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the field of machine learning. Due to the numerous observability of parameters and

data, processing of the data in its raw form is computationally complex and difficult

to visualize. Dimension reduction by means of feature extraction offers a strong

preprocessing step to reduce the complexity of the data. In applications dealing

with classification of high dimensional data, the goal of a feature extraction step is

to achieve a classification accuracy close to that achieved by utilizing the complete

high dimensional data. In search for better classification with reduced complex-

ity, numerous dimension reduction methods have been proposed that directly or

indirectly aim at minimizing the classification error.

This thesis proposes a novel set of bounds on the probability of classification

error for the dimension reduced data. A criteria called the Chernoff union bound

is developed which acts as the upper bound on the bayes classification error in the

transformed subspace. The bounds offer a closed-form solution to our problem un-

der various data model assumptions. We demonstrate its applicability in feature

extraction for parametric and non-parametric data model assumptions. A detailed



numerical study has been presented comparing the performance with many state-

of-the-art methods demonstrating the competitiveness and validity of the proposed

criteria. .
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1. INTRODUCTION

1.1. Background

The advancement in data collection and storage techniques in the past decade

has led to the acquisition of large amount of high dimensional data. Research areas

involving engineering, biology, economics, astronomy, and auditing acquire numer-

ous high dimensional data as part of their work. One of the principle challenges is

to identify relevant parts of information from the high dimensional data. Most sta-

tistical learning tools, as simple as a classifier are difficult to learn when the data is

high dimensional. The idea behind the field of dimension reduction1 (DR) remains

that, even though each data is described in terms of a large number of variables

(features), the most relevant information would be concentrated within a very few

features. The most relevant features extracted are enough to describe the original

data in its entirety. Any utilization of this lower dimensional reduced feature data

should offer similar results as the original high dimensional data.

Mathematically, during data collection step we obtain a high dimensional vec-

tor z ∈ Rm, z = [z1, z2, . . . , zm]T and our goal is to obtain a new lower dimensional

vector x ∈ Rk, x = [x1, x2, . . . , xk]
T where, k ≪ m. It is important to note that the

performance of the dimension reduction step is task dependent.

1Dimension reduction has acquired various names over the past decades. Dimensions are anal-
ogous to the terms like ”feature”, ”variable”, ”dimensionality” and ”attribute” while the term
reduction is replaced by two possible approaches namely ”extraction” and ”selection”.
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1.2. Task-oriented dimension reduction

Dimension reduction is adopted for a variety of reasons. One of the biggest

task in hand is to extract relevant information from this ever growing abstract high

dimensional data. In contrast to simple traditional data collection and statistical

analysis, the problem under consideration involves numerous observations where

each observation is associated with large number of variables. DR is broadly grouped

as a tool for visualization, compression, and noise reduction.

1.2.1 Visualization

In biological and medical research areas the requirement of visualization is

of great importance. Data collected by measurements, and experiments can be

used to derive important underlying conclusions. A good visualization tool can

identify a relation two parameters in a measurement, e.g., A plot between radiation

exposure vs the cases of cancer can clearly bring out relevant information. Often,

more than one parameter (e.g., radiation, smoking) may correlate with a particular

phenomenon (e.g., presence of cancer in a patient). Such situations form an ideal

setup for applying DR for visualization. In the scenario just discussed, DR methods

offer a plot in 2D after neglecting the numerous other irrelevant measurements

(features) from the original data. Visualization is often used as a tool to analyze

clustering properties, identify parameter relationships and developing a sense of

neighborhood or proximity among data points. To illustrate the concept we consider

a toy example in further discussions.

When a multidimensional data is in 2-dimensional or in 3-dimensional space,

the visualization of data is possible. Consider two 2-dimensional vectors a = [7, 6]
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and b = [5, 2]. The numeric representation of the vector is independent of the feature

associated with the value, i.e, the two values of features in ’a’ could represent any

physical attribute like [Height, Width], [Length, Angle] or [Concentration 1, Concentration 2].

Such observation can be visualized in a 2D space using a scatter plot as shown in

Fig. 1.1(a).

(a) Representation of 2D vectors
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(b) Representation of 3D vectors

FIGURE 1.1: Visualization of vectors.

In cases where the number of features m for a data is 3 the data is visualized

in a 3-dimensional space shown in Fig. 1.1(b). When m > 3 visualization of the

data in a m dimensional space is not possible. In such cases DR offers a tool for

visualization of the data. To illustrate the idea, we consider an image of a hand

written digit of dimensions 16 x 16 pixels. One such image is represented as a

vector of dimension 256 (16×16). Visualization tools at such high dimensions are

unavailable and hence a dimension reduction to a 2-Dimensional or a 3-Dimensional

space is desired. DR to 2D provides a 2D vector corresponding to each 256D high

dimensional vector which can now be visualized using a scatter plot as mention

previously. A 2-dimensional representation of hand written number is shown in

Fig. 1.2(a).
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FIGURE 1.2: A 2D representation of hand written images.

1.2.2 Data compression

In applications such as hyper-spectral imaging the image data are captured

over a wide range of electromagnetic spectrum. Unlike the standard RGB based

image which is represented as a 3D cube of data, a hyper-spectral image constitutes

of a m dimensional cube where m is large. Storage and processing of such images

are expensive. Since some of the information in these images is redundant, we are

only interested in parts of the image that contain interesting underlying information.

Dimension reduction helps to identify such features thus reducing the cost of storage

and easier processing of the dimension reduced data.
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1.2.3 Noise removal

In applications involving sensor networks noise is associated with the raw data

which is obtained. Dimension reduction helps in identifying an underlying model in

which the data is generated and can be used to reduce noise features considerably.

PCA [1] is a well known method that is utilized for noise removal.

1.3. Application areas

Techniques of DR are widely used in a broad set of fields. It is extensively used

in the field genetics and microbiology [2]. A well known application in this are is to

model the relationship between phenotype and gene expression from a micro-array

data in order to classify samples (e.g., classification of tumors). The audio and

speech processing [3] industry applies DR in order to remove noise, genre classifica-

tion and modeling user preferences. High dimensional data are obtained by using

the ‘Bag of words‘ model in document analysis and classification [4]. Document

clustering, visualization and classification applications rely on dimension reduction

techniques. In the recent years a new field of recommendation systems [5] is de-

veloping at a fast pace. It deals with product recommendation for users based on

ratings obtained by other users in the system. The number of products and users

are large and dimension reduction offers a great tool to identify the underlying hid-

den models within the data. The recent contest organized by Netflix offered a prize

money of one million dollars for developing a good movie recommendation system to

users. The best performing algorithms in the contest were ones that utilized the DR

method of SVD to identify principle features to model the user and movie parame-
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ters. Hyper-spectral imaging [6] industry extensively use DR to reduce the load on

storage and processing of high dimensional spectral images obtained across a wide

electromagnetic spectrum. Applications in this area involve identifying object on

the earth surface form images taken from space. Face recognition [7] is a common

application in the image processing area. With current imaging techniques, high

dimensional (usually in mega-pixels) data is obtained. In an application for face

recognition, a good classifier is difficult to learn at high dimensions (mega-pixels)

and thus a good generalization and computational advantage can be gained using

DR methods. The reason for such widespread application of DR is the ability to

represent data in each of these fields in the form of numerical vectors which are

standard input for all DR methods. After the DR step the obtained results can be

translated back to the original parameters to develop an inference about the data.

Hence DR remains a widely applicable method to reduce unwanted complexity in

processing high dimensional data.

1.4. Dimension reduction for classification

Consider two distributions of data belonging to class c1 and c2 as show in

Fig. 1.3(a). D denotes the decision boundary between the two distributions. Given

new data x = [x1, x2], the goal of classification is to assign a class label to x based

on some criterion. Classification is an important property that is required in many

applications of DR.

Dimension reduction as a preprocessing step in classification refers to the eval-

uation criterion of DR being the classification error. Consider 2-dimensional data

as shown in Fig. 1.4(a) We consider the case of DR to a 1-dimensional line. Fig-
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FIGURE 1.3: Classification of data.

(a) Projection plane vs class separation

FIGURE 1.4: A 2D to 1D Dimension reduction.

ure 1.4(a) shows four different projections to a 1-dimension line. In projections

along the x-axis, y-axis and along the principle component of the data, the two

classes are overlapping. Overlapping classes produce a higher classification error

probability and hence are not desirable. The 1-dimension plane that best fits this

scenario is illustrated by the vector along 45◦ tagged as ’Feature extraction 1’. On
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this projection the two classes of data are clearly separable and hence produces least

classification error. Goal of DR for classification is to obtain one such projection

where the classification error is minimum.

1.5. Feature selection vs Feature extraction

Two main approaches to DR are feature selection and feature extraction. In

feature selection a subset of the original dimensions are selected. Feature selection

is computationally tedious, as the process is the selection of the best combination

among the original m dimensions. The total number of choices of such combinations

is given by
(

m

1

)

+
(

m

2

)

+ . . .+
(

m

m

)

= 2m−1 which is computationally intractable for

very high dimensions. In Fig. 1.4(a) the x-axis and the y-axis are the two possible

1D feature selections. The drawback of feature selection in this scenario is that

either 1D projection will not offer good classification.

Feature extraction offers the flexibility of constructing new lower dimensional

feature space form existing high dimensional variables. It is different from feature

selection in the sense that the new lower dimensional features are not a subset of the

original features but a linear or non-linear combination of the original features. The

most standard algorithm for feature extraction is the principal component analysis

(PCA). In PCA the data is factorized into basis vectors (eigen vectors) and mixing

coefficients (eigen values), the data is then reconstructed using the most relevant

basis vectors called the principal components.

Feature extraction is computationally faster as the problem is not combina-

torial as in the case of feature selection, also it offers better DR as illustrated in

Fig. 1.4(a). In Fig. 1.4(a) Feature selection is restricted to two vectors along the
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x-axis and the y-axis, on the other hand we are able to utilize any vector across all

angles from 0◦ - 360◦ for feature extraction. It can be noted that the hypothesis space

of feature selection is a subset of the hypothesis space of feature extraction. Such

flexibility allows us to identify the line tagged ’Feature extraction 1’ in Fig. 1.4(a)

as a dimension of projection on which the classes are clearly separable.

This thesis deals with methods that are classified under the feature extraction

methods for DR.

1.6. Data Models

Modeling the data allows us to develop machine learning algorithms that take

advantage of the statistical properties of the data. Numerous DR methods have

been developed assuming a particular data model. Among the most common data

models assumed are Gaussian distribution, Gaussian mixture distribution, and the

non parametric distribution based on kernel density estimates. It is best to adopt a

data model that best describes the data for better DR or classification results. In the

course of this thesis we will develop a generalized framework that will be applicable

for all the aforementioned data models. We will now go over a brief review of the

data models.

