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Diatoms play a major role in ocean biogeochemical cycles and are important tools 

in bioengineering for natural products and nanotechnology. Diatoms and other algae 

growing at varying resource-limited growth rates allocate carbon to different metabolic 

pathways to optimize growth; however, the molecular mechanisms controlling these 

pathway gating strategies are not well understood. We used RNA-Seq to investigate how 

the model diatom Thalassiosira pseudonana balances photosynthetic energy flux in cells 

grown in continuous culture under slow and fast light-limited growth rates. We explored 

fold-change thresholds for differential expression in cells grown under low light (5 µE) 

with a steady-state growth rate of 0.20 d-1 and cells grown under high light (200 µE) with 

a steady-state growth rate of 1.54 d-1. Under the conservative threshold (|fold change| > 4, 

p < 0.05), only approximately 5% of genes were differentially expressed between low 

and high light conditions. Under the less conservative threshold (|fold change| > 2, p < 

0.05), approximately 25% of genes were differentially expressed. Under both thresholds, 

the majority of differentially expressed genes were not annotated in the KEGG database, 

highlighting the need for further efforts in functional annotation of diatom genomes. 



 

 

 

Several genes involved in the TCA and glyoxylate cycles, photorespiratory pathway, and 

peroxisomal functioning were differentially expressed. Slow-growing cells upregulated 

genes involved in carbon conservation (i.e., gluconeogenesis and the glyoxylate cycle) 

and downregulated genes involved in carbon catabolism (i.e., glycolysis). This research 

identified patterns of gene expression that help explain fundamental differences in 

metabolic flux in response to growth rate limitation in T. pseudonana. The genes 

identified in this study are well-conserved across phytoplankton groups, suggesting that 

they function as master regulators of carbon flux and macromolecular composition in 

algae. Knowledge of the relationship between growth rate and expression of master 

regulatory genes may allow for rapid assessment of phytoplankton growth rate in situ, a 

major goal of oceanographers interested in measuring primary production. This 

knowledge will also facilitate prediction of cellular responses to a changing climate and 

increase the feasibility of manipulating metabolic flux for bioengineering and production 

of important natural products.  
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Chapter 1: Introduction 

Diatoms—unicellular, eukaryotic algae with unique silica cells walls—are a 

major component of marine phytoplankton communities. They are highly abundant and 

incredibly diverse, with an estimated 200,000 species distributed throughout all aquatic 

environments with sufficient light and nutrients (Armbrust 2009a). Diatoms are the 

dominant primary producers in many parts of the ocean (Uitz et al. 2010). They play 

important roles in biogeochemical cycling of nitrogen, phosphorous, and silicon (Sarthou 

et al. 2005), contribute to the export of carbon from ocean surface layers (Scharek et al. 

1999; Guidi et al. 2016), and produce organic matter that serves as the base of the marine 

food web (Armbrust 2009a). Diatoms are dominant in coastal upwelling zones (Margalef 

1978), grow in sea ice and polar oceans (Thomas and Dieckmann 2002), and thrive in 

environments with fluctuating light (Mitrovic et al. 2003; Huisman et al. 2004). Their 

success in a variety of environments suggests that diatoms employ unique adaptive 

strategies (Crombet et al. 2011; Thamatrakoln et al. 2012; Nunn et al. 2013). Indeed, 

diatoms have been shown to possess a novel combination of metabolic pathways which 

may contribute to their dominance (Bowler et al. 2008; Allen et al. 2011). However, the 

fine-scale genomic and physiological mechanisms that control these adaptive strategies 

are not well understood.  

Diatoms’ unique ability to tolerate fluctuating and extreme light levels may 

contribute to their success. The marine light environment is highly dynamic, so 

photosynthetic organisms must be able to adapt to changes in light availability across a 

range of timescales. Photosynthetically active radiation (PAR) fluctuates on short 

timescales due to changes in incident solar radiation (modulated by local atmospheric 
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conditions), time of day, and the presence of dissolved organic matter or suspended 

particles (Marra 1980; Falkowski and Wirick 1981; Depauw et al. 2012). Phytoplankton 

may also experience changes in PAR depending on their vertical position in the water 

column, which is modulated by their sinking rate and water turbulence. When surface 

waters are well-mixed, phytoplankton may be exposed to full sunlight at the surface and 

complete darkness below the photic zone within a relatively short time period (Geider et 

al. 1986). Diatoms, which have heavy silica frustules and tend to sink when they are not 

actively growing (Malone et al. 1983; Acuña et al. 2010), are able to control their 

buoyancy by altering the contents of their vacuoles (Raven and Waite 2004). Diatoms 

likely rely on a combination of this vacuolar control and wind-driven mixing for 

distribution throughout the water column.   

 Over longer timescales, climate change will be an important driver of widespread 

changes in light availability in marine environments (Sarmiento et al. 2004; Marinov et 

al. 2010). However, the effects of climate warming will vary across ecosystems 

depending on a range of local factors (Hoegh-Guldberg and Bruno 2010). Generally, 

warming ocean temperatures will lead to stabilization of the temperature-driven density 

stratification of the water column (Behrenfeld et al. 2006), decreasing the effects of wind-

driven mixing. The resultant decrease in the depth of the mixed layer will keep 

phytoplankton closer to the surface where light is stronger. In some areas, however, 

climate warming will lead to more intense storms (Knutson et al. 2010) that may increase 

the effects of wind-driven mixing on the water column. In coastal areas, where diatoms 

are common, higher rates of erosion on land due will lead increased sediment inputs 

(Nearing et al. 2004) and lower PAR. The polar ocean will also experience changes in 
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PAR as sea ice melts and allows more light into the underlying waters (Nicolaus et al. 

2012). The input of fresh water from melting sea ice will also lead to stronger density 

stratification, decreasing vertical mixing and keeping phytoplankton closer to the surface. 

Frequent and extreme fluctuations in light availability are known to decrease 

productivity and fitness of photosynthetic organisms (Long et al. 1994), although the 

effects are dependent on the specific organism as well as on the frequency and amplitude 

of the fluctuations (Litchman 2000). Diatoms, however, have been shown to be 

particularly tolerant of fluctuations in the light environment and extremely low light 

availability (Geider et al. 1986; Mitrovic et al. 2003; Wagner et al. 2005). In fact, Fisher 

and Halsey (2016) showed that the model diatom Thalassiosira pseudonana is extremely 

efficient at converting harvested light energy into biomass. Across a wide range of 

growth irradiances (5–200 µmol photons m-2 s-2), T. pseudonana converted 57% of 

harvested light energy into biomass. That work explored the distribution of energy 

through interconnected metabolic pathways and provided evidence that T. pseudonana 

shifts the flow of energy through more efficient pathways under low light. However, the 

specific molecular mechanisms underlying these metabolic shifts have thus far not been 

investigated. The relatively recent progress in -omics technologies and methods has 

provided new tools that can now be used to explore these molecular mechanisms. This 

study uses whole-transcriptome sequencing to explore differential gene expression in T. 

pseudonana grown at two levels of continuous light; its goal is to connect transcriptomic 

data with existing physiological data to build a more complete understanding of how T. 

pseudonana responds to differences in light-mediated growth rate. 
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Chapter 2: Literature Review 

 

Diatom genomes and metabolism 

T. pseudonana’s complete genome sequence was published in 2004 (Armbrust et 

al. 2004). Four years later, the genome sequence of the pennate diatom Phaeodactylum 

tricornutum was published (Bowler et al. 2008). Genome assemblies are now available 

for five other diatom species: Thalassiosira oceanica, Fistulifera solaris, Cyclotella 

cryptica, Fragilariopsis cylindrus, and Pseudo-nitzschia multistriata (Lommer et al. 

2012; Tanaka et al. 2015; Traller et al. 2016; Mock et al. 2017; Basu et al. 2017). Study 

of these genomes has revealed that diatoms have a complex evolutionary history 

involving rapid evolution, pervasive horizontal gene transfer, and two endosymbiotic 

events. This evolutionary complexity is reflected in their genomes, which contain many 

genes that are diatom-specific, and in their metabolisms, which combine novel pathways 

(e.g., silicon metabolism) with pathways that do not coexist in other organisms (e.g., the 

Calvin-Benson cycle and the urea cycle).  

Molecular clock analyses have suggested that diatoms originated in the Mesozoic 

era, approximately 250 million years ago (Medlin 2011). They are thought to be the result 

of two separate endosymbiotic events. In the first endosymbiotic event, which occurred 

about 1.5 billion years ago (Yoon et al. 2004), a non-photosynthetic eukaryote acquired 

chloroplasts from a prokaryotic cyanobacterium. Approximately 500 million years later, 

the second endosymbiotic event—wherein a non-photosynthetic eukaryote engulfed a 

photosynthetic red alga (Bhattacharya et al. 2017)—occurred. The red algal symbiont 

eventually became the plastids of the Stramenopiles, the group which includes diatoms, 
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brown macroalgae, and plant parasites (Armbrust 2009a). Diatoms eventually diverged 

into the centric diatoms (cells with radial symmetry) and pennate diatoms (cells with 

bilateral symmetry). T. pseudonana and P. tricornutum are now considered the model 

species for centric and pennate diatoms, respectively.   

