100.00	i	100.00	1	100.00 1	100.00
1 max ro clov	${ }_{\text {AC }} \mathrm{I}$	-0.0̄̆	1		!	29.00		29.00 -0.00		29.00		29.00		29.00	!	29.001	29.00
max alf IRg	${ }_{\text {AC }}$	37.65	1	50.00	I	50.00	1	44.23		40.10	I		I	\$9.00			-0.nn
Imax ALF DRY	$A_{\text {a }}$ I	15.56	!	23.23	1	27.04	1	40.46		50.00	I	50.00		50.00		50.00	50.00
imax corn	${ }_{\text {ac }}$!	0	$\frac{1}{1}$		$\frac{1}{1}$	5.77							I		
Pmax mLy	AC	50.00		50.00								19.64		22.56		50.001	50.00
1 max TR OR	${ }_{\text {AC }}$:				I	-0.00	1			52.25	1	101. ${ }^{19}$		141.11	I	143.921	144.017
Imax VETCH	${ }_{\text {AC }}$	$3 \cdot 17$		7.90	I	8.86		11.69		13.44			I			3.51 \%	4.47
! max beans	${ }_{\text {AC }}^{1}$	50.00		50.00	1	50.00	i	50.00		50.00		59.50	I	50.44		5 5.58	50.00
IMIN WHT	${ }^{\text {AC }}$	-29.00		-29.00	I	-29.00	i	-29.00		-29.00	I	-29.00	$\frac{1}{1}$		1		
IMIN ROCLOV	${ }_{\text {AC }}^{\text {AC }}$?		I		$!$	50.0	1			-29.00	I	-29.00	!	-29.00			-29.00
imin mlf doy	ac !		I	50.00 23.23		50.00		44.23		40.10		30.36	$!$	P7.44			
imin corn	${ }_{\text {AC }} 1$		1				1	40.46 5.77		50.00 9.90	I	50.00 19.64	$!$	50.00 32.50	!	50.001	50.00
tmin bly	Ac $\frac{1}{1}$		1		1		!										50.n0
IMIN OR GR	${ }_{\text {ac }}$	-50.00		-50.00		50.00	I	-50.00		-47.75		1.71	1	41.11	i	43.921	44.00
IMIN VETCH	${ }_{A C} \mathrm{i}$	3.17	1	. 90			I				I		$!$	5.45		3.51	4.47
Imin beans	$A^{\text {C }}$	50.00		50.00		80.00		150.69		13.44 50.00		9.56 50.00	I	5.46		9.57	2.5? I
I Exp or marg	ssi		I		1		!						$\frac{1}{1}$		i	5 n .10	50, 0 n
1 STO DEV	551	1041.04		1130.69		20833.07 1146.52	!	22367.28		23582.66	I	21318,83	I	30174.56	「	3>856.55	32884.38
				1		1146.52		$173 \mathrm{~A} \cdot 88$		1315.69		1592.03		1879.00		2110.081	3113.58

part one continued

a stattment of the value of an additional unit of rescurce

1 name or	UNITI	PLAN	-	PLAN 2	I	Plan		PIAN 4										
IJAN LAB			1		1	0		-	I	PLAN ${ }^{5}$	I	PLAN ${ }^{6}$	I	Plan ${ }^{7}$		PLAN ${ }_{0}$	1	plan of
Imarch lab	HR 1	n	I				1		1		1		i				I	0
lapril lab	HR I		1		i	0	1	0			1		I				1	0
! may Lab	HR I		I										I		!			\bigcirc
1 fune lab			1		I		1	0	I	0	1	0	I		i		I	01
I July lar	HR 1		1		I				I		1	0	i		1		$\frac{1}{1}$	0
lave Lab	HR		1		1	0	1		!		1		I		$!$		1	n
lSEPT lab	HR		I		1								I				I	$\bigcirc 1$
lect lab	HR I		I	0	t	0	1	0		0		0	I	0				0
inov lab	HR I		1		I		1		I		I		i		,		1	
TDEC LAB	HR I		I		I	0	1		I	\bigcirc	!		!		$!$	0	1	01
TMAY WATER	${ }^{\text {AI I }}$		1		1	0			1	0			I	0	!		1	01
I June mater	A1!		1		1	0	1		1	0	I		1	0			I	01
	AI I		1		1	0		0	1	0	I	0						\bigcirc
taug mater	41 I		1	0	1	0	$\frac{1}{1}$		I		!		I		it		1	
IJAN CAP	Ss 1	0	1			0		0		\bigcirc		0		0			1	01
IFER CAP	ss			0	I	0	I	\bigcirc	I	0		0		0			1	0
	${ }_{58} 51$	n	1	\bigcirc	I	0	I	0	1	0	I	\bigcirc	1	0				$\bigcirc 1$
	I			0		0		0	1	0		0						1
tmay cap	Ss 1		1	0	I	0	I	0	I		I		I		?		1	
I JUNE CAP	351	0	I	0		0			I		;	0	1					\bigcirc
lave cap	35 351 85		1	0	I	0	1	0	1	$\stackrel{0}{0}$	I	0	I					1
ISEPt cap	3s I		I	0		\bigcirc	1	0	1	0	!	0	!					\bigcirc
lect cap	ss $\frac{1}{1}$		I		I		I		1				1					01
inov cap	ss 1		1	0		0			I	0	,	0	I					01
IDEC CAP	\$5 I		i	0		0	1		$\frac{1}{1}$	\bigcirc	1	0	!		$!$		1	0
inry land	${ }_{\text {AC }}{ }_{\text {A }} \mathrm{I}$		1	0			1		I				1				I	$23{ }^{1}$
ITRg LaNo	${ }^{\text {AC }}$			0		3.63	I	8.54	I	10.3i		18.95		21.91		17.45 47.86		23.35 66.97
Tmax mat	${ }^{\text {ac }}$ I	0	1	0	I		1	0	$\frac{1}{1}$		I	18.95	!	21.91		47.86		66.27 I
max ro clev	${ }^{\text {ac }}$ I			0							1		1		!			-
	${ }_{\text {ac }}^{\text {AC }}$	0	1	0		0	1	0					1		!			C I
max copn	$\underset{\mathrm{ac}}{\mathrm{ac}} \mathrm{l}$	0		0		\bigcirc	I	0	1		I	21.29		25.83				24.031
				0	1		I	0	1		I	0	!	0	!	\%. 26		24.0
$\operatorname{TMax}_{\text {Max }}$ bly	Ac I	0		0	!	0	I	0	1		$\frac{1}{1}$		$\frac{1}{1}$!		I	
[max OR GR	AC AC I I	0	I	\bigcirc		n	1	0	1	0 0	1	0	1		I	0		
max brans	${ }^{4} \mathrm{C}$		I	$8 \mathrm{An.44}$						$102.8{ }^{\circ}$!			0		0
MIN WHT	${ }^{\text {AC }}$ I	198.72	I	13 n .45		IIR.56		14.088 10.40		102.81 104.95		127.50 49.89	1	131.90 76.55	?	97.05	+	78.50
MIN RD Clev	${ }^{\text {ac }}$ I	797.75	I	4:门.33		400.36								36.55 136.29		${ }^{\text {a }}$, 66		n !
MIN ALF IRg	${ }_{A C}^{A C}$	0		0		-		76601		338.69			1	136.2A		11 n .97		98.45
min corn	${ }_{\text {ac }} \mathrm{I}$	76.37	1	11.23			I	0		0		0	I		T	0		12.4A I
min mly	${ }^{\text {AC }} \mathrm{I}$	5.90		3.92		-0.00					!	8	!		1	0		
imin or or	${ }_{\text {ac }}$	167.07	$\frac{1}{1}$!		!	0		
min vetch	${ }_{\text {ac }} \mathrm{C}$		1	73.42		64.18		57.65		51.49								
imin means	${ }^{4} \mathrm{C}$			-			I			0	!							
exp or marg			,							0				0		0		1
Sto Dev	SSi	10718.34	I	20553.81	1	20833.07	1	22367.28	1	23582.66								1
		1041.04		1130.69		1146.52		123R.am		1315.69		1592.03		1879.00	!	$3285 \% .55$ 2110^{2}		32884.78

part one continued

a statement of the levels of activitites ant the expected payoff

1 NaME cra	UNITI	PLAN 10	PLAN İ	PLAN 1?	1	PI_AN 19	I	PLAN 14	1	Plan is	1	PLAN 16		PLAN 17	Plan 18	
				-	1		1		$!$	+	it	Lan 15		PLaN 17	Plan is	PLAN 19
TMHEAT	${ }^{A C}$	54.61	62.03	67.00	!	67.00	i	67.00	I	67.00	$\stackrel{t}{1}$	67.00		67.00		
tren elever	${ }^{A C}$	-0.0n	- 0.00	-0.00	1	-0.00	1	-0.00	I	-0.00	1	28,72	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	50.00	67.00 50.00	67.00 10000
falfalia irg	${ }_{\text {AC }} \mathrm{AC}$	50.00	50.00	.00	I	-0.00	I	50.00	I	. 0.00	!	28.72 .00	$!$	50.00 .00	50.00	100.00 .00
tegrn silage	${ }_{\text {AC }}$	50.00 50.00	50.00 50.00	50.00 50.00	I	50.00 50.00	1	50.00	!	50.00	I	50.00		50.00	13.00	13.00
trapley	${ }_{\text {AC }} \mathrm{I}$	124.24	117.97	113.00	1	50.60 105.65	1	50.00 105.65	$!$	50.00	$!$	50.00		50.00	50.00	
ICREH GRASS	${ }^{\text {AC I }}$ I	1.15	. 00	-0.00	I	77.35	I	105.35 7.35	\uparrow	32.49	i	50.0n		5n.00	50.00 100.00	50.00
thairy vetch	${ }^{\text {AC I }}$	-on	-0.00	-0.00	I	-0.00	t	-0.00	$\underset{i}{T}$	-0.00	i	-0.00		63.00	100.00 $-n .00$	100.00
IPINTO REANS	${ }^{\text {AC }}$ I	50.00	50.00	50.00	1	50.00	I	50.00	1	50.00	!	${ }_{31} 1.28$		-0.00	-n.0n	-0.00
I Exp or marg	$5{ }_{5}{ }^{\text {P }}$	34466.43	34913.34		I		I		I		!					-0n
I Sto oev	351	2357.07	2435, 77	35225.18 2493.01	1	1534	1	35344.90 2526.17	1	35722.39	1	37457.37		38350.68	38895.65	38974.5
												490.47		5576.16	6341 . 00	9449.16

part one centinued

a statement of the ameint of each resolirce used and the exercted pavoff

I NAME OF	UNIT!	Plan 10	1	PLAN il	PLAN 12	DIAN 13	1	PLAN 14	PLAN 15	1	PLAN 16				
t Jan lab			!				,		PaN 15	!	PLAN 16	!	1		Plan 19
$\begin{aligned} & \text { IJAN LAB } \\ & \text { IFER LAR } \end{aligned}$	HR I	18.65 17.50	!	17.50	$\underline{17.50 ~}$	24.85	1	24.85	48.01	i	90.50	t	8 n 50 I		
IMARCH Lat	HR I	479.97	+	17.50 47.30	17.501	17.50	I	17.50	17.50	I	17.50	1	$80.50 ~$ $17.50 ~$	117.501 17.501	100.00
1APRIL LAB	HR I	49.70	i	47.19	46.80 45.20	46.07 42.76		46.07 42.26	43.75	!	40.50	「	$4 \mathrm{4n} .50 \mathrm{I}$	44.90	
imay lab	HR I		$!$. 00	1	20.0n	!	20.00 :	20.00	26.70 20.00
IJune Lab		247.48 170.00	I	246.80	246.30	245.57	I	245.57	243.25	I	194.05	!	160.00	123.00	
iJuly lab	HR 1	197.3n	I	170.00	170.00	170.00	I	170.00	170.00	t	164.26	I	160.00	123.00	118.00
jaug lab	HR I	305.77	I	306.00	190.00 306.00	P04.69 $\mathbf{3 0 4 . 5 3}$		204.69 304	251.02	I	272.9?	1	241.00 1	$2 \mathrm{ES.4n} \mathrm{I}$	150.00 210.40
ISEPT LAE	HR I	150.0 on	1	150.00	150.00	150.00		304.53 150.00	299.90 150.00	!	$250.3 ? ~$ 150	I	218.40 I	214.70	110.40 139090
Ioct las	HR		$\frac{1}{1}$	59.72			I			!	150.00		150.00 I	150.00	150.00
inov lab	HR	139.94	1	14.9	142.90			43	65.7	1	11.87	1	$74.00 \frac{1}{1}$	74.00	
idec lam	HR	22.9 M	1	141.97 23.70	142.90 24.20	139.96 24.20	I	139.96 I	130.70	!	106.21	1	97.70 I	97.70	61.50
IMAY WATER	AI	$20 n .00$	1	200.001	200.00	200.00	1	24.20 200.001	24.20 200.00	I	24.20	!	24.201	24.20	60.20 6.70
i June water	at I	400.00	I	400.00)	400.00 I	40 n -00		400.00 t	200.00 400.00	I	75.1 400.00			.00	. 600
			I				1	40.00 I	400.00				400.00 I	400.00	400.00
laug water	AI I	400.00	I	0	400.00	400.00	1	400.00 I	400.00		285.12				
tjan cap		400.00 -2537.27	I	400.00 -2470.00	- $\begin{array}{r}400.00 \\ -24000\end{array}$	400.00	!	400.00	400.00	1	295.17	1	20 n .00	200.00	. 00
IFEP CAP	551	-5007.22	I	-4940.00	-4940.00	- 57696.08		-2899.08	-4251.90	1	-93R8. 75	1	-11789.?0	-13950.00	-17120.0n
ImARCH CAP	45	-5192.96		-5140.45	-5139,61 1	-5466.71		-5369.08	-6721.90	!	-11858.75		-14259.20	-16420.n0	-17120.00
${ }_{\text {I }}$			I	$4090.53{ }^{\text {I }}$			1				-10948.52		-13209.37	-14392.26	-12247.26
imay cap	\$51	-4087.22	I	-4090.53	33	-4525.40	I	-4526.40	-5763.86	1	-10523.5?		-17764.37		
IJUNE CAP	551	-1551.95	1	-1557.13	-1602.01	-1996.71	1	-2260.71	-3505.11	I	-9482.46	T	-17618,37	-12208.78	-11802.26
I JULY CAP	58	-2742.18	I	-2751.63	-2796.51	-1996.71		-1996.71	-3241.11	I	-9167.62	!	-12265.A7	-11856. ${ }^{\text {P }}$	-12080.78
iaug cap	551	-10684.50	I	-10775.21	-10842.80	-10908.63	I	-10908.63	-41116.19		-10100.82 $-156 ? 2.14$		-11178.64	-11588.01	-11318.51
isept cap	ss $\frac{1}{1}$	-31388.24	1	-32027.76	-32430.55	-72189.65	I						-18745.28	-16569.68	-16407.69
ioct cap	ss 1	-30002.84	1	-30508.74		- 2100777.65		-32187.65	-3142.1.82	1	-28549.94		-27217.77	-25504.67	
INOV CAP	55	-32141.80		-32659.49	-32972.53	-70571.43		-30577.43 -32651.82	-29806.74	I	-26767.77		-26316.86	-23869.79	-25214.68
IDEC CAP	55	-34420.27		34867.09	-35179.13	-25301.39		-35301.39	-316486.45		-28169.14 -37413.56		-26647.5	-2477.75	-21650.76
		230.00		230.00	230.00	230.00	I	230.00	230.00		-3143.56 230.00		-3 R 23 230.45	-38836.35 230.00	-38881.35
itirg land	${ }^{\text {a }}$ [100.00	1	100.00				100.00 I		I				230.00	230.00
imax Wht	${ }^{\text {AC }}$ I	54.61	I	67.03	100.00 6 \%	100.00 67.00		100.00 67.00	100.00		100.00		100.00	100.00	100.00
Imax mo clov	${ }^{\text {AC }}$ I	-0.00		-0.00	-0.00 I	-0.00		-0.00	-0.00		67.00		67.00	67.00	67.00
imax ALF IPG	${ }_{\text {AC }}^{\text {AC }}$ I	-00	I	. 00	50.00 I	-0n		-0.00					5n.00	$50.0 n$	100.00
				. 00	50.00	50.00		50.00	50.00		50.00		50.00	13.0n	. 0000
imax CJRn	${ }^{4 C} \mathrm{I}$	50.0n		50.00	50.00			50.00		,			50.80		13.00
Max ALY	${ }^{A C}$	124.24		117.971	113.001	105.65		50.00 105.65	50.00 82.49		50.00	?	50.00	50.00	0.00
MAX CR OR	AC!	1.15		. 000 I	-0.00 1	10.65 7.35		$\begin{array}{r}105.65 \\ \hline 7.35\end{array}$	82.49 30.51		$\begin{array}{r}10.00 \\ \times 3.00 \\ \\ \hline\end{array}$		50.00 63.00	50.00	50.00
max means	AC ${ }_{\text {ac }}$	$50.0{ }^{\circ}$		00	-0.00	-0.00		-0.00 I	-0.00		-0.0n		63.00 -0.00	100.0n	100.00
	1			50.00		53.00		50.00 ?	50.00		P1.29		.no	- 0 กn	-0.0n
MIN RD Clev	${ }^{A C}$			4.031	9.001	9.00		9.00	9.00		9.00		I		-0n
MIN ALF IRg	${ }_{4} C^{\text {c }}$	$\stackrel{O}{0}$		${ }_{0}^{0} 1$				0	0	T			-	9.00	9.00
MIN ALF DRY	${ }_{4} C^{\text {I }}$	50.00				50.00		0 !	0	!	-			50.	100.00
min corn	${ }^{\text {AC }}$	50.00		50.00 I		50.00 50.00		50.00	50.00	!	50.00		50.00	13.00	
MIN RLY								50.00		T	50.00		50.00	50.00	13.00 -0.00
Min or or	${ }_{\text {a }} \mathrm{C}$	24.24 1.15		17.97	13.00	$5 \cdot 65$		5.65 t	-17.51		-50.00		-50.00	-50.01	
MIN VETCH	${ }^{\text {AC }}$ I					7.35		7.35 !	30.51		63.00		63.00	50.00 100.00	-50.00
min rifans	${ }_{\text {AC }} \mathrm{I}$	50.0 ก̆		50.00						!	,				100.001
EXP GR MaRg				[17				50.00	50.00		21.28		. 00		1
Sto dev	SSI	36466043 235707		34913.34 2435977	35225.19 I	25344.90		35344.90 ¢	35722.39						1
				243.77	2493.01 I	2526.17		2526.17	2740.11		6490.47			38895.65 6341.80	38974.54

part one continued
a statement of the value of an additional unit of rescurce.

