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NATURAL CONVECTION HEAT TRANSFER FROM FINNED TUBES

Chapter I
Introduction

Natural convection heat transfer is that mode of
heat transfer by which movement of portions of a fluid
being heated or cooled by buoyancy force originates from
density difference within the fluid. This manner of heat
transfer is used exteasively in space heating in which a
heated surface is immersed in the medium to be heated.

Because of the small heat transfer coefficient
characteristics of natural convection various means are
employed to increase the rate of heat transfer. One way
to increase heat transfer rate is to use extended
surfaces, that is to increase the surface area per unit
volume of the heater or cooler. Another method is to
provide chimneys above the heat transfer surface so that
buoyant forces are increased. Natural convection heat
transfer from finned (extended surface) tubes has become
an important method of space heating, and an understanding
of the mechanism of natural convection from finned tubes
is needed to aid in design of such systems.

Although, there has been extensive experimental work
on forced convection from finned tubes, and on the

application of finned tubes to baseboard heating and air




conditioning, little study has been devoted to natural
convection from finned tubes. Theoretical investigations
of natural convection have been restricted to some simple
geometrical configurations, such as horizontal and
vertical cylinders, vertical flat plates and vertical
parallel plates. For more complex configurations most

of the work done has been empirical because the non-
linear nature and the complex form of the differential
equations involved restrict satisfactory analytical
solution. Even for theoretical work done on simple
configurations results have usually been restricted to
the dimensionless groups involved. in the system and often
constants must be evaluated empirically.

The purpose of the present work was to make an
experimental study of natural convection heat transfer
from finned tubes to air and to determine relationships
between dimensionless groups derived from previous
theoretical studies of simple geometric systems. Such
variables as fin-shape, fin-spacing, fin-diameter and
chimney height were studied to obtain optimum values of
these parameters. Three different fin diameters and
four different fin spacings of round fins, and four
different fin spacings of square fins were investigated.
The fins were mounted on a cylindrical horizontal tube

and the systems heated by two immersion heaters and



immersed in still air. The natural convection heat
transfer coefficients were correlated in terms of the
various parameters of the system. A study on the effect
of chimneys was also made using two different sizes of

baffles mounted on the finned tubes.



Chapter 11

Theoretical Considerations and Literature Survey

1. Natural convection heat transfer:

Natural convection heat is an important mode of
heat transfer brought about by buoyant forces. Gravita-
tional convection is a process which takes place in a
universal gravitational field; the different fluid
particles in a fluid medium possess different densities
and thereby cause motion of the fluid. The main reason
for the differences in density lie in the differences in
temperature or in composition; sometimes it is caused by
electrostriction, thermomagnetic, or thermoelectrostatic
effects. Density differences caused by temperature
variation in the fluid cause natural convection. The
boundaries of the fluid are stationary and the buoyancy
force causes the interior molecules to move.

It is necessary to distinguish between natural and
forced convection. In the case of forced convection,
the velocity field depends only slightly on the temper-
ature and is determined to a large extent by the rate of

flows. The temperature field depends on the velocity

field. The Reynolds (Lff”’ ) number and Prandtl (5%"5- )

number are therefore two dominate parameters, and in most

cases the effect of the friction heat and compression work



are neglected unless the velocity reaches the speed of
the sound.

In the case of natural convection, the temperature
and velocity fields depend on each other, and the Grashof
(liézéﬂ) and Prandtl numbers are dimensionless groups
by which the data may be correlated. The compression work
and friction heat are also neglected unless there is a
sufficiently high value of Grashof number. It was
reported by Brown and Marco (6, p. 111), that the Grashof
number may be transformed into a type of Reynolds number
by a force balance between the buoyancy force and the
kinetic force which is produced by the buoyancy force.
Therefore, the Grashof number in natural convection is
really equivalent to the Reynolds number in forced
convection.

It has been shown in fluid dynamics that, as a fluid
flows past a heated body, a momentum boundary layer, as
well as a thermal boundary layer forms. The thicknesses
of these boundary layers are very small as compared to
the linear dimension of the body. In the momentum
boundary layer, the velocity of the fluid changes from
that of the body to that of the main stream and likewise
in the thermal boundary layer the temperature changes
from that of the body to that of the main stream. 1In the

case of natural convection, since the fluid is stationary



outside the boundary layer, the fluid velocity is also
equal to zero at the outer edge of the boundary layer.

Langmuir (21, p. 40) postulated that, in the case of
natural convection heat transfer from a wire to a gas,
most of the resistance to the heat transfer lies in a
film which surrounds the wire. The thickness of the film
is independent of the temperature of the wire, but
probably increases with the temperature of the surround-
ing gas. The thickness of the film of the gas varies in
a simple way with the diameter of the wire. Accordingly,
the natural convection from any surface may be expressed
in terms of the equivalent conduction through a fictitious
stagnant film, i.e.

2 -k t- - t.
Xa
where q = total heat loss
k = thermal conductivity
t_ = temperature of the solid surfico
t_ = temperature at the outer bound of the film
which is equal to that of the fluid
x, = thickness of a fictitious film

However, the real mechanism is not the case as
mentioned above. ‘Because of this and the difficulty in
determining the thickness of the film, another expression

has been derived instead of tho film theory expression,



and is presently accepted.
It is
q=hA (tg - ty)

where the proportionality factor h is defined as the
local heat transfer coefficient.

As long as the above mentioned assumptions for bound-
ary layer hold, i.e. the thickness of boundary layer is
very small as compared with the characteristic dimension
of the solid body, the convection heat transfer may be
determined from the following three boundary-layer
differential equation:

Continuity equation %(Pu) + }j(pv)=o (1)

Momentum equation P( Uz-—:(1 +v i—;l)=-z—5 t % U‘%}")*ﬂj(Z)

Energy equation Pcp(u % + V‘-‘;:-;)=% ( k%; ) @3

These equations are written in rectangular coordinates
for the case of two dimensional flow; so far no attempt
has been made to solve the three dimensional heat flow
problem.

These equations may be solved theoretically either
by exact or approximate methods. A complete solution of
the boundary layer equations will be considered as an
exact solution irrespective of whether it is obtained
analytically, or by numerical methods. The approximate

solutions are the solutions obtained from integral



relations, which are originally derived by von Karman.
In theory, the boundary layer equations are satisfied
both in the layer near the wall and in the immediate
region outside of the boundary layer. Details on the
comparison between the exact method and the approximate
method have been presented by Levy (23, p. 515)

Natural convection problems can be divided into

internal and external types. In the so called external
problems the heated (or cooled) surface being used is
much smaller than the body of the fluid in which it is
immersed. On the contrary, the internal problems are
those where the dimensions of the heater or the cooler
are comparable with the dimensions of the container of
the fluid. 8Since this thesis deals mainly with the case
of the external type, the discussion 18 restricted to

this type.

2. Combined natural and forced convection:

Natural convection occurs in conjunction with forced
convection heat transfer. The contribution of natural
convection to the total heat transfer depends on the
velocity of the main stream, and when its velocity
beccmes small natural convection predominates and

ultimately accounts for all heat transfer when the main



stream velocity becomes zero.

Combined natural and forced convection is widely
used in the after-shut-down cooling problems in nuclear
reactors. Some earlier work dealing with the combined
natural and forced convection with internal heat flux was
done by Ostroumov (33). Hallman (15, p. 1830) also made a
theoretical investigation in the combined convection
problem inside a tube. Somers (40, p. 295) solved the
problem of combined thermal and mass transfer from a
vertical plate by a theoretical approach. In addition
to the above mentioned continuity, momentum, and energy
equations, an additional equation, the diffusion equation
was needed in this case. A theoretical solution was
obtained by means of the Pohlhausen-Karman approximate
method. A theoretical analysis was also done by Ostrach
on this topic.

Van Der Hegge Zijnen (44, p. 137) studied the problem
of combined natural and forced convection heat transfer
from horizontal cylinders and obtained the following

relationship:

1/8 1/4 0.5
(Nu - o.ss)J 1 -["-24‘31!?‘T _+g-41“1' ]- 0.5Re + 0.001Re

The main object of the above equation was to predict under

what conditions the natural convection could be neglected.
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3. Natural convection heat transfer from horizontal
cylinders:

Natural convection from vertical plates (discussed
in the next section) and natural convection from
horizontal tubes are the simplest two dimensional cases
in which the above mentioned three differential equations
can be simplified and solved. Assuming constant fluid

properties, the equations become

L3y

el -l (4)
au U _ y 2%

Uax+v.;5.-u7j_z+3pe (5)
2T 9T _ , 3*T

U-D_X+v'2_j’°‘gya' (6)

where, jee is the buoyancy force term particularly
appearing in the natural convection process, (ﬂr%) is
the kinematic viscosity, and =—L) is the thermal

&P
diffusivity.

Nusselt (17, p. 2) solved the above differential
equations by means of the uniquely determining boundary
values, and reported that in the case of small temperature
difference the Nusselt number (Nu) can be expressed as a
function of Grashof number and Prandtl number. In this
expression, the fluid properties have been assumed to be
constant. This assumption is quite good for small

temperature differences, however, for large temperature
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differences this assumption no longer holds. Hence, in
the case of large temperature drop, Nusselt suggested
the following relationship:

Nu = £(Gr, Pr, Te)
Hermann (17, p. 3) made a study on the effect of this new
parameter Te on the natural convection, and reported that
the effect of Te will greatly exceed that of the Grashof
number in the region 10”%< Gr < 10. On the other hand,
the effect of Te will be negligible in the region
104<< Gr <?107. Therefore the factor Te appears as a
third parameter for the variable-property problems.
However, it was suggested later by Sparrow and Gregg
(42, p. 879) that the addition of the factor Te is not
necessary if a proper reference-temperature is chosen for
evaluating the values of the fluid properties. They
proved mathematically, that the constant-property problem
is identical to that for the special variable-property
fluid, and all the solutions obtained from the constant-
property differential equations can be applied to the
special-property fluid as well. Hence, by choosing a
proper reference-temperature the results obtained for the
constant-property conditions can be applied to the
variable-property conditions, and it was obtained that
for gases, the reference-temperature is

Tr - T' - 0.38 (T' - T.)
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It was further observed by them that the film
temperature T, = E!;i_zﬁ , may be used as an adequate
reference-temperature for most engineering purposes. All
the above results obtained by Sparrow and Gregg were based
on the boundary layer theory in which the thickness of
the boundary layer is small compared to the linear
dimension of the system.

As to the parameter Pr, it has been defined by the
gas kinetic relation that for gases, Pr = %‘%‘%TB where
n is the number of degrees of freedom of the molecular
motion. Therefore, Pr is solely dependent on the nature
of the gas and independent on the temperature in the case
of gas.

Hermann (17) made an extensive study of natural
convection from a horizontal cylinder. He solved the
differonfial equations under the assumptions that

1. The cylinder is infinitely long.

2. The flow in the boundary layer is laminar.

3. The assumption made for the boundary layer theory
is satisfied, i.e. the thickness of the boundary
layer is small as compared with the diameter of
the cylinder.

He obtained the theoretical relationship Nu = 0.37(31-0'25

where the fluid properties in the Grashof and Prandtl
number must be taken at the wall temperature. Experi-
mentally, this relationship has been proved to be correct
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from Schlieren photos obtained by Schmidt (44, p. 130).
It was also concluded by Hermann (17, p. 1l1) that the
above relationship changes to the form of Nu = constant
(Grl/a) for Gr> 3 x 108. He explained that this change
was caused by turbulence in the boundary layer. Experi-
ments of King also confirmed this one-third power law.
Hermann also observed the dependence of the Nusselt
number on the Prandtl number. He concluded that in the
region of very small Grashof numbers the Nusselt number
was almost independent of Pr, while in the region of
medium and large values of Gr, an increase of Nu with Pr
was observed.

It has been mentioned above that for Gr Pr < 104,
the fourth-power law is no longer valid. In light of
this, Langmuir (21, p. 401) proposed his "film theory".
He experimented with hot wires in air and reported that
as Gr decreases to 10‘4, Nu approaches a lower limit.
Ayrton and Kilgour, Bijlevelt and Kemnelly (17, p. 6-7)
also tested wires of different materials in air in the

4 to 10), their results are in

region of small Gr (10
good agreement with Langmuir's. Koch and Walsmer

(17, p. 8-9) experimented with cylinders in the region of
large Gr (104 to 108), their results agree with the
theoretical fourth-power law. Elenbaas (14, p. 1148.1154)

obtained the following relationship with the aid of
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Langmuir's film theory

_6
Nuse A = _&arfr Pr
235 f (Gr Pr)
where the function £(GrPr) was found experimentally.

Nusselt and King (20, p. 350) experimented with horizontal
cylinders in air and obtained empirical correlations.
Their results are plotted in Figure (1). Jakob and Linke
(19, p. 529) combined Nusselt's and King's correlations
and obtained their following relationships:

1/4 4 8

Nu = 0.5556 (GrPr) for 10 < GrPr< 10
1/3

Nu = 0,129 (GrPr) for 108< GrPr

It was noted that the natural convection heat
transfer will be greatly increased if one were able
either to increase the values of the quantities in the
numerator or decrease the values of the quantity in the
denominator of the Grashof number, or do both. Based on
this concept, Doughty and Drake (9, p. 1843-1850)
proposed that for any substance in the gaseous phase, as
the critical point is approached, all the quantities in
the Gr will increase from their regular values in super-
heated region except viscosity, and for gases viscosity
will increase with temperature. Therefore, they suggested
that for any substance in the gaseous phase, there will
be a great increase in natural convection heat transfer

at its critical state. Through experimental test on

Freon 12, they reported that a tenfold increase in the
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heat iransfer coefficient was observed at the critical
state. Dropkin and Carmi (10, p. 74) experimented with
a horizontal cylinder rotating in air. They reported
that for Re up to 1500 the following equation is

applicable:

2 S

" Gr)°'3
For Re greater than 1500, the effect of rotation speed

Nu = 0.095 (0.5 Re

greatly overweighs that of the natural convection, and
the following formula was proposed:

Nu = 0.073 (Re)’”
These relationships apply equally well to both film and
bulk properties.

Y. P. Chang (8, p. 1501-9) proposed a new theoreti-
cal approach instead of the older conventional concept
for heat transfer in natural convection and in boiling.
He assumed that there is a boundary layer above a heating
surface whose thickness depends on the heat flow. There
is wave motion inside the layer which is stable in the
lower part but unstable in the upper part. With the aid
of his wave motion theory, Chang derived the following
theoretical formula :

Nu = 0.146 (Prar)l/3
which agrees with the experimental results of other
investigators. It is also suggested in his paper that

this new concept applies not only to natural convection
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but also to forced convection. However, since this new
approach is idealized, further experiments and studies
are needed for evaluating how close this concept is to
reality.

There has been extensive study on the natural con-
vection from heated bodies, however only little work has
been done on the natural convection to cold bodies.
Lemlich and Sharn (22, p. 1547) studied the natural
convection to cold cylinders. Experimentally, they
concluded that when the temperature difference is not too
large, the equations obtained for natural convection
from warm cylinders can be applied to the case of natural
convection to cold cylinders as well.