Studies of the available diatom genomes also revealed that genomes differ greatly 

among species; for example, the genomes of T. pseudonana and P. tricornutum are about 

as different as those of mammals and fish, despite the fact that mammals and fish 

diverged around 550 million years ago and the two diatom species diverged only 90 

million years ago (Armbrust 2009b). The high degree of divergence between these two 

organisms is highlighted by comparative genomic studies. These studies have found that 

P. tricornutum shares only 57% of its genes with T. pseudonana (Bowler et al. 2008). 

Additionally, 13% of P. tricornutum genes and 12% T. pseudonana genes are diatom-

specific. 42% of genes in the P. tricornutum genome are unique genes—genes that are 

not found in other diatom species—while 33% of T. pseudonana genes are unique genes. 

These highly divergent genomes can complicate -omics-based analyses of these 

organisms. In fact, only about 50% of diatom genes can be assigned putative functions 

based on homology-based methods (Maheswari et al. 2010).  In transcriptomic studies, it 

is not uncommon for the majority of genes of interest to be unannotated (Alexander et al. 

2015; Diner et al. 2016). Previous studies and reviews on the topic have highlighted the 

need for further functional annotation of protist genes (Caron et al. 2016); in particular, 

bench-based work is needed to identify the functions of genes with no known orthologs.  

The high degree of divergence and large number of non-orthologous genes in 

diatom genomes may be explained by the fact that these organisms are among the most 
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rapidly evolving taxa on Earth (Oliver et al. 2007). This rapid evolution has been 

attributed to the relatively high number of transposable elements and insertion/deletion 

mutations in diatom genomes (Vardi et al. 2009). Diatom-specific genes have also been 

shown to evolve faster than other genes in diatom genomes, possibly contributing to the 

high rate of divergence between diatoms (Bowler et al. 2008). Another source of 

variability in diatom genomes is horizontal gene transfer. Analysis of the P. tricornutum 

genome has revealed that about 5% of its genes are derived from bacteria, and about half 

of these bacterial-derived genes are shared with T. pseudonana (Bowler et al. 2008). This 

suggests that horizontal gene transfer is much more pervasive in diatoms than in other 

eukaryotes (Bowler et al. 2008; Martens et al. 2008; Keeling and Palmer 2008). 

Cyanobacteria and heterotrophic bacteria have been found in close association with 

diatoms (Zehr et al. 2000; Carpenter and Janson 2000); these close associations may 

explain the high rate of horizontal gene transfer between bacteria and diatoms.  

 Diatoms’ mosaic genomes encode novel combinations of metabolic pathways. For 

example, diatoms have the capacity for photosynthetic carbon fixation (via the Calvin-

Benson cycle) and organic nitrogen production (via the urea cycle). Photosynthetic 

carbon fixation is often seen as a hallmark of plant metabolism, while the urea cycle is 

generally considered to be part of animal metabolism. In metazoans, the urea cycle 

functions in the removal of fixed nitrogen; in diatoms, it is involved in the turnover and 

reallocation of inorganic nitrogen and carbon and is important to the adaptive response to 

nitrogen fluctuation (Allen et al. 2011). Diatoms are also unique in their ability to 

precipitate silicic acid in their environment to build silica cell walls. Although this unique 

metabolic function means that diatoms contribute significantly to marine biogeochemical 
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cycling of silica (Tréguer and De La Rocha 2013), this pathway has remained largely 

unexplored (Montsant et al. 2005). The first investigations into the components of diatom 

cell wall synthesis revealed that these components are unique to diatoms (Hildebrand et 

al. 1998; Poulsen et al. 2003; Montsant et al. 2005). Other unique cellular components 

encoded in diatom genomes include highly abundant heat shock transcription factors 

(Rayko et al. 2010), diatom-specific cyclins (Huysman et al. 2010), and far-red light 

sensors (Fortunato et al. 2016; Tirichine et al. 2017).  

  

Transcriptomic studies in diatoms  

 A cell’s transcriptome is the complete set of RNA transcripts it contains at a given 

time or under a given condition. Transcriptome profiling can provide insights into 

cellular growth, regulation, reproduction, and responses to environmental variables. 

Researchers have long understood the value in measuring gene expression to investigate 

cellular physiology; however, it was not until high-throughput sequencing became readily 

available that transcriptomic studies became commonplace. Although genomic and 

transcriptomic studies of marine protists are generally lagging behind those of other 

microorganisms, recent studies have used transcriptomics to probe the ecology, 

physiology, and evolution of these organisms (Caron et al. 2016). For example, 

transcriptomic approaches have allowed researchers to explore the diatom response to a 

variety of environmental variables, including the availability of iron (Marchetti et al. 

2012; Durkin et al. 2012), phosphorus (Dyhrman et al. 2012; Cruz de Carvalho et al. 

2016), silicon (Mock et al. 2008; Smith et al. 2016b), and nitrogen (Yang et al. 2013; 

Levitan et al. 2015).  
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Studies have shown that P. tricornutum differentially expresses approximately 

half of its genes in response to nitrogen starvation (Yang et al. 2013; Levitan et al. 2015), 

suggesting that this organism utilizes widespread genomic regulation in response to 

nitrogen stress. Generally, genes involved in nitrogen assimilation were upregulated. The 

likely result is that P. tricornutum is able to respond quickly when nitrogen is 

reintroduced to the environment. One-third of genes involved in lipid biosynthesis were 

downregulated in response to nitrogen starvation, possibly because nitrogen starvation 

impedes growth and cells that are growing very slowly have a lower requirement for 

cellular and organellar membrane components. The most strongly downregulated genes 

were involved in photosynthesis, suggesting that nitrogen starvation negatively affects 

photosynthetic processes. Indeed, nitrogen deficiency is known to decrease light 

absorption by modulating concentrations of pigment proteins and decreasing synthesis of 

chloroplastic proteins (Berges et al. 1996). Additionally, photosynthetic efficiency in T. 

pseudonana has been shown to decline rapidly following nitrogen starvation (Jiang et al. 

2012). Genes involved in glycolysis and gluconeogenesis were downregulated, while 

genes involved in the tricarboxylic acid (TCA) cycle were upregulated in response to 

nitrogen starvation. Upregulation of genes involved in the TCA cycle may increase flux 

through the cycle to compensate for lower rates of carbon fixation due to downregulation 

of photosynthesis. Genes involved in the glyoxylate cycle were significantly 

downregulated in response to nitrogen starvation (Yang et al. 2013).  

Phosphorous starvation resulted in differential expression of over half of the 

genome in P. tricornutum (Cruz de Carvalho et al. 2016). Generally, genes encoding 

ribosomal proteins were downregulated in response to phosphorous starvation. RNA 



 

 

9 

synthesis represents a significant sink for phosphorous, so phosphorous starvation could 

lead to decreased rates of transcription. However, it is also possible that the 

downregulation of ribosomal proteins is the result of the severely reduced growth rate 

rather than the lack of phosphorous (Dyhrman et al. 2012). The most strongly regulated 

genes were alkaline phosphatases, heat shock proteins, heat shock factors, and several 

proteins of unknown function. Heat shock factors are important transcriptional regulators 

in diatoms (Rayko et al. 2010), so the strong regulation of these genes may suggest that 

diatoms have a strong adaptive response to phosphorous starvation. Less than 2% of the 

differentially expressed genes were shared between T. pseudonana and P. tricornutum, 

highlighting the species-specific nature of their genomes and their stress responses. 

Genes found exclusively in P. tricornutum accounted for close to 20% of differentially 

expressed genes, suggesting that the response of diatoms experiencing phosphorous stress 

involves genes from diverse origins. This could provide support to the idea that diatoms’ 

unique mosaic genomes are partially responsible for their adaptability and success. Many 

genes involved in photosynthesis were significantly downregulated, indicating that 

diatoms respond to nutrient stress by downregulating photosynthesis.  

Unlike nitrogen and phosphorous starvation, silicon starvation has little direct 

effect on most metabolic processes. However, most diatoms (with the notable exception 

of P. tricornutum) require silicon to grow, and transfer to silicon-free medium has been 

shown to immediately arrest cell division (Smith et al. 2016b). Thus, silicon starvation 

can be used to disentangle the effects of cell cycle arrest from adaptive responses to 

nutrient stress. Smith et al. (2016) found that in response to cell cycle arrest caused by 

silicon starvation, T. pseudonana differentially expressed approximately 66% of its 
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genes. Genes that were differentially expressed were involved in silicon transport, lipid 

metabolism, carbohydrate metabolism, carbon metabolism, and pigment synthesis. Mock 

et al. (2008) also found that silicon starvation increased expression of genes involved in 

silicon transport and precipitation; however, the majority of regulated genes encode 

proteins with no known function. This is in contrast with genes that are regulated under 

nitrogen stress, which typically encode known proteins. This finding underscores the 

differences in cellular responses to starvation of essential nutrients (e.g., nitrogen and 

phosphorous) and growth rate limitation caused by lack of a necessary growth factor 

(e.g., silicon, light, etc.).  

 

Steady-state light limitation  

Changes in transcript abundance can be attributed to an adaptive response to a 

specific environmental variable or to a coordinated regulatory program associated with 

growth (Smith et al. 2016). Generally, adaptive responses are associated with starvation 

conditions, which cause metabolic imbalances that require adaptation to resolve; in 

contrast, limitation conditions, which determine rates of growth, are more generally 

associated with coordinated regulatory programs (Vonshak and Torzillo 2004; MacIntyre 

and Cullen 2005). In studies involving culturing, it is particularly important to clearly 

define whether the treatment conditions are starvation or limitation conditions, because 

cells that are in the process of acclimating (i.e., showing an adaptive response) are 

fundamentally different from cells that are fully acclimated and have achieved balanced 

growth (MacIntyre and Cullen 2005). Long exposure to highly stable culture conditions 

allows cells to reach physiological equilibrium; cells that have reached this equilibrium 
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are considered to be fully acclimated to their environment. In this study, T. pseudonana 

was acclimated to different growth irradiances over ten generations. Physiological 

measurements indicated that cells had achieved balanced growth (see Methods for more 

details); therefore, we concluded that any observed differences in transcript abundance 

between treatment groups could be attributed to a limitation response. Thus, we believed 

that any differentially expressed genes would be associated with a growth program rather 

than an adaptive response to a particular growth irradiance. A previous study focusing on 

steady-state growth in yeast found a clear transcriptional response to growth rate 

independent of nutrient stress, suggesting that eukaryotic cells do exercise growth-rate 

control at the transcriptional level and that this response can be distinguished from 

adaptive responses to starvation conditions (Castrillo et al. 2007).   