1 name ic	UNITI	Plan 10	1	plan 11		PLAN 12		PIAN 19									
IJAN LAB	${ }_{\text {HR }}^{\text {HR I }}$	0		0	1	Plan		Pan ${ }_{0}$		PLAN ${ }^{14} 0$		PLAN ${ }^{15}$		PLAN $16{ }_{0}$	PLAN $17{ }_{0} \frac{1}{1}$	PLAN 180 ${ }_{0}$	PLAN 19
IFER LAB	HR I I	0		0		0	1	0				0	+	\bigcirc	${ }_{0} 1$		0
IAPRIL LAB	HR I			0	I	0		0		0		0		0 i	O	$\bigcirc 1$	
imay lab	HR I	ก		0	I	0		0		0		0	I	01	01	01	
			1		1		1	0	I	0		0	I	01	0 I	01	0
IJUNE LAB	HR I	0		0	I			0		0			I				
t July lab	HR	0		0	I	0		0		0		0				01	\bigcirc
${ }_{\text {IAUG LAA }}^{\text {ISEPT LAB }}$	HR !	0		0	I	0						0	I		O 1		\bigcirc
${ }_{\text {ISEPT LAB }}^{\text {toct LAB }}$	HR I	0		0	!	0		0		\bigcirc		0	I	${ }^{\circ} \mathrm{O}$	O	0 0 0	0
toct lab	HR I	0		0	I	0	1	0	1	0		0	!	0	${ }_{0} 1$	\bigcirc	¢
jnev lab	HR 1	0		0	1	0		0					1		I	I	
time lap water	HR !	0		0	1	0		0	1						01	$\bigcirc 1$	0
ITJUNE WATER	${ }^{\text {al }}$ I 1	0	1	0	1	0		0		0			1	01		I	0
pJuty water	${ }_{\text {AI }}^{11}$	\bigcirc		0	I	0		0		\bigcirc		0	$!$				\bigcirc
								0		0		0			01		$\stackrel{0}{0}$
taug water	AI 1	0	1	0		0	1	0	I	0	i		1	01	01		
tjan cap	Ss	0		0	1	0		0	1	0		0				${ }_{0} 1$	0
IMARCH CAP	Ss	\bigcirc		${ }_{0}$	1	0		0	I	\bigcirc	T	0			01	1	0
PAPRIL CAP	3s 1	\bigcirc		0				0	I	0		0	,		01		8
Imay cap	ss $\frac{1}{1}$	0	t	0	!		1		!		1					I	\bigcirc
t june cap	\$3 1	0		0				0		0		0				01	0
I July cap	Ss 1	0	I	0		0		0	I	${ }_{0}^{0}$					01	0 I	0
${ }_{\text {IAUGG CAP }}$	Ss	0		0		0		0	I								0
ISEPT CAP	351	0		0		0		0	I	0		0					0
lect cap	ss $\frac{1}{1}$	0	1	0	1	0	$\frac{1}{1}$	0	I	0	1	0	I				0
INOV CAp	Ss ${ }_{\text {s }}$	0	!	0		0		0									0
IDECC CAD	${ }^{55} 1$			0					I								-
IRRY Land iIR LAND	${ }^{4} \mathrm{AC}$ I	33.99	I	35.86		37.23		48.55	I	48.55		53.84		58.55 ${ }^{\circ}$	$60.65{ }^{0} \mathrm{I}$	$61.61{ }^{01}$	61. ${ }^{\circ}$
			$!$	102.2日	1	106.34	1	148.18	I	148.18		146.81		343.53	147.40 I	61.611 152.14	61.17 192.60
TMAX WHT	${ }^{\text {ac }}$ I	\bigcirc		0		0		28.10	1	28.10		45.80		53.71	53.72	54.39 I	
TMAX ROCLOV	${ }^{A C}$	0	!	0		0	1	0	I	0	1	0		53.7	53.72 I	54.39 I	61.01
imax alf dry	${ }_{A C} \mathrm{C}$	12.90	!	11.14	$\frac{1}{1}$	i0.0n			I		,	0	I	0	0 I		
imax corn	${ }_{4 C} \mathrm{I}$	0	1	11.0		10.00		5.67		5.67	t	2.88	I	2.19	. 35 I		
			I		t		I			0		28.10		40.9R	42.37 I	35.53 I	?
$\operatorname{tmax~mly~}^{\text {max }}$	${ }^{4 C}$ I	0		0		0		0		0				0			
	${ }^{A C}$ I	0		0		0		0	1								\bigcirc
TMAX REANS	${ }^{A C}$	52.5a	1	47.57	+		I	0	1	0		01					14.2?
IMIN WHT	${ }_{A C} \mathrm{I}$	5		47.5					I						01	01	0
IMIN RD CLOV	${ }^{\Delta C}$ I	60.43		53.79		51.66										01	0
IMIN ALF IRG	${ }^{\Delta C}$	34.44		3 A .57						68.23		57.36				$57.51{ }^{\circ} \mathrm{I}$	0
IMIN ALF DRY	${ }_{\Delta C}^{A C}$?				0	I	-	1	68.28		57.38		49.71	49.25	57.51	100.1?
tmin rly	ACP_{1}			0		\bigcirc		0	I	\bigcirc		01		0 i			
	1													$0!$	1.861	2.49 I	1.59 I
TMIN OR OR	${ }^{\text {ac }}$ - ${ }^{\text {a }}$?												!		$\frac{1}{1}$	
IMIN VETCH	${ }_{40}^{\text {ac }}$ I	\bigcirc		. 91				8.24									
tmin beans			1	0			1	0		0.24		12.531 0		15.29 \%	17.25 ${ }_{0} 1$	18.401 7.591	13.351 40.65
I Exp gr marg	ssi	34466.43	I	34913.34	I	35225.18	I		I		1			$!$			40.63
1 STD DEV	ssi	2357.07	1	2435.77		2493.01		2526.17		3536.90		35722.39		37457.37 1	38350.68 :	38895.65	38974.54
												2740.11		4490.47	557. 16	6341. $\mathrm{RO}^{\text {a }}$	9449.16 I

part twe
brebability statements about attaining specifieo levels of artual gross margin fer a oiven level of expectfo aresg margin

part three continued
detailed description of efficient plans in equation form continued

the variance equation

the metivity equations						
\% Ne ${ }_{\text {activity }}$	i NAME ${ }_{\text {activity }}$	Unitit	日ETȦ1	betaz	1	
					1	ACtivity i
t	! WHEAT	${ }^{\text {as }}$ I	-0.000000	67.000001	I	$67.00 \frac{1}{1}$
1	IRED CLOVER	${ }^{\text {AC }}$ I	. 016553	-591.315859	1	67.001 28.72
1×3	UALFALFA 1RG	AC I	.000000	-591.315859	I	28.72
1.4	IALFALFA DRy	${ }_{\text {ac }} \mathrm{I}$	-0,000000	50.000001	1	
I	icorn silage	${ }_{4}{ }^{\text {c }}$ I		50.000001	I	50.001
18	ibarley	${ }^{\text {AC }}$	-0.000000	759.999999	,	50.00 ?
I	iorch grass	${ }_{\text {Act }}$	-0.018725	751.398047 -638.398048	I	50,00 ?
1	thalry verch	AC I	-0.000000	-638.000001	I	63.00 !
1	ipinto beans	${ }_{\text {ac }} \mathrm{I}$	-0.016553	641.315866	1	

	he resourće No constraint	EQUATIONS of 1 NAME OF CONSTRAINT	UNitit	betal	1	betaz	I	Level of	1	$\begin{aligned} & \text { Value of i } \\ & \text { LAGRANGIAN } \end{aligned}$
		1								
$\frac{1}{1}$	0	lexp or marg	${ }^{3} 1$	-3.572757		123432.099236			1	10393-9! !
1	2	jJan lab	HR ${ }_{\text {H }}$	-0.0is725	1	123432.099236 1620.098049			I	-10393.97 ${ }_{0}$
I	2	freb lab imarch lab	MR $M R 1$	-0.000000	$\frac{1}{1}$	1620.0992099 982.500000	!	919.50 982.50	t	01 0 0
1		march lab			I	889.360196		959.50	I	$\bigcirc 1$
$\frac{1}{1}$	4	IAPril Lab	MR I	-007490	I	699.440781	I		1	$0 \frac{1}{1}$
I	5	imay lab	HR !	-022337	I	-256.245193	1	880.00		0
1	7	f Juty lab	HR I	-0.093311	1	711.736024	+	835.74	+	
!	-	jaug lab	HR I	-0.012621	I	1199.822308 -320.653398		727.08		0
1		isept lab	HR I		I	-320.653398		749.68		
	io	ISEPT LAB	HR !	.000000	1	849.999993	1	850.00		
i	11	linct lam	HR H I	-0.0033328	I	1060.271391		998.13	+	
!	12	jote Lab	HR I	0.01411 -0.000000	1	365.214435 975.80000	I	893.79	I	
1	13	imay mater	Af I	-0.0066212	1	975.800000 -1365.263464	I	975.80 114.808		
1		IJune water	A) $\frac{1}{1}$		I					
1	15	f july mater			1	799.999993	I	800.00		
\pm	16	taug water	Aİ	.0666212	1	-1765.263444	$\stackrel{1}{1}$	714.88		
\pm	17	jjan cap	351	2.960742	1	-76512.874992	I	714.88 34388		
1	18	jipe cap	Ss I	2,960742	1	-74004.875032		34368.75 36858.75		
1	19	imaren cap	3s 1	2.576688	1					
?	30	iApril cap	351	2.576688 2.74342	1	-60547.431203		35968.52		
!	21	MAM CAP	3s I	3.445103	1	-67234.873819		35323.52		01
$\frac{1}{1}$	22	I HUNE CAP	351	3.4ij 5804	1	-94772.0309632	+	34482.46 34167.62		
$\frac{1}{1}$	23	iJuly CAP	351	3.330522	1	-69651.789818		34167.62 35100.82		
1	24	inus cap	381	2.597110	I	-56656.762796	I			
$!$	25	jSEPT CAP		-1.695380	1			40622.14		
1	26	IOCT CAP	351	-1.7931578	1	115552.362879 117377.288973	I	53549.94		
1	27	INeV CAP	351	-2.000902	1		I	51767.77		
i	28	joEc CAP	Ss 1	-2.995231	1	12811.689325 25134.842040	1	53169.14 62413.56		
1	29	jopy land			1					
i	30	İRg Lano	${ }_{\text {AC }}$	2150749898 504.878677	I	-7472818.849731	I			608605.12
1	31	jMax HHT	$\wedge{ }^{\text {A }}$ ¢	211.006047	1		1			1491876.07
1	32	IMAX RD CLOV	AEC I	-0.016553	1	-7345514.749756	1			558217.01
1	33	max alf trg	${ }^{\text {A }}$ C ${ }^{\text {I }}$	-0,000000	,	100.000004		71.28 100.00		0
1	34	I max alf dry			I					
$!$	35	jMAX CORN	AC I	177.599466	1	-207860.043182			-	22784.84
1	36	${ }_{\text {j max }}$ bly ${ }^{\text {max }}$	AE	1760.018725	1	-6223870.957031	1		-	425916.11
!	37	IMAX OR GR	${ }^{\text {AC }}$ I	-0.0j8725	I	-738.398049	\%	140.00 37.00		
1	38	Imax vetch	AC I	.000000	1	+49.999999				0
1		Imax beans			I				I	
\%	40	IMIN WHT	ac I	-0:0100000	-	-591.3158666		26.72		01
1	41	IMIN RD CLOV	AE I	. 016553	1					01
I	42	IMIN ALF IRg	Ae I	159.119868	1	-5443504.453491	I	28.72	-	$516707.45^{\circ} \mathrm{I}$
I	44	IMIN CORN		-0.000000	1	50.000001	I	50.00		516707.45
!			${ }^{\wedge} 1$. 000000		49.999999		50.00		
1	45	imin bly	${ }^{\text {Ae }}$ I	-0.018725	1					1
I	46	IMIN OR GR	${ }^{4} \hat{C}$ I	.018725		-638.398049	I	-0.00	,	01
	47	IMIN VETCH	AC I	61.240406		-2135093.122314	\%	83.00	1	
	48	IMIN GEANS	Ae I	-0.0ī6533		641.315866		21.28		158811.47

The report begins with a letter which outlines the results to be presented, defines the terminology used and describes the main concepts the farmer will encounter. As the letter indicates, the report is divided into four parts. The reader is now asked to put himself in the farmers position as he reads the approximate discussion during interpretation of the report to Mr. Smith and Mr. Jones.
'Part one deals with the composition and attributes of the efficient plans. Here you are given the number of acres planted to each crop and the gross margin you can expect as a consequence. You are also given the standard deviation of gross margin which indicates the riskiness of the plan. In your report, 19 plans are presented. Plan one has an expected gross margin of $\$ 18,718.35$ and standard deviation of $\$ 1041.04$. The plans are arranged in order of increasing expected gross margin. As expected gross margin increases, standard deviation increases at an increasing rate. The absolute maximum expected gross margin and the maximum standard deviation occur at plan 19. For example in plan 19 gross margin is $\$ 38,974.54$ and standard deviation is $\$ 9449.16$. This indicates that about two thirds of the time you will find gross margin lying within one standard deviation of its expected level i. e., in the range from $\$ 29,525.38$ to $\$ 48,423.70$. Note the rapid increase in standard deviation from plan 18 to plan 19. This is because 50 acres
was transferred from corn silage, a high paying low risk crop, to red clover, a slightly higher paying crop than corn silage but a considerably more risky one. The net gain in expected gross margin was $\$ 78.89$ while standard deviation has increased \$3107. 36. Since the composition of the plans changes as expected gross margin increases so does the amount of each resource used. Those resources which are completely used up have a shadow price attached to them. The shadow price indicates the value of one more unit of limiting resource. Note at plan 17 the value of an additional unit of irrigated land is \$143.40 indicating the approximate amount by which expected gross margin would increase if one acre were added. The shadow prices must be interpreted with caution because they are valid only over a small range.

Part two is prepared as an aid in helping you select the "best" plan. Since you are the decision maker, and you must live with the outcome of your actions the choice of the "best" plan can be made only by you. The probability statements in part two can, however, help you make the choice by pointing out the chances of failure. For example if you choose plan 19 your gross margin will be $\$ 38,974.54$ on the average, however in any given year you stand one chance in 100 that your gross margin will be less than $\$ 16,989.17$. On the other hand, if you were to choose
plan 12 your expected gross margin is only $\$ 35,225.18$. However it is much less risky since there is one chance in 100 that gross margin will fall below $\$ 29,424$. 68. Probability statements are also made for the $5,10,20,30,40$ and 50% levels. You will notice that expected gross margin is $\$ 38,895.65$ which is only $\$ 78.89$ less than the maximum possible expected gross margin. However, the variability of gross margin is much less under plan 18 than plan 19 as reflected by the fact that there is a 1% chance of gross margin falling below $\$ 24,140.18$. Your own personal circumstances and your willingness to take chances are the factors important in deciding upon the proper plan. However, any of the 19 plans carries with it the assurance that there is no less risky way in which you can produce that level of expected income.

Part three describes the plans in equation form. If, for example, you wish to choose a plan having an expected gross margin somewhere between that given for plan 15 and plan 16 you can determine the acres in each crop and the amount of unused resources according to the formula:
$\operatorname{ACRES}=($ BETA $) \mathbf{x}(\operatorname{EXP}$ GR MAR $)+($ BETA 2$)$

If you wish to know the variability of the plan use the formula:

```
VARIANCE \(=(\) ALPHA 1\() x(E X P G R\) MAR \() x(E X P G R ~ M A R)\)
\(+(\) ALPHA 2) \(x(E X P G R M A R)+(A L P H A 3)\)
```

For example, if you evaluated the equations at an expected gross margin of $\$ 36,500$, about midway between plan 15 and plan 16 you would find the result as shown in Table 4.3 under the heading of plan 15 a .

Part four is composed of three graphs. The first graph shows the degree of riskiness for every level of expected gross margin. Note that as expected gross margin becomes higher the riskiness as measured by standard deviation increases more rapidly. The second graph shows the composition of the plans for every level of expected gross margin. You can read the number of acres in each crop directly from the graph. If you wish to determine the composition of plan 15a you need only draw a vertical line at the expected gross margin of $\$ 36,500$ and read the number of acres in each crop directly on the vertical axis of the graph. It is also interesting to note the drastic changes in the composition of plans as the maximum expected gross margin is approached. The third graph displays the probability statements tabulated in part two. If you pick a specific level of expected gross margin on the horizontal axis you can read the levels on the vertical axis, be low which actual gross

Table 4. 3. Composition of an intermediate plan.

Name of Crop	Units	Plan 15a
wheat	ac	67.00
red clover	ac	12.87
alfalfa irg	ac	0.00
alfalfa dry	ac	50.00
corn silage	ac	50.00
barley	ac	67.94
orch. grass	ac	45.06
hairy vetch	ac	0.00
pinto beans	$\$$	37.13
	$\$$	36,500
EXP GR MARG		
Std. Dev.		

margin will fall at the $1,5,10,20,30,40$ and 50% probability levels. For example, suppose you wish to determine the level below which gross margin will fall five times in 100 for plan 15a。 First find $\$ 36,500$ on the horizontal axis then draw a vertical line up to the five percent probability curve and then across to the vertical axis where you can read $\$ 30,836.35$. Thus if you choose plan 15 a there is a five percent chance that your gross margin in a specific year will fall below $\$ 30,836.35$. Usually farmers have fixed cash commitments such as debt payments and family living costs. In such a case it may be more appropriate to deduct these costs from the gross margin figures before examining probability of loss graph. The second set of axis on the graph are with respect to net income. In your case there is a $\$ 10,000$ rental payment and $\$ 5,000$ repayment on a loan for irrigation equipment. Hence, if you choose plan 15 a there is a five percent chance of having less than $\$ 15,836,35$ of net income. This figure is read from the net income axis."