A study was made by Boelter, Cherry, Johnson, and
Martinelli (4, p. XII-38) of the effect of vibration on
natural convection heat transfer. The following semi-
empirical equation was recommended as within the range of

laminar heat flow:

2
GrPr)
Re = Nu 12,000 - 20 Nu
where
Re = 2wdf
JZH

a = amplitude of displacement of the tube
d = diameter of the cylinder
W= angular velocity of fluid
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4. Natural convection from vertical flat plates:

Recently, with the increasing application of natural
convection such as in the cooling of turbine blades or
of helicopter ram jets, natural convection from vertical
plates is becoming more important. There is considerable
difference between the mechanism of natural convection
from vertical plates and that of horizontal cylinders.
In the case of a vertical plate the boundary layer starts
with zero thickness which results in an infinitely large
temperature gradient and an infinitely large local heat
transfer coefficient at the lower edge. On the contrary,
for horizontal cylinder the boundary layer starts with a
finite thickness which gives the finite velocity and
temperature gradients and hence a finite local heat
transfer coefficient. For flat plates, the boundary layer
thickness increases with the fourth root of the height
above the lower stagnation edge. However, for the
horizontal cylinder, the boundary layer thickness
increases from the lower stagnation edge according to a
complex law and at the upper stagnation point it reaches
a theoretically infinite thickness with diminishing
velocity and with diminishing heat transfer coefficient.
Hence, for natural convection from a vertical plate, since
the boundary layer thickness increases with the height

above the lower edge, the capacity of heat transfer
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decreases along the surface, which results in more heat
transfer per unit area for plates with shorter height.
For tall surfaces, the heat transfer coefficient has a
high value at the lower part and it decreases to a
minimum at somewhere near 17 per cent of the total height.
At this point, flow in the boundary layer becomes
turbulent and an increase in heat transfer coefficient
will be observed for a short distance, after which it
reaches a constant value for the remaining distance. 1In
spite of the difference in flow mechanisms, the equation
Nu = conatant(Gr)l/‘ is applicable to all the two
dimensional cases of natural convection heat flow within
the range of the validity of the boundary layer theory.

In 1881, Lorenz proposed his assumption which leads
to a possible solution of the problem of natural convec-
tion from the vertical plate. He assumed that the temp-
erature isotherm and the constant velocity lines were
parallel to the plate. By experimental investigation it
was found that this was not the case. Pohlhausen solved

the differential equations using the temperature and

velocity gradients measured by Schmidt and Beckmann for air

as the medium. However, his solution was only valid for
air, and could not be applied to other fluids. Saunders
(35, p. 62) investigated the same problem and obtained the
following series-type solution which was entirely
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theoretical and hence could be applied to any fluid:

1/4

u - 0.524] Pr
(GrPr)1/4 [FF + 0.187 ]

where Nu is the mean Nusselt number. Saunder's experi-

mental data were correlated by McAdams into the following

empirical relationships:

/3  sor 10° < GrPr < 1072
4

Nu = 0.59 [ GrPr] 4 for 104 < GrPr < 109

Nu = 0.13 [GrPr]

where all the fluid properties were measured at film
temperature.

Schuh also solved the differential equations
numerically by successive approximation for the case of
heated vertical plate. Later, Ostrach (31) solved the
differential equations numerically on an electronic
computer,

Squire and Eckert (11, p. 312) studied the problem
of natural convection and proposed an approximate
formulae for the velocity and temperature profiles based
on the assumption that, in the region of laminar heat
flow, the temperature profile may be expressed by a
parabolic equation and the velocity profile may be
expressed by a third power equation similar to that of
the profiles shown in tke following sketch.
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The proposed formula are

o=0s(1-%)" (1)

U=U1‘.§'("%)z ®

With the aid of their proposed formulae they solved the
differential equations by means of Karman's integral

relations, and obtained

Nu, = 0.508prl/2 )"V er_ ) /4

where uux and er are respectively the local Nusselt

(0.952 + Pr (er
number and Grashof number for a vertical distance x
measured from the lower edge of the plate. The above
equation obtained by the approximate method agrees very
well with the solutions obtained by the exact method.
The exact method is far more cumbersome.

Merk and Prins (27, p. 11) introduced a refined
Squire-Eckert approximation by assuming not only the
first derivatives of U and © but also their second
derivatives equal to zero at y = { . A more accurate
solution was obtained.

For the problem of natural convection in the region

of turbulent heat flow, Eckert (;5, pP. 256) suggested the
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following equations for the temperature and velocity

profiles:
B=0s1- (3] (9)
|
U=y (B (- 3 (10)

Where the velocity profile equation was intentionally
chosen such that, when the layer is very close to the
surface, i.e., y becomes small compared to S , it will be
similar to the velocity profile equation for turbulent
forced flow U==4€%Jz. Eckert then suggested that the
last terms in the Karman's integral equations which were
originally derived from the continuity, momentum, and
energy equations, may be replaced by the shearing stress
and heat flow that are used in forced-convection flow,
under the assumption that, in the layer very close to
the wall, the conditions are similar for natural and

forced convection flow:

4 $ '
4 [Curay=[ g00dy - v (3); (1)

5 _ T (12)
%l vedy = -« ("35)5

where the subscript s stands for the layer at the plate
surface; x stands for the distance measured vertically
from the lower edge; y is the distance measured normal

to the plate surface, and U and V are respectively the
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velocities parallel and normal to the surface. He

obtained the following solution:

7/5

/5 2/3] -2/5

Nu, = 0.0295(61':)2 (Pr) * " [ 140.494(Pr)
which is in good agreement with experiment for values of
Gr between 1010 and 1012.

Hougen and Colburn (4, p. XII-38) derived the
equation for natural convection from vertical plates in
turbulent region under the assumption that the resistance
to heat flow exists in the laminar sublayer only and none
exists in the turbulent region, and the thickness of the
laminar sublayer is the same as that in forced convection

heat flow. Their equation is

3,2 !
Nu = ‘-‘E - 0.108 (—”—inﬁ—)é

Based on Langmuir's film theory, Rutkowski (34)
suggested that for natural convection from vertical plates
the temperature profile may be expressed by an error
function since conduction alone takes place, and the
velocity profile was also expressed by an error function
which was calculated from the temperature profile. By
von Karman's integral relations, he calculated the
temperature and velocity profiles. The results are in
good agreement with the results of other investigators.
It was suggested by Rutkowski that this method may also
be applied to the case of parallel vertical plates,
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spheres, and cylinders.

In all the above mentioned approaches, the terms for
compression work and friction heat have been neglected
in the energy equation because of their small magnitudes
as compared to the other terms. However, it was pointed
out by Ostrach (29, p. 1287) that these two terms depend
on & new parameter, which he obtained theoretically.

This new parameter is

K = &réﬁ&é-

Cp
It was observed that in the case of the cooling of turbine
blades and helicopter ram jets, there was a high body
force being generated parallel to the plates, and hence a
high value of K. Therefore, it was not always safe to
neglect the compression work and friction heat in the
energy equation.

The approaches discussed above are all for vertical
plates with uniform temperature. The problem of natural
convection from non-isothermal vertical plates was
studied by Sparrow and Gregg (42, p. 879). They studied
this for the following two families of surface temperatures

T, - Ty = NX°
Ty - Ty = Me™
and obtained 2 numerical solution by solving the diffexr-

ential equations for gases. The problem of natural

convection from vertical plates with uniform surface
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heat fluxes was also studied by Sparrow and Gregg, and
the problem of non-uniform wall heat fluxes and non-
uniform wall temperature has also been studied by Sparrow.

Since the fuel rods in a nuclear reactor may have to
be cooled solely by natural convection in case of a
coolant-pump failure, a knowledge of how the boundary
layer changes during a process of transient natural
convection is necessary for designing the nuclear-
reactor fuel elements. This problem was studied by
Siegel (38, p. 347) by employing the Pohlhausen-Karman
approximate method and the temperature and velocity
profiles proposed by Eckert (11, p. 312). It was observed
that, for a time during the thermal transient, the thick-
ness of boundary layer exceeds that for a steady-state,
hence the heat transfer coefficient would pass through a
minimum before the steady state was achieved. The
equations for the time required to reach a steady state
for a plate suddenly raised to a certain uniform
temperature and for a plate suddenly subjected to a
certain heat flux were obtained as follows:

For uniform temperature

¢ ~[0:524(0.952 + )2 | 7.10(0,377 + pr)l/z]
2

(GrL)-I/Z(pT)-lxl/z
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For uniform heat flux
« = 4.78(0.8 + Pr)2/5(Gr;)-2/5(Pr)_4/5x2/5

There are some other special problems of natural
convection from vertical plates which have been studied
by different investigators. The natural convection heat
transfer in regions of maximum fluid density was studied
by Schechter and Isbin (18, p. 81-89) and the natural
convection from a vertical plate with an obstruction
placed above the point of initiation of the heated section
was studied by Bevans (1, p. 114-119),.

5. Natural convection from vertical cylinders

Vertical cylinders are classified as the bodies with
rotational symmetry. To date, there has been little
study done on the natural convection from the outer surface
of a vertical cylinder. However, it has been observed
that as the boundary layer is sufficiently thin, the
results of the natural convection from vertical cylinders
will be similar to those of vertical plates. As the
boundary layer thickness increases, behavior deviates
more and more from that of a vertical plate. It was also
observed (5, p. 101) that for short cylinders having ratio
of length to diameter less than 40, natural convection
heat transfer from vertical cylinders will be less than

that from horizontal ones. Hence, there is an additional
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variable appearing in the case of vertical cylinders, i.e.
the length, which may be eliminated in the case of a
horizontal cylinder by choosing it sufficiently long.

In 1932, King (20, p. 347) experimented with vertical
cylinders, horizontal cylinders, vertical planes and
spheres, and obtained his correlation. 1In 1948,
Touloukian, Hawkins, and Jakob tested vertical cylinders
in water and ethylene glycol (43, p. 530). The results
obtained by them were quite close to those for vertical
plates. Their results can be shown by the following
relationships:

For the value of GrPr between 0.2 (109) and 40 (109)
Nu = 0.726 (GrPr)/*
For the value of GrPr between 40 (109) and 900 (109)

Nu = 0.0674[cr(pr)t*2? ] e
Elenbaas (14, p. 1152) studied the natrual convection

from vertical cylinders based on Langmuir's film theory,

and obtained the following theoretical equation:

1/3
Nuy o exp ( -2 ) = o.6 (GrPrid,s
s ﬁﬂd,m (Grpr)h,-

where the subscript s indicates that the value must be
taken at the wall temperature, subscript m indicates that
the mean of the quantity in the interval T'—Ta must be

taken, for instance
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A, = ' T")\('r)clT
" E'Ta T.

Sparrow and Gregg (41, p. 1823) solved the differ-
ential equations for natural convection from the outer
surface of a vertical cylinder, and obtained the follow~
ing quantitative criterion under which the results of
vertical plates can be applied to the case of vertical
cylinders:

For local Nusselt number

1.3/‘

A (X -
Gr',,4('_0)«0.” for Pr = 0.72
3

2% (1_)<z 0.13 for Pr = 1
Gr;ﬁ Fo

For average Nusselt number

¥
2* /1 x
- (—) <L 0,15 for Pr = 0.72
Gr,“ o
2% x for Pr = 1
X . or =
Grfz(l$)<3:°,7

6. Natural convection from parallel plates:

Natural convection in a space between two vertical
parallel plates is of particular importance in the
problem of cooling of turbine blades and the helicopter
ram jet. An extensive study on this problem was made
by Elenbaas (13, p. 1). He experimented with the square
plates having different spaces and sizes in air, and
observed that for high values of plate spacing the heat
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dissipation (watt/cn2°C) becomes independent of plate

space, b, increases with the temperature difference
between the plates and the air, ©, and decreases slowly
with the length of plates. For small values of b, the
heat dissipation increases rapidly with b, increases with
© in the region of small values of O, and decreases
slightly with @ in the region of large values of O.
Theoretically, Elenbaas analyzed the differential equations
of the case that the plates are infinitely long in the
horizontal direction, and obtained an empirical equation
in which an additional variable L appears. His equation

is

- 1.b - e =35L 3/4
Mu =gz p OrPrll-e g

Siegel and Norris (39, p. 603) did some experimental
study on two vertical plates. The top of the rectangular
space between the plates was left open, and the bottom
and sides were closed for most of the tests. It was
observed that the local Nusselt number decreases when
the space was reduced. It was also found that when the
duct was open at the bottom, the local heat transfer
coefficients were slightly affected by the space between
the heated plates, the presence or absence of side-
inclosing walls, and the clearance between the lower
edges and the floor. When the duct was closed at the

bottom and at the sides, the local heat transfer



30
coefficient was considerably affected by both the duct
width and the space between th; heated plates.

Ostrach (30, p. 1-55) solved the differential
equations of natural convection heat transfer in channels
with constant wall temperature by numerical methods. It
was found that the parameter IZ =&|'Lf4‘i determines the
contribution of the compression work azd friction heat.
Those are neglected in most cases of natural convection.
The velocity and temperature profiles for different
configurations were also calculated in his paper.

Lietzke (24, p. 1-23) analyzed the problem of
natural convection between two parallel plates one of
which was heated uniformly and the other cooled uniformly.
An exact solution was obtained from the differential
equations, and presented in the form of velocity and
temperature profiles. Good agreement with the experiment
results was observed. It was observed that when the
value of GrPr increases the point of maximum velocity
shifts closer to the wall.

As a case of simulating the cooling of turbine
blades, Ostrach and Thornton (32, p. 363) studied the
problem of the laminar natural convection in a closed-end
tube with 2 linear wall temperature and large length-
radius ratio. In this process, the group GrPr{ is the
determining parameter, where L is the length of the tube,
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and r its ianer diameter. The velocity and temperature

profiles were calculated by Karman's integral relations.

7. Natural convection heat transfer from finned tubes:

The purpose of adding fins to a surface such as a
cylinder is to increase the available area for heat
transfer. However, the adding of fins to a surface will
result in a decrease of surface temperature unless the
fin material has a very high thermal conductivity. If
the increase of surface area is greater than the decrease
of surface temperature, then the adding of fins will
cause an increase in heat transfer rate. In general, the
fin effectiveness is used as a criterion for estimating
the fin-efficiency, and which is defined as the ratio of
heat transfer rate from a2 fin to the heat transfer rate
that would be obtained if the entire fin surface area
were to be maintained at the same temperature as the
primary surface (i.e. the cylinder). Finned tubes are
widely used in industry, but there has been little work
done on the subject of natural convection from finned
tubes. To date, most of the work done on the finned tubes
has been concentrated in the field of forced convection,
and heating and air-conditioning, and is solely experi-
mental,

The heat transfer between the finned tubes and the
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fluid may be divided into two steps taking place
simultaneously. The first step is concerning the
conduction of heat through fins. The temperature
distribution along the fins has been solved from the
differential equation obtained by a heat balance. The
second step is the convection of heat from the finned tube
to the heating medium. The problem of heat transfer by
convection from a finned tube in forced air current has
been studied by several investigators. Biermann and
Pinkel (3) tested the finned tubes by various fin shapes,
widths, thicknesses and spaces under different air speeds
in a wind tunnel. It was observed that the value of heat
transfer coefficient varies mainly with the air speed and
the fin space, and is affected slightly by the other fin
dimensions. An equation was derived for designing the
optimum fins which will give the maximum amount of heat
dissipation for a given weight of material.