We are interested in diatoms’ responses to light-mediated growth rates because 1) 

light availability is one of the major factors controlling growth and productivity of 

photosynthetic organisms, 2) diatoms have been shown to be more tolerant of very low 

light levels than other types of algae (Quigg and Beardall 2003), raising questions about 

the metabolic and molecular mechanisms underlying this tolerance, and 3) information 

about the regulated growth programs that diatoms use to optimize growth under different 

light conditions can be used to refine global climate and biogeochemical models. 

Although the highly dynamic marine light environment contrasts starkly with the 

continuous light regime used in this study, we agree with MacIntyre and Cullen (2005), 

who wrote “…the fully acclimated state remains the expression of an idealized condition 

from whose contours we can discern the underlying elements of the cell’s expression in 

response to a mutable world.” We therefore believe that studying fully acclimated cells 
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growing in continuous light allows us to explore how cells grow in fluctuating light 

environments. Thus far, no contemporary studies have explored the effect of steady-state, 

light-limited diatom metabolism using transcriptomic methods. Older studies have 

explored diatoms’ responses to light-limited growth rates (Admiraal and Peletier 1979; 

Harrison et al. 1990), and several recent studies have used transcriptomics to explore how 

growth and metabolism are affected by light fluctuation (Nymark et al. 2009; Domingues 

et al. 2012), but no transcriptomic studies have focused on steady-state growth.  

Fisher and Halsey (2016) showed that diatoms are able to maintain maximal 

photosynthetic efficiency under steady-state, light-limited growth. Photosynthesis begins 

with the light-dependent generation of chemical energy in chloroplasts via linear electron 

flow (LEF). In LEF, electrons derived from hydrolysis in photosystem II (PS II) are 

passed through photosystem I (PS I) before ultimately reducing NADP+ to NADPH. In 

the process, electrons are passed through the cytochrome b6/f complex, which, together 

with the water-splitting complex associated with PSII, generates a proton gradient across 

the thylakoid membrane. This proton gradient drives the synthesis of ATP. The NADPH 

and ATP produced by the photosynthetic light reactions are used to supply energy for the 

Calvin-Benson cycle, in which inorganic carbon is fixed to produce organic compounds. 

The metabolic demand for ATP and NADPH varies under different physiological and 

environmental conditions. Therefore, a finely controlled balance of ATP and NADPH 

must always be maintained in order for cells to optimize their metabolic machinery. The 

water-water cycle and cyclic electron flow around PS I play important roles in 

maintaining an appropriate NADPH to ATP ratio (Asada 1999; Behrenfeld et al. 2004). 

Both processes are involved in balancing light absorption with carbon fixation. If the 
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generation of ATP and NADPH through photosynthesis do not satisfy the requirements 

for carbon fixation, additional ATP may be generated through alternate pathways 

including light-dependent respiration and cyclic electron transport around PS I. Despite 

the great amount of effort that has gone into understanding photosynthesis and primary 

productivity in the ocean, the regulatory networks and alternative pathways controlling 

the balance of ATP and NADPH are not yet well understood (Wilhelm et al. 2006). 

 Despite the current lack of understanding regarding molecular controls on 

photosynthesis, much is already known about photosynthetic organisms’ general 

physiological responses to changes in growth irradiance. The growth rate of 

phytoplankton increases with increasing irradiance until a point at which further increases 

in photon flux no longer lead to an increase in growth rate (Figure 1) (Behrenfeld et al. 

2008). After this light saturation point, the rate of the Calvin-Benson cycle limits the 

overall rate of photosynthesis (Formighieri 2015). When irradiance exceeds 

photosynthetic requirements, photoinhibition can occur. Photoinhibition is associated 

with damage to PS II reaction centers and the formation of damaging reactive oxygen 

species (Alderkamp et al. 2010). Phytoplankton utilize photoprotective mechanisms such 

as non-photochemical quenching (NPQ) to guard against oxidative damage in high light 

conditions. NPQ involves quenching singlet chlorophyll and dissipating excess energy as 

heat, thereby preventing the formation of triplet chlorophyll and damaging singlet 

oxygen. Under high light conditions, phytoplankton may also increase their concentration 

of secondary carotenoids, which are photoprotective (Hu 2004). When irradiance is low 

and growth rate is limited, phytoplankton increase the efficiency of light absorption by 
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upregulating the synthesis of chlorophyll a and other light-harvesting pigments (Hu 2004; 

Fisher and Halsey 2016).  

At the molecular level, the proportion of photosynthetically fixed carbon allocated 

to three macromolecular pools—carbohydrate, protein, and lipid—also tends to differ 

based on growth irradiance. This is because the ultimate fate of glyceraldehyde-3-

phosphate (GAP), which is the end product of carbon fixation via the Calvin-Benson 

cycle, is determined by cellular requirements which are responsive to environmental 

variables (Halsey and Jones 2015). Fisher and Halsey (2016) measured macromolecular 

composition of T. pseudonana growing at both high (200 µmol photons m-2 s-2) and low 

light (5 µmol photons m-2 s-2) using radiolabeled carbon. Measurements of the amount of 

carbon allocated to the carbohydrate, protein, and lipid pools were taken after 20 minutes 

(20-minute pulse) and 24 hours (24-hour biomass) (Figure 2). Under both low and high 

light, cells allocated most newly fixed carbon to carbohydrates and protein—less than 5% 

of newly fixed carbon was allocated to the lipid pool in both growth conditions. After 24 

hours, cells grown in low light increased the percentage of total carbon allocated to 

protein while decreasing the percentage of carbon allocated to carbohydrates and lipids. 

The retention of carbon in the protein pool has previously been observed in nutrient-

limited cultures (Morris 1980; Halsey et al. 2011). In contrast, cells growing in high light 

decreased the percentage of carbon allocated to protein and increased the percentage of 

carbon allocated to carbohydrates and lipids after 24 hours. The increase in the proportion 

of carbon allocated to lipids in cells growing under high light likely reflects the higher 

demand for membrane components in fast-growing cells.  
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The differential carbon allocation strategies observed by Fisher and Halsey (2016) 

are underpinned by unique pathway gating strategies that serve to optimize growth at 

different light-mediated growth rates. T. pseudonana is known to grow particularly 

efficiently at low light; Fisher and Halsey concluded that this efficiency is achieved via 

the redistribution of energy to more efficient ATP-generating pathways under low light 

conditions. However, there is still a need to understand the molecular mechanisms that 

control this growth optimization. Genomics approaches are valuable in the pursuit of this 

understanding because they allow for fine-scale insights into how these phytoplankton 

regulate pathway gating and allow us to compare specific molecular mechanisms across 

genomes to better understand how photosynthetic organisms as a whole adapt to different 

light conditions.  

Recently, genomic techniques have been employed to study the molecular 

mechanisms underlying diatoms’ responses to shifts in light availability (Bailleul et al. 

2010). These studies involving fluctuating light are focused on the adaptive response of 

the organism of interest (i.e., the immediate metabolic adjustments the cells make before 

they are acclimated to their environment). In this study, we sought to understand the gene 

expression patterns underlying physiological responses to light-limited growth in T. 

pseudonana. This study focuses on the effects of light limitation, in which the cells 

experience balanced, steady-state growth. Thus, we were interested in the strategies and 

regulatory programs that T. pseudonana employs to achieve the high growth efficiencies 

that have been observed in previous studies. Because central carbon metabolism (i.e., 

glycolysis, the pentose phosphate pathway, and the TCA cycle) converts sugars into 

metabolic precursors that then go on to produce all cellular biomass, we hypothesized 
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that genes involved in these metabolic pathways would be differentially expressed 

between cells growing at different light-limited rates. We also hypothesized that a large 

number of genes would be differentially expressed. The growth irradiances used in this 

study led to a large range in growth rate—cells growing under low light had a specific 

growth rate of 0.2 d-1, while cells growing under high light had a specific growth rate of 

1.54 d-1. We believed that this large difference in growth rate would lead to a 

corresponding large number of differentially expressed genes. The differential carbon 

allocation strategies observed by Fisher and Halsey (2016) suggest that cells growing at 

different light-mediated rates utilize different combinations of metabolic pathways, which 

lends support to our hypothesis that a large number of genes would be differentially 

expressed. Additionally, a previous study in Escherichia coli found that growth rate 

changes lead to genome-wide changes in expression (Barenholz et al. 2016); another 

found that Saccharomyces cerevisiae differentially expresses approximately half of its 

transcriptome in response to different steady-state growth rates (Regenberg et al. 2006). 

