CARL MEHRBACH for the MASTER OF SCIENCE in OCEANOGRAPHY presented on March 9, 1973

MEASUREMENT OF THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAW ATER AT

ATMOSPHERIC PRESSURE

Redacted for Privacy

The apparent dissociation constants of carbonic acid were determined as functions of temperature and salinity in seawater at atmospheric pressure.

There is fair agreement between my values of K_{1} and those of Buch et al. (1932), Lyman (1956), and Hansson (1971). My values, on the average, are 6.7% lower than Buch et al.'s (1932), 4.6\% smaller than Lyman's (1956), and 4.0\% higher than Hansson's (1972).

My values for K_{2} are smaller than those reported by other workers. They differ by 3.4% from Hansson's (1972) values, and 26% from Buch's (1938). Lyman's (1956) values are larger than mine by 3.2% at temperatures of $25^{\circ} \mathrm{C}$ and below, and greater by 13.4% at $35^{\circ} \mathrm{C}$.

Measurement of the Apparent Dissociation
Constants of Carbonic Acid in Seawater at Atmospheric Pressure
by
Carl Mehrbach

A THESIS

submitted to
Oregon State University

in partial fulfillment of
the requirements for the
degree of
Master of Science

June 1973

Redacted for Privacy

Protessor of Oceanography in Cearge of Major

Redacted for Privacy

$\overline{\text { Dean of }}$ School of Ocearfography
Redacted for Privacy
Dean of Graduate School

Date thesis presented: March 9, 1973

Typed by Suelynn Williams for Carl Mehrbach

Men suffer want and become
Curiously ignoble; as prosperity Made them curiously vile

But look how noble the world is, The lonely-flowing waters, the secret-keeping stones, the flowing sky.

Robinson Jeffers from "Life From the Lifeless"

ACKNOW LEDGMENTS

I would like to express my appreciation to Dr. Ricardo M. Pytkowicz for his suggestion of this research and his helpful advice.

John Hawley's and Chas Culberson's assistance in my acquisition of the theoretical and experimental background needed to do this work was invaluable.

If it were not for Claudia Barton's aid in running my data through my computer program, which was written for maximum boredom of the teletype operator, the completion of this work may still have been in the future.

Also, Sara Ingle must be thanked for her laughter and for answering the inane questions that I was hesitant to ask anyone else.

This work was supported by the National Science Foundation Grant GA-17011 and by the Office of Naval Research Contract N00014-67-A-0369-0007 under project NR 083-102.

TABLE OF CONTENTS

I. IN TR ODUC TION 1
II. THEORY 7
III. EXPERIMENTAL 13
IV. RESULTS 20
V. DISCUSSION 27
BIBLIOGRAPHY 34
APPENDIX I 37
APPENDIX II 40

LIST OF TABLES

Table Page
$1 \quad$ An example of a test to determine pH°. 18
2 Experimental results. 21
3 $\mathrm{K}_{\mathrm{l}} \times 10^{6}$ as a function of salinity and temperature. 23
4 $\mathrm{K}_{2} \times 10^{10}$ as a function of temperature and salinity. 25
5 Comparison of values of the first apparent dis- sociation constant from various workers. 29
6 Comparison of values of the second apparent dissociation constant of various workers. 30

MEASUREMENT OF THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER AT ATMOSPHERIC PRESSURE

I. INTRODUCTION

Carbon dioxide is important to man because of its role in the carbon cycle of nature. In the photosynthetic process, the earth's flora intake carbon dioxide, respire oxygen, and produce organic compounds such as carbohydrates, proteins, and fats (Villee, 1957). These plant products are digested and assimilated by man in his routine life process.

The earth's temperature is also controlled to a large extent by carbon dioxide in the atmosphere (Keeling, 1970). Carbon dioxide is transparent to visible and ultraviolet solar radiation, which is absorbed by the earth. The earth then radiates some of the absorbed solar energy as infrared radiation. The carbon dioxide in the atmosphere absorbs much of this infrared radiation and prevents its escape from the earth's atmosphere (Broecker et al., 1971). This phenomenon is known as the greerhouse effect. It is a factor that keeps the earth's environment as warm as it is.

In our century the carbon dioxide in the earth's atmosphere has increased by 12% due to man's burning of fossil fuel (Callender, 1968). Revelle and Suess (1957) said, concerning this interaction of man with
his environment, that "human beings are now carrying out a large scale geophysical experiment of a kind which could not have happened in the past nor be reproduced in the future. Within a few centuries we are returning to the air and oceans the concentrated organic carbon stored over hundreds of millions of years." If carbon dioxide's atmospheric concentration continues to increase at its present rate of acceleration, the temperature of the earth may rise as much as $20^{\circ} \mathrm{C}$ in the next 100 years (Pytkowicz, 1973).

The oceans are the greatest sink for the carbon dioxide in the atmosphere (Broecker et al., 1971). Forty percent of all the carbon dioxide man has produced by the burning of fossil fuel already resides in the oceans (Broecker et al., 1971). Thus the oceans are an important natural regulator of the carbon dioxide system. Carbon dioxide dissolves in the oceans and is utilized by plants in photosynthesis and by plants and animals in the production of carbonates. The carbonates dissolve in seawater or are deposited on the seafloor as sediment (Revelle, 1965). It is also carbon dioxide that assists in the control of the pH and composition of seawater by participating in homogeneous and heterogeneous acid-base and exchange reactions (Stumm and Morgan, 1970).

In order to fully understand the effect of carbon dioxide dissolution in seawater, it is necessary to know the concentrations of the various carbon dioxide species (i.e., carbonic acid, molecular carbon
dioxide, carbonate and bicarbonate) in seawater. The apparent dissociation constants of carbonic acid in seawater are needed to describe the relative distribution of these species in seawater. In this work, these apparent (quasi-stoichiometric) dissociation constants of carbonic acid in seawater were determined at atmospheric pressure as functions of temperature and salinity. These constants are defined (Moberg et al., 1934) by

$$
\begin{align*}
\mathrm{K}_{1}^{\prime} & =\frac{\mathrm{a}_{\mathrm{H}}\left(\mathrm{HCO}_{3}^{-}\right)}{\left(\mathrm{CO}_{2}^{*}\right)} \tag{1}\\
\mathrm{K}_{2}^{\prime} & =\frac{\mathrm{a}_{\mathrm{H}}\left(\mathrm{CO}_{3}^{-}\right)}{\left(\mathrm{HCO}_{3}^{-}\right)} \tag{2}
\end{align*}
$$

The parentheses represent concentrations in moles per kilogram of seawater, a_{H} is the hydrogen ion activity defined in the National Bureau of Standards (NBS) buffer scale (Pytkowicz et al., 1966; Pytkowicz, 1969), and CO_{2}^{*} is the sum of the concentrations of molecular carbon dioxide and carbonic acid.

The use of thermodynamic dissociation constants for the calculation of carbon dioxide species' concentrations requires estimates of single ion activity coefficients, which are poorly known functions of temperature, salinity, pressure, and ion association. The direct determination of apparent constants in seawater obviates this problem. Apparent constants depend on temperature, pressure, ion association,
and on the free concentrations of the major ions of seawater (Weyl, 1961; Kester and Pytkowicz, 1967). They are useful because the concentrations of the major ions are insensitive to changes in pH or to processes such as photosynthesis and the solution and precipitation of carbonates. Essentially, apparent constants can be used for processes which do not have a sizable effect upon the relative concentrations of the major ions in seawater.

The first determinations of the apparent dissociation constants of carbonic acid in seawater were made by Buch et al. (1932) and Buch (1938). The first constant was defined by

$$
\begin{equation*}
\mathrm{K}_{1}^{\prime \prime}=\frac{\mathrm{a}_{\mathrm{H}}\left(\mathrm{HCO}_{3}^{-}\right)}{a_{\mathrm{H}_{2} \mathrm{CO}_{3}}} \tag{3}
\end{equation*}
$$

and the second by equation (2). Buch et al.'s (1932) and Buch's (1938) procedure involved the measurement of the alkalinity, the pH , and the pCO_{2} or total carbon dioxide. The solubility of CO_{2} in seawater was estimated from its solubility in sodium chloride solutions. pCO_{2} was measured gasometrically, total carbon dioxide was measured by boiling the seawater after acidification, and the pH was determined with a quinhydrone electrode in the case of $K_{1}^{\prime \prime}$ and with a hydrogen electrode in the case of K_{2}^{\prime}. The pHwas referenced to the Sörensen scale. Lyman (1956) determined the apparent constants by carrying out complete titrations on a single sample of seawater. He used a
glass electrode calibrated on the NBS scale. Lyman (1956) claimed that his method was inherently more accurate and precise than Buch et al.'s (1932) and Buch's (1938). He defined K_{1}^{\prime} and K_{2} by equations (1) and (2).

Edmond and Gieskes (1970) reviewed the results of Buch et al. (1932), Buch (1938), and Lyman (1956). Through a critical examination of both sets of data they derived equations for $\mathrm{pK}^{\prime}{ }_{1}$ and pK_{2} in terms of salinity and temperature. The values of K_{1} obtained by Buch (1951) and K_{2}^{\prime} obtained by Lyman (1956) were selected as the most reliable ones for derivation of equations relating $\mathrm{pK}^{\prime}{ }_{1}$ and $\mathrm{pK}^{\prime}{ }_{2}$ to temperature and salinity.

Hansson (1972) determined the apparent constants by titrating borate free artificial seawater with HCl . He determined his constants by adjusting his K_{1}^{\prime} and K_{2} until a calculated titration curve matched his experimental one. The pH scale utilized was based upon seawater as a standard state.

Based upon the intercomparison of field data obtained from a variety of techniques, Takahashi et al. (1971) suggested that Lyman's (1956) values for K_{2}^{\prime} may be as much as 30% too low.

Disteche and Disteche (1967), Culberson, Kester and Pytkowicz (1967), and Culberson and Pytkowicz (1968) extended the determination of the constants to the pressures encountered in the deep oceans.

I redetermined the dissociation constants since Edmond and

Gieskes (1970) inferred that no one set of data was adequate, and since Takahashi et al. (1971) suggested that Lyman's (1956) values for K_{2} were incorrect.

II. THEORY

This work was done in two steps: the measurement of the product $\mathrm{K}_{1}^{\prime} \mathrm{K}^{\prime}{ }_{2}$ and of $\mathrm{K}^{\prime}{ }_{1}$. The method used was a modification of methods developed by Weyl (1961), Kester and Pytkowicz (1967), and Dyrssen and Sillen (1967).

