NATURAL CONVECTION HEAT TRANSFER FROM FINNED TUBES by ROBERT BINLOUN PAN

A THESIS

aubmitted to
OREGOM STATE UNIVERSITY
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
June 1962

APPROVED:

Redacted for privacy

Professor of Chemical Engineering
In Charge of Major

Redacted for privacy

Head of Department of Chemical Engineering

Redacted for privacy

Chairmăn of School Graduate Committee

Redacted for privacy
 Dean or Graduate schoor

Date thesis is presented Webruary 28, 1962
Typed by Elaine M. Anderson

ACKNOWLEDGMENTS

The author takes this opportunity to express his appreciation to:

The Engineering Experiment Station of Oregon State University for the granting of a research assistantship to conduct the present research.

Dr. J. G. Knudsen for his assistance and encouragement during the course of this investigation.

Professor J. S. Walton for his comments and suggestions on the manuscript.
Chapter Page
I IMTRODUCTIOM. 1
II THEORETICAL CONSIDERATIONS AND LITERATURE SURVEY 4

1. Natural convection heat transfer 4
2. Combined natural and forced convec- tion 8
3. Natural convection heat transfer from horizontal cylinder 10
4. Natural convection from vertical flat plates 18
5. Natural convection from vertical cylinders 26
6. Natural convection from parallel plates 28
7. Natural convection heat transfer from finned tubes 31
III EXPIRRIMEATAL APPARATUS 35
8. Finned tubes 35
9. Power source 38
10. Temperature measuring system 38
11. Miscellaneous component parts 41
IV EXPGRIMENTAL PROGRAM AND EXPGRIMENTAL PROCEDURE 43
I. Experimental program 43
12. Round finned tubes 43
13. Square finned tubes 44
14. Temperature measurement on Iinned tubes 44
15. Thermocouple numbering system 46
16. Bare copper tube 46
1I. Experimental procedure 46
V CALCULATION OF EXPERIMERTAL DATA AMD ESTIMATION OF ERROR 50
17. Calculation of experimental data 50
II. Estimation of experimental errors 55
VI A MALYSIS OF DATA 59
I. Bare tube data 59
Chapter Page
II. Effect of the clearance between the lower edge of the enclosure-box and the table top 60
III. Analysis of heat transfer data of finned tubes 62
IV. Analysis of heat transfer coeffic- ients 66
V. Correlation and comparison of heat transfer data 69
VII CONCLUSION 78
18. Results for the horizontal bare tube 78
II. Effect of the clearance between the lower edge of the enclosure-box and table-top 78
III. Analysis of heat transfer data 79
IV. Analysis of heat transier coefficients 79
V. General correlation of heat transfer data 81
VIII RECOMMENDATIONS 84
IX MOMENCLATURE 86
X BIBLIOGRAPHY 88
APPEIDIX 93
A Calculation of radiation loss 93
B Calculated data 95

LIST OF FIGURES

Figure Page
1 Matural convection from horizontal cylinders to air 15
2 Finned tube and associated equipment 37
3 Finned tubes 39
4 Wiring diagram for power system 40
5 Assembly of chimney baffles and finned tubes 42
6 Diagram of EMF metering system 47
7 Diagram of EMP metering system of bare tube 48
8 Imaginary configuration of finned tubes for radiation loss calculation 113
9 Temperature-averaging calibration - 2 3/8inches fin diameter and $1 / 4$ inch fin spacing 114
10 Temperature-averaging calibration - 2 3/8 inches fin diameter and $3 / 8$ inch fin spacing 115
11 Temperature-averaging calibration - 2 3/8 inches fin diameter and $1 / 2$ inch fin spacing 116
12 Temperature-averaging calibration - 2 3/8 inches fin diameter and 6/8 inch fin spacing 117
13 Temperature-averaging calibration - 2 7/8 inches 1 in diameter and $1 / 4$ inch fin spacing 118
14 Temperature-averaging calibration - 2 7/8 inches in diameter and $3 / 8$ inch in spacing 119
15 Temperature-averaging calibration - 2 7/8 inches fin diameter and $1 / 2$ inch fin spacing 120
16 Temperature-averaging calibration - 2 7/8 inches fin diameter and 6/8 inch in spacing 121
17 Temperature-averaging calibration - 3 3/8 inches fin diameter and $1 / 4$ inch fin spacing 122
18 Temperature-averaging calibration - 3 3/8 inches fin diameter and 3/8 inch fin spacing 123
Figure Page
19 Temperature-averaging calibration - 3 3/8 inches fin diameter and $1 / 2$ inch fin spacing 124
20 Temperature-averaging calibration - 3 3/8 inches fin diameter and 6/8 inch fin spacing 125
21 Temperature-averaging calibration - square finned tube with $1 / 4$ inch fin spacing 126
22 Temperature-averaging calibration - square finned tube with $3 / 8$ inch f in spacing 127
23 Temperature-averaging calibration - square finned tube with $1 / 2$ inch fin spacing 128
24 Temperature-averaging calibration - square finned tube with 6/8 inch fin spacing 129
25 EMF-temperature conversion chart 130
26 Thermometer calibration curve 131
27 Physical property of air 132
28 Thermal conductivity of air 133
29 Nusselt number as a function of Rayleigh number for bare tube 134
30 Effect of clearance 135
31 Flow pattern of air circulation 136
32 Nusselt number as a function of Rayleigh number - 2 3/8 inches in diameter 137
33 Nusselt number as a function of Rayleigh number - 2 7/8 inches fin diameter 138
34 Nusselt number as a function of Rayleigh number - 3 3/8 inches fin diameter 139
35 Nusselt number as a function of Rayleigh number - square finned tubes with and without chimney 140
36 Heat transfer coefficient - 2 3/8 inches fin diameter 141
Figure Page
37 Heat transfer coefficient - $27 / 8$ inches fin diameter 142
38 Heat transfer coefficient - 3 3/8 inches fin diameter 143
39 Heat transfer coefficient - square finned tubes with and without chimney 144
40 Heat transfer coefficient as a function of fin spacing - 2 3/8 inches in diameter 145
41 Heat transfer coefficient as a function of fin spacing - $27 / 8$ inches fin diameter 146
42 Heat transfer coefficient as a function of fin spacing - 3 3/8 inches fin diameter 147
43 Heat transfer coefficient as a function of fin spacing - square finned tubes 148
44 Effect of fin spacing on heat transfer rate 149
45 Effect of chimney height on heat transfer coefficient 150
46 Heat transfer coefficient as a function of fin diameter - 0.4 inch fin spacing and 0.275 inch in spacing 151
47 Heat transfer coefficient as a function of fin diameter - 0.75 inch in spacing and 0.525 inch fin spacing 152
48 Correlation of experimental data for round finned tubes 153
49 Recommended correlation for round finned tubes 154
50 Recommended correlation for square ilinned tubes 155
51 Effect of chimney height 156
52 Correlation (round IInned tubes) for comparison with other geometric configurations 157
Figure Page
53 Correlation (square finned tubes) for comparison with other geometric configurations 158
LIST OF TABLES
Table Page
I Calculated radiation loss 95
II Calculated heat transfer coefficient 96
III Calculated dimensionless groups 105

matural convection heat transfer from finned tubes

Chapter I

Introduction

Natural convection heat transfer is that mode of heat transfer by which movement of portions of a fluid being heated or cooled by buoyancy force originates from density difference within the fluid. This manner of heat transfer is used extensively in space heating in which a heated surface is immersed in the medium to be heated.

Because of the small heat transfer coefficient characteristics of natural convection various means are employed to increase the rate of heat transfer. One way to increase heat transfer rate is to use extended surfaces, that is to increase the surface area per unit volume of the heater or cooler. Another method is to provide chimneys above the heat transfer surface so that buoyant forces are increased. Natural convection heat transfer from finned (extended surface) tubes has become an important method of space heating, and an understanding of the mechanism of natural convection from finned tubes is needed to aid in design of such systems.

Although, there has been extensive experimental work on forced convection from finned tubes, and on the application of finned tubes to baseboard heating and air
conditioning, little study has been devoted to natural convection from finned tubes. Theoretical investigations of natural convection have been restricted to some simple geometrical configurations, such as horizontal and vertical cylinders, vertical flat plates and vertical parallel plates. For more complex configurations most of the work done has been empirical because the nonlinear nature and the complex form of the differential equations involved restrict satisfactory analytical solution. Even for theoretical work done on simple configurations results have usually been restricted to the dimensionless groups involved. in the system and of ten constants must be evaluated empirically.

The purpose of the present work was to make an experimental study of natural convection heat transfer from finned tubes to air and to determine relationships between dimensionless groups derived from previous theoretical studies of simple geometric systems. Such variables as fin-shape, fin-spacing, fin-diameter and chimney height were studied to obtain optimum values of these parameters. Three different fin diameters and four different fin spacings of round fins, and four different fin spacings of square fins were investigated. The fins were mounted on a cylindrical horizontal tube and the systems heated by two immersion heaters and
immersed in still air. The natural convection heat transfer coefficients were correlated in terms of the various parameters of the system. A study on the effect of chimneys was also made using two different sizes of baffles mounted on the finned tubes.

Theoretical Considerations and Literature Survey

1. Natural convection heat transfer:

Natural convection heat is an important mode of heat transfer brought about by buoyant forces. Gravitational convection is a process which takes place in a universal gravitational field; the different fluid particles in a fluid medium possess different densities and thereby cause motion of the fluid. The main reason for the differences in density lie in the differences in temperature or in composition; sometimes it is caused by electrostriction, thermomagnetic, or thermoelectrostatic effects. Density differences caused by temperature variation in the iluid cause natural convection. The boundaries of the fluid are stationary and the buoyancy force causes the interior molecules to move.

It is necessary to distinguish between natural and forced convection. In the case of forced convection, the velocity field depends only slightly on the temperature and is determined to a large extent by the rate of flows. The temperature field depends on the velocity field. The Reynolds ($\frac{L U P}{\mu}$) number and Prandt1 ($\frac{C_{p} \mu}{k}$) number are therefore two dominate parameters, and in most cases the effect of the friction heat and compression work
are neglected unless the velocity reaches the speed of the sound.

In the case of natural convection, the temperature and velocity fields depend on each other, and the Grashof ($\frac{L^{3} \rho^{2} g \beta \theta}{\mu^{2}}$) and Prandtl numbers are dimensionless groups by which the data may be correlated. The compression work and friction heat are also neglected unless there is a sufficiently high value of Grashof number. It was reported by Brown and Marco (6, p. 111), that the Grashof number may be transformed into a type of Reynolds number by a force balance between the buoyancy force and the kinetic force which is produced by the buoyancy force. Therefore, the Grashof number in natural convection is really equivalent to the Reynolds number in forced convection.

It has been shown in fluid dynamics that, as a fluid flows past a heated body, a momentum boundary layer, as well as a thermal boundary layer forms. The thicknesses of these boundary layers are very small as compared to the linear dimension of the body. In the momentum boundary layer, the velocity of the fluid changes from that of the body to that of the main stream and likewise in the thermal boundary layer the temperature changes from that of the body to that of the main stream. In the case of natural convection, since the fluid is stationary
outside the boundary layer, the fluid velocity is also equal to zero at the outer edge of the boundary layer.

Langmuir (21, p. 40) postulated that, in the case of natural convection heat transfer from a wire to a gas, most of the resistance to the heat transfer lies in a film which surrounds the wire. The thickness of the film is independent of the temperature of the wire, but probably increases with the temperature of the surrounding gas. The thickness of the film of the gas varies in a simple way with the diameter of the wire. Accordingly, the natural convection from any surface may be expressed in terms of the equivalent conduction through a fictitious stagnant film, i.e.

$$
\frac{q}{A}=k \frac{t_{s}-t_{a}}{x_{a}}
$$

where $\quad q=$ total heat loss
$k=$ thermal conductivity
$\mathbf{t}_{\mathbf{s}}=$ temperature of the solid surface
$t_{a}=$ temperature at the outer bound of the film which is equal to that of the fluid
$x_{a}=$ thickness of a fictitious film
However, the real mechanism is not the case as mentioned above. 'Because of this and the difficulty in determining the thickness of the film, another expression has been derived instead of the film theory expression,
and is presently accepted.
It is

$$
q=h A\left(t_{s}-t_{a}\right)
$$

where the proportionality factor h is defined as the local heat transfer coefficient.

As long as the above mentioned assumptions for boundary layer hold, i.e. the thickness of boundary layer is very small as compared with the characteristic dimension of the solid body, the convection heat transfer may be determined from the following three boundary-layer differential equation:

Continuity equation $\frac{\partial}{\partial x}(\rho U)+\frac{\partial}{\partial y}(\rho V)=0$
Momentum equation

$$
P\left(u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right)=-\frac{\partial P}{\partial x}+\frac{\partial}{\partial y}\left(\mu \frac{\partial u}{\partial y}\right)+g_{x} \rho(2)
$$

Energy equation

$$
\begin{equation*}
\rho C_{p}\left(u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}\right)=\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right) \tag{3}
\end{equation*}
$$

These equations are written in rectangular coordinates for the case of two dimensional flow; so far no attempt has been made to solve the three dimensional heat flow problem.

These equations may be solved theoretically either by exact or approximate methods. A complete solution of the boundary layer equations will be considered as an exact solution irrespective of whether it is obtained analytically, or by numerical methods. The approximate solutions are the solutions obtained from integral
relations, which are originally derived by von Karman. In theory, the boundary layer equations are satisfied both in the layer near the wall and in the immediate region outside of the boundary layer. Details on the comparison between the exact method and the approximate method have been presented by Levy (23, p. 515)

Natural convection problems can be divided into internal and external types. In the so called external problems the heated (or cooled) surface being used is much smaller than the body of the fluid in which it is immersed. On the contrary, the internal problems are those where the dimensions of the heater or the cooler are comparable with the dimensions of the container of the fluid. Since this thesis deals mainly with the case of the external type, the discussion is restricted to this type.
2. Combined natural and forced convection:

Natural convection occurs in conjunction with forced convection heat transfer. The contribution of natural convection to the total heat transfer depends on the velocity of the main stream, and when its velocity becomes small natural convection predominates and ultimately accounts for all heat transfer when the main
stream velocity becomes zero.
Combined natural and forced convection is widely used in the after-shut-down cooling problems in nuclear reactors. Some earlier work dealing with the combined natural and forced convection with internal heat flux was done by Ostroumov (33). Hallman (15, p. 1830) also made a theoretical investigation in the combined convection problem inside a tube. Somers (40, p. 295) solved the problem of combined thermal and mass transfer from a vertical plate by a theoretical approach. In addition to the above mentioned continuity, momentum, and energy equations, an additional equation, the diffusion equation was needed in this case. A theoretical solution was obtained by means of the Pohlhausen-Karman approximate method. A theoretical analysis was also done by Ostrach on this topic.

Van Der Hegge Zijnen (44, p. 137) studied the problem of combined natural and forced convection heat transfer from horizontal cylinders and obtained the following relationship:

$$
(N u-0.35) \sqrt{1-\left[\frac{0.24 G r^{1 / 8}+0.41 G r^{1 / 4}}{M u-0.35}\right]}=0.5 R e^{0.5}+0.001 \mathrm{Re}
$$

The main object of the above equation was to predict under what conditions the natural convection could be neglected.
3. Natural convection heat transfer from horizontal cylinders:

Natural convection from vertical plates (discussed in the aext section) and natural convection from horizontal tubes are the simplest two dimensional cases in which the above mentioned three differential equations can be simplified and solved. Assuming constant fluid properties, the equations become

$$
\begin{align*}
& \frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}=0 \tag{4}\\
& U \frac{\partial U}{\partial x}+V \frac{\partial U}{\partial y}=\nu \frac{\partial^{2} U}{\partial y^{2}}+g \beta \theta \tag{5}\\
& U \frac{\partial T}{\partial x}+V \frac{\partial T}{\partial y}=\alpha \frac{\partial^{2} T}{\partial y^{2}} \tag{6}
\end{align*}
$$

where, $g \beta \theta$ is the buoyancy force term particularly appearing in the natural convection process, $\left(\nu=\frac{\mu}{\rho}\right)$ is the kinematic viscosity, and $\left(\alpha=\frac{k}{c_{p} p}\right)$ is the thermal diffusivity.

Nusselt (17, p. 2) solved the above differential equations by means of the uniquely determining boundary values, and reported that in the case of small temperature difference the Nusselt number (Nu) can be expressed as a function of Grashof number and Prandtl number. In this expression, the fluid properties have been assumed to be constant. This assumption is quite good for small temperature differences, however, for large temperature
differences this assumption no longer holds. Hence, in the case of large temperature drop, Nusselt suggested the following relationship:

$$
\mathrm{Nu}=\mathbf{f}(\mathrm{Gr}, \mathrm{Pr}, \mathrm{Te})
$$

Hermann (17, p. 3) made a study on the effect of this new parameter $T e$ on the natural convection, and reported that the effect of Te will greatly exceed that of the Grashof number in the region $10^{-4}<\mathrm{Gr}<10$. On the other hand, the effect of Te will be negligible in the region $10^{4}<\mathrm{Gr}<10^{7}$. Therefore the factor Te appears as a third parameter for the variable-property problems. However, it was suggested later by Sparrow and Gregg (42, p. 879) that the addition of the factor $T e$ is not necessary if a proper reference-temper ature is chosen for evaluating the values of the fluid properties. They proved mathematically, that the constant-property problem is identical to that for the special variable-property fluid, and all the solutions obtained from the constantproperty differential equations can be applied to the special-property iluid as well. Hence, by choosing a proper reference-temperature the results obtained for the constant-property conditions can be applied to the variable-property conditions, and it was obtained that for gases, the reference-temperature is

$$
T_{r}=T_{s}-0.38\left(T_{s}-T_{a}\right)
$$

It was further observed by them that the film temperature $\mathbf{T}_{\mathbf{f}}=\frac{\mathbf{T}_{\mathbf{s}+} \mathbf{T}_{\mathbf{a}}}{2}$, may be used as an adequate reference-temperature for most engineering purposes. All the above results obtained by Sparrow and Gregg were based on the boundary layer theory in which the thickness of the boundary layer is small compared to the linear dimension of the system.

As to the parameter Pr, it has been defined by the gas kinetic relation that for gases, $P r=\frac{n+2}{n+4.5}$ where n is the number of degrees of freedom of the molecular motion. Therefore, Pr is solely dependent on the nature of the gas and independent on the temperature in the case of gas.

Hermann (17) made an extensive study of natural convection from a horizontal cylinder. He solved the differential equations under the assumptions that

1. The cylinder is infinitely long.
2. The flow in the boundary layer is laminar.
3. The assumption made for the boundary layer theory is satisfied, i.e. the thickness of the boundary layer is small as compared with the diameter of the cylinder.
He obtained the theoretical relationship $\mathrm{Nu}=0.37 \mathrm{Gr}^{0.25}$ where the fluid properties in the Grashof and Prandtl number must be taken at the wall temperature. Experimentally, this relationship has been proved to be correct
from Schlieren photos obtained by Schmidt (44, p. 130). It was also concluded by Hermann (17, p. 11) that the above relationship changes to the form of $\mathrm{Mu}=$ constant $\left(\mathrm{Gr}^{1 / 3}\right)$ for $\mathrm{Gr}>3 \times 10^{8}$. He explained that this change was caused by turbulence in the boundary layer. Experiments of King also confirmed this one-third power law. Hermann also observed the dependence of the Nusselt number on the Prandti number. He concluded that in the region of very small Grashof numbers the Nusselt number was almost independent of P_{r}, while in the region of medium and large values of Gr , an increase of Nu with Pr was observed.