Biermann and Ellerbrock, Jr. (2, p. 401-424)
reported that for a given fin weight, the magnesium alloy
gives the highest heat dissipation; pure copper and
aluminum alloy are only slightly inferior to magnesium
alloy. For a given fin height, copper, which has a high
thermal conductivity, will give the highest heat dissipa-
tion. In the problem of cooling, it is rather important
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to know how much heat is dissipated through the plain
cylinder. For this purpose, a term of so-called cooling
effect was derived in reference (3, p. 263) and (25,

p. 111). It gives the rate of heat removed from the area
of the plain cylindrical surface.

Schey and Rollin (36, p. 111-124) tested the effect
of different types of baffles on the heat transfer of
finned tubes. Four kinds of baffles, streamline baffle,
plate baffle, shell baffle, and integral baffle were
tested, and it was found that the shell baffles gave the
best cooling effect when they were mounted as closely to
the tube as possible.

Finned tubes are also widely used in heating and air-
conditioning. An extensive study has been carried out by
the Institute of Boiler and Radiator Manufacturers. It
was concluded that the fin thickness used in the
investigation should be sufficiently consistent, and the
fin to tube bond can affect the output.

Murray (28, p. A-78-80) made a mathematical investiga-
tion on the heat flow in an annular disk of uniform
thickness.

Carrier and Anderson (7, p. 304-318) studied the
temperature distribution on the finned tubes.

Seigel and Bryon (37, p. 129) studied the problem
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of natural convection cooling and dehumidifying on a
bare horizontal tube, and on other tubes with extended
surfaces. One horizontal bare tube, one horizontal finned
tube, and one complete gravity cooling coil were used.

Their results will be discussed in Chapter VI.
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Chapter III

Experimental Apparatus

The experimental apparatus consisted of the finned
tubes, power source, temperature measuring system, and
other miscellaneous components. These will be discussed

in detail.

1. Finned tubes

Each of the finned tubes consisted of a 1.375 inch
OD by 1.261 inch ID bare copper tube with a length of
one foot, on which fin plates were mounted. The fin-
plates were made from 23 gauge copper (0.0239 inch thick)
and they were fitted on the copper tube by thermal-
shrinking. The inside diameter of the fin-plates was
made 0.006 inch smaller than the outside diameter of the
tube. By heating to 1600°F in an oven for three minutes,
the fin-plates expanded to the extent that the inside
diameter was bigger than the outside diameter of the tube.
After being mounted on the tube and cooling, the fin-
plates were fitted very well on the tube. Two kinds of
fin-plates were made, round fins and square fins. Of
the round fins, three different sizes were made, i.e.
2 3/8 inches, 2 7/8 inches, and 3 3/8 inches fin diameter.
Only one size of square fin was made with an area equal

to that of the round fin-plates of 2 7/8 inches diameter.
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The finned tubes were heated by two quartz immersion
heaters with an overall length of 11 inches and a heated
length of 6 inches. These were obtained from the Glo-
Quartz Electric Heater Co., Inc. They were inserted
into the tube from either end through rubber stoppers and
Placed in such a way that they were completely immersed
when the horizontal tube was half filled with water. A
glass tube passed through one of the stoppers, and
connected to a water manometer by a rubber tube so that
the vapor pressure inside the tube could be observed.
The finned tube was mounted on a stand so that it was
two feet from the floor, and it was enclosed on the sides
by an open top enclosure 40 by 40 by 40 inches.

Six iron-constantan thermocouple junctions were
soldered on the finned tube, three on the upper part and
three on the lower part. Of the three thermocouples on
each part, one was soldered on the copper tube, one on the
mid-point between the fin-base and fin-tip, and one on
the fin-tip. Only one fin-plate was chosen for temper-
ature measuring purposes. However, the calibration curves
of the temperature distributions on different fins have
been plotted so the average temperature of the fins can be
obtained by the measurement on one fin. The general set-
up of the finned tube and its accessories are shown in

the sketch of Fig (2), and all the finned tubes tested
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are shown separately in the photograph of Fig (3).

2. Power source

The power source consisted of a Raytheon voltage
stabilizer, and four powerstats made by the General Radio
Co. The powerstats were used for adjusting the power
supply to the immersion heaters. Each pair formed one
group, and they were arranged in series for the purpose
of achieving better adjustment of the 60 cycle AC voltage.
A Simpson voltmeter with a range from zero to fifty volts
and & Triplett ammeter with a range from zero to two amp
were used to measure the power supply. Accuracy of the
voltmeter was + 0.2 volt, while that of the ammeter was
+ 0.01 amp. A wiring diagram of the power system is
shown in Fig (4).

3. Temperature measuring system

Temperatures on the surface of finned tubes were
measured with thermocouples and a potentiometer. The
e.m.f. readings from the potentiometer were converted to
temperature units by means of a calibration curve. The
e.m.f. measuring system consisted of No. 30 iron-
constanten thermocouples, a rotary selector switch, a
cold junction, and a Leeds and Northrup potentiometer
(No. 737621). The cold junction was immersed in a
thermos bottle filled with cracked ice in water to keep
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FIGURE 3 FINNED TUBES
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the temperature of the cold junction at 32°F. A Fischer
vibradamp support was placed underneath the potentiometer
for the purpose of absorbing any ambient vibration, because
the accuracy of the reading of the potentiometer was
unfavorably affected by any vibration.

The temperature of the air was measured by a
thermometer made by the Standard Calorimeter Co. with an

accuracy of 0.01°F.

4. Miscellaneous component parts

During the study of chimney effect, baffle-plates
were mounted on the sides of the tubes by means of four
sets of wood rods which could be fitted on the finned-
tube stand. Two sizes of baffle-plate having heights
of 2,548 inches and 3.78 inches were used. They were
rectangular in shape, and had the same length as that of
the finned tube. They were placed 1/8 inch from the fin
tip, in a vertical position on either side of the fin as
shown in Fig (5).
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FIGURE 5 ASSEMBLY OF GCHIMNEY BAFFLES AND FINNED
TUBES



Chapter IV

Experimental Program and Experimental Procedure

I. Experimental program

This thesis is an investigation of natural convection
heat transfer from finned tubes. Air was used as the
ambient fluid. The primary purpose of this investigation
is to correlate the experimental data in terms of the
parameters of the system. The variables involved in the
correlation were the temperature difference between the
surface of finned tube and the air, fin spacing, and fin
diameter. Arithmetic mean heat transfer coefficients
were used in the correlation, and the necessary data for
calculating the arithmetic mean heat transfer coeffi-
cients were the average temperature of finned tube, the
time-average temperature of the air, the area available

for heat transfer, and the power input to the two heaters.

1. Round finned tubes

Three different fin diameters (2 3/8, 2 7/8 and
3 3/8 inches) and four spacings (1/4, 3/8, 1/2, and 3/4)
were studied during the course of investigation. However,
due to the difficulty of making an exact fin spacing the
real fin spacings of the tubes deviated somewhat from
above nominal values. By adjusting the power input,

temperature differences ranging from 20°F to 100°F could
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be obtained. Each finned tube was studied at six
temperature differences in this range. Duplicate runs
were made at each temperature difference. During the
progress of the experiments, the enclosure-box was
raised 2 1/2 inches from the table top so that sufficient
air circulation could be obtained. However, for the
purpose of determining effect of air circulation, two
other values (0 and 3 1/2 in.) of clearance between the
lower edge of the enclosure-box and the table top were
studied for the finned tube of 2 7/8 inches fin diameter

and 6/8 inch fin spacing.

2, 8Square finned tube

Since the results of the square finned tubes were very
similar to those of the round finned tubes with the same
fin area, only one fin height and four fin spacings were
studied, The fin-plates were made 2.548 x 2.548 inches
in size; so the fin area was equal to that of the 2 7/8
inches diameter round fins. The same fin spacing as those
for the round finned tube were studied.

Study of chimney effect was made on the tube of 6/8

inch fin spacing.

3. Temperature measurement on finned tubes
Average temperature of finned tubes was needed for

calculating mean heat transfer coefficients. Since only
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the temperature of one arbitrarily-chosen fin-plate was
measured during the progress of the experiment, experi-
mental data for evaluating the average temperature of
the finned tube from that of the arbitrarily-chosen fin
were needed. For this reason preliminary experiments
for each finned tube were carried out before the main
experiments were made. The purpose of carrying out
these preliminary experiments was to obtain sufficient
experimental data for plotting the calibration curves
relating the average temperature of the finned tube to
the temperature of the arbitrarily-chosen fin-plate.

With the aid of these calibration curves, evaluation of
the average temperature from the temperature of chosen
fin was possible. Temperatures of fifteen fin-plates
were measured for the average temperature determination
of the 1/4 inch-spacing tubes, temperatures of seven fin-
plates were measured for the 3/8 inch-spacing tubes; and
temperatures of seven and four fin-plates were recorded
respectively for the 1/2 inch- and 6/8 inch-spacing
tubes. Temperatures of the middle points of the upper
and lower portions of the fin-plate were taken for
representing the average temperatures of these two
portions. Therefore, only two thermocouples were needed
for each plate. These two thermocouples were respectively

soldered on the middle points of the upper and lower



portions of the fin-plate. It is seen in the main
experimental data that it was a good approximation for
taking the temperature of the middle point as the average
of the temperature of the base, middle and tip of the

fin-plate.

4. Thermocouple numbering system

Thermocouple numberings are presented in Fig (6).
Three thermocouple junctions were soldered on the upper
part of the fin-plate, and the other three were soldered

on the lower part.

5. Bare copper tube

For the purpose of testing the reliability of the
apparatus, a bare copper tube was also tested. Thermo-
couple numberings system of bare tube is also presented

in Fig (7).

II. Experimental procedure
The procedure in operating the equipment and record-
ing the data are listed as follows:
1. Set the voltage of the powerstats so that two
heaters would have the same power input.
2. Closed all the doors and windows of the
laboratory, in which the equipment was set up,
so that the air inside the laboratory would
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remain undisturbed.
Allow two hours for the experiment to reach
steady state. Under the condition of steady
state, amount of water vapor evaporated by the
heaters was balanced by that condensed down from
losing heat to the air through the finned tube.
After two hours, the rubber tube was connected
to the water manometer. Constant reading on the
manometer indicated the constant pressure inside
the finned tube and so the arrival of steady
state. Usually, the steady state could be
maintained for 10 or 20 minutes.
Thermocouple readings were recorded. After the
last thermocouple reading was taken, a check was
made on the first thermocouple reading in order
to assure the achieving of steady state.
Air temperature was recorded; before the thermo-
couple readings were taken, and after the thermo-
couple readings were taken.
Readings of the electric current of the two
heaters were recorded.

Voltage readings of the heaters were recorded.
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Chapter V

Calculation of Experimental Data And Estimation of Error

I. Calculation of experimental data

Since the main objective of this thesis was to
evaluate the mean heat transfer coefficient for natural
convection from finned tubes, an energy balance is
required. It was mentioned in the preceding chapter that
all the experimental data were recorded under the steady
state. At steady state, the energy input should be equal
to the energy output. The energy input was equal to
the amount of power supplied to the immersion heaters,
while the energy output was equal to the heat loss from
the finned tube to the air by both natural convection and
radiation. Hence, an energy balance could be established

in the following manner:

9nput © 9onv * Yrad (13)
where

%ony rate of heat loss by natural convection

Qpaq = Tate of heat loss by radiation

qinput = rate of energy input

In order to calculate qconv from the above, calculation
of radiation loss was necessary by means of the following
formula:

=1 = Anscnln('rn‘i - T14) (14)
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where
Syl ™ heat transfer rate by radiation between
surfaces 1 and n
For calculating J,, , it was assumed that each section
between two adjacent fin-plates might be represented by
one of the configurations discussed in reference (16,
p. 29), and which is presented in Fig (8) where A3 and
A4 are the surfaces of the fin-plates, A2 is the cylinder
surface, and Al is a fictitious surface. All the surfaces
wore‘assumed to be gray bodies except surface Al.
Surface Al was assumed to have the same emissivity as
that of surrounding enclosure and the room walls. These
were aéaumed to be black bodies. Thus surface Al was
assumed to have an emissivity of unity. Details for the
calculation of 7, are presented in Appendix (A). The
over-all interchange factors of the square finned tubes
were evaluated under the assumption that the configura-
tion in Pig (8) might be applied to square finned tubes
as well.
With the aid of radiation loss calculation heat

transfer coefficients for natural convection can be

calculated from the following equations:

4
- - - A 4_
%conv_ %inpuf %rd_ K1E Ag+AstA, %zA"J'"B(Tn T,‘) (15)

A

ha.n.A(Tw’-';))"KIE - AtAyehy

%’z AnTnB(TA-T4H (16)
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A ﬁi AnTnB(Ty -T*)
_ KIE ~“ Az +A3+A4 ner ' " ™ wai. (17)

hn.m.- A(T,-T.)

The whole finned tube (primary and secondary surface)

was assumed to have uniform temperature T‘, then

4 _4
AB(T-U'T) 4
O o e as)
o A(Ty-Ta)

where T' was the arithmetic mean temperature of the whole
finned tube. As mentioned in Chapter IV, during the
progress of the experiment only the temperature of one
arbitrarily-chosen fin-plate was measured. Therefore,
charts of calibration curves, in which the arithmetic
average temperature of fins versus the temperature of
the arbitrarily-chosen fin-plate where the temperature
measurement was taken, was needed for evaluating T'.
These plots are presented in Figs (9) through (24).
Maximum deviation of the data points from the curves is
+3%. However, it is observed that the maximum deviation
of the data of the individual fins from the average is
+6%.

As to the temperature distribution across a single
fin-plate, it was observed that, for the finned tubes of
3 3/8 inches fin diameter, the temperature difference
between the tip and base of the lower part of fin-plates
was about 2.5°F when the average surface temperature of

finned tube was 167°F, i.e. 1.5% of the average fin
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temperature. The temperature difference across the upper
part of fin-plates was 2.5°F at the same average surface
temperature, while the temperature difference between the
middle points of upper and lower parts was 2.5°r, i.e.
both of them were also equal to 1.5% of the average fin
temperature. Since lower temperature differences
occurred at lower average surface temperatures, and lower
temperature difference also occurred for smaller fin-
plates, it is reasonable to assume that the finned tube
possesses a2 uniform temperature.

The arithmetic mean temperature Tv of the finned
tube could be obtained from the temperature of the
arbitrarily-chosen fin-plate by using the calibration
curves mentioned above. From Tw’ the arithmetic heat
transfer coefficient h, , was calculated. For evaluat-
ing Tw a conversion chart was needed to convert the
millivolts of e.m.f. into degrees Farenheit. This
conversion chart was made by calibrating the thermo-
couples against a National Bureau Standard thermometer
which is presented in Fig (25).