The following definitions and equations are used in this paper:

$$
\begin{equation*}
\mathrm{TA}=\left(\mathrm{HCO}_{3}^{-}\right)+2\left(\mathrm{CO}_{3}^{2-}\right)+\mathrm{N}\left(\mathrm{a}_{\mathrm{H}}\right) \tag{4}
\end{equation*}
$$

where TA is the titration alkalinity and $N\left(a_{H}\right)$ is the concentration of ions, other than carbonic acid species, which react with the hydrogen ion.

$$
\begin{equation*}
\mathrm{CA}=\left(\mathrm{HCO}_{3}^{-}\right)+2\left(\mathrm{CO}_{3}^{2-}\right)=\mathrm{TA}-\mathrm{N}\left(\mathrm{a}_{\mathrm{H}}\right) \tag{5}
\end{equation*}
$$

CA is the carbonate alkalinity. Total carbon dioxide is defined as

$$
\begin{equation*}
\mathrm{TCO}_{2}=\left(\mathrm{CO}_{2}^{*}\right)+\left(\mathrm{HCO}_{3}^{-}\right)+\left(\mathrm{CO}_{3}^{2-}\right) \tag{6}
\end{equation*}
$$

For the determination of $\mathrm{K}^{\prime} \mathrm{K}^{\prime}{ }_{2}$, I obtained the following expression from equations (1), (2), (4), (5) and (6):

$$
\begin{equation*}
\frac{\mathrm{TCO}_{2}}{\mathrm{CA}}=\frac{\mathrm{a}_{\mathrm{H}}^{2}+\mathrm{K}_{1}^{\prime} \mathrm{a}_{\mathrm{H}}+\mathrm{K}_{1}^{\prime} \mathrm{K}_{2}^{\prime}}{\mathrm{K}_{1}^{\prime} \mathrm{a}_{\mathrm{H}}+2 \mathrm{~K}_{1}^{\prime} \mathrm{K}_{2}^{\prime}}=\frac{\mathrm{TCO}_{2}}{\mathrm{TA}-\mathrm{N}\left(\mathrm{a}_{\mathrm{H}}\right)} \tag{7}
\end{equation*}
$$

Let y_{o} be the initial TCO_{2} and y be the moles of sodium bicarbonate added. If the pH does not change upon addition of y to a sample of seawater then, from (7),

$$
\begin{equation*}
\frac{\mathrm{TCO}_{2}}{\mathrm{CA}}=\frac{\mathrm{y}_{\mathrm{o}}}{\mathrm{TA}-\mathrm{N}\left(\mathrm{a}_{\mathrm{H}}\right)}=\frac{\mathrm{y}_{\mathrm{o}}+\mathrm{y}}{\mathrm{TA}-\mathrm{N}\left(\mathrm{a}_{\mathrm{H}}\right)+\mathrm{y}}=1 \tag{8}
\end{equation*}
$$

Therefore, $y_{o}=T A-N\left(a_{H}\right)$ and $a_{H}^{2}+K_{1}^{\prime} a_{H}+K_{1}^{\prime} K^{\prime}{ }_{2}=K_{1}^{\prime} a_{H}+$ $2 \mathrm{~K}^{\prime}{ }_{1} \mathrm{~K}^{\prime}{ }_{2}$, which leads to $\mathrm{a}_{\mathrm{H}}^{2}=\mathrm{K}^{\prime}{ }_{1} \mathrm{~K}_{2}$ or

$$
\begin{equation*}
\mathrm{pH}=\frac{1}{2}\left(\mathrm{pK}_{1}^{\prime}+\mathrm{pK}_{2}^{\prime}\right) \tag{9}
\end{equation*}
$$

Thus, $\mathrm{K}^{\prime} \mathrm{K}^{\prime}{ }_{2}$ can be determined by adding small amounts of bicarbonate until a pH is reached that remains constant upon further additions of bicarbonate.

The Gran method (Gran, 1952; Dyrssen and Sillen, 1967; Edmond and Gieskes, 1970) was modified for the determination of $\mathrm{K}_{\mathrm{l}}^{\mathrm{l}}$. After the bicarbonate endpoint in a titration of seawater with acid, TA is essentially $\left(\mathrm{HCO}_{3}^{-}\right)-\left(\mathrm{H}^{+}\right)_{\text {total }}$, with $\left(\mathrm{H}^{+}\right)_{\text {total }}=\left(\mathrm{H}^{+}\right)_{\text {free }}+(\mathrm{HF})+$ $\left(\mathrm{HSO}_{4}^{-}\right)$(Culberson, Pytkowicz and Hawley, 1970). Therefore,

$$
\begin{gather*}
\mathrm{TA}_{0}\left[\frac{W_{o}}{W_{o}+W_{a}}\right]-W_{a}\left[\frac{N_{a}}{W_{o}+W_{a}}\right]=\frac{\mathrm{TCO}_{2}}{1+a_{H} / K_{l}^{\prime}}-\frac{a_{H}}{f_{H}}+ \\
 \tag{10}\\
-\frac{T_{F} a_{H}}{a_{H}+K_{H F}^{\prime}}-\frac{T_{S_{H}} a_{H}}{a_{H}+K_{H S O}^{\prime}}
\end{gather*}
$$

where

$$
\begin{aligned}
\mathrm{TA}_{\mathrm{o}} & =\text { initial titration alkalinity (equiv } / \mathrm{Kg} \text {-seawater) } \\
\mathrm{W}_{\mathrm{o}} & =\text { weight of seawater sample } \\
\mathrm{W}_{\mathrm{a}} & =\text { weight of acid added } \\
\mathrm{N}_{\mathrm{a}} & =\text { normality of acid (equiv } / \mathrm{Kg}-\mathrm{HCl} \text {) } \\
\mathrm{f}_{\mathrm{H}} & =\text { free activity coefficient of } \mathrm{H}^{+} \\
\mathrm{T}_{\mathrm{F}} & =\left(\mathrm{HF}^{+}\right)+\left(\mathrm{F}^{-}\right) \quad \text { (moles } / \mathrm{Kg} \text {-seawater) } \\
\mathrm{T}_{\mathrm{S}} & =\left(\mathrm{HSO}_{4}^{-}\right)+\left(\mathrm{SO}_{4}^{2-}\right) \quad \text { (moles } / \mathrm{Kg} \text {-seawater) } \\
\mathrm{K}_{\mathrm{HF}}^{\prime} & =a_{\mathrm{H}^{(}}^{\left(\mathrm{F}^{-}\right) /\left(\mathrm{HF}^{-}\right)} \\
\mathrm{K}_{\mathrm{HSO}_{4}^{\prime}}^{-} & =\mathrm{a}_{\mathrm{H}}\left(\mathrm{SO}_{4}^{2-}\right) /\left(\mathrm{HSO}_{4}^{-}\right) .
\end{aligned}
$$

Rearranging (10),

$$
\begin{align*}
F_{l} & =\left(T A_{o} W_{o f} f_{H}\right)-\left(W_{a} N_{a} f_{H}\right)= \\
& =\left(W_{o}+W_{a}\right)\left[\frac{T C O_{2} f_{F}}{1+a_{H} / K_{l}^{\prime}}-a_{H}-\frac{T_{F} a_{H} f_{H}}{a_{H}+K_{H F}^{\prime}}-\frac{T_{S_{H}} a_{H} f_{H}}{a_{H}+K_{H S O}^{-}}\right] \tag{11}
\end{align*}
$$

The corresponding uncorrected equation in Dyrssen and Sillen (1967) is

$$
\begin{equation*}
F_{1}=\left(W_{o}+W_{a}\right) a_{H} \tag{12}
\end{equation*}
$$

in which the presence of residual HCO_{3}^{-}and the formation of HF and HSO_{4}^{-}at low pH^{\prime} s have not been considered. It can be seen from equation (ll) that when $\mathrm{F}_{1}=0$, the total initial alkalinity (contained in
W_{o}) is equal to the equivalents of acid added. Therefore, the intercept $\mathrm{F}_{1}=0$ of a plot of F_{1} versus W_{a} yields W_{2}, with $\mathrm{W}_{2} \mathrm{~N}_{a}$ being the number of equivalents of alkalinity initially present in the seawater sample.

Equation (11) is an equation of a line with a slope equal to $\mathrm{N}_{\mathrm{a}} \mathrm{f} \mathrm{H}^{\text {. }}$ Thus the free activity coefficient of the hydrogen ion can be obtained by dividing the slope of the line by the concentration of the acid, N_{a}. When the corrections for HF and HSO_{4}^{-}are neglected in equation (ll), one obtains the total hydrogen ion activity coefficient, $\left(f_{H}\right) T$ (Culberson, Pytkowicz and Hawley, 1970).

Dyrssen and Sillen (1967) also presented equations equivalent to the following:

$$
\begin{array}{r}
\mathrm{pK}_{1}^{\prime}=\mathrm{pH}-\log \left[\frac{\mathrm{w}_{2}-\mathrm{w}_{\mathrm{a}}}{\mathrm{w}_{\mathrm{a}}-\mathrm{w}_{1}}\right] \\
\mathrm{F}_{2}=\mathrm{K}_{1}^{\prime}\left(\mathrm{W}_{\mathrm{a}}-\mathrm{w}_{1}\right)=\mathrm{a}_{\mathrm{H}}\left(\mathrm{~W}_{2}-\mathrm{w}_{\mathrm{a}}\right) \tag{14}
\end{array}
$$

They expressed their equations in terms of H^{+}concentration. W_{1} is such that $\mathrm{W}_{1} \mathrm{~N}_{\mathrm{a}}=\left(\mathrm{CO}_{3}^{2-}\right)+\left(\mathrm{B}(\mathrm{OH})_{4}^{-}\right)+\left(\mathrm{OH}^{-}\right)$and can be obtained from a plot of F_{2} versus W_{a} when $\mathrm{F}_{2}=0$. Therefore, corrections must be made to equation (14) because of borate and carbonate interference near the endpoint, W_{1}. When these corrections are applied, one obtains the following equation (as is shown in the Appendix I)

$$
\begin{align*}
F_{2} & =K_{1}^{\prime}\left(W_{a}-W_{1}\right)=a_{H}\left(W_{2}-W_{a}\right)+ \\
& -\frac{K_{1}^{\prime}}{N_{a}}\left[\frac{\left(W_{2}-W_{a}\right) K_{2}^{\prime} N_{a}}{\left(W_{o}+W_{a}\right) a_{H}}\left(1+\frac{2 a_{H}}{K_{1}^{\prime}}\right)+\frac{T_{B} K_{B}^{\prime}}{a_{H}+K_{B}^{\prime}}\left(l+\frac{a_{H}}{K_{1}^{\prime}}\right)\right]\left(W_{o}+W_{a}\right) \tag{15}
\end{align*}
$$

In equations (11) and (15), the quantities T_{F}, T_{S} and T_{B} were corrected for dilution by the acid titrant.

The corrections for sulfate and fluoride were dropped in equation (11) at temperatures other than $25^{\circ} \mathrm{C}$, because $\mathrm{K}_{\mathrm{HF}}^{\prime}$ and $\mathrm{K}_{\mathrm{S}}^{\prime}$ were not known, and because the error introduced by neglecting the corrections for sulfate and fluoride was found to be smaller than the inherent experimental error at $25^{\circ} \mathrm{C}$. It was 0.46% of the value of K_{1}.

The following iteration procedure was performed by computer for the calculation of $\mathrm{K}_{\mathrm{l}}^{\prime}$ (program is given in Appendix II). Seawater of known salinity was titrated with HCl and a_{H} versus W_{a} was obtained. In the first iteration, approximate values of W_{1}, W_{2}, and K_{1} were calculated from equations (12) and (14), by a linear least squares procedure. A value of TCO_{2} was calculated from the expression $\mathrm{TCO}_{2}=\mathrm{N}_{\mathrm{a}}\left(\mathrm{W}_{2}-\mathrm{W}_{1}\right)$, which Edmond (1970) claimed to be accurate to $\pm 0.68 \%$. At $25^{\circ} \mathrm{C}$ the approximate values of $\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~K}_{1}^{\prime}$, and TCO_{2} were then plugged into the more refined equations (11) and (15), in conjunction with Lyman's (1956) values of K_{2}^{\prime} and K_{B}, and $\mathrm{K}_{\mathrm{HSO}_{4}^{\prime}}^{-}$ and $\mathrm{K}_{\mathrm{HF}}^{\prime}$ from Culberson, Pytkowicz and Hawley (1970). At all other
temperatures the procedure was the same except for the removal of the corrections for sulfate and fluoride in equation (11). Iterations were continued until successive values of the slope of F_{2}, which wâ equal tc K_{1}^{\prime}, did not differ by more than 0.5%. The correction for carbonate in F_{2} was found to have the same effect whether Lyman: s (i956) K_{2} or that obtained by me was employed, because of the sman value of the correction.

III. EXPERIMENTAL

Surface seawater of 31.5% salinity from off the Oregon coast was filtered through a 0.45μ Millipore filter and then either diluted with deionized distilled water or concentrated by evaporation to obtain the desired salinity. For the determination of $\frac{1}{2}\left(\mathrm{pK}^{\prime}{ }_{1}+\mathrm{pK}_{2}{ }_{2}\right)$, the buffer capacity of the seawater should be at a minimum. This was accomplished by adding hydrochloric acid in an amount equivalent to the alkalinity and then removing the carbon dioxide by purging the solution with carbon dioxide-free air.

