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ON THE PICARD GROUP OF BRANCHED COVERINGS OF CPz

INTRODUCTION

In this paper, we study several properties of a certain class of

complex algebraic varieties culminating in an investigation of their

Picard group. These varieties are double coverings of complex

projective n-space CPn branched over a nonsingular hypersurface.

Already, this setting is sufficiently complicated, however, the tech-

niques involved can be expanded to study cyclic, branched coverings

of more general varieties.

The overall theme of this investigation is to exploit the heavy

dependence a covering has to its branch locus. We relate properties

of the covering to properties of the branch locus which are often

simpler or known.

An extra effort is made to maintain a self contained exposition.

Often well known facts are discussed or stated. This also serves to

fix notation.

The first four sections are devoted to computing various topo-

logical and numerical invariants of these varieties. In keeping with

the theme, they are stated in terms of properties of the branch locus.

It is not surprising that a large set of invariants are similar to that

of both CPn and the branch locus.
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These invariants become useful when the investigation of the

Picard group is undertaken in Section 5. For example, if Tr :W CPn

is a double covering of CPA, it is shown, as a result of the

topology of W, for n > 3 the Picard group of W is infinite

cyclic.

If n 2 the situation is complicated. Consequently, most of

Section 5 is devoted to the case when W is a surface. The problem

of describing the Picard group of a particular covering divides

naturally into two problems--generators and relations.

Generators arise when irreducible curves in CP2 have

reducible inverse image in W. Necessary and sufficient conditions

are given for their existence. There are difficulties relating all of

these curves to the branch locus. This forces one to further divide

the problem by considering two types of curves. The two types are

determined by singling out those for which their only singularities are

locally irreducible. The existence of the first type of curves, that is,

irreducible curves with reducible inverse image and which have only

locally irreducible singularities, can be completely characterized by

certain divisors on the branch locus. The remaining curves evade

such a characterization.

The problem of describing the linear equivalence relations

among the inverse image of these curves suffers the same fate. It is

shown that the linear equivalence relations between the curves of the



first type can be reduced to linear equivalence relations between

divisors on the branch locus.

There remains a very interesting question as to whether all the

generators and relations can be described in terms of the branch

locus. This problem is discussed throughout Section 5.

The results here, go a long way toward describing the Picard

group and in a few special cases, describe it completely. The tech-

niques developed also provide a useful way of producing coverings

with 'large' Picard group, and have some interesting applications to

the classification of surfaces.

3



1. DIVISORS AND LINE BUNDLES

We begin by reviewing some definitions and well known facts

about divisors and line bundles.

Let W be a nonsingular complex algebraic variety. A Weil

divisor of W is an element of the group

Div W = free abelian group generated by the

irreducible subvarieties of codimen-

sion one.

Every meromorphic function f on W defines a divisor (f) by

(f) = (f) -(f)
0 00

where
(f)0

denotes the zero set of f and (f)00 denotes the polar

set of f. The subgroup

Div = divisors of meromorphic functions on W,

is called the group of divisors linearly equivalent to zero. The

quotient

Div WPic W = Div W

is called the Picard Group of W.

4



There is a sheaf theoretic formulation of the above groups, and

is equivalent when W is nonsingular. Define

= sheaf of germs of local holomorphic functions on W.

(y) = sheaf of germs of local nowhere zero holomorphic

functions on W.

ti.rr = sheaf of germs of local meromorphic functions on W

that are not identically zero on any component of W.

A Cartier divisor is a section of the sheaf ety dm* that is, for

some covering 9,6 = (U.) of W, D can be represented by a collec-

tion {f.} of meromorphic functions f. on U. such that
I I I

f if. E r(U.rTh U., 01'0. When W is nonsingular there is an iso-

morphism

r(w, - Div W

given by

f ordX(f) X

X codim 1

providing a natural equivalence between Weil and Cartier divisors.

There is a short exact sequence of sheaves on W

(1.1) 0 -Dt* 0.

5



From the short exact sequence (1.1) we obtain a long exact

sequence of cohomoiogy groups

o r(w, g*) r(w, l'rt* ) r(w, QC) (5t'*) o.

The last zero is because H1(W,111*) = 0 when W is algebraic.

Thus each divisor D defines a ("6-bundle 5D, or alternatively

a complex line bundle we shall denote by [D]. The line bundle [D]

is the trivial line bundle if and only if D is a divisor of a mero-

morphic function. Also, every line bundle is the line bundle of a

divisor. In other words

Div W r(w, - 1Pic W - - H mey*).Div W imr (w, yrt,* )

There are advantages to both formulations. The varieties

studied here will be nonsingular, so we need not distinguish between

Weil and Cartier divisors.

Let V be another complex algebraic variety and Tr :V W

holomorphic. These groups are natural in the sense, that if we

define similar sheafs on V then the diagram

o r(v, 6v*) r(v, -)1*) r(v,061) Hi(v, o'*) o

Tr*i TT* Tri ir*I

0 -' r(w, CY*) r(w,11t* ) r(w, 00') Hl(w, 04) 0

6
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commutes. Quite often the symbol Tr* has multiple uses, e. g. , pull

back of divisors Tr* I (W, ) r(v o(1"), pull back 01 line bundles

Tr* :H1(W, H1 (V, e"="), etc. The correct context will always be

clear, for example, we distinguish between a divisor D and its cor-

responding line bundle [D], so there is no ambiguity in writing

TT* D or Tr*. [D].

There is another short exact sequence of sheaves on W

o z ey* o,

and a long exact sequence of cohomology groups, a portion of which is

1 c1 2
Hl(W, eV) H (W, Or*) H (W, Z)

The homomorphism c1
:H1 (W, (30) H2(W, Z) assigns a line bundle

its first Chern class c1(), and has the following interpretation.

Each divisor D on W determined a homology class. Identifying

ech and Singular cohomology, the Poincare dual of this homology

class is c1[D]. The image of H1 (W, el/*) in H2 (W, Z) is called

the Neron-Severi Group of W.

The dimension of H1 (W, (91) is sometimes called the irregu-

larity' of W and denoted by the symbol q. In case q = 0 the

Picard Group of W is isomorphic to the Neron-Severi Group of W.

This shall be the case for the algebraic varieties studied here.

0lActually the irregularity is defined by q = dim H (W,Q 1), but
1 1by Serre Duality dim H (W, y) = dim H(w, ). See Section 3.



2. SIMPLICIAL HOMOLOGY AND COHOMO LOGY GROUPS

In this section the simplicial homology and cohomology groups

are computed for double covers of CPn branched along a nonsingu-

lar hypersurface.

Let B be a nonsingular hyper surface of degree 2d in CPn.

Let [H] denote the line bundle of a hyperplane H in CPA. The

hypersurface B is defined by the zeros of a section s of [2dH],

the 2d-fold tensor product of [H], and there is a commutative

diagram

X2

[dH] [2dH]

7T\
CP

-1where
X2

is the squaring map. Define W =
X2

° s(CPn). It is

clear W is nonsingular and algebraic. The restruction of TF t

W gives a double covering Tr :W CPn branched along B. More-

over, W is endowed with a natural involution cr:W W that

commutes with Tr. We shall call B = Tr-1(B) the ramification

locus and B the branch locus of the covering 7 :W CPn.

Repeating this construction we have a similar commulative

diagram

8



simplicial maps s
Tr

71.2d

Xd
-

X2

[dF1]--e[2dH1

CPn

branched along B. The advantage of studying W° along with W

is that IAT° can be regarded as a nonsingular hypersurface in

CPn+1 defined by the zeros of the homogeneous polynomial

2dz -f(z z ) where f = 0 defines B in
n+1 0' n

Since algebraic varieties admit simplicial triangulations we

have the following lemma

Lemma (2.2). There are simplicial complexes and

with subcomplexes ct and ki respectively together with

pn.

and s:'" satisfying the
o-

9

where is the dth
Xd

power map.

tative diagram of nonsingular varieties

(2. 1)

As above, this gives a commu-

W

CP

Here Tr
d

g W° W is a cyclic covering of degree d branched

along B and
Tr2d:

WI CPn is a cyclic covering of degree 2d



following properties.