It has been mentioned above that for Gr $\operatorname{Pr}<10^{4}$, the fourth-power law is no longer valid. In light of this, Langmuir (21, p. 401) proposed his "iilm theory". He experimented with hot wires in air and reported that as Gr decreases to 10^{-4}, Nu approaches a lower limit. Ayrton and Kilgour, Bijlevelt and Kennelly (17, p. 6-7) also tested wires of different materials in air in the region of small $\mathrm{Gr}\left(10^{-4}\right.$ to 10$)$, their results are in good agreement with Langmuir's. Koch and Walsmer (17, p. 8-9) experimented with cylinders in the region of large $\mathrm{Gr}\left(10^{4}\right.$ to $\left.10^{8}\right)$, their results agree with the theoretical fourth-power law. Elenbaas (14, p. 1148-1154) obtained the following relationship with the aid of

Langmuir's film theory

$$
\mathrm{Nu}^{3} e^{-\frac{6}{N u}}=\frac{G r \operatorname{Pr}}{235 f(G r \operatorname{Pr})}
$$

where the function $f(G r P r)$ was found experimentally. Nusselt and King (20, p. 350) experimented with horizontal cylinders in air and obtained empirical correlations. Their results are plotted in Figure (1). Jakob and Linke (19, p. 529) combined Nusselt's and King's correlations and obtained their following relationships:

$$
\begin{array}{ll}
\mathrm{Nu}=0.555(\mathrm{GrPr})^{1 / 4} & \text { for } 10^{4}<\mathrm{GrPr}<10^{8} \\
\mathrm{Nu}=0.129(\mathrm{GrPr})^{1 / 3} & \text { for } 10^{8}<\mathrm{GrPr}
\end{array}
$$

It was noted that the natural convection heat transfer will be greatly increased if one were able either to increase the values of the quantities in the numerator or decrease the values of the quantity in the denominator of the Grashof number, or do both. Based on this concept, Doughty and Drake (9, p. 1843-1850) proposed that for any substance in the gaseous phase, as the critical point is approached, all the quantities in the Gr will increase from their regular values in superheated region except viscosity, and for gases viscosity will increase with temperature. Therefore, they suggested that for any substance in the gaseous phase, there will be a great increase in natural convection heat transfer at its critical state. Through experimental test on Freon 12, they reported that a teniold increase in the

FIGURE I NATURAL CONVECTION FROM HORIZONTAL CYLINDERS TO AIR
heat transfer coefficient was observed at the critical state. Dropkin and Carmi (10, p. 74) experimented with a horizontal cylinder rotating in air. They reported that for Re up to 1500 the following equation is applicable:

$$
N u=0.095\left(0.5 \mathrm{Re}^{2}+G r\right)^{0.35}
$$

For Re greater than 1500, the effect of rotation speed greatly overweighs that of the natural convection, and the following formula was proposed:

$$
N u=0.073(\text { Re })^{0.7}
$$

These relationships apply equally well to both film and bulk properties.
Y. P. Chang (8, p. 1501-9) proposed a new theoretical approach instead of the older conventional concept for heat transfer in natural convection and in boiling. He assumed that there is a boundary layer above a heating surface whose thickness depends on the heat flow. There is wave motion inside the layer which is stable in the lower part but unstable in the upper part. With the aid of his wave motion theory, Chang derived the following theoretical formula:

$$
\mathrm{Nu}=0.146(\operatorname{PrGr})^{1 / 3}
$$

which agrees with the experimental results of other investigators. It is also suggested in his paper that this new concept applies not only to natural convection
but also to forced convection. However, since this new approach is idealized, further experiments and studies are needed for evaluating how close this concept is to reality.

There has been extensive study on the natural convection from heated bodies, however only little work has been done on the natural convection to cold bodies. Lemlich and Sharn (22, p. 1547) studied the natural convection to cold cylinders. Experimentally, they concluded that when the temperature difference is not too large, the equations obtained for natural convection from warm cylinders can be applied to the case of natural convection to cold cylinders as well.

A study was made by Boelter, Cherry, Johnson, and Martinelli (4, p. XII-38) of the effect of vibration on natural convection heat transfer. The following semiempirical equation was recommended as within the range of laminar heat flow:

$$
\operatorname{Re}=N u \sqrt{12,000-20 \frac{\left(\mathrm{GrPr}_{r}\right)^{2}}{N u^{8}}}
$$

where

$$
\begin{aligned}
& \operatorname{Re}=\frac{a, \omega d \rho}{\sqrt{2} \mu} \\
a= & \text { amplitude of displacement of the tube } \\
d= & \text { diameter of the cylinder } \\
\omega= & \text { angular velocity of fluid }
\end{aligned}
$$

4. Natural convection from vertical flat plates:

Recently, with the increasing application of natural convection such as in the cooling of turbine blades or of helicopter ram jets, natural convection from vertical plates is becoming more important. There is considerable difference between the mechanism of natural convection from vertical plates and that of horizontal cylinders. In the case of a vertical plate the boundary layer starts with zero thickness which results in an infinitely large temperature gradient and an infinitely large local heat transfer coefficient at the lower edge. On the contrary, for horizontal cylinder the boundary layer starts with a finite thickness which gives the ifinite velocity and temperature gradients and hence a finite local heat transfer coefficient. For flat plates, the boundary layer thickness increases with the fourth root of the height above the lower stagnation edge. However, for the horizontal cylinder, the boundary layer thickness increases from the lower stagnation edge according to a complex law and at the upper stagnation point it reaches a theoretically infinite thickness with diminishing velocity and with diminishing heat transfer coefficient. Hence, for natural convection from a vertical plate, since the boundary layer thickness increases with the height above the lower edge, the capacity of heat transfer
decreases along the surface, which results in more heat transfer per unit area for plates with shorter height. For tall surfaces, the heat transfer coefficient has a high value at the lower part and it decreases to a minimum at somewhere near 17 per cent of the total height. At this point, flow in the boundary layer becomes turbulent and an increase in heat transfer coefilicient will be observed for a short distance, after which it reaches a constant value for the remaining distance. In spite of the difference in flow mechanisms, the equation Nu $=$ constant $(G r)^{1 / 4}$ is applicable to all the two dimensional cases of natural convection heat flow within the range of the validity of the boundary layer theory.

In 1881, Lorenz proposed his assumption which leads to a possible solution of the problem of natural convection from the vertical plate. He assumed that the temperature isotherm and the constant velocity lines were parallel to the plate. By experimental investigation it was found that this was not the case. Pohlhausen solved the differential equations using the temperature and velocity gradients measured by Schmidt and Beckmann for air as the medium. However, his solution was only valid for air, and could not be applied to other iluids. Saunders (35, p. 62) investigated the same problem and obtained the following series-type solution which was entirely
theoretical and hence could be applied to any fluid:

$$
\frac{\mathrm{Mu}}{(\mathrm{GrPr})^{1 / 4}}=0.524\left[\frac{\mathrm{Pr}}{\operatorname{Pr}+0.167}\right]^{1 / 4}
$$

where Iu is the mean Nusselt number. Saunder's experimental data were correlated by McAdams into the following empirical relationships:

$$
\begin{array}{ll}
\mathrm{Nu}=0.13[\mathrm{GrPr}]^{1 / 3} & \text { for } 10^{9}<\operatorname{GrPr}<10^{1.2} \\
\mathrm{Nu}=0.59[\mathrm{GrPr}]]^{1 / 4} & \text { for } 10^{4}<\operatorname{GrPr}<10^{9}
\end{array}
$$

where all the fluid properties were measured at film temperature.

Schuh also solved the differential equations numerically by successive approximation for the case of heated vertical plate. Later, Ostrach (31) solved the differential equations numerically on an electronic computer.

Squire and Eckert (11, p. 312) studied the problem of natural convection and proposed an approximate formulae for the velocity and temperature profiles based on the assumption that, in the region of laminar heat llow, the temperature profile may be expressed by a parabolic equation and the velocity profile may be expressed by a third power equation similar to that of the profiles shown in the following sketch.

The proposed formula are

$$
\begin{align*}
& \theta=\theta_{S}\left(1-\frac{y}{\delta}\right)^{2} \tag{7}\\
& U=U_{1} \frac{y}{\delta}\left(1-\frac{y}{\delta}\right)^{2} \tag{8}
\end{align*}
$$

With the aid of their proposed formulae they solved the differential equations by means of Karman's integral relations, and obtained

$$
\left.N u_{x}=0.508 \mathrm{Pr}^{1 / 2}\left(0.952+\mathrm{Pr}_{\mathrm{r}}\right)^{-1 / 4}(\mathrm{Gr})_{x}\right)^{1 / 4}
$$

where $N u_{x}$ and $G x_{x}$ are respectively the local Nusselt number and Grashof number for a vertical distance x measured from the lower edge of the plate. The above equation obtained by the approximate method agrees very well with the solutions obtained by the exact method. The exact method is lar more cumbersome.

Merk and Prins (27, p. 11) introduced a refined Squire-Eckert approximation by assuming not only the Pirst derivatives of U and θ but also their second derivatives equal to zero at $y=\delta$. A more accurate solution was obtained.

For the problem of natural convection in the region of turbulent heat flow, Eckert (12, p. 256) suggested the
following equations for the temperature and velocity profiles:

$$
\begin{align*}
& \theta=\theta_{S}\left[1-\left(\frac{y}{\delta}\right)^{1 / 7}\right] \tag{9}\\
& U=U_{1}\left(\frac{y}{\delta}\right)^{1 / T}\left(1-\frac{y}{\delta}\right)^{4} \tag{10}
\end{align*}
$$

Where the velocity profile equation was intentionally chosen such that, when the layer is vexy close to the surface, i.e., y becomes small compared to δ, it will be similar to the velocity profile equation for turbulent forced flow $U=U_{1}\left(\frac{y}{\gamma}\right)^{1 / 7}$. Eckert then suggested that the last terms in the Karman's integral equations which were originally derived from the continuity, momentum, and energy equations, may be replaced by the shearing stress and heat flow that are used in forced-convection flow, under the assumption that, in the layer very close to the wall, the conditions are similar for natural and forced convection flow:

$$
\begin{align*}
& \frac{d}{d x} \int_{0}^{\delta} u^{2} d y=\int_{0}^{\delta} g \beta \theta d y-\nu\left(\frac{\partial u}{\partial y}\right)_{S} \tag{11}\\
& \frac{d}{d x} \int_{0}^{\delta} U \theta d y=-\alpha\left(\frac{\partial T}{\partial y}\right)_{S} \tag{12}
\end{align*}
$$

where the subscript s stands for the layer at the plate surface; x stands for the distance measured vertically from the lower edge; y is the distance measured normal to the plate surface, and U and V are respectively the
velocities parallel and normal to the surface. He obtained the following solution:

$$
N u_{x}=0.0295\left(G r_{x}\right)^{2 / 5}\left(P_{r}\right)^{7 / 5}\left[1+0.494\left(P_{r}\right)^{2 / 3}\right]^{-2 / 5}
$$

which is in good agreement with experiment for values of Gr between 10^{10} and 10^{12}.

Hougen and Colburn (4, p. XII-38) derived the equation for natural convection from vertical plates in turbulent region under the assumption that the resistance to heat flow exists in the laminar sublayer only and none exists in the turbulent region, and the thickness of the laminar sublayer is the same as that in forced convection heat flow. Their equation is

$$
N u=\frac{h L}{k}=0.108\left(\frac{L^{3} \rho^{2} g \beta \theta}{\mu^{2}}\right)^{1 / 3}
$$

Based on Langmuir's film theory, Rutkowski (34) suggested that for natural convection from vertical plates the temperature profile may be expressed by an exror function since conduction alone takes place, and the velocity profile was also expressed by an error function which was calculated from the temperature profile. By von Karman's integral relations, he calculated the temperature and velocity profiles. The results are in good agreement with the results of other investigators. It was suggested by Rutkowski that this method may also be applied to the case of parallel vertical plates,
spheres, and cylinders.
In all the above mentioned approaches, the terms for compression work and friction heat have been neglected in the energy equation because of their small magnitudes as compared to the other terms. However, it was pointed out by Ostrach (29, p. 1287) that these two terms depend on a new parameter, which he obtained theoretically. This new parameter is

$$
\bar{K}=\operatorname{Gr} \frac{\beta f_{x} L}{c_{p}}
$$

It was observed that in the case of the cooling of turbine blades and helicopter ram jets, there was a high body force being generated parallel to the plates, and hence a high value of \bar{K}. Therefore, it was not always safe to neglect the compression work and friction heat in the energy equation.

The approaches discussed above are all for vertical plates with uniform temperature. The problem of natural convection from non-isothermal vertical plates was studied by Sparrow and Gregg (42, p. 879). They studied this for the following two families of surface temperatures

$$
\begin{aligned}
& T_{s}-T_{a}=N X^{n} \\
& T_{s}-T_{a}=M e^{m X}
\end{aligned}
$$

and obtained a numerical solution by solving the dieferential equations for gases. The problem of natural convection from vertical plates with uniform surface
heat fluxes was also studied by Sparrow and Gregg, and the problem of non-uniform wall heat fluxes and nonuniform wall temperature has also been studied by Sparrow.

Since the fuel rods in a nuclear reactor may have to be cooled solely by natural convection in case of a coolant-pump failure, a knowledge of how the boundary layer changes during a process of transient natural convection is necessary for designing the nuclearreactor fuel elements. This problem was studied by Siegel (38, p. 347) by employing the Pohlhausen-Karman approximate method and the temperature and velocity profiles proposed by Eckert (11, p. 312). It was observed that, for a time during the thermal transient, the thickness of boundary layer exceeds that for a steady-state, hence the heat transfer coefficient would pass through a minimum before the steady state was achieved. The equations for the time required to reach a steady state for a plate suddenly raised to a certain uniform temperature and for a plate suddenly subjected to a certain heat flux were obtained as follows:

For uniform temperature

$$
\begin{array}{r}
\tau=\left[\frac{0.524\left(0.952+\mathrm{Pr}_{\mathrm{r}}\right)^{1 / 2}+7.10\left(0.377+\mathrm{Pr}_{\mathrm{r}}\right)^{1 / 2}}{2}\right] \\
\left(\mathrm{Gr}_{\mathrm{L}}\right)^{-1 / 2}\left(\mathrm{Pr}_{\mathrm{r}}\right)^{-1} \mathrm{X}^{1 / 2}
\end{array}
$$

For uniform heat flux
$\tau=4.78(0.8+\mathrm{Pr})^{2 / 5}\left(\mathrm{Gr}_{\mathrm{L}}^{*}\right)^{-2 / 5}(\mathrm{Pr})^{-4 / 5} \mathrm{X}^{2 / 5}$
There are some other special problems of natural convection from vertical plates which have been studied by different investigators. The natural convection heat transfer in regions of maximum fluid density was studied by Schechter and Isbin (18, p. 81-89) and the natural convection from a vertical plate with an obstruction placed above the point of initiation of the heated section was studied by Bevans (1, p. 114-119).
5. Natural convection from vertical cylinders

Vertical cylinders are classified as the bodies with rotational symmetry. To date, there has been little study done on the natural convection from the outer surface of a vertical cylinder. However, it has been observed that as the boundary layer is sufficiently thin, the results of the natural convection from vertical cylinders will be similar to those of vertical plates. As the boundary layer thickness increases, behavior deviates more and more from that of a vertical plate. It was also observed (5, p. 101) that for short cylinders having ratio of length to diameter less than 40 , natural convection heat transfer from vertical cylinders will be less than that from horizontal ones. Hence, there is an additional
variable appearing in the case of vertical cylinders, i.e. the length, which may be eliminated in the case of a horizontal cylinder by choosing it sufficiently long.

In 1932, King (20, p. 347) experimented with vertical cylinders, horizontal cylinders, vertical planes and spheres, and obtained his correlation. In 1948, Touloukian, Hawkins, and Jakob tested vertical cylinders in water and ethylene glycol (43, p. 530). The results obtained by them were quite close to those for vertical plates. Their results can be shown by the following relationships:

For the value of GrPr between $0.2\left(10^{9}\right)$ and $40\left(10^{9}\right)$

$$
\mathrm{Nu}=0.726(\mathrm{GrPr})^{1 / 4}
$$

For the value of GrPr between $40\left(10^{9}\right)$ and $900\left(10^{9}\right)$

$$
\mathrm{Nu}=0.0674\left[\mathrm{Gr}(\operatorname{Pr})^{1.29}\right] \quad 1 / 3
$$

Elenbaas (14, p. 1152) studied the natrual convection from vertical cylinders based on Langmuir's film theory, and obtained the following theoretical equation:

$$
N u_{d, s} \exp \left(\frac{-2}{N u_{d, m}}\right)=0.6 \frac{(G r P r)_{d, s}^{1 / 3}}{(G r P r)_{L, s}^{1 / 2}}
$$

where the subscript s indicates that the value must be taken at the wall temperature, subscript m indicates that the mean of the quantity in the interval $\mathrm{T}_{\mathbf{s}^{-T}} \mathrm{~T}_{\mathrm{a}}$ must be taken, for instance

$$
\lambda_{m}=\frac{1}{T_{s}-T_{a}} \int_{T_{a}}^{T_{s}} \lambda(T) d T
$$

Sparrow and Gregg (41, p. 1823) solved the differential equations for natural convection from the outer surface of a vertical cylinder, and obtained the following quantitative criterion under which the results of vertical plates can be applied to the case of vertical cylinders:

For local Nusselt number

$$
\begin{array}{lr}
\frac{2^{3 / 2}}{G r_{x}^{1 / 2}}\left(\frac{x}{r_{0}}\right) \ll 0.11 & \text { for } P x=0.72 \\
\frac{2^{3 / 2}}{G r_{x}^{1 / 4}}\left(\frac{x}{r_{0}}\right) \ll 0.13 & \text { for } P r=1
\end{array}
$$

For average Nusselt number

$$
\begin{array}{ll}
\frac{2^{3 / 2}}{G r_{x}^{1 / 4}}\left(\frac{x}{r_{0}}\right) \ll 0.15 & \text { for } P_{r}=0.72 \\
\frac{2^{3 / 2}}{G r_{x}^{1 / 4}}\left(\frac{x}{r_{0}}\right) \ll 0.17 & \text { for } P_{r}=1
\end{array}
$$

6. Natural convection from parallel plates:

Natural convection in a space between two vertical parallel plates is of particular importance in the problem of cooling of turbine blades and the helicopter ram jet. An extensive study on this problem was made by Elenbaas (13, p. 1). He experimented with the square plates having different spaces and sizes in air, and observed that for high values of plate spacing the heat
dissipation (watt/ $\mathrm{cm}^{2}{ }^{\circ} \mathrm{C}$) becomes independent of plate space, b, increases with the temperature difference between the plates and the air, θ, and decreases slowly with the length of plates. For small values of b, the heat dissipation increases rapidly with b, increases with θ in the region of small values of θ, and decreases slightly with θ in the region of large values of θ. Theoretically, Elenbaas analyzed the differential equations of the case that the plates are infinitely long in the horizontal direction, and obtained an empirical equation in which an additional variable L appears. His equation is

$$
N u=\frac{1}{24} \cdot \frac{b}{L} \operatorname{GrPr}\left[1-e \frac{-35 L}{\text { bGrPr }}\right] 3 / 4
$$

Siegel and Norris (39, p. 603) did some experimental study on two vertical plates. The top of the rectangular space between the plates was left open, and the bottom and sides were closed for most of the tests. It was observed that the local Nusselt number decreases when the space was reduced. It was also found that when the duct was open at the bottom, the local heat transfer coefficients were slightly affected by the space between the heated plates, the presence or absence of sideinclosing walls, and the clearance between the lower edges and the floor. When the duct was closed at the bottom and at the sides, the local heat transfer
coefficient was considerably affected by both the duct width and the space between the heated plates.