However, other studies in diatoms have shown that diatoms are capable of constitutively 

expressing certain photosystem genes in order to adapt quickly to changes in light 

availability (Broman et al. 2017). If diatoms constitutively express genes for the purpose 

of facilitating rapid adaptation to changing environmental conditions, we would expect 

that, in contrast to our original hypothesis, a relatively small number of genes would be 

differentially expressed between the treatment conditions.  
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Chapter 3: Methods 

 

Culture conditions  

The RNA used in this study was extracted from cells grown for a separate, 

culture-based study by Fisher and Halsey (2016). In that study, Thalassiosira pseudonana 

CCMP1335 was grown in a 300 ml continuous culturing system at 18°C in f/2 + Si 

medium supplemented with 0.17 µM Na2SeO3. Cells were grown under three conditions: 

high light (200 µmol photons m-2 s-1), medium light (60 µmol photons m-2 s-1), and low 

light (5 µmol photons m-2 s-1). Cells were exposed to constant light rather than diel cycles 

to randomize their cell cycles. The growth rates and measurements of basic cell 

characteristics obtained under continuous light were similar to those obtained in T. 

pseudonana and T. oceanica under 12-hour light/dark cycles with the same average 

growth irradiances, suggesting that continuous light does not significantly affect the 

physiological response of these diatoms to low or high light.  

 The chosen light levels established growth rates of 1.54 d-1, 0.85 d-1, and 0.20 d-1, 

respectively. Cultures were grown in triplicate under each growth irradiance. To maintain 

growth rates, peristaltic pumps were set to administer fresh media according to the 

equation µ = D/V, where µ is the growth rate (d-1), D is the flow rate (ml d-1), and V is the 

culture volume (ml). Cultures were bubbled continuously to ensure that all cells were 

exposed to the same average light intensity and that CO2 would not be limiting. All 

cultures were acclimated to their growth conditions for ten generations. Steady-state 

growth was verified by ensuring that cell concentration varied by less than 5% over three 

days before physiological measurements were taken (see Fisher and Halsey 2016 for 

more details about physiological measurements). Additionally, fluorescence 
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measurements (Fv/Fm) were taken to determine whether the cells were fully acclimated 

to their light conditions. Fv/Fm was consistent across all growth rates, indicating that 

photosynthetic efficiency was maximal under all light conditions and cells were fully 

acclimated. C:N ratios across growth rates were consistent, suggesting that nitrogen was 

not limiting and that all measurements were the result of light limitation rather than 

nitrogen limitation. Following physiological measurements, cells were filtered onto 0.2 

µm filters. Filters were placed in 1.5 ml centrifuge tubes, flash-frozen in liquid nitrogen, 

and stored at -80°C until the time of RNA extraction.  

 

RNA extraction and sequencing   

RNA extractions were performed such that triplicates for each treatment were 

processed in tandem. Total RNA was extracted from filters using a Qiagen RNeasy Midi 

Kit following manufacturer’s instructions, with a few additional steps. Silica beads (0.5 

mm) were added to the lysis buffer. Filters, beads, and lysis buffer were vortexed 

together; supernatant was then filtered through Qiashredder columns to remove large 

particles. Eluted RNA was treated off-column with RNase-free DNase according to 

manufacturer’s recommendations. mRNA isolation and library preparation were 

performed using the PrepX PolyA mRNA Isolation Kit and RNA-Seq for Illumina 

Library Kit from Takara Bio USA, Inc. These steps were carried out on an Apollo 324 

robotic system by the Center for Genome Research and Computing at Oregon State 

University. RNA-derived reads were sequenced as a 150 bp single-end library via 

Illumina HiSeq 3000.  

 

Quality trimming and sequence alignment  
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FastQC (Andrews 2010) was used to check GC content and per-base quality 

scores in each sample. Raw reads were quality trimmed and filtered using Sickle v1.33 

(Joshi and Fass 2011) with the options “-q 33 -l 50”. The first option sets the quality 

score threshold for trimming to 33, while the second option discards all reads that are 

shorter than 50 base pairs after trimming. Sequencing adapters were not removed, as 

previous studies have shown that adapters do not significantly affect alignments to 

reference genomes and that aggressive trimming can lead to bias and poorer results 

(MacManes 2014; Williams et al. 2016). The T. pseudonana reference genome was 

obtained from NCBI in GFF format (accession number GCA_000149405.2) and 

converted to GTF using gffread. Reads were aligned to the reference genome using 

HISAT2 v2.1.0 (Kim et al. 2015) with the option “--dta”. HISAT2 is a splice-aware 

aligner that generates alignments more quickly and using less memory than older 

alignment software such as BowTie or BWA (Pertea et al. 2016). The “--dta” option tells 

the program to report alignments in a format that is tailored to transcriptome assemblers 

like StringTie. HISAT2 created sequence alignment/map (SAM) files for each sample. 

These files contain the alignments in the order that that the sequences occurred in the 

input FASTQ files. SAMtools v1.3 (Li et al. 2009) was used to sort the alignments with 

respect to their genomic positions and then convert the files to binary alignment/map 

(BAM) files, which facilitate more rapid computation. Coverage depth of the genome 

was calculated using the “genomeCoverageBed” command with the “-ibam” option in 

BEDTools v2.25.0 (Quinlan and Hall 2010). StringTie v1.3.3 (Pertea et al. 2015) was 

used to assemble putative transcripts and generate counts tables for use in DESeq2. First, 

putative transcripts were assembled using the reference annotation file downloaded from 
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NCBI. Then, data from all samples was merged into a single file using the command 

“stringtie --merge.” Finally, “stringtie -eB” was used to calculate transcript abundances 

and generate count tables structured for Ballgown (DESeq2 also accepts these counts 

tables as input). DESeq2 v1.20.0 (Love et al. 2014) was used to perform differential 

expression analysis and create exploratory visualizations.  

 

Quality control and differential expression analysis 

 DESeq2 is an R package that is now commonly used for differential expression 

analysis. Prior to the development of DESeq and other similar programs, the Poisson 

distribution was commonly used to test for differential expression (Wang et al. 2010). 

However, the Poisson distribution’s single parameter requires that variance and mean are 

equal under this distribution. It has been shown that the Poisson distribution consistently 

predicts smaller variations than are observed in counts data. This overdispersion problem 

means that the Poisson distribution does not effectively control type I error. DESeq 

addresses the overdispersion problem by using the negative binomial (NB) distribution. 

Although other packages such as edgeR also use the NB distribution, DESeq is unique 

because it allows for data-driven relationships between mean and variance (Anders and 

Huber 2010).  

 Prior to differential expression analysis, we transformed the count data to make it 

homoscedastic. DESeq2 offers three transformations: the shifted logarithm 

transformation, the regularized-logarithm (rlog) transformation, and the variance-

stabilizing transformation. Figure 2 plots the standard deviation of each sample against 

the mean using each of these transformations. The shifted logarithm transformation 
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showed higher standard deviations at the lower end of the range of counts, while the 

variance stabilizing transformation showed slightly elevated standard deviations at the 

higher end of the dynamic range. The rlog transformation showed the flattest curve of 

standard deviation relative to mean; therefore, we used rlog-transformed data for 

downstream exploratory analyses and visualizations.  

DESeq2 tests for differential expression by 1) normalizing sequencing depth 

between samples using an estimate of “size factors,” 2) estimating dispersion across all 

samples, and 3) fitting a negative binomial generalized linear model. DESeq2 uses a 

Wald test to calculate a p-value for differential expression; these p-values are then 

adjusted for multiple testing using the Benjamini-Hochberg correction. DESeq2 also 

assigns log2 fold change values for each gene. Under the default parameters in DESeq2, 

the null hypothesis is that a gene is not differentially expressed between treatments. The 

alternative hypothesis is that a gene is differentially expressed between treatments. These 

default parameters were used to test for differential expression of genes between the high 

light and low light treatment groups. However, it cannot be assumed that genes with B-H 

adjusted p-values larger than our significance threshold are stably expressed. In order to 

test for stable expression between the two treatments, a different test must be performed. 

DESeq2 allows users to alter its parameters to test for stable expression. The parameters 

“altHypothesis = lessAbs” and “lfcThreshold = x” were added to the results function to 

test for stable expression. The parameter x defines the threshold for log2 fold change. 

Unfortunately, setting a log2 fold change threshold of 0.5 (fold change = 1.4) did not 

yield any significant genes. Increasing the log2 fold change threshold to 1 (fold change = 

2) yielded 4,270 significant genes; however, we determined that a log2 fold change 
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threshold of one was not sufficient to conclude that these genes were in fact stably 

expressed across treatments. 

Functional annotation 

The Bioconductor package KEGGREST (Tenenbaum 2018) was used to access 

gene annotations from the KEGG database; functional annotation was limited to KEGG 

pathways. Pathview Web (Luo et al. 2017) was used to visualize relative expression of 

genes within KEGG pathways. The protein structure and function prediction programs 

Phyre2 (Kelley et al. 2015) and I-TASSER (Zhang 2008) were used to try to identify the 

functions of unannotated genes with large fold changes.   
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Chapter 4: Results & Discussion 

 

Quality control analyses 

We received between 31 million and 43 million raw reads for each of nine 

samples (Table 1). The filtering step described in Methods removed approximately three 

million reads from each sample. Previous studies have shown that simple gene-level 

expression profiling requires about 5–50 million single-end reads per sample 

(SEQC/MAQC-III Consortium 2014); thus, our experiment produced a sufficient number 

of reads for differential expression analysis. The overall alignment rate (the proportion of 

reads that mapped to the reference genome) and the unique alignment rate (the proportion 

of reads that mapped to the reference genome only once) indicated that the medium light 

samples may have suffered from quality issues. Read alignment was inconsistent across 

replicates in this treatment; while the high and low light replicates all had unique 

alignment rates between 69% and 76%, the medium light replicates had unique alignment 

rates ranging from 47% to 75%. This variability in the unique alignment rate could have 

stemmed from inconsistent RNA degradation or from issues during RNA extraction, 

library preparation, or sequencing. Based on the observed inconsistencies, we chose to 

exclude the medium light replicates from downstream analyses. We concluded that a 

comparison of expression in the high and low light samples would still allow for an 

understanding of how T. pseudonana responds at the transcriptional level to changes in 

growth rate due to light limitation. The high and low light samples showed overall read 

alignment between 71–77%, with unique read alignment between 69–76%. Other RNA-

Seq studies have observed overall alignment rates over 90% (Giannoukos et al. 2012; 
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Borozan et al. 2013), but unique alignment rates close to 70% are typical (Engström et al. 