The hydrochloric acid concentration used in all experiments was 0.2999 equiv/Kg-HCl, prepared from J. T. Baker's Dilute-It analytical concentrate (\#4654). The normality of the HCl was determined by a differential potentiometric titration against primary standard $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. One-tenth normal NaOH , prepared from Baker reagent grade sodium hydroxide (\#3722), was used to adjust the pH of the seawater in the experiments to determine $\frac{1}{2}\left(\mathrm{pK}^{\prime}{ }_{1}+\mathrm{pK}^{\prime}{ }_{2}\right)$.

The titration cell consisted of a water-jacketed beaker for constant temperature control and a rubber stopper which held a SargentWelch S-30080-15-C saturated calomel internal reference electrode with a ceramic frit liquid junction, a Sargent-Welch S-30050-C glass electrode, and a calibrated thermometer. The stopper also contained a hole for placement of a syringe needlefor titrations, and a glass syringe
piston and barrel. The piston receded into the barrel upon addition of solution into the cell, thus insuring constant pressure without exchange of gases. The cell is similar to that used by Edmond (1970). The temperature of the cell was controlled with water from an Aminco constant temperature bath (\#4-8605).

The potential of the glass-calomel pair was measured by an Orion 801 digital millivolt meter, which was standardized against a Leeds-Northrup 8687 volt potentiometer.

The calculation of the test solution's $\mathrm{pH}, \mathrm{pH}_{\mathrm{t}}$, was made from the following equation.

$$
\begin{equation*}
\mathrm{pH}_{t}=\mathrm{pH}_{\mathrm{b}}+\frac{\left(\mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{b}}\right)}{2.303 \mathrm{RT/F}} \tag{16}
\end{equation*}
$$

pH_{b} is the pH of the standard NBS buffer (186-I-c, 186-II-c; pH7.415 at $25^{\circ} \mathrm{C}$), and E_{t} and E_{b} are the potentials of the electrode pair in the test solution and the buffer, respectively. R is the gas constant, F is the Faraday constant, and T is the temperature in degrees Kelvin.

The glass electrode used in these experiments was compared with a hydrogen electrode, and it was found to have the theoretical slope, $2.303 R T / F$. In natural seawater at $25^{\circ} \mathrm{C}$, the potential difference between the glass and the hydrogen electrode was $638.63 \mathrm{mv} \pm$ 0.10 mv (two standard deviations) between pH 2 and 9. The natural seawater (salinity 31.5%) was buffered with 0.005 M acetic acid, 0.005 M boric acid, 0.0025 M tris (hydroxymethyl)aminomethane
hydrochloride, 0.0072 M HCl , and 0.0025 M citric acid. The initial pH of the buffered seawater was 2.39. The seawater solution was then titrated with 4 N NaOH in increments such that the pH was changed by approximately 0.25 pH units between readings. The final reading was taken at pH 8.87.

A similar test was run in 0.5 M NaCl , buffered with 0.005 M boric acid, 0.005 M phosphoric acid, 0.005 M acetic acid, and 0.005 M hydrochloric acid. The results gave a glass-hydrogen electrode potential of $638.58 \mathrm{mv} \pm 0.13 \mathrm{mv}$ (two standard deviations) between pH 2 and pH 9.

Also, the electrodes' potential difference was found to be 638.6 mv in NBS 7.4 buffer at $25^{\circ} \mathrm{C}$.

Since the results in all three solutions were identical, within one standard deviation, it appears that the response of the glass electrode does not depend upon the composition or concentration of the solution in which it is used. This indicates that the glass electrode shows no assymetry potential differences from one of the se solutions to another.

The constant potential difference between the glass and the hydrogen electrodes at pH^{\prime} s between 2 and 9 implies that the glass electrode has the same slope as that theoretically defined for the hydrogen electrode, or $2303 \mathrm{R} T / \mathrm{F}$ millivolts per pH unit.

When the electrodes were calibrated as recommended by Bates
(1964) in two buffers (NBS 7.4 and NBS $185-\mathrm{d}\left(\mathrm{pH} 4.008\right.$ at $\left.25^{\circ} \mathrm{C}\right)$), the slope obtained was 0.9910 ± 0.0002 of the theoretical electrode slope at all temperatures between 2° and $35^{\circ} \mathrm{C}$. The difference between the theoretical electrode slope and the slope measured in two buffers must be due to the calomel reference electrode, since the glass electrode was shown to have a theoretical slope. The difference is probably due to a different value of the liquid junction potential of the reference electrode in each buffer.

Reagent grade NaHCO_{3} (Baker \#3506) was used to determine $\frac{1}{2}\left(\mathrm{pK}_{1}^{\prime}+\mathrm{pK}_{2}^{\prime}\right)$. It was referenced against primary standard KHCO_{3}, prepared as described by Kolthoff and Stenger (1942). The purity of a bicarbonate sample is represented by the sample's value of $\mathrm{TCO}_{2} /$ CA. Pure bicarbonate has a value of one, while a sample contaminated with carbonate has a value less than one.

The value of $\mathrm{TCO}_{2} / \mathrm{CA}$ for the NaHCO_{3} used in our experiments was determined by comparing the value of the steady state pH obtained in 0.72 molal NaCl with primary standard KHCO_{3} and the value of the steady state pH obtained with the NaHCO_{3}, or pH°. Since, by definition, the primary standard's $\mathrm{TCO}_{2} / \mathrm{CA}$ value is exactly equal to one, its steady state pH is equal to $\frac{1}{2}\left(\mathrm{pK}_{1}^{\prime}+\mathrm{pK}_{2}^{\prime}\right) . \mathrm{pH}^{\mathrm{O}}$ is some value greater than $\frac{1}{2}\left(\mathrm{pK}_{1}^{\prime}+\mathrm{pK}_{2}^{\prime}\right)$ due to contamination with carbonate. The values of $\frac{1}{2}\left(\mathrm{pK}^{\prime}{ }_{1}+\mathrm{pK}_{2}^{\prime}\right), \mathrm{pH}^{\mathrm{o}}$, and K_{1}^{\prime} in 0.72 molal NaCl (Hawley and Pytkowicz, 1973) were then substituted in the following equation, which is merely a rearrangement of equation (7):

$$
\begin{equation*}
\mathrm{A}=\frac{\mathrm{TCO}_{2}}{\mathrm{CA}}=\frac{10^{-2 \mathrm{pH}^{\mathrm{o}}}+\mathrm{K}_{1}^{\prime} 10^{-\mathrm{pH}^{\mathrm{o}}}+10^{-\left(\mathrm{pK}_{1}^{\prime}+\mathrm{pK}_{2}^{\prime}\right)}}{\mathrm{K}_{1}^{\prime} 10^{-\mathrm{pH}^{\mathrm{o}}}+2\left(10^{-\left(\mathrm{pK}_{1}^{\prime}\right.}+\mathrm{pK}_{2}^{\prime}\right)} \tag{17}
\end{equation*}
$$

The value of $\mathrm{TCO}_{2} / \mathrm{CA}$ for the NaHCO_{3} used in our experiments, as calculated from (l7), was 0.9991 ± 0.0002. In seawater this is equivalent to a difference of approximately $0.012 \pm 0.003 \mathrm{pH}$ units between pH^{o} and $\frac{1}{2}\left(\mathrm{pK}_{1}^{\prime}+\mathrm{pK}_{2}^{\prime}\right)$. pH^{o} was obtained by making additions of NaHCO_{3} to alkalinity free seawater. Rapid convergence to the equilibrium pH was accomplished by adjusting the initial pH to within $\pm 0.05 \mathrm{pH}$ unit of the equilibrium value with 0.1 N NaOH before adding the bicarbonate. The same value for the equilibrium pH was obtained when it was approached from an initial pH that was higher or lower than the equilibrium value. An example of an experiment is given in Table 1.

In order to obtain $\mathrm{K}_{1}^{\prime} \mathrm{K}_{2}^{\prime}, \mathrm{pH}^{\circ}$ and the value of $\mathrm{A}(=0.9991) \mathrm{cal}-$ culated from equation (17) were substituted into the following equation, which is a rearrangement of equation (7):

$$
\begin{equation*}
\mathrm{K}_{1}^{\prime} \mathrm{K}_{2}^{\prime}=\frac{10^{-2 \mathrm{pH}^{\circ}}+(1-\mathrm{A}) \mathrm{K}_{1}^{\prime} 10^{-\mathrm{pH}^{\circ}}}{(2 \mathrm{~A}-1)} \tag{18}
\end{equation*}
$$

The first apparent dissociation constant, K_{l}, was determined by the modified Gran method described earlier. Hydrochloric acid (0.2999 equivalents $/ \mathrm{Kg}-\mathrm{HCl}$) was added in increments of 0.025 to

Table l: An example of a test to determine pH°.

Temperature $=25.00^{\circ} \mathrm{C}$
Salinity $=19.17 \% 0$
Potential of NBS pH 7.415 buffer $=-44.0 \mathrm{mv}$

Approximate cell volume $=160 \mathrm{ml}$

Added 0.070 ml of 0.1 N NaOH to adjust the pH of the solution to the approximated value of the steady state $\mathrm{pH}, \mathrm{pH}^{\mathrm{O}}$.

number* potential
0
$-62.4 \mathrm{mv}$
1
-62.0
$2-61.9$
$3 \quad-61.8$
4
-61.8
5
-61.8
From equation (16), $\mathrm{pH}^{\mathrm{O}}=7.716$
The salinity of the sample, corrected for dilution with 0.01 N NaOH , was 19.16%

[^0]0.050 ml , depending upon the salinity and the amount needed to neutralize the alkalinity. A calibrated 2 ml piston buret (Gilmont \#Sl200) was used for the titrations.

IV. RESULTS

The values of K_{1}^{\prime} and $\mathrm{K}_{1}^{\prime} \mathrm{K}^{\prime}{ }_{2}$ were measured at 27,35 and 43% at 2,13 , and $35^{\circ} \mathrm{C}$, and at $19,25,31,35$ and 42% at $25^{\circ} \mathrm{C}$. The experimental results are given in Table 2.

The experimental values of pK_{1}^{\prime} were fit by a nonlinear least squares computer program, to an equation which included the terms $T, S, \log (S), 1 / T, \log (T), S T, S / T, S^{1 / 2}, S^{1 / 3}, S^{2}$, and $\log (S) / T$, where S is salinity in parts per thousand and T is temperature in degrees Kelvin. The equation obtained from the experimental data follows. The coefficients not included in this equation were not statistically significant.

$$
\begin{align*}
\mathrm{pK}_{1}^{\prime}= & -1.3720058 \times 10^{1}+3.1334423 \times 10^{-2} \times \mathrm{T}+ \\
& +3.2357584 \times 10^{3} / \mathrm{T}+1.3002925{\mathrm{X} 10^{-5} \times \mathrm{SXP}+}_{1} \\
& -1.0319833 \times 10^{-1} \mathrm{X} \mathrm{~S}^{1 / 2} \tag{19}
\end{align*}
$$

Two standard deviations of the experimental points from equation (19) is 0.005 in $\mathrm{pK}_{1}{ }_{1}$ or 1.2% in K_{1}. The values of K_{1} at integral values of temperature and salinity were calculated from equation (19) and placed in Table 3.

The experimental values of pH° (given in Table 2) were fit to an equation in the same manner as those of pK_{1}^{\prime}. The following equation

Table 2: Experimental results. Concentration unit is moles per kilogram seawater.