After some deliberation, the partners chose plan 17 as "best" in their circumstances. They were in agreement that the added expected gross margin that would accrue in choosing plan 18 or plan 19 over plan 17 was not sufficient, in their opinion, to compensate for the increase in standard deviation. Their choice of plan 17 was reinforced by examination of the probability of loss graph with the knowledge that
there would be a $\$ 15,000$ dollar fixed cash commitment.

Operational Costs

Once an algorithm is operational, it is the human time involved in setting up the problem, collecting the data and preparing it for computer processing that tends to be the most expensive item. ${ }^{45}$ This is true regardless of whether quadratic or linear programming is used since they take about the same set up time. Approximately seven hours were required for each of the four cases studied. This included three hours for data collection, two hours for computer input preparation and three hours for discussion and interpretation of results with the farmer. The computer cost alone is likely to be in the range of $\$ 20.00-\$ 30.00$ depending upon the dimensions of the problem. About one-half of the computer cost represents printing the report and drawing the graphs. Since the equations for each step are of limited use to the farmer, the program OUTPUT contains the facility to suppress printing this part of the report. Further computer cost could be eliminated by not plotting the activity level graph since the large amount of information tends to be confusing to the farmer.

45
These costs are exclusive of the overhead cost in developing the algorithm.

V. SUMMARY AND CONCLUSIONS

The main objective of this research was to develop an operational tool for solving the enterprise selection problem under conditions of uncertainty. The central purpose was to develop an algorithm amenable to use by extension workers and/or farm management consultants as they counsel farmers on problems of enterprise choice. To accomplish this, the problem was formulated as the minimization of variance subject to a level of expected income and a set of production constraints. It was found that by making use of some important properties of Lagrangian multipliers, properly constrained by the KuhnTucker conditions, one could compute the entire array of efficient choices.

This permitted presentation of all relevant alternatives to the farm decision maker rather than the single expected income maximizing plan of linear programming which is not infrequently sub-optimal when evaluated in light of the decision makers risk preference.

The framework of analysis used here is comparable to Markowitz's (34) portfolio selection method designed for use by investment consultants. Houthakker's (25) capacity method of solving quadratic programs provided many insights into procedures that were ultimately built into the program. The algorithm developed in this research is problem specific and deal only with minimizing positive definite
quadratic forms containing no linear components 46
Previous existing quadratic programming algorithms provided only a finite number of solution points on the efficiency frontier (7, 26). The algorithm developed here provides exact algebraic specification for the frontier.

In the theory portion of the thesis, a two dimensional model was developed and used to provide a transition from the traditional certainty framework to the more realistic uncertainty environment in which decision makers find themselves. Variations in the model parameters σ, μ and r demonstrated the sensitivity to change in the efficient plans and emphasized the error that is introduced by ignoring uncertainty. Capital restriction, debt payments, family living requirements and other fixed cash commitments become important considerations in the decision problem. The adage "fixed costs have no bearing upon short run decisions"is simply not true if the decision maker is confronted with variations in income.

To test its applicability, the algorithm was used to solve enterprise selection problems submitted by four farmers. The results appeared encouraging. The data requirements, although substantial, were no more difficult to satisfy than for the linear programming model where uncertainty is assumed non-existent. Crop enterprise selection problems lend themselves particularly well to the method used. Livestock enterprise choice problems could be handled in the

The algorithm will not maximize a quadratic form.
same way, although difficulties could arise because the algorithm cannot accommodate transfer equations which may be needed to account for activities like home grown feed.

The results, although appearing more difficult to interpret because of the presence of probability statements can be given in a more realistic setting, and were no more difficult for the farmers to comprehend than the non-stochastic linear programming case. Suggestions made by the farmers have been incorporated into the report with the result that it is more understandable and meaningful to the decision maker. Results of this study indicate additional areas for research. The algorithm is deficient in at least two areas; (a) the initial basis is found by a trial and error approach which could result in cycling; and (b) it is not possible to include transfer equations in the model. These two unanswered questions could prove to be interesting and fruitful avenues of exploration.

Additional computational efficiencies could undoubtedly result from revisions in the three computer programs. ${ }^{47}$ Clerical time needed for organizing data and key punch time could certainly be reduced by streamlining the input routine. The report form which has benefited from comments of farmers and colleagues could stand further

47
The writer does not claim more than a rudimentary knowledge of computer programming, and although the programs have benefited immeasurably by others more gifted in the field, some inefficiencies no doubt remain.
improvement.
An empirical question surrounds the triangular distribution and its ability to transmit the farmer's impressions about the future performance of price and yield variables. The data needs of the triangular distribution are small compared to more elaborate methods of establishing subjective probability density functions, but no direct check has been made on the reliability of the estimates. Additional work in this area is warranted. Extending the subjective probability concept to the joint distribution case poses a difficult but interesting question. The subjective establishment of correlation coefficients was dismissed because of the burden placed upon the respondent and because of the high chance for inconsistencies. Perhaps the dismissal was premature and additional investigation could result in practical methods for accomplishing the task.

Questions of practical relevance and acceptability also remain. It is in this area that additional research efforts need be expended to evaluate whether or not the research in this thesis has narrowed the gap between theoretical developments and practical application by providing an operationally feasible quadratic programming algorithm.

BIBLIOGRAPHY

1. Ayres Frank Jr. Theory and problems of matrices. New York Schaum, 1962. 218 p.
2. Baumol, William J. Economic theory and operations analysis. 2d ed. Englewood Cliffs, Prentice-Hall, 1965. 606 p.
3. Black, J. D. Introduction to production economics. New York, Henry Holt, 1926. 975 p.
4. Boussard, J. M. The introduction of risk into a programming model: Different criteria and the actual behavior of farmers. European Economic Review. 1:92-121. 1969.
5. Bradford, Lawrence A. and Glenn L. Johnson. Farm management analysis. New York, Wiley, 1953. 438 p.
6. Carlson, Sune. Pure theory of production. New York, Sentry, 1939. 128 p.
7. Carter, H. O. and G. W. Dean. Income, price, and yield variability for principle California crops and cropping systems. Hilgardia 30:188-193. 1960.
8. Chernoff, Herman and Lincoln E. Moses. Elementary decision theory. New York, Wiley, 1959. 364 p.
9. Dantzig, G. B. Maximization of a linear function of variables subject to linear inequalities. In; Activity analysis of production and allocation, ed. by T. C. Koopmans, New York, Wiley, 1951. p. 339-347.
10. Dillon, John L. The analysis of response in crop and livestock production. Oxford, Pergamon, 1968. 135 p.
11. Dorfman, Robert, Paul A. Samuelson and Robert M. Solow. Linear programming and economic analysis. New York, McGrawHill, 1958. 525 p.
12. Eisgruber, L. M. and L. S. Schuman. The usefulness of aggregated data in the analysis of farm income variability and resource allociation. Journal of Farm Economics 45:587-591. 1963.
13. Forrester, Jay W. Industrial dynamics. students ed. Cambridge, Massachusetts Institute of Technology. 1961. 464 p.
14. Freund, Rudolf J. The introduction of risk into a programming model. Econometrica 24:253-263. 1956.
15. Friedman Milton and L. J. Savage. The utility analysis of choices involving risk. The Journal of Political Economy 56:279304. 1948.
16. Halter, Albert N. and Christoph Beringer. Cardinal utility functions and managerial behavior. Journal of Farm Economics 42: 118-132. 1960.
17. Halter, A. N. and G. W. Dean. Decisions under uncertainty with research applications. Oregon State University. 1969 (Unpublished manuscript)
18. Halter, A. N. and John L. Dillon and J. P. Makeham. Best bet farm decisions. Sidney, Southwood Press Pty Limited, 1969. 62 p.
19. Heady, Earl O. Economics of agricultural production and resource use. Englewood Cliffs, Prentice-Hall, 1952. 850 p.
20. Heady, Earl O. and Wilfred Candler. Linear programming methods. Ames, Iowa State College, 1958. 597 p.
21. Henderson, James M. and Richard E. Quandt. Microeconomic theory a mathematical approach. New York, McGraw-Hill, 1958. 291 p.
22. Hicks, J. R. Value and capital. 2d ed. London, Oxford University, 1946. 340 p.
23. Hillier, Fredrick S. and Gerald J. Lieberman. Introduction to operations research. San Francisco, Holden-Day, 1967. 639 p.
24. Hogg, Robert V. and Allen T. Craig. Introduction to mathematical statistics. Rev. ed., New York, Macmillan 1965. 383 p.
25. Houthakker, H. S. The capacity method for quadratic programming. Econometrica 28:62-87. 1960.
26. How, R. B. and P. B. R. Hazell. Use of quadratic programming in farm planning under uncertainty. Ithaca, 1968. 25 p. (Cornell University. Agricultural Experiment Station. Dept. of Agricultura. Economics. A. E. Res. 250)
27. Johnson, Glenn L. Handling problems of risk and uncertainty in farm management analysis. Journal of Farm Economics 34:807817. 1952.
28. Johnson, Glenn L_{0} and Lowell S. Hardin. Economics of forage evaluation. Lafayette, 1955. 20 p. (Purdue University. Agricultural Experiment Station. Station Bulletin 623)
29. Johnson, Glenn. New knowledge of decision-making processes. Journal of Farm Economics 40:1393-1404. 1958.
30. Knight, Frank H. Risk, uncertainty and profit. New York, Kelley and Millan, 1957. 381 p.
31. Kuhn, H. W. and A. W. Tucker. Nonlinear programming. In: Proceedings of the second Berkley symposium on mathematical statistics and probability, ed. by Jerzy Neyman, Berkley, University of California, 1951. p. 481-492.
32. Luce, R. Duncan and Howard Raiffa. Games and decisions. New York, Wiley, 1957. 509 p.
33. MacCrimmon, Kenneth R. and Charles A. Ryavec. An analytic study of the P. E. R. T. assumptions. Operations Research 12: 16-37. 1964.
34. Markowitz, Harry M. Portfolio selections. New York, Wiley, 1959. 344 p.
35. Naylor, Thomas H. The theory of the firm: A comparison of marginal analysis and linear programming. The Southern Journal of Economics 32:263-274. 1966.
36. Officer, R. R., A. N. Halter and John L. Dillon. Risk, utility and the palatability of extension advice to farmer groups. The Australian Journal of Agricultural Economics 11:171-183. 1967.
37. Potter, Murray H. and Charles B. Morrey, Jr. College calculus with analytic geometry. Reading, Mass., Addison-Wesley, 1964. 897 p.
38. Scitovsky, Tibor. Welfare and competition. The economics of a fully employed economy. Chicago, Irwin, 1951. 457 p.
39. Smith, Fred J. and Stanley D. Miles. Oregon farm management simulation: Students manual. Corvallis, [1968]. 35 p. (Oregon State University. Cooperative Extension Service and Dept. of Agricultural Economics)
40. Spillman, W. J. Application of law of diminishing returns to some fertilizer experiments. Journal of Farm Economics 5:3652. 1923.
41. Stovall, John G. Income variation and selection of enterprises. Journal of Farm Economics 48:1575-1579. 1966.
42. Tolley, H. R., J. D. Black and M. J. B. Ezekiel. Input as related to output in farm organization and cost-of-production studies. Washington, D.C., 1924. 44 p. (U. S. Dept. of Agriculture. Dept. Bulletin 1277)
43. U. S. Code (1946). Vol. I. 1527 p.
44. Von Neumann, John and Oskar Morgenstern. Theory of games and economic behavior. 3d ed. New York, Wiley, 1964. 641 p.
45. Wald, Abram. Statistical Decision Functions. New York, Wiley 1951. 179 p.
46. Warren G. F. Farm management. New York, Macmillan, 1917. 590 p.
47. Williams, D. B. Price expectations and reactions to uncertainty by farmers in Illinois. Journal of Farm Economics 33:20-39. 1951.

APPENDIX

APPENDIX A

LAGRANGIAN MULTIPLIERS AND TRANSFORMATIONS

Lagrangian multipliers are used frequently in the main body of the thesis. A general statement about their behavior and interpretation may be of value to the reader who wishes to pursue the topic further.

Consider the general problem:

$$
\begin{aligned}
& \text { Min or Max: } G\left(X_{1}, X_{2} \cdots X_{n}\right)=G \\
& \text { S. T: } K_{j}-F\left(X_{1}, X_{2} \cdots X_{n}\right)=0 \quad j=1, m \leq n
\end{aligned}
$$

The Lagrangian form is:

$$
R(X, \lambda)=G\left(X_{1} \cdots X_{n}\right)+\sum_{j=1}^{m} \lambda_{j}\left[K_{j}-F\left(X_{1} \cdots X_{n}\right]\right.
$$

and the first order condition becomes:

$$
\begin{aligned}
& \frac{\partial R}{\partial X_{i}}=\frac{\partial G}{\partial X_{i}}-\sum_{j=1}^{m} \lambda_{j} \frac{\partial F_{j}}{\partial X_{i}}=0 \quad i=1, n \\
& \frac{\partial R}{\partial \lambda_{j}}=K_{j}-F_{j}\left(X_{1} \cdots X_{n}\right)=0 \quad j=1, m
\end{aligned}
$$

From the objective function it follows that the exact differential of G is:

$$
\mathrm{dG}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\partial \mathrm{G}}{\partial \mathrm{X}_{\mathrm{i}}} \mathrm{dx}
$$

and from the constraints :

$$
\mathrm{dK} \mathrm{~K}_{\mathrm{j}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\partial \mathrm{~F}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i}}} \mathrm{~d} \mathrm{X}_{\mathrm{i}} \quad \mathrm{j}=1, \mathrm{~m}
$$

In the first order conditions it was established that:

$$
\frac{\partial G}{\partial X_{i}}=\sum_{j=1}^{m} \lambda_{j} \frac{\partial F_{j}}{\partial X_{i}} \quad i=1, n
$$

Substituting this information into the differential of G establishes that

$$
d G=\sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_{j} \frac{\partial F_{j}}{\partial X_{i}} d X_{i}
$$

Changing the order of summation results in:

$$
d G=\sum_{j=1}^{m} \lambda_{j} \sum_{j=1}^{n} \frac{\partial F_{j}}{\partial X_{i}} d X_{i}
$$

which upon simplification yields:

$$
\mathrm{dG}=\sum_{j=1}^{m} \lambda_{j} \mathrm{dK}_{\mathrm{j}}
$$

If G is a positive definite quadratic form in X and F is a set of linear equations in X, then the first order conditions resulting from minimizing G subject to F can be expressed as:

Note that $\frac{\partial^{2} G}{\partial X_{r} \partial \bar{X}_{s}}$ and $\frac{\partial F_{j}}{\partial X_{s}}$ are constants. Further more the matrix is symetric and non-singular if $n \geq m$ and there are no linear dependencies in F.

This system has a solution for X_{1}, \cdots, X_{n} and $\lambda_{1}, \cdots, \lambda_{m}$ which can be obtained from the inverted system:

In the case where $m=3, n \geq 3$

$$
\mathrm{dG}=\lambda_{1} d \mathrm{~K}_{1}+\lambda_{2} \mathrm{dK}_{2}+\lambda_{3} \mathrm{dK}_{3}
$$

where $\lambda_{1}=b_{11} K_{1}+b_{12} K_{2}+b_{13} K_{3}=\frac{\partial G}{\partial K_{1}}$

$$
\begin{aligned}
& \lambda_{2}=b_{12} \mathrm{~K}_{1}+\mathrm{b}_{22} \mathrm{~K}_{2}+\mathrm{b}_{23} \mathrm{~K}_{3}=\frac{\partial \mathrm{G}}{\partial \mathrm{~K}_{2}} \\
& \lambda_{3}=\mathrm{b}_{13} \mathrm{~K}_{1}+\mathrm{b}_{23} \mathrm{~K}_{2}+\mathrm{b}_{33} \mathrm{~K}_{3}=\frac{\partial \mathrm{G}}{\partial \mathrm{~K}_{3}}
\end{aligned}
$$

then

$$
\left.\begin{array}{rl}
\mathrm{G}\left(\mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right) & =\int\left(\mathrm{b}_{11} \mathrm{~K}_{1}+\mathrm{b}_{12} \mathrm{~K}_{2}+\mathrm{B}_{13} \mathrm{~K}_{3}\right) \mathrm{dK} \\
1
\end{array}+\mathrm{g}_{1}\left(\mathrm{~K}_{2} \mathrm{~K}_{3}\right)\right)
$$

and

$$
\frac{\partial \mathrm{G}\left(\mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right)}{\partial \mathrm{K}_{2}}=\mathrm{b}_{12} \mathrm{~K}_{1}+\frac{\partial \mathrm{g}_{1}\left(\mathrm{~K}_{2} \mathrm{~K}_{3}\right)}{\partial \mathrm{K}_{2}}=\mathrm{b}_{12} \mathrm{~K}_{1}+\mathrm{b}_{22} \mathrm{~K}_{2}+\mathrm{b}_{33} \mathrm{~K}_{3}
$$

hence

$$
\frac{\partial \mathrm{g}_{1}\left(\mathrm{~K}_{2}, \mathrm{~K}_{3}\right)}{\partial \mathrm{K}_{2}}=\mathrm{b}_{22} \mathrm{~K}_{2}+\mathrm{b}_{23} \mathrm{~K}_{3}
$$

and

$$
\mathrm{g}_{1}\left(\mathrm{~K}_{2}, \mathrm{~K}_{3}\right)=\frac{\mathrm{b}_{22} \mathrm{~K}_{2}^{2}}{2}+\mathrm{b}_{23} \mathrm{~K}_{2} \mathrm{~K}_{3}+\mathrm{g}_{2}\left(\mathrm{~K}_{3}\right)
$$

thus

$$
\begin{aligned}
\mathrm{G}\left(\mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right)= & \frac{\mathrm{b}_{11}}{2} \mathrm{~K}_{1}^{2}+\mathrm{b}_{12} \mathrm{~K}_{1} \mathrm{~K}_{2}+\mathrm{b}_{13} \mathrm{~K}_{1} \mathrm{~K}_{3}+\frac{\mathrm{b}_{23}}{2} \mathrm{~K}_{2}^{2}+\mathrm{b}_{23} \mathrm{~K}_{2} \mathrm{~K}_{3} \\
& +\mathrm{g}_{2}\left(\mathrm{~K}_{3}\right)
\end{aligned}
$$

and

$$
\frac{\partial \mathrm{G}\left(\mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right)}{\partial \mathrm{K}_{3}}=\mathrm{b}_{13} \mathrm{~K}_{1}+\mathrm{b}_{23} \mathrm{~K}_{2}+\frac{\partial \mathrm{g}_{2}\left(\mathrm{~K}_{3}\right)}{\partial \mathrm{K}_{3}}=\mathrm{b}_{13} \mathrm{~K}_{1}+\mathrm{b}_{23} \mathrm{~K}_{2}+\mathrm{b}_{23} \mathrm{~K}_{3}
$$

hence

$$
\frac{\partial g_{2}\left(\mathrm{~K}_{3}\right)}{\partial \mathrm{K}_{3}}=\mathrm{b}_{33} \mathrm{~K}_{3} \Rightarrow \mathrm{~g}_{2}\left(\mathrm{~K}_{3}\right)=\frac{\mathrm{b}_{33}}{2} \mathrm{~K}_{3}^{2}+\mathrm{K}_{0}
$$