There are homeomorphisms

CP1I, B and lk
(Here the symbol 1336 denotes the space of X, )

The following diagrams commute

H*(W, Z) and H,,(CPn, Z).

(3) For every simplex A E X there is a simplex

such that s (A') = A .

Tr

Let 1 denote the identity map on W. The kernal of the

homomorphism

1 w* - cr H (W, Z) F1(W, Z)

will be denoted by H,(W, Z)+, that is, the 0--invariant subgroup of

Z).

We use familiar notation found in simplicial homology theory.

For example, the simplicial maps s and s induce homo-
a-

morphisms of simplicial chain complexes 74 and cro, the homo-

morphisms of homology groups Tr and o-*. The notation

Z) and Z), being the homology groups of the sim-

plicial complexes and j3c, are used synonymously with

10



Theorem (2.3). There exists an injective homomorphism

Tr :H (CPn, Z) H (W' Z)+ such that the following diagram corn-! *

mutes

(2.4)

where the horizontal maps are multiplication by 2.

Proof. First of all we shall define Tr on the chain level.

In this one case we will use the same symbol Tr for a homomor-

phism of simplicial chain complexes as well as a homomorphism of

homology. Define

Tr! :C q(g,Z) C (1,Z)

by

,+ 2
H*(W, Z) H

2H: (CPn, Z) F14,(CPn, Z),

.) (,6+o- A!)
i #1

where Tr#Ail = A. . The existence of A : is guaranteed by Lemma
1 1

(2. 2), and it is clear Tr1 is independent of any choice of A ! . It
isI

also apparent 7! is a homomorphism and commutes with the

boundary map a . Therefore, we have a homomorphism of

homology groups 1/4(, Z) ott, z).

11



a q-cycle representing [4J] E H( Z). Then

and

and

To establish the commuting of diagram (2.4) let

Tr# Tr !NJ)

Conversely, let 0 =

Tr f(Lp) =

= 24J.

we can write 0 - cr 0 = 0co for some q+1-chain cp. = Tr ALett.
#

then

Tr Tr (0) =
! #

(A.'+o- ')
1. #

Ls 1+7 0 o- )
# i # # i

represent [0] E H(', Z)+. Thus

= 0 + o-

r+cr Al )
i # i

= 20 + 0(cr .

be

12



follows Cr Li
#

Finally, we show that Tr is injective. Let

q-cycle representing [4,] E H (X, Z), and suppose

(A
Id-c#

r A I) 892

where ci9 is a q+1-chain. Suppose co = ya. Each simplex is the
a

sum ay, =
#

+ o- A say Ai', is a q-face of some 'ya . It

is a q-face of either the same simplex or

Therefore Li bounds. This completes the theorem.

be a

o-# a '

13

Therefore Tr Tr, is multiplication by 2.

depending upon whether belongs to or not (recall It I
corresponds to the ramification locus of the covering). Therefore we

can write

= 21-1 + (v+cr v) p

where 8p 0. Let cp - p and note we still have No' = Tr

Now

24i Tr# 0 1T 141 = Tritac01 aTrel

= al.(21-1-1-v+
(34

= 2 0Tr (ri+v)



Theorem (2. 5). Tr*: F1* (W, Z) F1*(CPn, Z) is a surjection.

Proof. Let [] E H (W, Z) be represented by cr.A.. The
1 1

cycle Tr () =

71(0 =

(A!+cr A I) can be written
1 #1

2a.A +
i

cx.(6!+o- A t)
1 1 #1

that is, by cap product with the fundamental class
p.W

E H2n(W, Z).

Explicitly, for any 2n-simplex A let F (A) denote the front

q-face of A and let Fq(A) denote the back q-face of A.

14

E 6C, A.1 /

Now the chain

=

A E

is a cycle and Trio = Therefore
Tr*

is onto.

By the Poinca/4 duality theorem there is an isomorphism

D: Z) H2n-q(W, Z).

It is defined by the formula



Now if is a q-cocycle representing W E Hcl(W, Z) and

represents the fundamental class p. E H2n (W, Z) then
W

(A.)> F2n-q(L.)].
q

Using such duality isomorphisms, the composition

D-1
CP H2n-q(cpn, Tr* 2n-qH (CPn, Z) ----PH (W, Z)PH (W, Z)

gives, a priori, a second homomorphism H (CPn, Z) H (W, Z).

-Theorem (2. 6). Tr = D Tr*o D1
! W CP

Proof. If is the unique 2n-cycle representing

i

N. n
E H2n(k Z) then p. E H 2n(ge, Z) is uniquely represented

WCP
1

by
CrliC/A fr

where again Tr A ' --- : A .
# i i

i 1c=0

Letting be a q-cocycle representing W E Hcl(X, Z) we

have

15



(Tr2d)*

1

,
DwTr*[] = (-1)q[ 2n-q

<TT (o-k,6!)> (k ,).1
q # t

i k=0

1

= (-1)cl[q(Tr a- 1.)> F2n-q(crk# # # i
i k=0

1

= (-1)cl[ <,F (.6.)> a-#(F ( .)!]k 2n-q
q 1

i k=0

= Tr ID []
CPn

(A.)> -F2n-q(L.)]
q

-1Therefore Tr = DW ° Tr* D
! CP

as desired.

As for the other coverings in (2.1) we get similar injections

(TT ) = D 2d(Tr ) d !D and (Tr ) = D (dTr )* D-1 and2d ! cpn
commutative diagrams

+
1-1*(W Z )d

2d H (W )+
2 2d

Tr2

, Z) Z)

16



In this context H(W'Z)+2d

F1*(WI, 7F1*(WI, Z)+d

1-1*(W, Z) Z) .

invariant under the action of the cyclic group of order 2d induced

from the covering
1T 2d-W

CPn; and 1-1*(WI, Z)+ is the subgroup

of F-1(Wl, Z) invariant under the action of the cyclic group of order

d induced from the covering Trd:W' -4' W.

Corollary (2.7). The homomorphisms

Tr*: H*(CPn, Z) H* (W, Z)

(Tr 2d)* : H*(CPn, H*(WI, Z)

(h1 d) : 1-1* ( W, Z ) H* ( W , Z )

are injections.

Theorem (2. 8). The homology groups F1,,,,(W, Z) and

H (W', Z) have no torsion.

Proof. First of all Z) has no torsion because W' is

a nonsingular hypersurface in Pn+1. Secondly, as we have noted,

Ord), H*(W, Z) Z)

(Trd)*

is the subgroup of F1*(WI, Z)

17



is injective. Therefore H (W, Z) has no torsion.

Theorem (2. 9). H (W, Z) H (W, Z)+ for all q n.

n+Proof. Recall W' C CP1 . The automorphism T :WI WI,

T2d = 1w' extends to an automorphism of CPn+1 by the

formula

t"(zo z :z -z:e2Trii2d
zn+1n )

n n+1) = (z 00

Hence we have a commutative diagram

WI C i >CPn+1

T

wi c_L.cpr1+1

The corresponding commutative diagram of homology groups is

H (WI, Z) (CPn+1, Z)

TC1*

i* n+1H (W1, H (CP ,Z)

By the Lefschetz Hyperplane Theorem is an isomorphism for

q < n. Observe is holomorphic and takes hyperplanes to hyper -
_n+ 1planes. It follows induces the identity on H (CP- , Z).