1.6.1 Gaussian distribution

In DR the original data is high dimensional and by virtue of central limit

theorem its low-dimensional projection can be assumed Gaussian. Data that follow

a Gaussian distribution is characterized by its mean and covariance. In the context

of multivariate distributions of dimension m , the data is completely parametrized
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by two parameters namely mean (µ) and covariance (Σ). The mean is characterized

by a vector of size 1×m and the covariance is described by a matrix of dimension

m × m. Numerous DR methods adopt this data model due to the availability of

analytic expressions and mathematical tools to handle Gaussian expressions. The

probability density function of a Gaussian distribution is give by

p(x) =
1

√

|2πΣ|
e−

1
2
(x−µ)T Σ−1(x−µ). (1.1)

FIGURE 1.5: Gaussian distribution of data.

1.6.2 Gaussian Mixture Model

A Gaussian mixture model (GMM) is a probabilistic model that describes the

density function for the data in terms of multiple Gaussian distributions and mixing

factors. GMM have the flexibility to represent complicated data while preserving

the analytic advantages of Gaussian distribution. A number of cases occur in DR

when there is a need for GMM, e.g, in character recognition problem, consider

the two versions of the letter ’r’ as shown in Fig. 1.6(a) A 2D visualization of

this data demonstrates that the class ’r’ clusters into two groups. A Gaussian
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FIGURE 1.6: Gaussian mixture of letter ’r’.

FIGURE 1.7: Gaussian mixture model.

assumption of the data clearly misrepresents the data and in this case a GMM is

inevitable. When data cannot be described accurately using a Gaussian distribution,

a GMM comes in handy. A Gaussian mixture is completely described by a number

of Gaussian distributions φ (parametrized by µ and Σ)and their mixing factor α

such that
∑ki

k=1 αik = 1 and α ≥ 0. The probability density function of a Gaussian

mixture is given as,

p(x) =
k
∑

k=1

αkφk(x). (1.2)
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1.6.3 Non-parametric model

The above data models assumed parametrization for the data. In situations

where the true data does not follow a distribution close to Gaussian or GMM then,

it can be advantageous to represent the data accurately using non-parametric model

based on kernel density estimates (KDE). The advantage of KDE is that we can

define data models of arbitrary shape. KDE is associated with a parameter called

kernel which is the distribution assumed around each point of data. Under this

parametrization, the probability density function of a random variable x is given by

p(x) =
1

N

N
∑

k=1

I(yk = i)K(x− xk; σ) (1.3)

where N is the number of instances in the data, indicator I allows summing only

points belonging to the same class and for our particular setup we assume K(x −

xk; σ) to be the Gaussian kernel given by,

K(x− xk; σ) =
1√

2πσ2
exp−

‖x−xk‖2

2σ2 (1.4)

FIGURE 1.8: Non-Parametric Model
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1.7. DR methods and data models

Numerous dimension reduction methods have been developed in literature

with various driving criterion aimed at obtaining the best noise reduction, cluster-

ing, classification, geometry properties in the lower dimension. Also, these methods

assume one of the three data parametrization discussed above. In subsequent chap-

ters we will layout the review of methods grouping them based on criterions and

the data model that they are applicable to. The advantages and disadvantages of

a criterion and data model over each other will be discussed over the course of this

thesis.

1.8. Organization of the thesis

This thesis discusses the design of DR algorithms that preserve the classifica-

tion accuracy of the data.

Chapter 2 provides a thorough literature review of the area of DR. Our dis-

cussion will go through the classical methods of PCA and LDA and incline towards

methods that follow various criterions for DR. We will finally categorize DR tech-

niques based on the data model that they are applicable and the criterion that they

utilize.

Chapter 3 details the mathematical formulation of DR. In our specific case,

the choice of the evaluation criterion is the classification accuracy/ classification

error and hence we will describe how the problem of DR can be related to in terms

of the probability of error.

Chapter 4 develops a bound on the probability of error for multiclass classifica-
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tion of the data. The two class bound on the probability of error is well established

via the Chernoff bound. In this chapter we demonstrate how the multiclass classi-

fication error is bounded in terms of pairwise two class error bounds.

Chapter 5 investigates the applicability of the error bound developed in Chap-

ter 4 to different data models. In our case, we analyze how the bound is applicable

when the data is modeled as Gaussian distributions, Gaussian mixtures. We finally

develop the bound in the non-parametric cases when no data model is assumed and

the class distribution is developed using kernel density estimates (KDE).

Chapter 6 provides a method to optimize the cost function developed in Chap-

ter 5. Our particular case will be based on a gradient descent algorithm. The details

of the technique and the methods adopted to speed up are discussed.

Chapter 7 offers the numerical study based on the three DR methods that

were developed based on the error bounds on probability and a detailed comparison

to various other state-of-the-art DR methods along with the classical methods of

PCA and LDA.

Chapter 8 summarizes the offerings of this thesis and the prospectus for future

work in this area.
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2. LITERATURE REVIEW

2.1. A review of DR techniques

With growing data acquisition and storage rates, dimension reduction (DR)

methods take an important place in data processing and analysis. One of the most

discussed application of DR is classification. As a preprocessing step, DR allows

for a low dimensional data classification to alleviate the curse of dimensionality.

Additionally, the use of DR enables visualization as well as a computational advan-

tage. With a reduction in the number of features that represent the data, some

discriminatory information may be lost in favor of computational advantage and

generalization.

2.2. Broad categorization

We consider categorizing DR into two broad approaches. In feature selection,

an informative subset of the available features is of interest. For a survey on meth-

ods for feature selection we refer the read to [8]. In feature extraction, a lower

dimensional embedding of the data is of interest. In other words, a new set of lower

dimensional features are constructed from the original feature vectors. For a survey

on feature extraction methods we refer the reader to [9].
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2.3. Linear and non-linear DR

Feature extraction has been addressed using both linear and non-linear meth-

ods. Until recently, nonlinear methods primarily concentrate on preserving the

high-dimensional geometrical structure of feature vectors in the lower dimensional

embedding [10, 11, 12]. Manifold learning deals with non-linear DR for exploring the

intrinsic dimension of the data and its geometrical and topological structure. Some

efforts towards nonlinear dimension reduction for classification have been made (see

e.g., [13, 14, 15]). Generally, the computation of a nonlinear transformation from

a high-dimensional data space to a low-dimensional space requires the computation

of a transformation parametrized by a number of parameters proportional to the

data size and hence are considered computationally complex when the data size is

large. Moreover, the applications of the methods to test data often requires the

entire training set imposing a memory constraint.

2.4. Supervised vs unsupervised LDR methods

Linear dimension reduction (LDR) offers computational efficiency relative to

their nonlinear counterparts in return for some performance compromise. LDR

methods can be separated into supervised and unsupervised methods. In unsuper-

vised LDR methods, the label of the data is either unavailable (or simply ignored)

and hence techniques focus on the structure of the data. Principle component

analysis (PCA) [1] implicitly assumes that the data is generated by Gaussian dis-

tribution. Using an eigen decomposition of data sample covariance matrix, data is

projected onto the eigenvectors corresponding to the largest eigenvalues. Due to
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the simplicity and low computational complexity, PCA is the most popular method

for linear dimension reduction. A kernel based nonlinear generalization of PCA

was proposed in [16]. Independent component analysis (ICA) [17] considers LDR

to produce independent features removing the Gaussian assumption used by PCA.

Supervised linear feature extraction is one of the most popular areas of dimension

reduction. Supervised methods take into consideration the class label during the

dimension reduction process and hence offer more control in applications that deal

with classification and pattern recognition.

(a) Block diagram of LDR

FIGURE 2.1: Dimension reduction as a preprocessing step for various other appli-
cations like noise removal, clustering, classification, storage and visualization.

2.5. DR for classification

In recent years, DR methods have been developed with the further utilization

of the data in mind as shown in Fig. 2.1. For noise reduction, one may consider PCA

whereas for data visualization, nonlinear manifold learning may be advantageous.

In information retrieval [18], DR is used to preserve the information in the data.

Similarly, classification can benefit from a classification-optimized DR.
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2.6. Information criterion for DR

A natural criterion for performing optimal DR for classification is the classifi-

cation error probability. Linear discriminant analysis (LDA) [19] is one of the most

well-known supervised linear feature extraction. It is shown to be optimal in the

two-class case when the class-conditional distributions are homoscedastic Gaussian

probability density functions. LDA has many variants and a popular version uses

a generalized eigendecomposition to maximize the between class covariance matrix

and within class covariance matrix ratio. Ultimately the minimization of the prob-

ability of classification error should guide DR for classification. However, since an

analytic expression for the probability of error cannot be computed in closed-form

for most scenarios, alternatives have been considered. In [20, 21, 22], the principle

of minimum classification error (MCE) is applied using a differentiable approxima-

tion to the sample error probability trading-off fidelity to the original criterion for

applicability. Another alternative to minimum error probability involves the maxi-

mization of probabilistic distance measures and probabilistic dependence measures

[23] between different classes. A popular approach is based on the maximization

of mutual information between the features and the class labels [24, 25, 26]. The

motivation to these approaches is based on the connection between classification

error probability and mutual information [27]. A number of variation on the theme

and approximation to mutual information have been proposed. In [28], a quadratic

divergence measure is used instead of the Shannon’s original mutual information

criterion and is called the quadratic mutual information (QMI) criterion. The for-

mulation of QMI allows it to be applied to non-parametric dimension reduction. In

[29], approximation of the entropy of a Gaussian mixture is used to compute the
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mutual information for the Gaussian case. Other probabilistic distance measures

that are used for DR are Kullback-Liebler divergence, Bhattacharyya distance [30]

and Chernoff distance [31]. These divergences offer a tight surrogate for binary clas-

sification. However, heuristic extensions to multiclass often result in sub-optimal

performance. The methods in [32, 33, 34] offer such extensions for multiclass linear

dimension reduction. Another manifestation of the principle of minimum proba-

bility of classification error is presented in [35]. Neighborhood component analysis

(NCA) considers minimization of the probability of error for a specific classifier

namely k-nearest neighbor (KNN).

2.7. Data model based categorization

LDR methods can also be categorized based on the statistical data model

considered. PCA [1], [32], [36] assume Gaussian class-conditional distributions and

allow heteroscedasticity of the class covariances. LDA [19] on the other hand is

optimal under the assumption of Gaussian class-conditional distributions with ho-

moscedastic class covariances, though LDA is applied equally often to heteroscedas-

tic case. It should be noted that all methods that allow heteroscedasticity are

applicable for homoscedastic data as a special case. Methods like MMI [24] have

been demonstrated to work well with Gaussian mixture models (GMM). Methods

that assume no model for the data are categorized as non-parametric and includes,

NCA [35], IDA [29], QMI [37] . Table 2.7. lists the above mentioned methods in the

form of a table listing various methods based on the model parameter assumed and

the approach of dimension reduction.
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TABLE 2.1: A list of DR methods placed based on the underlying principle and the
data model applicable.