Finally

$$
\mathrm{G}\left(\mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right)=\frac{\mathrm{b}_{11}}{2} \mathrm{~K}_{1}^{2}+\frac{\mathrm{b}_{22}}{2} \mathrm{~K}_{3}^{2}+\mathrm{b}_{12} \mathrm{~K}_{1} \mathrm{~K}_{2}+\mathrm{b}_{13} \mathrm{~K}_{1} \mathrm{~K}_{3}+\mathrm{b}_{23} \mathrm{~K}_{2} \mathrm{~K}_{3}+\mathrm{K}_{0}
$$

For $m>3$ the same step by step procedure can be followed to transform $G(X)$ to $G(K)$ with the general results:

$$
G\left(K_{1}, \cdots, K_{m}\right)=\frac{1}{2} \sum_{j=1}^{m} \sum_{k=1}^{m} b_{j k} K_{j} K_{k}
$$

APPENDIX B

PROOF OF ASSERTIONS

Proof of Assertion 1: The direction of rotation is found directly from the derivative of the angle θ with respect to r.

The rotation equation is:

$$
\begin{aligned}
& \tan 2 \theta=\frac{2 r \sigma_{1} \sigma_{2}}{\sigma_{1}^{2}-\sigma_{2}^{2}}, \text { where }-\frac{\pi}{4}<\theta<\frac{\pi}{4} \\
& \text { and } \quad \sigma_{1}^{2}-\sigma_{2}^{2}<0
\end{aligned}
$$

then

$$
\frac{\partial \theta}{\partial r}=\frac{\sigma_{1} \sigma_{2} \cos ^{2} 2 \theta}{\sigma_{1}^{2}-\sigma_{2}^{2}}<0
$$

hence the direction of rotation is clockwise as r increases.
The properties of elongation are found by examining the ellipse in the rotated coordinate system. Let

$$
\mathrm{V}=\mathrm{Ay}_{1}^{\prime}+\mathrm{By}_{1}^{\prime} \mathrm{y}_{2}^{\prime}+\mathrm{Cy}_{2}^{\prime}
$$

where $A=\sigma^{2} \cos ^{2} \theta+2 r \sigma_{1} \sigma_{2} \sin \theta \cos \theta+\sigma_{2}^{2} \sin ^{2} \theta$
$B=0$ since the angle θ is so chosen
$C=\sigma_{1}^{2} \sin ^{2} \theta-2 r \sigma_{1} \sigma_{2} \sin \theta \cos \theta+\sigma_{2}^{2} \cos ^{2} \theta$
$V=$ the variance
$y_{1}^{\prime} y_{2}^{\prime}=$ the activity levels in the rotated coordinate system.

$$
A<C \text { since }-\frac{\pi}{4}<\theta<\frac{\pi}{4} \text { and } \sigma_{1}^{2}<\sigma_{2}^{2}
$$

Then the vertices of the ellipse are at $(\pm \sqrt{V} / A, 0)$ in the $\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$ coordinate system. Let

$$
K=\sqrt{V} / A^{48}
$$

then

$$
\frac{\mathrm{dK}}{\mathrm{dr}}=\Phi\left[\mathrm{r} \sigma_{1} \sigma_{2} \cos ^{2} 2 \theta\left(\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sigma_{2}^{2}-\sigma_{1}^{2}}\right)-\sin \theta \cos \theta \sin ^{2} 2 \theta\right]
$$

where

$$
\Phi=\left[\sigma_{1}^{2} \sigma_{2}^{2} \mathrm{~V}\right]^{1 / 2}\left[\sigma_{1}^{2} \cos ^{2} \theta+2 r \sigma_{1} \sigma_{2} \sin \theta \cos \theta+\sigma_{2}^{2} \sin ^{2} \theta\right]^{-3 / 2}
$$

The derivative $\frac{d K}{d r}$ must be evaluated under two cases:
Case 1: where r is positive

$$
r>0 \Rightarrow-\frac{\pi}{4}<\theta<0 \Rightarrow \sin \theta<0, \cos \theta>0
$$

and

$$
\cos ^{2} \theta>\sin ^{2} \theta
$$

then

$$
r \sigma_{1} \sigma_{2} \cos ^{2} 2 \theta\left(\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sigma_{2}^{2}-\sigma_{1}^{2}}\right)>\sin \theta \cos \theta \sin ^{2} 2 \theta
$$

hence $\frac{d K}{d r}>0$ and the conclusion that the ellipse elongates as r increases from 0 to 1 holds.

Case 2: where r is negative

$$
r<0 \Rightarrow 0<\theta<\frac{\pi}{4} \Rightarrow \sin \theta>0, \cos \theta>0, \cos ^{2} \theta>\sin ^{2} \theta
$$

${ }^{48}$ Since only the positive quadrant is of concern the negative root need not be considered.
then

$$
r \sigma_{1} \sigma_{2} \cos ^{2} 2 \theta\left(\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sigma_{2}^{2}-\sigma_{1}^{2}}\right)<\sin \theta \cos \theta \sin ^{2} 2 \theta
$$

hence $\frac{d K}{d r}<0$ and the conclusion that the ellipse elongates as r decreases from 0 to -1 holds.

Proof of Assertion 2: It is required to determine the limits on the correlation coefficient so that the expansion path and the activity equations will not have a negative slope.

There are two cases to be evaluated:

Case 1: for

$$
\frac{\partial y_{1}}{\partial E}=\frac{\sigma_{2}\left(\sigma_{2} \mu_{1}-r \sigma_{1} \mu_{2}\right)}{\left(\mu_{1}^{2} \sigma_{2}^{2}-2 r \mu_{1} \mu_{2} \sigma_{1} \sigma_{2}+\mu_{2}^{2} \sigma_{1}^{2}\right)}>0
$$

it must be that $\left.r<\frac{\sigma_{2}}{\mu_{2}}\right) /\left(\frac{\sigma_{1}}{\mu_{1}}\right)=k_{1}$

Case 2: for

$$
\frac{\partial y_{2}}{\partial E}=\frac{\sigma_{1}\left(\sigma_{1} \mu_{2}-r \sigma_{2} \mu_{1}\right)}{\left(\mu_{1}^{2} \sigma_{2}^{2}-2 r \sigma_{1} \sigma_{2} \mu_{1} \mu_{2}+\mu_{2}^{2} \sigma_{1}^{2}\right)}>0
$$

it must be that $\mathrm{r}<\left(\frac{\sigma_{1}}{\mu_{1}}\right) /\left(\frac{\sigma_{2}}{\mu_{2}}\right)=\mathrm{k}_{2}$
Note also that $k_{1} k_{2}=1$.
Now let r^{*} be the smaller of k_{1} and k_{2}, then r^{*} is the ratio
of the coefficients of variation of the least risky activity to the most risky activity Only if $r<r^{*}$ will $y_{1}, y_{2}>0$ and if $y_{1}, y_{2}>0$ then the expansion path has a positive slope.

Proof of Assertion 3: The direction of substitution due to variations in the correlation coefficient can be known by taking the derivative of the expansion path with respect to r.

$$
\begin{gathered}
\mathrm{y}_{2}=\mathrm{y}_{1}\left(\frac{\sigma_{1}}{\sigma_{2}}\right)\left(\frac{\mu_{2} \sigma_{1}-\mathrm{r} \mu_{1} \sigma_{2}}{\mu_{1} \sigma_{2}-\mathrm{r} \mu_{2} \sigma_{1}}\right) \\
\frac{\partial \mathrm{y}_{2}}{\partial \mathrm{r}}=\mathrm{y}_{1}\left(\frac{\sigma_{1}}{\sigma_{2}}\right)\left\{\frac{\left(\mu_{2} \sigma_{1}-\mu_{1} \sigma_{2}\right)\left(\mu_{2} \sigma_{1}+\mu_{1} \sigma_{2}\right)}{\left(\mu_{1} \sigma_{2}-\mathrm{r} \mu_{2} \sigma_{1}\right)^{2}}\right\}
\end{gathered}
$$

If $\left.\frac{\sigma_{1}}{\mu_{1}}\right)>\left(\frac{\sigma_{2}}{\mu_{2}}\right)$ then $\frac{\partial y_{2}}{\partial r}>0$ and similarly $\frac{\partial y_{1}}{\partial r}<0 . \operatorname{If}\left(\frac{\sigma_{2}}{\mu_{2}}\right)>\left(\frac{\sigma_{1}}{\mu_{1}}\right)$ then $\frac{\partial y_{2}}{\partial r}<0$ and similarly $\frac{\partial y_{1}}{\partial r}>0$. Thus increases in r cause increases in the least risky activity.

Proof of Assertion 4: The shift of the efficiency frontier can be deduced from the change in the slope of frontier with respect to variations in r. This is done by examing the derivative of $-\lambda_{0}=\frac{d V}{d E}$.

$$
\frac{d V}{d E}=\frac{2 \sigma_{1}^{2} \sigma_{2}^{2}\left(1-r^{2}\right) E}{\mu_{1}^{2} \sigma_{2}^{2}-2 r \sigma_{1} \sigma_{2} \mu_{1} \mu_{2}+\mu_{2} \sigma_{1}^{2}}
$$

$$
\frac{\partial\left(\frac{d V}{d E}\right)}{\partial r}=\Phi\left[r^{2}-r\left(\frac{\mu_{1}^{2} \sigma_{2}^{2}+\mu_{2}^{2} \sigma_{1}^{2}}{\sigma_{1} \sigma_{2} \mu_{1} \mu_{2}}\right)+1\right]
$$

where

$$
\Phi=\frac{4 \sigma_{1}^{2} \sigma_{2}^{2} E}{\left(\mu_{1}^{2} \sigma_{2}^{2}-2 r \sigma_{1} \sigma_{2} \mu_{1} \mu_{2}+\mu_{2}^{2} \sigma_{1}^{2}\right)^{2}}>0
$$

recalling that

$$
k_{1}=\left(\frac{\sigma_{2}}{\mu_{2}}\right) /\left(\frac{\sigma_{1}}{\mu_{1}}\right) \text { and } k_{2}=\left(\frac{\sigma_{1}}{\mu_{1}}\right) /\left(\frac{\sigma_{2}}{\mu_{2}}\right)
$$

then arranging the terms accordingly

$$
\frac{\partial \frac{d V}{d E}}{\partial r}=\Phi \sigma_{1} \sigma_{2} \mu_{1} \mu_{2}\left[r^{2}-r k_{1}-r k_{2}+1\right]
$$

Now define r^{*} as the minimum of k_{1} and k_{2} and note that $0<r^{*}<1$ since $k_{1} k_{2}=1$ and $k_{1}, k_{2}>0$. Suppose $r^{*}=k_{1}$, then $\mathrm{k}_{2}=\frac{1}{\mathrm{r}}$. Thus

$$
\frac{\partial\left(\frac{d V}{d E}\right)}{\partial r}=\frac{\Phi \sigma_{1} \sigma_{2} \mu_{1} \mu_{2}}{r^{*}}\left[r^{2} r^{*}-r r^{* 2}-r+r^{*}\right]
$$

$$
\partial\left(\frac{d V}{d E}\right)=\Phi \frac{\sigma_{1} \sigma_{2} \mu_{1} \mu_{2}}{r^{*}}\left(1-r r^{*}\right)\left(r^{*}-r\right)
$$

hence if $-1<r<r^{*}$ then $\frac{\partial\left(\frac{d V}{d E}\right)^{r}}{\partial r}>0$. Thus, increases in r cause the efficiency frontier to rise more steeply throughout.

Proof of Assertion 5: This assertion is established from the derivative of the expansion path. First consider that

$$
\frac{\partial y_{2}}{\partial u_{2}}=\frac{\sigma_{1}^{2} y_{1} \mu_{1}\left(1-r^{2}\right)}{\left(\mu_{1} \sigma_{2}-r_{2} \sigma_{1}\right)^{2}}>0
$$

Thus, increases in μ_{2} cause increases in $y_{2^{\circ}}$ Next consider that

$$
\frac{\partial y_{2}}{\partial u_{1}}=\frac{\sigma_{1}^{2} y_{1} \mu_{2}\left(\mathrm{r}^{2}-1\right)}{\left(\mu_{1} \sigma_{2}-\mathrm{r} \mu_{2} \sigma_{1}\right)^{2}}<0
$$

Thus, increases in μ_{1} cause decreases in y_{2}.
Proof of Assertion 6: This assertion is established from the derivative of $\frac{d V}{d E}$ with respect to μ_{1}.

$$
\frac{\partial\left(\frac{d V}{d E}\right)}{\partial \mu_{1}}=\frac{-4 \sigma_{1}^{3} \sigma_{2}^{3}\left(1-r^{2}\right) E_{\mu_{2}}\left(r^{*}-r\right)}{\left(\mu_{1}^{2} \sigma_{2}^{2}-2 r \sigma_{1} \sigma_{2} \mu_{1} \mu_{2}+\mu_{2}^{2} \sigma_{1}^{2}\right)^{2}}
$$

If $r<r^{*}$ then $\frac{\partial\left(\frac{d V}{d E}\right)}{\partial \mu_{1}}<0$. Thus, increases in μ_{1} (or μ_{2}) cause the efficiency frontier to rise less steeply throughout.

Proof of Assertion 7: This assertion is established from the derivatives of the expansion path. First consider

$$
\frac{\partial y_{2}}{\partial \sigma_{2}}=\frac{-y_{1} \sigma_{1}}{\sigma_{2}^{2}\left(\mu_{1} \sigma_{2}-r \mu_{2} \sigma_{1}\right)^{2}}\left[r \mu_{1} \sigma_{2}\left(\mu_{1} \sigma_{2}-r \mu_{2} \sigma_{1}\right)+\left(2 \mu_{1} \sigma_{2}-\mathrm{r} \mu_{2} \sigma_{1}\right)\left(\mu_{2} \sigma_{1}-\mathrm{r} \mu_{1} \sigma_{2}\right)\right]
$$

letting $\mathrm{r}^{*}=\left(\frac{\sigma_{2}}{\mu_{2}}\right) /\left(\frac{\sigma_{1}}{\mu_{1}}\right)$ and noting that $0<\mathrm{r}^{*}<1$ and $-1<\mathrm{r}<\mathrm{r}^{*}$ then

$$
\frac{\partial y_{2}}{\partial \sigma_{2}}=\frac{-y_{1} \sigma_{1}}{\sigma_{2}^{2}\left(\mu_{1} \sigma_{2}-r_{\mu} \sigma_{1}\right)^{2}}\left[\mu_{2}^{2} \sigma_{1}^{2}\left(\mathrm{r}^{*}-\mathrm{r}\right)+\mu_{1}^{2} \sigma_{2}^{2}\left(\frac{1}{r^{*}}-\mathrm{r}\right)\right]<0
$$

Thus, increases in σ_{2} cause decreased in y_{2}. Second consider

$$
\frac{\partial \mathrm{y}_{2}}{\partial \sigma_{1}}=\frac{\mathrm{y}_{1}}{\sigma_{2}\left(\mu_{1} \sigma_{2}-\mathrm{r}_{2} \sigma_{1}\right)^{2}}\left[\left(2 \mu_{2} \sigma_{1}-\mathrm{r} \mu_{1} \sigma_{2}\right)\left(\mu_{1} \sigma_{2}-\mathrm{r}_{2} \sigma_{2}\right)+\mathrm{r}_{2} \sigma_{2}\left(\mu_{2} \sigma_{1}-\mathrm{r}_{\mu_{1}} \sigma_{2}\right)\right]
$$

letting $\mathrm{r}^{*}=\left(\frac{\sigma_{2}}{\mu_{2}}\right) /\left(\frac{\sigma_{1}}{\mu_{1}}\right)$ and noting that $0<\mathrm{r}^{*}<1$ and $-1<\mathrm{r}<\mathrm{r}^{*}$ then

$$
\frac{\partial y_{2}}{\partial \sigma_{1}^{2}}=\frac{y_{1}}{\sigma_{2}\left(\mu_{1} \sigma_{2}-r \mu_{2} \sigma_{1}\right)^{2}}\left[\mu_{2} \sigma_{1}^{2}\left(r^{*}-r\right)+\mu_{1}^{2} \sigma_{2}^{2}\left(\frac{1}{{ }_{r}^{*}}-r\right)\right]>0
$$

Thus, increases in σ_{1} cause increases in y_{2}
Proof of Assertion 8: The proof of the assertion follows from the derivative of the slope of the efficiency frontier.

$$
\frac{\partial\left(\frac{d V}{d E}\right)}{\partial \sigma_{1}}=\frac{4 \sigma_{1} \sigma_{2}^{2}\left(1-r^{2}\right) E}{\left(\mu_{1}^{2} \sigma_{2}^{2}-2 r \sigma_{1} \sigma_{2} \mu_{1} \mu_{2}+\mu_{2}^{2} \sigma_{1}^{2}\right)^{2}}\left[\mu_{1}^{2} \sigma_{2}^{2}-r \sigma_{1} \sigma_{2} \mu_{1} \mu_{2}\right]
$$

letting $\mathrm{r}^{*}=\left(\frac{\sigma_{2}}{\mu_{2}}\right) /\left(\frac{\sigma_{1}}{\mu_{1}}\right)$ and noting $0<\mathrm{r}^{*}<1$ and $-1<\mathrm{r}<\mathrm{r}^{*}$ ther

$$
\frac{\partial\left(\frac{\mathrm{dV}}{\mathrm{dE}}\right)}{\partial \sigma_{1}}=\frac{4 \sigma_{1}^{2} \sigma_{2}^{3} \mu_{1} \mu_{2}\left(1-r^{2}\right) E\left(r^{*}-r\right)}{\left(\mu_{1}^{2} \sigma_{2}^{2}-2 r \sigma_{1} \sigma_{2} \mu_{1} \mu_{2}+\mu_{2}^{2} \sigma_{1}^{2}\right)^{2}}>0
$$

Thus, increases in σ_{1} cause the slope of the efficiency frontier to be steeper throughout.