Also the thermometer used in measuring the air
temperature was calibrated against the above-mentioned
standard thermometer and its calibration curve is

presented in Fig (26).




Since the immersion heaters were the coil-type
heaters, knowledge of how much power loss by self-
inductance was necessary for evaluating the accurate
power input. The following equation was used for
calculating the self-inductance of the heaters:

2 2
o %ﬁ'ﬁn' @

where

L' = length of wire, inch

r = radius of wire in the heaters, inch
In the present work,

r = 1/8 inch

n ¥ 170

L ¥ 6 inches

Hence,
¥ - (1/8)2(172)2 [ ET e

This was negligible compared to the total power input.
The total surface area of the finned tube was
calculated from the following equation:
A= 2nA£ + Ac + NM(Pt - Pé)
A Nusselt number and a2 Rayleigh number (Ra) were

calculated from the data obtained

ham.L
Nu = —-=
k

_ _(LFBI6 N (GMy _  pe3cC 3
Ba = Grpe= (<7 )(i)_(iﬁi—zuu(e)
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The quantity ( %ﬂ ) which includes only air
properties was given the symbol Y is plotted in Fig (27)
on a function of temperature. Pig (27) was developed
from the data on page 483 of reference (26). Thermal
conductivity k in the Nusselt number was obtained from
the plot in Fig (28) which was developed also from the
thermal conductivity data of reference (26, p. 483).

L was any characteristic length of the finned tube.
All the air-properties were taken at the film temperature
because the film temperature has been shown to be an

adequate reference temperature for gases as mentioned in

Chapter II.

II. Estimation of experimental errors

The errors involved in the evaluation of mean heat
transfer coefficients consist of the errors in reading
the e.m.f. values of the various thermocouples, voltage
and current values of the power supply, and the estima-
tion of radiation loss.

The values of e.m.f. on the potentiometer were read
to + 0.002 which was equivalent to 10.07°r from the
conversion chart. However, there was also some amount
of error involved in the preparing of conversion chart.
The error in temperature measurement by thermocouple is,

therefore, estimated to be 19.1°r. Besides, the maximum



error involved in averaging procedure for temperature
was +3% as mentioned before.

The current was read to +0.01 amp, and the voltage
was read to +0.2 volts. The air temperature was read
to +0.01°%F.

The greatest radiation loss was provided by the
finned tube with smallest fin diameter and largest fin
spacing, i.e. the round finned tube of 2 3/8 inches fin
diameter and 6/8 inch fin spacing in the present work.
By taking the emissivities of the fin-plates and copper
tube as listed below, the error involved in the estima-
tion of radiation loss is shown by the following
calculation.

Since the possible values of €, and €4 range from
0.7 to 0.57, while those of €, range from 0.2 to 0.072,

by assuming Eg™Ey™ 0.7

€ 2 = 0,2
it was obtained that
4
= ApFai=0.254
n=1 4
but the value of 2 4,7. used in this work was equal
n=2
to 0.0208 as taking
€ g ™ é4 = 0,57
= 0,072

€2
The maximum possible error involved in the evaluation of
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i An T is therefore
" 0.0254 - 0.0208 = 0.0048
where €9, €3, and € 4 2re respectively the emissivities
of surfaces Az, A3z and A4. Details of the above calcula-
tions are presented in Appendix (A).

The range of error in the mean heat transfer coeffi-
cients caused by above errors is shown by the following
calculation which was the run 1 of the experimeat of
round finned tube of 2 3/8 inches fin diameter and 6/8
inch fin spacing:

KIE = (3.413)(2)(2.5+0.2)(0.68+0.01) = 116.04+2.63
Ty=Ta= 153.4(1+0.03)+0.1 -(73.715+0.01)=79.685+4.712

4 4 8

T, - Ty~ = (604.3214+6.791)x10

w
Substituting the above terms into equation (17), gives

(116.04 £ 2.63)- &93.'_3»?3"3-7"2(’-"“3 +0.0048)(604.321 £ 6791)

(0.981) (79.685 £ 4.7/2)

ha.m.

= (116.044+2.63)-(33.238+7.679+0.373)
78.171 + 4.822

- 82-802+;;27:§g-°°3 = 1.059 + 0.0982 + 0.101

The percentage error is

. (o.1g?g%£100) = +18.8%

- (0.101) (100) =-9,54%
1.059

The above value of percentage error appears quite large,
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because there is a large amount of error involved in the
over-all interchange factor calculation. However, the
error on the over-all interchange factor shown above has
been estimated for the worst case. It is believed that
there would be less amount of error 1nvolvod in the

present experiment.
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Chapter VI

Analysis of Data

I. Bare tube data
The experimental results of the bare tube are
presented in Fig (29) in which the Rayleigh number

Gﬁz}ﬁg%(fitzi' plotted versus the Nusselt nu-bcr(hﬁ?J&
on.:.logurithnic scale, where the subscript f indicates
that all the fluid properties are taken at the film
temperature. Evaluation of the arithmetic mean heat
transfer coefficient, h‘.-., is based on the arithmetic
temperature of the upper and lower parts of the tube. At
an average surface temperature of 200°r, the difference
in temperature between the upper part and lower part of
the tube was 0.2°P. Smaller temperature differences would
be obtained for smaller average surface temperatures.
Hence, it was satisfactory to assume a uniform surface
temperature over the tube. Also plotted is the curve
recommended by McAdams for horizontal cylinders. By a
least square analysis of the present data, the following
empirical relationship was obtained with 12% deviation
of the data:

Nu, = 0,558 (GrPr)fll4 (20)
As compared with McAdams' equation Nu = 0.53(Gr9r)1/4,

it is seen that the present data for the bare tube are
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5.3% higher than those of McAdams'. This may have
resulted from the different length-diameter ratio of the
tubes and the error involved in estimating the radiation
loss in the present work. Since there is a smaller value
of length-diameter ratio used in the present work, it is
possible that the length of the tube may appear as an
additional parameter and affect the heat transfer
coefficient. Also estimation of radiation loss was based
on the assumption that the emissivity of the shiny copper
tube was equal to 0.072. A higher value of emissivity
would provide better agreement with McAdams. Reasonably
good agreement of the present results of the bare tube
with McAdams' results of horizontal cylinder indicates

the reliability of the experimental equipment.

II. Effect of the clearance between the lower edge of

the enclosure-box and the table top

It was the object of the study to obtain natural
convection heat transfer coefficients for the tubes
immersed in a large body of still air. Therefore, it was
first determined if the 40 by 40 inches open top
enclosure around the apparatus affected the rate of heat
transfer. It was of particular interest to determine if
the clearance between the lower edge of the enclosure and
table top affected air circulation, and therefore

influenced the heat transfer coefficient. The round
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finned tube of 2 7/8 inches fin diameter and 6/8 inch fin
spacing was employed to determine the effect of clearance.
Experiments were conducted with three different values of
clearance between the enclosure and the table top, i.e.

0, 2.5, and 3.5 inches. Results are presented in Fig

(30) where the mean heat transfer coefficient h is

a.m,
plotted versus temperature difference. All the data for
the three clearances fall on a single line. Each group
of data deviated from the line & minimum of 1.8% and a
maximum of 18%. It was thought that the heat transfer
coefficient obtained in the case of zero clearance might
be different from that of the other two cases. However,
it is shown in Fig (30) that this is not the case. The
independence of heat transfer coefficient with the
clearance may be explained by examining the flow pattern
of the air circulation. It is thought that, when there
is no clearance between the box and the table top, the
flow pattern of air circulation may be represented by
the sketch in Fig (31). The warm air moved up in the
central portion of the cross section of the box, while
the cold fresh air is sucked in from the sides. This
type of flow pattern keeps the air as well circulated as
in the case with a clearance between the box and the

table top and hence gave the same value of heat transfer

coefficient. All succeeding experiments were made with
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a clearance of 2.5 inches.

III. Analysis of heat transfer data of finned tubes

The heat transfer data of all the finned tubes,
including that for the two sizes of chimneys, are
presented in Figs (32) through (35) in which the Rayleigh

k
number (Z2m4f) . The equivalent diameter dg is the

2
number ( de C:‘Z‘ 9){( c"‘}‘){ is plotted versus Nusselt

arithmetic average of the fin diameter and tube diameter,
and the temperature difference is the arithmetic average
of the temperature difference between different parts of
the finned tube and the air. Each curve is for a constant
fin spacing.

The present correlation may be applied to bare tube
as well, because in the case of bare tube, fin height is

zero. Therefore according to d. =d+de | it is
2
adequate to use tube diameter to replace the equivalent

diameter in the dimensionless quantities and plot the

data of bare tubes as well. In the case of single
de
¥

to zero. The two dinonsionloss quantities, then reduce

to ("‘ ')‘ and (ifsfﬁe) (c':‘)\c , and they can be

plotted in Figs (32) through (35) by transformation of

vertical plates de reduces to , because d diminishes

axis. With the aid of the plots of horizontal tubes, a
comparison of the results of finned tubes with those of
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simpler configurations is possible. For square finned
tubes, same value of d, is used as that for the 2 7/8
inches round finned tubes.

The following empirical equations result from a
least square analysis of the experimental data:
(a) round finned tubes
2 3/8 inches fin diameter:

1/4 inch fin spacing uur-o;ooss4(srpr)g’543 (21)
3/8 inch fin spacing uuf-0.0224(GrPr)2'47 (22)
1/2 inch fin spacing Nug=0.0585(GrPr)2-402 (23)
6/8 inch fin spacing Nu =0.186(GrPr)3-312  (24)
2 7/8 inches fin diameter:
1/4 inch fin spacing Nu,=0.0132(GrPr)2 %13 (25)
3/8 inch fin spacing Nu_~0.18(GrPr)3 *47  (26)
1/2 inch fin spacing Nu,=0.119(GrPr)2-336  (27)
6/8 inch fin spacing Nu,=0.304(GrPr)J-278 (28

3 3/8 inches fin diameter:

0.521
£
3/8 inch fin spacing Nu -o.oese(crpr):°39“ (30)

1/4 inch fin spacing Nu =0.01(GrPr) (29)

=h

1/2 inch fin spacing Nu -0.154(GrPr)g'338 (31)

6/8 inch fin spacing Nu -o.134(crrr)g°3‘° (32)

= L T

(b) square finned tubes

1/4 inch fin spacing lu£-0.015(GrPr)g’5°z (33)

3/8 inch fin spacing Nug=0.131(GrPr)3-34%  (34)
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1/2 inch fin spacing Nu -0.049(GrPr)g'428 (35)

£
6/8 inch fin spacing Nuf-0.131(GrPr)2‘3‘5 (36)

6/8 inch fin spacing 0.317

with 2.548 inch l'uf-o.zlﬁ(GrPr)f (37)
chimney

6/8 inch fin spacing 0.336
with 3.78 inch Nu£-0.184(GrPr)t' (38)
chimney

It is seen that the characteristic slopes in the
above equations decrease with the fin spacing, but appear
to be nearly independent of the fin diameter and the
addition of chimneys although there are some individual
exceptions. It is believed that the dependence of charac-
teristic slope on fin spacing is brought about by the
overlapping of boundary layers. When the fin spacing
becomes smaller, not only the boundary layers of the two
adjacent fin-plates overlap with the boundary layer of
the cylinder, but also they overlap with each other. This
causes the values of characteristic slope different from
that of horizontal cylinders or vertical single plates,
i.e. slope = 1/4. When fin spacing becomes larger, i.e.
more characteristics of horizontal cylinder or vertical
plate appears, this results in a slope closer to 1/4.

For small fin spacings, more resistance is offered to
natural coanvection flow which could account for the

smaller (nu)f for finned tubes with smaller fin spacing.
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In addition, turbulence caused by the irregular geometri-
cal shape could also influence the slope in a way not yet
understood for this system. However, the highest Nusselt
number is obtained with the finned tubes of 1/2 inch fin
spacing, hence there is apparently an optimum fin
spacing existing which gives the highest heat transfer
coefficient. This will be discussed in the next section.

It is noted that the data for the chimneys lie
higher than those of the other tubes. Data of the finned
tube installed with the taller chimney lie above those of
the tube with shorter chimney. This is expected because
the chimneys confine the air and provide greater buoyant
force, and thus the higher heat transfer rate. However,
since only two different dimensions of chimney have been
investigated, a quantitative conclusion of the chimney
effect on heat transfer rate is not possible.

In general, data of horizontal bare tubes obtained
in McAdams' correlation and obtained in the present work
lie above those of finned tubes for Grashof numbers
smaller than a certain value dependent upon the fin
spacing. The reason for the relatively higher heat
transfer coefficient of bare tubes is probably due to the
fact that the boundary layer flow is not interferred with;
80 more free flow is allowed and a higher heat transfer

coefficient is obtained. However, the data of horizontal
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bare tubes are in a region of laminar flow, while those
of finned tubes apparently are in a region of turbulent
flow. Details of the different regions in which these
data lie are presented in section V.

The correlation presented in Pigs (32) through (35)
is satisfactory for each individual finned tubes but
further analysis of the data is needed in order to obtain
a more general correlation involving all the parameters

of the system.

IV. Analysis of heat transfer coefficients

Since air is the only ambient fluid used in the
present work, one may assume that, for constant values of
fin diameter and fin spacing, heat transfer coefficient:
varies solely with the temperature difference. Plots of
mean heat transfer coefficient versus temperature
difference are shown in Figs (36) through (39). Apparent-
ly the largest fin spacing, 6/8 inch, in the present work,
does not give the highest heat transfer coefficient.
There is an intermediate value of fin spacing which gives
the highest heat transfer coefficient. By interpolating
the data in Figs (36) through (39), sufficient information
is obtained to show the variation of hy , with fin
spacing at constant diameter. This is presented in Figs
(40) through (43). It is seen that maximum heat transfer
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coefficient lies generally on the fin spacing between
1/2 inch and 6/8 inch except some curves of the 2 3/8
inches fin-diameter finned tubes. The existing of an
optimum fin spacing may be explained by the following
qualitative sketch:

haw

1

Line A indicates the 1nflu;2;e of fin spacing on ha.-.
by the chimney effect caused by two adjacent fins; line
B indicates the influence of the interference of the
boundary layer; and line C represents the total effect
of A and B. It is assumed that fin spacing may affect
the mean heat transfer coefficient by two means, i.e.
the chimney effect of two adjacent fins, and the inter-
ference of boundary layers. As seen in the above sketch,
hy . 1increases with 1/b by chimney effect, but decreases
with 1/b by interference of fin spacing. As a result
of these two effects, line C shows a maximum in h“.'
at a certain value of b, i.e. the optimum fin spacing.

However, the data obtained are not sufficient to
give an accurate prediction on the optimum fin spacing.

Approximately, 1/2 inch fin spacing is recommended for
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the tubes studied in this work.

The optimum heat transfer coefficient, however, does
not necessarily correspond to the highest heat transfer
rate per unit of length. It is observed in Fig (44), in
which hy, . A is plotted versus fin spacing, that the
total heat dissipation decreases with fin spacing even
though there is a maximum heat transfer coefficient.
Hence, for the purpose of obtaining higher heat dissipa-
tion, finned tubes with small fin spacing are preferred.
Although data are not obtained in the region of fin
spacing below 1/4 inch, the broken lines shown in Fig
(44) indicate a possible optimum fin spacing for maximum
value of h, , A would be preferred in actual operation.