Ostrach (30, p. 1-55) solved the differential equations of natural convection heat transfer in channels with constant wall temperature by numerical methods. It was found that the parameter $\bar{K}=G_{r} \frac{\beta f_{x} d}{c_{p}}$ determines the contribution of the compression work and friction heat. Those are neglected in most cases of natural convection. The velocity and temperature profiles for different configurations were also calculated in his paper.

Lietzke (24, p. 1-23) analyzed the problem of natural convection between two parallel plates one of which was heated uniformly and the other cooled uniformly. An exact solution was obtained from the differential equations, and presented in the form of velocity and temperature profiles. Good agreement with the experiment results was observed. It was observed that when the value of GrPr increases the point of maximum velocity shifts closer to the wall.

As a case of simulating the cooling of turbine blades, Ostrach and Thornton (32, p. 363) studied the problem of the laminar natural convection in a closed-end tube with a linear wall temperature and large lengthradius ratio. In this process, the group $\operatorname{GrPr} \frac{r}{L}$ is the determining parameter, where L is the length of the tube,
and r its inner diameter. The velocity and temperature profiles were calculated by Karman's integral relations.
7. Natural convection heat transfer from finned tubes: The purpose of adding fins to a surface such as a cylinder is to increase the available area for heat transfer. However, the adding of fins to a surface will result in a decrease of surface temperature unless the fin material has a very high thermal conductivity. If the increase of surface area is greater than the decrease of surface temperature, then the adding of fins will cause an increase in heat transfer rate. In general, the fin effectiveness is used as a criterion for estimating the fin-efficiency, and which is defined as the ratio of heat transfer rate from a fin to the heat transfer rate that would be obtained if the entire fin surface area were to be maintained at the same temperature as the primary surface (i.e. the cylinder). Finned tubes are widely used in industry, but there has been little work done on the subject of natural convection from finned tubes. To date, most of the work done on the finned tubes has been concentrated in the field of forced convection, and heating and air-conditioning, and is solely experimental.

The heat transfer between the finned tubes and the
fluid may be divided into two steps taking place simultaneously. The ifist step is concerning the conduction of heat through fins. The temperature distribution along the fins has been solved from the differential equation obtained by a heat balance. The second step is the convection of heat from the ilinned tube to the heating medium. The problem of heat transfer by convection from a finned tube in forced aix current has been studied by several investigators. Biermann and Pinkel (3) tested the ilnned tubes by various in shapes, widths, thicknesses and spaces under different air speeds in a wind tunnel. It was observed that the value of heat transfer coefficient varies mainly with the air speed and the fin space, and is affected slightly by the other fin dimensions. An equation was derived for designing the optimum fins which will give the maximum amount of heat dissipation for a given weight of material.

Biermann and Ellerbrock, Jr. (2, p. 401-424)
reported that for a given fin weight, the magnesium alloy gives the highest heat dissipation; pure copper and aluminum alloy are only slightly inferior to magnesium alloy. For a given fin height, copper, which has a high thermal conductivity, will give the highest heat dissipation. In the problem of cooling, it is rather important
to know how much heat is dissipated through the plain cylinder. For this purpose, a term of so-called cooling effect was derived in reference (3, p. 263) and (25, p. 111). It gives the rate of heat removed from the area of the plain cylindrical surface.

Schey and Rollin (36, p. 111-124) tested the effect of different types of baffles on the heat transfer of finned tubes. Four kinds of baffles, streamline baffle, plate baffle, shell baffle, and integral baffle were tested, and it was found that the shell baffles gave the best cooling effect when they were mounted as closely to the tube as possible.

Finned tubes are also widely used in heating and airconditioning. An extensive study has been carried out by the Institute of Boiler and Radiator Manufacturers. It was concluded that the fin thickness used in the investigation should be sufficiently consistent, and the fin to tube bond can affect the output.

Murray (28, p. A-78-80) made a mathematical investigation on the heat flow in an annular disk of uniform thickness.

Carrier and Anderson (7, p. 304-318) studied the temperature distribution on the finned tubes.

Seigel and Bryon (37, p. 129) studied the problem
of natural convection cooling and dehumidifying on a bare horizontal tube, and on other tubes with extended surfaces. One horizontal bare tube, one horizontal finned tube, and one complete gravity cooling coil were used. Their results will be discussed in Chapter VI.

Chapter III

Experimental Apparatus

The experimental apparatus consisted of the finned tubes, power source, temperature measuring system, and other miscellaneous components. These will be discussed in detail.

1. Finned tubes

Each of the finned tubes consisted of a 1.375 inch OD by 1.261 inch ID bare copper tube with a length of one foot, on which fin plates were mounted. The finplates were made from 23 gauge copper (0.0239 inch thick) and they were fitted on the copper tube by thermalshrinking. The inside diameter of the fin-plates was made 0.006 inch smaller than the outside diameter of the tube. By heating to $1600^{\circ} \mathrm{F}$ in an oven for three minutes, the fin-plates expanded to the extent that the inside diameter was bigger than the outside diameter of the tube. After being mounted on the tube and cooling, the finplates were fitted very well on the tube. Two kinds of fin-plates were made, round fins and square fins. Of the round fins, three different sizes were made, i.e. 2 3/8 inches, $27 / 8$ inches, and 3 3/8 inches fin diameter. Only one size of square fin was made with an area equal to that of the round fin-plates of $27 / 8$ inches diameter.

The finned tubes were heated by two quartz immersion heaters with an overall length of 11 inches and a heated length of 6 inches. These were obtained from the GloQuartz Electric Heater Co., Inc. They were inserted into the tube from either end through rubber stoppers and placed in such a way that they were completely immersed when the horizontal tube was half filled with water. A glass tube passed through one of the stoppers, and connected to a water manometer by a rubber tube so that the vapor pressure inside the tube could be observed. The finned tube was mounted on a stand so that it was two feet from the floor, and it was enclosed on the sides by an open top enclosure 40 by 40 by 40 inches. Six iron-constantan thermocouple junctions were soldered on the finned tube, three on the upper part and three on the lower part. Of the three thermocouples on each part, one was soldered on the copper tube, one on the mid-point between the fin-base and fin-tip, and one on the fin-tip. Only one fin-plate was chosen for temperature measuring purposes. However, the calibration curves of the temperature distributions on different fins have been plotted so the average temperature of the fins can be obtained by the measurement on one fin. The general setup of the Pinned tube and its accessories are shown in the sketch of Fig (2), and all the finned tubes tested

```
U - POWERSTAT
P - POTENTIAL METER
T - THERMOMETER
G - COLD JUNCTION OF
    THERMOCOUPLE
H - HOT JUNCTION OF
    THERMOCOUPLE
R - RUBBER TUBE
B - THERMOS BOTTLE
U - POWERSTAT
P - POTENTIAL METER
C - COLD JUNCTION OF THERMOCOUPLE
H - HOT JUNCTION OF THERMOCOUPLE
R - RUBBER TUBE
b - thermos bottle
```

m- IMMERSION HEATER
S - KNIFE SWITCH

S - KNIFE SWITCH
M - IMMERSION HEATER
F - FINNED TUBE
J - WATER BAROMETER
E-ENCLOSURE BOX
A - AMMETER
V - VOLTMETER
L - VOLTAGE STABILIZER

FIGURE 2 FINNED TUBE AND ASSOCIATED EQUIPMENT
are shown separately in the photograph of Fig (3).

2. Power source

The power source consisted of a Raytheon voltage stabilizer, and four powerstats made by the General Radio Co. The powerstats were used for adjusting the power supply to the immersion heaters. Each pair formed one group, and they were arranged in series for the purpose of achieving better adjustment of the 60 cycle AC voltage. A Simpson voltmeter with a range from zero to fifty volts and a Triplett ammeter with a range from zero to two amp were used to measure the power supply. Accuracy of the voltmeter was ± 0.2 volt, while that of the ammeter was ± 0.01 amp. A wiring diagram of the power system is shown in Fig (4).
3. Temperature measuring system

Temperatures on the surface of finned tubes were measured with thermocouples and a potentiometer. The e.m.f. readings from the potentiometer were converted to temperature units by means of a calibration curve. The e.m.f. measuring system consisted of No. 30 ironconstanten thermocouples, a rotary selector switch, a cold junction, and a Leeds and Northrup potentiometer (No. 737621). The cold junction was immersed in a thermos bottle filled with cracked ice in water to keep

FIGURE 3 FINNED TUBES

```
L - VOLTAGE STABILIZER
u - POWERSTAT
S - KNIFE SWITCH
```


FIGURE 4 WIRING DIAGRAM FOR POWER SYSTEM
the temperature of the cold junction at 32° F. A Fischer vibradamp support was placed underneath the potentiometer for the purpose of absorbing any ambient vibration, because the accuracy of the reading of the potentiometer was unfavorably affected by any vibration.

The temperature of the air was measured by a
thermometer made by the Standard Calorimeter Co. with an accuracy of $0.01{ }^{\circ} \mathrm{F}$.
4. Miscellaneous component parts

During the study of chimney effect, baffle-plates were mounted on the sides of the tubes by means of four sets of wood rods which could be fitted on the finnedtube stand. Two sizes of baffle-plate having heights of 2.548 inches and 3.78 inches were used. They were rectangular in shape, and had the same length as that of the finned tube. They were placed $1 / 8$ inch from the fin tip, in a vertical position on either side of the fin as shown in Fig (5).

FIGURE 5 ASSEMBLY OF CHIMNEY BAFFLES AND FINNED tubes

Chapter IV

Experimental Program and Experimental Procedure

I. Experimental program

This thesis is an investigation of natural convection heat transfer from finned tubes. Air was used as the ambient fluid. The primary purpose of this investigation is to correlate the experimental data in terms of the parameters of the system. The variables involved in the correlation were the temperature difference between the surface of finned tube and the air, fin spacing, and fin diameter. Arithmetic mean heat transfer coefficients were used in the correlation, and the necessary data for calculating the arithmetic mean heat transfer coefficients were the average temperature of finned tube, the time-average temperature of the air, the area available for heat transfer, and the power input to the two heaters.

1. Round finned tubes

Three different fin diameters (2 3/8, $27 / 8$ and 3 3/8 inches) and four spacings ($1 / 4,3 / 8,1 / 2$, and $3 / 4$) were studied during the course of investigation. However, due to the difficulty of making an exact fin spacing the real fin spacings of the tubes deviated somewhat from above nominal values. By adjusting the power input, temperature differences ranging from $20^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$ could
be obtained. Each finned tube was studied at six temperature differences in this range. Duplicate runs were made at each temperature difference. During the progress of the experiments, the enclosure-box was raised $21 / 2$ inches from the table top so that sufficient air circulation could be obtained. However, for the purpose of determining effect of air circulation, two other values (0 and $3 \mathrm{l} / 2 \mathrm{in)}$. of clearance between the lower edge of the enclosure-box and the table top were studied for the finned tube of $27 / 8$ inches fin diameter and $6 / 8$ inch fin spacing.
2. Square finned tube

Since the results of the square finned tubes were very similar to those of the round finned tubes with the same fin area, only one fin height and four fin spacings were studied. The fin-plates were made 2.548×2.548 inches in size; so the fin area was equal to that of the $27 / 8$ inches diameter round fins. The same fin spacing as those for the round finned tube were studied.

Study of chimney effect was made on the tube of $6 / 8$ inch fin spacing.
3. Temperature measurement on finned tubes

Average temperature of finned tubes was needed for calculating mean heat transfer coefficients. Since only
the temperature of one arbitrarily-chosen fin-plate was measured during the progress of the experiment, experimental data for evaluating the average temperature of the finned tube from that of the arbitrarily-chosen fin were needed. For this reason preliminary experiments for each finned tube were carried out before the main experiments were made. The purpose of carrying out these preliminary experiments was to obtain sufficient experimental data for plotting the calibration curves relating the average temperature of the finned tube to the temperature of the arbitrarily-chosen inn-plate. With the aid of these calibration curves, evaluation of the average temperature from the temperature of chosen fin was possible. Temperatures of fifteen fin-plates were measured for the average temperature determination of the $1 / 4$ inch-spacing tubes, temperatures of seven finplates were measured for the $3 / 8$ inch-spacing tubes; and temperatures of seven and four fin-plates were recorded respectively for the $1 / 2$ inch- and $6 / 8$ inch-spacing tubes. Temperatures of the middle points of the upper and lower portions of the fin-plate were taken for representing the average temperatures of these two portions. Therefore, only two thermocouples were needed for each plate. These two thermocouples were respectively soldered on the middle points of the upper and lower
portions of the fin-plate. It is seen in the main experimental data that it was a good approximation for taking the temperature of the middle point as the average of the temperature of the base, middle and tip of the fin-plate.
4. Thermocouple numbering system

Thermocouple numberings are presented in Fig (6). Three thermocouple junctions were soldered on the upper part of the fin-plate, and the other three were soldered on the lower part.
5. Bare copper tube

For the purpose of testing the reliability of the apparatus, a bare copper tube was also tested. Thermocouple numberings system of bare tube is also presented in Fig (7).

II. Experimental procedure

The procedure in operating the equipment and recording the data are listed as follows:

1. Set the voltage of the powerstats so that two heaters would have the same power input.
2. Closed all the doors and windows of the laboratory, in which the equipment was set up, so that the air inside the laboratory would

FIGURE 6 DIAGRAM OF EMF METERING SYSTEM

figure 7 diagram of emf metering system of bare tube
remain undisturbed.
3. Allow two hours for the experiment to reach steady state. Under the condition of steady state, amount of water vapor evaporated by the heaters was balanced by that condensed down from losing heat to the air through the finned tube.
4. After two hours, the rubber tube was connected to the water manometer. Constant reading on the manometer indicated the constant pressure inside the finned tube and so the arrival of steady state. Usually, the steady state could be maintained for 10 or 20 minutes.
5. Thermocouple readings were recorded. After the last thermocouple reading was taken, a check was made on the first thermocouple reading in order to assure the achieving of steady state.
6. Air temperature was recorded; before the thermocouple readings were taken, and after the thermocouple readings were taken.
7. Readings of the electric current of the two heaters were recorded.
8. Voltage readings of the heaters were recorded.

Chapter V

Calculation of Experimental Data And Estimation of Error
I. Calculation of experimental data

Since the main objective of this thesis was to evaluate the mean heat transfer coefficient for natural convection from finned tubes, an energy balance is required. It was mentioned in the preceding chapter that all the experimental data were recorded under the steady state. At steady state, the energy input should be equal to the energy output. The energy input was equal to the amount of power supplied to the immersion heaters, while the energy output was equal to the heat loss from the finned tube to the air by both natural convection and radiation. Hence, an energy balance could be established in the following manner:

$$
\begin{equation*}
q_{\text {input }}=q_{\text {conv }}+q_{\text {rad }} \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
& q_{\text {conv }}=\text { rate of heat loss by natural convection } \\
& q_{\text {rad }}=\text { rate of heat loss by radiation } \\
& q_{\text {input }}=\text { rate of energy input }
\end{aligned}
$$

In order to calculate $q_{c o n v}$ from the above, calculation of radiation loss was necessary by means of the following formula:

$$
\begin{equation*}
q_{n=1}=A_{n} F_{n 1} B\left(T_{n}^{4}-T_{1}^{4}\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
q_{n=1}= & \text { heat transfer rate by radiation between } \\
& \text { surfaces } 1 \text { and } n
\end{aligned}
$$

For calculating $\mathcal{F}_{n r}$, it was assumed that each section between two adjacent fin-plates might be represented by one of the configurations discussed in reference (16, p. 29), and which is presented in Fig (8) where A_{3} and A_{4} are the surfaces of the fin-plates, A_{2} is the cylinder surface, and A_{1} is a fictitious surface. All the surfaces were assumed to be gray bodies except surface A_{1}. Surface A_{1} was assumed to have the same emissivity as that of surrounding enclosure and the room walls. These were assumed to be black bodies. Thus surface A_{1} was assumed to have an emissivity of unity. Details for the calculation of $F_{n 1}$ are presented in Appendix (A). The over-all interchange factors of the square finned tubes were evaluated under the assumption that the configuration in Fig (8) might be applied to square finned tubes as well.

With the aid of radiation loss calculation heat transfer coefficients for natural convection can be calculated from the following equations:

$$
\begin{align*}
& q_{\text {conv }}=q_{\text {input }}-q_{\text {rad }}=K I E-\frac{A}{A_{2}+A_{3}+A_{4}} \sum_{n=2}^{4} A_{n} F_{n 1} B\left(T_{n}^{4}-T_{1}^{4}\right) \tag{15}\\
& h_{\text {a.m. }} A\left(T_{w}-T_{a}\right)=K I E-\frac{A}{A_{2}+A_{3}+A_{4}} \sum_{n=2}^{4} A_{n} F_{n 1} B\left(T_{n}^{4}-T_{1}^{4}\right) \tag{16}
\end{align*}
$$

$$
\begin{equation*}
h_{\text {a.m. }}=\frac{K I E-\frac{A}{A_{2}+A_{3}+A_{4}} \sum_{n=2}^{A} A_{n} F_{n 1} B\left(T_{n}^{4}-T_{1}^{4}\right)}{A\left(T_{w}-T_{4}\right)} \tag{17}
\end{equation*}
$$

The whole finned tube (primary and secondary surface) was assumed to have uniform temperature T_{w}, then

$$
\begin{equation*}
h_{a . m .}=\frac{K I E-\frac{A B\left(T_{w}^{4}-T_{a}^{4}\right)}{A_{2}+A_{3}+A_{4}} \sum_{n=2}^{4} A_{n} \ni_{n 1}}{A\left(T_{w}-T_{a}\right)} \tag{18}
\end{equation*}
$$

where T_{w} was the arithmetic mean temperature of the whole finned tube. As mentioned in Chapter IV, during the progress of the experiment only the temperature of one arbitrarily-chosen fin-plate was measured. Therefore, charts of calibration curves, in which the arithmetic average temperature of fins versus the temperature of the arbitrarily-chosen fin-plate where the temperature measurement was taken, was needed for evaluating T_{w}. These plots are presented in Figs (9) through (24). Maximum deviation of the data points from the curves is $\mathbf{+ 3 \%}$. However, it is observed that the maximum deviation of the data of the individual fins from the average is $\pm 6 \%$.

As to the temperature distribution across a single fin-plate, it was observed that, for the finned tubes of 3 3/8 inches in diameter, the temperature difference between the tip and base of the lower part of fin-plates was about 2.5° F when the average surface temperature of finned tube was $167^{\circ} \mathrm{F}$, i.e. 1.5% of the average fin
temperature. The temperature difference across the upper part of fin-plates was $2.5^{\circ} \mathrm{F}$ at the same average surface temperature, while the temperature difference between the middle points of upper and lower parts was $2.5^{\circ} \mathrm{F}$, i.e. both of them were also equal to 1.5% of the average fin temperature. Since lower temperature differences occurred at lower average surface temperatures, and lower temperature difference also occurred for smaller finplates, it is reasonable to assume that the iinned tube possesses a uniform temperature.