Temp (${ }^{\circ} \mathrm{C}$)	Salinity (\%)	$\mathrm{K}_{1} \times 10^{6}$	${ }^{\text {f }} \mathrm{H}$	pH°
2.00	26.67			7.900
				7.898
	27.01	. 6015	. 770	
		. 5966	. 774	
	34.66			7.812
				7.810
				7.814
				7.818
	34.78	. 6638	. 802	
		. 6641	. 801	
		. 6665	. 813	
	41.54			7.768
	42.88	. 7290	. 836	
		. 7284	. 837	
		. 7225	. 827	
13.00	26.76	. 7576	. 718	
		. 7599	. 731	
	26.92			7.757
				7.759
	34.76	. 8387	. 750	
		. 8373	. 755	
	35.20			7.689
				7.689
	42.85	. 9153	. 787	
		. 9145	. 788	
	42.90			7.629
25.00	19.16			7.716
				7.714
				7.711
				7.716
	19.19	. 8017	. 677	
		. 8019	. 677	
	25.17			7.652
				7.650
				7.648

Table 2 (continued)

Temp (${ }^{\circ} \mathrm{C}$)	Salinity (\%)	$\mathrm{K}_{1} \times 10^{6}$	${ }^{\text {f }}$ H	pH°
25.00	25.25	. 8727	. 674	
		. 8833	. 677	
	31.22			7.594
				7.591
				7.593
	31.49	. 9492	. 684	
		. 9560	. 684	
	34.90			7.569
				7.569
				7.567
	35.10	1.0052	. 690	
		1.0085	. 695	
	35.23	1.0099	. 692	
	42.21			7.511
				7.511
	42.26	1.0712	. 702	
		1.0782	. 695	
		1.0812	. 688	
35.00	26.75	. 9846	. 625	
	27.04			7.564
				7.564
	34.95	1.0912	. 624	
		1.0705	. 619	
	35.01			7.494
				7.495
		1.1568	. 629	
	42.94			7.433
				7.433

Table 3: $\mathrm{K}_{1}^{\prime} \mathrm{X} 10^{6}$ as a function of salinity and temperature.
Salinity ($\%$)
19.0025 .0027 .0029 .0031 .0032 .0033 .0034 .0035 .0036 .0037 .0038 .0039 .0040 .0043 .00

was obtained:

$$
\begin{align*}
\mathrm{pH}^{\mathrm{o}}= & 2.7320399 \times 10^{3}+8.6802262 \times 10^{-1} \mathrm{XT}+ \\
& +1.2253089 \times 10^{-1} \times \mathrm{XS}+9.2682884 \times \log (\mathrm{S})+ \\
& -6.3810229 \times 10^{4} / \mathrm{T}-1.1188611 \times 10^{3} \times \log (\mathrm{T})+ \\
& -4.2102212 \times 10^{-4} \times \mathrm{XS} \mathrm{X} \mathrm{~T}-2.8795312 \times 10^{3} \times \log (\mathrm{S}) / \mathrm{T} \tag{20}
\end{align*}
$$

Two standard deviations of the experimental data from equation (20) is 0.006 in pH°.

The values of pH° from equation (20) were substituted into equation (18), along with $A(=0.9991)$, and values of $K_{1}^{\prime} \mathrm{K}^{\prime}{ }_{2}$ were calculated at each temperature and salinity for which K_{1} had been calculated in Table 3. Values of K_{2} were obtained by dividing the value of $\mathrm{K}_{1}^{\prime} \mathrm{K}^{\prime}{ }_{2}$ at each temperature and salinity by the corresponding value of K_{1}^{\prime}. These calculated values of K_{2}^{\prime} are given in Table 4. The following equation for pK_{2} was obtained from forty data points extracted from Table 4:

$$
\begin{align*}
\mathrm{pK}_{2}^{\prime}= & +5.3719645 \times 10^{3}+1.6712212 \times \mathrm{T}+ \\
& +2.2912927 \times 10^{-1} \times \mathrm{XS}+1.8380222 \times 10^{1} \times \log (\mathrm{S})+ \\
& -1.2837528 \times 10^{5} / \mathrm{T}-2.1943055 \times 10^{3} \times \log (\mathrm{T})+ \\
& -8.0943679 \times 10^{-4} \times \mathrm{XS} \mathrm{X} \mathrm{~T}+ \\
& -5.6171116 \times 10^{3} \times \log (\mathrm{S}) / \mathrm{T}+2.1364128 \times \mathrm{X} / \mathrm{T} \tag{21}
\end{align*}
$$

One standard deviation of the calculated values of K_{2} extracted from Table 4 from equation (21) is 0.0003 in $\mathrm{pK}_{2}{ }^{\circ}$

Table 4: $\mathrm{K}_{2} \times 10^{10}$ as a function of temperature and salinity.
Salinity ($(\%)$
19.0025 .0027 .0029 .0031 .0032 .0033 .0034 .0035 .0036 .0037 .0038 .0039 .0040 .0043 .00

	0	1.67	2.44	2.69	2.92	3.14	3.24	3.34	3.44	3.53	3.62	3.71	3.79	3.87	3.94	4. 14
	1	1.73	2.52	2.76	3.60	3.22	3.32	3.43	3.53	3.62	3.71	3.88	3.88	3.96	4.04	4.24
	2	1.81	2.66	2.84	3.08	3.31	3.41	3.52	3.62	3.71	3.81	3.90	3.98	4.96	4. 14	4.35
	3	1.88	2.68	2.93	3.17	3.40	3.51	3.61	3.72	3.81	3.91	4.60	4.09	4. 17	4.25	4.47
	4	1.96	2.77	3.03	3.27	3.50	3.61	3.72	3.82	3.92	4.02	4.11	4.20	4.29	4.37	4.60
	5	2.85	2.87	3.13	3.37	3.61	3.72	3.83	3.93	4.84	4.14	4.23	4.32	4.41	4.56	4.73
	6	2.14	2.97	3.23	3.48	3.72	3.83	3.95	4.05	4.16	4.26	4.36	4.45	4. 55	4.63	4.88
	7	2.23	3.98	3.34	3.68	3.84	3.96	4.07	4.18	4.29	4.39	4.49	4.59	4.69	4.78	5.03
	8	2.34	3.19	3.46	3.72	3.97	4.69	4.26	4.32	4.43	4. 53	4.64	4.74	4.84	4.93	5.20
	9	2.44	3.31	3.59	3.85	$4 \cdot 16$	4.22	4.34	4.46	4. 57	4.68	4.79	4.89	4.99	5.69	5.37
	10	2. 55	3.44	3.71	3.98	4.24	4.36	4.49	4.66	4.72	4.83	4.95	5.85	5.16	5.26	5.56
	11	2.67	3.57	3.85	4.12	4.38	4.51	4.64	4.76	4.88	5.00	5.11	5.22	5.33	5.44	5.75
	12	2.79	3.70	3.99	4.27	4.54	4.67	4.86	4.92	5.65	5.17	5.29	5.46	5. 52	5. 63	5.95
\cup	13	2.92	3.85	4.14	4.42	4.69	4.83	4.96	5.69	5.22	5.34	5.47	5.59	5.71	5.82	6.16
\bigcirc	14	3. 56	3.99	4.29	4.58	4.86	5.90	5.13	5.26	5.40	5.53	5.65	5.78	5.90	6.82	6.38
\bigcirc	15	3.19	4.15	4.45	4.74	5.03	5.17	5.31	5.45	5.58	5.71	5.85	5.98	6.11	6.23	6.61
$\stackrel{5}{0}$	16	3.34	4.30	4.61	4.91	$5 \cdot 26$	$5 \cdot 35$	5.49	$5 \cdot 63$	5.77	5.91	6.05	6.18	6.32	6.45	6.84
$\stackrel{(}{+}$	17	3.49	4.46	4.78	5.68	5.38	5. 53	5.68	5.82	5.97	6.11	6.25	6.40	6.54	6.68	7.69
	18	3.64	$4 \cdot 63$	4.95	5.26	5.57	5.72	5.87	6.02	6.17	6.32	6.47	6.61	6.76	6.91	7.34
	19	3.80	4.80	5.12	5.44	5.76	5.91	6.07	6.22	6.38	6.53	6.69	6.84	6.99	7. 14	7-6D
	20	3.96	4.97	5.38	5.62	5.95	6.11	6.27	6.43	6.59	6.75	6.91	7.07	7.23	7.39	7.87
	21	4.13	5.15	5.48	5.81	6.14	6.31	6.47	6.64	6.80	6.97	7.13	7.36	7.47	7.63	8.14
	22	4.30	5.33	5.66	6.00	6.34	6.51	6.68	6.85	7.02	7.19	7.36	7.54	7.71	7.89	8.42
	23	4.47	5.51	5.85	6.19	6.54	6.71	6.89	7.06	7.24	7.42	7.60	7.78	7.96	8. 14	8.70
	24	4.65	5.69	6.03	6.38	6.74	6.92	7.10	7.28	7.46	7.65	7.83	8.92	8.21	8.48	8.98
	25	4.82	5.87	6.22	6.58	6.94	$7 \cdot 12$	$7 \cdot 31$	7.49	7.68	7. 87	8.67	8.26	8.46	8. 66	9.27
	26	5.000	6.65	6.41	6.77	7.14	7.33	$7 \cdot 52$	7.71	7.96	8. 10	8.30	$8 \cdot 50$	8.71	8.92	9.56
	27	5.18	6.23	6.59	6.96	$7 \cdot 34$	7.53	7.72	7.92	8.12	8.33	$8 \cdot 54$	8.75	8.96	9.18	9.85
	28	5.36	6.41	6.77	7.15	7.53	7.73	7.93	8.13	8.34	8.55	8.77	8.99	9.21	9.44	10.15
	29	5.53	6.58	6.95	7.33	7.72	7.93	8.13	8.34	8. 56	8.77	9.60	9.22	9.46	9.69	10.43
	36	5.71	6.75	7.12	7.51	7.91	8.12	8.33	8.54	8.76	8.99	9.22	9.46	9.76	9.94	10.72
	31	5.88	6.92	7.29	7-68	8.69	8.30	8.52	8.74	8.97	9.26	9.44	9.68	9.93	10.19	11.00
	32	6.64	7.08	7.45	7.85	8.27	8.48	8.76	8.93	9.16	9.40	9.65	9.98	16.16	16.43	11.27
	33	6.20	7.23	7.61	8. 11	8.43	8.65	8.88	9.11	9.35	9.60	9.85	10.11	16.38	18.66	11.54
	34	6.36	7.37	7.75	8.16	8. 59	8.81	9.64	9.28	9.53	9.78	10.84	10.31	16.59	10.88	11.79
	35	6.50	7-51	7.89	8.30	8.73	8.96	9.20	9.44	9.69	9.96	10.22	10.50	16.79	11.09	12.04

Tables 3 and 4 for K_{1}^{\prime} and K_{2}, which were developed from equations (19) and (20), are precise to 1.2% for K_{1}^{\prime} and 2.0% for $\mathrm{K}_{2}{ }^{\text {. }}$ These precisions are based on two standard deviations of the measured $\mathrm{K}^{\prime}{ }_{l}$ and pH^{O} from the regression lines, as these lines were used to generate the tables.

V. DISCUSSION

Apparent (quasi-stoichiometric) dissociation constants are useful to describe processes, such as the dissolution and precipitation of carbonates and changes in pH , which have only slight effects upon the major cation composition of seawater. From equation (1) and the definitions of stoichiometric association constants, one obtains equation (22) (Hawley and Pytkowicz, 1973)
$\left.\mathrm{K}_{1}^{\prime}=\frac{\mathrm{K}_{1}^{\mathrm{O}_{1}}}{\mathrm{a}_{\mathrm{H}_{2} \mathrm{Of}^{\mathrm{f} \mathrm{CO}_{2}}}\left[1+\mathrm{K}_{\mathrm{NaHCO}_{3}^{*}}(\mathrm{Na})+\mathrm{K}_{\mathrm{MgHCO}_{3}^{*}}(\mathrm{Mg})+\mathrm{K}_{\mathrm{CaHCO}}^{3}\right.}{ }^{*}(\mathrm{Ca})\right]$

In equation (22), the K^{*} s represent the association constants for bicarbonate association with sodium, magnesium, and calcium, the values in parentheses are the free concentrations of $\mathrm{Na}^{+}, \mathrm{Mg}^{++}$, and Ca^{++}, ${ }^{\mathrm{a}} \mathrm{H}_{2} \mathrm{O}$ is the activity of water, and $\mathrm{f}_{\mathrm{CO}}^{2}$ is the total carbon dioxide activity coefficient. $K_{1}^{O_{1}}$, which is defined by equation (23), depends only on ionic strength:

$$
\begin{equation*}
\mathrm{K}_{1}^{\mathrm{o}_{1}}=\frac{\mathrm{a}_{2} \mathrm{O}^{\left(\mathrm{HCO}_{3}^{-}\right)} \text {free }}{\mathrm{CO}_{2}^{*}} \tag{23}
\end{equation*}
$$

In equation (23), $\left(\mathrm{HCO}_{3}^{-}\right)$free represents the free concentration of bicarbonate. In order to alter the value of K_{l}^{\prime} the relative concentrations of the major ions must vary or the salinity must change. Similar arguments apply to K_{2}^{\prime}.