2013; Dong et al. 2014; Pertea et al. 2016). 

Exploratory visualizations of rlog-transformed count data were used as quality 

control tools to check the degree of similarity between samples of the same treatment 

(Figures 4 & 5). The sample distance matrix (Figure 4) showed that high light triplicates 

were more similar to each other than to any of the low light triplicates (and vice versa). 

The PCA plot (Figure 5) showed that the high and low light samples clustered separately 

from each other on PC1, which explained 77% of the variation in the data. One high light 

sample, HLC, clustered separately from the other high light samples on PC2, which 

explained 9% of the variation in the data. We concluded that PC1 represents light level; 

however, we are unsure what factor is represented by PC2. Although the separation of 

one high light replicate from the others suggests that there may be some noise in the data, 

overall these exploratory visualizations indicated that the high and low light samples 

were of sufficient quality for downstream differential expression analysis.  

Quality control steps also involved removing genes with little or no expression. 

Other studies have shown that for weakly expressed genes (genes with low read counts 

between all samples), it is very difficult to test for differential expression due to high 

Poisson noise that obscures biological effects. Essentially, Poisson noise dominates the 

variance at low count levels, introducing uncertainty into whether low counts accurately 

represent expression level (Busby et al. 2011; Todd et al. 2016). To investigate this, we 

created a histogram to show the relationship between expression levels and small p-

values (Figure 6). The resulting figure shows that genes with very weak expression are 

never called significant, and genes with higher mean counts are called significant more 
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frequently. These data underscore that genes with low mean counts have little or no 

power and should be excluded from testing. We used DESeq2 to remove these low-count 

genes in a process known as independent filtering. These weakly expressed genes would 

not have been called significant; however, removal of low-count genes generally 

improves differential expression analyses by facilitating discovery of significant genes 

amongst the remaining gene set.  

 
Overview 

 The T. pseudonana genome (assembly ASM14940v2) contains 11,673 protein-

coding genes. 11,695 genes were represented in our initial data set, but 257 genes were 

removed for having either 0 or 1 total reads across all samples. We considered these 

genes to be not expressed. The remaining 11,438 genes were tested for differential 

expression. DESeq2 calculated log2 fold changes and Benjamini-Hochberg adjusted p-

values for each gene. These values were then used to determine whether genes were 

differentially expressed between the high and low light samples.  

 Studies disagree about the best cutoffs to use—or whether or use cutoffs at all—

when evaluating differential expression. Transcriptomic studies in phytoplankton often 

report genes with log2 fold changes greater than one or less than negative one (absolute 

fold change > 2) as significantly differentially expressed (Shin et al. 2016; Roth et al. 

2017; Harke et al. 2017; Amato et al. 2017; Nan et al. 2018; Vorobev et al. 2018), but 

such low cutoffs could lead to the discovery of false positives caused by experimental or 

transcriptional noise. One study found that changing the arbitrary fold change and p-

value cutoffs in a transcriptome profiling experiment significantly changed the biological 

interpretation of the data (Dalman et al. 2012). Although methods have been developed to 



 

 

26 

specifically test for biologically meaningful genes (McCarthy and Smyth 2009) and to 

minimize experimental noise (Peixoto et al. 2015), these methods do not appear to be 

widely utilized in gene expression studies. One study suggests that using fold-change 

rankings and less stringent p-value cutoffs may lead to more reproducible results. 

(MAQC Consortium 2006).  

 In this study, we chose to compare our results using fold change cutoffs of 2 and 

4. In both cases, the adjusted p-value cutoff was 0.05. Table 2 shows the summarized 

differential expression analyses using both of these cutoffs. Under the more stringent 

cutoff, we found 598 genes—only 5% of genes in the genome—were called differentially 

expressed between the high light and low light cells. 343 (57%) of these genes are 

upregulated in low light relative to high light while 255 (43%) genes were downregulated 

in low light relative to high light. Out of these 598 genes, 75 genes had available KEGG 

annotations. 96% of genes that are upregulated in low light relative to high light are 

unannotated, while 77% of genes downregulated in low light are unannotated. Using the 

less stringent cutoff, we found 2,904 genes (25% of the genome) were called 

differentially expressed. 1,410 (49%) of these genes were upregulated in low light 

relative to high light and 1,494 (51%) were downregulated in low light relative to high 

light. 94% of the 1,410 upregulated genes were unannotated, while 76% of the 1,494 

downregulated genes were unannotated.  

 One study focusing on growth-rate control in yeast found that genes that are 

downregulated at lower growth rates tend to be essential genes that encode proteins of 

known function, while genes with higher expression in slow-growing cells are more 

likely to have no known function (Castrillo et al. 2007). We observed a similar trend; 
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approximately 95% of genes upregulated in low light were unannotated in comparison to 

approximately three-quarters of genes downregulated in low light. Castrillo et al. (2007) 

also found that 15% of total protein-coding genes in the yeast genome were regulated by 

growth rate. This is in line with our own study, which found that between 5 and 25% of 

genes are differentially expressed at different growth rates (depending on which fold 

change cutoff is used). These findings contrast with studies in diatoms examining 

adaptive responses to nutrient stress, which found that at least half of all genes were 

differentially expressed in T. pseudonana and P. tricornutum growing under nitrogen 

starvation (Yang et al. 2013; Levitan et al. 2015). Although we hypothesized that the 

large range in growth rates between cells growing at low and high light would lead to a 

large number of genes being differentially expressed, the data suggests that cells’ 

regulated growth programs actually involve fewer genes than their adaptive responses. 

This could be because cells that are undergoing an adaptive response to nutrient 

starvation are recalibrating their physiologies via numerous metabolic adjustments, while 

cells that are growing in steady state under limitation conditions have only to maintain 

their acclimated metabolisms. It is possible that the process of metabolic adjustment 

requires a higher degree of regulation than does steady-state growth; however, neither 

this study nor Castrillo et al. (2007) explores other regulatory mechanisms (i.e., post-

transcriptional, post-translational, or redox poise) that may be involved in eukaryotic 

growth rate control. Thus, it is difficult to know whether steady-state growth actually 

necessitates a lower degree of regulation or if cells growing in steady state simply rely 

more heavily on post-transcriptional controls to optimize growth under limitation 

conditions.  
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Patterns of differential gene expression  

 Using the conservative cutoff of |FC| > 4, a total of 256 genes—representing 2.2% 

of the full T. pseudonana genome—were downregulated in slow-growing cells relative to 

fast-growing cells. Only 60 downregulated genes were annotated in the KEGG 

database—77% of downregulated genes are unannotated. Figure 7A shows the 

distribution of annotations for the set of downregulated genes. Represented in the set of 

downregulated genes are genes encoding ribosomal proteins and genes involved in 

carbon metabolism, protein processing and export, RNA processing, oxidative 

phosphorylation, and biosynthesis of secondary metabolites. Downregulated genes 

related to carbon metabolism were involved in glycolysis, the TCA cycle, glycine, serine, 

and threonine metabolism, and cysteine and methionine metabolism. The downregulation 

of genes encoding ribosomal proteins is reflective of lower rates of protein synthesis is 

slower growing cells. Previous studies in yeast and bacteria have found the transcript 

levels of genes encoding ribosomal proteins and cellular concentration of ribosomes 

decreases with decreasing growth rate (Regenberg et al. 2006; Dressaire et al. 2008; 

Klumpp et al. 2009). In growth-limiting conditions, synthesis of other necessary proteins 

takes precedence over the synthesis of ribosomal proteins; under favorable conditions 

that permit fast growth, ribosomal proteins are synthesized at the expense of all other 

proteins.  

342 genes—2.9% of the genome—were upregulated (fold change > 4) in slow-

growing cells relative to fast-growing cells. 96% of upregulated genes are unannotated. 