The arithmetic mean temperature T_{w} of the finned tube could be obtained from the temperature of the arbitrarily-chosen fin-plate by using the calibration curves mentioned above. From T_{w}, the arithmetic heat transfer coefficient $h_{a, m}$. was calculated. For evaluating T_{w} a conversion chart was needed to convert the millivolts of e.m.f. into degrees Farenheit. This conversion chart was made by calibrating the thermocouples against a National Bureau Standard thermometer which is presented in Fig (25).

Also the thermometer used in measuring the air temperature was calibrated against the above-mentioned standard thermometer and its calibration curve is presented in Fig (26).

Since the immersion heaters were the coil-type heaters, knowledge of how much power loss by selfinductance was necessary for evaluating the accurate power input. The following equation was used for calculating the self-inductance of the heaters:

$$
\begin{equation*}
H=\frac{r^{2} n^{2}}{9 r+10 L^{\prime}} \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
& L^{\prime}=\text { length of wire, inch } \\
& x=\text { radius of wire in the heaters, inch }
\end{aligned}
$$

In the present work,
$r \cong 1 / 8$ inch
$\mathrm{n} \cong 170$
$\mathrm{L} \cong 6$ inches
Hence,

$$
H=\frac{(1 / 8)^{2}(170)^{2}}{(9)(1 / 8)+(10)(6)} \cong 7 \mu H
$$

This was negligible compared to the total power input.
The total surface area of the finned tube was calculated from the following equation:

$$
A=2 N A_{f}+A_{c}+N M\left(P_{f}-P_{c}\right)
$$

A Nusselt number and a Rayleigh number (Ra) were calculated from the data obtained

$$
\mathrm{Nu}=\frac{h_{a \cdot m \cdot L}}{k}
$$

$$
\mathrm{Ra}=G_{r} P_{r}=\left(\frac{L^{3} \rho^{2} \beta g \theta}{\mu^{2}}\right)\left(\frac{c_{r} \mu}{k}\right)=\left(\frac{\rho^{2} \beta g c_{p}}{\mu k}\right)\left(L^{3}\right)(\theta)
$$

The quantity ($\frac{\rho^{2} \beta g C_{p}}{\mu k}$) which includes only air properties was given the symbol Y is plotted in Fig (27) on a function of temperature. Fig (27) was developed from the data on page 483 of reference (26). Thermal conductivity k in the Nusselt number was obtained from the plot in Fig (28) which was developed also from the thermal conductivity data of reference (26, p. 483).

L was any characteristic length of the finned tube. All the air-properties were taken at the film temperature because the film temperature has been shown to be an adequate reference temperature for gases as mentioned in Chapter II.

II. Estimation of experimental errors

The errors involved in the evaluation of mean heat transfer coefficients consist of the errors in reading the e.m.f. values of the various thermocouples, voltage and current values of the power supply, and the estimation of radiation loss.

The values of e.m.f. on the potentiometer were read to ± 0.002 which was equivalent to $\pm 0.07^{\circ}$ F from the conversion chart. However, there was also some amount of error involved in the preparing of conversion chart. The error in temperature measurement by thermocouple is, therefore, estimated to be $\pm 0.1^{0} \mathrm{~F}$. Besides, the maximum
error involved in averaging procedure for temperature was $\pm 3 \%$ as mentioned before.

The current was read to $\pm 0.01 \mathrm{amp}$, and the voltage was read to ± 0.2 volts. The air temperature was read to $\pm 0.01^{\circ} \mathrm{F}$.

The greatest radiation loss was provided by the finned tube with smallest fin diameter and largest fin spacing, i.e. the round finned tube of $23 / 8$ inches fin diameter and 6/8 inch fin spacing in the present work. By taking the emissivities of the fin-plates and copper tube as listed below, the error involved in the estimation of radiation loss is shown by the following calculation.

Since the possible values of ϵ_{3} and ϵ_{4} range from 0.7 to 0.57 , while those of ϵ_{2} range from 0.2 to 0.072 , by assuming $\epsilon_{3}=\epsilon_{4}=0.7$
$\epsilon_{2}=0.2$
it was obtained that

$$
\sum_{n=2}^{4} A_{n} F_{n 1}=0.254
$$

but the value of $\sum_{n=2}^{4} A_{n} \mathcal{F}_{n 1}$ used in this work was equal to 0.0208 as taking

$$
\begin{aligned}
& \epsilon_{3}=\epsilon_{4}=0.57 \\
& \epsilon_{2}=0.072
\end{aligned}
$$

The maximum possible error involved in the evaluation of

$$
\begin{aligned}
& \sum_{n=2}^{4} A_{n} J_{n 1} \text { is therefore } \\
& 0.0 .0254-0.0208=0.0048
\end{aligned}
$$

where $\epsilon_{2}, \epsilon_{3}$, and ϵ_{4} are respectively the emissivities of surfaces A_{2}, A_{3} and A_{4}. Details of the above calculations are presented in Appendix (A).

The range of error in the mean heat transfer coefficients caused by above errors is shown by the following calculation which was the run 1 of the experiment of round finned tube of $23 / 8$ inches fin diameter and 6/8 inch fin spacing:

$$
\begin{aligned}
& \mathrm{KIE}=(3.413)(2)(2.5 \pm 0.2)(0.68 \pm 0.01)=116.04 \pm 2.63 \\
& \mathrm{~T}_{\mathrm{w}}-\mathrm{T}_{\mathrm{a}}=153.4(1 \pm 0.03) \pm 0.1-(73.715 \pm 0.01)=79.685 \pm 4.712 \\
& \mathrm{~T}_{\mathrm{w}}^{4}-\mathrm{T}_{\mathrm{a}}^{4}=(604.321 \pm 6.791) \times 10^{8}
\end{aligned}
$$

Substituting the above terms into equation (17), gives

$$
\begin{aligned}
& h_{a . m .}=\frac{(116.04 \pm 2.63)-\frac{(0.981)(0.1713)}{0.0635}(0.0208+0.0048)(604.321 \pm 6.791)}{(0.981)(79.685 \pm 4.712)} \\
& =\frac{(116.04 \pm 2.63)-(33.238+7.679 \pm 0.373)}{78.171 \pm 4.622}
\end{aligned}
$$

$$
=\frac{82.802+7.679+3.003}{78.171 \pm 4.622}=1.059+0.0982 \pm 0.101
$$

The percentage error is

$$
\begin{aligned}
& +\frac{(0.1992)(100)}{1.059}=+18.8 \% \\
& -\frac{(0.101)(100)}{1.059}=-9.54 \%
\end{aligned}
$$

The above value of percentage error appears quite large,
because there is a large amount of error involved in the over-all interchange factor calculation. However, the error on the over-all interchange factor shown above has been estimated for the worst case. It is believed that there would be less amount of error involved in the present experiment.

Chapter VI

Analysis of Data

I. Bare tube data

The experimental results of the bare tube are presented in Fig (29) in which the Rayleigh number $\left(\frac{d^{3} \rho^{2} g \beta \theta}{\mu^{2}}\right)_{f}\left(\frac{c_{p} \mu}{k}\right)_{f}$ is plotted versus the Nusselt number $\left(\frac{h_{a . m . d}}{k}\right)_{f}$ on a logarithmic scale, where the subscript f indicates that all the fluid properties are taken at the film temperature. Evaluation of the arithmetic mean heat transfer coefficient, $\mathrm{ha}_{\mathrm{a} . \mathrm{m} .}$, is based on the arithmetic temperature of the upper and lower parts of the tube. At an average surface temperature of $200^{\circ} \mathrm{F}$, the difference in temperature between the upper part and lower part of the tube was 0.2° F. Smaller temperature differences would be obtained for smaller average surface temperatures. Hence, it was satisfactory to assume a uniform surface temperature over the tube. Also plotted is the curve recommended by McAdams for horizontal cylinders. By a least square analysis of the present data, the following empirical relationship was obtained with $+2 \%$ deviation of the data:

$$
\begin{equation*}
N u_{f}=0.558(\mathrm{GrPr})_{f}^{1 / 4} \tag{20}
\end{equation*}
$$

As compared with McAdams' equation $N u=0.53(\mathrm{GrPr})^{1 / 4}$, it is seen that the present data for the bare tube are
5.3\% higher than those of McAdams'. This may have resulted from the different length-diameter ratio of the tubes and the error involved in estimating the radiation loss in the present work. Since there is a smaller value of length-diameter ratio used in the present work, it is possible that the length of the tube may appear as an additional parameter and affect the heat transfer coefficient. Also estimation of radiation loss was based on the assumption that the emissivity of the shiny copper tube was equal to $\mathbf{0 . 0 7 2}$. A higher value of emissivity would provide better agreement with McAdams. Reasonably good agreement of the present results of the bare tube with McAdams' results of horizontal cylinder indicates the reliability of the experimental equipment.
II. Effect of the clearance between the lower edge of the enclosure-box and the table top It was the object of the study to obtain natural convection heat transfer coefficients for the tubes immersed in a large body of still air. Therefore, it was Iirst determined if the 40 by 40 inches open top enclosure around the apparatus affected the rate of heat transfer. It was of particular interest to determine if the clearance between the lower edge of the enclosure and table top affected air circulation, and therefore influenced the heat transfer coefficient. The round
finned tube of $27 / 8$ inches fin diameter and 6/8 inch fin spacing was employed to determine the effect of clearance. Experiments were conducted with three different values of clearance between the enclosure and the table top, i.e. $0,2.5$, and 3.5 inches. Results are presented in Fig (30) where the mean heat transfer coefficient $h_{a . m}$ is plotted versus temperature difference. All the data for the three clearances fall on a single line. Each group of data deviated from the line a minimum of 1.8% and a maximum of 18%. It was thought that the heat transfer coefficient obtained in the case of zero clearance might be different from that of the other two cases. However, it is shown in Fig (30) that this is not the case. The independence of heat transfer coefficient with the clearance may be explained by examining the flow pattern of the air circulation. It is thought that, when there is no clearance between the box and the table top, the flow pattern of air circulation may be represented by the sketch in Fig (31). The warm air moved up in the central portion of the cross section of the box, while the cold fresh air is sucked in from the sides. This type of flow pattern keeps the air as well circulated as in the case with a clearance between the box and the table top and hence gave the same value of heat transfer coefficient. All succeeding experiments were made with
a clearance of 2.5 inches.
III. Analysis of heat transfer data of finned tubes The heat transfer data of all the finned tubes, including that for the two sizes of chimneys, are presented in Figs (32) through (35) in which the Rayleigh number $\left(\frac{d e^{3} \rho^{2} g \beta \theta}{\mu^{2}}\right)_{f}\left(\frac{c_{p} \mu}{k}\right)_{f}$ is plotted versus Nusselt number $\left(\frac{h_{a . m . d e}}{k}\right)_{f}$. The equivalent diameter d_{e} is the arithmetic average of the inn diameter and tube diameter, and the temperature difference is the arithmetic average of the temperature difference between different parts of the finned tube and the air. Each curve is for a constant fin spacing.

The present correlation may be applied to bare tube as well, because in the case of bare tube, fin height is zero. Therefore according to $d_{e}=\frac{d+d_{p}}{2}$, it is adequate to use tube diameter to replace the equivalent diameter in the dimensionless quantities and plot the data of bare tubes as well. In the case of single vertical plates d_{e} reduces to $\frac{d_{f}}{2}$, because d diminishes to zero. The two dimensionless quantities, then reduce to $\left(\frac{h_{\text {a.m.de }}}{2 k}\right)_{f}$ and $\left(\frac{d_{f}^{3} \rho^{2} g \beta \theta}{8 \mu^{2}}\right)_{f}\left(\frac{c_{p} \mu}{k}\right)_{f}$, and they can be plotted in Figs (32) through (35) by transformation of axis. With the aid of the plots of horizontal tubes, a comparison of the results of finned tubes with those of
simpler configurations is possible. For square finned tubes, same value of d_{e} is used as that for the 2 7/8 inches round finned tubes.

The following empirical equations result from a least square analysis of the experimental data:
(a) round finned tubes

2 3/8 inches fin diameter:
$1 / 4$ inch fin spacing $N u_{f}=0.00854(\mathrm{GrPr})_{f}^{0.543}$ (21)
$3 / 8$ inch fin spacing $\mathrm{Nu}_{\mathrm{f}}=0.0224(\mathrm{GrPr})_{\mathrm{f}}^{0.47}$
$1 / 2$ inch fin spacing $N u_{f}=0.0585$ (GrPr) $_{\mathrm{f}} \mathbf{0} .402$
6/8 inch fin spacing $\mathrm{Nu}_{\mathrm{f}}=0.186(\mathrm{GrPr})_{\mathrm{f}}^{0.312}$
2 7/8 inches fin diameter:
$1 / 4$ inch fin spacing $N u_{\mathbf{f}}=0.0132(\mathrm{GrPr})_{\mathbf{f}}^{0.513}$
3/8 inch fin spacing $N u_{f}=0.18\left(G r P_{r}\right)_{1}^{0.447}$
$1 / 2$ inch fin spacing $N u_{f}=0.119(G r P r){ }_{\mathbf{f}}^{0.356}$
6/8 inch fin spacing $\mathrm{Nu}_{\mathrm{f}}=0.304(\mathrm{GrPr})_{\mathrm{f}}^{0.278}$
3 3/8 inches fin diameter:
$1 / 4$ inch fin spacing $N u_{f}=0.01(G r P r){ }_{f}^{0.521}$
$3 / 8$ inch fin spacing $\mathrm{Nu}_{\mathrm{f}}=0.0636(\mathrm{GrPr})_{\mathrm{f}}^{0.396}$
$1 / 2$ inch fin spacing $\mathrm{Nu}_{\mathbf{f}}=\mathbf{0 . 1 5 4 (G r P _ { r }) _ { \mathbf { f } } ^ { 0 } 3 3 8}$
6/8 inch fin spacing $\quad \mathrm{Nu}_{\mathrm{f}}=0.134(\mathrm{GrPr})_{\mathrm{f}}^{0.340}$
(b) square finned tubes
$1 / 4$ inch fin spacing $\mathrm{Nu}_{\mathrm{f}}=0.015(\mathrm{GrPr})_{\mathrm{f}}^{0.502}$
$3 / 8$ inch $11 n$ spacing $\operatorname{Nu}_{\mathrm{f}}=0.131(\mathrm{GrPr})_{\mathrm{P}}^{0.345}$

$$
\begin{aligned}
& 1 / 2 \text { inch } \mathrm{fin} \text { spacing } \mathrm{Nu}_{\mathrm{f}}=0.049(\mathrm{GrPr})_{\mathrm{i}}^{0.428} \\
& 6 / 8 \text { inch fin spacing } \mathrm{Nu}_{\mathrm{f}}=0.131(\mathrm{GrPr})_{\mathrm{f}}^{0.345} \\
& \text { 6/8 inch fin spacing } \\
& \text { with } 2.548 \text { inch } \\
& \text { 6/8 inch fin spacing } \\
& \text { with } 3.78 \text { inch } \\
& \text { chimney }
\end{aligned}
$$

It is seen that the characteristic slopes in the above equations decrease with the in spacing, but appear to be nearly independent of the fin diameter and the addition of chimneys although there are some individual exceptions. It is believed that the dependence of characteristic slope on fin spacing is brought about by the overlapping of boundary layers. When the fin spacing becomes smaller, not only the boundary layers of the two adjacent fin-plates overlap with the boundary layer of the cylinder, but also they overlap with each other. This causes the values of characteristic slope different from that of horizontal cylinders or vertical single plates, i.e. slope $=1 / 4$. When fin spacing becomes larger, i.e. more characteristics of horizontal cylinder or vertical plate appears, this results in a slope closer to $1 / 4$. For small fin spacings, more resistance is offered to natural convection flow which could account for the smaller $(N u)_{f}$ for finned tubes with smaller fin spacing.

In addition, turbulence caused by the irregular geometrical shape could also influence the slope in a way not yet understood for this system. However, the highest Nusselt number is obtained with the finned tubes of $1 / 2$ inch fin spacing, hence there is apparentiy an optimum fin spacing existing which gives the highest heat transfer coefficient. This will be discussed in the next section.

It is noted that the data for the chimneys lie higher than those of the other tubes. Data of the finned tube installed with the taller chimney lie above those of the tube with shorter chimney. This is expected because the chimneys confine the air and provide greater buoyant force, and thus the higher heat transfer rate. However, since only two different dimensions of chimney have been investigated, a quantitative conclusion of the chimney effect on heat transfer rate is not possible.

In general, data of horizontal bare tubes obtained in McAdams' correlation and obtained in the present work lie above those of finned tubes for Grashof numbers smaller than a certain value dependent upon the fin spacing. The reason for the relatively higher heat transfer coefficient of bare tubes is probably due to the fact that the boundary layer flow is not interferred with; so more free flow is allowed and a higher heat transfer coefficient is obtained. However, the data of horizontal
bare tubes are in a region of laminar flow, while those of finned tubes apparently are in a region of turbulent flow. Details of the different regions in which these data lie are presented in section V.

The correlation presented in Figs (32) through (35) is satisfactory for each individual finned tubes but further analysis of the data is needed in order to obtain a more general correlation involving all the parameters of the system.
IV. Analysis of heat transfer coefficients

Since air is the only ambient fluid used in the present work, one may assume that, for constant values of fin diameter and fin spacing, heat transfer coefficient varies solely with the temperature difference. Plots of mean heat transfer coefficient versus temperature difference are shown in Figs (36) through (39). Apparently the largest fin spacing, $6 / 8$ inch, in the present work, does not give the highest heat transfer coefficient. There is an intermediate value of fin spacing which gives the highest heat transfer coefficient. By interpolating the data in Figs (36) through (39), sufficient information is obtained to show the variation of $h_{a . m}$. with fin spacing at constant diameter. This is presented in Figs (40) through (43). It is seen that maximum heat transfer
coefficient lies generally on the fin spacing between 1/2 inch and 6/8 inch except some curves of the $23 / 8$ inches fin-diameter finned tubes. The existing of an optimum fin spacing may be explained by the following qualitative sketch:

Line A indicates the influence of fin spacing on $h_{\text {a.m. }}$. by the chimney effect caused by two adjacent fins; line B indicates the influence of the interference of the boundary layer; and line C represents the total effect of A and B. It is assumed that $f i n$ spacing may affect the mean heat transfer coefficient by two means, i.e. the chimney effect of two adjacent fins, and the interference of boundary layers. As seen in the above sketch, $h_{\text {a.m. increases }}$ with $1 / \mathrm{b}$ by chimney effect, but decreases with $1 / b$ by interference of $f i n$ spacing. As a result of these two effects, line C shows a maximum in $h_{\text {a.m. }}$. at a certain value of $b, i . e$. the optimum fin spacing. However, the data obtained are not sufficient to give an accurate prediction on the optimum fin spacing. Approximately, $1 / 2$ inch fin spacing is recommended for
the tubes studied in this work.
The optimum heat transfer coefficient, however, does not necessarily correspond to the highest heat transfer rate per unit of length. It is observed in Fig (44), in which $h_{\text {a.m. }}$ A is plotted versus fin spacing, that the total heat dissipation decreases with fin spacing even though there is a maximum heat transfer coefficient. Hence, for the purpose of obtaining higher heat dissipation, finned tubes with small fin spacing are preferred. Although data are not obtained in the region of fin spacing below $1 / 4$ inch, the broken lines shown in Fig (44) indicate a possible optimum fin spacing for maximum value of $h_{a . m .} A^{A}$ would be preferred in actual operation.