APPENDIX C

FORMS FOR OBTAINING COST AND INCOME DATA

NAME

ADDRESS

REMARKS:
DATE

I. AVAILABLE RESOURCES

A. Land Available for Crops (acres)

Class I			Class II	Class III		Total
Owned						
Rented						
Total						

B. Labor Available for Crops (hours per month)

| Month | Operator | Family | Hired |
| :--- | :--- | :--- | :--- | :--- |
| January
 Total
 February
 March
 April
 May
 June
 July
 August
 September
 October
 November
 December | | | |

C. Irrigation Water (acre inches per month)

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Ded
Amount												

D. Operating Captial (\$\$)

MAXIMUM EXPOSURE \square

Crop Name	Price Estimate			Yield Estimate			Land Restrictions		
	Most Pessimistic	Most Likely	Most Optimistic	Most Pessimistic	Most Likely	Most Optimistic	Land Class	$\begin{array}{\|l\|} \hline \text { Max. } \\ \text { Acres } \\ \hline \end{array}$	Min. Acres
	.								

A. Labor Required (Hours per acre per month)

Month	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec
Hours per Acre												

B. Irrigation Water Requested (Acre inches per acre per month)

Month	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec
Acre inches per Acre												

C. Operating Capital Required (\$\$ per acre and \% per month)

Item		Amount	Month of Revenue or Expense in \%												
		Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec		
-	crop sales														
a															
$\stackrel{\square}{8}$															
:	Total														
	mach. equip														
	fertilizer														
$\stackrel{4}{6}$	spray dust														
d	seed														
	supplies														
¢															
	Total														
Gro	s Margin														

APPENDIX D
COMPUTER PROGRAMS


```
OR BLANKS.
SET IJP OF PRİCE ȦND ÝIELI DATA.
    IF YOU ENTFRED İ IN COLUMN & OF C̈ONTROL CADD YOU MUST O
    SUPPLY PARAMETERS OF PRICE AND YTELD FOR TDIANGULAR 00065
    DISTRIBIITION AND AN FSTIMATE FOR VARIABLE FOOST. FOR YOUR 00066
    CONVENIENCF USE A SEPARATVE CARD ḞOR EACH ACTIVITY. MAKE SE 00067
    SURE THAT YOUU PUT CARDS IN EXACTGY SAME ORDER AS LABELSS. OOO6B
    FER EACH ACTIVITY ENTER THE REQUTRED DATA INN THE OABELSO
    FOLLOWING GRDER, SEPARATING EACH ENTRY RY RLANKS OR COMMA 00070
        MOST PESSIMISTIC PRICE 00071
        MOST LIKELY PRICE 00072
        MEST OPTIMPSTIC PRICE
        MEST゙ PESSIMISTIC YIELD
        MEST LIKELYY YIELD
        MOST OPTIMISTIC YPELD
        VARIABLE CEST PER UNIT OF ACTIVITY
    IF YOUJ ENTFRED 亏 IN COLUNN 6 GF C̈ONTRCL CADD YOU MUST
    SUPPLY MEAN AND VARIANCE ESTIMATES FER ORITEE AND YIELD
    AND AN ESTIMATE FOR VARIABLF COST. FOR YOUR CONVENIENCE
    USE A SEPARATE CARD FOR EACH ACTIVITY. MAKE SURE THAT YOU
    PIJT CARDS IN EXACTLY SAME GRDER AS LABELS. FOR EACH
    ACTIVITY ENTER THE REQUIRED DATA IN THE FGILOWING GRDER
    SEPARATING EACH ENTRY BY BLANKS OR COMMA.
    mEAN ORICE
    MEAN ȲIELD
    VARIANCE OF PRİCE 00089
    MARIANCE OF YIELD 00090
    VARIANCE OF YIELD UNIT OF ACTIVITY 00091
    VARIABLE COST PER UNIT OF ACTIVITY 00092
    IF YOU ENTFRED 3 IN COLUMN 6 OF C̈ONTROL CARD YOU MUST 0
    SUPPLY MEARED ONOM4
    EACH ACTIVY AND STANNARD DEVIATIONS OF GROSS MARGIN FOR 00095
    EACH ACTIVITY. FIRST ENTFR THE MEAN GROSS MARGIN FOR 0, 00096
    EACH ACTIVITYY IN EXACTLY SAME ORDER AS ACTIVITIES ARE O
    IN LABEL CARDS.SEPARATING EACH ENTRY BY BLANKS OR COMMA. 00098
    THEN ENTER STAND̈ARD NEVIATIONS OF
    ACTIVITY IN EXAC̈TLY SAME GRDER AS ACTIVITIFS ARE ON LABEL 00IOO
    CARDS SEPARATING EACH ENTRY RY BLANKS GR COMMA.
        \HE PRICE ANḊ YTELD ÑATA SHOULD NOW BE COMPLFTE. ON A NEW CARD
        ENTER 9999
SET UP OF CORRELAATION MATRIX.
    IF YOU ENTFRED İ OR 3 IN COLUMN A OF CONTREL CARD THE 00107
```



```
    IF YOU ENTERED j IN COLUMN a of C̈ONTROL CARD, THEN YOU 00ILIO
    MUST SUPPLY THE UPPER TRITANGLE OF AN N=DIMENSIONAL YOU ON ONTII
    CCRRELATIGN.MATRIX. ENTER THE ELEMENTS RY ROW. WHEN ONGO
    YOU HAVE ENTERED THE REQUIIRED ELEMENTS, ENTER 9999 ON A O ONOIIM
    NEW LINE. 
00115
THIS COMPLETES THE COERRELATION DATA. 00116
SET UP OF COEFFFOIENT MATAIX AAID
    ENTER ACTIVIITIES AND RESOUUCES IN EXACTLY SAME ORDER AS OOIIG
    LABEL CARDS. FOR THE COEFFICIENT MATRIX ACFIVITIES ARE
    ROWS AND RESOURC̈ES ARE COLUMNS. FOR THE FIRST ACTIVITY
00101
00102
00103
00104
00105
00106
00112
00117
SET UP OF CCEFFICIENT MATRIX AAI?.
00120
00121
```

```
            ENTER RESOIIRCE REQUIREMENTS ON HOWEVER MANY CARDS NEEDED 00I22
            SEPARATING EACH ENTRY BY BLANKS OR COMMA. OEPEAT UNTTL O
            ALL ACTIVITIES ARE ËOMPLFTE. YOU SHOULD HAVE AN NXM 0
            MATRIX WITH. THE RIGHT SQUARE PGRTION AN NXN NEGATIVE 00125
            IOENTITY MATRIX, ON A NEW CARD ENTER 9999 00126
        THIS COMPLETES THE COEEFFICIENT MATRIX 00127
        SET UP OF RESOUPCO LEVEL VECTOR GQ 0012R
            ENTER ALL OF THE RESOURCE LEVELS. MAKE SURE THAT THE 00130
            LAST N ELEMENTS ARE EITHER IERC OR NEGATIVF NUMBERS. WHEN 00131
            YOU HAVE ENTERED EVERY ELEMFNT. FNTER 9999 ON A NEW LINE. 00132
            00133
        yOU have now EnṫEREd_all of the data. AS a Finai check make 00134
        SURE ALL DATA LJNES ढ̈ONFORM TO THE ORN̈ER OF THE LABEL CARDS. 00135
        NOW FILE THE DATA AND GEON LUCKK 00136
                                    00137
                                    00138
                                    00139
    DİREC̄TCRY OF LCGICAi` UNİ̈ NUMRERS 00140
        L'UN 1 = DATA FॅILLE 00142
        LUN 2 CORRELATION MATRIX FILLF 00143
        LUN 3 LETTER FILE 00144
```



```
        LUN 5 = FILE ISTORES INTCRMATION F̈GR INPIJT TO PRCGRAM 00I46
        UUN 6 PLET PROCESS) (PIOTTER) 00147
    LUN 34 : LP LLINE PRTNTERI 00148
    LUN 61 = TELETYFPE GUTPUT. 001500
    00150
    00151
```



```
    ICORR(20,20),A111(20,2O0),AAIZ(20,10N),GG(10O),VAR(20,4),AMEAN(20,4) 00154
    2,IDSLK(100);IDAAI2(100), LINVEI, IWÄNT
        00155
    NIINN1,1000) M,N,IHAVEI|IHAVEZ,IWANT
    N1=N+1
    N2=N+2
    NM=N+M
    NM1 =NM+1
        00156
        00157
        00158
        00159
    NMZ=NM+2 00160
    WRITE(4) M,N,NI,NZ,NM,NMI,NMZ゙,IHAÖEİIHAVFZ,IWANT 0016i
    WRITE(5) M,N,N1,N2,NM,NMÏ.NM2;IHAÖE2 00163
```



```
    DE io I=İNM2
    READ(1,1001)(RLAB(I',j),J\\overline{1},2i:MD(i)
    WRITE(4) RLAB
    G0 TQ(20,30,40),IHAÜEI
    DO 21 I=1,N
    DQ 21 J=1,7
    PARAM(I,J)=FFIN(I)
    KC̄HECK=FFIN(I)
    IF(KCHECK.NE.9999) OC IO 090 00171
    AC TC 990
    WRITE (4) PARAM
    DO 22 I=I,N
    AMEAN(I,I)=(PARAM(I;I) +PARAM(I, 2), PARAM(I;3))/3.0
    AMEAN(I,2)=(PARAM(I;4) &PARAM(I;5)*PARAM(I,6))/3.0
    YAR(I,1)=((PARAMII,3)-PARAM(I,1))O゙2-iPARAM(I,2)-PARAM(I,I))
    I*SPARAM(I,3)-PARAM (I, 2i)i/18,0
    YAR(İ2) =((PARAM(I 0)}0017
```



```
I*(PARAM(I,6)-PARAM(I,5))I/18.0
    VAR(I,3)=VAR(I,I)"VAR(I,2)*VAR(I,I)*AMEAN(I,2)**2*#̈AR(I,2) 00181
    I#ÄMEANN(I;1)*#2
    AMEAN(I,3)=AMEAN(I;Tj) AMEAN(I;2)
001̈%z
00183
```

```
    AMEAN(I:4)=AMEAN(I,91-PARAM(I',7) 00184
7
    \7 VAR(I,4)=SQRT(VAR(I;3))
    VAR(I,4)=SQRT(VAR(I;3))
    GO TO 44
    DO 31 I =1,N
    D: 3! JE1,3
        00187
        00188
        AMEAN(I,J)=FFIN(\overline{)}}00018
        DO 32 I=1,N
        00190
        00191
    D@ 32 J=1,2
    VAR(IOJ)=FFIN(1)
        00193
    KCHECK=FFIN(1)
    jF(KCHHECK.NE.9999) O' TO 991 00194
    MS (33I=1,N (9999) GO TC 991 00195
    AMEAN(I,4) =AMEAN(I,3j)
    AMEAN(I,3)=AMEAN(I,1j*AMEAN(1,2) 00198
    AMEAN(I;4)=AMEANII;3)-AMEAN(I;4)}0019
```



```
    I#AMEAN(I,1)%%2
        00201
    VÄR(I;4) =SQRT(VAR(I:3))
        00201
    IF DESIRED A WRITE gTATEMENT CAN gO hERE
        00203
    GO TO 44
        00204
    DS 41 I=1]NN 00205
    AMEAN(I,4)=FFIN(T) 00206
    DÓ42 I=1,N
    VAR(I,4)=FFIN(1) 00207
    KC̈HECKaFFIN(î)
        C020B
        00209
    IF(KCHECK.NE.9999) GO TO 992 00210
    DO 43 IEION
        00211
    DC 43 JEI,M=0.0
        00212
    43 YÄR(Í,J)=0.0
        00213
        00214
    C IF OESIRED A WRITE STAATEMENT CAN GO HERE
        00215
    CONTINUE 
        00216
        DQ 45 l=1,N
        00217
    04,45 1=1,N 00218
    WRITE(34,1003) I,(AMEAN(İ,J),J=1,4),(VAR(İ,J),J=1,4;)}0021
    WRITE(4) AMEAN
    WRITE (4) AMEAN
        00220
        00221
        Gं IO (50,60,70),IHAÜE2 00222
    REWIND 2
    READI2) RR
    00223
        00224
        DE 51.I=1,N
    II=MD(I)
        00225
        00226
        D\hat{. 5iL.j=1,N 0022%}
        J=M=MO(J).
        00228
    ĈZRRII:J)=RRIII,JJ)}0022
    Sī ÇERR(I!J)=RRIII,jJ)
C IF DESIRED A WRITE STATTEMENT CAN GO HERE GO TO 72 00% 0023O
60
    OCOLI I=I,N
        00231
        OQ 6I J=INN
        00232
        lom
        ll
        CORRSJ,I)=CORR(I;J) 00235
        KCHECK=FFIN(1)
        00236
        IF(KCHECK.NE.9999) Ô ¡OO 993 00237
\̀ IF DESIRED A WRITE STATEMENT CAN GO HERE 00237
```



```
    DO 71 IMINN
        00238
    DQT\overline{T}
    00240
    CORR(I.J)=0.Ö 
\\overline{1}
00243
ec IF DESIRED A WRITE STATEMENT (̇AN GO HERE
00244
    CONTINUE
00245
```

104	WRITE(34,1006)	00246
	$00 \text { IO4 Im1 N }$	00247
	WRITF (34,1003) I, (CerR (I, J) , J=1,N)	00248
	WRITE (4) CORR	00249
	DO RO IEI,N	$0025{ }^{\circ}$
	De $80 . j=1$ N	00251
Rn		00252
	Do bil Jmin	00253
	Oob Bil $1=10 N$	00254
81		00255
	DG R $\mathrm{R}^{\text {c }} \mathrm{I}=10 \mathrm{~N}$	00256
	Dê R己̇ Jaîn	00257
R 7	All 1 (1)J) $=2 \cdot 0$ CORR(T; J)	00258
87	Dá83 Imion	00259
	Al1 (IT,NI) =AMEAN(İ4)	00260
	Dér 8 Jaj N	00261
84	Al 1 ($\mathrm{Ni}, \mathrm{J})=A M E A N(J .4)$	00262
	All(N1,N1) $=0.0$	00263
C	IF DESIRED A WRITE STATEMENT CAN GO HERE	00264
	WRITE (34.1007)	00265
	Da $105 \mathrm{I}=1$ N1	00266
105	WRITF(34,1003) I, (AĨ亍 (I,J), J=1],N1)	00267
	WRITE(4) All	00268
	WRITE(5) All	00269
	De $901=10 \mathrm{~N}$	00270
	Dg $90 . \mathrm{Jmj}$, M	00271
90	AAI2(I, J) =FFIN(I)	00272
	KCHECK=FFIN(1)	00273
	IF (KCHECK.NE.9999) ¢̣̂ Ṫ̃ 994	00274
C	IF DESIRED A ERITE StATEmENT CAN go here	00275
	WRITE (34,1002)	002276
106	Dìlo6 Jelom	00377
	WRITE(34,1003) J, (AAI2(I, J),İ1,N)	00278
	WRITE (4) AAI?	00279
	WRITE(5) AAIL	00280
	DO 91 IEİM	00281
91	GG(I) FFFIN(1)	00282
	KCHECK=FFIN(1)	00283
	IFIKCHECK. NE.9999) 9 OOTO 995	00284
C	IF DESIRED A WRITE STATEMENT ĊAN GO HERE	00285
	WRITE (34,1009)	00286
		00287
107	WRITE(34,1003) I,GG(I)	00288
	WRITE(4) GG	00289
	WRITE(5) GG	00290
	K=0	00291
	IFITHAVEZ.EQ.3) 0 O TO IOA	00292
	MN\#M-N	00293
	MNI $\mathrm{MN}+1$	00294
	QQ $1091 \mathrm{l}, \mathrm{MN}$	00295
Ī9	IDAA12(I)EI	00296
	ACVE9999999.	00297
		00298
		00299
	ACVEVAR (I,4)/AMEAN(1,4)	003000
Tio	CONTINUE	00301
	DC MIII İION	00302
	IEMIN.NE.I) GO TO TIT	00303
	İAAI2 2 (MNI) $=1+\mathrm{MN}$	00304
	GQ in lill	00305
112	$K=K+1$	00307