18



19

-1Therefore T* ° 1 = 1= i 0 , for q < n which proves* * W*

H
q

(W', Z) = H
q (W', Z)+2d for q < n. By Poincarg Duality and

Theorem (2. 8) there is equality for q i n. This together with the

fact
(Trd) !

is injective and the involution on W is induced from T

implies the theorem is true for W.

Combining these facts together, we have the following descrip-

tion of the homology groups of double coverings of CPn branched

along a nonsingular hyper surface

(2. 10) Tr :H (CPn, Z) '=' H (W, Z), if q n
! q q

Tr :
!

H (CPn, Z) :-='

Hn(W,
Z)+,

n

Tr* : H* (W , Z) H*(CPn, Z) is surjective,

[H*(W, Z)+] = 2F1*(CPn, Z).

We can find dim H (W, Z) from the Euler-Poincarg characteristic

X(W) From the pair (W, Bw) there is long exact sequence of

homology groups from which we conclude

X(W) = X(W, Bw) + X(Bw).

By Lefschetz Duality X(W, Bw) = x(W-Bw). Substituting we have

X(W) = X(W-Bw) + x(B ).



Since W - B is a covering space of CPn - B

x(Mw) = 2x(CPn-B).

Therefore

X(W) = 2X(CPn-B) + x(Bw)

= 2x(CPn-B) + x(B)

= 2X(CPn) - X(B)

= 2(n+1) - X(B)

X(W) can also be computed from the highest Chern class of W

which we compute in the next section. We conclude this section with

Theorem (2.11). If dim W > 2 then W is simply con-

nected.

Proof. Recall the cyclic, branched covering
Trd:

W' W in

(2.1). Let x E Bw'. Every closed path in W with endpoints at

Trd(x)
is the image of a closed path in W' with endpoints at x.

Hence the map of pointed spaces

Trd (AT', x) (W, Trd(x))

induces a surjection of fundamental groups

(Tr d)* Tr
1

(W 1) Tr1(W).

Again, since W' is a nonsingular hypersurface in CPn+1, W' is

simply connected if n > 2. Therefore Tr1(W) = 0.

20



21

3. ADDITIONAL TOPOLOGICAL AND NUMERICAL INVARIANTS

Let X be a compact Kahler Manifold. Let 'II and "E',3-(

denote the holomorphic cotangent bundle and conjugate holomorphic

cotangent bundle of X respectively. Introduce the following

sheaves on X

A' sheaf of germs of local differentiable sections of the

vector bundle XPT, <. ®

P sheaf of germs of local holomorphic sections of the

vector bundle XPT*x*

= sheaf of germs of local holomorphic p-forms on X.

0Note C2 is by definition the sheaf 0/ , that is, the sheaf of germs

of local holomorphic functions on X.

Some well known results from Hodge Theory are:

The vector spaces Hq(X, ) are finite dimensional and

vanish if p+q > n.

(X, P) HP(X, cl).

(Serre Duality) Hq(X, OP) is dual to

(Hodge Decomposition) Hr(X, C)prq.r Hcl(X, OP)

HP(X,Oq) is computed by the complex (rAP'*,-5-) of OP.

It is convenient to define the numbers hP' q := dim Hq(X, OP). For

example, (2) and (4) imply the useful fact



q = h '0 = h0
1

' = dim H1(X, = 1/2 dim Hi(X, C).

In particular, for the branched double covering Tr W CPn, this

0
'1(W, 0) =and (2.10) implies H if n > 2. This situation was

mentioned in Section 1. We develope it further.

Consider the short exact sequence of sheaves on W

o z Or el* o

where Z is the constant sheaf of integers and CY* is the sheaf of

germs of local nowhere zero holomorphic functions on W. There is

a similar short exact sequence of sheaves on CPn. From each we

get long exact sequences of cohomology groups, and from a portion of

these long exact sequences we get a commutative diagram

H1(W,) H1 (W,*) H2(W, Z) H2(W, CY) -.-

7i* 7* I
Tr* I Tr*

I
H(cpn, 0, .c,

Hi(CPfl,
1

) H2(CPn, Z) F12(CPn,

By the above result, this reduces to

(3.1) 0 Hl(W,&*) Hz(W, Z) H2(W, CY)

I
0 -"'" Hi(CPfl, lY''t.) 1" H2(CP, Z) H2(CPfl,

22
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p the map

,,,,Lemma (3. 2). Tr* :HI (CPn, a * ) HI (W,&*) is an injection.

Proof. This follows from the above diagram and the fact

TT* H2(CPn, Z) H2(W, Z) is injective.

Now we compute the total Chern class of W, where again

Tr :W CPn is double covering of CPn, branched along a non-

singular hypersurface of degree 2d.

Suppose p E Bw. We can choose local coordinates

2.1' '... Sn centered at 13 with Bw defined locally by I '' = 0;
n

and local coordinates. 1 zn centered at Tr(p) E B with B

defined locally by zn = 0; and such that Tr has the local descrip-

tion

2
Trrg

,... 7 ) = (2- .. 7 'i'' ' ) .
l. ' - " z n-1' n ' n-1, n

Let TW nand T denote the holomorphic tangent bundles of W
CP

and CPn respectively. There is a short exact sequence of sheaves

(thr),,,
0 Ctrw) 01(Tr*T ) ---` A 0

CPn

where xf is supported on B. In terms of local coordinates at
W

23



is given by

n

j=1

(thr),,,, : 0(Tw)p 6(11-*T )

Pn p
C

a- ) 1---z. p
J

n-

There is another exact sequence of sheaves

0 --* 6([Bw.]) ---' a([2Bw]) --'" 0

where F is concentrated on Bw. In terms of local coordinates,

the first map is defined at each stalk over p E
BW

by

(a)p I---*.
(a 7)np .

This implies the quotient sheaf 3" is isomorphic to ,s, . Since

these sheaves are coherent, the Chern character is defined. From

the two exact sequences we get

ch e[2Bw] = ch (Y[Bw] + ch 47

ch( 017r*T ) = ch( eTw) + chi:4-
CPn

Eliminating ch A we obtain the formula

ch(CYT ) = ch( eiTr *T ) + ch(MB ]) - ch(ei[2B ]).W W
W CPn

24
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The corresponding total Chern class is

c(T ) = c(rr*T )c([B ])c([2B
CPn

If we let hn
denote the dual cohomology class of a hyperplane

in CPn we have

-
c(T ) (1+Tr*.h )n+1(1+thr*hn)(1+2thr*h )1

since Tr* [d1-11 = [B ], by Theorem (2.3) and Lemma (3. 2).

Next we relate the Canonical Bundle of W to the canonical

bundle of CPn. By definition, the canonical bundle of W is the

line bundle Xn'T).. If co is a meromorphic section of C2n then

w defines a divisor K on W and [K] = XnT* . Let go be

a meromorphic n-form on CPn. We can pull back to a mero-

morphic n-form 7r*cp on W. In terms of local coordinates

. . . centered at p E Bw and z z centered at1, 1 " n
Tr (p ) E B

49 = f(z 1, . , zn)dz1A...A dzn

2
Tr* cp = 22" f(2.. . . )dz A. . Ad' .

n nn 1

Therefore we have the following formula of divisors

Kw = Tr*K +B .
n WCP
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Therefore

(3. 3) [Kw] = Tr*[-(n+1)H] (8) Tr*[dH]

= 7*[(d-n- 1)H].

and

(3.4) hn' ° = dim Fl°(W, On) = dim AW, aTr*[(d-n- 1)H]).
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4. THE SHEAF Tr a* w