Results of the chimney effect are also plotted in Fig (45). The chimney has the effect of giving higher heat transfer coefficients. The results indicate a slight increase in heat transfer coefficient with the height of chimney. Approximately, two per cent increase in heat transfer coefficient was obtained with the addition of $2.548-i n$. chimney, and three per cent increase in heat transfer coefficient was obtained with the addition of 3.78-in. chimney.
plots of mean heat transfer coefficient versus fin diameter are made with the aid of Figs (36) through (39). These are shown in Figs (46) through (47) in which fin
spacing is kept constant. Results show that the value of heat transfer coefficient is somewhat higher at 2 7/8 inches fin diameter than that at 3 3/8 inches fin diameter. This is expected because, referring to the case of a single vertical plate, heat transfer coefficient decreases with the plate height, measured from the lower edge, until a certain value of height. A smaller chimney effect also prevails with the smaller fin diameter. There is an optimum fin diameter which gives the highest heat transfer coefficient. It is seen that, in the present work, this optimum fin diameter lies somewhere near the value of $27 / 8$ inches. However, for the purpose of obtaining higher heat dissipation, finned tubes with large fin diameter are preferred.
V. Correlation and comparison of heat transfer data Heat transfer data are correlated by using the quantities $\left(\frac{d^{3} p^{2} g \beta \theta}{\mu^{2}}\right)_{f}\left(\frac{c_{p} \mu}{k}\right)_{f}\left(\frac{b}{d}\right)\left(\frac{d f}{d}\right)$ and $\left(\frac{h_{a \cdot m \cdot d e}}{k}\right)_{f}$, where the two length ratios account for the geometry of the system. These are plotted in Fig (48). By a least square analysis, the data of the round finned tubes can be represented by the following equation with a deviation of $\pm \mathbf{7 . 5 \%}$:

$$
\begin{equation*}
N u_{f}=(0.184)\left[(G r P r)_{f}\left(\frac{b}{d}\right)\left(\frac{d_{f}}{d}\right)\right] 0.321 \tag{39}
\end{equation*}
$$

where

$$
\begin{aligned}
& N_{u f}=\left(\frac{h_{0 \cdot m} d e}{k}\right)_{f} \\
& \left(G_{r} P_{r}\right)_{f}=\left(\frac{d^{3} e^{2} g \beta \theta}{\mu^{2}}\right)_{f}\left(\frac{c_{p} \mu}{k}\right)_{f}
\end{aligned}
$$

It is observed that the data for finned tubes of $6 / 8$ inch fin spacing lie lower than those of the other three fin spacings. This is expected because, for $6 / 8$ inch spacing finned tubes, values of $h_{\text {a.m. }}$ are only little higher, but values of b are much higher than those of the other fin spacings. In other words, the quantity (GrPr) $f_{f}\left(\frac{b}{d}\right)\left(\frac{d_{f}}{d}\right)$ increases faster than the quantity $(N u)_{f}$ for $6 / 8$ inch spacing finned tubes, and this causes the data of $6 / 8$ inch fin spacing lying lower.

Another simpler type of correlation is obtained in which quantity (GrPr) $f_{f}\left(\frac{b}{d}\right)$ is plotted versus (Au) ${ }_{f}$ on a logarithnic scale, where

$$
\begin{aligned}
& (G r)_{f}=\left(\frac{d^{3} \rho^{2} g \beta \theta}{\mu^{2}}\right)_{f} \\
& (N u)_{f}=\left(\frac{h_{a} d e}{k}\right)_{f}
\end{aligned}
$$

For round finned tubes results are presented in Fig (49) in which all the experimental data fall around a straight line, line A, which can be represented by the following equation:

$$
\begin{equation*}
(\mathrm{Nu})_{f}=0.201\left(\operatorname{GrPr} \frac{b}{d}\right)_{f}^{1 / 3} \tag{40}
\end{equation*}
$$

The average deviation of the data is $+7.5 \%$. As in Fig (18), the data of the finned tubes of $6 / 8$ inch fin diameter lie lower than those of the others. In this correlation, scattering of data is somewhat identical to that in the previous correlation, however, the equation
obtained in this correlation is simpler, and there is no duplication in using the fin diameter d_{f}. Therefore, this correlation is preferred. However, for fin spacing larger than 6/8 inch more deviation of data will likely be obtained.

Line B in Fig (49) is replotted from the results obtained by Siegel and Bryan (37). In their experiment, a Iinned tube with the following dimensions was used: outside diameter of copper tube $=0.638$ inch ifn spacing $=0.32$ inch
fin thickness $=0.0095$ inch
fin plate $=\mathbf{2 x 2}$ inches square, aluminum
Air was used as the ambient fluid and the following equation was obtained which is similar to that of vertical plates:

$$
h_{m}=0.29\left(\frac{\Delta t}{L}\right)^{1 / 4}
$$

where, h_{m} is the mean heat transfer coefficient, and L is the width of fin plates. It is seen that line B lies above line A and has a slope of $1 / 4$ as compared to the slope of $1 / 3$ obtained in the present correlation. The difference in slope and in intercept of line A and line B may be attributed to the following two factors:

1. The finned tube used by Siegel and Bryan is of smaller fin diameter and tube diameter. According to the results obtained for horizontal cylinders and vertical
plates as mentioned in Chapter II, the heat transfer coefficient is inveraely proportional to the plate height and cylinder diameter respectively for the cases of vertical plates and horizontal cylinders. Therefore, higher heat transfer coefficient are expected in Siegel and Bryan's experiment.
2. The range of temperature difference used in their experiment is approximately from $10^{\circ} \mathrm{F}$ to $30^{\circ} \mathrm{F}$. The corresponding values of $\log \left(G_{r} P_{r} \frac{b}{d}\right)$ are 3.992 and 4.431. It can be seen in Fig (49) that their experimental data lie in the region of lower $(G r P r)_{\mathcal{P}}\left(\frac{b}{d}\right)$ values than those covered in the present work. There is good reason to believe that their data lie in the laminar region while the present data lie in the turbulent region and transition region. This accounts for the value of slope obtained in the present correlation, i.e. slope $=1 / 3$.

In general, it appears that Siegel and Bryan's results when extrapolated will be reasonably close to the present results.

Using the same type of correlation, results of square finned tubes are presented in Fig (50). A least square analysis of the data gives the following equation:

$$
\begin{equation*}
(\mathrm{Nu})_{\mathcal{L}}=0.217\left[(\mathrm{GrPr})_{\mathbb{L}}\left(\frac{b}{d}\right)\right] 0.333 \tag{41}
\end{equation*}
$$

Again the data for the 6/8 inch square fin are lower so the correlation applies best to spacings less than this.

Also plotted is the equation for $27 / 8$ inches round finned tube, which has the same fin-area as that of the square finned tubes, so that a direct comparison between the equal-area round and square finned tubes is possible. The empirical equation for $27 / 8$ inches round finned tube is

$$
\begin{equation*}
\left.(N u)_{\perp}=0.212\left[(\mathrm{GrPr})_{\perp}\left(\frac{b}{d}\right)\right]\right]^{0.333} \tag{42}
\end{equation*}
$$

Equations (41) and (42), are nearly equivalent so it is concluded that similar results will be obtained for other equal-area round and square finned tubes, at least in the range of dimensions studied.

The effect of chimneys on the 6/8 inch square finned tube is presented in Tig (51) in which the same dimensionless quantities are used as in Fig (49). The least analyais of the data gave exponents between 0.28 and 0.3 , so an average of 0.3 was used and the intercepts adjusted accordingly giving the following:
2.548 inches chimney, $(N u)_{f}=0.317\left[\left(G r P_{r}\right)_{f}\left(\frac{b}{d}\right)\right] 0.3$
3.78 inches chimney, $(N u)_{f}=0.378\left[(G r P r)_{f}\left(\frac{b}{d}\right)\right] 0.3$

An increase in heat transfer rate with chimney height is again observed. It would be possible to obtain a correlation with present data to include chimney height. However, this would be based only on the two heights studied and further work would be needed to obtain a more reliable correlation.

The comparisons of the results obtained in the present work with those obtained by other investigators on other geometric configurations are shown respectively in Fig (52) for round finned tubes and in Fig (53) for square finned tubes. In these figures quantity $\left(\operatorname{Gr}_{b} P_{r}\right)_{f}\left(\frac{b+d}{d_{f}+d}\right)$ is plotted versus $\left({ }^{\left(N u_{b}\right.}\right)_{f}$ on a logarithmic scale, where

$$
\begin{aligned}
& \left(G r_{b}\right)_{f}=\left[\frac{(b+d)^{3} \rho^{2} g \beta \theta}{\mu^{2}}\right]_{f} \\
& \left(N u_{b}\right)_{f}=\left[\frac{h a \cdot m \cdot(b+d)}{k}\right]_{f}
\end{aligned}
$$

A least square analysis of the experimental data results in the following equations:
for round finned tubes,

$$
\begin{equation*}
\left(N u_{b}\right)_{f}=0.113 \quad\left(G r_{b} \mathrm{Pr}\right)\left(\frac{b+d}{d_{\mathrm{f}}+d}\right) 0.375 \tag{45}
\end{equation*}
$$

for round finned tubes with $27 / 8$ inches fin diameter only,

$$
\begin{equation*}
\left(N u_{b}\right)_{f}=0.12\left[\left(G r_{b} P r\right)\left(\frac{b+d}{d_{f}+d}\right)\right] 0.375 \tag{46}
\end{equation*}
$$

for square finned tubes,

$$
\begin{equation*}
\left(N u_{b}\right)_{f}=0.118\left[\left(G r_{b} \operatorname{Pr}\right)\left(\frac{b+d}{s+d}\right)\right] 0.375 \tag{47}
\end{equation*}
$$

for $6 / 8$ inch square finned tube with 2.548 inches chimney,

$$
\begin{equation*}
\left(N u_{b}\right)_{f}=0.252\left[\left(G r_{b} P r\right)_{f}\left(\frac{b+d}{G+d}\right)\right] 0.32 \tag{48}
\end{equation*}
$$

for $6 / 8$ inch square finned tube with 3.78 inches chimney,

$$
\begin{equation*}
\left(N u_{b}\right)_{f}=0.394\left[\left(\mathrm{Gr}_{b} \mathrm{Pr}\right)_{f}\left(\frac{b+d}{s+d}\right)\right] 0.29 \tag{49}
\end{equation*}
$$

where, $s=$ width of the square fin-plate.
It is seen from the above equations that again identical results are obtained for square finned tubes and the round finned tubes of $27 / 8$ inches fin diameter. Average deviation of the data from equation (45) is $\pm \mathbf{1 0 \%}$, while the deviation from equation (47) is $\pm 7 \%$. Elenbaas' theoretical and experimental equations for vertical parallel plates are also plotted. For the finned tubes as d becomes zero the quantities used in the present correlation become

$$
\begin{aligned}
N u_{b} & =\frac{\mathbf{h b}}{\mathbf{k}} \\
G r_{b} & =\frac{b^{3} \rho^{2} g \beta \theta}{\mu^{2}}
\end{aligned}
$$

These are the exact dimensionless groups used by Elenbaas in his correlation for parallel plates. Hence, the quantities used in the present correlation for finned tubes are equivalent to the quantities used by Elenbaas in his correlation for parallel plates as the diameter approaches zero.

Also McAdams' equation for horizontal cylinders is plotted. For bare tube b diminshes to zero and d_{f} reduces to d. This causes quantity $\frac{h(b+d)}{k}$ to become $\frac{h d}{k}$, and
quantity
$\left[\frac{(b+d)^{3} \rho^{2} g \beta \theta}{\mu^{2}}\right]\left(\frac{c_{p} \mu}{k}\right)\left(\frac{b+d}{d_{f}+d}\right) \quad$ to become to $\left(\frac{d^{3} \rho^{2} g \beta \theta}{\mu^{2}}\right)\left(\frac{c_{p} \mu}{k}\right)\left(\frac{1}{2}\right)$. Hence, McAdams' equation can be plotted in Figs (52) and (53) by transformation of axis.

It is seen that Elenbaas' and McAdams' data lie above those of the present work. Their curves also have the smaller slope, i.e. 1/4. In reference (13), Elenbaas' curves show two different slopes at different values of $(G r P r)_{f}\left(\frac{b}{d_{f}}\right)$. For $(G r P r) f_{f}\left(\frac{b}{d_{f}}\right)<50$ the slope of his curves is equal to one; for $\left(G r P_{r}\right)_{f}\left(\frac{b}{d_{f}}\right)>50$ the slope is equal to $1 / 4$. However, $(G r \operatorname{Pr})_{f}\left(\frac{b}{d_{f}}\right)=10^{5}$ is the upper limit of his experimental data. It is believed that Elenbaas' data are in the conduction and laminar convection region. For the values of $(\mathbf{G r P r})_{f}\left(\frac{b}{d_{f}}\right)<50$, his experimental data are undoubtedly in the region where heat conduction dominates. In the case of parallel plates, the transition point from laminar heat flow to turbulent heat flow is doubtessly at a value of $(\operatorname{GrPr})_{f}\left(\frac{b}{d_{f}}\right)>10^{5}$ from results obtained with single vertical plates and vertical enclosed air spaces. Therefore, his data is in the laminar convection region when $(\mathrm{GrPr})_{f} \mathrm{~b} / \mathrm{d}_{\mathrm{f}}>50$.

For horizontal cylinders, the laminar region extends from $(\mathrm{GrPr})_{f}=10^{4}$ to $(\mathrm{GrPr})_{f}=10^{8}$. Therefore, in Figs (52) and (53) McAdams' data are also in the laminar region.

The present results would indicate that flow was turbulent probably because of the complicated geometrical shape of the finned tube. This could shift the upper limit of laminar flow to a lower value of (GrPr) $f_{f}\left(\frac{b+d}{d_{f}+d}\right)$ and account for the different slope obtained. The present data, however, are reasonably close to those obtained by Elenbaas considering the different geometrical systems studied in each case.

Chapter VII

Conclusion

The following conclusions are drawn for this investigation.
I. Results for the horizontal bare tube The following empirical equation was obtained:

$$
\begin{equation*}
\left(\frac{h a . m . d}{k}\right)_{f}=0.558\left[\left(\frac{d e^{3} \rho^{2} g \beta \theta}{\mu^{2}}\right)\left(\frac{c_{p} \mu}{k}\right)_{f}\right]^{1 / 4} \tag{20}
\end{equation*}
$$

where, the subscript f indicates that all the fluid properties are taken at the film temperature, i.e. arithmetic average of the surface temperature and air temperature. This equation gives coefficients which are 5.3\% higher than those predicted by the relation recommended by McAdams. This may be due to the relatively smaller length-diameter ratio used in the present experiment and to errors involved in the estimation of radiation losses, although it is also possible that the correlation of McAdams gives low values.
II. Effect of the clearance between the lower edge of the enclosure-box and table top

Experiments at clearances of 0, 2.5 and 3.5 inches between the lower edge of the enclosure and table top were conducted on the round finned tube of $27 / 8$ inches fin diameter and 6/8 inch fin spacing. Similar results
were obtained for all three cases. The independence of heat transfer coefficients with the clearance values can be explained by the flow pattern of air circulation. When the bottom is closed, warm air moves up in the central portion while cold air is sucked in from the sides of the enclosure-box. This provides as good air circulation as in the cases of 2.5 and 3.5 inches clearance when the cold air comes in through the clearance area.
III. Analysis of heat transfer data

The quantity $\left(\frac{d^{3} f^{2} g \beta \theta}{\mu^{2}}\right)_{f}\left(\frac{c_{p} \mu}{k}\right)_{f}$ was plotted versus $\left(\frac{\text { ha.m. } d e}{k}\right)_{f}$ with fin spacing as the parameter. Where the equivalent diameter d_{e} is the arithmetic average of the tube diameter and fin diameter. For square finned tubes, the same value of d_{e} as that of the $27 / 8$ inches round finned tubes was used. A.family of straight lines were obtained. It was found that their characteristic slopes decreased with fin spacing, but appears to be nearly independent of fin diameter and chimney baffles. On the contrary, their intercepts increased with fin spacing.

The results for finned tubes were compared with those for horizontal cylinders, and higher coefficients are observed on the latter shape.

Higher heat transfer coefficients were obtained on
the finned tubes installed with chimney baffles.
IV. Analysis of heat transfer coefficients With the aid of the plots of $h_{a . m}$. versus b, it is found that there is an optimum in spacing approximately between the $1 / 2$ inch and $6 / 8$ inch fin spacings which gives the maximum heat transfer coefficient. The reason for the optimum fin spacing is believed to be due to the combined influence of chimney effect caused by the adjacent fin-plates and overlapping of boundary of the boundary layers. When fin spacing becomes small, interference of the boundary layers decreases the heat transfer rate. When fin spacing becomes larger than the optimum value, the chimney effect caused by the adjacent fin-plates decreases, and so a lower heat transfer rate is obtained.

In addition, there is also an optimum fin diameter. Lower heat transfer coefficients are obtained for finned tubes with large fin diameters, because heat transfer coefficient decreases with fin diameter as in the case of single vertical plates. Since smaller fin-plates possess less chimney effect, lower heat transfer coefficients are also obtained at an fin diameter smaller than the optimum value. The approximate value of the optimum fin diameter is found to be around $27 / 8$ inches.

From a plot of $h_{\text {a.m. }}$ A versus b, Fig (43), it is observed that, in the present work, the total heat dissipation per unit length of finned tube per degree of temperature difference decreases with fin spacing, even though there is an optimum fin spacing existing which gives the maximum heat transfer coefficients. The optimum spacing for maximum $h_{a . m .}{ }^{\text {A may }}$ be estimated from Fig (43). It is believed that same results will be obtained with the fin diameter, i.e. total heat dissipation increases with fin diameter.
V. General correlation of heat transfer data The experimental data were correlated by the following empirical equation with an average deviation of $\pm 7.5 \%$:

$$
\begin{equation*}
\left(\frac{h_{a \cdot m \cdot d e}}{k}\right)_{f}=0.201\left[\left(\frac{d e^{3} \rho^{2} g \beta \theta}{\mu^{2}}\right)_{f}\left(\frac{c_{p} \mu}{k}\right)_{f}\left(\frac{b}{d}\right)\right]^{1 / 3} \tag{40}
\end{equation*}
$$

where, the slope $1 / 3$ indicates that the present data lie in the turbulent region. Good agreement of the present data with that of Siegel and Bryan's extrapolated results is obtained. However, the experimental data of these two workers fall in the laminar region, because of the lower values of temperature difference they used.

Another form of correlation was also obtained with the same deviation of experimental data:

$$
\begin{equation*}
\left(\frac{h_{0 . m .} d e}{k}\right)_{f}=(0.184)\left[\left(\frac{d^{3} \rho^{2} g \beta \theta}{\mu^{2}}\right)_{f}\left(\frac{c_{\rho} \mu}{k}\right)_{f}\left(\frac{b}{d}\right)\left(\frac{d_{f}}{d}\right)\right]^{0.321} \tag{39}
\end{equation*}
$$

Equation (40) is recommended because of its simpler form. Results of data from the square finned tubes resulted a similar empirical equation as that of the $27 / 8$ inches round finned tubes which has the same fin-area as that of square finned tubes. Hence, it is concluded that similar results will be obtained on round finned tubes and square finned tubes if they have the same surface area, at least within the dimensions studied in the present investigation.