Results of the chimney effect are 2lso plotted in
Fig (45). The chimney has the effect of giving higher
heat transfer coefficients. The results indicate a
slight increase in heat transfer coefficient with the
height of chimney. Approximately, two per cent increase
in heat transfer coefficient was obtained with the
addition of 2.548-in. chimney, and three per cent increase
in heat transfer coefficient was obtained with the
addition of 3,78-in. chimney.

Plots of mean heat transfer coefficient versus fin
diameter are made with the aid of Figs (36) through (39).
These are shown in Figs (46) through (47) in which fin
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spacing is kept constant. Results show that the value of
heat transfer coefficient is somewhat higher at 2 7/8
inches fin diameter than that at 3 3/8 inches fin
diameter. This is expected because, referring to the
case of a single vertical plate, heat transfer coeffi-
cient decreases with the plate height, measured from the
lower edge, until a certain value of height. A smaller
chimney effect also prevails with the smaller fin
diameter. There is an optimum fin diameter which gives
the highest heat transfer coefficient. It is seen that,
in the present work, this optimum fin diameter lies
somewhere near the value of 2 7/8 inches. However, for
the purpose of obtaining higher heat dissipation, finned

tubes with large fin diameter are preferred.

V. Correlation and comparison of heat transfer data
Heat transfer data are correlated by using the
dérgBo y Sty (b (df _ha.m.de
quantities ( Tt 'f( Iy )f(d)(d) and ( k 2;.

where the two length ratios account for the geometry

of the system. These are plotted in Fig (48). By a
least square analysis, the data of the round finned tubes
can be represented by the following equation with a
deviation of +7.5%:
d
- by (“£y 1 0.321
Nug = (0.184) [ (GrPr), (D) (2 ] (39)

h
where Nug = (h!'uk J')f
_(dep*§6ey (N
(GrPe)g = (ig&g_);(_‘rk_){
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It is observed that the data for finned tubes of 6/8 inch
fin spacing lie lower than those of the other three fin
spacings. This is expected because, for 6/8 inch spacing

finned tubes, values of h are only little higher, but

a.m,
values of b are much higher than those of the other fin

spacings. In other words, the quantity (GrPr)t(g)(gi)
increases faster than the quantity (l(u)f for 6/8 inch
spacing finned tubes, and this causes the data of 6/8
inch fin spacing lying lower.

Another simpler type of correlation is obtained in
which quantity (GrPr)t(g) is plotted versus (l!u):t on a

logarithmic scale, where

3,2

hastle
(u“)f = ( k );
For round finned tubes results are presented in Fig (49)
in which all the experimental data fall around a straight
line, line A, which can be represented by the following
equation:
(Nu), = 0.201 (Grpr B) 1/3 (40)
b 4 dz
The average deviation of the data is +7.5%. As in Fig
(48), the data of the finned tubes of 6/8 inch fin dia-
meter lie lower than those of the others. In this
correlation, scattering of data is somewhat identical to

that in the previous correlation, however, the equation
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obtained in this correlation is simpler, and there is no
duplication in using the fin diameter df. Therefore,
this correlation is preferred. However, for fin spacing
larger than 6/8 inch more deviation of data will likely
be obtained.

Line B in Fig (49) is replotted from the results
obtained by Siegel and Bryan (37). In their experiment,
a finned tube with the following dimensions was used:

outside diameter of copper tube = 0.638 inch

fin spacing = 0.32 inch

fin thickness = 0.0095 inch

fin plate = 2x2 inches square, aluminum
Air was used as the ambient fluid and the following
equation was obtained which is similar to that of vertical
plates:

h,.= 0.29 (-‘Tt- 2!
where, hn is the mean heat transfer coefficient, and L
is the width of fin plates. It is seen that line B lies
above line A and has a slope of 1/4 as compared to the
slope of 1/3 obtained in the present correlation. The
difference in slope and in intercept of line A and line B
may be attributed to the following two factors:

1. The finned tube used by Siegel and Bryan is of
smaller fin diameter and tube diameter. According to the

results obtained for horizontal cylinders and vertical
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plates as mentioned in Chapter II, the heat transfer
coefficient is inversely proportional to the plate height
and cylinder diameter respectively for the cases of
vertical plates and horizontal cylinders. Therefore,
higher heat transfer coefficient are expected in Siegel
and Bryan's experiment.

2. The range of temperature difference used in
their experiment is approximately from 10°F to 30°F. The
corresponding values of Log(Grﬂ'g-)i!re 3.992 and 4.431. It
can be seen in Fig (49 that their experimental data lie
in the region of lower (GrPr)t(g) values than those
covered in the present work. There is good reason to
believe that their data lie in the laminar region while
the present data lie in the turbulent region and transi-
tion region. This accounts for the value of slope
obtained in the present correlation, i.e. slope = 1/3.

In general, it appears that Siegel and Bryan's
results when extrapolated will be reasonably close to
‘the present results.

Using the same type of correlation, results of square
finned tubes are presented in Fig (60). A least square
analysis of the data gives the following equation:

(M) g = 0.217 [ (arpr) 3] 033 (41)
Again the data for the 6/8 inch square fin are lower so

the correlation applies best to spacings less than this.
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Also plotted is the equation for 2 7/8 inches round
finned tube, which has the same fin-area as that of the

square finned tubes, so that a direct comparison between

the equal-area round and square finned tubes is possible.

The empirical equation for 2 7/8 inches round finned tube

is 0.333
(M) g = 0.212 [ (GrPr) ()] (42)

Equations (41) and (42), are nearly equivalent so it is
concluded that similar results will be obtained for
other equal-area round and square finned tubes, at least
in the range of dimensions studied.

The effect of chimneys on the 6/8 inch square finned
tube is presented in Fig (51) in which the same dimension-
less quantities are used as in Fig (49). The least
analysis of the data gave exponents between 0.28 and 0.3,
80 an average of 0.3 was used and the intercepts adjusted
accordingly giving the following:

0.3
2,548 inches chimney, (Nu), = 0.317 [(GrPr)f(z)] (43)

3.78 inches chimney, (), = 0.378 [(arPr)e®] *°  (44)
An increase in heat transfer rate with chimney height

is again observed. It would be possible to obtain a
correlation with present data to include chimney height.
However, this would be based only on the two heights
studied and further work would be needed to obtain a more

reliable correlation.
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The comparisons of the results obtained in the
present work with those obtained by other investigators
on other geometric configurations are shown respectively
in Pig (52) for round finned tubes and in Fig (53) for
square finned tubes. In these figures quantity
(Gr. Pr)f(a__a_a is plotted versus (I’ub)f on a logarithmic

scale, where

(b+d)e*38 6
{ Juaif ];
- [ ha.m.(&fJ)I ;

(Muy)

A least square analysis of the experimental data results
in the following equations:
for round finned tubes,

0.378

(45)

for round finned tubes with 2 7/8 inches fin diameter

only,
.37
(Fup) = 0.12 [ (GryPr) (2] 0.378 (46)
for square finned tubes,
(Nu), = 0.118 [ (or,Pr) (Brd)] O-378 (47

for 6/8 inch square finned tube with 2.548 inches

chimney,

(Nup) = 0.252[(Gr,Pr), ( )] (48)
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for 6/8 inch square finned tube with 3.78 inches

chimney,

(Nu, ) = 0.394 [ (Grbpr),(:{?)]

(49)

where, s = width of the square fin-plate.

It is seen from the above equations that again
identical results are obtained for square finned tubes
and the round finned tubes of 2 7/8 inches fin diameter.
Average deviation of the data from equation (45) is
+10%, while the deviation from equation (47) is +7%.
Elenbaas' theoretical and experimental equations for
vertical parallel plates are also plotted. For the
finned tubes as d becomes zero the quantities used in the

present correlation become

hb
uub = e
b’f‘ 6

These are the exact dimensionless groups used by Elenbaas
in his correlation for parallel plates. Hence, the
quantities used in the present correlation for finned
tubes are equivalent to the quantities used by Elenbaas
in his correlation for parallel plates as the diameter
approaches zero.

Also McAdams' equation for horizontal cylinders is
plotted. For bare tube b diminshes to zero and d_ reduces

£
h(b+d) hd
iR

to d. This causes quantity to become % and
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to become to

quantity [ (b*d)’(z’po ] (5’)‘ \ ( b-nl )

(———Iﬁ——)(fl—J( . Hence, McAdams' equation can
be plotted in Figs (52) and (563) by transformation of
axis.

It is seen that Elenbaas' and McAdams' data lie
above those of the present work. Their curves also have
the smaller slope, i.e. 1/4. In reference (13),
Elenbaas' curves show two different slopes at different
values of (GrPr) (a_) For (GrPr) (a_)<: 50 the slope
of his curves is equal to one; for (GrPr) (a_):7 50 the
slope is equal to 1/4. However, (GrPr)f( )- 105 is the
upper limit of his experimental data. It 1s believed
that Elenbaas' data are in the conduction and laminar
convection region. For the values of (GrPr)f(g_)<f 50,
his experimental data are undoubtedly in the reéion
where heat conduction dominates. In the case of parallel
plates, the transition point from laminar heat flow to
turbulent heat flow is doubtessly at a value of
(GrPr)f(a_J >»105 from results obtained with single
vertical plates and vertical enclosed air spaces. There-
fore, his data is in the laminar convection region when
(GrPr) fb/df >50.

For horizontal cylinders, the laminar region extends
from (GrPr)s = 104 to (GrPr)y = 108. Therefore, in Figs
(52) and (p3) McAdams' data are also in the laminar region.
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The present results would indicate that flow was
turbulent probably because of the complicated geometrical
shape of the finned tube. This could shift the upper
limit of laminar flow to a lower value of (GrPr) (-‘34%)
and account for the different slope obtained. The present
data, however, are reasonably close to those obtained by

Elenbaas considering the different geometrical systems

studied in each case.
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Chapter VII

Conclusion

The following conclusions are drawn for this

investigation.

I. Results for the horizontal bare tube

L]

The following empirical equation was obtained:
sondy dEPIB0 \ 1 G/ Y 1Y
(.__ik_)f-o.us[( L) (25,14 (20)

where, the subscript f indicates that all the fluid
properties are taken at the film temperature, i.e.
arithmetic average of the surface temperature and air
temperature. This equation gives coefficients which are
5.3% higher than those predicted by the relation
recommended by McAdams. This may be due to the relatively
smaller length-diameter ratio used in the present experi-
ment and to errors involved in the estimation of radiation
losses, although it is also possible that the correlation

of McAdams gives low values.

II. Effect of the clearance between the lower edge of
the enclosure-box and table top
Experiments at clearances of 0, 2.5 and 3.5 inches
between the lower edge of the enclosure and table top
were conducted on the round finned tube of 2 7/8 inches

fin diameter and 6/8 inch fin spacing. Similar results
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were obtained for all three cases. The independence of
heat transfer coefficients with the clearance values can
be explained by the flow pattern of air circulation. When
the bottom is closed, warm air moves up in the central
portion while cold air is sucked in from the sides of the
enclosure-box. This provides as good air circulation as
in the cases of 2.5 and 3.5 inches clearance when the

cold air comes in through the clearance area.

I1I. Analysis of heg} transfer data

The quantity pé£§Zﬁﬁ%(f§#2%, was plotted versus
(!ﬁ%%éijr with fin spacing as the parameter. Where
the equivalent diameter de is the arithmetic average of
the tube diameter and fin diameter. For square finned
tubes, the same value of d, as that of the 2 7/8 inches
round finned tubes was used. A family of straight lines
were obtained. It was found that their characteristic
slopes decreased with fin spacing, but appears to be
nearly independent of fin diameter and chimney baffles.
On the contrary, their intercepts increased with fin
spacing.

The results for finned tubes were compared with those
for horizontal cylinders, and higher coefficients are
observed on the latter shape.

Higher heat transfer coefficients were obtained on
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the finned tubes installed with chimney baffles.

IV. Analysis of heat transfer coefficients

With the aid of the plots of h versus b, it is

a.m,
found that there is an optimum fin spacing approximately
between the 1/2 inch and 6/8 inch fin spacings which gives
the maximum heat transfer coefficient. The reason for

the optimum fin spacing is believed to be due to the
combined influence of chimney effect caused by the
adjacent fin-plates and overlapping of boundary of the
boundary layers. When fin spacing becomes small, inter-
ference of the boundary layers decreases the heat

transfer rate. When fin spacing becomes larger than

the optimum value, the chimney effect caused by the
adjacent fin-plates decreases, and so a lower heat
transfer rate is obtained.

In addition, there is also an optimum fin diameter.
Lower heat transfer coefficients are obtained for finned
tubes with large fin diameters, because heat transfer
coefficient decreases with fin diameter as in the case of
single vertical plates. Since smaller fin-plates possess
less chimney effect, lower heat transfer coefficients
are also obtained at an fin diameter smaller than the

optimum value. The approximate value of the optimum fin

diameter is found to be around 2 7/8 inches.
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From a plot of ha.n.A versus b, Fig (43), it is
observed that, in the present work, the total heat
dissipation per unit length of finned tube per degree
of temperature difference decreases with fin spacing,
even though there is an optimum fin spacing existing
which gives the maximum heat transfer coefficients. The
optimum spacing for maximum ha.m.A may be estimated from
Fig (43). It is believed that same results will be
obtained with the fin diameter, i.e. total heat dissipa-

tion increases with fin diameter.

V. General correlation of heat transfer data

The experimental data were correlated by the
following empirical equation with an average deviation
of +7.5%:

3 2

(“"%-de); = 0.20l [(LC-CJ%&); (f%);(%)]% (40)
where, the slope 1/3 indicates that the present data
lie in the turbulent region. Good agreement of the
present data with that of Siegel and Bryan's extrapolated
results is obtained. However, the experimental data of
these two workers fall in the laminar region, because
of the lower values of temperature difference they used.

Another form of correlation was also obtained with

the same deviation of experimental data:

, 3 2 d 0.321
(b_'_'!;‘-i.);=(o.ls4-)[(ﬂj;&)(( ).(2)(5)1 @9

f k¥
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Equation (40) is recommended because of its simpler form.

Results of data from the square finned tubes resulted
a similar empirical equation as that of the 2 7/8 inches
round finned tubes which has the same fin-area as that of
square finned tubes. Hence, it is concluded that similar
results will be obtained on round finned tubes and square
finned tubes if they have the same surface area, at
least within the dimensions studied in the present
investigation.