We continue our investigation of double coverings Tr : w CPn

with nonsingular branch locus B in CPn. We can apply the push

down functor
Tr*

to the structure sheaf 0. of W and obtain
W

the sheaf Tr a on CPn.* w

Lemma (4. 1). Tr 01 is locally free.* w

Proof. Let x E CPn and suppose x does not belong to the

branch locus B. Then there is a small neighborhood U of x

such that U is evenly covered by Tr- '(U). Therefore

-1rw, IT Cr ) = r (Tr U' 01w) = rw, 0, )4* r(u, Ce n).* w
cPn CP

Now suppose x E B. We can choose a neighborhood U of x

with local coordinates zl' .. zn centered at x such that B is

defined locally by zn = 0, and local coordinates Zi, ... ,Z"
n

centered at Tr- 1(x) such that
BW

is defined locally by 'In = 0,

and IT is given locally by

2
(2' . . . n)

h' (T1' . . .
' n- 1 ' a'n) .1 , ,

-
Any f E r(u, Tr* (..9'w ) = r (Tr1U , aw) can be expressed as a power
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fl() =

CO

f(2") = a (21)2'.e
n

=0

where '2' = (2'1'
. . , 21n-1). Let

00

fo(Z) = a ( )-1)
2.e n

1=0

00

.Q=0

It follows

f(21) = f (11,12) + f ZZ)
0 n n 1

= f0(z) + -f (z).n 1

The

F(Tr-1U, 6w) r(u, 63e )st Znr(U, ),
CPn CPn

which proves Tr 01w is locally free.

Let I denote the trivial line bundle on CPn.

Theorem (4. 2). Tr* &147..--=- (5V(I [-d111), where the direct sum

means Whitney sum of line bundles.

4.12

a2.e +1(z )zn .
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Proof. Since Tr. 1;,' is locally free, it is the sheaf of germsw

of local holomorphic sections of a vector bundle E of rank two.

The involution o-:W W defines a vector bundle involution cr

of E, and each fibre of E is the direct sum of the eigensubspaces

of P . To see that E is a Whitney sum of line bundles let

9.A,= (U.)1 be a covering of CPn by coordinate neighborhoods
11=

such that E is defined by the 6/1.-cocycle {g.}. Locally CT is

given by a collection {6-\.} of holomorphic functions

U. X C2 U. X C
1 1

satisfying
A2

= 1
i U.XCZ

A = g. .o.
1 13 13

onUU.
1

There is a holomorphic change of coordinates, after possibly

choosing a smaller open covering of CPn, such that on each fibre

A
i

is a diagonal matrix consisting of the eigenvalues of (1. Since o-

is sheet interchanging the eigenvalues are 1 and -1. More pre-
,cisely, there is a collection {Ti.N

t 1=1

T. e F(U., GL(2, C)) such that
1. 1

of local sections

1
T.& T.1

1
= A =

{.1 0

1 1 1 -
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-
for all x E U., 1 < i < N. Let g:. = T.g..T.1

, then at each point
1 13 1

of U. U. we have
1

Ag jA.- 1 = AT igiiT;lA

-1 -1
= cr T.

1 1 13 j 3

= T.g..T -1
1 j

g:j

This implies g:.(x) is a diagonal matrix for each

X E U. (Th U.. Therefore, the structure group of E can be reduced

to 61* ED (1*. This is equivalent to E being the Whitney sum of

two line bundles.

Let Ll and L2
denote these two line bundles. We shall

consider their pull back to W. The new local coordinates are simi-

lar to those we used above:

1,
... , in Tr-1(U.)

z1, , z in U.

such that= 0 defines Bw in Tr -1(U.), Z = 0 defines B in
n

U. and
1.

Tr(zz ) = (z ... z (z ) ).
1' 1 .. n-1' n



Recall from the proof of Lemma (4.1) that in these coordinates the

local sections in F(Tr 1U, 0' ) have the form

f(zi) + Ti f (zi).
n 1

Hence the Tr -cocycle 1 = {g! TT} has the form

The refore

31

Therefore, one of these line bundles, say L 1, is trivial when

pulled back to W; and the other is the dual to the line bundle of the

divisorB that is, Tr*L2
= [-B] = Tr*[-d1-1]. Since Tr* is

W'

injective this proves the theorem.

Corollary (4.3). dim Ho(W, O'Tr*[mF1]) = (m+n ) + (m-d+n).

Proof. The functor 7,1/4 does not effect cohomology so

0(W, .0/ 0 n bk.
H Tr*[mH]) = H (CP Tr 0 Tr*[mH]).

By the projection formula

Tr eTr*[mH] = Oi[mH] CS) Tr, 8(w



z./z. as a function on ir-1(U.r-N U.) then31 1 3

-.1
Tr a-cocycle representing the line bundle

-
There are holomorphic functions h. on Tr' (U) such that

h. (z /z., z /z.) = f(z /z z /z.)
1 0 n 1 0 i' n

and h. /h. (z. /z.)d13 3 1

s .quareroot on Tr-1(U.) Let N/ f denote the collection {h.}, and

we shall call Ni f a form of degree d on W.

If m is a positive integer then by the above discussion homo-

geneous forms of degree m define sections of Tr*[mH].

Corollary (4.4). Every section of Tr*[m1-1] is defined by a

homogeneous form of the type

Tr, (Yrr*[mH] [mH] 9'(I

431 e[(rn-d)H].

It follows

dim HO(CPn, IT*
0/Tr4c[mli]) = (m+n) + m-d+n)

Let f be the homogeneous polynomial of degree 2d that

defines the branch locus B. Let CU= (U.)n1. be the covering of
1 1=

CP by affine open sets U. = {(z - z )1 z. 0}. The CU-cocycle
1 0 n

{(z./z.)na} defines the line bundle [mH] on CPn. If we regard31
{(z./z.)"}31
Tr* [rriFI]

is a

since f(z /z z /z.) has a holomorphic
0 n
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RN/ f + Q if m > d

if m < d,

where R and Q are homogeneous polynomials in CPn of

degree m-d and m respectively.

Proof. As R and Q vary we get a subspace of sections of

dimension

(m+n) (m-d+n)

So by Corollary (4.3) this subspace must be all of AW,(Yrr*[mH]).

Corollary (4.3) also provides a way of computing the topological

index of W when n = 2. The quadratic form, induced from the

intersection pairing on H2(W, R), has p+ positive eigenvalues

and p- negative eigenvalues. The index T(W) is defined to be

the signature of this quadratic form

, +
T(W) = p - p .

Using the highest Chern class of W one computes

dim H2 (W,R) = p+ + p- = 2 + (2d-1)(2d-2).

By the Hodge index theorem [Hirzebruch; 5]

p+ = 2h20 + 1.
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By (3.4), h2' dim H()(W, eYTr*[(d-3)H]), so by Corollary (4.3)

2 0 1
h = (d-1)(d-2). Combining, we arrive at the formula

T(W) = 2 -2d2.

An alternate method of computing the index of W is by Hirzebruch's

index theorem [Hirzebruch; 51 using the Chern classes of W which

we have computed:

12
T(W) = (c1-2c2),

or by the G-signature theorem given in [Hirzebruch; 6].

Additional properties of branched coverings of CPn which

includes a useful characterization of the Hodge filtration of W can

be found in [C. H. Clemens; 2].
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5. THE PICARD GROUP

In this section we investigate the Picard group of W where

Tr W CPn is a double covering of CPn, branched over a smooth

hypersurface B of degree 2d. From diagram (3.1) we have an

injection

(5.1) Hl(W, Cygt) HZ(W, Z)

and by (2.10)

H2(W, Z) Z if n> 3.

This implies Pic W Z and is generated by Tr*[--1] if n > 3.

Therefore, for topological reasons, the Picard group of these

branched double covers have a simple description if dim W > 3.

On the other hand, we have found that the rank of H2 (W, Z) can be

large when W is a surface. There is of course no guarantee that

Pic W is large on this basis alone.