111	InSLK $(K)=1+M N$	00308
	CONTINUE	00309
	WRITE (5) K	00310
	WRITE (5)IDAAI2	00311
	WRITE(5) IDSLK	00312
	MK=M-K	00313
	WRITE(61.1017) K	00314
	WRITE(61.1017) (IDAAİ(I) 1 (x1,MK)	00315
	WRITE(61, 1017) (IDSLK(I), I=1,K)	00316
1017	FORMAT (/1014/1014/10I4/1014)	00317
108	WRITF(61, 1004)(RLAR (NMİ, J), J=1,2)	00318
	Ge TO 999	00319
900	WRITE(61,1010)	00320
	GÓ Tín 998	00321
001	WRITE(61,101])	00322
	G0 TO. 998	00323
99?	WRITE(61,1012)	00324
	GÔTO 998	00325
90.3	WGITE(61;1013)	00326
904	G¢̂ T0 998	00327
	WRITE (61.1014)	00328
	G¢ TE 998	00329
905	WRITE (61.1015)	00330
	GA T0 998	00331
998	WRITE(61,1016)	00332
	G0 TO 999	00333
1000	FóRMAT (5I2)	00334
101	FORMAT (2A8, 4×12)	00335
1002	FORMÄT(\#1 THE INPUT MATRİX AAT2*)	00336
1003		00337
1004	FORMÄT (1X,2AB\#Y	00338
1005	FORMÄT (\#l 1 THE MEANS AND VARIANĒES\#;	00339
1006	FORMAT (\ddagger ITHE COVARIANCE MATRIX C)	00340
1007		00341
1008		00342
1009	FORMAT (\#1 THE INPIUT MATRIX GG*)	00343
1010	FORMATIA ERRER IN TḦE INPUT OF THE PARAMETERS OF THE\#	00344
	1\# TRIANGULAR DISTRIRUTICN\#)	00345
1011	F¢RMĀ̇ (\# ERRER IN THE YIELD AND PRICE PARÄMETER INPITT\#)	00346
1012	FORMAT(\# ERRCR IN THE GROSS INCOME INPUT\#	00347
1013 1014	FORMAT (\# ERRCR IN THE CORRELAIICN CCEFFICIENT INPUT*)	00348
1014	FCRMATI\# ERRCR IN THE PRCDUCTIEN COEFFICIENT INPUT\#	00349
1015	FGRMATT (\# ERRGR IN THE AVAILABLE RESOURCES INPUT\#)	00350
${ }_{0}^{1016}$	FORMAT(${ }^{\text {cal }}$ CALCULATION NOT COMPLETEN. CHECK THE INDICATED DATAF)	00351
999	$\begin{aligned} & \text { CALLL EXIT } \\ & \text { END } \end{aligned}$	$\begin{aligned} & 00352 \\ & 00353 \end{aligned}$

PRCGRAM PROCESS 00001CEMMON All,A12,AA12;GG,G;RG,S;IDSLK,IDAA1Ż,K,KI,MK;MK1
ínIK.RIIKK. 00002 00003$1 \mathrm{~N}, \mathrm{M}$.
 00004
EQUIVALENCE (Allfl,i),Blī(1)) 00005
1,(AA12(1,1),C(1,1)) 00006
 00007
1R11(1),B11K(20,20), C(20.100), R1IKK(20,20) 00008
?-G(100),RG(121).S(1フ1) 00009
3.IN(100),IDAA12(100).IOSLK(100) 00010
4, AAIZ(20,100),GG(10त̃) 00011
6.OUT1(7), OUT2(21, 3), OUT3(ī00.4) 00012 00012
5.R(121). АСТ(121)
00014
00014
7, IDSLKB (100), IDAB12ī̃oõ 00015
c. READING GF GRIGINAL DATA
00016
00016
READ (5) M,N,N1,N2,NM,NM1,NM2,iHAVF2 00017
READ(5) All
READ(5) All 00018
READ (5) AA12 00019
READ(5) GG
00020
00020
SSMIN=0.0
00021
00021
1 COUSNT $=0$
00022
00022
$K=0$
$K=0$
00023
00023
IF(IHAVE2.EQ.3) GO ŤO 620̄0
IF(IHAVE2.EQ.3) GO ŤO 620̄0
00024
00024
READ(5) K 00025
READ(5) IDAA12
00026
00026
READi5) IDSLK 00027
GE TO 6300
00028
6700 OO 2 I=1, M
00029
00029
IDSLE (I)=0
IDSLE (I)=0
00039
00039
IDAAI?(I)=I
IDAAI?(I)=I 00031
6300 1\$TEP= 0 00032
GñO KlEK+1 00033
K1 KK+1
K1 KK+1 00034
MK $=M-K$
00035
MKI=MaK-1
00036
00036
$\mathrm{NI}=\mathrm{N}+1$ 00037
$\mathrm{N} 2=\mathrm{N}+2$
00038
00038
$N K 1=N+K+\overline{1}$
00039
00039
NK2EN+K+2
00040
00040
$N M I=N+M+1$
$N M I=N+M+1$ 00041
cál comput 00042
cantinue 00043
 00044
204 WRITE(34,1013) ISTEP 00045
C ERROR MESSAGE 00046
1013 FCRMATI\#I SMAX IS GEEATER THAN SMIN DURING SṪEP: I3i 00047
CALL EXIT 00048
$20 ̄ 3$ ÍSTEPEISTEP•I 00049 00050
GUT1(1) =SMIN
00051
CUT1(2)=SMAX
00052
00052

00053
00053
OUT1(4) =0.
OUT1(4) =0.
0005
0005
OO 205 I=1,K
OO 205 I=1,K 00055
 00056
 00057
© 206 I=10K 00058
$W=0$. 0005900060

```
        lr
    207
```



```
        W=W&G(I)}00006
    00062
    TOG OUTíl(5)=W+OUT1(5) 00064
    CUTil(5)=-.5*OUTI'(5),00065
    CUTí(5)=-.5*OUTI(5)}00006
```



```
    OUTI'17)=SQRT(OUT\overline{1}(6); 
    OC 20R I=INNI 
    OUTZ(I.Z)=RG(I) 00070
OUS OUTZ(I,R)=RG(I)
        OO& OUT2(I;3)=OUT2(I,I)*OUTI(I)*OUT2(j,2)
        II=I-N1
        JJ=İ̃SLKiII)
        G|T3(JJ,I)=S(I)
        OUT3(JJ,2)=RG(I)
        0!T3(jJ,3)=0.0
```



```
209 OUT3(JJ,4)=0(JT3(JJ,İj*OUTİ(1) &OUT3(JJ,2)
        IT=I-NKI
        Jj=IDAAl己(II)
        QUT\\(JJ,1)=S(I)
        GiT3(JJ,2)=RG(I)
        - 
        CUT3(JJ,3)=OUT3(JJ,i`)*OUFII(1)&OUT3(jJ,2)
2ĩ0 CUT3(JJ,4)=0.0 (4TE(4)ISTEP 00085
2ĩ0 CUT3(JJ,4)=0.0 (1) 00, 00085
    WRITE(4) CUT1 
    WRITE(4) OUT1 
    WRITE(4), OUT3 
    WRITE(4), NUT3 
```



```
2101 IF(N.EQ.KI.AND.IMIN.GT.NKI)211.212
2iz KNO=ÓO.KI.ANO.IMIN.GT.NK1I211.212
        CALL! SELECT(IMIN:IMIN,KNO) 00094
        GOTO 600̈0 :MNNNO
```



```
    211 DO:j.213Im1,K 
2iz ACT(#)=S(JJ)#SMIN&RGiJJ)
    D\hat{0}\mathrm{ 2lit Iml,K}
        DE 214 J=10K
        IF(ACCT(I).LE.ACTIJ);214.2̇15 00101
2\overline{5 SAVVEACT(I)}
        ACTIIV)』ACT(J)
        ACT(J)=SAVE
        SAVE=IDSLK(I)
        IDSLK(I)=IDSLK(J)
        IDSLE'(J)=SAVE
2i4 CONTINUE
        SSMIN=SMIN
        JMINSIMIN
        DQ 2155 J=1,K
2ī55 IDSLKBiJj)=1DSLK(j) 00112
    DÓ2̄152 J=10MK 00113
2ī52 IDABIZjJj=IDAA12(J) 00114
    D@ 2151 I=1,K
        DO 2153 J=10K
```



```
2ī54 DO 2\54 J=1,MK
```



```
    KNC=1
```



```
lon
    00073
        00075
        00076
        00077
    OUTZ(IT,Z)=RG(I) 00070
lO 2O9 I=N2.NKI 00072
        00078
        00078
        00080
    00081
        00082
        GiT3(JJ,Z)=RG(I) * 00083
        CUT3(JJ,3) ョCUT3(JJ,T゙)*OUTI(1j&OUT3(j」,2)}00008
2ĩ0 CUT3(JJ,4)=0.0 00085
```



```
2101 IF(N.EQ.KI.AND.IMIN.GT.NKI)211.21j 00092
        00093
00094
    GOTA 6000 . 00095
        00096
        00098
        - }000
        DE 2I4 JeIOK 00100
00101
    WRITE(4) CUTI 
    WRITE(4) OUTI 
        00089
    WRITE(4). CUT3 1SSTEP:SMIN 0008, 00090
    00063
        00072
    FERMAT(# STEP# I3 #F IS#F2O.2j)}00091
*)
00095
00099
00102
00103
00104
00j05
00105
00106
00107
OOLOB
    00110
```



```
    00114
    00115
    C̀153 J=1.K 00116
00117
00118
    00119
    00ĩ20
00121
00122
```

```
        JMIN=.MMINS 00123
        CALL SELECT(II,JMIN;K̈NO) 00124
        call cOMput
        IF (SMIN.GE.SMAX)21G.215\ - 00126
        00125
        71K IF(SMIN.GE.SSMIN)207,2151̈ 00127
        00126
2151 CONTINIJE
        0 0 1 2 8
        ISTEP=9999 00129
        WRITF(4) ISTEP 00130
        RFWIND 4
        0013i
        CALL EXIT
        00132
    END
        00133
    HERE
        SubROUTINE COMPUT
        00135
        COMMON Al1,A12,AA12.GG,G,RG,S,IDSLK,IDAA1\overline{Z.K.K1.MK;MK1,}
        00136
        IBIIK,Q11KK, 00137
        IN:M,
        00138
        00139
    INİ, NZ,NK1,NK2,NM1,N\overline{, SMÄX,SMTN,IMAX,IMIN}
        00140
    EOUIVALENCE (A1111,i),B1I(1)):(AAI2(1,I),Ë(1,I))}0014
    DIMENSION A11(20,20),L(20),MM(20),B(20),A12(20,100): 00142
    IBI1111),B1IK(20,20),E120,100),R11KK(20,20)
    2,G(100),RG(121),S(121)
    3.IN(100);IDAA12(100I;IDSLK(100)
    4,AAI?(20,100),GG(100), RLAB(122.2)
    5,R(121),ACT(121)
    REWIND 5
    READ(5) M,N,N1,NŻ,NM,NM1,NM2,IHAVE2
    READ(5) All
    READ(5) AAIL
    READ(5) GG
00152
C ADD CONSTRAINTS TO AII\ }\because\quad0015
    IDNENI OOM 00154
    DO T j=1;k
    JJ =IOSLK(J)
    DO 2 I=1,N
    Al1(I:IDN+1)=AAI2(I:JJ)
    A11!IDN*I,I)=AA12(I!JJ)
    IDN=ION+I
    DO 3 I=NI,NK1
    D\hat{M}}
    Alí(İ,J)=0.
    SET UP AİZ
    DC 4 J=1,MK
    JJ=IDAAl?(J)
    -2, (-2)
    DO4IE1:N 00167
    Al2(I!J)=AAI2(I,jJ) 00168
    D\hat{S S NNI OKI}
    DQ 5 Jm1:MK
    S AlziTiJ)=0. 0. 00170
C SET UPGGN
        OG G_I=1;K
        IIEIOSLK(I)
    G1II=GG(II)
    IK=1
    DO ? I=KİM
    CONTINUE
    OQ O J=1,K
    IE(IDSLK(J)-IK) 8,9,8
    IK}=1\overline{K}+
    Gó İO }1
    CONTINUE
    G(I):GG(IK)
        00169
        00170
    I=IDSLK(I) 00173
    II=10SLKII) 00174
    0 0 1 7 5
    0 0 1 7 6
    00177
    00178
    00178
    00179
    00180
    00181
    00182
    00183
00184
```

7

$$
I K=\bar{i} \bar{K}+1
$$

CALL ARRAY (2,NKI.NKĪ, 20:20,A11,AĪ1)
00185
CALL ARRAY (2,NKI,MK,20,100,A12,A12) 00186
CALL MINV (BIII,NKI, त̈FT,L.MM) 00187
C. MFSSAGE FER SINGILLAD MATRIX 0018B
$I \Delta=1 \quad 00189$
DE $1 \underline{1}$ J=1.NK1 00190
OQ iT I=N1, NK
00191
IRENK1*(J-1) +1
00192
RİK(IA) $=$ Bll(IR) 00193
11 I $A=\overline{1} \bar{A}+1$
$\mathrm{c} 1=-1.0$ 00194
00195
CALL SMPY(B11K,C1,BĪ1KK,K1,NK1,0)
00196
CALL MPRD (BlIKKK.Al2,C,KI,NKl, त, O,MK) 00197
CALL ARRAY(l,Kl,NKl,20\&2Õ,Bl1K,BljK) 00198
CALL ARRAY(1,K1,MK,20,100.C.C) 00199

$R G(J)=0$.
00201
S(J) =Ailk(1:J)
De 12 I=1,K
$R G(j)=R G(J) * B I 1 K(I+I ̇ J) * G(I) \quad 00204$
DO $13 \mathrm{~J}=\mathrm{NKZ}, \mathrm{NM1} 00205$
$J j=j_{-N-1} 00206$
$R G(j)=G(J J) \quad 00207$
j j $=\mathrm{J}-\mathrm{NK} 1$ 00208
$S(J)=C(1, J J)$ 00209
 00210
$R G(J)=R G(J)+C(I+I, J j)=G(i)$ 00212
Dف $14, I=1, N M 1$
00213
IF(S'(i)) 15,16.17
00214
if $R(I)=-R G(I) / S(I)$