Third type of correlation was carried out for the purpose of comparing the results of finned tubes with those of horizontal cylinders and parallel plates, in which the quantity $\left[\frac{(b+d)^{3} \rho^{2} g \beta \theta}{\mu^{2}}\right]_{f}\left(\frac{c_{p} \mu}{k}\right)_{f}\left(\frac{b+d}{d f+d}\right)$ is plotted versus the $\left[\frac{h_{a \cdot m .(b+d)}}{k}\right]_{f}$. By use of this correlation, it is possible to plot the present data on finned tubes, Elenbaas' parallel plates data, and McAdams' horizontal cylinder correlation for direct comparison. Elenbaas and McAdams obtained a different slope value as compared to that of the present work. This is expected because their data are in the laminar natural convection and conduction regions while the present data are in the turbulent region. It is believed that in the present experiment the turbulence was caused by the base tube rather than the fin-plates because the height of finplates is not sufficient to produce turbulence. Based
on this, the conclusion is drawn that, geometrically, the finned tube is a combination of parallel plates and horizontal cylinder. However, transition to turbulent natural convection at a lower value of $\left(G r P_{r}\right)_{f}\left(\frac{b+d}{d_{f}+d}\right)$ occurs because of the disturbing effect of the base tube.

Chapter VIII

Recommendations

This thesis describes one of the first investigations of the effect of f in spacing and fin diameter on the heat transfer by natural convection from finned tubes. This work has indicated a need for further investigations as follows:
I. The main objective of this work was to obtain a quantitative relationship between the mean heat transfer coefficients and different dimensions of finned tubes. It is believed that the base tube caused turbulence in the flow. Since higher heat transfer coefficients can be obtained for turbulent flow, it would be useful to determine the value of $(G r P r)_{f}\left(\frac{b}{d}\right)$, at which turbulence starts. For this, it is proposed that different tube diameter should be studied so that the value of an optimum base tube diameter would also be obtained.
II. It would be desirable to find an optimum combination of fin diameter, fin spacing, and base tube diameter, which would give the highest heat transfer coefficient.
III. In order to eliminate the errors involved in estimation of radiation loss, it is desirable to have the finned tubes plated with shiny metal, such as nickel, so
that the emissivity of finned tubes will be reduced to a lower value.
IV. Since the addition of chimney baffles is a satisfactory way of increasing heat transfer coefficient, more detailed study on the chimney effect is desired.

Chapter IX

Nomenclature

A Area of a surface, square feet; A, total surface area of finned tube; A_{f}, area of the fin-plate; A_{c}, area of the tube; A_{n}, area of surface n.
B Stefan-Boltzmann constant, $0.171 \times 10^{-8} \mathrm{Btu} /(\mathrm{sq} \mathrm{ft})$ (hr) (deg R) ${ }^{4}$.
b Fin spacing or plate spacing, feet.
C_{p} Heat capacity, Btu/(1b)(deg. F).
d Diameter of tube, feet; d_{f}, fin diameter.
E Flectric voltage, volt.
\mathbf{f}_{x} Negative of the body force in X direction, $\mathrm{lbs} /(\mathrm{sec})^{2}$.
g_{x} Body force in X direction, $\mathrm{lbs} /(\mathrm{sec})^{2}$.
Gr Grashof number $=\frac{L^{3} \rho^{2} g_{\beta \theta}}{\mu^{2}}$ Grashof number; $\mathrm{Gr}_{\mathrm{L}}^{*}$ modified local Grashof number.
h Heat transfer coefficient by natural convection, Btu/ (hr) (sq ft) (deg.F), $h_{a_{.}} m_{.}$, arithmetic mean heat transfer coefficient.

H Self-inductance, microhenry.
I Electric current, amp.
K Conversion constant $=3.413 \mathrm{Btu} /$ watt-hr.
$k \quad$ Thermal conductivity, Btu/(hr) (sq ft)(deg. F)/ft.
L Characteristic length, feet.
M Thickness of fin-plate, feet.
1 Number of fin-plate on the tube.
Mu Nusselt number $=$ hd/k, dimensionless.
n Winding number of the heating wire.
$P \quad$ Perimeter of a surface, square feet; P_{f}, perimeter of fin-plate; P_{e}, perimeter of the tube.
Pr Prandtl number $=\frac{C_{p} \mu}{k}$, dimensionless.
q Total heat transferred, Btu.
r Radius of the cylinder, feet.
T Temperature, deg. $\mathbf{R}^{\prime} \mathrm{T}_{\mathrm{g}}$, temperature of the solid surface or the finned tube; T_{a}, temperature of the ambient fluid; T_{n}, temperature of the surface n; T_{f}, film temperature $=\frac{T_{s}+T_{a}}{2} ; T_{\text {P }}$ reference temp erature; T_{w}, temperature of the finned tube.
$\mathrm{T}_{\mathrm{e}} \quad \Theta / \mathrm{T}_{\mathrm{a}}$, dimensionless.
U Velocity, $\mathbf{I t} / \boldsymbol{s e c} ; \mathbf{U}_{1}$, an arbitrary function with the dimension of velocity; U, velocity in X direction.

V Velocity in Y direction, ft/sec.
X Length, feet.
$\beta \quad$ Volumetric expansion coefficient, reciprocal degrees Fahrenheit.
$\beta_{n} \quad$ Reflectivity of surface $n=1-\epsilon_{n}$, dimensionless.
ϵ_{n} Emissivity of surface n, dimensionless.

- Temperature difference between the solid surface and the ambient fluid, deg. $F ; \boldsymbol{\theta}_{\mathbf{g}}$, temperature difference at the surface wall.
$\mu \quad$ Viscosity, $1 \mathrm{~b} /(\mathrm{sq} \mathrm{ft})(\mathrm{hr}) ; \mu_{s}$, viscosity at the wall.
ρ Density, $\mathbf{l b} / \mathrm{cu}$ ft.
δ Thickness of the boundary layer, feet.
\uparrow Dimensionless time.

Chapter X

Bibliography

1. Bevans, J. T. Vertical free convection from isothermal surface. Industrial and Engineering Chemistry 49 (1):114-119. 1957.
2. Biermann, Arnold E. and Hermann H. Ellerbrock, Jr. The design of fins for air-cooled cylinders. Washington, 1941. 24 p. (National Advisory Committee for Aeronautics. Report No. 726)
3. Biermann, A. E. and B. Pinkel. Heat transfer from finned metal cylinders in an air stream. Washington, 1934. 19 p. (National Advisory Committee for Aeronautics. Report No. 488)
4. Boelter, L. M. K. et al. Heat transfer notes. Berkeley, University oí California Press, 1948. 601 p.
5. Bosworth, R. C. L. Heat transfer phenomena. New York, Wiley, 1952. 211 p.
6. Brown, Aubrey I. and Salvatore M. Marco. Introduction to heat transfer. New York, McGraw-Hill, 1942. 232 p.
7. Carrier, W. H. and S.W. Anderson. Resistance to heat flow through finned tubing. Heating, Piping \& Air Conditioning 16:304-318. 1944.
8. Chang, Y. P. Theoretical analysis of heat transfer in natural convection and in boiling. Transactions of the American Society of Mechanical Engineers 79:1501-1509. 1957.
9. Daughty, D. L. and R. M. Drake, Jr. Free convection heat transfer from horizontal right circular cylinder to freon 12 near critical state. Transactions of the American Society of Mechanical Engineers 78:1843-1850. 1956.
10. Dropkin, David and Arieh Carmi. Natural convection heat transfer from a horizontal cylinder rotating in air. Transactions of the American Society of Mechanical Engineers 79:741-749. 1957.
11. Eckert, E. R. G. and R. M. Drake, Jr. Heat and mass transfer. 2d ed. New York, McGraw-Hill, 1959. 530 p.
12. Eckert, E. R. G. and Thomas W. Jackson. Analysis of turbulent free-convection boundary layer on flat plate. Washington, 1951. 7 p. (National Advisory Committee for Aeronautics. Report Ilo. 1015. Formerly Technical Notes No. 2207)
13. Elenbaas, W. Heat dissipation of parallel plates. Physica 9:1-28. 1942.
14. Elenbaas, W. The dissipation of heat by free convection from vertical and horizontal cylinders. Journal of Applied Physics 19:1148-1154. 1948.
15. Hallman, T. M. Combined forced and free-laminar heat transfer in vertical tubes with uniform internal heat generation. Transactions of the American Society of Mechanical Engineers 78:1830-1849. 1956.
16. Hamilton, D. C. and W. R. Morgan. Radiant-interchange configuration factor. Washington, 1952. 110 p. (Mational Advisory Committee for Aeronautics. Technical Notes No. 2836)
17. Hermann, R. Heat transfer by free convection from horizontal cylinders in diatomic gases. Washington, 1954. 73 p. (Mational Advisory Committee for Aeronautics. Technical Memorandum No. 1366. Tr. from VDT Forschungsheff: No. 379. 1936)
18. Isbin, H. S. Matural convection heat transfer in regions of maximum fluid density. American Institute of Chemical Engineering Journal 4(1):81-89. 1958.
19. Jakob, Max. Heat transfer. 2 vol. New York, Wiley, 1949-1957. 1410 p.
20. King, W. J., III. Free convection. Mechanical Engineering 54:347-353. 1932.
21. Langmuir, I. Convection and conduction of heat in gases. Physical Review 34:401-422. 1912.
22. Lemlich, Robert and Charles Sharn. Hatural convection to cold cylinder. Industrial and Engineering Chemistry 47 (8):1547-1549. 1955.
23. Levy, Salomon. Integral methods in natural convection flow. Journal of Applied Mechanics 22 (4): 515522. Dec 1955.
24. Lietzke, A. F. Theoretical and experimental investigation of heat transfer by laminar natural convection between parallel plates. Washington, 1954. 23 p. (National Advisory Comittee for Aeronautics. Technical Notes No. 3328)
25. Lohner, K. and G. Chone. Heat transmission through fins and finned cylinders. Engineers' Digest 19 (3):111-114. 1958.
26. McAdams, William H. Heat transmission. 3d ed. New York, McGraw-Hill, 1954. 532 p.
27. Merk, H. J. and J. A. Prins. Thermal convection in laminar boundary layers. Applied Science Research, Section A, 4 (1):11-24. 1954.
28. Murray, W. M. Heat dissipation through annula disk or fin of uniform thickness. Journal of Applied Mechanics 5 (2):A78-A80. June, 1938.
29. Ostrach, Simon. New aspects of natural convection heat transfer. Transactions of the American Society of Mechanical Engineers 75:1287-1289. 1953.
30. Ostrach, Simon. Laminar natural-convection flow and heat transfer of fluids with and without heat sources in channels with constant wall temperature. Washington, 1952. 55 p. (National Advisory Committee for Aeronautics. Technical Notes No. 2863)
31. Ostrach, Simon. An analysis of laminar free-convection flow and heat transfer about a flat plate parallel to the direction of the generation body force. Washington, 1953. 17 p. (National Advisory Committee for Aeronautics. Report No. 1111)
32. Ostrach, Simon and P. R. Thornton. On the stagnation of natural-convection flows in closed-end tubes. Transactions of the American Society of Mechanical Engineers 80:363-366. 1958.
33. Ostroumov, G. A. Free convection under conditions of internal problem. Washington, 1958. 233 p. (National Advisory Committee for Aeronautics. Technical Memorandum No. 1407)
34. Rutkowski, J. Free convection from heated surfaceslaminar boundary layers. New York, 1957. 22 p. (The American Society of Mechanical Engineers. Paper NO. 57-S-59)
35. Saunders, O. A. Natural convection in liquid. Proceedings of the Royal Society, Series A, 172 (948):55-71. 1939.
36. Schey, O. W. and V. G. Rollin. The effect of baffles on the temperature distributing and heat-transfer coefficients of finned cylinders. Washington, 1935. 14 p. (National Advisory Committee for Aeronautics. Report No. 511)
37. Siegel, L. G. and W. L. Bryan. Matural convection cooling dehumidifying. Heating, Piping and Air Conditioning 29 (12):129-134. 1957.
38. Siegel, Robert. Transient free convection from a vertical ilat plate. Transactions of the American Society of Mechanical Engineers 80:347-357. 1958.
39. Siegel, Robert and R. H. Norris. Tests of free convection in a partially enclosed space between two heated vertical plates. New York, 1957. 8 p. (The American Society of Mechanical Engineers. Paper No. 56-SA-5)
40. Somers, F. V. Theoretical consideration of combined thermal and mass transfer from a vertical flat plate. Journal of Applied Mechanics 78:295-301. 1956.
41. Sparrow, E. M. and T. L. Gregg. Laminar-freeconvection heat transfer from the outer surface of a vertical circular cylinder. Transactions of the American Society of Mechanical Engineers 78:18231828. 1956.
42. Sparrow, E. M. and J. L. Gregg. The variable 1 luidproperty problem in free convection. Transactions of the American Society of Mechanical Engineers 80:879-886. 1958 .
43. Touloukian, Y. S., G. A. Hawkins, and M. Jakob. Heat transfer by free convection from heated vertical surfaces to liquids. Transactions of the American Society of Mechanical Engineers 70:13-17. 1948.
44. Van Der Hegge Zijnen, B. G. Modified correlation formulae for the heat transfer by natural and by forced convection from horizontal cylinders. Applied Science Research, Section A, 6 (2-3):129-140. 1956.

APPEIDIXES

APPENDIX A

CALCULATION OF RADIATION LOSS

In equation (18) $A_{n} \mathcal{F}_{n 1}$ was calculated by the following equation:

$$
\begin{equation*}
A_{n} \exists_{n 1}=\frac{E_{1} A_{1}}{\beta_{1}} \cdot \frac{{ }_{n} D_{1}}{D} \tag{50}
\end{equation*}
$$

In the present work,

$$
n_{1} D_{1} \epsilon_{n}\left|\begin{array}{cccc}
-\overline{n_{1}} & \overline{12} & \overline{13} & \overline{14} \\
-\overline{n_{2}} & -\frac{A_{2}}{\beta_{2}} & \overline{23} & \overline{24} \\
-\overline{n_{3}} & \overline{23} & -\frac{A_{3}}{\beta_{3}} & \overline{34} \\
-\bar{n} 4 & \overline{24} & \overline{34} & -\frac{A_{4}}{\rho_{4}}
\end{array}\right|
$$

Where $n=2,3,4$, and $2^{D} D_{1} 3^{D}$, and $4_{1} D_{1}$ could be simplified to the following forms:

$$
{ }_{2} D_{1}=\frac{\epsilon_{2} A_{2}}{\beta_{2}}\left|\begin{array}{ccc}
\overline{12} & \overline{13} & \overline{14} \tag{51}\\
\overline{23} & -\frac{A_{3}}{\beta_{3}} & \overline{34} \\
\overline{24} & \overline{34} & -\frac{A_{4}}{\beta_{4}}
\end{array}\right|
$$

$$
{ }_{3} D_{1}=-\frac{\epsilon_{3} A_{3}}{\beta_{3}}\left|\begin{array}{ccc}
\sqrt{2} & \sqrt{3} & \overline{14} \tag{52}\\
-\frac{A_{2}}{\beta_{2}} & \overline{23} & \overline{24} \\
\overline{24} & \overline{34} & -\frac{A_{4}}{\beta 4}
\end{array}\right|
$$

$$
{ }_{4} D_{1}=\frac{\epsilon_{4} A_{4}}{\beta_{4}}\left|\begin{array}{ccc}
\overline{12} & \overline{13} & \overline{14} \tag{53}\\
-\frac{A_{2}}{\beta_{2}} & \overline{23} & \overline{24} \\
\overline{23} & -\frac{A_{3}}{\beta_{3}} & \overline{34}
\end{array}\right|
$$

D could be also simplified to

$$
D=\left|\begin{array}{cccc}
\overline{11}-\frac{A_{1}}{\beta_{1}} & \overline{12} & \overline{13} & \overline{14} \\
\overline{12} & -\frac{A_{2}}{\beta_{2}} & \overline{23} & \overline{24} \\
\overline{13} & \overline{23} & -\frac{A_{3}}{\beta_{3}} & \overline{34} \\
\overline{14} & \overline{24} & \overline{34} & -\frac{A_{4}}{\beta_{4}}
\end{array}\right|=-\frac{A_{1}}{\beta_{1}}\left|\begin{array}{ccc}
-\frac{A_{2}}{\beta_{2}} & \overline{23} & \overline{24} \\
\overline{23} & -\frac{A_{3}}{\beta_{3}} & \overline{34} \\
\overline{24} & \overline{34} & -\frac{A_{4}}{\beta_{4}}
\end{array}\right| \text { (54) }
$$

In equation (51), through (54), $\overline{m n}=A_{m} F_{m n}=A_{n} F_{n m}$. Various values of $F_{m n}$ could be calculated from the factors F_{12} and F_{11} which were obtained from the figures 21 and 22 in reference (16) with $D=d / r$ and $L^{\prime}=b / r a s$ parameters. With the aid of various $\bar{m} n$ values, calculation of the various $A_{n} \mathbf{F}_{n l}$ values for different fin spaces and fin diameters was done on a digit computer. For the finned tubes with chimney bafiles, emissivity of the surface A_{1} was taken as the arithmetic average of the emissivities of the copper baffles and the black-body surroundings, i.e. $\epsilon_{1}=(1+0.5) / 2=0.75$. Results of calculations are tabulated in Table (I).