Distance Mutual Information Approximation of error Bound on error
Gaussian-Homoscedastic [19] —- —- —-
Gaussian-Heteroscedastic [36, 32] [29] [20] [38]
Gaussian mixture models —- [24] —- [39]
Kernel density estimates [35] [37] —- CUB-KDE

2.8. Issues with existing methods

Methods based on approximation of probability of error suffer form the lack

of control over the approximation accuracy. On the other hand, methods based on

probabilistic distance measures adopt a heuristic approach for multiclass classifica-

tion which can lead to significant performance degradation. Empirical evaluation

of mutual information leads to undesirably high computational complexity. Most

methods seem to have an advantage when the data follows the data model assumed

and suffer a degradation in performance as the data deviates from the assumed

model.

A probability of error bound approach for DR has been proposed in [40] [41].

The bound explored in [40] is based on Fisher distance and suffers from optimization

due to the non-smooth nature of the maximization of a min criterion [38]. The

closest method to our approach is suggested in [41] where the error probability

of the multiclass classification is bounded by a Union Bhattacharya bound. This

bound [41] is applicable only to Gaussian data model and generalization to other

data models are unavailable.
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2.9. Our approach

We present an LDR method that is based on the minimization of error proba-

bility. We introduce a bound on the probability of error for multiclass classification.

A closed-form expression for the bound is provided for the case where the classes are:

i) Gaussian, ii) Gaussian mixture model and iii) follow a Gaussian kernel density

estimate. The novel bound introduced addresses three issues: i) multiclass classifi-

cation ii) smooth surrogate for probability of error and iii) variability in distribution.

We present an LDR method based on the bound and introduce a gradient descent

implementation of it. We demonstrate the superiority of the proposed LDR method

compared to other state-of-the-art LDR methods via numerical analysis.
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3. PROBLEM FORMULATION

3.1. Linear transformation

We start by introducing the problem of LDR for multiclass classification. For

the convenience of the reader, we introduce the notations used in this thesis in

table 3.1. An observation z ∈ Rm is drawn from one of n classes, the set of classes

C = {1, 2, . . ., n}. Each class in C has a prior probability π1, π2, · · · , πn, respectively.

We denote the class conditional distributions as p1(z), p2(z), · · · , pn(z) and restrict

the pi(x)’s to probability density functions (PDFs) such that
∫

pi(z)dz = 1 and

pi(z) ≥ 0. A linear dimension reduction (LDR) of an m dimensional observation

z ∈ Rm is defined by a function g(·) : z 7→ x ∈ Rd where d ≤ m (and sometimes

d≪ m). For LDR, the transformation is given by

x = g(z) = Az, (3.1)

where A is the d ×m linear transformation matrix. We denote x ∈ Rd as the low

dimensional projection of the observation z. A linear transformation as described

above also parametrizes the PDF of the low dimensional projected data x. Corre-

sponding to the PDFs of the data in the original space p1(z), p2(z), · · · , pn(z), we de-

note the PDFs for the low dimensional projected data by p1(x; A), p2(x; A), · · · , pn(x; A)

for each class respectively.
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TABLE 3.1: A list of symbols and their description.

Symbol Description
n Number of classes
m Original dimension of data
d Reduced dimension of data
z Original data, z ∈ Rm

x Dimension reduced data, x ∈ Rd

A Transformation matrix d×m
h(·) Classifier

πi Prior probability of class i
Pe(·) Probability of error

Σi Covariance of class i
δµij Difference in mean between class i and j

3.2. Linear transformation for multiclass classification

To analyze the classification error rate associated with a linear transformation,

we start by defining a classifier h(·) : x ∈ Rd 7→ h(x) ∈ C. A classifier is a function

that maps an observation x onto one of the n classes in C = {1, 2, . . ., n}. Since the

classifier in this setup is applied to the lower dimensional projections of the data,

the associate performance of the classifier is dependent upon the specific projects

through A. In this setup, we can define the probability of error in classification as,

Pe(A) =

n
∑

i=1

πiP (h(x) 6= i|i)

=

n
∑

i=1

πi

∫

I(h(x) 6= i)pi(x; A)dx, (3.2)

where the indicator function I(·) becomes 1 when its argument is true and 0 other-

wise. The optimal classifier h∗(x) that minimizes the probability of error in (3.2) is
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known as the Bayes classifier [42] and is given by

h∗(x) = arg max
i

πipi(x; A). (3.3)

The error probability P ∗
e (A) associated with Bayes classifier h∗(x) can be obtained

by substituting (3.3) into (3.2),

P ∗
e (A) =

n
∑

i=1

∫

I

(

max
j 6=i

πjpj(x; A)

πipi(x; A)
> 1

)

πipi(x; A)dx. (3.4)

Replacing the error event {maxi6=j
πjpj(x;A)

πipi(x;A)
> 1} in (3.4) by

⋃

i6=j Bij where, Bij =

{πjpj(x;A)

πipi(x;A)
> 1}, we rewrite the error probability for the optimal Bayes classifier as

P ∗
e (A) =

n
∑

i=1

∫

I
(

⋃

i6=j

(πjpj(x; A)

πipi(x; A)
> 1
)

)

πipi(x; A)dx. (3.5)

From (3.5) it is evident that the probability of error P ∗
e (A) depends on the

linear transformation matrix A through the PDF of the reduced dimensional data

pi(x; A) and therefore by controlling the value of A we can control the value P ∗
e (A).

Our objective is the minimization of probability of error P ∗
e (A) w.r.t the transfor-

mation matrix.The optimal transformation matrix A∗ is formally defined as:

A∗ = arg min
A

P ∗
e (A). (3.6)

The probability of error for classification which is based on observations from the

reduced dimension space is given by (3.5) in terms of the PDF of the data. However,

the true class-conditional probability distributions of the data or the class priors

are often unavailable. Instead, only samples are available as {(zk, yk)}, where yk
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is the class label associated with the kth sample and zk is the high-dimensional

feature vector associated with the same sample. In this framework, we pursue both

parametric and non-parametric approaches to represent pi(x) so that we can apply

its form to evaluate (3.5).

3.2.1 Difficulty in evaluating error probability

Although some ambiguities are resolved by specifying a model for pi(x), some

difficulties remain. The indicator in (3.5) yields a set in terms of x over which the

integral is carried out. In general, the integral is not available in closed-form for

even simple scenarios such as the case with heteroscedastic Gaussian pi(x)s (i.e.,

with different covariance structures). Moreover, the union within the indicator in

(3.5) yields a set defined in parts further reducing the possibilities of a closed-form

expression for the RHS of (3.5). To address these issues we consider an upper bound

approach on the probability of error. By minimizing a closed-form upper bound on

the probability of error, we aim to produce a method for LDR that is consistent

with the underlying goal of classification.

3.2.2 Previous solutions

Due to the issues associated with the evaluation of (3.5) and its optimiza-

tion w.r.t. A, various alternatives have been adopted through direct and indirect

surrogates for the probability of error. We proceed by describing the various ap-

proaches adopted in literature that follow the approach of optimization of surrogates

for the error probability. In minimum classification error (MCE) methods, a cost

function that is an approximation of the probability of error is developed. In [20],

a differentiable cost function is proposed to replacing the indicator with a smooth

approximation using an exponential or a sigmoid function. This approach has been
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discussed to be inefficient in cases where the data size and dimension are high [43].

Another widely adopted statistical measure used in feature extraction is based on

the maximization of the mutual information (MI) between the class labels and the

features. In [27], Hellman and Raviv provide a bound on the probability of classi-

fication error in terms of the MI, suggesting that the minimization of classification

error probability is coupled with the maximization of the MI. In developing an

expression for the MI for DR, a wide range of data models have been deployed,

e.g., Gaussian models [24], Gaussian mixture models [44], and non-parametric ker-

nel density estimates [37]. However, for either data model assumption a closed-form

expression is unavailable and all MI methods referenced adopt a sample estimate ap-

proximation. The effects of the sample-based approximation on the accuracy of the

methods remains unclear. Another approach in LDR, considers divergence measures

between class-conditional PDFs. The divergence measures adopted in the literature

for LDR include the Kullback-Leibler divergence [45], Chernoff distance [36] (which

is directly related to Renyi-α divergence), and the Bhattacharya distances (which is

directly related to Hellinger distance). The hope with these approaches is that by

maximizing the distance between the PDFs of two classes the associated probability

of error will be minimized. While this connection has strong statistical foundations

(see [33]), the extension to the multiclass case is non-trivial. The main drawback in

the current implementation divergence based LDR is the way in which the pairwise

distances are combined to develop the cost function for the multiclass case.

For convenience we will represent the probability density function in the lower

dimensional plane denoted by pi(x; A), p2(x; A), · · · , pn(x; A) as pi(x), p2(x), · · · , pn(x)

in the remainder of the thesis. It can be noted that the parameter pi(x) is depen-

dent of the linear transformation matrix A, while the parametrization on the true
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dimension of the data denoted by pi(z) is independent of the transformation matrix.
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4. ERROR PROBABILITY BOUND

Due to the limitations of the aforementioned methods in obtaining a closed-

form surrogate for error probability (3.5) that address both fidelity to the error

probability case and the issues associated with the multiclass case, we pursue the

approach of bounding the probability of error. In the following, we develop a series

of bounds on the error probability P ∗(A) (3.5).

4.1. Union bound for multiclass classification

We start with a bound that offers a surrogate to the multiclass probability of

error in terms of the pairwise error probabilities [46]. In a multiclass classification

problem, the union of error events in (3.5) is difficult to evaluate. Applying the

union bound I(∪jAj) ≤
∑

j I(Aj) to (3.5) with Aj = {πjpj(x)

πipi(x)
> 1}, we bound the

probability of error associated with Bayes classifier (3.3) by

P ∗
e ≤

n
∑

i=1

∑

j 6=i

∫

I

(

πjpj(x)

πipi(x)
> 1

)

πipi(x)dx. (4.1)

Expressing the multiclass error in terms of pairwise classification error, (see appendix

2)

Pe(p1, p2, · · · , pL, π1, π2, · · · , πL) ≤
n
∑

i=1

∑

j>i

(πi + πj)Pe(pi, pj , π̃i, π̃j). (4.2)
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where, π̃i = πi

πi+πj
, π̃j =

πj

πi+πj
, and Pe(pi, pj, π̃i, π̃j) can be obtain by evaluating (3.5)

for the two class case as

Pe(pi, pj, π̃i, π̃j) =

∫

I
( π̃jpj(x)

π̃ipi(x)
> 1
)

π̃ipi(x)dx +

∫

I
( π̃ipi(x)

π̃jpj(x)
> 1
)

π̃jpj(x)dx.(4.3)

(a)

FIGURE 4.1: Probability distributions of three equiprobable classes A,B,C when
projected on a one-dimensional plane. L1,L2,L3 denote the classifier boundaries
when only a pair of the classes are considered for classification at any instant.
L1,L2 and L3 mark the classifier boundaries between classes , A-B, A-C and B-C
respectively.