Figure 7B shows the breakdown of annotations of upregulated genes. Genes with known 

functions were involved in fatty acid metabolism and valine, leucine, and isoleucine 
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degradation. Only two of these upregulated genes, PDK1_2 and PCK1, were involved in 

carbon metabolism. PDK1_2 encodes pyruvate-phosphate dikinase (PPDK), an enzyme 

that catalyzes the conversion of pyruvate to phosphoenolpyruvate (PEP). PPDK is 

canonically considered an essential enzyme of the C4 pathway. The C4 pathway is a 

photosynthetic process that overcomes the tendency of rubisco to catalyze a reaction 

between ribulose 1,5-bisphosphate and oxygen instead of the desired reaction with carbon 

dioxide. In diatoms, however, the role of the C4 pathway is still being debated. Previous 

studies concluded that Thalassiosira weissflogii uses a C3–C4 intermediate pathway while 

T. pseudonana exclusively uses C3 photosynthesis (Roberts et al. 2007; Kroth et al. 

2008). However, a more recent study suggests that T. pseudonana does use the C4 

pathway (Kustka et al. 2014). We propose that upregulation of PPDK in slow-growing T. 

pseudonana is unrelated to the C4 pathway, since C4 photosynthesis is unlikely to be 

beneficial to cells growing under light-limited conditions. Instead, slow-growing T. 

pseudonana upregulate PPDK to increase availability of PEP, which is an important 

intermediate of glycolysis and gluconeogenesis. Increasing the availability of PEP will 

increase flux through gluconeogenesis, which may be important for maintaining carbon 

for growth in slow-growing cells. This idea is supported by upregulation of PCK1, which 

encodes phosphoenolpyruvate carboxykinase (PEPCK). PEPCK catalyzes the conversion 

of oxaloacetate (OAA) to PEP and CO2. We propose that PPDK and PEPCK play a role 

carbon partitioning. These enzymes function at the intersection of glycolysis and 

gluconeogenesis with the TCA cycle, fatty acid biosynthesis, and amino acid metabolism 

(Smith et al. 2012). This intersection point is a strong candidate for regulation of carbon 

flux, and strong upregulation of PDK1_2 (FC = 6.65, p = 6.96x10-20) and PCK1 (FC = 
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7.26, p = 4.28x10-19) in T. pseudonana grown under low light suggests that these 

enzymes together play an important role in pathway gating that optimizes carbon use 

under light-limited conditions. The role of these two enzymes in light-limited growth rate 

control is discussed in further detail in a later section. 

Using the less conservative cutoff (|FC| > 2), 1,494 genes—representing 13% of 

the full genome—were downregulated in low light relative to high light. 360 

downregulated genes (24%) were annotated in the KEGG database. Figure 8A shows the 

distribution of KEGG annotations for downregulated genes based on the lower cutoff. 

Again, genes encoding ribosomal proteins made up a significant fraction of 

downregulated transcripts. However, the less conservative cutoff did lead to other 

changes in the overall distribution of KEGG annotations. We observed a greatly 

increased number of significantly downregulated genes with annotations relating to 

carbon metabolism. While the more conservative cutoff resulted in only 7 genes involved 

in carbon metabolism, the less conservative cutoff resulted in 40 downregulated genes 

involved in carbon metabolism; 22 of these genes were involved in glycolysis.  

The less conservative cutoff also resulted in 1,410 genes—12% of the genome—

that were upregulated in low light relative to high light. 86 upregulated genes (6.1%) had 

annotations in the KEGG database. Figure 8B shows the distribution of KEGG 

annotations for upregulated genes using the lower cutoff. The most highly represented 

categories were fatty acid metabolism, endocytosis, amino sugar and nucleotide sugar 

metabolism, and valine, leucine, and isoleucine degradation. Previous studies have 

suggested a link between metabolism of valine, leucine, and isoleucine and central carbon 

metabolism in diatoms (Smith et al. 2016a; Levering et al. 2017; Broddrick et al. 2019), 



 

 

31 

and the lower cutoff increased the number of significant genes involved in this process 

from three to seven. While the lower cutoff did not significantly increase the number of 

differentially expressed genes belonging to a given category, it did increase the number 

of categories represented in the pool of significantly differentially expressed genes.  

 As expected, lowering the fold-change threshold at which genes are called 

significant greatly increased the number of differentially expressed genes. However, 

many of the observed trends in gene expression stayed the same. Genes that were 

upregulated in slow-growing cells were more likely to have no known function, genes 

encoding ribosomal proteins were highly represented in the set of downregulated genes, 

and differentially expressed genes involved in carbon metabolism were more likely to be 

downregulated than upregulated. In their study investigating growth rate regulated genes 

in yeast, Regenberg et al. (2006) also found that slower growth rates resulted in 

downregulation of genes encoding ribosomal proteins and that genes that are upregulated 

at higher growth rates tend to have no known function. While using a lower fold-change 

threshold increases the number of genes of interest, it also increases the chance of false 

positives (genes called differentially expressed when they are not). Whenever possible, 

transcriptomic studies should provide supporting evidence of biological significance for 

genes called differentially expressed. Integration of transcriptomic and proteomic 

approaches would be helpful in addressing the problem of biological significance in 

transcriptomic studies—proteomics data can provide insight into post-transcriptional 

regulatory processed and help determine whether or not changes in transcript abundance 

affect cellular functioning.  
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Magnitude of differential expression 

The average fold change of genes with p < 0.05 was 2.4. This is in line with other 

studies in diatoms that observed similar average fold changes (Shrestha et al. 2012; 

Dyhrman et al. 2012; Cheng et al. 2014; Bender et al. 2014), although the number of 

differentially expressed genes tends to differ based on study conditions. Based on the 

large difference in growth rate between slow-growing cells and fast-growing cells, we 

initially hypothesized that differentially expressed genes would have larger-than-average 

fold changes. However, most previous studies focusing on genes associated with growth 

rate have not reported fold changes, making it difficult to ascertain the general magnitude 

of differential expression in response to growth rate. The heatmap in Figure 9 shows a 

broad-scale view of the magnitude of differential expression observed in this study. The 

heatmap shows that there are differences in expression level between samples within a 

treatment—a phenomenon that is common in transcriptional studies and may be 

attributed to either biological or experimental noise—but that these differences are 

dwarfed by the differences in expression level between the two treatments. Additionally, 

although there are clear patterns of differential expression between treatments, the 

magnitude of the differential expression is relatively small—most rows are represented 

by paler colors, which correspond to less deviation from the mean.   

 Genes with the highest levels of differential expression were not annotated in the 

KEGG database. To investigate their function, we used Phyre 2 and I-TASSER to 

explore the predicted protein structure of these genes. These tools, however, were not 

able to predict the function of these highly differentially expressed proteins. Figure 10 

shows the Phyre 2 prediction of the protein structure for THAPSDRAFT_8336. This gene 
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experienced a 4,090-fold increase in expression in slow-growing cells; however, Phyre 2 

was only able to model 14 residues (3% of the total sequence) with 43.4% accuracy. 

Similarly, I-TASSER identified structural analogs with low identity (between 4 and 10%) 

to the protein sequence of THAPSDRAFT_8336, and all model predictions had low 

confidence scores (between -3.86 and -2.45). This observation was seen in many of the 

genes with higher than average fold change values. I-TASSER and Phyre both rely on 

homology to predict protein structure and function (Zhang 2008; Kelley et al. 2015); 

therefore, their inability to provide adequate predictions of protein structure suggest that 

these highly differentially expressed genes are diatom- or species-specific. Further 

investigation of these highly regulated genes could uncover previously unknown 

functions that play important roles in the coordinated growth programs of diatoms. 

 

The TCA and glyoxylate cycles  

Lack of annotations for a majority of differentially expressed genes presented a 

major obstacle to this study. To facilitate analysis, we focused on central metabolic 

pathways and looked for differentially expressed genes using the same B-H adjusted p-

value cutoff of 0.05 but without using a fold change threshold to define differential 

expression. Using this approach, we observed that several genes involved the TCA and 

glyoxylate cycles were differentially expressed. Given the strong upregulation of 

phosphate-pyruvate dikinase, which works at the intersection of glycolysis and 

gluconeogenesis, the TCA cycle, and other metabolic pathways (Table 3 & Figure 13), 

and the role of the glyoxylate cycle in metabolism of photorespiratory glycolate (Figure 

12B), we determined these differentially expressed genes could be involved the response 
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of T. pseudonana to light limitation even though in some cases the fold changes of the 

genes were lower than the previously discussed thresholds. The TCA cycle is used by all 

aerobic organisms to oxidize acetyl-CoA to produce ATP, carbon dioxide, and reducing 

agents that can be further converted into ATP via other metabolic pathways such as 

oxidative phosphorylation (Figure 12A). Acetyl-CoA entering the TCA cycle is derived 

from the oxidation of fatty acids, proteins, and carbohydrates. Thus, the TCA cycle is a 

central metabolic hub with important roles in both energy production and biosynthesis. 

The glyoxylate cycle is a variation of the TCA cycle that takes place in peroxisomes and 

does not produce CO2 as a waste product; it achieves this via a two-step bypass (Figure 

12A). In the first step, isocitrate lyase converts isocitrate into succinate and glyoxylate; in 

the second step, malate synthase condenses glyoxylate and acetyl-CoA to form malate. 

The resulting malate can replenish the glyoxylate cycle through the action of malate 

dehydrogenase, while the succinate can be used to replenish the TCA cycle or serve as 

precursors for carbohydrate or amino acid biosynthesis (Kunze et al. 2006). Thus, the 

glyoxylate cycle serves as a link between catabolism of fatty acids or amino acids for 

acetyl-CoA and biosynthesis of carbohydrates or amino acids. This link highlights the 

importance of the glyoxylate cycle in growth optimization in slow-growing cells. The 

pattern of differential expression we observed between the two treatment groups suggests 

that slow-growing cells preferentially shunt carbon through the glyoxylate cycle as a way 

to conserve carbon. Fold changes and p-values for differentially expressed genes are 

shown in Table 3. 

Genes involved in branched-chain amino acid (BCAA) and fatty acid degradation 

were upregulated in slow-growing cells (Figure 11). Both of these processes produce 
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acetyl-CoA, which enters the glyoxylate and TCA cycles. Recent transcriptomic studies 

in P. tricornutum have shown that genes involved in BCAA metabolism and the TCA 

cycle are coregulated, suggesting a link between BCAA metabolism and central carbon 

metabolism in diatoms (Smith et al. 2016a; Levering et al. 2017; Broddrick et al. 2019). 