The approach taken here is to describe the Picard group of W

in terms of properties of the branch curve B. This is a natural idea

because specifying a branch curve B completely determines the

covering Tr :W CP, therein, one expects special properties of

the surface W to reflect themselves in special of the branch curve

B. We have seen this is so for the topology of W, and because of
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(5. 1) some of the topological properties of the covering Tr : W CP2

will be useful here.

Fix such a double covering Tr :W CP2, with a branch locus

B and involution o- :W W. Let us agree to write the group opera-

tion of line bundles additively, thus if L and L' are two line

bundles, we write L + L' instead of L 03) L'. Suppose L is a

line bundle on W such that cr* L = L. By (5. 1) we can regard L

as a cohomology class. By Theorem (2.3) the homomorphism

o

!
Tr* H2(W' Z)+ H2(W' Z)+ is multiplication by 2. Dual to this

is Tr* Tr H2 (W, Z)+ H2(W, Z)+, which is also multiplication by 2.

Since L E H2(W, Z) we have

2L = Tr* o Tr L Tr*[mli.]

for some integer m. Using the intersection pairing on H2(W, Z)

4L = (Tr*[mH])2 = 2[mFI] = 2m2

Therefore m is divisible by 2. This implies L = Tr*[(m/2)H]

because there is no torsion in H2(W, Z). Thus we have shown

Lemma (5.2). Every o--invariant line bundle on W is the

pull back of a line bundle on CP2.

If L is an arbitrary line bundle on W we get a cr-invariant

36

line bundle by forming the sum L + o-* L. Therefore, character izing



the Picard group of W divides into two problems: (1) Describing

the irreducible curves in CP which have a reducible inverse

image in W, and (2) finding the linear equivalence relations

among the components of their pre-images.

Generators. By Lemma (3.2) and the above discussion we can

always take Tr*[1-1] to be a generator of Pic W. We will character-

ize the existence of additional generators.

Let C be an irreducible curve in CP2.

-1Lemma (5.3). A necessary condition that Tr (C) is

reducible is that the local intersection

(C B)x = 0 mod 2 for all x E B.

Proof. Suppose Tr*(C) = A + A* where 0-*(A) = A*. Let

x E B and set y = Tr-1(x). Then

(C B) = (Tr*C B )W y

= (A BW)y + (A* B )
W y

= 2(A BW)y

since

(A B ) = (cr*A 0-*B ) = (A* B ) .W y W y W y
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Let j:B CP2 denote the inclusion of B in CP2. If C

is a curve in CP2 (not necessarily irreducible) that satisfies

(C B)x = 0 mod 2 for all x E B we can define the following effec-

tive divisor

1D=
2

XEB

Thus 2D = j*C.

On the other hand, an effective divisor D which satisfies

ZD j*mH (-I denotes linear equivalence of divisors) implies the

existence of a curve in CP2 satisfying the necessary conditions of

Lemma (5. 3 ).

There is some classical language that is useful here, called

residuation [Basset; 1].

Definition (5.4). A divisor D on B is said to have zero

residual, written res [ID] = 0 if D is the restriction of a

divisor of degree m in CP2. If D and D' are divisors on

we say D is residual to D' if res [D+DI] = 0.

We state some basic properties of divisors on B using the

language of residuation:

(a) If res [D] = 0 and resn[D1 = 0 then

resm+n[D+DI] = 0.
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(b) If res [D] = 0 and k is an integer then reskm[kD] = 0.

The subscript m in the definition, referring to the degree of the

plane divisor, is not always important. So in some cases m is

suppressed. Thus res[D] = 0 simply means D is cut out on B

by a divisor of CP2.

We now turn to sufficient conditions. Let Cm be an

irreducible curve of degree m in CP2 such that

(C B) = 0 mod 2 for all x E B. The sum / 1(C B) xm x 2 m x
XEB

can be regarded as either a divisor DB on B or a divisor D

on C .

Recall the construction of the covering W branched along B.

(5. 5)
X2

[CM] [2d1-1]

Tr \ s

CP2

111

where s is a section of [2d1-1] which defines B and
-1

W =
X2

s(CP2).

Letting i:C CP2 denote the inclusion of C in
CP2rn

we can restrict diagram (5.5) to C



x2
i*[2dF-1]

Cm

Theorem (5. 6). rr*(C ) is reducible if and only if

[D =

Proof. If [DC] = i*[dH] then there is a homogeneous
rn

polynomial of degree d in CP2 which when restricted to C

vanishes on D and nowhere else. Hence, this polynomial

defines a section s' :C i*[dEl] such that

X2 ° = (constant). s

Therefore, rr*(C ) is reducible.

Conversely, if rr*(C ) = A + A*, then there is a section

s': C i*[dFl] such that sI(C ) A. Now A defines a divisor

on the zero section of iqdH]. By identifying C with the zero

section of iqd1-1], the line bundle of this divisor is clearly equal to

C
and i*[dFl].

rn

We can use this theorem to provide sufficient conditions for the

existence of such curves. We state the conditions in terms of

divisors on the branch curve B. Let HB denote the divisor on B

obtained by restricting a hyperplane H in CP to B.

40
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Theorem (5. 7). Let D be a divisor on B of degree md

such that

resm[2D] = 0 but res[D] 0.

(D) > ((m-d)H ).

(dHB-D) > ((d-m)HB).

Then there is a curve C of degree at most m such that each

component of C has reducible inverse image. We abbreviate (D)

for dim FI°(B, CY[D]).

Proof. Conditions (i) and (ii) imply that D, or a divisor

linearly equivalent to D, is effective and there is a curve C of

degree m satisfying (1) D = (C B) x (2) not all com-
2 x

X E B

ponents of C are multiple curves.

Condition (iii) says there is a polynomial Q of degree d in

CP that vanishes on D and that Q does not vanish identically

on C. If however Q vanishes on some component of C, say
1

CI' then we define D1 = (C-C1 B)x x and apply the
2

xEB

theorem to D1. This is why the conclusion asserts the curve

has degree at most m.

The existence of the polynomial Q implies [D] = igc[d1-1]

where i:C -4" CP2 is an inclusion. Therefore by Theorem (5.6)



1
E =

yE TT (C - B

(A A*) Tr(y)

The divisor is nonzero if and only if A meets A* away from the

42

each component of the curve C (of degree at most m) has

reducible inverse image in W.

There are some interesting observations from Theorem (5. 6)

and Theorem (5.7). First of all, if the conditions of Theorem (5. 6)

are satisfied for a curve C, then deg C < 2d. This does not mean

the only irreducible curves in CP that have reducible inverse

image in W must have degree at most 2d. There is a way of

characterizing all irreducible curves in CP2 that have reducible

inverse image.

Let g be a homogeneous polynomial of degree m that

defines an irreducible curve C in CP2 such that Tr*C is

reducible. Write Tr*C = A + A*. Note that A = A* B = md.

Now A meets A* in at least md points (counting multiplicities),

that is, over the points where C meets B. If A A* = md then

A defines a section s :C iqd1--1] as in Theorem (5. 6) (A*

defines -s). Hence m = deg C < 2d.

In general A -A* > md, so we define the following divisor E

on C:



ramification locus B . If it is nonzero, neither A nor A*

defines a section of i*[dI-11.

Suppose the branch curve B is defined by a homogeneous

polynomial f of degree 2d, and let R be a homogeneous poly-

nomial of sufficiently large degree, say so that R vanished

on the divisor E. We will use Theorem (5. 6) to obtain a relation

between the polynomials g, f and R. The idea is to form a new

double covering such that the degree of C is less than the degree

of branch locus.

There is commutative diagram of holomorphic maps between

the total spaces of line bundles

(5.8) [dH] [(c11-/ )H]

X2
I

1 X2AZ[2dE1]-> [2(d+f )H]

The map X2 has been defined in Section 1. The map

[cu-]] [(d+f )1-]] is given locally by a collection

U. X C U. X C

by

(z,R(z /z z /z.)-t)
0 n

where U. = {(z )1z. 0}. It is clear diagram (5.8) also corn-
0 n

mutes with projection to CP2.