In Tables 5 and 6 the values of the first and second apparent dissociation constants determined in this work are compared with those of Buch et al. and Buch (1932, 1938; recalculated by Edmond and Gieskes, 1970), Lyman (1956), and Hansson (1972). The difference between my values for K_{1} and those of Buch et al. (1932) is, on the average, 6.7% (range 5.6 to 7.8%), with my values being lower in all cases. The comparison was done over the temperature range 10 to $35^{\circ} \mathrm{C}$ and the salinity range 21.8 to 34.5%. At 35% salinity my values for $\mathrm{K}^{\prime}{ }_{1}$ are smaller than those of Lyman (1956) at low temperature (5° and under) and greater at higher temperatures, the average difference being 4.6%. The values of Lyman's (1956) were taken from his smoothed values. They are compared to values of mine which have been recalculated to conform to his pH scale, which is based on a 0.05 M potassium biphthalate $\left(\mathrm{pH}(\mathrm{NBS})=4.008\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ standardization and a theoretical electrode response. The necessity that the comparison of values be made on the same pH scale is discussed later. Similar disagreement with Lyman (1956) was found at other salinities. My values for $\mathrm{K}^{\prime}{ }_{l}$ are larger than those reported by Hansson (1972). The difference between the two sets of data averages 4.0%.

My values of K_{2}^{\prime} are smaller, in all cases, than those reported by other authors (Table 6). Buch's (1938) values are 26% larger than mine, Hansson's (1972) 3.4\%, and Lyman's (1956) 3. 2% at temperatures

Table 5: Comparison of values of the first apparent dissociation constant from various workers. This work's values are in parentheses.

$\mathrm{K}_{1} \times 10^{6}$						
Source	Salinity (\%o)	Temp (${ }^{\circ} \mathrm{C}$)				
		5	10	20	25	35
Lyman (1956)	35.0	. $776(.760) *$. $832(.842) *$		1.00(1.085)*	1.07(1.158)*
Buch (1932) \#	$\begin{aligned} & 21.81 \\ & 33.96 \\ & 34.49 \end{aligned}$. $832(.788)$	$\begin{aligned} & .839(.786) \\ & .995(.936) \end{aligned}$	1.064(.988)	1.15(1.069)
Hansson (1971) ${ }^{ \pm}$	35.0	.693(.716)	. 760 (.797)	. $897(.941)$. 962 (.999)	

* This work's values corrected to pH scale used by Lyman (1956).
\# Values recalculated by Edmond and Gieskes (1970).
\pm Values adjusted to NBS pH scale.

Table 6: Comparison of values of the second apparent dissociation constant of various workers. This work's values are in parentheses.

$\mathrm{K}_{2}^{\prime} \times 10^{10}$						
Source	Salinity (\%)	Temp (${ }^{\circ} \mathrm{C}$)				
		5	10	20	25	35
Lyman (1956)	35.0	4.68(4.48)*	$5.37(5.16) *$		8.13(8.12)*	11.48 (10.12)*
Buch (1938) \#	$\begin{aligned} & 25.13 \\ & 34.96 \end{aligned}$			$\begin{aligned} & 6.63(4.99) \\ & 9.06(6.58) \end{aligned}$		
Hansson (1971) ${ }^{ \pm}$	35.0	4.18(4.04)	$4.97(4.72)$	6.79 (6.59)	7.82(7.68)	

* This work's values corrected to pH scale used by Lyman (1956).
\# Values recalculated by Edmond and Gieskes (1970).
\pm Values adjusted to NBS pH scale.
of $25^{\circ} \mathrm{C}$ and below, and 13.4% at $35^{\circ} \mathrm{C}$.
Part of the disagreement between the results of Buch (1938) and mine is due to the effect of $\left(\mathrm{MgOH}^{+}\right)$ion pairs on the alkalinity. Buch (1938) determined K_{2}^{\prime} at pH 9.0 , and he calculated the contribution of hydroxide ion to the total alkalinity from the ionization constant of water in NaCl solutions. Hansson (1972) showed that the ionization constant of water in seawater, $\mathrm{pK}_{\mathrm{w}}^{\mathrm{sw}}$, is larger than its value in NaCl . I used the value of the total hydroxide activity coefficient calculated from Hansson's (1972) data at $20^{\circ} \mathrm{C}$ to determine the effect of the total hydroxide ion on K_{2}^{\prime} on Buch's (1938) measurements at $20^{\circ} \mathrm{C}$. The "total hydroxide ion activity coefficient" in seawater can be calculated from the following equation.

$$
\begin{equation*}
\left(\gamma_{O H}\right)=\frac{K_{w}^{o} a_{H_{2} O}}{K_{w}^{s w} \rho_{s w}^{2}\left(\gamma_{H}\right)} \tag{24}
\end{equation*}
$$

Using $\mathrm{pK}_{\mathrm{w}}^{\mathrm{O}}=14.167$ (Harned and Owen, 1958), $\mathrm{pK}_{\mathrm{w}}^{\mathrm{sw}}=13.39$ (Hansson, 1972), $\mathrm{a}_{\mathrm{H}_{2} \mathrm{O}}=0.981$ (Robinson, 1954), $\rho_{\mathrm{sw}}=1.0248$ and $\left(\gamma_{\mathrm{H}}\right)_{\mathrm{T}}=$ $0.721\left(=\left(f_{H}\right)\right.$, this work), I calculated that at $20^{\circ} \mathrm{C}$ and $35 \%\left(\gamma_{\mathrm{OH}}\right) \mathrm{T}=$ 0.216 . Substitution of $\left(\gamma_{\mathrm{OH}}\right)_{\mathrm{T}}$ into Buch's (1938) equation for K_{2}^{\prime}, indicates that his values for K_{2}^{\prime} at 35% and $20^{\circ} \mathrm{C}$ are 4.5% too high.

A significant part of the disagreement in the values may be due to the difference in the pH scales used by each worker. Lyman (1956)
standardized his electrodes in pH 4.0 buffer and Hansson's (1972) basic calibration is relative to the bicarbonate endpoint at a pH of about 4.5. I standardized my electrodes in pH 7.4 buffer and used a theoretical electrode response slope in my calculations.

Since there is a difference between the theoretical slope of an electrode pair and the empirical one determined by calibration in two buffers, the pH scale depends upon the buffer used for calibration of the electrode pair when a theoretical slope is used in calculations. Theoretically, the pH 7.4 and 4.0 buffers are separated by 3.4 X (2.303RT/F) volts. Empirically it is found that they are separated by a value less than theory. In my case they were separated by $0.9910 \times 3.4(2.303 R \mathrm{~T} / \mathrm{F})$ volts. The discrepancy must be attributed to differences in the response of the reference electrode from one buffer to the other, rather than to the glass electrode, which has been shown to have a theoretical response with no assymmetry potential changes from one solution to another.

Without correction of my values to compensate for the difference between the pH scale which I used and that which Lyman (1956) used, my values would differ by 4.5% in K_{1}^{\prime} and 18% in K_{2}.

In Table 2 the values of the total hydrogen activity coefficient, $\left.{ }^{(f}{ }_{H}\right)$, are given, as they are determined simultaneously with $\mathrm{K}^{\prime}{ }_{1}$. Hansson's (1972) apparent dissociation constants, whichare based on a total hydrogen ion concentration, must be multiplied by $\left(f_{H}\right)$ to be
compared with constants based on the NBS pH scale. Also, his values must be slightly altered for use in natural seawater since his artificial seawater contained no fluoride and less sulfate than natural seawater.

The pH measured with three different calomel reference electrodes and the same glass electrode varied by as much as 0.01 pH units. A 0.01 pH unit change results in differences of 2.3% in $\mathrm{K}^{\prime}{ }_{1}$ and 4.6% in $\mathrm{K}_{1}^{\prime} \mathrm{K}_{2}^{\prime}$. This may be one reason for differences in various workers' values.

The values of the pressure coefficients of the apparent dissociation constants of carbonic acid (Culberson and Pytkowicz, 1968) were found to be unchanged when recalculated using the values of $\mathrm{K}^{\prime}{ }_{1}$ and K_{2} determined in this work.

BIBLIOGRAPHY

Anderson, D. H. and R. J. Robinson. 1946. Rapid electrometric determination of the alkalinity of seawater. Industrial Engineering Chemistry (Analytical Edition) 18: 767-769.

Bates, R. G. 1964. Determination of pH : Theory and practice. Wiley, New York. 435 p.

Broecker, W. S., Y. Li, and T. Peng. 1971. Carbon dioxide-Man's unseen artifact. In: Impingement of man on the oceans, edited by D. W. Hood. John Wiley \& Sons, New York. pp. 287-324.

Buch, K., H. W. Harvey, H. Wattenberg, and S. Gripenberg. 1932. Uber das Kohlensauresystem im Meerwasser. Rapports et Proces-verbaux des Reunions 79: 1-70.

Buch, K. 1938. New determination of the second dissociation constant of carbonic acid in seawater. Acta Academiae Aboensis Mathematica et Physica ll(5). 18 p.
1951. Das Kohlensauregleichgewichessystem im meerwasser. Havsforskingsinstitutets Skrift Helsinkfors, no. 151.18 p .

Callender, G. S. 1958. On the amount of carbon dioxide in the atmosphere. Tellus 10: 243-248.

Culberson, C., D. R. Kester and R. M. Pytkowicz. 1967. Highpressure dissociation of carbonic and boric acids in seawater. Science 157(3784): 59-61.

Culberson, C. and R. M. Pytkowicz. 1968. Effect of pressure on carbonic acid, boric acid, and the pH in seawater. Limnology and Oceanography 13(3): 403-417.

Culberson, C., R. M. Pytkowicz and J. E. Hawley. 1970. Seawater alkalinity determination by the pH method. Journal of Marine Research 28(1): 15-21.

Disteche, A. and S. Disteche. 1967. The effect of pressure on the dissociation of carbonic acid from measurements with buffered glass electrode cells; the effects of $\mathrm{NaCl}, \mathrm{KCl}, \mathrm{Mg}, \mathrm{Ca}$, $\mathrm{SO}_{4}^{=}$and of boric acid with special reference to sea water. Journal of the Electrochemical Society 114: 330-340.

Dyrssen, D. and L. G. Sillen. 1967. Alkalinity and total carbonate in sea water: a plea for T-P independent data. Tellus 19: 113121.

Edmond, J. M. 1970. High precision determination of titration alkalinity and total carbon dioxide content of seawater by potentiometric titration. Deep-Sea Research 17: 737-750.

Edmond, J. M. and J. M. T. M. Gieskes. 1970. On the calculation of the degree of saturation of sea water with respect to calcium carbonate under in situ conditions. Geochimica et Cosmochimica Acta 34: 1261-1291.

Gran, G. 1952. Determination of the equivalence point in potentiometric titrations, part II. The Analyst 77: 661-671.

Hansson, I. 1972. An analytical approach to the carbonate system in seawater. Ph. D. Thesis, University of Goteborg, Sweden.