00215
IN(j) 1
00216
G\% TO 14
00217
T6. R(ij)=9999999.
C VALIO FOR ALL E***

İ $R(I)=-R G(I) / S(I)$
F MUST BE GREATER THAN R(I) \& *
INIIL=3
14 CONTINUE
IMAX=0
IMIN=O
SMAX $=-9999999$ 。
SMIN=9999999.
DQ $\bar{i} \dot{B} \quad I=N 2, N M 1$
$I F(I N(I)-2) 19118,20$
$I F(R(I)-S M I N) 21018,18$
00218
00219
00220
00221
00221
00222
00222
00224
14 CONTNUE 00225
00226
00227
00228
00229
00230
IFSR(I)-SMIN)21.18.18 00232
SMIN円R(I) 00333
IMINei
00234
OQ TO 18
00235
20 IF(R(I)-SMAX)18,18, خ2 00236
2̃ SMAX=R(I) 00237
í \quad CONTINEI $\quad 00239$
$\begin{array}{ll}\text { CONTINUE. } & 00239 \\ 00240\end{array}$
$\begin{array}{ll}\text { WRITE(61;9000) SMIN;SMAX } & 0024 \\ \text { FSRMÄ } \\ \text { REFRGM CGMPUT SMIN SMAX }\end{array}$
FGRMATI(F FRGM COMPUT SMIN: SMAX $\ddagger 2 F 20.2$,
RETURN
00242
00243
00244
C Subroutine select is Te be Ingertfo here 00245
SIIBROUTINE SELECT(JMÏN,IMIN,KNO) 00246
COMMON A11,A12,AA12,GG,G,RG.S,IDSLK.IDAA12,K,K1, AK, AKK1. 00247
1Rj1K, R1IKK. 0024R
IN, M. 00249
 00250
00251
 00252
 00253
2G(100), RG(121), S(121). 00254
3IN(íOO), IDAA12(100):IDSLE(100). 00255
4AA12(20:100),GG(100). 00256
5R(121), ACT(121) 00257
 00258
IF(IMIN.GT.NKI)IO.I 00259
JJIIMIN-NKI00260
InSLK $(K+\overline{1})=I D A A \overline{1}(\mathrm{~J} . i)$ 00261
DC 11 I=JJ.MK 00262
IDAAI2(I)=IDAA12(I+1) 00263
$K=K+1$ 00264
İF (KNO.EQ.1) 7,20 00265
IMIN=JMIN 00266
$J J=1 M I N-N 1$ 00267
I $I=M K+1=K N O$ 00268
DO 2 I=1, MK 00269
IF(IDAAID(II-1), GT, Ī̄StK(JJ))3,4 00270
InAA12(II)=IDAA12(1i-1) 00271
IIEIT-1 00272
0 OTO 2 00273
INAAI2(II) =IDSLK(JJ) 00274
GO TO 5 00275
CONT INUE 00276
CONTINUE 00277
DO 6 I $=J J, K$ 00278
IṬSLK(I)=IDSLK(Itl) 00279
 00280
CONTINUE 00281
KM=M-K 00282
 00283
 00284
9001 Fópmati/1013/1013/Iní3i) 00285
RETURN 00286
END 00287
fínis 00288

```
    PROGRAM OUTPUT 00001
    COMYON IARRY(12),ARRAY(2う),LARELS(63),N,KSTEP;MINC3;MAXC1;MAXC.2, 00002
    1 EMAX,OUT1,OUT2,OUTH,NINT 00003
    RFAL MINC3,MAXCIOMAXC2 00004
    COMMON/DATA/CONST(T)
```



```
    1,RLETTER(50,10),RLAR(122,2)
    2,PARAM(20,7),AMEAN(20,4),VAR (20,4), CCRR(20̈.20),
    3AI1(?0,20),AA12(20,100),GG(10N)
    EOUÏVALENCE (PART1(1.1),PART?(1))
    RFAN(4) M,N,N1,N2,NM,NM1,NM2,THAVE1,THAVEZ̈,IWANT
    RFAO(4) RLAB
    IF(IHAVEI.GT.1) GO ío g
    Rfani(4) param
    RFAO(4) AMEAN 00014
    - 00015
    RFAD(4) VAR 00016
    AFAn(4) CORR 00017
    DFAD(4) All
    REAM(4) AAI2 00018
    RFAQ(4) GG
    00019
    RFWIND }
    00020
    [PAGF=1
    RFAD(3,10005)((RLETYFR(I,J),J=1.10̃).İ=1,50)
    00023
    WRITE(34,10001)(RLAR(NM1,J),J=1,2),IPAGE 00024
    IPAGF=IPAGE*1
        00025
    WRITE(34,10003) (RLAR(NML:J):J=1,2) 00026
    WRITE(34,10003)(RLAR(NM1:J),J=1,2)
    WRITF(34;10006)
        00027
    IF(IWANT.EQ.1) 10,11
        0002B
    WRITE(34,10000) (IRLFÏTERII,J),J=1,10),i=1,48)}0002
    GO TE 12 0003í
        00030
    WQITTE(34,10000)((RLFİTER'íq,J),J=1;10),I=1;35)
        00031
        WRITE(34,10000)(RLETFER(50.J),J=1,10)
        00032
        WRITE; 34,10000)(iRLFTTTER(I,J),J=1,10),I=4\overline{I,48)}00034
    CONTINUE
        00034
c
C PREPARATION OF PART ONE
        00036
        MTNNC3=MAXCI=MAXC2̈=0 0003%
        KCC=\overline{1}
    KC=Õ 0-00039
        00038
    REWIND 5 STSP 00040
    REAO(4) ISTEP 00041
    IFIISTEP.EQ.9999.ANÑ.I.EQ.91 GO TO lij3 00042
    IF(ISTEP,EQ.9999) 10゙4.10̄̆1 00043
101 I=ISTEP-KC
    KSTEPIISTEP OMOD
    00044
    RFAN(4) OUT1 00046
    READ(4) CUT2 00047
    READ(4) OUT3 00048
    WRITE(5) ISTEP 00049
    WRITE(5) OUT1 00050
    WRITF(5) OUT2 00051
    WRITE(5) OUT3 00052
    MAXCR=OUİ1(7) 00053
    EMAX=QUTí(1) 00054
    DO inz J=loN
    IF(QUTZ(J,3),GT,MAXÖĨ)MAXCl=OUT2(方,3) 00055
    PARTII(J,I)=OUTZ(J,3) 00057
    DOTTO J=N1,NM 00058
    Jj=y-N
    PARRTi(J.I)=0゙uT3(JJ.3i)
0 0 0 6 0
```

```
    PARTMICNM1.I)=CUTİ(1) 00061
    PARTI(NM2,I)=CUTİ(7) 00062
    DG iO40 J=N1,NM 00063
    J.J.J-N
    IF(GG(JJ)) 1041,1041,104%
    In4? PARTl(J,I)=GG(JJ)-PARTj(J.1) 0006R
    1040 CONTINUE 00069
    D: 1046 J=1.M
    JIJ&NMR+J 0007i
    00070
    1046 PARTí(JJJ.I)=-OUT3(.l,4)/OUT2(N1,3j
    IF(I.EQ.9) 104,100
    104 II=I
    KP=KC
    LP=KC+II
    KC=KC*9
    IF(KCC.EQ.l) 105,10R
    WR1TF(34,1009) IPAGF
    [PAGE=IPAGE+1
    KCC=KCCC+1
IPAGE=IPAGE+1 00085
107 WRITF(34:1012) 00086
    WPITF(34,1001) 00087
    WRITE(34,1003) (IP,ī=KPP.LP) 00088
    WRITE(34,1004) 00089
    WRIIE(34,1002) 00090
    DC lOR J=1,N
1OA WRITFi34,1006)(RLAB'(j,JJ).JJ=Ĩ,2):(PART1(j,1),I=1,IT)
00091
    WRITE(34,1002)
    WRITE(34,1007)(PARTI'NM1;I),İI,IT)
    00092
    00093
    WRITE(34,1008)(PART1(NM2,I),1=1,IT)
    WPITE(34;1000)
    WRITE(34,1010) IPAGF
    IPAGE=1PAGE+1
    WRITF(34,1001)
    WRITE(34,1003)(IP,ID=KR,I'P)
    WRITE(34,1005)
    WRITE(34;1002)
    LCC=0
    LC=0
        DC 109 J=Nl,NM
        JN=J*N
        LCC=!CCC+1
        LC=LC+1
        IEILCC.EQ.40) 110.111 00109
110 LCC=0 00110
    LCC=0
        00111
    WRITE(34:1000) 00Il12
    WRITE(34,1000) 00113
    WRITE(34,1010) IPAGF
    WRITE(34,1010) IPAGF 00114
    IPAGE=1PAGE +1
    WRITE(34,1014)
    0 0 1 1 5
    WRITE(34,1001)
    WRITE(34,1003)(IP,IP̈=KP,L'P) 001177
    WRITE(34,1005)
    00116
    WRITE(34,1005) 00118
    4-00119
    Ge. T\े 109 00120
IT1 IF(LC.EQ.5) 112,109 00121
0012?
```

```
l1? Lëz0}0012
    WDITE(34,100R) 00124
    WRITE(34,1006)(RLAB(J,JJ),JJ=1,2),(PARTI(j,I).I=1,Ti)}0012
    WDITF(34,1002)
    WRITEI34,1007)(PARTİ(NM1;I),I=1,IT\
    WOITE(34,100B)(PARTI'(NM2,I),I=1,IT)
    WAITE(34,1000)
    WRITE(34,1010) IPAGF 00120
    IPAGF=[PAGE*!
    WAITE(34,1020)
    WDITF(34,1001)
    WOITE(34;1003)(IP,IDEKKP,(P)
    LCC=-1
    L\grave{=}=-\overline{1}
    DC 115 J=10M
    JN=, I+N
    JJJ=NM2*J
    LC=\CC+1
    Lralcel
    IF(LÇC.LT.40) OO TO İ16
    L.CC=0
    LC}=
    WQITE(34:1000}
    WRITE(34,1010) IPAGF
    IPAGE=IPAGE*1
    WRITE(34,1021) 00147
    4,00149
    WRITE(34,1003)(IP,ID=KK,L'D) 00150
    WRITE(34,1005)
        00151
    WRITE(34,1002) 00152
    WPITF(34,1000) 00153
    GOT: 115 00 TO ITE 00154
    IF(LCOLT.5) GO TO 1\overline{15}
    LC=O
    WEIIE(34,1002) 00157
        00156
    WRITE(34,1006)(RLABi(JN,JJ),JJ=1,2i, (PARTI'(JJJ,I),Imī,II)
    WRITE(34;1002)
    WRITE(34,1007)(PARTİINM1,I),I=1,Iİ)}0016
    00158
    00159
    WRITE(34,1008)(PARTI'(NM2,I)II=1,IT) 00161
    WRITE{34,1000) 00162
1020
    FORMAT (#O A STATEMENT OF THE VALUF OF AN ADDIİIONAL UNIT OF # % 00163
    i\not= RESOURCE#)
10Z1 FORMAT(*O A STATEMENT` GF THE VALUF OF AN ADDDİTIONAL UNIT OF # 00164
    i# RESOURCE CONTINUEN#) 00- 00166
        00165
    IF'IISTEP.EQ.9999) 113.100 00167
TIT CONTINUE
    WRITE(61,12000)
C PREPARRATION OF PART TWWO
    MREPARATIEN OF PART TWO 00170
    REWIND 5,
    IPAGE=IPAGE+1
    WRITE(34,2003)
    WQIIE(34,2009)
    WRITE(34,2005)
    WRIIE(34;2006)
    WRITE(34,2007)
    WRITE(34;2010)
    WRITE(34.201I)
    LC}=
    LCC=0
    D: 200 ImloKSTEP
    REAN(5) ISTEP
00168
00169
00171
    00172
    00173
    00174
    00175
    00176
    00176
    00177
    00178
    00179
    00180
    00181
    0018?
00183
0 0 1 8 4
```

```
    REAO(5) OUTl OOIR5
    RFAD(5) SIITZ
    RFAN(5) G1TT3
    PART?(1)=0UTI(1)-2.7ว゙67*OUT1(7)
    IF(DARTZ(1).LT.MINC3) MINC3=PART2(1)
    PARTZ(2)=OUT1(1)-1.6450*OUT1(7)
    PART\(3)=OUT1(1)-1.jal7#OUT1(7)
    PART?(4) =OUT11(1)-0.8418*कUT1(7)
    PART?(5) =CUT1(1)-0.5310*OUT1(7)
    PART?(6)=OUT1(1)-0.2510*@UT1(7)
    PARTご(7) =OUT1(1)-0.NOOO*OUT1(7)
    LCC=LCC-1
    C=LC
    IF(LCCC.EQ.40) 201.202
    LCC=0
    LC=0
    WRITF(34.200IT) IPAGF
    IPAGE=1PAGE+1
    WRITF(34,2004)
    WRITE (34,2009)
    WRITE (34,2005)
    WR1TE (34,2006)
    WRITF(34;2007)
    WRITE(34,2010)
    WRITE(34,2011)
    GO T: 200
    IF(I.C.EQ.5) 203,200
    LCO
    WRITE(34,2011)
    WR[TE(34,200A) 1, CUṪİ(i);(PARTZ2(J),Jal:7)
    WRITE(34,2010)
    DÖES YHE CLIENT WANT PART THRFE
    IF(IWANT,EQ.1) 3000,4000
    PREPARATION OF PART THREE
    REWIND 5
    WRITE(61.12001)
    OC 301 Im1,KSTEP
    READ(5) ISTEP
    READ(5) SUT1
    READ(5) OUT2
    READ(5) OUTT
    IF(II.EN. I) 302.30̃3
    WRITE (34,300Q) IPAGF
    IPAGE=IPAGE+1
    WRITE(34,3002)
    GO Te 304
WRITE(34,3001) IPAGE
IDAGE=IPAGE+1
WRITE(34,3003)
WRITE(34,3004) I
WPITE(34,3005) OUT1(2), जUT1(Ĭ
WQITE(34;3006) OUTI;I)
WPITE(34,3007)
WRITE(34,301i)
WQITE(34;3012)
WRITE!34,3013) .... (3),
WRITF(34;3014)(0UTİ(j):J:3,7j)}0024
\00241
WRITE{34;300B)
WQITE(34,3015) 00243
WRITE (34,3016)
00245
WRITE(34,3011)
00246
```

```
    WRITE(34,3019) 00247
    Lĩ=0
    00248
    OO 305 J=1,N
    LC=LC+1
    IF(LC.EQ.5) 306.305
    LC=n
    WRTTF(34,3019)
```



```
    WRITE(34,3011)
    WRITE(34,3011)
    WRITE(34,3017)
    WRITF(34;301B)
    WRITE (34,301I)
    WRITF(34,302i) (OUTZIN1,JJ1,JJal,3i_00261
    C=1%(34,3021)(curz(N1,JJ),JJal,3)
        00262
    L~̈mi
    LCC=O゙
    DS 3ñ7 Jal.M
    JN=1+N
    LC=LC
    LC=LCC+i
    IF(LCC.EQ.40) 308,309
    İC=0 (în 00?69
    LT
    WRITE(34,3010) IPAGE
    IDAGF=IPAGE+I
    WRITE(34,3011)
    WRITE(34,3017)
    WRITE(34,301B)
    WRITE(34,301I)
    WRITE(34,3019)
    GO TO 307
    IE(LCC.FQ.5) 310,307
    LC=0
    WQIIE(34,3019) 00281
    WRITF(34,3020) J,(RLAB(JN.JJ),JJ=\̃.2),(OUŤ3(J.JJ),J.l=1,4)}0028
    WRITE(34,3011) 00283
    CONTINUE 00284
    CONTINUE 20021 00286
    WRITE(61:12002) 002867
```



```
    CALLL PLOT 00289
1000 FORMAT (# #135(#-#))
1001 FORMÄT(#0;135(#-#))
1002
1n03
1004
1005
1006
1007
inNs FGRMAT(# I EXP GR MARG S$I##(F11.2# [#))
```



```
10010 FORMÄT (#IPART ONE CONTINUED#INQ 00299
1011 FORMAT (#OQSUMMARY OF EFFICIENT FARM PLANS#1)}0030
1012 FGRMÁT (#OA STATEMENT OF THE LEVEL&G OF ACTIVITIES ANN THE EXPECTED
IPAYOFFFF|
00301
    00302
    IPAYOFF#1 OA STATEMENT OF FHE AMOUNE OF EACH RESOURCF
```



```
    IEXPECTED PAYOFF#)
        00304
    FERMAT'(#ÖA STATEMENṪ OF THHE AMOUNṪ OF EACH RESCURCF USED AND THE
    IEXPECTTED PAYOFF CONTINUEOH*S
        00305
        00306
```



```
        00307
    00308
```


RFAL MINC3,MAXC1,MAXCZ 00371
COMMEN/DATA/CENST(7) 00372
 00373
DIMFNSION ESUR(21), STD(21), E(101), A(101,20),P(21,7) 00374
RFWIND 5 00375
$\mathrm{NiNT}=$?00376
NiNTi=NINT+1 0037700378
INITIALIZATION FOR CHART ? 00379
00380
$\operatorname{IARPY}(1)=\operatorname{IARRY}(4)=1$ 00381
$\operatorname{IARRY}(3)=\operatorname{IARRY}(9)=0$ 00392
$\operatorname{IARRY}(6)=1$ 00383
$\operatorname{IARRY}(7)=3$ 00354
IARRY(2) =1 00385
$\operatorname{IARRY}(5)=16$ 00386
$\operatorname{IARRY}(9)=2$ 00387
$\operatorname{IARRY}(10)=6$ 00398
$\operatorname{IARRY}(11)=1 \operatorname{ARRY}(12)=18$ 00389
RI. APEL (11) $=$ BHEXPFCTFO 00390
RLAREL (12) 2 RH GRESS M 00391
RLARFL(13)=8HARGIN iN 00392
RLARFL (14) $=6 \mathrm{HH} \$ 1000$ 00393
$L A R F L S(G 2)=30$ 00394
RLABEL(21)=8HTHE EFFI 00395
RLARFL(22)=BHCIENCY F D0396
RLAREL (23) $=7$ HRONTIFR 00397
LABELS(63) $=23$ 00398
RIAREL(1) $=8 H S T A N D A R N ்$ 00399
RLAREL (2) $=8 \mathrm{BH}$ DEVIAT 00400
RLABEL(3) $=8 \mathrm{HCN}$ OF GR 00401
RLAREL (4) $=8 \mathrm{HOSS}$ MARG 00402
RLAREL (5) $=8 \mathrm{HIN}$ IN $\$ \overline{1}$ 00403
LABELS(11)=3HOOO 00404
LABELS(61) $=43$ 00405
IF (EMAX.GT.20.) GO TO 5 00406
$\operatorname{ARRAY}(7)=A R R A Y(\overline{1} \overline{1})=A R R A Y(\overline{1} 5)=A R R A Y(B)=A R R A ̄ Y(\overline{1} 2)=A R R A Y(16)=.5$ 00407
Ge To 4000408
IF (EMAX.GT.50.) GO TO 7 00409
$\operatorname{ARRAY}(7)=\operatorname{ARRAY}(\overline{1} \overline{1})=\operatorname{ARRAY}(\overline{1} 5)=\operatorname{ARRAY}(8)=\operatorname{ARRÄY}(12)=\operatorname{ARRAY}(16)=1$. 00410
LABELS (62) $=26$ 00411
Rt ABEL (14) $=6 \mathrm{H}$ s 00412
RLAREL(15)=7HIN IN 00413
LABELS (61) $=39$ 00414
GÔ TG 40 00415
0 00416
$\operatorname{ARRAY}(7)=\operatorname{ARRAY}(11)=\operatorname{ARRAY}(15) \equiv \operatorname{ARRAY}(8)=\operatorname{ARRA} Y(12)=A R R A Y(16)=2$. 00417
LABELS (62) $=26$ 00418
RI.AREL (14)=6H S 00419
RLABFL(15)=7HIN IN 00420
LÄBELS $(6 \overline{1})=39$ 00421
GO TO 40 00422
IF (EMAX.GT. 25000.) GO TS 20 00423
$A R R A Y(7) \equiv A R R A Y(15)=A R R A Y(8)=A R R A Y(16)=\overline{100} 0$. 00424
ARRAY(11) $=\operatorname{ARRAY}(12)=\overline{1}$. 00425
Go To 40 00426
(FYAX.GT. 100000.) GO TO 30 00427
$A R R A Y(7)=A R R A Y(15)=A R R A Y(B)=A R R A Y(16)=5000^{\circ}$. $0042 R$
$\operatorname{ARRAY}(11)=\operatorname{ARRAY}(12)=5$. 00429
GÔ TOT 40 00430
$\operatorname{ARRAY}(7)=\operatorname{ARRAY}(\overline{1} 5)=\operatorname{ARRAY}(8)=\operatorname{ARRAY}(16)=100 n ̃ 0$. 00431
$\operatorname{ARRAY}(11)=\operatorname{ARRAY}(12)=10$.