The implication of the union bound is that error event could be counted mul-

tiple times on the RHS of (4.2), resulting in a gap between the predicted error

probability denoted by the bound (4.2) and the true error probability for the prob-

lem (3.4). While in some cases the gap could constitute a significant portion of the

original error, in other the gap may be negligible resulting in a tight bound. To

illustrate this point, we consider the following example. Our goal is bring out the

difference between the true error probability in this setup and the bound on the

error probability developed in equation (4.2). Consider a three class classification

problem in one-dimension with PDFs as illustrated in Fig. (4.1). Consider the case

in which the classes are equiprobable. The classes are marked as A, B, and C. The

overlap in the picture between the PDFs of the different classes illustrates the source

of misclassification error. We mark the misclassification regions by circled numbers

(e.g., 1O when x was produced from pB(x) by pA(x) > pB(x)). Thus error event
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p(h(x) = A|B) can be written as p( 1O|B). Furthermore, the line L1 denotes the

decision boundary between class A and B, line L2 denotes the decision boundary

between class A and C, and line L3 denotes the boundary between class B and C.

Under this setup, the inequality in (4.2) is given by

Pe(A, B, C; P (A), P (B), P (C)) ≤ (P (A) + P (B))Pe(A, B; P (A)
P (A)+P (B)

, P (B)
P (A)+P (B)

)

+(P (A) + P (C))Pe(A, C; P (A)
P (A)+P (C)

, P (C)
P (A)+P (C)

)

+(P (B) + P (C))Pe(B, C; P (B)
P (B)+P (C)

, P (C)
P (B)+P (C)

).(4.4)

Since the class are equiprobable, i.e., P (A) = P (B) = P (C) = 1
3
, (4.4) can be

written as

Pe(A, B, C; 1
3
, 1

3
, 1

3
) ≤ 2

3
Pe(A, B; 1

2
, 1

2
) + 2

3
Pe(A, C; 1

2
, 1

2
) + 2

3
Pe(B, C; 1

2
, 1

2
). (4.5)

To assess the quality of the bound, we proceed by computing both sides starting

with the LHS of (4.5)

Pe(A, B, C; 1
3
, 1

3
, 1

3
) = p( 2O ∪ 3O ∪ 4O|A)1

3
+ p( 1O ∪ 4O|B)1

3
+ p( 1O ∪ 2O ∪ 3O|C)1

3
.(4.6)

Using the fact that the iOs are disjoint, we obtain

P ∗
e =

1

3

(

p( 2O|A) + p( 3O|A) + p( 4O|A) + p( 1O|B)

+p( 4O|B) + p( 1O|C) + p( 2O|C) + p( 3O|C)
)

. (4.7)

Similarly, we proceed by computing the three terms in the bound on the RHS of
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(4.5)

Pe(A, B;
1

2
,
1

2
) =

1

2

(

p( 1O|B) + p( 2O ∪ 3O ∪ 4O|A)
)

Pe(A, C;
1

2
,
1

2
) =

1

2

(

p( 3O ∪ 4O|A) + p( 1O ∪ 2O|C)
)

Pe(B, C;
1

2
,
1

2
) =

1

2

(

p( 4O|B) + p( 1O ∪ 2O ∪ 3O|C)
)

Hence the RHS of (4.5) is given by

1

3

(

p( 1O|B) + p( 2O ∪ 3O ∪ 4O|A) + p( 3O ∪ 4O|A) (4.8)

+p( 1O ∪ 2O|c) + p( 4O|B) + p( 1O ∪ 2O ∪ 3O|C)
)

. (4.9)

Using the fact that the iOs are disjoint and collecting similar terms, we obtain

1

3

(

p( 2O|A) + 2p( 3O|A) + 2p( 4O|A) + p( 1O|B)

+p( 4O|B) + 2p( 1O|C) + 2p( 2O|C) + p( 3O|C)
)

. (4.10)

A comparison of the true error probability as given in (4.7) and its bound in (4.10)

reveals that the gap between the two terms is 1
3
(p( 3O|A) + p( 4O|A) + p( 1O|C) +

p( 2O|C)) or 1
3
(p( 3O∪ 4O|A)+p( 1O∪ 2O|C)). This gap is a result of counting some of

the error events twice. However, in our example the event p( 3O∪ 4O|A) is negligible

compared to p( 2O|A) and similarly p( 1O∪ 2O|C) is negligible compared to p( 3O|C).

This can be observed by examining that the tail distribution for each class as it

decreases further from the class center. In Fig. 4.1 we see that the area under the

distribution of class C is negligible in the region 2O and 3O. By using the pairwise

evaluation of the multiclass error probability, we effectively eliminated the need to
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evaluate union over the class pairs which is difficult to evaluate and replaced it

with a sum over errors between the class pairs resulting in a bound on the error

probability that remains close to the true error probability. This approach allows

us to shift our attention to bounding the pairwise error probabilities.

4.2. Chernoff upper bound on error probability

Although the bound in (4.2) reduces the search for closed-form surrogates for

the probability of error to a search for surrogates for the pairwise error probability,

it is still not computable in closed-form. A closed-form evaluation of the probability

of error between two classes denoted by P ∗
e (pi, pj, π̃i, π̃j) is not trivial as it involves

the integration over a non-differentiable indicator function as in (4.3). To bound

P ∗
e (pi, pj, π̃i, π̃j), we consider the application of Chernoff bound. Specifically, We

bound the indicator function in (4.3) using I(a ≥ 1) ≤ as where a ≥ 0 and 0 ≤ s ≤ 1.

The resulting bound is given by

P ∗
e (pi, pj , π̃i, π̃j) ≤

∫
(

π̃jpj(x)

π̃ipi(x)

)s

π̃ipi(x)dx +

∫
(

π̃ipi(x)

π̃jpj(x)

)s′

π̃jpj(x)dx

= π̃s
j π̃

1−s
i

∫

ps
j(x)p1−s

i dx + π̃s′

i π̃1−s′

j

∫

ps′

i (x)p1−s′

j dx. (4.11)

Note that the second term on the RHS on (4.11) can be made identical to the first

term by setting s′ = 1 − s. Moreover, since the bound holds for any 0 < s, s′ < 1,

it is common to consider a tighter form of the bound by minimizing over the RHS,
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yielding

P ∗
e (pi, pj, π̃i, π̃j) ≤ min

s
2π̃s

j π̃
1−s
i

∫

ps
j(x)p1−s

i dx. (4.12)

The Chernoff distance between two PDFs pi(x) and pj(x) is given by [42]

dch(pi(x), pj(x); s) = − log
(

∫

ps
j(x)p1−s

i (x)dx
)

. (4.13)

Therefore, the two-class bound can be written in terms of the Chernoff distance as

Pe(pi, pj, π̃i, π̃j) ≤ min
s

2π̃s
j π̃

1−s
i e−dch(pi(x),pj(x);s). (4.14)

Note that the RHS is exponentially decaying in the Chernoff distance between the

two PDFs. Substituting the two-class bound (4.14) into (4.2), we obtain a multi-

class extension of the Chernoff bound

P ∗
e ≤

n
∑

i=1

∑

j 6=i

min
s

πs
jπ

1−s
i e−dch(pi(x),pj(x);s). (4.15)

Since the upper bound to the Bayes error probability for a multiclass classification

problem in (4.15) was obtained by application of two bounds (i.e., union and Cher-

noff). We refer to this bound hence on as the Chernoff union bound (CUB). A

special case of CUB when s = 1
2

yields the union Bhattacharya bound which has

been demonstrated for DR in [41].
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4.3. Sum of distances vs bound on error probability

The bound in (4.15) referred to as CUB considers a weighted sum of expo-

nents of the negative of the pairwise Chernoff distance between classes. This result

is significantly different from that of the sum of pairwise distances approach [36]

or other possible weighted distance combinations [47, 48]. Since we consider the

application of the bound for DR, we proceed with a toy example that provides an

intuitive explanation to the advantage of the approach suggested by this form over

the sum of distances approach. To demonstrate this, we will consider a three-class

toy dataset with classes C = 1, 2, 3 in two-dimensional, i.e., pi(x) : R2 → R. Assume

that the pi(x)s are of a Gaussian distribution. The specific configuration of the three

class is illustrated in Fig. 4.2(a).

(a) Original data in 2D space (b) Projection on 1D x-axis (c) Projection on 1D y-axis

FIGURE 4.2: A 2D to 1D projection that suggests that a projection with a maxi-
mum pairwise class distance may not result in the right projection plane for classi-
fication purposes.

A goal of an LDR method is to find a linear projection into a one-dimensional

space to produce minimum classification error. The algorithm described in [36] ex-

tends the maximization of the Chernoff distance approach to the multiclass case by

directly summing up the between class Chernoff distances. This criterion is domi-

nated by the between class distances which are the largest. Fig. 4.2(b) illustrates



35

that by maximizing such criterion, large between class distances are maximized at

the expense of smaller between class distances resulting in an overlap of the PDF

of two classes far from the PDF of a third class. By overlapping the two class, they

become essentially indiscriminable leading to a large classification error. Counter

to the sum of distances approach, the proposed bound (4.15) is dominated by the

small between class distance driving close classes further apart. In turn, the con-

tribution of the leading sources of error (i.e., the close classes) is reduced leading

to a small error probability. Figure 4.2(c) illustrates that while no two class are as

apart as in Fig. 4.2(b) the minimum distance between close classes is kept fairly

large. In the Gaussian homoscedastic case the Chernoff distance is propositional to

Fisher’s discriminant and hence our approach is immediately relevant to combin-

ing Fisher’s discriminant for the multiclass case. While the importance of properly

combining pairwise between class discriminants was previously raised in [47], their

offered heuristic solution suggested was that of a weighted sum of discriminants ap-

proach. Our DR approach following the bound (4.15) is strongly motivated by the

probability of error.
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5. EXPLICIT ERROR BOUNDS FOR DIFFERENT
DATA MODELS

In this section, we provide explicit error bounds for three widely used data

models. We consider the case where the class-conditional PDFs follow i) the Gaus-

sian distribution (for both the homoscedastic and the heteroscedastic case, ii) a

Gaussian mixture model, and iii) a non parametric kernel density estimate (KDE).

5.1. Chernoff union bound for Gaussian class-conditional

distributions

One of the most widely used distributions in data modeling is the Gaussian

distribution. The Gaussian model trades-off representation accuracy for tractability.

In the case of LDR, the Gaussian model can be motivate by the central limit theorem

since the lower-dimensional representation is obtained by linear combination of a

high-dimensional feature vector. We consider the case where the class conditional

PDF is a Gaussian. Hence, pi(x) = N (x|µi, Σi), where

N (x|µi, Σi) =
1

√

|2πΣi|
e−

1
2
(x−µi)T Σ−1

i (x−µi), (5.1)

where | · | applied to a square matrix denotes the determinant of the matrix. Follow-

ing this model the pairwise Chernoff distance dch(pi, pj; s) between pi(x) and pj(x)
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is given in closed-form [42, p. 98] as

dch(pi, pj; s) =
s(1− s)

2
∆µT

ijΣ
−1
ij ∆µij

+
1

2
log

( |Σij |
|Σj |s|Σi|1−s

)

, (5.2)

where ∆µij = (µj − µi) and Σij = sΣj + (1− s)Σi. By substituting dch(pi, pj ; s) as

in (5.2) in (4.15), we obtain the bound for the probability of error for the Gaussian

class-conditional model as

P ∗
e ≤

n
∑

i=1

∑

j 6=i

(

πj|Σj |
|Σij|

)sij
(

πi|Σi|
|Σij |

)1−sij

e−
sij(1−sij )

2
∆µT

ijΣ
−1
ij ∆µij . (5.3)

5.1.1 The homoscedastic case

The bound in (5.3) is applicable for any class covariance structure and is

referred to as the heteroscadastic Gaussian case. A special case is the case in which

each class distribution is model as Gaussian with identical covariance structure,

i.e., Σi = Σ. This scenario is referred to in the literature as the homoscedastic

case. Application of this property suggest that Σij = Σi = Σj = Σ and hence the

log(·) term in (5.2) vanishes. The corresponding pairwise Chernoff distance between

classes is

dch(pi, pj; s) =
s(1− s)

2
∆µT

ijΣ
−1∆µij.