Third type of correlation was carried out for the
purpose of comparing the results of finned tubes with

those of horizontal cylinders and parallel plates, in

3
which the quantity [%ﬂ]{(fki)(ﬁ_) is plotted

f J{fd
versus the [h&E{EEQ]F . By use of this correlation,

it is possible to plot the present data on finned tubes,
Elenbaas' parallel plates data, and McAdams' horizontal
cylinder correlation for direct comparison. Elenbaas
and McAdams obtained a different slope value as compared
to that of the present work. This is expected because
their data are in the laminar natural convection and
conduction regions while the present data are in the
turbulent region. It is believed that in the present
experiment the turbulence was caused by the base tube
rather than the fin-plates because the height of fin-

plates is not sufficient to produce turbulence. Based
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on this, the conclusion is drawn that, geometrically,
the finned tube is a combination of parallel plates and

horizontal cylinder. However, transition to turbulent

(b+d)
faf*d

occurs because of the disturbing effect of the base tube.

natural convection at a lower value of (GrPr)



84
Chapter VIII

Recommendations

This thesis describes one of the first investigations
of the effect of fin spacing and fin diameter on the heat
transfer by natural convection from finned tubes. This
work has indicated a need for further investigations as
follows:

I. The main objective of this work was to obtain a
quantitative relationship between the mean heat transfer
coefficients and different dimensions of finned tubes.

It is believed that the base tube caused turbulence in
the flow. Since higher heat transfer coefficients can be
obtained for turbulent flow, it would be useful to
determine the value of (GrPr)f(g), at which turbulence
starts. For this, it is proposed that different tube
diameter should be studied so that the value of an optimum
base tube diameter would also be obtained.

II. It would be desirable to find an optimum
combination of fin diameter, fin spacing, and base tube
diameter, which would give the highest heat transfer
coefficient.

III. In order to eliminate the errors involved in
estimation of radiation loss, it is desirable to have the

finned tubes plated with shiny metal, such as nickel, so
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that the emissivity of finned tubes will be reduced to

a lower value.
IV. 8Since the addition of chimney baffles is a
satisfactory way of increasing heat transfer coefficient,

more detailed study on the chimney effect is desired.
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Chapter IX
Nomenclature
Area of a surface, square feet; A, total surface area
of finned tube; At' area of the fin-plate; Ao, area

of the tube; An’ area of surface n.

Btofan-noltiulnn constant, 0.171 x 10-8 Btu/(sq ft)
(hr) (deg R)“,

Fin spacing or plate spacing, feet.

Heat capacity, Btu/(1b) (deg. F).

Diameter of tube, feet; df, fin diameter.

Electric voltage, volt.

Negative of the body force in X direction, lbs/(-ec)z.
Body force in X difoction, 1bs/(sec)2.

Grashof number = deﬁgg‘ , dimensionless; Gry, local

Grashof mumber; Gry, modified local Grashof nimber.

Heat transfer coefficient by natural convection,
Btu/(hr) (sq £t) (deg.F), hy, n.» 8rithmetic mean heat
transfer coefficient.

Self-inductance, microhenry.

Electric current, amp.

Conversion constant = 3.413 Btu/watt-hr.

Thermal conductivity, Btu/(hr) (sq £t) (deg. F)/ft.
Characteristic length, feet.

Thickness of fin-plate, feet.

Number of tin-pluto on the tube.

Nusselt number = hd/k, dimensionless.

Winding number of the heating wire.
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Perimeter of a surface, square feet; Py, perimeter
of fin-plate; P_, perimeter of the tube.

e
Prandtl number = 5%:— , dimensionless.

Total heat transferred, Btu.

Radius of the cylinder, feet.

Temperature, deg. R; T_,, temperature of the solid
surface or the finned !ubo; Tg, temperature of the
ambient fluid; T,, temperature of the surface n;

Te, film temperature = -Ti,ijlﬁ- ; Tg, reference temp-
erature; T‘, temperature of the finned tube.
/Ty, dimensionless.

Velocity, ft/sec; U,, an arbitrary function with the
dimension of velocity; U, velocity in X direction.

Velocity in Y direction, ft/sec.
Length, feet.

Volumetric expansion coefficient, reciprocal degrees
Fahrenheit.

Reflectivity of surface n = 1 -€,, , dimensionless.
Emissivity of surface n, dimensionless.

Temperature difference between the solid surface and
the ambient fluid, deg. F; @y, temperature difference
at the surface wall.

Viscosity, 1b/(sq ft) (hr); M4, viscosity at the wall,
Density, 1lb/cu ft.

Thickness of the boundary layer, feet.

Dimensionless time.
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CALCULATION OF RADIATION LOSS

In equation (/8) A J .,

following equation:

€ A,

D,

An gnl =

In the present

B
work,

-

-n2

-n3

D

T

>

23

-n4 14

34
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was calculated by the

7Y
24
34
~Aq

]

(50)

Where n = 2, 3, 4, and 2D1' 3Dy, and 4D1 could be

simplified to the following forms:

iz i3 4
A2 5 -8 ¢
LDI = S22 33 & 34 (51)
Prl iz 3 '%’
4
iz 13 i4
D, =-S5l "%‘ 13 34 kad)
B3 2 An
24 34 "z:
I3 34
D = & s _Ax - (53)
47 =z 23 24
fa | &
B T
23 B 34
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D could be also simplified to

- A - _ -
ll-pl ! 13 [}
A - 4
2 -4 o 24 A 6. zz *
D= br " =-;-' D -5 7 |(54)
13 23 F; 34 :4 ;1 -i(:ﬁ
= - - _Aa
14 24 34 P4

In equation (51), through (54), mn = Amrmn - AW e
Various values of rnn could be calculated from the factors
F12 and F;; which were obtained from the figures 21 and
22 in reference (16) with D = d/r and L' = b/r as
parameters. With the aid of various mn values, calcula-
tion of the various An? al values for different fin
spaces and fin diameters was done on a digit computer.
For the finned tubes with chimney baffles, emissivity of
the surface A; was taken as the arithmetic average of

the emissivities of the copper baffles and the black-body
surroundings, i.e. ¢, =(1 + 0.5/2 = 0.75. Results of
calculations are tabulated in Table (I).
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TABLE I
CALCULATED RADIATION LOSS
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CALCULATED HEAT TRANSFER COEFFICIENTS

5
]
£
o
a
=
o
[«
[T ]
-4
SV
-}
o
g
[}
rd
g5
3 =
3
=
54
® ™~
“....
(]
duy
=
&
S 310A
)
g
3T0A
.m““a
ItV
odedg ulg
TeutuwoN
Jeojewmetd

utrd

13.22 1.62
21.28 0.67

4.806 121.2 12.78 1.63

6
2
2

2.39 2.93 41

2.722 2,733 2.718 2,73 49.5 4.316 1.306
2.4

466 3.446 3.475 3.462 3.47 75.98 7.109 1.377

4.808 4.804 4.8
.93 1.93 1.928 1.923 1.92 24.38 12,15 0.511

36 1.937 1.937 1.933 1.93 1.927 24.25 12.1 0.515
2.4

8 2.884 2.884 2.876 2.862 2.858 55.78 30.4 0.755

.877 2.88 2.88 2.871 2.858 2.855 55.98 30.49 0.755

3.29 3.292 3.292 3.28 3.265 3.261 69.3

94 2.672 2.698 2.687 2.695 49.64 4.317 1.287
3.268 3.722 3.272 3.261 3.242 3.24 69.

474 3.453 3.482 3.48 3.478 75.42 7,067 1.375

875 4.884 4.88 4.874 4.879 125
17 2.417 2.417 2.413 2.407 2.403 40.03 20.93 0.652

3.522 3.524 3.524 3.507 3.497 3.493 77
3.511 3.512 3.512 3.497 3.484 3.478 7
3.95 3.952 3.952 3.93 3.915 3.909 9
3.982 3.987 3.986 3.969 3.952 3.949 9

O o <
@ & o o o 9 L
2233441 o
25

“4 994.4.8

® ° ® 9
223344112222
0~ NW®®D DN M el
01992199”“7788 “
333355 66778899

® ® & ® * o ° o

000000000000000000
© ®
MnMmo vt =4
e ® o ¢ °
11440044”055551155
e NN~ NN NNNNOMMNM
0 10 N ® NMNODNIDNY W
019921_99&&77884“5“
330&3&.&.&33 NOOM0D0NN
L ® © & ¢ * & o O ° O o
OCO00C00O0OIOO0000000O00C0C
o0
%36” rd -4
® o & @ e o
el FOOTFO~ NN 10N
1111%211”222223333
“0 (¥ ] 00N 2“8 NEO
HOMNOMNOEPPOT-N~NONOD
® @ ¢ & & 4} 9 o o ¢ ° ©° ¢ ¢ ©° o O @
NONOMNIEDNNP NN VNI PN
teteleltelelotetoteotoieioteeitee
eqny, i

oX

w8 el

N

96



TABLE II

.673 51.1 27.83 0.772
43
43
49
52
58
57

.373 72.
401
583
802
005
983

2.682
.416
.70

12 2.307 2.301 2.299 38.39 19.95 0.658
3
3
3
3
8 4
8 3

23 2.718 2,713 2,713 52.11 28,17 0.771

7614

64 1.963 1.96 1.957 26.33 13.25 0.557
46 1.944 1.942 1.94 25.79 12.96 0.576
97 2.294 2.292 2.287 37.7 19.58 0.694

9
9
2
3
7
6

L ] L ] * L ] L ] L ] L L] L ]
11222233&344
¢ O~N - 0000

PPN AN Bas
9923763 =000

L . L L d

112222333344

4“ m586 4925
© NAOD
ARMM=WOM 78 0

M NNNNOMMM S
RO NN LD

aI98BRR22ad

oooomooooooo

ped =4 ~ N = -y
W 00 00 O3 0§ 00 00 4 4 0 09
M AN NNNmmme
ge8.88,282 2
R R R v
® o o o e & & @ e o & 0
cocooccoccocoaS
00
OO0H MM ~ NGO
* o ° . L ] * o
< 00 00 OF 04 00 0O 4 4 09 O
A R B gy ¥ 3]
00 ~ ¢ O~ a0
R R P Y L
* o o o ® © ° & 9 ¢ @ 0
CEILNLNMNIB MM
Do e Do b bo B Po Do Do D Do bo
mio

3
2g

488&6&92886

2.593 2.58 47.

.025 2.02 2.012 28.1
.223 3.212 3.197 68.

.00 1,995 1.99 27,
.312 4.292 4.266 105.3

625 1.62 1.623 1.41

.705 1.701 1.701 17.6
.609 2,594 2.575 47.
.22 3.209 3.19 68,
.733 3.718 3.697 85,
.736 3.724 3.702 86.
.265 4.25 4.22 1@8.

.6

1
2
2
2
2
3
3
3
3
4
4

NNORNWOVMW 0w

S8 n7sow1omwwowzsumu

AN NNNMMNnSS

73544 4554“
mﬁsz
12222333344

6892

e

5.78 5. .6

7

482 0

6 1
.986 1.976 1.983 1.967 29.24 10.5 0.754
05 2,042 2.05 2.032 29.87 10.84 0,726

.634 1.628 1.632 1.622 16.67 5.79 0.623

1
1
1
2

.635
«99
.059

1
1
1
2

83388381 el

N0 ®

L L] L v

0ONO

{4 COTEN O 0D 00 09 07 Bl el = N

DNOONNW
899““88990
N, (CRCR R ol

. L] L] . L L] L * *

- e )

20

0.289 10
0.39 14
0.39 14
0.549 20
0.686 25
0.792 29
0.907 33
0.26

0.26

0.
0.

74.61 25.03 0.688 25.03

74.78 29
74.58 32.9 0.901 33

74.49 10
73.96 10
74.57 14
73.95 14
74.98 20
74.65 20
74.68 25
74.18 29.05 0.794 29
74.64 33

A
2

3
2g

9
9

NN

OO
N M
o0

0.362 13
0.362 13

9

72.08 9
71.87 13
73.43 13

36
8 8

2

97



TABLE II

111

2.485 44.68 16.95 0.852

26 2.502 45.18 17.18 0.851
52 3.012 62.72 25.04 0.94
17 2.975 61.7 24.52 0.953
.56 3.527 79.69 33.24 1.059
.551 3.517 80,72 33.65 1.051
4.216 4.165 10212 45.25 1.12
4.242 4.197 1)3.02 45.83 1.11

5
S
0
0

.
L]
L
L]

2
2
3
3
3
3

N© NN YD
PR ER:
22&&&&&4
S ndz
ShR
&1&33344
NRERRVon
SR8SRBA]N
NNMmMOneS
NoRRMmD ™
wB8SBEIN

22333344

57
1

SRR wnnd
““556677
00000000

0 «

NO oN
e~ RN
NN NNN
SrSNoRao
“4556677
e o & o 5 @ o 0
COO0O0O00O0O0
0N w0
Ne-HO ~NN
oo = =D D
112222””
NN NONM
0m197069
® @ 85 9 ¢ @ o e
PEFONNNM
Il ol ol o ol o o o8

ko

ol

N

«© OM b

) oW G 0D GO G W) e
677 8999900 68899001
00000000011 00000111
NI Nbsmibde00 OO DNONDVDORD
66385349MH 700 2325

* L .
EEHF M HE PR

00 G WO WMo H*TN M
9%820& %300131085003
L ] L] L] L] ® L ] L ] L ] L] L ] L] L ] L .
898 MDD 0 55779
233 56&7788 0055667

4563m12 m &81

DM~ OMr
13356993366 1 9&22
22222223333 22222333

2 ) 0w

567713%“164 B =5

312“5 e

Hmmor~o IE=OHORRRANG
L ] L] . L]
300 00 0N 04 N 09 09 09 0% 0 03[0 6N N N O €N €9 09 09
el NN TN TN
O ® %2%8675 n 1 © — 00 10
143 ©® oo QR MmN©
L] L L] L ]
22222333344222222333
¢ ND SReye® woaox
© b~ 00 ® w2m66174
133670 = RRMNO
22222333333 NNNNN®M O
00 1O ) 4 ~ b~ o © o 10
CRDRAPE DN NA0. AR
S - LR PR ED) AAMNO

L L] L] L L] * L d L4 L4 ° *

200 04 €0 OV O 0 0 03 09 0 09 fod 00 O 0N O O3 0% 09 0
va ©vq - OMe oo
23.,383873 . R403:2845

599326
L L J L L
22222333344 22222333

3550055388888 3808
66889910% w6688990
0000000 HMMHMcc00000
® o ~ 03
ONNOOVNG G NNOOYTMN®
RN RANNINIIRRIRIRNAS
QLS NOSE AN 00w TN N
® ® b o 00 00 O O N &N
MR EEL EE- R PR
L ] L ] . L ] L ] L ] L] - L] L] L ] L ] L] L ] L - . . . L ] o
POCOOOOOHMMMHIOOOOOO0O~
wn

o M N 3
L ] L ] ® * . L ]
D ONINO O WIN dVoONINOOTEED
”m223333mw44 NNNMOMO®
00N LX) . NOY 0
? BB R RN RN ned
L ] . L L] * L ] L ] L ] - . L ] L ] * L ] * - L ] - L ] L ]
RO TNARAND -0 - 00D b b
ettt O|tetetetetebe bl

vt | mlwo

tel00 el

o )