Harned, H. S. and B. B. Owen. 1958. The physical chemistry of electrolyte solutions. Reinhold Publishing Corporation, New York. 803 p.

Hawley, J. E. and R. M. Pytkowicz. 1973. Bicarbonate and carbonate association with sodium, magnesium and calcium at $25^{\circ} \mathrm{C}$ and 0.72 ionic strength: I. Bicarbonate association. Submitted to Limnology and Oceanography.

Keeling, C. D. 1970. Is carbon dioxide changing man's environment? Proceedings of the American Philosophical Society 114: 10-17.

Kester, D. R. and R. M. Pytkowicz. 1967. Determination of the apparent dissociation constants of phosphoric acid in seawater. Limnology and Oceanography 12: 243-252.

Kolthoff, I. M. and V. A. Stenger. 1942. Volumetric analysis, 2nd ed. Interscience, New York. 2 vols.

Lyman, J. 1956. Buffer mechanism of seawater. Ph. D. Thesis. Los Angeles, University of California at Los Angeles. 196 numb. leaves.

Moberg, E. G., D. M. Greenburg, R. Revelle, and E. G. Allen. 1934. The buffer mechanism of seawater. Bulletin of Scripps Institution of Oceanography Technical Series 3: 237-278.

Pytkowicz, R. M. 1969. Use of apparent equilibrium constants in chemical oceanography, geochemistry and biochemistry. Geochimica Journal 3: 181-184.

Pytkowicz, R. M., D. R. Kester and B. C. Burgener. 1966. Reproducibility of pH measurements in seawater. Limnology and Oceanography ll: 417-419.

Pytkowicz, R. M. 1973. Fossil fuel burning and carbon dioxide. Comments on Earth Sciences: Geophysics. In press.

Revelle, F. and H. E. Suess. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO_{2} during the past decades. Tellus 9: 18-27.

Revelle, R. 1965. Atmospheric carbon dioxide, Appendix Y4 of restoring the quality of our environment, a report of the environmental pollution panel, President's Science Advisory Committee, the White House. pp. 111-133.

Robinson, R. A. 1954. The vapor pressure and osmotic equivalence of sea water. Journal of the Marine Biological Association of the United Kingdom 33: 449-455.

Stumm, W. and J. J. Morgan. 1970. Aquatic chemistry. John Wiley \& Sons, New York. 583 p.

Takahashi, T., R. F. Weiss, C. H. Culberson, J. M. Edmond, D. E. Hammond, C. S. Wong, Y. Li, and A. E. Bainbridge. 1970. A carbonate chemistry profile at the 1969 Geosecs intercalibration station in the eastern Pacific ocean. Journal of Geophysical Research 75: 7648-7666.

Villee, C. A. 1957. Biology. W. B. Saunders Company, Philadelphia. 615 p.

Weyl, P. K. 1961. The carbonate saturometer. Journal of Geology 69: 32-44.

APPENDICES

APPENDIX I

DERIVATION OF F_{2}

Between the carbonate and the bicarbonate endpoints the titration alkalinity that remains at any point is represented by

$$
\begin{equation*}
\frac{\left(\mathrm{w}_{2}-\mathrm{w}_{\mathrm{a}}\right) \mathrm{N}_{\mathrm{a}}}{\mathrm{w}_{\mathrm{o}}+\mathrm{w}_{\mathrm{a}}}=\left(\mathrm{HCO}_{3}^{-}\right)+2\left(\mathrm{CO}_{3}^{=}\right)+\left(\mathrm{B}(\mathrm{OH})_{4}^{-}\right) \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\mathrm{HCO}_{3}^{-}\right)=\frac{\left(\mathrm{W}_{2}-\mathrm{W}_{\mathrm{a}}\right) \mathrm{N}_{\mathrm{a}}}{\mathrm{w}_{\mathrm{o}}+\mathrm{W}_{\mathrm{a}}}-2\left(\mathrm{CO}_{3}^{-}\right)-\left(\mathrm{B}(\mathrm{OH})_{4}^{-}\right) \tag{26}
\end{equation*}
$$

TCO_{2} is defined by equation (6). Substitution of equation (1) into equation (6) gives:

$$
\begin{equation*}
\mathrm{TCO}_{2}=\left(\mathrm{HCO}_{3}^{-}\right)+\frac{\mathrm{a}_{\mathrm{H}}\left(\mathrm{HCO}_{3}^{-}\right)}{\mathrm{K}_{1}^{\prime}}+\left(\mathrm{CO}_{3}^{-}\right) \tag{27}
\end{equation*}
$$

Insertion of equation (26) into equation (27) yields:

$$
\begin{align*}
\mathrm{TCO}_{2}= & \frac{\left(\mathrm{W}_{2}-\mathrm{W}_{\mathrm{a}}\right) \mathrm{N}_{\mathrm{a}}}{\mathrm{~W}_{\mathrm{o}}+\mathrm{W}_{\mathrm{a}}}-\left(\mathrm{CO}_{3}^{=}\right)-\left(\mathrm{B}(\mathrm{OH})_{4}^{-}\right)+ \\
& +\frac{\mathrm{a}_{\mathrm{H}}}{\mathrm{~K}_{1}^{\prime}}\left[\frac{\left(\mathrm{W}_{2}-\mathrm{W}_{\mathrm{a}}\right) \mathrm{N}_{\mathrm{a}}}{\mathrm{~W}_{\mathrm{o}}+\mathrm{W}_{\mathrm{a}}}-2\left(\mathrm{CO}_{3}^{=}\right)-\left(\mathrm{B}(\mathrm{OH})_{4}^{-}\right)\right] \tag{28}
\end{align*}
$$

TCO_{2} can be calculated from (Edmond, 1970),

$$
\begin{equation*}
\mathrm{TCO}_{2}=\frac{\mathrm{N}_{\mathrm{a}}\left(\mathrm{~W}_{2}-\mathrm{W}_{1}\right)}{\mathrm{W}_{\mathrm{o}}+\mathrm{W}_{\mathrm{a}}} \tag{29}
\end{equation*}
$$

Equating (29) with (28), and rearranging, yields:

$$
\begin{align*}
\left(W_{2}-W_{l}\right) N_{a}= & \left(W_{2}-W_{a}\right) N_{a}+\frac{a_{H}}{K_{l}^{\prime}}\left(W_{2}-W_{a}\right) N_{a}+ \\
& -\left[\left(\mathrm{CO}_{3}^{=}\right)\left(1+\frac{2 a_{H}}{{K_{1}^{\prime}}_{l}}\right)-\left(B(O H)_{4}^{-}\right)\left(l+\frac{a_{H}}{K_{l}^{\prime}}\right)\right]\left(W_{0}+W_{a}\right) \tag{30}
\end{align*}
$$

From (2):

$$
\begin{equation*}
\left(\mathrm{CO}_{3}^{-}\right)=\frac{\mathrm{K}_{2}^{\prime}\left(\mathrm{HCO}_{3}^{-}\right)}{a_{\mathrm{H}}} \tag{31}
\end{equation*}
$$

The concentration of $\mathrm{B}(\mathrm{OH})_{4}^{-}$is given by (Edmond, 1970),

$$
\begin{equation*}
\left(\mathrm{B}(\mathrm{OH})_{4}^{-}\right)=\frac{\mathrm{T}_{\mathrm{B}}^{\mathrm{K}^{\prime}} \mathrm{B}^{\prime}}{\mathrm{a}_{\mathrm{H}}+\mathrm{K}_{\mathrm{B}}^{\prime}} \tag{32}
\end{equation*}
$$

Substitution of (31) and (32) in (30) gives the following equation:

$$
\begin{align*}
&\left(W_{2}-W_{1}\right) N_{a}=\left(W_{2}+W_{a}\right) N_{a}+\frac{a_{H}}{K_{1}^{\prime}}\left(W_{2}-W_{a}\right) N_{a}+ \\
&-\left[\frac{\left(\mathrm{HCO}_{3}^{-}\right) K_{2}^{\prime}}{a_{H}}\left(1+2 \frac{a_{H}}{K_{l}^{\prime}}\right)+\frac{T_{B} K_{B}^{\prime}}{a_{H}+K_{B}^{\prime}}\left(1+\frac{a_{H}}{K_{1}^{\prime}}\right)\right]\left(W_{0}+W_{a}\right) \tag{33}
\end{align*}
$$

After the carbonate endpoint and before the bicarbonate endpoint,
essentially all the alkalinity is present as bicarbonate.

$$
\begin{equation*}
\frac{\left(W_{2}-W_{a}\right) N_{a}}{W_{o}+W_{a}}=\left(\mathrm{HCO}_{3}^{-}\right) \tag{34}
\end{equation*}
$$

This is a good approximation, and since it is used to make a small correction its error is of little consequence.

Placing (34) into (33), and rearranging, equation (15) for F_{2} is derived.

$$
\begin{aligned}
F_{2}= & K_{1}^{\prime}\left(W_{a}-W_{1}\right)=a_{H}\left(W_{2}-W_{a}\right)+ \\
& -\frac{K_{1}^{\prime}}{N_{a}}\left[\frac{\left(W_{2}-W_{a}\right) K_{2}^{\prime} N_{a}}{\left(W_{o}+W_{a}\right) a_{H}}\left(1+\frac{2 a_{H}}{K_{1}^{\prime}}\right)+\frac{T_{B} K^{\prime} B}{a_{H}+K_{B}^{\prime}}\left(1+\frac{a_{H}}{K_{1}^{\prime}}\right)\right]\left(W_{o}+W_{a}\right)
\end{aligned}
$$

APPENDIX II

COMPUTER PROGR AM FOR CALCULATION OF K' ${ }_{1}$ AND f_{H}

00001: 00002 ; 00003: 00004 ? $00005:$ 000663 00007: $00008:$ 00009 ; 00010: 00011 ; 000123
00013;
$00014:$
00015 ;
00016;
00017 :
00018 ;
00019 :
00020 :
00021:
00022:
00023:
00624:
06025 ;
00026 :
$00027:$
00028 :
$00029:$
00030:
00031:
00032 :
00033 ;
00034:
00035 :
00036 :
00037 :
00038:
000395
00040 :
00041 :
00042 :
00043 ;
$00044 ;$
00045 ;
00046 :
00047 :
00048:
000493
00050:

PROGRAM MATISSE
DIMENSION $V(1 \theta \theta), E(10 \theta), F(2,10 \theta), F F(1 \theta \theta), F X(1 \theta \theta)$,
$1 \mathrm{VV}(10 \theta), V \mathrm{X}(10 \theta), Y(1 \theta \theta), \mathrm{JJ}(1 \theta \theta), \mathrm{PH}(1 \theta \theta)$
REAL M,NO,MSAVE
INTEGER $A, Z, C, X, T, H, H 1$
WRITE(61,1000)
1000 FORMAT (' ANSWER ALL QUESTIONS THAT MAY BE ANSWERED*./,

1. YES OR NO WITH 1 FOR YES AND 0 FOR NO.", 1$)$

ITER=-1
JINX=g
$\mathrm{H}=1$
H1 $=0$
1 WRITE(61,11)
11 FORMAT (' VHAT WAS THE WEIGHT OF SEAWATER(IN GRAMS) ", /, 1. PRESENT IN THE TITRATION CELL, THE ACID CONCEN-••/, 2. TRATION(IN EQ/KG), THE ELECTRODE SLOPE(IN MV PER*./, 3. PH UNIT), THE PH OF THE BUFFER, AND THE POTENTIAL*, $/$, 4° AT YOUR BUFFER PH(IN MU)?'./,
5. (TYPE VALUE AFTER \&>, THEN RETURN CARRIAGE)',/)

WT=FFIN(60)
CONC=FFIN(60)
SL=FFIN(60)
BPH=FFIN(60)
BPOT=FFIN(66)
WRITE(61,15) WT,CONC,SL,BPH, BPOT
15 FORMAT (' ARE THE FOLLOWING VALUES CORRECT?'./, '1. WT=', F6.2,4X,' CONC=.,F6.4,4X,' SL=',F5.2,/, 2. $\mathrm{BPH}={ }^{\prime}, \mathrm{F} 6.3,4 \mathrm{X}, \mathrm{BPOT}=$ ', $\mathrm{F} 5.1,1$)