Note that in this case the optimal choice for s maximizing the distance and hence

tightening the bound is s = 1
2
. This lead to a simple form of the bound for the
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Gaussian homoscedastic case given by

P ∗
e ≤

n
∑

i=1

∑

j 6=i

√
πiπje

− 1
8
∆µT

ijΣ
−1∆µij . (5.4)

Note that the argument of the exponent is negative of Fisher’s discriminant. This

bound suggests a sum of negative exponential approach for extending Fisher’s dis-

criminant analysis to the multiclass case.

The Gaussian model and even more so the homoscedastic Gaussian model

may not accurately represent the data due to their simplified structure. We are

interested in extending our approach to the Gaussian mixture model.

5.2. Chernoff union bound for GMM class-conditional dis-

tributions

The generality of the Gaussian mixture model (GMM) makes it an attractive

alternative to the Gaussian model. Gaussian mixture models can describe fairly

complex non-Gaussian distributions quite accurately with adequate number of mix-

ture components. Unfortunately, a closed-form expression for the Chernoff distance

between two GMMs is unavailable. Mutual information based LDR methods that

assume that the data follows the GMM use sample estimates in evaluating the MI. A

direct computation in high-dimensions is computationally costly and Monte-Carlo

evaluation [49, 50] may introduce estimation errors. We tackled the aforementioned

issues using the closed-form bound for the Gaussian case. Next, we present an

extension of the bound to the GMM case.

We start with required mathematical notations. As with the classification



39

setup in Section 3., the class-conditional PDF for the ith class is given by pi(x). In

the GMM representation for class i, we assume ki Gaussian mixture components

φi1(x), φi2(x), . . . , φiki
(x) with the mixing coefficients of αi1, αi2, . . . , αik such that

∑ki

k=1 αik = 1 and αik ≥ 0. The ith class-conditional PDF for the GMM is given by

pi(x) =

ki
∑

k=1

αikφik(x). (5.5)

Substituting the expression for pi(x) from (5.5) into (4.13), we obtain

e−dch(pi,pj ;s) =

∫

(

kj
∑

l=1

αjlφjl(x)
)s(

ki
∑

k=1

αikφik(x)
)(1−s)

dx. (5.6)

A closed-form expression for the integral in (5.6) is unavailable and hence we resort

to an application of an additional bound. Consider the following inequality (see

appendix 1)

(

∑

|xi|
)t

≤
∑

|xi|t, 0 < t < 1. (5.7)

Applying the inequality in (5.7) to (5.6), we obtain a bound for e−dch(pi,pj ;s)

e−dch(pi,pj ;s) ≤
∫ kj
∑

k=1

(αjkφjk(x))s
ki
∑

l=1

(αilφil(x))(1−s) dx

=

kj
∑

k=1

ki
∑

l=1

αs
jkα

1−s
il

∫

φjk(x)sφil(x)(1−s)dx. (5.8)
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Application of the bound in (5.8) to (4.15) yields

P ∗
e ≤

n
∑

i=1

∑

j 6=i

min
s

πs
i π

1−s
j

ki
∑

k=1

kj
∑

l=1

αs
ikα

1−s
jl

·
∫

φik(x)sφjl(x)(1−s)dx. (5.9)

Rearranging, we obtain the bound on the error probability as,

P ∗
e ≤

n
∑

i=1

∑

j 6=i

ki
∑

k=1

kj
∑

l=1

min
s

(πiαik)
s(πjαjl)

1−s

· exp(−dch(φik, φjl, s)). (5.10)

By the definition of the GMM, φik(x) and φjl(x) are Gaussian PDFs and hence

φik(x) = N (x, µik, Σik). The Chernoff distance between the mixture components is

given by,

dch(φik, pjjl; s) =
s(1− s)

2
∆µij

kl

T
Σij

kl

−1
∆µij

kl

+
1

2
log

(

|Σij
kl|

|Σlj |s|Σik|1−s

)

, (5.11)

where ∆µij
kl = (µjl−µik) and Σij

kl = sΣlj +(1−s)Σik. In the previous section, we had

already mentioned the availability of closed-form expression for Chernoff distances

between Gaussian PDFs (5.2).
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5.3. Chernoff union bound for non-parametric class-conditional
distributions

One important factor that can greatly affect the performance of a GMM based

LDR is the uncertainty in estimating the GMM parameters and the number of mix-

ture components that must be assumed or estimated through model order selection.

This directly affects the performance of the proposed LDR algorithm. As an al-

ternative, we consider the use kernel density estimation [51], i.e., a non-parametric

approach to DR. Under the KDE model, each class-conditional distribution pi(x) is

constructed by adding kernel functions centered about the data points whose label

is i:

pi(x) =
1

Ni

N
∑

k=1

I(yk = i)K(x− xk; σ), (5.12)

where Ni =
∑

k I(yk = i) is the number of points drawn from class i, and σ is a

bandwidth parameter typically used in balancing bias and variance associated with

the KDE. To fit to the GMM framework used earlier, we consider a kernel function

K(·; σ) : Rd → R of the form

K(x; σ) =
1

(
√

2πσ2)d
e−

‖x‖2

2σ2 . (5.13)

Since pi(x) is given a convex combination of Gaussian PDFs, it can be viewed as a

special case of the GMM where the number of mixtures in pi(x) is N , the mixture

components are φik = N (x; xk, σ
2), the mixing coefficients are αik = 1

Ni
I(yk = i) and

the prior probability is πi = Ni

N
. In such a case, the expression in (5.14) naturally

offers an upper bound on the probability of error. Substituting the aforementioned
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values for φik, αik, and πi into (5.10), we obtain

P ∗
e ≤

n
∑

i=1

∑

j 6=i

N
∑

k=1

N
∑

l=1

min
s

(

Ni

N

1

Ni

I(yk = i)

)1−s(
Nj

N

1

Nj

I(yl = j)

)s

· exp(−dch(φik, φjl, s)).(5.14)

Since φik = N (x; xk, σ
2) and φjl = N (x; xl, σ

2), we have

dch(φik, φjl; s) =
s(1− s)

2

‖xk − xl‖2
σ2

(5.15)

Substituting (5.15) into (5.14) and simplifying, yields

P ∗
e ≤

n
∑

i=1

∑

j 6=i

N
∑

k=1

N
∑

l=1

min
s

1

N
I(yk = i)I(yl = j)e

s(1−s)
2

‖xk−xl‖
2

σ2 . (5.16)

Since
∑

i

∑

j 6=i I(yk = i)I(yl = j) =
∑

i I(yk = i)
∑

j 6=i I(yl = j) =
∑

i I(yk =

i)I(yl 6= i) = I(yk 6= yl) and since the minimum on the RHS is achieved at s = 1
2
,

we can write (5.16) as

P ∗
e ≤

1

N

N
∑

k=1

N
∑

l=1

I(yk 6= yl)e
−

‖xk−xl‖
2

8σ2 . (5.17)

The bound derived in (5.17) can be interpreted in the following way. The dominant

terms on the RHS are those exponentials for which ‖xk − xl‖2/(8σ2) is small. This

suggests that the cases when the two points xk and xl are close, they contribute most

to the probability of error. In LDR, the xis depend on the linear transformation

matrix A. To minimize the the bound for the minimum error probability, we must

keep the closest pairs of points far to keep the bound to a minimum. An illustration
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of the above is given in Fig. (5.1(c)). We present a two-dimensional projection of a

three-dimensional data in which the points that contribute to most probability of

error are marked in dark. The LDR method based on our approach will thus be

controlled by these anchor points that lie in the boundary of the classes.

(a) Gaussian model (b) Gaussian mixture model (c) Kernel density estimate

FIGURE 5.1: An illustration marking the physical counterpart of the terms in the
CUB bounds that increase the probability of error for the three data model. A dark
line between distributions indicate that the distance between them introduces most
of the classification error.

5.4. summary

In this chapter, we presented the generalized CUB bound for the error proba-

bility and applied it to three data models, i.e., Gaussian, GMM, and KDE. All the

CUB bounds follow a similar flavor of summation over exponent of negative dis-

tances. The relation between exponent of negative distances to probability of error

surfaces when we look at the terms that increase the probability of error, which

are the distances that are small. These terms that dominate our cost functions are

what we would like to describe as the region of interest. To visualize the region of

interest when using CUB algorithm, a lower dimensional projection of datasets is

illustrated in fig. (5.1). For a particular lower dimensional transformation A, the
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CUB algorithms is illustrated for cases when the data is parametrized as Gaussian,

GMM and Kernel density estimates. The class pairs that adds most weight to the

CUB learning process is marked with a dark connection between the distributions.

In the Gaussian case (fig 5.1(a)) we that the class pairs 1 − 2, 2 − 3, 4 − 5 in the

lower dimensional plane are the dominant factors which will influence CUB. In the

case of GMM (Fig. 5.1(b)) the distances between the mixture components 1, 2 and

3 will guide the CUB LDR. In non-parametric CUB the data points that are closer

to the other class act as support points that help in finding a good projection plane,

it is represented in Fig. 5.1(c) with support points marked darker than the rest

of the data points. We see that CUB bounds identify the region of interest that

most intuitively contribute to the classification error, Next we demonstrate how the

bound can be used for LDR.



45

6. ERROR BOUND MINIMIZATION ALGORITHMS

6.1. Cost function

In this section, we present a criterion for LDR based on the CUB presented in

the previous section and provide an gradient based algorithm for the minimization

of the criterion. Under the correct data model, the minimization of the bound as a

function of the linear transformation matrix A provide upper bound guarantees on

the probability of error. The bound derived in the GMM case is the most general.