1Z.
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A-0
We can form a double covering 'if: W CP2 branched along

the reducible curve t of degree 2(f +d) defined by the zeros of

R f. This covering is different from the other coverings we have

considered in that W is a singular algebraic variety, however, it

possesses many of the properties that the nonsingular double cover-

ings have. In particular, Theorem (5. 6) is applicable.

A,-1If C is as above, then R(Tr C) = Tr C. Therefore Ti*C is

reducible in W. Write i'f*C = A + A*. Note that we can form the

divisor

1 ",
D (C B) x.

x
xE B

We can apply Theorem (5. 6) and conclude there is a homogeneous

polynomial Q of degree dig in CP2 that vanishes on D.

Let F be the unique effective divisor on B such that

D + F is defined by Q = 0; that is, F is the other points where

Q meets B. Since
res2(d+1 )[2(D+F)] = 0 and resm[2D] = 0 it

follows res2(d+i )-m[2F] = 0. Therefore, there is a homogeneous

polynomial h of degree 2(d+f )-m such that h = 0 defines 2F

on B.

Lemma (5. 9). We have gh = R2f - Q2, after possibly multi-

plying h and Q by some appropriate complex numbers.
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Proof. Since gh 0 defines 2(D+F) on /1. and Qz = 0

also defines 2(D+F) on 13 it follows some linear combination of

the two vanished identically on B. Since '13/ is defined by R2f = 0

and

deg gh = deg Qz = deg R2f

we get the desired equation.

Theorem (5.10). If C is an irreducible curve in CP2 such

that ) is reducible and C has only locally irreducible

singularities away from B, then one of the following holds.

deg C < 2d, and neither of the two components of Tr-1(C)

is linearly equivalent to a divisor pulled back from CP .2

deg C 2d, and both components of Tr-1(C) is linearly

equivalent to 7* dH.

Proof. By Lemma (5.9) there is an equation relating f and g

(5.11) gh = R2f - Q2

Examination of (5.11) implies if C has only locally irreducible

singularities away from B then deg R 0. Hence

(5.12) gh f - Q2

45

so deg g < 2d.



If deg C = 2d, then deg h = 0 and (5. 12) becomes

g = f - Q2

It follows the two components of Tr-1(C) are defined by zeros of

"if-Q and NI f + Q. Therefore by Corollary (4.4) if deg C = 2d

then each component of Tr-1(C) is linearly equivalent to Tr*dH.

This proves (ii).

Next assume m = deg C < 2d. In this case, C satisfies the

conditions of Theorem (5. 6) because Q is a polynomial of degree

d that vanished on D =
1

(CB)x
xE B

x. As pointed out above,

-1when this condition is satisfied, the two components of Tr (C)

meet only on the ramification locus B in W. Thus

(5. 13) A A* = md

2m2 = [Tr*C]2 = (A+A*)2 = 2A2 - 2A A*

Assume, for a contradiction, that either A or A* is

linearly equivalent to the pull back of a divisor on CP2. Now the

rank of the subgroup of cr-invariant line bundles on W is one.

Hence mA nA*, but A2 = A*2 and both A and A* are

effective, so we can conclude A -I A*, which in turn implies

A2 = A A*. But this together with (5. 13) forces deg C = 2d which

we have assumed is less than 2d.
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We can say more about the singular set of these curves.

Corollary (5. 14). Suppose C satisfies the hypothesis of

Theorem (5. 10), then C is nonsingular at each point of B cm C,

that is C is totally tangent to the branch locus B.

Proof. If F is a homogeneous polynomial in CP2 let vF

denote (8F/8z0' 'BF/az aFiaz2). Thus F is nonsingular if vF

never vanishes.

Again let f(zo z1, z2) = 0 define B and g(zo'z1,z2)
define C in CP2. By Lemma (5.9) we have an equation

gh = f - Q2

Applying V we have

gvh + hvg = vf - 2QvQ.

At each point of B rm C this becomes

hvg = vf

because Q = g = 0 on B r--N C. Therefore, Vg 0 on B rm C

since B is nonsingular.

When we relax the assumption that a curve C has only locally

irreducible singularities away from B there is no bound on the

degree of C. We shall investigate this situation, but first we discuss
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another interesting observation of Theorem (5.6) and Theorem (5.7).

Suppose D is a divisor on the branch curve B that

satisfies conditions (1), (ii) and (iii) of Theorem (5.7). There is a

certain symmetry to these conditions, because the divisor

'15= dHB - D also satisfies conditions (i), (ii), and (iii). Therefore,

to the divisor D there corresponds a curve C of degree at most
-1 e...,m such that TT (C) is reducible and to D there corresponds a

".., -1 ".,curve C of degree at most 2d-m such that Tr (C) is reducible.

We make the following definition.

Definition (5.15). Suppose C and CI are curves in CP2

such that each irreducible component of C and C' has reducible

inverse image in W. We say C is residual to C' if the divisors

D = (C B) x and D' =
1

2 x
(C' B)x x are residual

2

xEB X E B

divisors on B, that is res[D+DI] = 0.

"..,
According to this definition C and C are residual curves.

This observation and language will be useful when relations are dis-

cussed.

We return to the general case of describing the irreducible

curves in CP2 such that their inverse image is reducible. It may

happen that a totally tangent curve of arbitrarily large degree may

possess reducible singularities (e.g. double points) that forces



-1
Tr (C) to be reducible.

(5. 16) ><D
>CD

LTr 3
odd even

Topologically, the singularity creates a loop in C which 'winds

round' the branch curve an odd number of times (see diagram (5. 16)).

More precisely, suppose C is irreducible, Tr*C = A + A*, and

C does not satisfy the conditions of theorem (5. 6). As we have

pointed out, when this occurs A meets A* away from the rami-

fication locus
BW' If (A A*) 0 for y B then

(A A*) I 0 so the additional contribution to
0-(y)

by 2, so we can write

(5.17) A A* = md + 2X .

Theorem (5. 18). Let C be as above and suppose that A

(and hence A*) is not linearly equivalent to the pull back of a

divisor on CP2. Then

1
X > (m2 -2md).
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Proof. By the Nakai-Moisizon criterion [Hartshorne; 4], the

ramification locus Bw is ample. Clearly (A-A*) Bw = 0, so

by the Hodge index theorem

0 > (A-A*)2 = 2A2 - 2A .A*,

with equality if and only if A -I A* (since H1 (W, icy) = 0). By

(5.13) A2 = m2 - A A*. Combining this with (5. 17) we get

> (m2-2md).
4

We have given necessary and sufficient conditions for the

existence of additional generators of Pic W. The previous theorem

enables us to divide them into two types. Those arising from curves

satisfying the conditions of Theorem (5.6) constitutes the first type.

By Theorem (5.7) these relate nicely to the branch curve. The other

type arises from factors of polynomials of the form R2f - Q2, and

we may assume they have degree greater than the degree of the branch

locus. Relating the second type of curves to the branch locus may

require more than simple conditions similar to those in Theorem (5.7).

Relations. Suppose C and C are irreducible plane curves

satisfying the conditions of Theorem (5.6). Then C and a' lift

to reducible divisors in W. We can write Tr*(C) = A + A* and

Tr*C = A + A*. There is of course no natural way to distinguish A
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from A* except that A* = o-*A, likewise for A and A*.

Nevertheless, we can specify linear equivalence relations between the

divisors A, A*, A and A*. In some cases, they are determined

by linear equivalence relations between the divisors

',D= (C B)x x and = (C B) x on B.
2

1 1

xEB xE B

Theorem (5.19). Let C and /o' be as above. If

resd [DC +DHC
= 0 then, after possibly relabeling, we have

A + Tr*dH.