APPENDIX B
CALCULATED DATA

TABLE I

CALCULATED RADIATION LOSS

1	2	3	4	5	6	7	8	9	10	11	12	13
			ϵ_{1}	ϵ_{2}		$L^{i}=\frac{\mathrm{O}}{\mathrm{~T}}$	$\mathrm{D}=\frac{\mathrm{d}}{\text { r }}$	F_{12}	\mathbf{F}_{11}	$\begin{aligned} & A_{2} \mathcal{F}_{21} \\ & \times 10^{4} \end{aligned}$	$\begin{aligned} & \mathbf{A}_{3} \mathscr{F}_{31} \\ & \mathbf{A}_{4} \mathscr{F}_{41} \end{aligned}$	$A_{n} \mathcal{F}_{n 1}$
$2^{\frac{3}{8}}$	0.271	1/4	-	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \end{aligned}$	in	1.971	$\stackrel{N}{N}$	0.089	0.033	1.87	0.0053	0.0108
	0.385	3/8				0.28		0.125	0.046	3.44	0.00736	0.0150
	0.508	1/2				0.369		0.16	0.057	5.38	0.00809	0.0167
	0.753	6/8				0.548		0.22	0.089	9.85	0.0099	0.0208
$2{ }^{7}$	0.266	1/4	-	N	R	0.193	$\begin{aligned} & \text { ri } \\ & \text { i } \end{aligned}$	0.052	0.031	1.35	0.00675	0.0136
	0.375	3/8				0.279		0.074	0.043	2.65	0.00897	0.0182
	0.52	1/2				0.378		0.099	0.0575	4.5	0.0112	0.0229
	0.771	6/8				0.56		0.136	0.083	8.46	0.0143	0.0295
$3 \frac{3}{8}$	0.273	1/4	-	$\begin{aligned} & \text { N } \\ & \mathbf{0} \\ & 0 \end{aligned}$	5	1.971	$\begin{gathered} \text { N } \\ \text { - } \end{gathered}$	0.089	0.033	1.17	0.00858	0.0173
	0.393	3/8				0.28		0.125	0.046	2.26	0.0115	0.0232
	0.528	1/2				0.369		0.16	0.057	3.5	0.0143	0.0290
	0.759	6/8				0.548		0.22	0.089	6.52	0.018	0.0367
	0.273	1/4	\sim	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 50 } \\ & 0 . \end{aligned}$	0.198	$\begin{aligned} & \text { H. } \\ & \text { i } \\ & \text { i } \end{aligned}$	0.055	0.031	1.61	0.00766	0.0155
	0.39	3/8				0.283		0.075	0.043	2.99	0.0101	0.0204
	0.508	1/2				0.508		0.095	0.054	4.68	0.0121	0.0247
	0.774	6/8				0.774		0.138	0.082	9.24	0.0156	0.0320
			$\begin{aligned} & 10 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \mathbf{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 50 } \\ & 0 \\ & 0 \end{aligned}$	0.774	$\begin{aligned} & \text { - } \\ & \text { o } \\ & \text { N } \end{aligned}$	0.138	0.082	6.93	0.0121	0.0249

table II
CALCULATEU HEAT TRANSFER COEFFICIENTS

1	12	3	4				5						6	7	8
		-	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & > \end{aligned}$	Power 冕	Input $\stackrel{\rightharpoonup}{\circ}$	冒	I	Therm II	$\begin{gathered} \text { ocouple } \\ \text { III } \end{gathered}$	e Readi IV		VI	\bigcirc	${ }^{\text {a rad．}}$	$\mathbf{h a . m .}^{\text {．}}$
		75.56	11.36	0.308	11.36	0.308	2.702	2.694	2.672	2.698	2.687	2.695	49.64	4.317	1.287
		76.10	11.38	0.311	11.38	0.311	2.735	2.726	2.722	2.733	2.718	2.73	49.5	4.316	1.306
	\％	75.6	14.6	0.395	14.6	0.395	3.48	3.466	3.446	3.475	3.462	3.47	75.98	7． 109	1.377
	匈	76.33	14.59	0.392	14.59	0.392	3.486	3.474	3.453	3.482	3.48	3.478	75.42	7.067	1.375
		73.9	20	0.528	20	0.528	4.882	4.875	4.884	4.88	4.874	4.879	125	13.22	1.62
		75.3	20	0.518	20	0.518	4.805	4.8	4.808	4.804	4.8	4.806	121.2	12.78	1.63
		74.88	14	0.39	14	0.39	1.926	1.93	1.93	1.928	1.923	1.92	24.38	12.15	0.511
		75.15	14	0.39	14	0.39	1.936	1.937	1.937	1.933	1.93	1.927	24.25	12.1	0.515
		75.72	20	0.539	20	0.539	2.417	2.417	2.417	2.413	2.407	2.403	40.03	20.93	0.652
	1	74.04	21	0.553	20	0.542	2.4	2.4	2.4	2.4	2.39	2.93	41	21.28	0.67
$2 \overline{8}$	8	75.4	25	0.676	25	0.676	2.88	2.884	2.884	2.876	2.862	2.858	55.78	30.4	0.755
		75.12	25	0.678	25	0.678	2.877	2.88	2.88	2.871	2.858	2.855	55.98	30.49	0.755
		75.54	29	0.785		0.785	3.29	3.292	3.292	3.28	3.265	3.261	69.36	39.27	0.829
		75.18	29	0.785	25	0.785	3.268	3.722	3.272	3.261	3.242	3.24	69.03	38.98	0.836
		75.6	31.1	0.842	31.1	0.842	3． 522	3．524	3．524	3.507	3.497	3.493	77.2	44．66	0.861
		75.22	31.1	0.846	31.1	0.846	3.511	3.512	3．512	3.497	3.484	3.478	76.39	44.01	0.88
		74.64	35	0.955	35	0.955	3.95	3.952	3.952	3.93	3.915	3.909	92.26	55.33	0.929
		75.66	35	0.954		0.954	3.982	3.987	3.986	3.969	3.952	3.949	92． 54	0.911	0.911

TABLE II

			4		5							6	7	8
						I	II	III	IV		VI			
	74.18	14	0.388	14	0.388	1.964	1.964	1.964	1.963	1.96	1.957	26.33	13.25	57
	74.11	14	0.378	14	0.378	1.946	1.946	1.946	1.944	1.942	1.94	25.79	12.96	0.576
	74.1	18.05	0.492	18	0.49	2.3	2.297	2.297	2.294	2.292	2.287	37.7	19.58	0.694
	73.9	18.05	0.49	18.1	0.492	2.312	2.312	2.312	2.307	2.301	2.299	38.39	19.95	0.658
33	74.14	22.1	0.602	22.1	0.602	2.725	2.723	2.723	2.718	2.713	2.713	52.11	28.17	0.771
$2 \frac{8}{8}$	73.9	22	0.592	22	0.592	2.688	2.687	2.687	2.682	2.678	2.673	51.1	27.53	0.772
	73.68	28.1	0.76	28.1	0.76	3.396	3.396	3.396	3.388	3.378	3.373	72.1	43.01	0.914
	75.07	28	0.785	28.2	0.787	3.424	3.421	3.421	3.416	3.406	3.401	74.73	43.19	0.922
	75.3	31.1	0.846	31	0.845	3.714	3.7	3.704	3.707	3.697	3.583	83.6	49.56	0.994
	77.1	31	0.838	31	0.838	3.859	3.852	3.848	3.842	3.837	3.802	86.7	52.3	0.924
	73.59	33.2	0.9	33.1	0.9	4.032	4.028	4.028	4.014	4.005	4.005	96.16	58.46	0.968
	73.63	32.9	0.893	33.1	0.897	4.015	4.008	4.008	3.996	3.987	3.983	95.48	57.94	0.965
	74.49	10	0.292	10	0.292	1.72	1.718	1.718	1.714	1.711	1.706	17.42	7.24	0.573
	73.96	10	0.289	10	0.289	1.71	1.707	1.707	1.705	1.701	1.701	17.64	7.32	0.553
	74.57	14	0.39	14	0.39	2.036	2.033	2.032	2.025	2.02	2.012	28.18	12.08	0.703
	73.95	14	0.39	14	0.39	2.008	2.005	2.005	2.00	1.995	1.99	27.8	11.87	0.719
	74.98	20	0.54	20	0.54	2.619	2.614	2.598	2.609	2.594	2.575	47.53	21.54	0.864
3	74.65	20	0.549	20	0.549	2.622	2.614	2.609	2.6	2.593	2.58	47.6	21.54	0.883
28	74.68	25	0.686	25	0.686	3.253	3.242	3.238	3.223	3.212	3. 197	68.83	33.02	0.96
	74.61	25.03	0.688	25.03	0.688	3.242	3.234	3.228	3.22	3.209	3.19	68. 49	32.83	0.973
	74.78	29	0.792	29	0.792	3.775	3.775	3.75	3.733	3.718	3.697	85.82	43.15	1.042
	74.18	29.05	0.794	29	0.792	3.774	3.755	3.748	3.736	3.724	3.702	86.38	43.36	1.036
	74.58	32.9	0.901	33	0.905	4.31	4.294	4.275	4.265	4.25	4.22	103.78	54.72	1.125
	74.64	33	0.907	33	0.907	4.6	4.343	4.34	4.312	4.292	4.266	105.36	55.82	1.109
	72.62	9	0.26	9	0.26	1.627	1.627	1.625	1.62	1.623	1.416	15.78	5.482	0.678
36	72.08	9	0.26	9	0.26	1.635	1.635	1.634	1.628	1.632	1.622	16.67	5.79	0.623
$2 \overline{8} \overline{8}$	71.87	13	0.362	13	0.362	1.99	1.99	1.986	1.976	1.983	1.967	29.24	10.5	0.754
	73.43	13	0.362	13	0.362	2.054	2.059	2.05	2.042	2.05	2.032	29.87	10.84	0.726

TABLE II

1	23		4			5						6	7	8
$2 \frac{3}{8} \frac{6}{8}$	74.02	17	0.468	17	0.468	2.522	2.522	2.517	2.502	2.513	2.485	44,68	16	
	74.12	17.25	0.47	17	0.469	2.539	2.538	2.532	2.526	2.526	2.502	45.18	17.18	0.851
	74.19	21.1	0.572	21.25	0.575	3.068	3.067	3.062	3.051	3.052	3.012	62.72	25.04	0.94
	73.9	21.05	0.572	21.05	0.572	3.028	3.028	3.02	3.002	3.017	2.975	61.7	24.52	0.953
	73.72	25	0.68	25	0.68	3.593	3.588	3.578	3. 572	3.56	3.527	79.69	33.24	059
	73.09	25.1	0.687	25	0.68	3.578	3.574	3.564	3.554	3.551	3.517	80.72	33.65	1.051
	73.62	29.2	0.792	29.04	0.791	4.24	4.236	4.222	4.215	4.216	4.165	102.12	45.25	12
	73.93	29.2	0.792	29.2	0.792	4.277	4.263	4.253	4.242	4.242	4.197	103. 02	45.83	1.11
$2 \frac{7}{8} \frac{1}{4}$	77.6	20	0.549	20	0.549	2.177	2.168	2.164	2.171	2.155	2.108	29.01	18.70	0.814
	77.49	20	0.549	20	0.549	2.174	2. 164	2.16	2.167	2.151	2.105	28.91	18.62	0.614
	75	25	0.687	25	0.687	2.482	2.378	2.374	2.471	2.362	2.306	39.23	25.65	0.736
	74.7	25	0.687	25	0.687	2.4	2.385	2.382	2.392	2.37	2.358	38.8	25.3	0.746
	74.63	30	0.812	30	0.812	2.835	2.693	2.689	2.82	2.67	2.594	50.27	33.82	0.83
	75.32	30	0.813	30	0.813	2.882	2.741	2.733	2.867	2.717	2.635	51.08	34.57	0.814
	73.56	35	0.977	35	0.977	3.249	3.063	3.052	3.229	3.031	2.936	62.59	43.31	0.957
	74.53	35	0.977	35	0.977	3.283	3.1	3.091	3.262	3.065	2.973	63.74	44.47	0.934
	72.89	40	1.101	40	1.101	3.713	3.471	3.46	3.685	3.43	3.312	77.86	55.98	0.96
	72.93	40	1.101	39.8	1.092	3.694	3.457	3.448	3.667	3.417	3.301	77.34	55.54	0.99
	89.08	44.05	1.202	44	1.202	4.1	3.82	3.806	4.07	3.768	3.632	89.08	66.13	1.04
	73.33	44	1.201	43.9	1.198	4.083	3.79	3.777	4.05	3.745	3.61	88.03	65.76	1.05
$2 \frac{7}{8} \frac{3}{8}$	77.28	20	0.505	20	0.505	2.17	2.17	2.168	2.166	2.62	2.143	30.18	18.79	0.693
	75.87	20.1	0.505	20	0.505	2.138	2.136	2.134	2.134	2.13	2.112	30.38	18.78	0.69
	77.3	25.1	0.684	25	0.684	2.533	2.527	2.525	2.522	2.515	2.486	42.1	27.09	0.889
	77.62	25	0.68	25	0.68	2.544	2.539	2.538	2.533	2.524	2.508	42.0	27.06	0.883
	77.86	30.2	0.82	30.1	0.82	2.97	2.96	2.96	2.955	2.948	2.912	55.84	37.43	0.99
	78.34	30	0.824	30	0.824	2.979	2.976	2.965	2.964	2.957	2.92	55.52	37.28	0.987
	78.2	34.1	0.925	34	0.925	3.328	3.318	3.312	3.312	3.2	3.253	67.0	46.38	1.05
	77.65	34	0.923	33.8	0.92	3.298	3.295	3.278	3.28	3.271	3.228	67.05	46.29	1.037
	77.48	38.03	1.032	38.03	1.032	3.67	3.658	3.647	3.65	3.637	3.581	79.33	56.57	1.11

TABLE II

TABLE II

1	23		4			5						6	7	
						1	II	III	IV	V	VI	6	7	8
	75.53	27.05	0.724	27.05	0.724	2.316	2.314	2.314	2.303	2.299	2.278	36.78	30.14	0.641
	75.13	27	0.725	27	0.725	2.32	2.314	2.314	2.305	2.299	2.282	37.17	30.43	0.632
	74.6	35.2	0.94	35.2	0.94	2.809	2.8	2.798	2.782	2.774	2.75	53.25	45.43	0.785
31	74.96	35.2	0.94	35.2	0.94	2.826	2.817	2.815	2.8	2.795	2.77	53.57	45.84	0.779
$3 \frac{1}{8} \frac{1}{4}$	74.62	40.2	1.07	40.1	1.066	3.163	3.152	3.152	3. 129	3.122	3.09	64.83	57.11	0.819
	76	40.08	1.062	40.08	1.062	3.184	3.172	3.17	3.15	3. 145	3.108	64. 15	56.82	0.839
	75.2	45	1.196	45.1	1. 198	3.535	3.522	3.52	3.495	3.484	3.448	77.18	70.53	0.884
	74.44	44.9	1. 185	44.9	1.185	3.49	3.478	3.475	3.449	3.444	3.408	76.06	69.02	0.887
	74.66	49	1.3	49	1.3	3.859	3.844	3.842	3.813	3.803	3.76	88.04	82.65	0.915
	75.3	49.5	1.3	49.5	1.3	3.865	3.85	3.849	3.805	3.795	3.758	87.31	87.06	0.936
	75.17	20	0.555	20	0.555	1.952	1.948	1.948	1.95	1.94	1.935	24.83	18.51	0.701
	73.48	20	0.558	20	0.558	1.907	1.902	1.902	1.903	1.893	1.888	24.88	18.37	0.706
	76.85	27	0.73	26.9	0.725	2.426	2.409	2.407	2.415	2.397	2.387	38.85	30.38	0.809
	74.8	27	0.744	27	0.744	2.373	2.367	2.363	2.372	2.348	2.346	39.41	30.51	0.822
33	74.74	33	0.928	33	0.928	2.802	2.787	2.776	2.792	2.758	2.758	53.46	43.02	0.944
$3 \overline{8} \overline{8}$	74.86	33.2	0.932	33	0.928	3.795	2.78	2.774	2.783	2.75	2.75	53.14	42.75	0.957
	75.2	39	1.075	39	1.075	3.237	3.217	3.214	3.225	3.185	3.182	67.6	56.69	1.032
	74.64	39	1.074	39	39	3.256	3.236	3.225	3.225	3.195	3.193	68.67	57.58	1.011
	75.54	45.1	1.195	45.1	1.195	3.784	3.757	3.748	3.757	3.706	3.712	84.71	74.56	1.076
	75.3	44.9	1.232	45	1.232	3.748	3.72	3.707	3.728	3.676	3.673	83.7	73.37	1.106
	75.55	49	1.333	49	1.333	4.105	4.068	4.052	4.07	4.008	4.002	94.85	85.81	1.154
	75.58	49	1.33	49	1.33	4.134	4.096	4.078	4.095	4.038	4.034	95.73	86.82	1.137
	76.26	20	0.54	20	0.54	2.022	2.015	2.014	2.017	2.007	1.985	25.94	18.27	0.836
	76.25	20	0.54	20	0.54	2.031	2.024	2.023	2.025	2.018	1.991	26.25	18.24	0.827
	76.43	25	0.677	25	0.677	2.366	2.358	2.354	2.358	2.346	2.312	37.82	27.11	0.928
$3-\frac{1}{2}$	76.75	25	0.675	25	0.675	2.378	2.37	2.367	2.37	2.355	2.317	37.3	27.18	0.923
	76.19	30	0.814	30	0.814	2.738	2.724	2.727	2.728	2.708	2.66	48.91	37.64	1.032
	76.23	30.03	0.82	30.03	0.82	2.733	2.72	2.715	2.718	2.7	2.655	49.53	37.21	1.033
	76.5	35,05	0.952	35.05	0.952	3.162	3.14	3.135	3.136	3.112	3.053	63.05	49.24	1.107

TABLE II

table II

TABLE II

TABLE II

			4			5								
12	3					1	II	III	IV	V	VI	6	7	8
\% 6	76. 15	26.5	0.688	26.5	0.688	3.031	2.992	2.99	2.999	2.987	2.87	58.66	33.92	1.133
	77.08	26.5	0.678	26.5	0.678	3.045	3.017	3.0	3.026	3.002	3.886	58,23	33.79	1.132
	77.18	32	0.827	32	0.827	3.695	3.652	3.624	3.677	3.64	3.579	79.93	49.24	1.22
	76	32	0.82	32	0.82	3.606	3.558	3.557	3.566	3.551	3.393	77.6	47.21	1.261
\% ${ }^{\circ}$	77.33	37.35	0.975	36.9	0.97	4.252	4. 126	4.105	4.192	4.166	3.98	96.28	62.03	1. 142
ค ก	78.51	37.35	0.972	37.35	0.972	4.373	4.303	4.302	4.307	4.304	4.15	100.1	65.55	1.135
6	75.63	14.94	0.383	14.94	0.383	1.905	1.895	1.895	1.896	1.89	1.829	21.87	11.39	0.939
8	76.49	14.98	0.385	14.9	0.383	1.93	1.917	1.916	1.92	1.915	1.852	21.91	11.47	0.938
- ${ }^{\text {d }}$	76.89	21.1	0.542	21.1	0.542	2.452	2.428	2.427	2.427	2.42	2.302	38.61	21.21	1.093
碷	74.11	21.1	0.533	21.1	0.533	2.344	2.324	2.32	2.323	2.317	2.203	37.69	20.35	1.111
\%	74.45	27.1	0.686	27.1	0.686	2.905	2.873	2.87	2.873	2.863	2.684	55.85	31.76	1.264
	72.94	27.1	0.674	26.5	0.672	2.846	2.811	2.81	2.815	2.803	2.622	55.56	31.32	1.229
\%	76.59	32	0.794	32	0.794	3.437	3.397	3.397	3.4	3.385	3.15	71.31	42.78	1.36
뎐	76.88	32	0.812	32	0.812	3.55	3.508	3.505	3.492	3.494	3.249	74.73	45.32	1.31
-	74.32	36.23	0.952	36.23	0.952	4.078	4.019	4.019	4.022	4.005	3.727	93.78	59.26	1,394
\bigcirc	77.1	36.23	0.955	36.23	0.955	4. 177	4.114	4.114	4.118	4.101	3.81	92.4	58.85	1.424