The three proteinogenic BCAAs are valine, leucine, and isoleucine. In our study, seven 

genes involved in degradation of these three amino acids were upregulated in slow-

growing cells. THAPSDRAFT_795, THAPSDRAFT_3692, and THAPSDRAFT_32067 

putatively make up the E1 and E2 subunits of 2-oxoisovalerate dehydrogenase. 

THAPSDRAFT_413 is a putative 3-hydroxyisobutyrate dehydrogenase that is involved 

specifically in the degradation of valine. This enzyme catalyzes the reaction between 3-

hydroxyisobutyrate and NAD+ to produce NADH and methylmalonate semialdehyde. 

THAPSDRAFT_25495 is involved in the reversible conversion of propanoyl-CoA to 

methylmalonate semialdehyde. HCD1 is specifically involved in the degradation of 

isoleucine, while PCB1 is specifically involved in the degradation of valine. ACD3, a 

short/branched chain acyl-CoA dehydrogenase that is involved both in leucine, 

isoleucine, and valine degradation and in fatty acid degradation, is upregulated in slow-

growing cells. Fatty acid degradation also produces acetyl-CoA that feeds in to the TCA 

and glyoxylate cycles. FCL1, a long-chain acyl-CoA synthetase involved in fatty acid 

degradation, is also upregulated in slow-growing cells.  

Peroxisomes do not contain translation machinery; therefore, all peroxisomal 

enzymes must be imported from the cytosol (Kunze et al. 2006; Gonzalez et al. 2011). 

Gonzalez et al. (2011) found that P. tricornutum uses one of two known peroxisomal 

targeting signals (PTS) in combination with a series of peroxins (Pex) that recognize 
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these signals and transport cytosolically-synthesized proteins into the peroxisomal lumen. 

We found that three Pex genes (of the six known to exist in T. pseudonana) are 

upregulated in slow-growing cells relative to fast-growing cells: Pex5, Pex1, and Pex19 

(Table 3 & Figure 12B). Pex5 is a cycling receptor that plays a critical role in protein 

transport; it is responsible for carrying proteins equipped with type 1 peroxisome 

targeting signal (PTS1) to the peroxisomal lumen (Williams and Stanley 2010). Pex1 is a 

AAA (ATPase associated with diverse cellular activities) protein involved in recycling 

PTS receptors (Williams and Stanley 2010; Cross et al. 2016). One study in Arabidopsis 

thaliana found that knockdown of Pex1 decreased import of proteins containing both 

known peroxisomal targeting signals (Nito et al. 2007). Pex19 binds and imports 

peroxisomal membrane proteins (Jones et al. 2004). Upregulation of these three genes 

suggests that slow-growing cells have higher peroxisomal activity; this supports our 

conclusion that slow-growing cells increase flux through the glyoxylate cycle. 

Many genes directly involved in the TCA and glyoxylate cycles were also 

differentially expressed (Table 3 & Figure 12A). Genes involved in reactions bypassed 

by the glyoxylate cycle were all downregulated with the exception of isocitrate 

dehydrogenase, which catalyzes the reaction between isocitrate and a-ketoglutarate. The 

gene encoding isocitrate dehydrogenase was not significantly regulated in either 

direction. The gene encoding malate synthase, which condenses acetyl-CoA with 

glyoxylate to form malate in the second step of the glyoxylate cycle bypass, was 

upregulated in slow-growing cells. Malate dehydrogenase, which converts malate to 

oxaloacetate, was downregulated. Taken together, these data suggest that slow-growing 

cells increase flux through the glyoxylate cycle and decrease flux through the TCA cycle. 
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Davis et al. (2017) proposed that cells use the glyoxylate cycle to preserve carbon and 

limit excess energy production. We hypothesize that cells growing slowly under low 

growth irradiances increase flux through the glyoxylate cycle to conserve carbon. The 

rate of carbon fixation in slow-growing cells is limited by low light availability, and 

coupled with a higher demand for maintenance energy (Fisher and Halsey 2016), may 

cause the cells to impose additional regulatory controls on carbon flow. Diverting flux 

from the TCA cycle—which produces carbon dioxide as a byproduct—to the glyoxylate 

cycle may therefore help slow-growing cells overcome their carbon limitation.   

Additionally, the glyoxylate cycle generates succinate that can be used for 

carbohydrate synthesis. Increasing synthesis of carbohydrates may be especially 

important for slow-growing cells, in which newly fixed carbon is more rapidly turned 

over compared to fast-growing cells (Halsey et al. 2013). The glyoxylate cycle allows 

slow-growing cells to conserve carbon and generate carbohydrates, thus maintaining the 

correct balance of macromolecules necessary for growth. This hypothesis is supported by 

flux balance models in Arabidopsis, which predicted that reactions between a-

ketoglutarate and fumurate (steps bypassed by the glyoxylate cycle and downregulated in 

slow-growing cells) would experience no flux when the model is constrained only by the 

need to synthesize macromolecules in the correct proportions (Poolman et al. 2009). One 

challenge associated with using the glyoxylate cycle rather than the TCA cycle is that the 

glyoxylate cycle produces fewer NADH molecules than the full TCA cycle. However, a 

flux balance analysis in P. tricornutum found that the low levels of oxidative 

phosphorylation supported by the glyoxylate cycle and substrate-level phosphorylation in 

glycolysis are sufficient to meet the ATP demands of autotrophic cells (Kim et al. 2016). 
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The glyoxylate cycle also represents one of the two main fates of photorespiratory 

glycolate, which is produced by the oxygenation of ribulose 1,5-bisphosphate by the 

rubisco enzyme (Figure 12B). This glycolate can also be metabolized by the 

photorespiratory pathway to generate 3-phosphoeglycerate (3-PGA), an intermediate of 

the Calvin-Benson cycle. However, one in four carbons entering the photorespiratory 

pathway is used to generate CO2 rather than 3-PGA (Oliver 1998). Thus, the glyoxylate 

cycle and the photorespiratory pathway may play roles in regulating carbon loss 

(Schnitzler Parker et al. 2004). In marine algae, creation of photorespiratory glycolate has 

been shown to increase in high light conditions (Beardall 1989; Schnitzler Parker et al. 

2004). Upregulation of the glyoxylate cycle in slow-growing cells may reflect the need 

for these cells to process photorespiratory glycolate created under fluctuating light 

conditions. Although cells were grown under continuous light for this study, the marine 

light environment is highly dynamic and even cells experiencing low average irradiances 

are likely subject to fluctuations in their light environment. Previous data showed that 

cells growing at low light essentially eliminate non-photochemical quenching (Bryce 

Penta, unpublished). We hypothesize that slow-growing diatoms, in the absence of NPQ, 

require a way to deal with excess light energy that leads to the creation of glycolate. 

Genes encoding two components of glycine decarboxylase and the gene encoding serine 

hydroxymethyltransferase were downregulated in slow-growing cells (Figure 12B). Both 

of these enzymes are involved in the conversion of glycine to serine in the 

photorespiratory pathway. Downregulation of genes involved in the photorespiratory 

pathway suggests that slow-growing cells preferentially shunt photorespiratory glycolate 

through the glyoxylate cycle. We propose that slow-growing cells may be 
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downregulating the photorespiratory pathway because they have a lower need for 3-PGA 

input to the Calvin-Benson cycle due to relatively slow rates of carbon fixation. 

Downregulation of the photorespiratory pathway also conserves CO2 in slow-growing 

cells, possibly to compensate for lower rates of carbon fixation.   

Increasing flux through gluconeogenesis 

 Investigation of genes involved in the TCA and glyoxylate cycles led to the 

observation that several genes involved in processes that regulate flux through glycolysis, 

gluconeogenesis, and the TCA cycle were differentially regulated (Table 3 & Figure 13). 

As discussed above, genes encoding PPDK and PEPCK were upregulated in slow-

growing cells. These genes are involved in processes that generate PEP, an intermediate 

of glycolysis and gluconeogenesis. These genes appear to be more strongly regulated 

than other differentially expressed genes, with fold changes of 6.65 (PDK1_2) and 7.26 

(PCK1). This high degree of regulation suggests that this intersection of glycolysis, 

gluconeogenesis, and the TCA plays an important role in optimizing growth in response 

to light limitation in T. pseudonana. Further supporting this idea, we observed that PYK1 

and PYK2 were also downregulated in slow-growing cells. These genes encode pyruvate 

kinase, which catalyzes the conversion of PEP to pyruvate (the reverse of the reaction 

catalyzed by PPDK). The coordinated downregulation of genes encoding pyruvate kinase 

and upregulation of the gene encoding PPDK suggests that slow-growing cells increase 

the availability of PEP in order to increase flux through gluconeogenesis. Additionally, 

the genes encoding PEP carboxylase (PEPC) and pyruvate carboxylase are 

downregulated. PEPC catalyzes the reaction between PEP and CO2 that generates OAA, 
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while pyruvate carboxylase catalyzes also produces OAA by catalyzing a reaction 

between CO2 and pyruvate.  