Proof. Suppose g = 0 defines C, h = 0 defines C and

f = 0 defines the branch curve B. If resd[Dc+De] = 0 there is a

polynomial Q of degree d that vanished precisely on D +
C C

The polynomial g h of degree 2d vanished precisely on

2D + 2D".' hence after possibly multiplying h and Q by
C

appropriate constatns we have

gh = f - Q2

Using this, we can label the components of Tr*C in such a way

that if Tr*(C) = A + A* then A is defined by g \If+ Q = 0.

Also, we can arrange it so Tr*(C) = A + A* and Z is defined by

h = N/ f + Q = 0. Thus A + A is defined in W by the zeros of
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f + Q. But NI if + Q defines a section of 7*[d1-1]. Therefore

A + A -1 Tr*dH.

nJ
According to Definition (5. 15), C and C are residual

curves. We have proven there is a relation between the inverse

image of residual curves. As an example, suppose Tr :W CP2 is

a two sheeted covering of CP2 branched along a smooth quartic

curve B4. A quartic always admits a bitangent L. L must

satisfy the conditions of Theorem (5. 6) because it is simply con-

nected. This implies there is a plain conic passing through the points

p1 and pz where L is tangent to B4. This conic also passes

through six other points of B4 say p3, p8. There is a cubic

curve C totally tangent to 54 at the points p3, p8 and C

is a residual curve to L. Now Theorem (5. 19) implies we can write

Tr*(L) = A + A* and Tr*C = B + B* and there is a relation

A + B Tr*2H

As pointed out above, a curve C of degree m that satisfies

the conditions of Theorem (5.6) has a residual curve of degree at

most 2d-m. This implies we need only consider such curves of

degree up to half the degree of the branch curve.

To view the problem of describing all linear equivalence rela-

tions in W, let Bw W be the inclusion of the ramification



locus in W. The restriction of line bundles on W to B gives

a homomorphism

p.* : Pic W --' Pic Bw .

Since the involution o-:W W is the identity on B the subgroup

of line bundles of the form L - cr*L is contained in the kernel of

p.*. Because of this, we shall mean by 11* the homomorphism
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(5. 20) Pic W Pic B .{L L}

The precise form of the kernel of p.* is unknown. As a

starting point, I make the following conjecture and then investigate to

what extent it is true.

Conjecture. The homomorphism la* in (5.20) is injective.

A convenient way of looking at this is to return to the use of

divisors. We can choose a set of divisors {A1, , AN} of W so

that the line bundles

[A1], , [AN] and Tr*[H]

form a basis of Pic W. We can also choose Al, , AN to be very

ample. There is a positive integer mi assigned to each A.

because



Tr*m.H - A +
I

A.

for 1 < i < N.

Thus every divisor D in W is linearly equivalent to a

divisor of the form a.A. - miT*H; and since
I 1

'2AL-12Ai - + m:frItH we may replace the coefficients a. by 1.

So we write

D EA. - mTr*H mod{E-T*E}II
1.

where E is either 1 or 0.

Suppose D is a divisor and [D] E ker IL*. We claim

D -o-*D. To see this, observe D + cr*D -i2 ri-r*H for some integer

r, but r must be zero because 0 -z (D+cr*D)Tr*FI = Zr. There-

fore line bundles in the kernel of [I* are skew invariant. Con-

versely, a skew invariant line bundle L satisfies

41* L = 11* ( L - o-*L ) = 0

and so determines a point of order 2 in Pic0 B . To show

is an injection, one must show that skew invariant line bundles, not

of the form L - IT* L, restricts to nontrivial half-periods in

Pic0 Bw.

Define a skew invariant divisor to be a divisor D such that

[D] = -0-*[D]. If D is a skew invariant divisor then clearly
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Pic W skew
{L-cr*L}

Pic W Pic W
cr*. {L-cr*L} {L-cr*L}

a.m. = 0 mod 2}
1. 1 I., 1 I.
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D Tr*H = 0. By replacing D by its linear equivalent representative

E .A. - mir*H modulo{E-o-*E} it follows

0 = D-1r*F1 = E A Tr*H - mr*H ir*H11

E /71. - 2M..
I. 1

This motivates the following definition. Define the group

Provided at least one of the m. are odd, we have an exact sequence

ZN Z
o

2ZN
2Z

where the first map is aA. I-- (al' ... , aN) and the secondii

/(al'aN) I-' airni Note that )4 /241 is isomorphic to

i

the skew invariant subgroup of the involution

We have a homomorphism.

(5.21)
2

PicoB



given by

/ A. )1c

Its image is contained in the half-periods of Pic0 B .

At this point, we mention a topological analogue of (5.21).

Recall that H2(W' Z)+ denotes the 0--invariant subgroup of

H2(W' Z). It is useful to define the skew invariant classes as elements

of
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Z2
H2(W' Z)+

Now there is a way of assigning to each skew invariant class an

element of Hi(B, Z2), which topologically can be identified with the

points of order 2 in PicoB. Interestingly, the point of order 2

will be zero if and only if the class is of the form t - cr* .

This is done as follows. Let {D} be the pencil inS SEUre

CP2 spanned by the branch locus D = B and the divisor D =2C,
0 00

where C is a nonsingular curve of degree d that meets

transversally. If C is sufficiently general the pencil has irre-

ducible singular fibres Dt, , Dt consisting of only one ordinary
l r

node. Associated to the singular fibres are so called vanishing cycles

Nil in B that generate H1 (B "Z) where each of the vanishing



cycles bound 2-cells Ei, ... , Er in CP2.

Corresponding to this pencil, there is a pencil {ffs}
S E....r-

,.....r.,1

W, spanned by 50 = Bw and -61c = Tr - 1(C). This pencil is

actually parameterized by a two sheeted covering CP1 ---'' CP],

branched over 0 and co The covering is defined by

(s0 : s1) (s
2

0' s2).

Lemma (5.22). {-DI }
1

is a Lefschetz pencil.
SE CP

Proof. The ramification locus B is defined by the zeros of

the form NI f and 1r-1C is defined by the zeros of a homogeneous
1

polynomial Q (regarded as a form on W). If (so, s1) E CP

then 1Y = s Nil* + s Q and D = s N./f - s Q are members of this-ss 1 0 1 0

pencil lying over Dt = tif - t0Q2 where (t0 : t1) = (s0 :s ) Now
1

2 2

bs has one ordinary node if and only if
Dt

does. Also, since

Tr- 1( C ) is nonsingular, we conclude {ffs} 1
is a Lefschetz

s Et.....,...1-'.,,

pencil.

This pencil has singular fibres

s -s5s
1 1/

5- sr

lying over DD . The 2-cells E1, Z lift to 2-cellst tr

r ''r' . rir
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with the same vanishing cycles {N.} (using the isomorphism between

B and B). The skew invariant classes can be represented by

cycles of the form r.-r!).
I I

The homomorphism Tr* : H2(W, Z) F-12(CP2, Z) is onto by

Theorem (2.5), and H2(W, Z)+ maps isomorphically onto

2H2(CP2, Z) by Theorem (2.3). This implies the homomorphism

H2(W,
Z)

2
Tr*. Cit) Z2 H2(CP, Z2)

H2(W' Z)

is a surjection.

Using the pencil {Ds} 1
C. H. Clemens [3] has proven

's Ear
there is an exact sequence

a H2(W' Z) Tr

(5. 23) 0 Hl(BW' Z2) Z2 >
(W

H2
(CP2

' Z2 ) 0

H
2 '

Z)+

where the injection a is given by {Yi} I {r-r}.
Returning to the group /24, we clearly have an injection

jep
H2(W, Z)

+ Z22 jett. 2
H (W, Z)

This homomorphism is given by first forming the line bundle

associated to a representative divisor in , then assigning to this



line bundle its first Chern class in H2(W, Z).