Both the bound for the Gaussian case and the KDE case (see previous section) can

be obtained through a special choice of the parameters of the GMM. For example,

when number of the mixture components in each class is 1, the bound for the GMM

case reduces to the bound for the Gaussian case. Therefore, we proceed with the

bound for the GMM as the LDR objective function

J(A) =

n
∑

i=1

n
∑

j 6=i

∑

k

∑

l

(πiαik)
s(πjαjl)

1−s

exp(−dch(φik(·, A), φjl(·, A); s)), (6.1)

where φik(·, A) = N (·|Aµz
ik, AΣz

ikA
T ) and µz

ik and Σz
ik are the mean and covariance

of the kth component of the ith class in the original space Rm, respectively. It

follows that,

dch(φik(·, A), φjl(·, A); s)) =
s(1− s)

2
∆µij

kl

T
AT Σij

kl

−1
A∆µij

kl

+
1

2
log

(

|AΣij
kl

z
AT |

|AΣz
ikA

T |s|AΣz
jlA

T |1−s

)

, (6.2)
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where, Σij
kl = AΣijz

kl AT , Σijz

kl = (sΣz
ik + (1 − s)Σz

jl), ∆µij
kl = A∆µijz

kl and ∆µijz

kl =

µz
jl − µz

ik.

Without loss of generality, we propose the following constraint minimization

min
A∈Rd×n

J(A) subject to AAT = Id. (6.3)

Suppose that a full rank A does not satisfy the constraint, we can always find

B = GA, where G is d × d invertible matrix that satisfies that constraint since

BBT = GAAT GT can be made I. Note however that the cost function remains

the same if we replace A with B = GA. Transforming the features with a one-to-

one transformation implies that the features can then be recovered and hence we

expect the classification performance to remain the same. Hence the solution of the

constraint problem is identical to the solution of the unconstrained problem.

6.2. Gradient Descent with Unitary Constraints

In our specific setting, A is orthogonal such that AAT = Id, where Id is

an identity matrix of dimensions d × d. Orthogonality restriction helps to avoid

uncontrolled scaling of the transformation matrix. A standard technique to optimize

a cost function such as J(A) is the gradient based optimization. To minimize the

cost function (6.1) w.r.t. A, we adopt the gradient descent method. The update
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Algorithm 1: GMM-CUB LDR Algorithm

Input : Set of {µz
i , Σ

z
i , thresholdλ}

Output: Matrix A ∈ Rm×d

begin
A(0) ← R and (m, d) : AAT = Id

repeat
for i← 1 to n do

for j ← i + 1 to n do
for k ← 1 to nk do

for l ← 1 to nl do
evaluate dch(φik, φlj; s)
evaluate ∇Adch(φik, φlj; s)

end

end

end

end
evaluate J(A) and ∇AJ(A)
A(t+1) = A(t) − ǫ∇AJ̃(A(t))

until |J(A)t − J(A)(t−1)| < λ ;
end

iteration is given by,

A(t+1) = A(t) − ǫ∇AJ̃(A(t)), (6.4)

∇AJ̃(A) = ∇AJ(A)−
1

2

(

∇AJ(A)AT + A∇AJ(A)T
)

. (6.5)

The variable ǫ is the step size of the gradient descent and J̃(A(t)) is the gradient

of our cost function. The use of ∇AJ̃(A) instead of ∇AJ(A) is to incorporate

orthogonality constraints to our transformation matrix A [52]. In our simulations,

we consider a line backtracking method to determine a value for ǫ that guarantees

a reduction in the cost function. Since our cost function in (6.1) is continuous and
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differentiable, we can obtain its gradient as

∇AJ(A) = −
n
∑

i

n
∑

j 6=i

∑

k

∑

l

(πiαik)
s(πjαjl)

1−s

e−dch(φik,φjl,s,A)∇Adch(φik, φjl, s, A). (6.6)

The gradient of dch(φik, φjl, s, A), the Chernoff distance between two Gaussian mix-

ture components has been discussed in eq. (19) of [38] or in [33] and is given by

∇Adch(φik, φjl, s, A) = s(1− s)(Σij
kl

−1
∆µij

kl∆µijz

kl

T − Σij
kl

−1
∆µij

kl∆µij
kl

T
Σij

kl

−1
AΣijz

kl )(6.7)

+(Σij
kl

−1
AΣijz

kl − sΣik
−1AΣz

ik − (1− s)Σjl
−1AΣz

jl).(6.8)

A summary of our algorithm is provided in Algorithm 1. Convergence of the algo-

rithm to local minima has been tackled by repeated random initializations.
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7. NUMERICAL STUDY

7.1. Toy example

In this section, we consider a comparison of the non-parametric version of our

algorithm to other methods that are based on the non-parametric assumption. Our

comparison includes two DR methods: i) neighborhood component analysis (NCA)

[35] and ii) quadratic mutual information (QMI) [28]. NCA is based on the maxi-

mization of probability that the first nearest neighbor belongs to the same class for

every data point. The idea is based on a smooth extension to the hard notion of a

neighborhood. QMI follows the approach of maximum mutual information while re-

placing the difficult to compute Shannon’s MI with a quadratic mutual information.

All of the algorithms considered consider an optimization of an objective function

over the space of linear transformation.

To gain some insight regarding the cost function used in our proposed method

and the two aforementioned algorithms, we consider the following toy example. The

dataset created consists of three Gaussian classes C = {1, 2, 3} defined over a two-

dimensional Euclidean space (see Fig. 7.1(a)). The mean and covariance of each

class is denoted by µ1, µ2, and µ3 and Σ1, Σ2, and Σ3 respectively. We consider

identical diagonal covariance matrices, i.e., Σ1 = Σ2 = Σ3. The variance along

the x-axis is 1 and the variance along the y-axis is 49. The classes are centered at

µ1 = [0, 26]T , µ2 = [0,−26]T and µ3 = [−20, 0]T . Introducing the class mean in

this manner places the classes 1 and 2 at a large distance of 52 vertically on top

of each other and the class 3 at a relatively smaller distance of 20 to the left of

classes 1 and 2. The bandwidth selection process is unsupervised, the bandwidth
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will be biased towards a larger variance vertically (to accommodate classes 1 and

2). Under this condition we evaluate the aforementioned methods. The classes are

clearly separable on 1D projections along the angles of 10◦ − 18◦ , 163◦ − 169◦ e.g.,

a projection along 13◦ produces a clear class separation as shown in Fig. 7.1(b).

For the toy example considered, the cost function used by QMI can be found in

closed-form

JQMI(θ) =
1√

4πσd

+

3
∑

i

3
∑

j

1
√

4πσ2
d

exp(−(µx
ij cos(θ) + µy

ij sin(θ))2/(4σ2
d))(7.1)

where µx
ij = µi(1)−µj(1) is the difference in the x-coordinates of the means of class

i and j, µy
ij = µi(2) − µj(2) represents the difference in the y-coordinates of the

means between class i and j, and θ is the angle defining the one-dimensional linear

transformation A = [cos(θ), sin(θ)]. In the analytic formulation we can evaluate

the projected covariance in one-dimension as σ2
d = cos(θ) + 49 sin(θ). We now

compare the sample estimated cost and the analytic cost across all angles of the

one-dimensional projection. A plot of the estimated cost obtained by evaluating

based on samples in a non-parametric manner and the analytic expression (7.1)

is provided in Fig. (7.2(e)). We note the correspondence between the analytic cost

function and the cost evaluated using data samples. It can be noted that the analytic

cost evaluated is higher than the estimated cost in regions where the cost function

is high. This occurs due to error in the sample based approximation of analytic

integral becoming significantly noticeable when classes are further apart. The QMI

cost function achieves maximum value at 177◦ (see Fig. 7.2(e)). The PDF associated

with the one-dimensional projection of the data for θ = 177◦ is shown in Fig. (7.1(c)).

We notice significant overlap in classes and that the resulting linear projection of
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the data is significantly different than that in Fig. 7.1(b), which is achieved by a

projection associated with θ = 193◦. We propose the following explanation. The

QMI cost function for this toy example (7.1) is inversely related to the projected

class variance σ2
d which is minimized at θ = 0◦ or 180◦ (result of our initial choice of

the class means). This drives the maximizer of the QMI objective towards θ = 0◦ or

180◦. While this may seem an artifact of the example presented here, it is a deeper

issue that is associated with the replacement of Shannon MI, which is used to bound

probability of error, with the QMI. One property of statistical divergences (such as

the MI) is that they are invariant to invertible linear transformations. This property

does not hold for QMI. The cost function used by our proposed algorithm (5.17) is

minimized at 193◦ as seen in Fig. (7.2(b)). Our method seem to balance well the

within-class covariance and the between class covariance. We see the true training

error for the toy data being discussed in Fig. (7.2(a)) and see the correspondence

with the CUB cost function.

We analyze the cost function of NCA on the same dataset. NCA yields a

projection plane that distinctly separates the three classes as shown in Fig. 7.1(d).

Since no constraints are applied to the matrix A in NCA, NCA allows for a mag-

nitude scale. In some case, this could lead to increased distance between points to

the point that the second nearest neighbor is significantly further away as compared

to the first neighbor. This lead to a non smooth cost function that is dominated

by first-nearest neighbor distances. This of course is counter to the intention of the

approach, which is to provide a smooth alternative to a non-smooth first-nearest

neighbor based objective. From Fig. 7.2(c), we observe that for lower magnitudes

of the transformation matrix the cost remains smooth. However, the cost becomes

non-smooth for higher magnitudes. This could result in difficulties during the opti-
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FIGURE 7.1: Comparison of the projection of a 2-dimensional data in Fig. (7.1(a))
on a 1-dimensional projection plane obtained by QMI and KDE for a toy dataset.

mization of the NCA objective.

7.2. Numerical Performance Evaluation

In the following, we present the setup used for evaluating the proposed meth-

ods and for the comparison with alternative methods along with analysis of the

results.

Datasets

To conduct a numerical performance study, we consider several datasets. We

selected the following datasets: Landsat, Phoneme and Optdigits. The phoneme



53

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) True train error vs all angles

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

(b) CUB:KDE: Training error vs Angle
of projection

0 20 40 60 80 100 120 140 160 180

1000

1100

1200

1300

1400

1500

 

 

1*A
0.1*A
10*A
100*A

(c) NCA: Cost function vs Angle of pro-
jection for different magnitudes of pro-
jection plane

0 50 100 150 200 250 300 350

10
−3

10
−2

10
−1

10
0

(d) QMI: Training error vs Angle of pro-
jection

0 50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

 

 

Estimated Cost
Analytic Cost

(e) Cost vs Angle evaluated from data

FIGURE 7.2: Plots of cost vs 1D angle of projection for QMI, KDE-CUB and NCA
for the dataset in Fig. (7.1(a))
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dataset was obtained from Stanford database2, the rest of the datasets were obtained

from UCI machine learning repository3. The datasets have been selected from a wide

range of dimensions and sizes in order to bring out the advantages and disadvantages

of DR methods with dimensions and class size. Table 7.2. lists the datasets along

with the following parameters: data dimension, data size (total number of available

points), and the number of classes. The following criteria were considered when

selecting the datasets: i) no. of classes - to illustrate the applicability of the method

to the multiclass case we consider datasets with more than two classes and ii) data

structure - the datasets picked varied to provide good fit to any either of the models

considered in this thesis: Gaussian, Gaussian mixtures, and kernel density estimates.