98



TABLE I1I

Vi

IV

3.638 3.627 3.574 80.9 57.91 1.08
039 4.033 4.021 3.952 92.1 68.03 1.17

11X

II

.03 1.073
.37 1.068
.49 1.17
.62 1.17
.98 1.212
.05 1.212

37
37
49
65
9 66

39 1.736 1.746 1.732 1.728 16.49 7.77 0.725

.92 26.34 0.95
7
1
S
4

30.55 17.26 0.876
2
8
8
1
8
.3

44.95 26.46 0.967

818 20.89 11.47 0.776
23 31.23 17.7 0.849

mz 54 13
115499@&

1.
2.
2.
2.
7 2.
8 2.
2.
13 3.
3.
3.9
3.9

938

.125 4,063 95.69 71.34 1.18

.871 1.865 1.845 21.4 11.8 0.75

46

8 oONW 0
uuemm 3384588

.6

0 22765435 67

SorpoaABneSBRN

o 1122223&&&&&
§:50383283 3050

L ] L] L . L ]
NI A NNNNNNNOHS S
TRCLE o Qe
84588333382553323
- - -

()
oOn® 8 00“12
0~ N <« deR O
M 11mm2%”m3333
N NMHNN <+ 7
347%%11&08922%
OJJ .4566779900
HrARNOOOOO0OOOOOOmMm
) 0
(-7 [} 1MM12
L L ] L ] L ] L] . L]
NI NOITITOD
me 11112%223333
=OW®W WHMOBDN ~m

465%38781073186
L ] L ] L ] L ] L ] L] . * * . L ] L ] * L ]
AN VOOOOON
telelejtetetoteleiotoiee el
i | N
e} o0 el 00

N ()

20.64 0.542

s

977 1.977 1.972 1.969 1.956 26
.002 2,002 1,996 1.993 1.982 26.56 21.16 0.522

1.735 1.7:{1

74 2.168 2.191 2,163 2.159 31.04 15.32 0.794
6 4.518 4.585 4.498 4.478 109.9 67.56 1.17

.136 2,132 2,155 2,126 2.12 31.19 15.28 0.797
7 3.755 3.815 3.755 3.722 85.68 49.0 1.12

.645 2.642 2.674 2.628 2.622 46.8 24.14 0.91

.682 2,675 2,703 2.666 2.65 47.7 24.73 0.897
«22 3.212 3.255 3.198 3.186 65.7 35.8 1.005
.199 3,185 3.232 3.172 3.162 65.58 35.57 1.01

3.7

.87 3.819 3.869 3.791 3.781 87.1 50.36 1.10

475 4.45 4.422 4.422 4.41 108.6 66.16 1.19

e~

irl NN NN MM 34tL2

ﬁswsss 0
AHerR 9%

122223&&&LLLL
0o N o

nIIRERRIRA G

. * -* ° * . »

0000000000000

e

m o 9%0 o~
116611660166L11
A AN NN MINN
PEEERERT I
o ““5778 o O 10
® ® @® ® @ @ e ° 8 ¢ o #) o o
CO0000CO000O0O00O0I0O

0 0
O o~ C®MOJN
¢ o @ ° ® ¢ @ & o
el =4 €O O =l = O O 4 1D Dl
Al S SN NNNNNNONN
N 7” 0 O
© e 0900 ) N D N O O K i
* @ 4 8 4 ° 9 @ ° 4 & 4 »
0PN WO =0 OO NINN
teteldelololeteleieetoftee
©ol® I
|0 0

O
w



TABLE II

11 11T Iv Vv VI

.1

AMALEEREEE SRR EE R

omuu7wmmmm11mwmummunum

O~ eSO D D0 E D
R PR RS- 1 P PR RS
® N ® ® © NN N
Sorg238cREE$8.28 08
NN SSISER 883771m76m%
L ] L ] L 3 [ ] L ] L ] L ] L ] L] L] L ] L ] ) L] L L ] .
TNNNNONNAATANNNNNNNN S
9945 0 1010 (O © 00 ®
rcONY mm9499ww589 ~
”%77 - ?8337711msmw
L ] L] L] L ] L ] L 2 L ] L ] L J 2 L J * E2 L] L d
NNNNMNMOMMO-~ENNNNDD MmN
NN O 1 010 N O 0Y 1) 1) Do 0
CO0® NI m SRRSO BRanara
3%7811 RAEO+NNNSOO
L J L L ] » L ] [ ] L ] [ 3 L 3 L 2 L ] *
0900 030N 09 09 09 6% 09 0Bt 4 N €N OF O0 0% 0% 09 03 @
ALY mm VB 0260 ¥ 1D 0D b 0N 0O
G I D 0N D COON~ on
MOS0 AD 9m3772&7700
NNNNNMMMO M-~ MMmNmTS

44 7 2 77 767 83
EMCERE B B EE R R

2222333333 12222333&44
O m in 95 3257

An88338938838R32R8332%

2222333333 12223333344

O 0N 00 10 0 Q1 1B e
SR338835,.8383285 2adg
0000111111.0&&&&L%1L11
8 qaua181a ol o .
wm FEEER L mmzw 225239
u%4 L saummnuﬁzms
0000111111 0&00011111L
% 22&& ® » N )
RRS88S9333 L EEER LT
29088 38 ﬂﬁjﬂﬁ&ﬂaasn
5544465445 O IDEIN NN
feteleleioteioivioiele oo Do ieDebe e

¢ miowo

i miw
() ™

.025 2.018 1.991 26.25 18.24 0.827
.358 2.346 2.312 37.82 27.11 0.928
.37 2,355 2.317 37.3 27.18 0.923

L L]

76.25 20

2
2
2

0.

354
«367

L]

.727 2,728 2,708 2.66 48,91 37.64 1.032

2.655 49,53 37.21 1.033

.135 3.136 3.112 3.053 63.05 49.24 1,107

715 2,718 2.7

2
2
2
2
2
3

0.54 20

0.677 25

0.814 30

76.23 30.03 0.82 30.03

0.675 25
76.5 35.05 0,952 35.0

76.43 25
76.75 25
76.19 30

3
3g

5

8



11

TABLE II

) g <« 000N M 0l aartanow 101
-EEEE SEPEL mmmmnsmmmuuunmmmi
Mﬁﬂmu.uaummu“aa 3 u&samuam”nu

ggeeRagaddssdedd sndanadddes
823k ww«%mm”umu4qmﬁmeau4dume
NS RS SN PE AERRER P S H
Ll K22 m mm 8oonu8 avzmw NNNN~Y WO
3335385082233 083R RA33R.580
nunumnm 2 ZQo3Qa3qa3.13:&1na2naznu34-3‘Q4
2] Ok LOON N NP N0 0
2233882858532,2332 30253038384
MMM NN 2n¢24¢3Q¢3q03‘Q41L1aa20.2993&03‘14_

el =i O\ NN N N
13832@c 8800882888, 22833048502
MQMAONMONANNMNMNMOIMOMNMITE~-~NNNNMNNOYEY
NONWYN SKuIQo51L8‘18Qu an W N
23955895 8883328258834.33028332

. 8 9o @ * & 9

3qo3qa3. 2na20u3903403‘141;1@&2QAQQo3qu3‘Q

xuﬁoos‘n NN © mool 5lémo°
350p2aaNa8a8023838338848338
MROANOANNNNNNMNMNMONMNOPTT-~NNNNMNMNMM S
R NN Ll 3t <«
32258).385298335 .5, 2383987335
MOAMTNNTFANNNNNONONNIE-~NNNNNONMONT S
N A:o. [ mcv 00 qugnasauaoos
282332333288, 592 83289C028883
01;11&1 COCOOCOOrmMmMHO0OO00000O000O0
1ofe 2ce  388r33ednfe" o
sssddpdndddsanndsedddddiniing
N - NDONN .05 k
48228k a032288,.25RTRARASERRES
O rird 0nv0nu°nv01511;1 OAUOnZUOAUOAUO
N o0 ® ¢ b
& R aamn  33@e33navban
dssydfiaddddsnnndsEddddinidiing
938.8R2038391.228, 533358202
Srerifddddddddddddidsddadgadigs
OOﬂlﬁdQﬁOv
N ©lw® o (seqouy ¢°z
ol o0 ™l o0 100
2] ) N




TABLE II

111

11

CooomMOm-MMoo o
33228338363,2853.33
b b3 L F B R R0 o 5
935295228335 23834
Nadd832RSHARRRSETR
o ; 7o ] (] (2]
R83227238833pE8858
NNNNNMONNETNNNNNMOOM
N0 i) i O
Ax8883833p23vas228
222233334.22223333
gl [+ K<=) g Do ON .
3980883585358 2483

3
3
7
.6
0
1
X

222233334,
PP 5651
m7“ 175
52278
222233334‘
783835 D
HHEEE
NNM®
e & o o
222233334.
Dol DN MNNM-
nNMo n5 o
117%%28%5
222233334‘22223333

DT W

® & 9 * o [ d
22223333
SRRSO R A
33770 <«
22223333
.7””35mm
A33770 4
22223333

44685
76600“

N OWOAN®M
.
OCO00OCOO ™

t] b 1) 1) HRO W10 e )
(=] %“2110 [l ) 031
VOOV Omrid O NN et
HrMNNANNMMMN®M %233334“
TONND LG kO N0 b 1 i O
1] N 78&7 Ll o 1) b
3mm5ms779.6688%%00
L] L Ld L d L . L] L] L] Ll L] L Ld L L L *
CO0COCOOOPOOCCOOO
mn ) D)) PO P W ol

N DM ORI 0 YN W®
L L » e 9 ® o e o [ ] * ° 9
NOHMODOm riteRe WO NNWW
HENNNNMMOOMMANNONMN S
~MMNO MNOTLNON NN
VOO ANANTO ~ 40%75328
. Ld L] L L Ll L] L L * L] L4 L d Ll .
NO-NO W rt P OR 44423456

(SRRl R RS S ol Ol Sl Ol S S S

53225998% a8

771124““77 9

RRIIRaIBAS

L LEFEER £

R EREE PR

- L3 ° L]

EEEERERRE
nEes 88038

* o L L

54“ 88284
703%“&13

5736465158

NB28055388

Nl OO

81.17 2
79.54 2
81.7 32
83.35 32
84.26 39.44

3
8 78.89 2

eqny,
peuutg oxenbg



TABLE II

111 IV
752 3

3

11

077

1

89 66

4.345 4.413 4.298 4:27 103.05 89.53 1.16

668 79
4.257 4.295 4.207 4.2

711 3

789 3

103.45 88.63 1,159

OO ONYMENO ©MWO WOV ©
2%&112290&8 R R
MPOROOHHHANNATENNOOHO~-HDNO O
e © & @ @ o 2 o e e o @ ©® o o 9 o o o o]l e e o o
QOO rid rid red pod pof pof poud pof OO0 rdrd rd vl pef ol O rd i
ALD DO NSO DD 0D i ()~ 4 IO
S e bl i § b A G S - ag s fad s\ R
.........O...........'.0.
NO -t ®0Y @0 WO O N~ PN N
1%23306557%1122335577 ~ N N
D O b= 1D 00 W 04 1O ¢D ¢V 10 TS L
NONFOROMNMN m%%1178&3 ~ o
...........‘....O.- 6 ® o o
~ N 10~ )~ O Mte be - N o
EERER L 2uusswwmm RAS
PEPPPEELEIS P ET LT FL L TR
PR HIBNOCBNONOO BB A 0P < -
® ® & @ o @& @ o o o o ® @ 9 o o & o » ) e o o o
HNNNNNOMNOTRNNNNMONO TR~ N
338333 0ge 292,25 90532
R F R E S SRR KIS
.......‘.......'..... e o o
HNNNNMMOMOTO|NNNNMOM NS~ N
TNV IATNNN ¢ RNROY WSO 0
o~ @ ODVONTHND~OONNAN Dt~ 0D
X COVUmOICOVONMOONEMO P
® & @ o O 9 ° o o o o e o o & 0 o ° @ o ®* & o
MANNNNOONTHNNNNNNNO NI~ NN
~OFARANNONDOITADRDMNOVBING]| N~
LI R I " 0 S o oo
DA ONO OO RO ORISR IS
.l................... ® o o
MANNNANNOMNOTONNNNMMOMM -~
Y NOHO~ BN o © 00O N0Y
00 09 e % ke & 0 00 2 ® a
SRttt b R R R R E R 1L
..........l.........' e o o
HANNNNNOIMNMYN|NNNNMMMO NN~ NN
YRS TEEEEELEMLLT
PN IeA23358 SO R0 D ABE >
.......'.J.........C. e o o
HEANNNNNNNTENNNNNOMO RS H~NN
%172ms& = 5145n5mu ar®
YRR P R R R R e - - b
.‘.......‘.........“‘.'.. e o
CO0O000COCOOmOocOO0COOCOPoOO
- 0 0 ©
- § SR e g P i3 ST -4~ Jp.
® @ e o o ® o o o ® O o o o e o e e o
ModoeaNe~agMBddooaanSidd -
HNNNNMOM®M HNNNNMMMO -~ N
2] zms m vuoew~vNN 87m
= B> g e} © b~ ¢ po
§aR58888s SienassaenIRas
.......0......0.....0 e o e
X - - - - - L - - - - - - - - )
© oy 0 i m
D Do i 4 1) 1) s P - - S ]
® * & o 9 o ® 9 @& e] @ e oo o o o L I * & o
,511662,77&“ 0 OO NIl D IO Wt
HNNNNMO OO A NN NN~ NN
CTOHNDNOONO RN RN N ©oN o
RN neNNr NSRS R38Rl 3 w3y
.0....'.00.'...........@'
76565656578W698998987 < w0®
N L T S I I I T T T I A
ol © o ko
aqny, eqny,
eqn] peuutjg exenbg peuutg exenbg |(°J °bg

o
(=]
W



TABLE 11

3.026 3.002 3.886 58,23 33.79 1.132

52 3.624 3.677 3.64 3.579 79,93 49.24 1,22

.5568 3,557 3.566 3.551 3.393 77.6 47,21 1,261

2 2,99 2,999 2,987 2.87 58.66 33.92 1.133
4,126 4.105 4.192 4,166 3.98 96.28 62,03 1.142

o9

1.916 1.92 1,915 1.852 21,91 11.47 0,938
727 93.78 59,26 1,394

81 92.4 58.85 1.424

.622 55,56 31.32 1,229
249 74.73 45.32 1,31

.15 71.31 42,78 1,36

L]
°
L

2,684 55.85 31.76 1.264

.42 2,302 38.61 21.21 1.093
2
3
3
3
3

o O

. 427
23
73
15
2
22
18

.303 4.302 4.307 4.304 4.15 100,1 65.55 1.135

D IO
Nl O rd i
L~ MROMBO
£ L ] L ] L ] L ] L ]
[ NNNNMmME S
™ .784317894
N AN~ ®
XX LA LT L
L ] L ] L ] L L ] * .
NN NN NNNOSS
DWW N M N b 87
HEEI-PERER
COWONMIC A¥N D -
L ] ® L] L ] .
333344 12222334
o0 ®
@ 277 W& m&s
6&8899 3 6678&9
o L] . .
coococooloococococceas
5 .
00 MO O il =4 1D mu
L d L] . L] L ] L L L * . L ]
L L LL A I L LI
NNV~ NNNNMOIMM
O WMNMHNNMO o
™ O3 08 b= b~ j03 0O Q > o i B
WOODODNNNN DOOND
L L] L ° L L] * L L] L ] L L L] L] *
Y- NN - X-E-X-X-X-X-X-X-X-]
) 0t
00 MO Ottt %
L ] L L] L L] . * * L ] L ] »
O CNCI D Do et < rd =i Do B ON CN D O
NMMOMP e NNNNIMMNM
0 00 = ONIDPRDON
O %5 08149 0 09 ~
® L] L L] LJ L J & L L d L L] L] L * .
OO OOIINOOI
S Ol SN S S S T S S S S S o S
‘wyyd | hons«:o
©F(,8¥5*2) [P P(ut 82°c UITA)
eqny eqny,
peuutg °bg peuutg oxenbg