TABLE III
CALCULATED DIMEMSIONLESS GROUPS

TABLE III

1	2	3	4	5	6	7	8	9
$2 \frac{3}{8}$	$\frac{3}{8}$	38.39	6.472	6.077	18.66	9.02	5.23	7.24
		52.11	7.488	7.03	23.86	11.54	6.68	9.26
		51.1	7.509	7.05	23.63	11.43	6.62	9.17
		72.1	8.711	8.18	30.67	14.83	8.59	11.91
		74.73	8.711	8.24	31.65	15.30	8.86	12.28
		83.6	9.381	9.37	34.29	16.58	9.6	13.31
		86.7	8.684	8.15	34.73	16.8	9.72	13.48
		96.16	9.078	8.52	38.03	18.4	10.65	14.77
		95.48	9,052	8.499	37.88	18.32	10.61	14.71
$2 \frac{3}{8}$	$\frac{1}{2}$	17.42	5.739	5.763	9.14	5.83	3.38	4.65
		17.64	5.546	5.57	9.29	5.93	3.43	4.72
		28. 18	6.974	7.003	14.19	9.05	5.24	7.22
		27.8	7.142	7.172	14.05	8.97	5.19	7.15
		47.53	8.416	8.452	22.19	14.16	8.20	11.29
		47.6	8.607	8.643	22.21	14.17	8.21	11.29
		68.83	9.184	9.222	29.57	18.86	10.92	15.03
		68.49	9.316	9.354	29.42	18.77	10.87	14.96
		85.82	9.832	9.873	35.03	22.35	12.94	17.81
		86.38	9.775	9.816	35.26	22.5	13.03	17.93
		103.78	10.49	10.53	39.97	25.51	14.77	20.33
		105.36	10.33	10.37	40.20	25.65	14.85	20.44
$2_{8}^{\frac{3}{8}}$	$\frac{6}{8}$	15.78	6.83	7.75	8.49	8.03	4.65	7.04
		16.67	6.28	7.122	8.97	8.48	4.91	7.44
		29.24	7.51	8.52	14.91	14.1	8.17	12.37
		29.87	7.21	8.178	15.08	14.26	8.26	12.5
		44.68	8.33	9.453	21.07	19.93	11.45	17.47
		45.18	8.32	9.442	21.30	20.15	11.67	17.67
		62.72	9.05	10.27	27.75	26.25	15.2	23.02
		61.7	9.19	10.42	27.38	25.89	14.99	22.7

TABLE III

1	2	3	4	5	6	7	8	9
$2^{\frac{3}{8}}$	$\frac{6}{8}$	79.69	10.06	11.41	33.29	31.48	18.23	27.61
		80.72	9.98	11.33	33.72	31.89	18.47	27.96
		102.02	10.45	11.86	39.82	37.66	21.8	33.02
		103.02	10.35	11.75	39.77	37.62	21.78	32.99
$2 \frac{7}{8}$	$\frac{1}{4}$	29.01	6.826	5.27	20.48	8.26	3.95	3.64
		28.91	6.863	5.30	20.47	8.26	3.95	3.64
		39.23	8.182	6.32	27.43	11.07	5.296	4.87
		38.8	8.315	6.42	27.18	10.97	5.25	4.83
		50.27	9.15	7.06	33.76	13.63	6.52	5.99
		51.08	8.95	6.91	33.88	13.67	6.54	6.02
		62.59	10.45	8.07	40.47	16.33	7.81	7.19
		63.74	10.18	7.86	40.68	16.42	7.85	7.23
		77.86	10.69	8.25	47.97	19.36	9.26	8.52
		77.34	10.69	8.25	47.64	19.23	9.20	8.46
		89.08	11.16	8.61	52.90	21.35	10.21	9.4
		88,63	11.17	8.63	52.36	21.24	10.16	9.35
$2 \frac{7}{8}$	$\frac{3}{8}$	30.18	7.732	6.401	21.37	12.48	5.97	5.02
		30.38	7.727	6.4	21.67	12.65	6.605	5.09
		42.1	9.757	8.077	28.43	16.59	7.94	6.67
		42.0	9.831	8.14	28.51	16.64	7.96	6.69
		55.84	10.79	8.94	35.73	20.86	9.98	8.39
		55.52	10.75	8.902	35.43	20.69	9.90	8.32
		67.0	11.33	9.4	40.98	23.92	11.44	9.62
		67.05	11.2	9.28	41.68	24.33	11.64	9.79
		79.33	11.88	9.83	47.33	27.63	13.22	11.11
		80.9	11.56	9.57	48.04	28.05	13.42	11.28
		92.1	12.36	10.24	52.39	30.59	14.63	12.3
		95.69	12.45	10.31	53.80	31.41	15.02	12.63

TABLE 111

1	2	3	4	5	6	7	8	9
$2 \frac{7}{8}$	$\frac{1}{2}$	21.4	8.461	7.545	15.88	12.54	6.0	5.02
		20.89	8.232	7.34	15.65	12.36	5.91	4.95
		31.23	9.50	8.47	22.3	17.62	8.43	2.05
		30.55	9.801	8.74	21.87	17.28	8.26	6.91
		44.95	10.69	9.53	30.54	24.12	11.54	9.65
		44.92	10.51	9.37	30.54	24.12	11.54	9.65
		60.27	11.69	10.43	38.47	30.39	14.53	12.15
		60.81	11.64	10.38	38.81	30.66	14.66	12.27
		26.85	12.57	11.21	46.06	36.39	17.4	14.56
		77.1	12.53	11.17	46.21	36.51	17.46	14.61
		96.84	12.83	11.44	54.39	42.96	20.55	17.19
		97.39	12.84	11.45	55.35	43.72	20.91	17.49
$2_{8}^{\frac{7}{8}}$	$\frac{6}{8}$	16.33	8.12	8.2	12.45	14.59	6.98	6.47
		16.49	8.22	8.3	12.58	14.74	7.05	6.54
		31.04	8.88	8.96	21.98	25.75	12.32	11.42
		31.19	8.92	9.01	22.33	26.16	12.51	11.61
		46.8	10.03	10.03	31.17	36.52	17.47	16.2
		47.7	9.861	9.96	31.50	36.91	17.65	16.38
		65.7	10.87	10.98	40.98	48.02	22.96	21.30
		65.58	10.96	11.06	40.98	48.02	22.96	21.30
		85.68	11.95	12.06	50.41	59.06	28.25	26.20
		87.1	11.73	11.67	52.21	61.17	29.26	27.14
		108.6	12.51	12.63	58.74	68.82	32.92	30.53
		109.9	12.29	12.41	58.74	68.82	32.92	30.53
$3 \frac{3}{8}$	$\frac{1}{4}$	26	6.814	4.727	26.71	13.01	5.30	3.096
		26.56	6.559	4.544	27.18	13.24	5.39	3.15
		36.78	7.978	5.54	35.98	17.53	7.24	4.17
		37.175	7.866	5.46	36.37	17.72	7.22	4.22
		53.25	9.643	6.69	49.13	23.93	9.75	5.69

TABLE III

1	2	3	4	5	6	7	8	9
$3 \frac{3}{8}$	1	53.57	9.558	6.63	49.01	23.87	9.73	5.68
		64.83	9.96	6.91	57,55	28.04	11.42	6.67
		64.515	10.17	7.07	56.6	27.57	11.23	6.56
		77.18	10.63	7.37	65.52	31.92	13.0	7.59
		76.06	10.69	7.42	65.46	31.89	12.99	7.59
		88.04	10,92	7.57	73.04	35.58	14.5	8.47
		87.31	11.17	7.746	72. 43	35.28	14.38	8.39
$3 \frac{3}{8}$	$\frac{3}{8}$	24.83	8.825	6.57	25.53	17.91	7.296	3.918
		24.88	8.916	6.64	26.04	18.26	7.44	4.0
		38.85	10.03	7.46	37.35	26.2	10.67	5.73
		39.41	10.22	7.61	38.25	26.83	10.93	5.87
		53.46	11.59	8.63	49.53	34.75	14.16	7.60
		53.14	11. 75	8.745	49.03	34.39	14.01	7.53
		67.6	12.51	9.31	59.07	41.44	16.88	9.07
		68.67	12,26	9.13	60.0	42.09	17.15	9.21
		84.71	12.85	9.57	70.27	49.3	20.08	10.79
		83.7	13.23	9.84	69.76	48.94	19.94	10.71
		94.85	13,69	10.2	75.52	52.98	21.58	11.59
		95.73	13.47	10.03	76.07	53.36	21.74	11.68
$3 \frac{3}{8}$	$\frac{1}{2}$	25.94	10.49	8.41	26.35	24.83	10.12	5.33
		26.25	10.37	8.31	26.76	25.22	10.28	5. 52
		37.28	11. 52	9.23	36.14	34.05	13.88	7.45
		37.3	11.45	9.18	36.09	34.01	13.86	7.44
		48.91	12.69	10.17	45.50	42.89	17.47	9.38
		49.53	12.70	10.18	45.69	43.06	17.54	9.42
		63.05	13.44	10.77	54.41	51.28	20.89	11.21
		62.69	13.49	10.81	55.4	52.22	21.27	11.42
		77.7	14.14	11.33	64.75	61.03	24.86	13.35
		77.25	14.28	11.44	64.92	61.18	24.93	13.38
		90.2	14.51	11.63	71.82	67.69	27.58	14.8
		89.96	14.46	11.59	72.54	68.36	27.86	14.95

TABLE III

1	2	3	4	5	6	7	8	9
$3 \frac{3}{8}$	$\frac{6}{8}$	31.05	9.84	8.84	30.69	41.36	16.94	10.0
		30.86	9,84	9.74	30,53	41.59	16.85	9.95
		45.03	10.84	9.74	42. 41	56,64	23.41	13.82
		44.49	10.77	9.68	41.8	57.47	23.07	13.63
		63.98	12.02	10.8	56.3	76.28	31.08	18.35
		64, 19	12.0	10.78	56.49	26.53	31.18	18.41
		76,98	12.75	11.46	64.46	87.34	35.58	21.01
		76,99	12.75	11.46	64,67	87,33	35. 59	21.01
		87.75	13.15	11.81	72. 12	103.2	39.81	23.5
		87.87	13.09	11.76	71.43	97.7	39.43	23.31
		95,84	13. 18	11.84	76.15	101.8	42.04	24.82
		94.41	13.5	12.13	75.17	96.78	41.49	24.5
	$\frac{1}{4}$	39.81	8,22	6.381	27.83		5.52	5.45
		39,68	8,32	4.451	27,97		5.54	5.48
		52.77	8,93	6.93	34,83		6.90	6.88
		53.89	8,74	6.78	36,78		7.29	7.20
		65.26	9.40	7.29	42.37		8.398	8.3
		65,88	9,53	7.39	42.04		8,333	8.24
		74.28	10.73	8,32	45.25		8.988	8.88
		77.15	10.71	8.31	46,67		9.25	9.14
		89,48	11.57	8.97	53,63		10.63	10.5
		89.32	11. 11	8,62	52,05		10.32	10.2
	$\frac{3}{8}$	18.66	7.37	6.116	14.18		4.07	3.655
		18,54	7.34	6,094	13,99		3.96	3.61
		29.58	9.29	7.714	21.34		6.05	5.5
		28.43	9.47	7.862	19.72		5.59	5.08
		43,07	9.63	7.998	28.44		8.06	7.23
		42.88	9.71	8.06	28,56		8.09	7.36
		57.8	10.22	8. 48	36,25		10.27	9.34
		57.4	10.26	8.52	35.36		10.02	9.11

TABLE III

1	2	3	4	5	6	7	8	9
	$\frac{3}{8}$	80.04	11.36	9.43	45.75		12.96	11.79
		79.89	11.5	9.54	45.22		12.81	11.65
		103.05	12.16	10.1	54.33		15.39	14.0
		103.45	12.18	10. 11	55,69		15.78	14.35
	$\frac{1}{2}$	21.48	8.342	7.39	15.85		5.85	5.29
		21.52	8.178	7.25	16.12		5.95	5.38
		32.07	10.05	8.91	22.60		8.34	2.55
		33.55	9.38	8.31	23.65		8.73	7.90
		46.48	11.17	9.89	30.96		11.43	10.34
		45.84	11.28	9.99	31.30		11.55	10.45
		61.92	12.23	10.83	39.52		14.59	13. 19
		62.05	12.26	10.87	40.29		14.87	13.45
		81.36	12.76	11.31	47.86		17.67	15.98
		80.72	12.92	11.45	48.38		17.86	16.15
		96.25	14.22	12.60	55.02		20.31	18.37
		93.43	14.52	12.86	54.44		20.1	18.18
	$\frac{6}{8}$	27.76	8.97	9.07	20.03		11.27	11.34
		27.73	8.71	8.80	19.24		10.82	10.89
		42.26	10.31	10.43	28.14		15.83	15.94
		42.86	10.29	10.14	28.54		16.06	16.17
		61.14	11.03	11.15	38.34		21.57	21.71
		62.11	10.90	11.02	38.60		21.72	21.86
		83.7	11.79	11.92	49.24		27.7	27.89
		83.87	11. 59	11.72	48.87		27.49	27.68
		107.04	12. 20	12.33	57.63		32.41	32.63
		106.99	12.48	12.61	58.78		38.69	33.29
	$6 / 8$	23.45	9.888	10.0	17.56		9.88	9.95
		23.11 39.91	10.04 11.36	10.15 11.48	17.44 27.24		9.8 15.33	9.88 15.43
		40.79	11.37	11.49	28.29		15.92	16.02

TABLE III

1	2	3	4	5	6	7	8	9
\％	6／8	58.66	12.29	12.43	36.78		20.69	20.83
星。	¢	58.23	12.34	12.47	37.16		20.9	21.05
閐	\bigcirc	79.93	13.05	13.2	47.46		26.7	26.88
－${ }^{\text {H }}$	버읖	77.6	13.57	13.72	46.94		26.41	26.58
\％＇	ヘ ${ }^{\text {a }}$	96.28 100.41	15.05	15.21	55，03		30.96	31.17
	\bigcirc	100.41	14.23	14.38	55.55		31.25	31，46
	6／8	21.87	10.62	10.74	16.39		9．22	9.35
		21． 19	10.58	10.69	16.29		9.17	9.23
		38.61	12.13	12.27	26.57		14.95	15.05
		37.69	12.41	12.55	26.56		14.94	15.04
		55.85	13.87	14.02	36.27		20.4	20.54
		55.56	13.56	13．71	37．00		20.81	20.96
		71.31	14.68	14.84	43.93		24.71	24.88
		74.73	14．11	14.27	45.20		25.43	25.6
		93.78	14．83	14．99	54.65		30.74	30．95
		92.4	15．1	15.26	52．82		29.71	29.91

$$
A_{1}-\text { FICTITIOUS SURFACE }
$$

$$
A_{2} \text { - SURFACE OF THE BASE TUBE }
$$

$$
A_{3}, A_{4}-\text { SURFAGES OF THE FIN PLATES }
$$

FIGURE 9 TEMPERATURE-AVERAGING CALIBRATION $-23 / 8$ INCH FIN DIAMETER AND $1 / 4$ INGH FIN SPACING

FIGURE 10 TEMPERATURE-AVERAGING CALIBRATION $-2 \frac{3}{8}$ INCH FIN DIAMETER AND 3/8 INCH FIN SPACING

FIGURE II TEMPERATURE - AVERAGING CALIBRATION $-23 / 8$ INCH FIN DIAMETER AND $1 / 2$ INCH FIN SPACING

FIGURE 12 TEMPERATURE - AVERAGING CALIBRATION $-23 / 8$ INCH FIN DIAMETER AND 6/8 INCH FIN SPACING

figure 13 temperature - averaging calibration $-27 / 8$ INCH FIN DIAMETER AND $1 / 4$ INCH FIN SPACING

figure 14 temperature - averaging calibration $-27 / 8$ INCH FIN DIAMETER AND 3/8 INCH FIN SPACING

FIGURE 15 TEMPERATURE - AVERAGING CALIBRATION $-2 \frac{7}{8}$ INCH FIN DIAMETER AND $1 / 2$ INCH FIN SPACING

FIGURE 16 TEMPERATURE-AVERAGING CALIBRATION -278 INCH FIN DIAMETER AND 6/8 INCH FIN SPACING

FIGURE 17 TEMPERATURE-AVERAGING CALIBRATION $-33 / 8$ INCH FIN DIAMETER AND $1 / 4$ INCH FIN SPACING

[^0]

FIGURE 19 TEMPERATURE-AVERAGING CALIBRATION $-33 / 8$ INCH FIN DIAMETER AND $1 / 2$ INCH FIN SPACING

FIGURE 20 TEMPERATURE - AVERAGING CALIBRATION $-33 / 8$ INCH FIN DIAMETER AND 6/8 INCH FIN SPACING

FIGURE 21 TEMPERATURE-AVERAGING CALIBRATION -SQUARE FINNED TUBE WITH I/4 INCH FIN SPACING

FIGURE 22 TEMPERATURE-AVERAGING CALIBRATION - SQUARE FINNED TUBE WITH $3 / 8$ INCH FIN SPACING

FIGURE 23 TEMPERATURE-AVERAGING CALIBRATION - sQuare finned tube with i/2 INCH FIN SPACING

FIGURE 24 TEMPERATURE-AVERAGING CALIBRATION - SQUARE FINNED TUBE WITH 6/8 INCH FIN SPACING

FIGURE 26 THERMOMETER CALIBRATION CURVE

FIGURE 27 PHYSICAL PROPERTY OF AIR

FIGURE 28 THERMOL CONDUCTIVITY

FIGURE 29 NUSSELT NUMBER AS A FUNCTION OF RAYLEIGH NUMBER FOR HORIZONTAL TUBE

FIGURE 31 FLOW PATTERN OF AIR CIRCULATION

FIGURE 36 HEAT TRANSFER COEFFICIENT - $23 / 8$ INCH FIN DIAMETER

FIGURE 37 HEAT TRANSFER COEFFICIENT - 278 INCH FIN DIAMETER

FIGURE 38 HEAT TRANSFER COEFFICIENT - 3 3/8 INCH FIN DIAMETER

FIGURE 40 HEAT TRANSFER COEFFICIENT AS A FUNCTION OF FIN SPACING-23/8 INCH FIN DIAMETER

FIGURE 41 HEAT TRANSFER GOEFFICIENT AS A FUNCTION OF FIN SPACING- 278 INCH FIN DIAMETER

FIGURE 42 HEAT TRANSFER COEFFICIENT AS A FUNCTION OF FIN SPACING - 33,8 INCH FIN DIAMETER

FIGURE 43 HEAT TRANSFER COEFFICIENT AS A FUNCTION OF FIN SPACING - SQUARE FIN TUBE

FIGURE 44 EFFECT OF FIN SPACING ON HEAT TRANSFER COEFFICIENT

FIGURE 45 EFFECT OF CHIMNEY HEIGHT ON heat transfer coefficient

FIGURE 46 HEAT TRANSFER COEFFICIENT AS A FUNCTION OF FIN DIAMETER - 0.4 AND 0.275 INCH FIN SPACINGS

FIGURE 47 HEAT TRANSFER COEFFICIENT AS A FUNCTION OF FN DIAMETER - 0.75 AND O.525 INCH FIN SPACINGS

FIGURE 48 CORRELATION OF EXPERIMENTAL DATA

FIGURE 49 RECOMMENDED CORRELATION FOR ROUND FINNED TUBES

FIGURE 50 RECOMMENDED CORRELATION FOR SQUARE FINNED TUBES

FIGURE 51 EFFECT OF CHIMNEY HEIGHT

FIGURE 52 CORRELATION (ROUND FINNED TUBES) FOR COMPARISON WITH OTHER GEOMETRIC CONFIGURATION

FIGURE 53 CORRELATION (SQUARE FINNED TUBES) FOR COMPARISON WITH OTHER GEOMETRIC CONFIGURATION

[^0]: FIGURE 18 TEMPERATURE - AVERAGING CALIBRATION $-3 \frac{3}{8}$ INCH FIN DIAMETER AND $3 / 8$ INCH FIN SPACING