Name Dimension Size no.Classes
Landsat 36 6435 6

Phoneme 256 4509 5
Optical Digits 64 5620 10

TABLE 7.1: Datasets used in simulations

7.2.1 Dimension reduction methods

For each data model, we considered a different collection of DR methods. For

each DR method, we considered the corresponding model based classifier (e.g., a

GMM likelihood ratio test for the GMM data model). The following DR methods

we considered (data models assumed for each DR are included in parentheses):

2http://www-stat.stanford.edu/ tibs/ElemStatLearn/

3http://archive.ics.uci.edu/ml/



55

1. PCA: Principle component analysis [1] (all data models). We constructed the

covariance matrix of the data and applied an eigendecomposition to it. We

then selected the d principle vectors (i.e., the eigenvectors corresponding the

d-largest eigenvalues) for the rows of A. We included the results of PCA for

all data models.

2. LDA: Linear discriminant analysis [19] (all models)

There are numerous variants of LDA in literature for the multiclass case. We

considered the variant of LDA, which is based on the generalized eigendecom-

position of the between-class covariance matrix to the within class covariance.

As in PCA, the eigenvectors corresponding to the d-largest eigenvalues were

used to construct the rank d linear projection matrix A. For implementation

details, we refer the reader to the introduction section in [53]

3. RH: The algorithm proposed by Rueda and Hererra in [36] based on the

maximization of the sum of Chernoff distance (Gaussian data model) for mul-

ticlass LDR. In our implementation we used s = 0.5 to evaluate the Chernoff

distance.

4. MMI: Maximum mutual information [44] (GMM data model). A mutual

information based cost criterion that is maximized using gradient methods.

The DR method is suitable for data modeled as Gaussian mixtures but the

actual cost function is based on sampled evaluations.

5. QMI: Quadratic mutual information [37] (non-parametric)

The method is based on a cost function called the quadratic mutual informa-

tion and fits the DR setup where a non-parametric assumption of the data

holds.
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6. NCA: Neighborhood component analysis [35] (non-parametric)

A gradient based method that aims at learning a distance metric for the data

resulting in maximizing the probability of data in a given class. This method

is suitable for the non-parametric LDR.

7. GCUB: CUB algorithm for Gaussian data (Gaussian data model)

The cost function is based on the bound developed in section 5.1..

8. GMM-CUB: CUB algorithm for GMM (GMM data model)

The cost function is based on the bound developed in section 5.2..

9. CUB-KDE: CUB for KDE (non parametric)

The cost function is based on the bound developed in section 5.3..

Each DR method requires explicitly or implicitly the parametrization of the

data model. The parameters for each data model were obtained as follows. For the

Gaussian data model, class mean and covariance parameters were computed using

the training data for each class. For the GMM case, the expectation maximization

algorithm for GMM was used to obtain the mean, covariance, and prior probability

for each Gaussian mixture component for each class. In our setup of the problem,

finding the optimum number of class mixtures is not a factor in comparison of the

methods since the same GMM was used for all GMM based DR methods. Initially

we identified a suitable range of mixtures for each class based on a maximum like-

lihood criterion. We then selected a particular configuration and stored that to be

used by all methods. The number of mixtures were not optimized to offer any im-

provement in classification results. The GMM error rates are sole representative of

the DR method and could be improved if appropriate GMM configuration is iden-

tified. For the non-parametric case, a Gaussian kernel was adopted for KDE with
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a covariance of σ2I. For each dataset, the bandwidth parameter σ2 was obtained

using the maximum likelihood principle [54]. For each dataset, the same value of

the bandwidth parameter was used for all DR methods and all classifiers.

7.2.2 Classifiers compared

In this thesis we developed DR algorithms specifically for cases where data

classification is desired after dimension reduction. our performance evaluation cri-

terion for a DR method is thus the error produced by the dataset after the DR step.

We adopted Bayes classifier for the data model under consideration. The general

form of a Bayes classifier is given by (3.3). Its specific form for each data model is

listed as follows:

1. Quadratic classifier (Q):

For the Gaussian data model, Bayes classifier simplifies to the quadratic clas-

sifier (Q) given by

y = arg max
i

log πi −
1

2
log det(2πΣi)−

1

2
(x− µi)

T Σ−1
i (x− µi), (7.2)

where µi and Σi are the mean and covariance of class i, respectively. Note

that while the classifier was obtain by taking the log of the Gaussian PDF,

the resulting form is quadratic in x.

2. GMM Bayes classifier (GMC):

For data that is distributed according to Gaussian mixture model, we utilized

the GMM classifier (GMC). The general form of the GMC is given by

y = arg max
i

πi

ki
∑

k=1

αikN (x; µik, Σik), (7.3)
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where ki, αik, µik, and Σik denote the number of Gaussian mixtures, the k

component prior probability, the k component mean, and the kth component

Covariance, for class i, respectively.

3. KDE Bayes classifier (KC):

For data that is modeled use the KDE, we considered the KDE Bayes classifier

(KC) given by

y = arg max
i

πi

1

N

N
∑

k=1

I(yk = i)K(x− xk). (7.4)

4. k-nearest neighborhood classifier (KNN):

Motivated primarily by NCA [35]. We considered the k-nn estimator [55]. In

our simulations, we selected k = 1 in the k-nn classifier.

7.2.3 Cross-validation setup

All our simulations involve a DR step followed by a classification step. Hence,

the performance evaluation is based on the error produced by the classifier for the

given DR method and dataset. To robustly estimate the probability of error for

the given dataset we employ a cross-validation scheme. For datasets which were

split into training and test subsets, we first combine the two subsets into a single

dataset. We then partition the complete dataset into 75% training data and 25%

test data at random. For each dataset, we construct 15 different data partitions.

For each partition, probability of error was calculated and from the collection of 15

values of probability of error a mean value and standard deviation were obtained and

reported. A particular cross-validation setup remained the same over the analysis

of multiple DR methods to ensure fair comparison.
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7.3. Analysis of results

We proceed with the evaluation and the analysis of the proposed LDR methods

and provide a comparison to classical and state-of-the-art LDR techniques. As the

probability of error depend on the classifier applied, we group the results of various

LDR techniques based on the classifier used.

We present the DR results for each dataset used in individual tables: Landsat

(7.3.), Optical digits (7.3.) and Phoneme (7.3.). Each table is split into four sections

horizontally. Each section correspond to a choice of a data model assumption and

the classifier applied. For section of the table, we compare various classifiers that

are based (implicitly or explicitly) on the data model assumption. The tables are

split into four sections: i) Gaussian assumption and quadratic classifier (Q), ii)

Gaussian mixture model (GMM) assumption and Gaussian mixture classifier (GMC)

iii) non-parametric data model (KDE) with a KDE Bayes classifier (KC) and iv)

non-parametric data model (KDE) with a k-nn classifier.

Along a particular row of the table, we list the probability of error as a function

of the dimension of projection. The reported error in each cell is in the format of

mean ± standard deviation, which were obtained through 15 independent cross-

validation trials.

In the Gaussian setup, we constantly see that CUB outperforms the classical

methods of PCA and LDA in Landsat and Optdigit datasets. It also outperforms the

distance based criterion developed by RH. This supports the argument in the Section

4.3. suggesting that a bound based approach outperforms the sum of between class

distance maximization approach. In the phoneme dataset PCA seems to perform

as good as CUB for higher dimensions. This is due to the fact that the intrinsic
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dimensions of the data is completely captured by the number of dimensions of

projection.

Gaussian mixture models have the power to describe the data more accurately.

In cases where the data follows the Gaussian model, a GMM approach may not

offer significant improvement. In cases where the data follows the GMM, a DR

method utilizing the GMM model offers better result. We observe that GMM-

CUB outperforms CUB for Landsat dataset and in higher dimensions of phoneme.

GMM-CUB performs competitively better than MMI for all dimensions in Landsat,

Optical digits and the Phoneme datasets.

In the non-parametric setup, we observe that KDE-CUB outperforms state-of-

the-art method such as NCA. In general, KDE-CUB offers lower error rate than QMI

or NCA for most datasets and dimensions. KDE-CUB offers the best classification

error in dimensions 6 and 8 of the Optdigits dataset. Although NCA was initially

proposed under the premise that it will improve k-nn performance, it seems that

KDE classifier yield significantly better results. The NCA cost function adds up the

contribution of each point in the negative exponent fashion and KDE classifier offers

a similar formulation. Thus KDE classifier offers better result for NCA compared

to results of using the first nearest neighbor for classifications. Significant efforts

have been made in the implementation of all DR methods including QMI and NCA.

Significant consideration was given to the optimization involved in these methods.

In-spite of using similar gradient approaches to all the methods, our experience form

simulations suggest that NCA converges very slowly compared to QMI and KDE-

CUB. We observed CUB-KDE converged the fastest and resulted in competitive

results compared to QMI and NCA in landsat, phoneme and higher dimension of

optical digits.
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2 4 6 8
PCA/Q 17.55 ± 0.7 14.55 ± 0.4 14.30 ± 0.6 14.97 ± 0.7
LDA/Q 19.57 ± 0.6 14.26 ± 0.6 13.59 ± 0.6 13.49 ± 0.5
RH/Q 16.28 ± 0.61 14.87 ± 0.6 14.63 ± 0.8 14.80 ± 0.4

CUB/Q 15.31 ± 0.5 14.08 ± 0.9 14.42 ± 0.7 14.55 ± 0.8
PCA/GMC 16.41 ± 0.01 13.02 ± 0.01 11.39 ± 0.1 11.59 ± 0.1
LDA/GMC 20.47 ± 0.01 13.09 ± 0.01 11.97 ± 0.3 11.67 ± 0.2
MMI/GMC 16.12 ± 0.10 12.04 ± 0.02 11.22 ± 0.1 11.03 ± 0.4

GCUB/GMC 15.95 ± 0.02 11.70 ± 0.02 10.77 ± 0.3 10.66 ± 0.3
PCA/KC 16.13 ± 0.6 12.25 ± 0.5 9.66 ± 0.3 9.10 ± 0.5
LDA/KC 18.96 ± 0.6 12.25 ± 0.6 10.8 ± 0.7 10.65 ± 0.8
NCA/KC 18.3 ± 0.7 13.87 ± 0.8 11.90 ± 0.7 10.66 ± 0.3
QMI/KC 17.05 ± 1.6 13.89 ± 0.63 12.93 ± 0.3 12.60 ± 0.01

KCUB/KC 15.90 ± 0.7 12.5 ± 0.5 10.50 ± 0.4 9.91 ± 0.5
PCA/KNN 21.36 ± 0.7 13.58 ± 0.5 10.58 ± 0.5 9.72 ± 0.5
LDA/KNN 24.29 ± 1.1 12.83 ± 0.8 12.82 ± 0.8 12.80 ± 0.9
NCA/KNN 25.25 ± 3.3 17.7 ± 0.1 15.71 ± 0.9 15.49 ± 0.6
QMI/KNN 22.70 ± 1.9 24.19 ± 0.6 23.44 ± 0.7 16.69 ± 0.01