104



TABLE I1IIX

CALCULATED DIMENSIONLESS GROUPS

1 2 3 4 5 6 7 8 9
TN
8 - ST = T = = I
n? 820 e ™ == ‘ﬁi ~ e, A =7y, gfi_
- ot ; ~x 474 Je ‘S b -
(™ o} < S - i S5 B > B "
a & - ~ S R
49.64 9.17 7.13
- 49.5 9.3 7.08
i 2 75.98 9.59 9.96
-1 75.42 9.57 9.98
125 10.91 14
121.2 11.01 13.6
24.38 5.086 4.47 12.32 4.194 2.43 3.23
24.25 5.089 4.47 12.29 4.182 2,42 3.65
40.03 6.392 5.613 19.01 6.47 3.75 5.64
3 1 41 6.575 5.277 19.6 6.67 3.86 5.82
2g 2 55.78 7.29 6.402 25.0 8.51 4,93 7.42
55.98 7.293 6.404 25.1 8.54 4.95 7.45
69.36 7.92 6.956 29.74 10.12 5.86 8.83
69.03 7.985 7.011 29.6 10.08 5.84 8.79
77.2 8.17 7.174 32,1 10.93 6.33 9.53
76.39 8.36 7.34 31.91 10.86 6.29 9.47
92.26 8.721 7.658 36.78 12.52 7.25 10.91
92,54 8.544 7.502 36.54 12.44 7.20 10,84
3 - ] . . 5.2 13.34 6.45 3.73 5.18
37.7 6.836 6.36 18.32 8.86 5.13 7.11 S



TABLE IIIX

3 4 S 6 7 8 9
38.39 6.472 6.077 18.66 92,02 5.23 7.24
3 52.11 7.488 7.03 23.86 11.54 6.68 9.26
8 51.1 7.509 7.06 23.63 11.43 6.62 9.17
72.1 8.711 8.18 30.67 14.83 8.89 11.91
74.73 8.711 8.24 31.65 15.30 8.86 12.28
83.6 9.381 9.37 34.29 16.58 9.6 13.31
86.7 8.684 8.15 34.73 16.8 9.72 13.48
96.16 9.078 8.52 38.03 18.4 10.65 14.77
95,48 9.052 8.499 37.88 18.32 10.61 14.71
17.42 5.739 B5.763 9. 14 5.83 3.38 4,85
17.64 5.546 5.587 9.29 5.93 3.43 4,72
28.18 6.974 7.003 14.19 9.05 5.24 7.22
1 27.8 7.142 7.172 14.05 8.97 5.19 7.18
; 47.53 8.416 8.452 22.19 14.16 8.20 11.29
47.6 8.607 8.643 22.21 14.17 8.21 11.29
68.83 9.184 9.222 29,57 18.86 10.92 15.03
68.49 9.316 9.354 29.42 18,77 10.87 14.96
85.82 9.832 9,873 35.03 22.35 12.94 17.81
86.38 9.775 9.816 35.26 22.5 13.03 17.93
103.78 10.49 10.53 39.97 25.51 14.77 20.33
105.36 10.33 10.37 40.20 25.65 14.85 20.44
15.78 6.83 7.75 8.49 8.03 4,85 7.04
16.67 6.28 7.122 8,97 8.48 4.91 7.44
29.24 7.51 8.52 14.91 14.1 8.17 12.37
6 29.87 7.21 8.178 15.08 14,26 8.26 12.5
8 44.68 8.33 9,453 21.07 19,93 11.45 17.47
45.18 8.32 9.442 21.30 20.15 11.67 17.67
62.72 9.05 10.27 27.78 26.25 15.2 23.02
61.7 9.19 10.42 27.38 25.89 14.99 22.7

901



TABLE III

2 3 4 S (] 7 8 9
6 79.69 10.06 11.41 33.29 31.48 18.23 27.61
; 80.72 9.98 11.33 33.72 31.89 18.47 27.96
102.02 10.45 11.86 39.82 37.66 21.8 33.02
103.02 10.35 11.75 39.77 37.62 21.78 32.99
29.01 - 6,826 5.27 20.48 8.26 s .
28.91 6.863 5.30 20.47 8.26 3.95 3.64
39.23 8.182 6.32 27.43 11.07 5.296 4,87
38.8 8.315 6.42 27.18 10,97 5.25 4.83
7 1 50.27 9.15 7.06  33.76 13.63 6.52 5.99
8 4 51.08 8.95 6.91 33.88 13.67 6.54 6.02
62.59 10.45 8.07 40,47 16.33 7.81 7.19
63.74 10.18 7.86 40.68 16.42 7.85 7.23
77.86 10.69 8.25 47.97 19.36 9.26 8.52
77.34 10.69 8.25 47.64 19.23 9.20 8.46
89.08 11.16 8.61 52.90 21.35 10.21 9.4
88 63 11.17 8.63 52.36 21.24 10.16 9.35
30 38 7.727 6.4 21.67 12.65 6.605 5.09
42.1 9.787 8.077  28.43 16.59 7.94 6.67
42.0 9.831 8.14 28.561 16.64 7.96 6.69
3 55.84 10.79 8.94 35.73 20,86 9.98 8.39
8 55,52 10.75 8.902 35.43 20,69 2.90 8.32
67.0 11.33 9.4 40.98 23.92 11.44 9.62
67.05 11.2 9.28 41.68 24.33 11.64 9.79
79.33 11.88 9.83 47.33 27.63 13.22 11.11
80.9 11.56 9.57 48.04 28.05 13.42 11.28
92.1 12.36 10.24 52.39 30.59 14.63 12.3
95.69 12.45 10.31 53.80 31.41 15.02 12,63
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5 6 7 9
7.545 15.88 12.54 5.02
7.34 15.65 12.36 4.95
8.47 22.3 17.62 2.05
8.74 21.87 17.28 6.91
9.83 30.54 24.12 9.65
9.37 30.54 24.12 9.65

10.43 38.47 30.39 12.15
10.38 38.81 30.66 12,27
11.21 46.06 36.39 14.56
11.17 46.21 36.51 14.61
11.44 54.39 42,96 17.19
11.45 55.35 43.72 17.49

° L ] 14'“

8.3 12.58 14.74 6.54
8.96 21.98 25.75 11.42
9.01 22.33 26,16 11.61
10.03 31.17 36.52 16.2

9.96 31.50 36.91 16.38
10,98 40.98 48.02 21.30
11.06 40.98 48.02 21.30
12.06 50.41 59.06 26.20
11.67 52.21 61.17 27.14
12.63 58.74 68,82 30.53

12.41 58.74 68.82 30.83
4.727 26.71 13.01 3.096
4.544 27.18 13.24 3.15
5.54 35.98 17.53 4.17
5.46 36.37 17.72 4.22
6.69 49.13 23.93 5.69

801



TABLE 111

1 2 3 4 5 6 7 8 9
53.57 92.568 6.63 49.01 23.87 9,73 5.68
64.83 9.96 6.91 57,55 28.04 11.42 6.67
3 1 64.515 10,17 7.07 56.6 27.57 11.23 6.56
3g 4 77.18 10.63 7.37 65,52 31.92 13.0 7.59
76.06 10.69 7.42 65,46 31.89 12.99 7.59
88,04 10,92 7.57 73.04 35.58 14.5 8.47
87.31 11.17 7.746 72,43 35.28 14.38 8.39
- . B.07 — 25,53 17.91 7.2906 3.918
24.88 8.916 6.64 26,04 18.26 T7.44 4.0
38.85 10,03 7.46 37.35 26.2 10.67 5.73
39.41 10.22 7.61 38.25 26.83 10.93 5.87
3 3 53.46 11,59 8.63 49.53 34.75 14.16 7.60
3; g 53.14 11,75 8,745 49.03 34.39 14.01 7.53
67.6 12.51 9.31 59.07 41.44 16.88 9.07
68,67 12,26 9.13 60.0 42.09 17.15 9.21
84.71 12,85 9,57 70,27 49.3 20.08 10.79
83.7 13.23 9.84 69.76 48.94 19.94 10.71
94.85 13,69 10.2 75,52 52.98 21.58 11.59
95.73 13.47 10.03 76.07 53.36 21.74 11.68
.94 10,49 8.41 . 10.12 %
26.25 10.37 8.31 26.76 25 22 10.28 5.52
37.28 11.52 9.23 36.14 34.056 13.88 7.45
37.3 11.45 9.18 36.09 34.01 13.86 7.44
3 1 48,91 12,69 10.17 45,50 42,89 17.47 9.38
3g 2 49.53 12,70 10.18 45,69 43.06 17.54 9.42
63.05 13.44 10,77 54.41 51.28 20.89 11.21
62.69 13.49 10.81 55.4 52.22 21.27 11.42
7.7 14.14 11.33 64.75 61.03 24.86 13.35
77.25 14,28 11.44 64.92 61.18 24.93 13.38
90.2 14.51 11.63 71.82 67.69 27.58 14.8
89.96 14.46 11.59 72.54 68.36 27.86 14.95

60T



TABLE III

3 4 5 6 7 8
31,05 9,84 8,84 30,69 41.36 16.94
30,86 9,84 9.74 30,53 41,59 16.85
45,03 10,84 9.74 42.41 56,64 23.41
44,49 10,77 9.68 41,8 57.47 23,07
63,98 12,02 10.8 56.3 76.28 31.08
3 6 64.19 12.0 10,78 56,49 26.53 31.18
8 8 76,98 12,75 11.46 64,46 87.34 35.58
76,99 12,75 11,46 64,67 87,33 35.59
87.75 13.15 11.81 72,12 103.2 39,81
87,87 13,09 11.76 71,43 97.7 39.43
95,84 13,18 11.84 76.15 101.8 42,04
94,41 13.5 12.13 75,17 96,78 41,49 24.5
39.81 8,22 6.381 27.83 5.52 5.45
¢ 52.77 8.93 6.93 34,83 6.90 6.88
i 53,89 8,74 6.78 36,78 7.29 7.20
O 1 65,26 9,40 7.29 42,37 8.398 8.3
02 1 65,88 9,53 7.39 42,04 8.333 8.24
H 74,28 10,73 8,32 45,25 8.988 8.88
5 77.15 10.71 8,31 46,67 9.25 9.14
k4 89,48 11.57 8.97 53,63 10.63 10.5
89.32 11,11 8.62 52,05 10.32 10.2
o 18,66 7.37 ~6.116 14,18 4.07 3.655
a 18, 54 7.34 6.094 13,99 3.96 3.61
a 29, 58 9,29 7.714 21,34 6.05 5.5
~ 9 3 28,43 9,47 7.862 19,72 5.59 5.08
¥ B 43,07 9.63 7.998 28,44 8.06 7.23
W 42,88 9.71 8.06 28, 56 8.09 7.36
z 57.8 10,22 8.48 36,25 10,27 9.34
w 57.4 10,26 8,52 35,36 10.02 9.11

o1t



TABLE IIIX

1 2 3 4 5 6 8 9
no o 80.04 11.36 9.43 45.75 12.96 11.79
-5 3 79.89 11.5 9.54 45,22 12.81 11.65
g:ﬁ 8  103.05 12.16 10.1 54.33 15.39  14.0

103.45 12.18 10.11 55,69 15.78 14.35

—21.48 8.342  7.39 15.85 5.85  5.29

21.52 8.178 7.25 16.12 5.95 5.38

% 32.07 10.05 8.91 22.60 8.34 2.55
o 33.55 9.38 8.31 23.65 8.73 7.90
8 46.48 11.17 9.89 30.96 11.43 10.34
O 1 45,84 11.28 9.99 31.30 11.55 10.45
Q,E 3 61.92 12.23 10.83 39.52 14.59 13.19
b 62.05 12.26 10.87 40.29 14.87 13.45
= 81.36 12.76 11.31 47.86  17.67 15.98
. 4 80.72 12.92 11.45 48.38 17.86 16.15
96.25 14.22 12.60 55,02 20.31 18.37

93.43 14. 52 12.86 54.44 20.1 18.13

27.76 8.97 9.07 20,03 11,27 11.33

b 27.73 8.71 8.80 19.24 10.82 10.89
g 42.26 10.31 10.43 28.14 15.83 15.94
-t 42.86 10.29 10.14 28.54 16.06 16,17
ad 6 61.14 11.03 11.15 38.34 21.57 21.71
°3 B 62.11 10,90 11.02 38.60 21.72 21.86
o 83.7 11.79 11,92 49.24 27.7 27.89
-4 83.87 11.59 11.72 48.87 27.49 27.63
0 107.04 12.20 12.33 57.63 32.41 32.63
106.99 12.48 12.61 58,78 38.69 33.29

~6/8 23.45 9.888  10.0 17.56 9.38 9.95

23.11 10,04 10.15 17.44 9.8 9.83

39.91 11.36 11.48 27.24 15.33 15.43

40.79 11.37 11.49 28.29 15.92 16.02

% ¢4



1 2 3 4 5 6 7 ) 9
o

2 6/8 58.66 12.29 12.43 36.78 20,69 20,83
a ~ 58,23 12.34 12.47 37.16 20.9 21.05
s ©waso 79.93 13.05 13.2 47.46 26,7 26,88
- s8s 77.6 13.57 13.72 46,94 26.41 26,58
s w87 96.28 15.05 15.21 55,03 30,96 31.17
cTo  100.41 14.23 14.38 55,55 31.25 31.46
 21.87 10,62 10,74 16,39 9.22 9.35
b 6/8 21.19 10.58 10.69 16.29 9.17 9.23
g 38.61 12.13 12,27 26,57 14,95 15.05
L - 37.69 12.41 12,55 26,56 14.94 15.04
o N .n  55.85 13,87 14.02 36.27 20.4 20,54
°3 XK 55,56 13.56 13.71 37.00 20,81 20.96
& 298 7131 14.68 14.84 43,93 24.71 24.88
g »8A  74.73 14.11 14.27 45,20 25,43 25.6
w 2 o 93.78 14.83 14.99 54,65 30.74 30,95
~ 92.4 15.1 15.26 52,82 29.71 29.91

(441
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FIGURE 8 IMAGINARY CONFIGURATION OF FINNED TUBES
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-278 INGH FIN DIAMETER AND 1/4
INCH FIN SPACING



READING OF THE ARBITRARILY CHOSEN FIN,MV
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READING OF THE ARBITRARILY CHOSEN FIN, MV
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FIGURE 25 EMF - TEMPERATURE CONVERSION TABLE
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