ARRAY(1) $=$ EMAX	00433
- $\operatorname{ARRAY}(3)=\operatorname{ARRAY}(4)=\operatorname{ARRAY}(5)=\operatorname{ARRAY}(6)=\operatorname{ARRAY}(9)=\operatorname{ARRAY}(\overline{\mathrm{T}} 0)=\operatorname{ARRAY}(13)=$	00434
	00435
ARRAY' 19) mEMAX	00436
ARRAY (20) mAXC2	00437
ARRAY(?l)=ARRAY(22) $=1$.	00438
ARRAY $(2)=M A X C ?$	00439
De $501=11.17$	00440
CALL EQUIP(I, 5HFILE ;	00441
Continlue	0044 ?
RFAOI (5) ISTEP	00443
RFAD (5) OUTİ	00444
REAT (5) SUTZ	00445
READ (5) OUT3	00445
STD (1) =SQRT (OUTİ 3)	00446 00447
CALL MLTIPLT(OUTíl2i;STD)	00448
$E(1)=0 \cup T 1(2)$	00440
De $60 \mathrm{I}=1 \mathrm{~N}$	00450
	00451
OO 1 OO ICTEI,KSTEP	00452
ICTIEICT+1	00453
E(ICII) $=$ OUTl(1)	00454
Do 70 Im 10 N	00455
	00456
	00457
Dí 80 JmíNINT	00457
	00458
	00460
DO BO Kıl, 7 (${ }^{\text {P }}$	$0046 \overline{1}$
P(J.K) =EgUB (J)*CONST(K)*STD (J)	0046?
IARRY (2) $=$ NINTI	00463
IARRY (S) ${ }^{\text {a }}$	00464
ESUR (NINT1) $=$ CUTI 11	00465
STD (NINT!) =CUTl (T)	00466
Dó $85 \mathrm{~K}=1,7$	00466
P(NINT1,K)=OUT1(İ)+C̄ONST(K)*OUT1(i)	00467
CALL GRAPH (ESUB, STD)	00468
IARRY゙ 2) $=1$	00469
IARPY (5)=16	00479
CALL GRAPH(OUT1(1) , OUTİ(7))	00472
Dó 90 J=1,7	00472
$I . j=J+10$	00474
	00475
IF (TCT-EQ.KSTEP) GO TO 100	00476
READ (5) ISTEP	00477
READ (5) OUTI	00478
READ (5) CUT2	00478
READ (5) CUT3	00480
CONTİNUE	00481
Initialization for chart í	00482
	00483
İARRY(1)	00484
IARRYY (?) =KSTEP+1	00486
IARRY (5) =16	00487
RLAREL (21) $=8$ HTHE ACTI RLABEL (22) BHVITY LFV	00488
RLABEL (22) ${ }^{\text {P }}$ BHVITY LFV LABELS (45) 3 SELS	00489
LABELS (63)=19	00490
	004971
RLABEL (2) $=8 \mathrm{H}$ ACTIVIT	0049 ?
RLABEL (3) $=8 \mathrm{HY}$ IN ACR	00493
	00494

LABELS (7) $=2 \mathrm{HES}$ 00495
LARELS(61)=26
LARELS(61)=26
00496
00496
IF (MAXCI.GT.50.) GO TO jō 00497
$\operatorname{ARRAY}(B)=\operatorname{ARRAY}(12)=\operatorname{ARRAY}(16)=1$. 00498
GO Tís 130 00499
IF (MAXC.1.GT.100.) GO TO. 110 00500
$\operatorname{ARRAY}(9)=\operatorname{ARRAY}(12)=\operatorname{ARRAY}(16)=10$. 00501
G仑 TO 130 00502
110 IF (MAXCI.GT. 1000 .) GO Tí 120 00503
$\operatorname{ARRAY}(R)=\operatorname{ARRAY}(12)=A R R A Y(16)=20$. 00504
G.) TE 130 00505
$\operatorname{ARRAY}(B)=\operatorname{ARRAY}(16)=100$. 00506
RLARFL(3) $=8$ HY IN $10{ }^{\circ}$ 00507
PLABFL(4) $=6 \mathrm{H}$ ACRES 00508
LABELS(G1) $=30$
LABELS(G1) $=30$ 00509
ARRAY (12) $=1$. 00510
ARRAY (?) =MAXC1
00511
00511
ARRAY (20) =MAXCI 0051 ?
CÄLG MLTIPLT(E,A(1.İ)) 00513
DC $140 I=2, N$
DC $140 I=2, N$ 00514
CĀLL GRAPH(E,A(İ,I))
00515
00515
CONTINUE 00516
1
INITIALIZATION FOR CHART 3 00517 00517
r C $0051^{\text {月 }}$
$\overline{1} \operatorname{ARRY}(1)=7$00519
IARRY(2) $=$ NINTI 005 ? 0IARRY(5)=000521
IA ARRY(8)=3 0052 ?
RLABEL(21):8HTHE PRGR 00523 00524
RLABEL (22) $=8 \mathrm{HABILIT}$
RLABEL (22) $=8 \mathrm{HABILIT}$
RLAREL(23)=7HOF LOSS 00525
LABELS(63) $=23$ 00526
RLABEL (1) $=8$ HACTUAL 9 00527
RLAREL (2) $=8$ HROSS MAD 00528
RLAREL (3) $=8 \mathrm{HGIN}$ IN00530
LABELS(7)=4H1000
00531
00531
$\angle A B E L S(6 I)=28$ 00532
AMIN=MINI (O..MINC̄3)
AMIN=MINI (O..MINC̄3) 00533
ALENG=EMAX-AMIN 00534
IF SALENG.GY.50.I GO TO 142
IF SALENG.GY.50.I GO TO 142 00535
$A \operatorname{RRA} \bar{Y}(8)=A R R A Y(\overline{1} \overline{2})=\bar{A} R R A Y(\overline{1} 6)=1$. 00536
LABELS (61) $=24$
LABELS (61) $=24$ 00537
GO TO 149 00538 00539
IF (ALENG.GT.100.) GÓTO. 143
IF (ALENG.GT.100.) GÓTO. 143
ARRAY(8) $\operatorname{ZARRAY}(12)=A R R A Y(16)=$? 00540
LABELS (6̄) $=24$
LABELS (6̄) $=24$ 00541
GO TO 149
00542
 00543
$\operatorname{ARRA} \bar{Y}(8)=\operatorname{ARRAY}(16)=\operatorname{ARRAY}(12)=50$.
00544
00544
LĀBELS (6T) $=24$
00545
00545
GO ís. 149
00546
00546
144 IF ĂLENG.GT. 250000, I GO Tí 146 00547
$\triangle \operatorname{ARAY}(\beta) \equiv \operatorname{ARRAY}(16)=1000$.
00548
00548
ARRAY (12)=1. 00549
GOY TO 149
GOY TO 149 00550
ARRAY BNG.GT 100000, 1 GO TO 147 00551
$\operatorname{ARRAY}(8)=\operatorname{ARRAY}(16)=5000$.
00552
00552 00553
GO TO 149
GO TO 149
ARRAY $(8)=A R R A Y(1)=100000$.
ARRAY $(8)=A R R A Y(1)=100000$. 00554 00554
147
$\bar{A} R \operatorname{AY}(12)=10$. 0055500556
140 CANTINUE 00557
ITEMP=AMIN/ARRAY(8) 0055A
ATEMP =ARRAY (8) ITEMO 00559
IF (MINC3.LT.ATEMP) ATEMP=ATEMP-1 00560
$\operatorname{ARRĀ} \bar{Y}(10)=\operatorname{ARRAY}(\overline{1} 4)=A \operatorname{RRAY}(4)=\triangle \operatorname{TEMP}$ 00561
ARRAY(2) $=E M A X-A R R A Y(4)$ 00562
ARRAY'(18)=MIN1(0..OMiNC3) 00563
ARRAY(20) $=$ EMAX 00564
Dn 150 I $=11,17$ 00565
RFWIND I 00566
REAN (11) (EsIJB(K),D(K,l),K=1,NINT1) 00567
CALL MLTIPLTIESUA•Pi 0058R
I $\operatorname{ARRY}(2)=1$ 00569
I \triangle RRY (5) $=16$ 00572
CÄLL GRAPH(ESUB(NINT̄I), P(NINTİ,1) 00571
DC $160 \mathrm{I}=2 . \mathrm{KSTEP}$ 00572
REAC (11) (ESUB(K),O(K,l).K=1,NINTil) 00573
IARRY(?)=NINTI 00574
IARRY(5) $=0$ 00575
CALL GRAPH (ESIJR,P) 00576
IARRY(Z) =1 00577
IARRY(5) =16 00578
CALL GRAPH(ESUB(NINT̄̄), PiNINTI,1) 00579
IAO CONTINLIE 00580
DO 170 IGRAPHE2,7 C0581
OC 170 I=1,KSTEP 0058?
I $\mathrm{I}=\mathrm{IGRAPH}+10$ 00583
READ (IJ) (ESIJB(K),P(K,I).K=1,NINTI) 00584
I ARRY(2) =NINTI 00585
IARRY(5) =0 00586
CALL GRAPH (ESUB,P) 005 A7
IARRY(2)=1 005AR
$I A R R Y(5)=16$ 00589
CALG GRAPH(ESUB(NINTİ),P(NINTİ,1)) 00590
170 CONTINUE 00591
IF (AXISXY $(0,0,0,0,0,0,0,0,0,0,0,01) 180,180$ 0059 ?
190 0 . 190 IE11.17 00593
CALL UNEQUIP(I) 00594
190 CONTINUE 00595
RETIJRN 00596
END 00597


```
    ï(CORR(1,1).GROSS(1.ij) 00061
    RFAN(1.1000) NCREP,NYEAR;MINYFAR,MAXYFAR
    0E 10 Jal.NCROP
    00062
    00063
    RFAD(1.1001)(RNAM(J,I),I=1.4) 00064
    DO 20 J=1.NCROP
    DO つO I=I.NYEAR
    00067
    IF(KCHECKNE) OOORR
    DE. 30 Jm1,NCRCP OONTO
    D! 30 {=1,NYEAR 00071
    YIELN(J,I)MFFIN(T) n007?
    KCHFCK=FFIN(i) 00072
    IF(KCHECK.NE.9999) AS TO 991 00074
    0: 40 J=1,NCROP nOO75
    0% 4ñ I=İ,NYEAR NOOTR
    GROSS(.1,I)=PRICE(J.ij*YIELD(.J.I) 00077
    WRITF(34,1003) nonta
    WRITF(34,1004)(IIIITmMINYEAR,MAXYFAR) 00070
    WRITF(34.1005) 000RO
    LC}=
    02 50 J=1̈,NCROP 00081
    O%.0 J, |NCRCR
    Lr=LC+1
    IF(LCO.EO.5) 51.50
    H=0.EN.5) 51.50
    WRITE (34,1005)
        00083
        00084
        00085
    WRITF(34,1006) (RNAMIJ,JJi JJ=%)3): OOORG
    DC RO J=1,NCRCP 00087
    RNAM(J,3) =RNAM(J,4)
        00088
    WRITE 34,1004)(II,IİMINŸFAR,MAXYFAR) 00090
    AXYFAR)
        00n91
    WRITE(34.1005) 0009?
    LC=O 
        00093
    DS 60 J=İ,NCRCP 00n94
    LC=LC+1
    IF(LC.EQ.5) 61.60 00095
    LC=0 00097
MOM
MOM
```



```
MOM
```



```
MOM
MOM
MOM
MOM
*GO
*GO
MOM
*GO
MOM
MOM
*GO
MOM
MOM
MOM
MOM
MOM
MOM
MOM
MOM
MOM
MOM
1009 FORMÄTIIX,2A8# S$/ACRE#1OF10.?)
```



```
                            #2AR#vS #2AR
MOM
00117
001IR
1\cap11 FORMÄT(# #12# tl2# *FI56,30(# 1) 00119
```



```
1# MEAN GROSS #)
0012?
```

	WRITF(A1,1016)	00123
	RFADIGO, 1000) KILL	00123
	Go TE (2000, 3000,40 Ō) , Kícl	00125
4 n 00	YRENYEAR	nol
	$Y \mathrm{PI}=Y \mathrm{P}-1.0$	n0125
	$Y R P=Y R-2.0$	00127
	$T \equiv Y R *(Y R+1.0) / 2.0$	-01?8
	TS $=Y R \#(Y R+1.0) *(2.0 \# Y R+1.0) / 6.0$	00129 00130
		00130
	TRARET/YR	00131
	DO $200 \mathrm{~J}=1$ NCROP	0013?
	$5(J)=0.0$	00134
	$\mathbf{S S}(J)=0.0$	00135
3 an	ST(5) $=0.0$	00136
	Do 3 On Jmin NCREP	00137
	Dis 2ne I=1,NYEAR	00138
	S(J) $=$ S(J)*GROSS(J.I)	00139
		00140
$3 n 3$	ST $(J)=S T(J) *$ GRESS(J.t)*I	00141
	XRAR(J) $=5(J) / Y R$	0014 ?
	SS (J) = (SS (J)-S(J)*\&う/YR)/YR1	00143
	ST(J) $=(S T(J)-S(J) * T / Y R) / Y R 1$	00144
	$B(J)=S T(J) / T C S$	00145
	$A(J)=\times B A R(J)-B(J)$ TRAR	00146
	TSTAT (J) =B (J)/SORT (iSS (J) - B (j)*ST(J))/(TCS*YRZ))	00148
	nc 203 Im1.NYEAR	00149
2n1	CRNTI	00150
	CENTINIE	00151
	WRITE(34,1021)	00152
	WRITF (34,1022)	00153
	Dé $206 \mathrm{~J}=1$, NCREP	00154
	SS(J) =SQRT(SS(J))	00155
		00156
	FGRMAT (\ddagger M MEAN AND STANDARD DEVIATIEN OF GROSS INCOME	00157
1 1n2?	WRITE $(34,1017)$	00158
	WRITE(34.1018)	00159
	DO $204 \mathrm{~J}=1$, NCREP	00160
304		00161
	WRITE(34,1020)	00162
	WRITE (34,1004) (II, IT=MINȲAR, MAXYFAR)	00163
	D' 205 J=1, NCRCP	00164
205		00165
1017		00166
1018		00167
		00169
1019	FORMAT (1x, $248 * \$ \$ / A C D E \neq 3 F 25.6)$	00170
1020	FORMÄ́l*İDEVIATIONS OF ACTTUAL. GROSS INCOME FROM EXPECTED\#	00171
	İ GROSS INCOME ${ }^{\text {I }}$.	00171
1016	FORMATI\# THE GRESS INCOME STATEMENT IS PREPARED \#/	00173
		00174
		00175
		00176
		00177
	De $100 \mathrm{Jm} 1 \cdot \mathrm{NCRCP}$	00178
100	$\operatorname{SUM}(\mathrm{J})=0.0$	00179
	OC 101 ImI, NYEAR	00180
	0ê 101 Jeloncrer	00181
101	SIJM (J) EGRESS (J,I) * Simm ${ }^{\text {d }}$)	001 A?
	CALL ARRAY (2,NCRO̧P, NYEAR, 50,1号,GROSS,GROSŚ)	00183
	CALL MTRA (GROSS,TGROSS, NËROP, NYEAR,0)	00184

```
    CALL MPRD(GROSS,TGROSS;XXTXX,NCREP,NYEAR,İ,O,NCROPS) 00185
    CALLMTRA;SIMM,TSIJM,NCROP,İO) OOIRG
    CALL MPRD(SIJM,TSIMOXTX,NCROP,T,O,N,NCREP) OOIRR
    YEAR=NYEAR
        0018R
    YFAR=1./YEAR
        0018R
    CALL SMPY(XTX,YEAR, XTॅX,NÖROP,NCROP,O)
        0 0 1 9 0
    CALLL MSIIB(XXTXX,XTX:CORR,NCROP,NCROP.O,O)
        0 0 1 9 1
    YFAR=NYEAR 
        00192
    YFAD=1./(YEAR-1.)
        00193
    CALL SMPY(CORR,YEAR;CORR;NCROR,NCREP,0)
        00194
    CALL ARRAY(1,NCREP,NCROP,50,5N゙.CORR.CORR)
        00195
        O: ln? J=l.NCREO
        I=]
    lOP STD(J)=SQRT(CORR(J,Tj) 00197
        D: NO J=1,NCROP
        00194
        0197
        D: in3 I=1,NCROP
    1O3 CFRR(J,I)=CCRR(J,I)/STD(I)
        NE 104 I=1.NCROP
        00199
        OC IOL J=1,NCREP
        00?01
    0
    104 CORR(J,I)=CORR(J,I)/STD(.J)}0000
    WRTTE(Z) CORR (JOI) STD(.)
    YFARENYEAR
    MO 105 J=1,NCROP 00206
    00205
1^5 XRAR(J)=SUM(J)/YFA
        LC=O
    LC`C=0
    WRITF(34,1012)
        00207
        00208
        M,00210
        00210
    WRITF (34,1005)
        0 0 2 1 1
        WRITF(34,1005)
        0021.3
        LO lo6 J=I ONCRGP 
        LC=LC+1
        00215
        LCCELCC*I
        IF(LCO.EQ.5) 107.IOR 00?16
        IF(LC.EQ.5) 107.108
        0 0 2 1 7
            L.O=0 0021R
            WRITE(34,1005) 00% 00219
In9 IF(LCC.EQ.45) 109.170 00219
ln9 L=\tilde{c}=0
    LCC=0
        WPITF(34,1012) 0022?
110 IF(I.EQ,J) II1,IT2 00223
    MT1, WRITE(34,10100I,J,CORR(J,I),STD(J),XRAR(I),
    I(PNAM(IIIII,II=1,Z)
        G& İO, 106 101j) 00226
```



```
    M(PNAM(J,JJ),JJ=1,2)
íns CONTINUE (TNOL,Z)
        00229
    GO TO 999
        00230
990 WRITE(61,1013) 00231
00231
    GO TO 999
991 WRİE(61,1014) 00233
    GO Ti 099
    00233
    GO TO 999
00234
2000 WRITE(61,1002) 00235
1013 FORMAT(# THERE IS A ÇARD ERROR IN THF PRIC̄E INPUT̈\not=) 00236
1014 FARMÄTI# THERE IS A CARD ERROQR IN TMF YIELD INPUT#: 00237
999 CALL EXIT 
00240
```


[^0]: ${ }^{2}$ The empiricist philosophy is predicted on collecting "facts '", unhampered and unbiased by considerations of theory.
 ${ }^{3}$ The rationalist philosophy contends that questions of theory must be answered before facts are worthy of consideration.

[^1]: ${ }^{5}$ The term "active" distinguishes this approach from the term "passive" which refers to giving a single plan and including a statement about its income variability.

[^2]: ${ }^{11}$ This simple problem will be made more elaborate in succeeding sections as the concepts of risk are introduced. It is the intent to provide the reader with a smooth transition to less familiar ground.

[^3]: 12 in a posteriori sense.

[^4]: ${ }^{13}$ It may of course be that the estimate is the most frequently occuring level of per unit profit, in which case the objective function is to maximize most likely profit rather than expected profit.