KCUB/KNN 21.98 ± 1.2 15.21 ± 0.6 11.5 ± 0.5 10.8 ± 0.7

TABLE 7.2: Error rates for Landsat dataset
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2 4 6 8
PCA/Q 38.08 ± 0.8 18.17 ± 0.1 8.22 ± 0.6 5.11 ± 0.4
LDA/Q 33.9 ± 1.0 9.0 ± 0.6 5.3 ± 0.5 3.6 ± 0.3
RH/Q 40.06 ± 4.5 19.70 ± 2.7 9.73 ± 1.5 5.26 ± 0.8

CUB/Q 21.7 ± 1.0 5.72 ± 0.5 2.46 ± 0.6 2.15 ± 0.3
PCA/GMC 39.28 ± 0.01 17.98 ± 0.01 8.26 ± 0.01 5.83 ± 0.1
LDA/GMC 35.66 ± 0.30 12.40 ± 0.01 7.21 ± 0.31 5.75 ± 0.1
MMI/GMC 26.15 ± 0.10 8.16 ± 0.4 5.71 ± 0.5 3.85 ± 0.6

GCUB/GMC 24.50 ± 0.30 8.01 ± 0.2 5.47 ± 0.3 3.87 ± 0.1
PCA/KC 36.74 ± 0.1 16.44 ± 6.25 ± 0.6 3.45 ± 0.5
LDA/KC 42.23 ± 0.8 19.89 ± 1.2 19.54 ± 2.5 18.33 ± 0.5
NCA/KC 55.71 ± 0.7 15.46 ± 0.6 8.80 ± 1.7 6.3 ± 0.4
QMI/KC 24.36 ± 1.7 8.01 ± 0.7 8.43 ± 1.3 7.97 ± 0.7

KCUB/KC 28.14 ± 2.4 8.20 ± 0.7 3.4 ± 0.4 3.2 ± 0.3
PCA/KNN 46.22 ± 1.2 18.17 ± 0.1 6.80 ± 0.7 3.63 ± 0.5
LDA/KNN 41.9 ± 1.3 9.0 ± 0.7 6.6 ± 0.7 4.9 ± 0.6
NCA/KNN 66.05 ± 1.7 9.67 ± 0.1 6.63 ± 0.07 9.97 ± 0.1
QMI/KNN 32.53 ± 1.7 9.6 ± 0.7 9.22 ± 0.8 9.53 ± 0.08

KCUB/KNN 38.5 ± 0.3 9.9 ± 0.8 3.5 ± 0.4 2.30 ± 0.8

TABLE 7.3: Error rates for Optical Digit dataset



63

3 7 10 14
PCA/Q 12.0 ± 1.0 7.8 ± 0.7 7.9 ± 0.6 8.30 ± 0.08
LDA/Q 12.40 ± 0.5 7.21 ± 0.4 7.31 ± 0.3 7.49 ± 0.4
RH/Q 11.28 ± 0.5 10.11 ± 0.63 9.59 ± 0.07 9.35 ± 0.09

CUB/Q 7.9 ± 0.4 8.8 ± 0.5 8.9 ± 0.5 8.3 ± 0.8
PCA/GMC 12.75 ± 0.01 7.14 ± 0.01 7.58 ± 0.1 8.28 ± 0.01
LDA/GMC 13.81 ± 0.01 8.10 ± 0.2 8.52 ± 0.3 8.27 ± 0.05
MMI/GMC 9.95 ± 0.1 11.01 ± 0.5 10.81 ± 0.04 12.42 ± 0.2

GCUB/GMC 8.14 ± 0.5 8.27 ± 0.7 7.63 ± 0.2 7.82 ± 0.04
PCA/KC 13.7 ± 0.5 10.83 ± 0.4 11.02 ± 0.9 11.11 ± 0.8
LDA/KC 13.35 ± 0.04 7.2 ± 0.04 7.25 ± 0.04 7.14 ± 0.04
NCA/KC 13.3 ± 0.9 12.49 ± 0.9 12.5 ± 0.1 12.6 ± 11.2
QMI/KC 13.12 ± 0.03 11.78 ± 0.1 12.01 ± 0.04 11.95 ± 0.08

KCUB/KC 12.37 ± 0.7 11.53 ± 0.6 10.8 ± 0.7 10.3 ± 0.8
PCA/KNN 15.42 ± 0.5 11.02 ± 0.6 11.15 ± 0.7 11.16 ± 0.2
LDA/KNN 16.06 ± 0.06 9.4 ± 0.06 9.31 ± 0.06 9.53 ± 0.06
NCA/KNN 17.5 ± 1.2 16.4 ± 0.1 16.42 ± 1.6 16.4 ± 0.1
QMI/KNN 15.05 ± 0.08 14.51 ± 0.1 14.60 ± 0.6 12.50 ± 0.08

KCUB/KNN 14.8 ± 0.7 11.59 ± 0.7 10.7 ± 0.5 10.4 ± 0.8

TABLE 7.4: Error rates for Phoneme dataset
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8. CONCLUSION

8.1. Summary

In this thesis, we proposed a novel linear dimension reduction method based on

a bound approach on the probability of error. The advantages of the bound we use

are: i) it is in closed-form, ii) it is applicable for a range of data models (Gaussian,

Gaussian mixture model, and kernel density estimates), and iii) it offers lower or

comparable classification error rates in comparison with other methods. From our

numerical study we observed that the CUB based LDR methods offer either better or

competitive classification errors compared with state-or-the-art methods. Moreover,

since the CUB approach is applicable to a range of data models, it offers a unified

framework for dimension reduction based on the bound on error probability.

8.2. Contributions

In an effort to develop dimension reduction methods for better data classifi-

cation, our contribution includes three novel DR methods. The following are the

itemized description of our contributions.

1 A novel multiclass LDR method based on bound on probability of error for

Gaussian data model developed in Section. 5.1. We illustrate how CUB ad-

dresses the drawbacks in other state-of-the-art class separation based LDR

method [31] and demonstrated the superiority of our algorithm using numer-

ical results on real datasets. We call this method CUB algorithm.
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2 The novel bound described in CUB is not applicable to data modelled as Gaus-

sian mixtures due to closed-form constraints. We the developed a generalized

novel bound for error probability for Gaussian mixtures in Section. 5.2. We

call this method as GMM-CUB. We demonstrated the superior performance

of GMM-CUB by comparing with LDR methods based on mutual information

[24].

3 To extended GMM-CUB to non-parametric models of data we re-formulated

the GMM-CUB bound in Section. 5.3. Our non-parametric model is based on

kernel density estimates and hence we call this method CUB-KDE. We demon-

strated competitive performance of CUB-KDE with state-of-the-art methods

like NCA [35] and QMI [28].

8.3. Publications

Following are the list of publications that were prepared for conferences and

journals as a result of the work described in this thesis.

[1] M. Thangavelu and R. Raich, Multiclass linear dimension reduction via a

generalized Chernoff bound, in proc. IEEE Workshop on Machine Learning

for Signal Processing, Cancun, Mexico, 2008, pp. 350355.

[2] M. Thangavelu and R. Raich, On linear dimension reduction for multiclass

classification of Gaussian mixtures, in proc. IEEE Workshop on Machine

Learning for Signal Processing, Grenoble, France, 2009, pp. 16.

[3] On Error Bounds for Linear Feature Extraction

IEEE Transactions on Pattern Analysis & Machine Intelligence (In preparation).
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8.4. Future work

The current drawback of the proposed method is much similar to other gra-

dient based methods, which is, occurrence of local minimas. Though it has been

tackled with multiple initializations, the fundamental issue is the non-convex nature

of the problem. Future work in this direction would involve developing a convex

counterpart to the CUB cost function that can truly offer a quick and competitive

method of linear dimension reduction.

Our work developed bound on error probability based on the technique of

upper bound. At each step of bounding, the difference between thue probabiltiy

of error and the bound loosens. Even though the idea of a bound over the error

probability is demonstrated to offer good LDR methods, adopting tighter bound for

the same framework can result in better results. An exploration in this direction

could well open up a new direction of research, a good place to start with is the

Bayesian bound which is tighter than the Chernoff bound used in this work.

The superiority and competitiveness of the methods developed in this thesis

has been demonstrated numerical analysis and comparison with other state-of-the-

art methods. Future work could involve developing computationally fast libraries in

languages such as C, C++ to aid development and further research based on these

algorithms.
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1 Appendix 1

Let ‖g‖p be the Lp norm of a finite-dimensional vector g given by ‖g‖p =
∑

(|gi|p)
1
p for p ≥ 1. Since ‖g‖p is monotonically decreasing with p,

‖g‖1 ≥ ‖g‖p. (.1)

By the Lp norm definition,

∑

|gi| ≥
(

∑

|gi|p
)

1
p

. (.2)

Replacing |xi| = |gi|p in (.2), yields

(

∑

|xi|
1
p

)

≥
(

∑

|xi|
)

1
p

. (.3)

Finally, replacing t = 1
p

(such that 0 < t < 1) into (.3), we obtain

∑

|xi|t ≥
(

∑

|xi|
)t

. (.4)
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2 Appendix 2

A multiclass data consisting of L classes is assumed to be drawn from distri-

butions p1, p2, · · ·pL with prior probabilities π1, π2, · · ·πL. The probability of error

considering this multiclass case is represented as Pe(p1, p2, · · · , pL, π1, π2, · · · , πL).

The probability of error constructed based on the bayes classifier rule for the

multiclass setup as described in. 3.5.

P ∗
e =

n
∑

i=1

∫

I
(

⋃

i6=j

(πjpj(x)

πipi(x)
> 1
)

)

πipi(x)dx. (.5)

Applying the union bound I(∪iAi) ≤
∑

i I(Ai) to the above expression we

obtain

P ∗
e ≤

n
∑

i=1

∑

j 6=i

∫

I

(

πjpj(x)

πipi(x)
> 1

)

πipi(x)dx. (.6)

=
n
∑

i=1

∑

j 6=i

(πi + πj)

∫

I

(

πjpj(x)

πipi(x)
> 1

)

πi

πi + πj

pi(x)dx. (.7)

Let us introduce the terms π̃i, π̃j as, π̃i = πi

πi+πj
s and π̃j =

πj

πi+πj
. This the

expression can be written as,

=

n
∑

i=1

∑

j 6=i

(πi + πj)

∫

I

(

π̃jpj(x)

π̃ipi(x)
> 1

)

π̃ipi(x)dx. (.8)

=
n
∑

i=1

∑

j>i

(πi + πj)

∫

I

(

π̃jpj(x)

π̃ipi(x)
> 1

)

π̃ipi(x)dx. (.9)

(.10)
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We know that

∫

I

(

πjpj(x)

πi pi(x)
> 1

)

πi pi(x)dx. (.11)

(.12)

describes the probability of error of a two class classification problem between the

distributions i and j belonging to the distribution pi and pj having the prior prob-

abilities πi and πj . Hence,

Pe(p1, p2, · · · , pL, π1, π2, · · · , πL) ≤
n
∑

i=1

∑

j>i

(πi + πj)Pe(pi, pj , π̃i, π̃j). (.13)

By the application of the union bound, a multiclass problem has been bounded by

the sum of two class error probabilities (.13).