Lemma (5. 24). Using the duality between

Z2 and
H2(W Z)H2(W' Z)

H2(W,'Z)d-
® Z2'

the image of /24 is contained in the kernel of TL,.

Proof. If a.A satisfies a.m. = 0 mod 2 then
1 1 I

H2(W' Z)

ce.Af Tr*4mH.II
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It follows Tr sends the homology class of iAi to the

homology class of a curve of degree 2m in CP2, which is zero

in H2(CP2' Z2).

Thus, there is a topological way of assigning to each skew

invariant line bundle a point of order two in Pic0 B which is zero

if and only if the line bundle is of the form L-o-*L.

It is an open question whether the homomorphism (5.21) is dual

to the homomorphism a.

We can summarize the entire problem via the homomorphism

in (5.2 1). The problem of finding generators reduces to finding

half-periods in the image of (5. 21), and the problem of describing



relations reduces to describing the kernel of (5.21). The results

given here deliver a partial answer to each, their greatest asset

being their constructive nature.
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6. APPLICATIONS

The direct application of the results in Section 5 depends of

course on how much is known about the branch curve. To illustrate

how the geometry of the branch locus relates to curves on the surface

W we will apply these results to a double covering branched along a

smooth quartic curve. In this case, much is known about the branch

curve.

Also, some properties of the branch locus translate to intrinsic

properties of the surface. For example, we will give a criterion for

a double covering branched over a nonsingular sextic to be elliptic.

Before giving these examples, we introduce some additional structure

of Riemann surfaces.

Let C be a Riemann surface of genus g > 2. We define the

Jacobian variety of C to be

1H (C,C1) -
J(C) = group of line bundles on C

Hl(C, Z) of degree zero.

Choose a basis CA)

1 '
. . O.) of Abelian differentials for C and

consider the complex torus obtained by forming the quotient of Cg

by the lattice A consisting of the vectors

1' wg
E H1 (C Z).

(k) '
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After choosing a base point b0 in C, Abels theorem and the

Riemann-Roch theorem implies every line bundle in J(C) is the

line bundle of a divisor of the form P1 + P g bO Using this

representation of line bundles, we get an isomorphism J(C) Cg /A

given by

[p1+ +pg-g bo]
P. P.

1.0)

l' .

i=1
b b0 g

The usefulness of J(C) includes an imbedding

J(C)

given by

r P r P
= ( (A)1,..., wo.)

bo b0
5

thwhich extends to the r symmetric product by

=p. iP(Pi)

where C(r) can be identified with effective divisors of degree

on C.

J(C) also has the structure of a principally polarized Abelian

variety whose polarization explicitly defines the Riemann theta
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where K is a canonical divisor on C.
(3) -2Xb =

0
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function B of C. Its zero locus defines a periodic divisor on Cg

(with respect to A) which defines a divisor 8 in VC), called

the theta divisor.

The concluding examples will depend upon some facts pertaining

to Riemann's solution to the Jacobi inversion problem, which relates

properties of the theta divisor to special effective divisors on C. A

detailed treatment can be found in [Lewittes; 7].

These facts center around the existence of a pointin
b0

J(C), depending only upon the base point bo, called a Riemann

constant. For a given e E J(C) we have

If e 8, then there is a unique divisor D E C(g) such

that e I11( D) .

Ljo

If e E 8 there is an effective divisor D E C(g-1) such

that e = 4J(D) +16b and f(D) equals the multiplicity
0

of 6 at e.

By (2) and (3) if e E 6 is a half-period in VC), then there is an

effective divisor D of degree g-1 such that 2D is a canonical

divisor. Such divisors are called theta characteristics. Relative to

the basis of periods, the half-periods in J(C) are given by e = ro

where E and 5 are 1 X g vectors whose entries are either 0

of 1/2. A theta characteristic is even or odd depending upon whether

4E is even or odd. Some additional results found in [7] are



22(23-1) = 28 odd theta characteristics; and therefore 28 bitangents

64

The multiplicity of 0 at an even (resp. odd) half-period

is even (resp. odd).

All the odd half-periods lie on 0 and there are

2g-1(2g - 1) of them.

Let B4
be a nonsingular quartic curve in

CP2

and

Tr : W CP2 a double covering branched along B4.
We shall con-

sider the class of curves that satisfy the conditions of Theorem (5.6)

that lead to additional generators of Pic W.

First we make a reduction. According to the remarks which

follow Theorem (5.7) we need not consider cubic curves because they

are residual to lines. Every conic that satisfies the required condi-

tions also has a residual curve. In fact, in this case, a one dimen-

sional family of residual conics that contains a degenerate one,

consisting of two lines. So again we have reduced the problem to

studying totally tangent lines to B4.

Bitangents of B4 are in one-to-one correspondence with

effective square roots of a canonical divisor, i. e. theta character is-

tics. A result of Lewittes [7] states a Riemann surface of genus 3

has an even theta characteristic if and only if it is hyperelliptic. A

plane quartic is never hyperelliptic, so we conclude B4
has only

odd theta characteristics. By property (5) above, there are



of B4.
The 28 bitangents lift to 56 exceptional curves

E. E E* E* in W.1" 28' 1' 28

Let us consider the linear equivalence relations among these

exceptional curves. We have the obvious

E. + El< - E. + E* 1 < i < 28
1 1 J 3 3

giving 27 relations. Next suppose that among the 28 half-periods

28
{e.}. corresponding to the 28 odd theta characteristics, we have a

1=1

relation

e. + e. + e. + e. =0
11 12

13

in J(C). Then by property (2) we have

4

) 4
Lk

k= 1

Thus D. + D. + D. + D. - canonical divisor of B4
11 12 13 14

2H.
4

By Theorem (5.19) the bitangents are residual curves,
11 14

and therefore give rise to a relation between E. .

11 1414 11

A computation shows there are precisely 19 such independent relations

28between {e.}. . Therefore we have
1=1

= 0.
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p = rank Pic W > 56 - 27 - 19 =

But since W is rational, it is well known p -= 8. Therefore we

have given an explicit description of the entire Picard group of W.

For a second application, let Tr :W CP2 be a double

covering branched along a nonsingular sextic B6' W is a Kummer

surface.

Proposition (6. 1). If B6
has an even theta characteristic,

then W is an elliptic surface.

Proof. An even theta characteristic corresponds to half-

canonical divisor D such that (D) is even, so in particular

i(D) > 2. By Theorem (5.7) there is a totally tangent cubic curve

such that Tr*(C) is reducible. C has a residual curve C. We can

write Tr*C = A + A* and ir*ei = A + A*; and by Theorem (5. 19)

we have a relation A + A Tr*3H. Using the intersection pairing on

W and formulas (5.13) we have

(A)2 = (Tr*3H)2 - A A*
2

= 9 - 9

= 0,

and similarly (A*)2 = 0, (Av)2 = 0 and (Z*)2 = 0. Next,
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and

18 = (Tr*3H)2 - (A+Z)2

" 2
= (A)2 + 2A + (A)

= 2A

so A -A = 9. Next,

18 = (ir*3 H)2 = (A+A*) Tr*3H

= 2A Tr*3H

9 = A Tr*3H

= A (Av44)

= A'A A -A*

= 9 + A Z*

Therefore A A* = 0.

These intersection numbers imply (1) A is linearly equivalent

to A* because (A -./t6ii* )2 = 0 and (A-Z*) Tr*H = 0 so by th.e

Hodge index theorem, A is numerically equivalent to A*. This

ftd
1implies A is linearly equivalent to A* because H(W,d) = 0.

(2) Both A and 'X* have arithmetic genus equal to one. There-

fore, the linear system spanned by A and Z* defines an elliptic

fibration 4 :W CP1.
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