READ (60,165) A
105 FORMAT (II)
IF (A.EQ. ©) GO TO 1
WRITE(61,12)
12 FORMAT (//,' GIVE YOUR VARIABLES FOR THE VOLUME OF',/, 1. HCL, V(IN ML), AND THE POTENTIAL, E(IN MV), AT ., /,
2. THAT VOLUME OF ACID. \cdot./,

3* HOW MANY VALUES WILL YOU GIVE?')
$\mathrm{N}=\mathrm{FFIN}(60)$
DO $50 \mathrm{~K}=1, \mathrm{~N}$
$V(K)=T T Y I N(3 H \quad V=)$
$50 \mathrm{E}(\mathrm{K})=\mathrm{TTY} \mathrm{IN}(3 \mathrm{H} E=)$
4 WRITE(61,18)
18 FORMAT (//. 18 H ARE THE FOLLOWING./, 116H VALUES CORRECT?,1) DO $51 \mathrm{~K}=1, \mathrm{~N}$
WRITE(61,19) K,V(K),E(K)
19 FORMAT ($5 \mathrm{X}, 13,5 \mathrm{X}, 3 \mathrm{H} \mathrm{V}=, \mathrm{F} 6,3,5 \mathrm{X}, 3 \mathrm{H} \mathrm{E}=, \mathrm{F} 6,1$)
51 CONTINUE
READ (60,105) 2
IF(Z.EQ.1) GO TO 321
888 WRITE(61,20)

```
00051:
00052:
00053:
00054;
00055:
00056:
00057%
00058:
00059:
00060:
00061:
00062:
00063:
00064;
00065;
00066:
00067:
00068:
00069:
00070;
00071:
00072;
00073:
00074:
00075;
00076:
00677:
00078:
00079:
00080:
00081:
00082;
00083:
00084:
00085:
00086:
00087;
00088:
00089:
06090;
00091:
00092:
00093:
00094:
00095:
00096:
00097:
00098;
00099;
00100:
```

```
    20 FORMAT (//,20H WHICH INDEX HAS THE,/,
```

 20 FORMAT (//,20H WHICH INDEX HAS THE,/,
 132H INCORRECT VALUE ASSIGNED TO IT?)
 132H INCORRECT VALUE ASSIGNED TO IT?)
 J=FFIN(60)
 J=FFIN(60)
 WRITE(61,21)
 WRITE(61,21)
 21 FORMAT (/,24H GIVE THE CORRECT VALUES,/s
 21 FORMAT (/,24H GIVE THE CORRECT VALUES,/s
 127H FOR V AND E FOR THAT INDEX)
 127H FOR V AND E FOR THAT INDEX)
 V(J)=TTYIN(3H V=)
 V(J)=TTYIN(3H V=)
 E(J)=TTYIN(3H E=)
 E(J)=TTYIN(3H E=)
 WRITE(61,53)
 WRITE(61,53)
 53 FORMAT (2\emptysetH ARE THERE ANY OTHER,/?
 53 FORMAT (2\emptysetH ARE THERE ANY OTHER,/?
 127H VALUES OF U AND E THAT ARE,/,
 127H VALUES OF U AND E THAT ARE,/,
 211H INCORRECT?,/)
 211H INCORRECT?,/)
 READ(60.105) T
 READ(60.105) T
 IF(T.EQ.1) GO TO 888
 IF(T.EQ.1) GO TO 888
 GO TO 4
 GO TO 4
 321 WRITE(61,5303)
321 WRITE(61,5303)
5303 FORMAT (/,' BEGINNING WITH WHICH INDEX DO YOU*./,
5303 FORMAT (/,' BEGINNING WITH WHICH INDEX DO YOU*./,
1. WISH F(1) TO BE CALCULATED'*,/)
1. WISH F(1) TO BE CALCULATED'*,/)
JOT=FFIN(60)
JOT=FFIN(60)
IF(JOT.EQ.I) JOT=2
IF(JOT.EQ.I) JOT=2
NJOT=JOT-1
NJOT=JOT-1
6 WRITE(61,25)
6 WRITE(61,25)
25 FORMAT (//,20H VALUES FOR F(1) ARE,/,
25 FORMAT (//,20H VALUES FOR F(1) ARE,/,
112H AS FOLLOWS../)
112H AS FOLLOWS../)
3426 DO 60 K=NJOT,N
3426 DO 60 K=NJOT,N
PH(K)=(BPOT-E(K))/SL+BPH
PH(K)=(BPOT-E(K))/SL+BPH
IF(HI.NE.1) GO TO 3427
IF(HI.NE.1) GO TO 3427
AH=(10.0)**(-(((BPOT-E(K))/SL)+BPH))
AH=(10.0)**(-(((BPOT-E(K))/SL)+BPH))
TF=(WT/(WT+V(K)))*SAL*6.9E-05/(1.80655*18.9984)
TF=(WT/(WT+V(K)))*SAL*6.9E-05/(1.80655*18.9984)
BICAR=(TCO2/10ø日.0)*FH/(1.0+AH/(10.0**(-AUGPK)))
BICAR=(TCO2/10ø日.0)*FH/(1.0+AH/(10.0**(-AUGPK)))
FLORD=TF*FH*AH/(AH+(10.0**(-PKF)))
FLORD=TF*FH*AH/(AH+(10.0**(-PKF)))
SULFT=FH*(0.14*SAL/(1.80655*96.06))*AH/
SULFT=FH*(0.14*SAL/(1.80655*96.06))*AH/
l(AH+(10.0**(-PKS)))
l(AH+(10.0**(-PKS)))
F(1,K)=(WT+V(K))*(AH-BICAR+FLORD+SULFT)
F(1,K)=(WT+V(K))*(AH-BICAR+FLORD+SULFT)
GO TO 3428
GO TO 3428
3427F(1,K)=(WT+V(K))*(10.0**(-(()(BPOT-E(K))/
3427F(1,K)=(WT+V(K))*(10.0**(-(()(BPOT-E(K))/
1SL)+BPH)))
1SL)+BPH)))
3428 IF(V(K).EQ.0.\emptyset) GO TO 777
3428 IF(V(K).EQ.0.\emptyset) GO TO 777
IF(NJOT.EQ.K.AND.NJOT.GT.1) GO TO 60
IF(NJOT.EQ.K.AND.NJOT.GT.1) GO TO 60
IF(NJOT.NE.I) GO TO 6000
IF(NJOT.NE.I) GO TO 6000
FF(K)=0.0
FF(K)=0.0
VV(K)=0.0
VV(K)=0.0
GO TO 80ø0
GO TO 80ø0
6000 FF(K)=F(1,K-1)
6000 FF(K)=F(1,K-1)
VV(K)=V(K-1)
VV(K)=V(K-1)
8000 D=(F(1,K)-FF(K))/(V(K)-VV(K))
8000 D=(F(1,K)-FF(K))/(V(K)-VV(K))
IF(ITER.GE.g) GO TO 60
IF(ITER.GE.g) GO TO 60
WRITE(61,24) K,V(K),F(1,K),D,PH(K)
WRITE(61,24) K,V(K),F(1,K),D,PH(K)
24. FORMAT (3H N=, 13,2X,3H V=,F6.3,2X,6H F(1)=,
24. FORMAT (3H N=, 13,2X,3H V=,F6.3,2X,6H F(1)=,
1El0.3,2X,7H DF/DV=,E10.3,2X,4H PH=,F5.3)
1El0.3,2X,7H DF/DV=,E10.3,2X,4H PH=,F5.3)

```
00101:
00102:
00103:
00104;
00105;
00106:
00107:
00108:
00109:
00110:
00111:
00112;
00113:
00114:
00115:
00116:
00117%
00.18:
00119:
00120:
00121:
001.22:
001.23:
00124:
00125;
00126:
00127:
00128:
00129:
00.130:
00.131:
00132:
00133:
001.34:
00135%
00136:
00137:
00138:
00139:
00140%
00141:
00.142:
00143: 1303 IC2=C
00144: IX2=X
00\45: .. IF(ITER.LT.0) GO TO 1306
00146: 1304 IF(H.EQ.2) GO TO 1305
00147: C=IC1
00148: 
00149: .. GO.TO 1306
00150: 1305 C=IC2
```

```
00.151;
00.152;
00153:
00154:
00155:
00156:
00.157%
00158:
00159%
0016%3
00161
08162
00163
0164
00.165;
06166:
00167:
06168;
00169:
00.170:
00171:
00172;
00173:
00174:
00.75:
00176:
00177;
00178:
00179:
00180:
00181:
00182:
00183:
00184;
60185:
00186;
00187:
00188:
00189:
00190:
00191:
00192:
00193;
001.94:
00195:
00196:
00197:
00198;
00199
00200
```

```
1306 NN=X-C+1
```

1306 NN=X-C+1
SUM=0.0
SUM=0.0
XY=0.
XY=0.
SXY=0.
SXY=0.
SX=0.
SX=0.
SY=0.
SY=0.
SXS=6.
SXS=6.
SSX=0.
SSX=0.
DO. }7\mathrm{ L=C, X
DO. }7\mathrm{ L=C, X
XY=V(L)*F(H,L)
XY=V(L)*F(H,L)
SXYmSXY+XY
SXYmSXY+XY
SX=SX+V(L)
SX=SX+V(L)
SY=SY+F(Hsi)
SY=SY+F(Hsi)
SXS=SXS+V(L)**2
SXS=SXS+V(L)**2
7 CONTINUE
7 CONTINUE
SSX=SX**2
SSX=SX**2
NO = (NN)*SXS-SSX
NO = (NN)*SXS-SSX
M= ((NN)*SXY-SX*SY)/NO
M= ((NN)*SXY-SX*SY)/NO
B=(SXS*SY-SX*SXY)/NO
B=(SXS*SY-SX*SXY)/NO
DO 201 L=C,X
DO 201 L=C,X
Y(L)=M*V(L)+B
Y(L)=M*V(L)+B
2\&1 SUM=SUM+(Y(L)-F(H,L))**2
2\&1 SUM=SUM+(Y(L)-F(H,L))**2
SS =SUM/NN
SS =SUM/NN
DELTA=NN*SXS-SSX
DELTA=NN*SXS-SSX
SM=SQRT ((NN*SS)/DELTA)
SM=SQRT ((NN*SS)/DELTA)
SB=SQRT ((SS*SXS)/DELTA)
SB=SQRT ((SS*SXS)/DELTA)
SRSS=SQRT(SS)
SRSS=SQRT(SS)
IF(ITER.GE.b) GO TO 1307
IF(ITER.GE.b) GO TO 1307
WRITE(61,26) M,B,SRSS,SM,SB
WRITE(61,26) M,B,SRSS,SM,SB
26 FORMAT(3H M=,E15.7,5X,3H B=,E15.7./,
26 FORMAT(3H M=,E15.7,5X,3H B=,E15.7./,
427H SAMPLE STANDARD DEUIATION=,E12.5./.
427H SAMPLE STANDARD DEUIATION=,E12.5./.
526H SLOPE STANDARD DEVIATION=,E15.7./,
526H SLOPE STANDARD DEVIATION=,E15.7./,
639H ORDINATE INTERCEPT STANDARD DEVIATION=E15.7.//,
639H ORDINATE INTERCEPT STANDARD DEVIATION=E15.7.//,
132H DO YOU WISH TO CHOOSE DIFFERENT,/.
132H DO YOU WISH TO CHOOSE DIFFERENT,/.
221H VALUES OF N AND REDO,/,
221H VALUES OF N AND REDO,/,
313H CALCULATION?,/)
313H CALCULATION?,/)
READ(60,105) KK
READ(60,105) KK
IF(KK.EQ.1) GO TO 1001
IF(KK.EQ.1) GO TO 1001
1307 IF(H.EQ.2) GO TO 2000
1307 IF(H.EQ.2) GO TO 2000
VT=-B/M
VT=-B/M
MSAUE=M
MSAUE=M
IF(ITER.GE.g) GO TO 1308
IF(ITER.GE.g) GO TO 1308
412 WRITE(61,27)
412 WRITE(61,27)
27. FORMAT(21H VALUES FOR F(2),WERE,/,
27. FORMAT(21H VALUES FOR F(2),WERE,/,
124H FOUND TO BE AS FOLLOWS:,//)
124H FOUND TO BE AS FOLLOWS:,//)
1308 DO 9 L=1,N
1308 DO 9 L=1,N
PH(L)=(BPOT-E(L))/SL + BPH
PH(L)=(BPOT-E(L))/SL + BPH
IF(HIबNE.1) GO TO 3530
IF(HIबNE.1) GO TO 3530
AH=10.0**(-(((BPOT-E(L))/SL)+BPH))

```
    AH=10.0**(-(((BPOT-E(L))/SL)+BPH))
```

```
00201:
00202;
00203:
00204:
00205;
00206:
00207:
00208:
00209:
00210:
00211:
00212
06213:
00214;
00215:
00216:
00217:
00218:
00219:
00220:
00221:
00222;
00223;
00224:
00225:
00226;
00227:
00228:
00229:
00230:
00231:
00232;
00233:
00234:
01235%
00236:
06237:
00238:
002393
06240:
00241:
00242:
00243:
00244;
00245;
00246:
00247:
00248:
00249:
00250:
```

```
    FU2=AH*(VT-V(L))
```

 FU2=AH*(VT-V(L))
 OUT=(10.0**(-AVGPK))*(WT+U(L))/CONC
 OUT=(10.0**(-AVGPK))*(WT+U(L))/CONC
 CARBCK=(10.0**(-PK2))*CONC*(VT-V(L))/(AH*(WT+V(L)))
 CARBCK=(10.0**(-PK2))*CONC*(VT-V(L))/(AH*(WT+V(L)))
 CARMULT=(1.0+2.0*AH/(10.0**(-AVGPK)))
 CARMULT=(1.0+2.0*AH/(10.0**(-AVGPK)))
 TB=(WT/(WT+V(L)))*(0.237/10.82)*(SAL/1.80655)/1000.0
 TB=(WT/(WT+V(L)))*(0.237/10.82)*(SAL/1.80655)/1000.0
 BORCK=TB*(10.0**(-PKB))/(AH+(10.0**(-PKB)))
 BORCK=TB*(10.0**(-PKB))/(AH+(10.0**(-PKB)))
 WITHIN=(1.0 +AH/(10.0**(-AVGPK)))
 WITHIN=(1.0 +AH/(10.0**(-AVGPK)))
 F(2.L)=FU2-OUT*(CARBCK*CARMULT+BORCK*WITHIN)
 F(2.L)=FU2-OUT*(CARBCK*CARMULT+BORCK*WITHIN)
 GO TO 3529
 GO TO 3529
 3530F(2,L)=(VT-V(L))*(10.0**(-((BPOT-E(L))/
3530F(2,L)=(VT-V(L))*(10.0**(-((BPOT-E(L))/
2$L+BPH)))
 2$L+BPH)))
3529 IF(V(L).EQ.0.0) GO TO 778
3529 IF(V(L).EQ.0.0) GO TO 778
IF(L.NE.1) GO TO 6001
IF(L.NE.1) GO TO 6001
FX(L)=0.0
FX(L)=0.0
VX(L)=0.0
VX(L)=0.0
GO TO 8001
GO TO 8001
6001 FX(L)=F(2,L-1)
6001 FX(L)=F(2,L-1)
VX(L)=V(L-1)
VX(L)=V(L-1)
8001 DD=(F(2,L)-FX(L))/(U(L)-VX(L))
8001 DD=(F(2,L)-FX(L))/(U(L)-VX(L))
IF(ITER.GE.0) GO TO 1309
IF(ITER.GE.0) GO TO 1309
WRITE(61,80) L,V(L),F(2,L),DD,PH(L)
WRITE(61,80) L,V(L),F(2,L),DD,PH(L)
80 FORMAT (3H N=,13,2X,3H V=,F6.3,2X,
80 FORMAT (3H N=,13,2X,3H V=,F6.3,2X,
16H F(R)=,El0.3,2X,7H DF/DV=,E10.3,2X,
16H F(R)=,El0.3,2X,7H DF/DV=,E10.3,2X,
24H PH=,F5.3)
24H PH=,F5.3)
1309 1F(F(2,L).LT.0.0.AND.FX(L).GT.0.0) GO TO 44
1309 1F(F(2,L).LT.0.0.AND.FX(L).GT.0.0) GO TO 44
GO TO 9
GO TO 9
778 IF(ITER,GE,Q) GO TO 9
778 IF(ITER,GE,Q) GO TO 9
WRITE(61,511) L,V(L),F(2,L),PH(L)
WRITE(61,511) L,V(L),F(2,L),PH(L)
511 FORMAT(3H N=,13,2X,3H V=,F6.3,2X,6H F(2)m,E10.3,21X,
511 FORMAT(3H N=,13,2X,3H V=,F6.3,2X,6H F(2)m,E10.3,21X,
14H PH=,F5.3)
14H PH=,F5.3)
9 CONTINUE
9 CONTINUE
44 H=2
44 H=2
GO TO 1075
GO TO 1075
2000 YO=-B/M
2000 YO=-B/M
IF(ITER,GE.0) GO TO 1375
IF(ITER,GE.0) GO TO 1375
HRITE(61,29)
HRITE(61,29)
29. FORMAT (2IH VALUES FOR PKC(1) ARE,/.
29. FORMAT (2IH VALUES FOR PKC(1) ARE,/.
136H AS FOLLOWS FOR THE PARTICULAR,/s
136H AS FOLLOWS FOR THE PARTICULAR,/s
214H VOLUME GIVEN.,/)
214H VOLUME GIVEN.,/)
1375 SUMPK=0.0
1375 SUMPK=0.0
DO 99 K=C.X
DO 99 K=C.X
PK=((BPOT-E(K))/SL+BPH-ALOG1\emptyset((VT-V (K))/
PK=((BPOT-E(K))/SL+BPH-ALOG1\emptyset((VT-V (K))/
1(V(K)-VO)))
1(V(K)-VO)))
SUMPK=SUMPK+PK
SUMPK=SUMPK+PK
IF(ITER.GE.0) GO TO 99
IF(ITER.GE.0) GO TO 99
WRITE(61,90) V(K),PK
WRITE(61,90) V(K),PK
90 FORMAT (3H Vm,F6.3,4X,5H PK1E,F6.3)
90 FORMAT (3H Vm,F6.3,4X,5H PK1E,F6.3)
9 9 ~ C O N T ~ I N U E ~
9 9 ~ C O N T ~ I N U E ~
AVGPK=SUMPK/NN
AVGPK=SUMPK/NN
TC02=(((UT-VO)*CONC)/NT)*1000.0

```
        TC02=(((UT-VO)*CONC)/NT)*1000.0
```

002513 00252:
06253 :
082543
00255
09256
00257:
66258:
00259:
0026日:
00261:
00262 :
60263 :
00264:
00265:
00266:
00267
00268:
00269 :
00270 :
0027 1:
00272 :
$00273:$
00274
00275:
062763
00277:
60278:
00279:
06280:
00281 :
$00282:$
$06283:$
06284 ;
$00285:$
00286:
0287 :
00288:
062893
002981
00291:
06292 :
09293
$00294:$
$00295:$
00296:
002975
$00298:$
002993
063008

```
        TA=((CONC*VT)/WT )*1600.6
        IF(ITER,GE.G) GO TO 1376
        WRITE(61,822) TC02,TA,AVGPK
822..FORMAT (//,' TOTAL CARBON DIOXIDE=',F6.3," MM/KG',/,
    1' TOTAL ALRALINITY=',F5.3,' MEQ/KG',/,
    2' AVERAGE PK=',F6.3)
1376 FH=MSAVE/CONC
        IF(ITER.GE.G) GO TO 1377
        WRITE(61,225) FH
    225 FORMAT(' HYDROGEN ION ACTIVITY COEFFICIENT*',F5.3)
1377 IF(ITER.LT.-1) GO TO 1351
        IF(Hl.EQ.1) GO TO 3216
        WRITE(61,281)
    281 FORMAT(///:' THE FOLLOWING VALUES ARE NEEDED TO MAKE',/,
    1: CORRECTIONS FOR BICARBONATE, AND CARBONATE,",/,
    2' BORATE, FLORIDE, AND SULFATE NEAR TO THE RESPECTIVE',/,
    3" END-PDINTS (APPROXIMATE VALUES ARE NEEDED):')
        WRITE(61,282)
    282 FORMAT (' (1) THE SALINITY, S, OF THE SEAWATER',/,
        1* (IN PARTS PER THOUSAND)."./,
    2' (2) PK(2) FOR CAREONIC ACID IN SEAWATER FOR THE ',/,
    3" TEMPERATURE AND SALINITY OF THE SEAWATER.",/,
    4" (3) THE DISSOCIATION CONSTANT OF BORIC ACID IN .,/,
    5' SEAWATER (GIVE AS -LOG(K) OR PKB).')
        WRITE(61,238)
238. FORMAT(' (4) PKF(-LOG(K)) FOR HYDROFLORIC ACID*,/,
    1" IN SEAWATER*":/,
    2' (5) PKS FOR SULFURIC ACID IN SEAWATER.*)
239 SAL=TTYIN(2HS=).
    PK2=TTYIN(4HPK2=)
    PKB#TTYIN(4HPKBE)
    PKF=TTYIN(4HPKF=)
    PKS=TTYIN(4HPKS=)
    WRITE(61,241) SAL,PK2,PKB, PKF, PKS
241.FORMAT (/," ARE THE FOLLOWING VALUES CORRECT?',/.
    1. SAL#',F6.3,2X," PK2=',F6.3,2X," PKB=',F6.3;2X,' PKF=',
    2F4.2,2%,: PKS=`,F4.2,1)
        READ(60,105) NGO
        IF(NGO.EQ.1) GO TO 242
        WRITE(61,243)
243 FORMAT(! ENTER CORRECT VALUES:',/)
    GO TO 239
242 H1=1
    IF(JINX,EQ.0) GO TO 249
1351 WRITE(61,1301)
1301.FORMAT (/;' DO YOU WISH TO PERFORM ITERATIONS*./,
    1' ON THE CORRECTED VALUES?',/)
    READ(6E,105) IQUEST
    IF(IQUEST.EQ.0) GO TO 1311
    WRITE(61,1302)
```

```
06301; 1302 FORMAT (/P! HOW MANY ITERATIONS DO YOU WISH TO :,/,
00302: 1! PERFORM{',/)
00303: . . ITER=FFIN(60)
00304; 3216 IF(ITER.GE.0) GO TO 1310
00305: 1311 WRITE(61,2312)
00306: 2312 FORMAT (//,' DO YOU WISH TO FURTHER CORRECT VALUEST',/)
00307: READ(60,105) KWNDER
00308; IF(KWNDER.EQ.1) GO TO 1351
00309: GO.TO 500
00310: 249 WRITE(61,813)
00311: 813.FORMAT(//& CORRECTED VALUES FOR F(1) ARE AS',/,
00312: .. 1'FOLLOWS:';/)
60313: 1310 H=1
00314: JINX=1
g0315: IF(ITER.LT.1) GO TO 1352
00316: .. WRITE(61,1353) ITER
00317: 1353 FORMAT (/,'. ITERATION NUMBER !,I2)
00318: 1352 ITER=ITER=1
00319: IF(ITER.EQ.0) GO TO 6
00320: GO TO 3426
00321: 500 END
```


[^0]: *Each addition was approximately 8 mg NaHCO 3.