These data suggest that slow-growing cells increase flux through 

gluconeogenesis. Cells may utilize this strategy as a way to conserve carbon, since slow-

growing cells have slower rates of carbon fixation and experience high flux through 

glycolysis to supply ATP for maintenance demands. Fisher and Halsey (2016) showed 

that T. pseudonana grown in light-limited conditions allocated about 42% of newly fixed 

carbon (carbon fixed during a 20-minute incubation) to carbohydrates; however, the 

proportion of carbon allocated to this macromolecular pool decreased to about 19% of 

total fixed carbon after 24 hours. This decrease suggests that slow-growing cells 

experience high flux through glycolysis, likely in order to meet their high demand for 

ATP. However, slow-growing cells with high flux through glycolysis may have problems 

maintaining carbon for growth unless they have mechanisms to decrease catabolic flux 

and increase anabolic flux. Indeed, previous studies have shown that the lifetime of 

newly fixed carbon decreases with decreasing growth rate (Halsey et al. 2013). Our data 

suggest that slow-growing cells utilize the glyoxylate cycle and increase flux through 

gluconeogenesis in order to minimize carbon loss and maintain a balance of 

macromolecules that is conducive to growth.  
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Chapter 5: Conclusion 

 

Conclusions 

 The goal of this study was to identify genes associated with physiological 

responses to steady-state, light-limited growth in T. pseudonana. We focused on light-

limited growth because we were interested in genes associated with growth rate rather 

than with adaptive responses to particular environmental variables. We explored using 

different fold change thresholds to define differential expression; we found that changing 

the threshold changed the number of genes called differentially expressed but did not 

significantly alter the broad-scale trends in the distribution of gene functions. We found 

that T. pseudonana’s physiological responses to light-limited growth are controlled by 

relatively subtle changes in gene expression (between 5% and 25% of genes were up- or 

downregulated, depending on the cutoff used), in contrast with previous studies showing 

that diatoms differentially express around 50% of their genes in response to nutrient 

starvation (Yang et al. 2013; Levitan et al. 2015). The mean fold change was 2.4, which 

agreed with previous studies exploring the effect of nutrient starvation on diatoms. These 

data contrast with our original hypothesis that a large number of genes would experience 

large fold changes due to the wide range in growth rate (cells grown under high light 

grew almost eight times faster than cells grown under low light). Taken together, these 

data suggest that acclimation to changing environmental variables requires more 

widespread transcriptional control than optimizing and maintaining growth under 

resource-limited conditions. This is likely because cells in the process of acclimation are 

undergoing numerous metabolic adjustments, while cells growing in steady state are fully 

acclimated to their environment and are simply maintaining their physiological states.  
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We also found that light-limited cells differentially express a high proportion of 

genes involved in the glyoxylate cycle, TCA cycle, and photorespiratory pathway (Table 

3). Genes involved in the glyoxylate cycle were upregulated in slow-growing cells, while 

genes involved in the TCA cycle and photorespiratory pathway were downregulated 

(Figure 12). These results, along with the observation that genes involved in catabolic 

processes producing acetyl-CoA were upregulated in slow-growing cells (Figure 11), 

show that light-limited cells use the glyoxylate cycle in order to conserve carbon and 

maintain an appropriate balance of macromolecules. Genes involved in regulating flux 

through gluconeogenesis, glycolysis, and the TCA cycle were also differentially 

expressed, suggesting that the intersection of these metabolic pathways is a central 

regulation point for cells growing in steady state. Genes involved in reactions that 

produce PEP were upregulated in slow-growing cells (Table 3 & Figure 13), indicating 

that these cells increase flux through gluconeogenesis. In addition to having high 

catabolic activity in order to meet their relatively high demand for maintenance energy, 

slow-growing cells  also experience low rates of carbon fixation (Fisher and Halsey 

2016). Increasing flux through gluconeogenesis may therefore be required to prevent 

carbon depletion.  

 While the differential expression of genes involved in these major metabolic 

pathways suggests that T. pseudonana does tightly regulate genes involved in carbon 

metabolism, the generally low number of differentially expressed genes might also 

indicate that T. pseudonana loosens transcriptional control over many other metabolic 

pathways in order to facilitate rapid acclimation to fluctuating conditions. Marchant et al. 

(2017) observed that denitrifying communities in coastal sediments did not exert 
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transcriptional control over denitrification genes even when O2 concentrations fluctuated 

with tidal cycles. They proposed that the stable expression of genes involved in this key 

metabolic pathway allowed cells to rapidly exploit conditions favorable to denitrification. 

T. pseudonana may similarly relax transcriptional control over metabolic pathways that 

are not essential to regulating carbon flux and maintaining growth in order to facilitate 

rapid responses to fluctuating light. Previous work has shown that diatoms sometimes 

constitutively express genes involved in photosynthesis (Broman et al. 2017), supporting 

the idea that stable expression of some genes may be an adaptation to highly dynamic 

environments.  

Impact  

Elucidation of the molecular mechanisms that diatoms use to achieve high growth 

efficiencies under different light levels may contribute to the advancement of applied and 

ecosystems sciences. Diatoms are promising candidates for biofuel production and 

natural product discovery. They are highly productive, environmentally flexible, and can 

rapidly accumulate starch and lipids that can be used to produce bioethanol and biodiesel 

(Hildebrand et al. 2012; Yen et al. 2013). These factors make diatoms ideal candidates 

for large-scale production of algal biofuels; however, their complex evolutionary history 

has led to novel metabolic networks and growth strategies (Hildebrand et al. 2013) that 

have impeded efforts to optimize biofuel production. Algal productivity is ultimately 

dependent on the efficiency of carbon fixation and the rate of downstream metabolic 

processes, so an improved understanding of the genetic controls on diatom metabolism 

could significantly increase our ability to control algal productivity and make biofuel 

production economically viable.  
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Algae are also an important source of natural products (Cardozo et al. 2007). 

Recently, algal natural products have been recognized for their potential applications in 

food, cosmetics, and clinical drugs (Arad and Levy-Ontman 2010). Metabolites of 

interest are produced by a variety of metabolic pathways, and some are produced by 

modifications to pathways or by combinations of multiple pathways (Cardozo et al. 

2007). Thus, understanding the controls on algal metabolism and the interactions between 

different metabolic pathways is integral to discovering new natural products and to 

determining whether known natural products can be efficiently exploited.  

Additionally, diatom productivity is a major factor in many global models of 

marine systems (Aumont et al. 2003; Gregg et al. 2003; Moore et al. 2004). Elucidation 

of the molecular mechanisms controlling productivity in diatoms may provide finer 

resolution for these models, thereby improving our understanding of how carbon and 

other nutrients are cycled through marine environments. Growth rate is specifically 

included in these models (Moore et al. 2004), so a greater understanding of the 

mechanisms controlling growth rate in diatoms is also likely to be particularly beneficial.   

 

Future directions  

Today’s technology has made sequencing diatom genomes faster and simpler than 

ever, but gene annotation continues to pose a problem to researchers. In our study, only 

12.5% of differentially expressed genes and 13.6% of stably expressed genes had 

annotations in the KEGG database. Although comprehensive gene model annotations are 

crucial to accurate expression profiling (SEQC/MAQC-III Consortium 2014), the rate at 

which new diatom genomes are becoming available is exceeding the rate at which genes 
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are being annotated. The novelty of diatom genomes and metabolic networks makes 

annotation of diatom genomes relatively complicated, as many diatom-specific genes 

have no known orthologs. Future studies should focus on completing gene model 

annotations for the model diatoms T. pseudonana and P. tricornutum.  

 Future studies may also integrate transcriptomic and proteomic data to provide 

even deeper insights into cellular functioning. Investigating the connections between 

gene expression and protein abundance could provide systems-level information about 

transcriptional and regulatory networks (Fernie and Stitt 2012). In one study linking 

transcriptomics and proteomics in T. pseudonana, 60% of proteins with increased 

abundance had corresponding upregulated transcripts, while 30% of proteins with 

decreased abundance has corresponding downregulated transcripts (Dyhrman et al. 

2012). This could be due to differences in the expression and turnover times for 

transcripts relative to proteins, or to variability in post-transcription and post-translational 

regulation. Further exploration of these differences may offer insight into diatoms’ 

regulatory networks. The fine-scale data produced by this integrated approach may be 

very useful for refining both productivity models and quantitative models of cell growth.  

Flux balance analysis (FBA) is another method that may provide important fine-

scale physiological data. FBA utilizes metabolic models to study the biochemical 

networks of organisms. Network reconstructions contain all of the known metabolic 

reactions in each organism and can be used to calculate the flux of metabolites through 

each metabolic pathway (Orth et al. 2010). This information can then be used to predict 

growth rate as well as the production rate of any compound of interest. A metabolic 

model of P. tricornutum is available, and some studies have already utilized this model to 
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examine P. tricornutum’s metabolism and response to different environmental variables 

(Levitan et al. 2015; Kim et al. 2016; Levering et al. 2016). Currently, there is no 

complete metabolic model for T. pseudonana—a complete metabolic model would allow 

for a better understanding of the controls on growth rate and carbon allocation in T. 

pseudonana. 

Future studies should also explore the effect of light quality on diatom growth. 

The factors that affect light availability (climate change, aerosols, cloud cover) are also 

likely to change light quality in the ocean. This study focuses solely on light intensity 

because previous studies showed that photosynthetic performance is more strongly 

affected by changes in light intensity than by variations in light quality (Morel et al. 

1987; Falkowski and LaRoche 1991). However, more recent studies suggest that 

phytoplankton are able to perceive light quality through the use of photoreceptors, and 

that light quality may regulate important processes such as photoacclimation, pigment 

synthesis, and transcriptional regulation (Coesel et al. 2008, 2009; Schellenberger Costa 

et al. 2013).  

Finally, future studies should explore whether conclusions derived from lab-

grown cultures of T. pseudonana are generalizable to natural populations. Although T. 

pseudonana was chosen as a model organism for sequencing and deeper study based on 

the assumption that this species is representative of the marine genus Thalassiosira, it has 

been suggested that T. pseudonana is actually descended from freshwater diatoms 

(Alverson et al. 2011). This ancestral history may have shaped several important 

physiological or life history traits, raising the possibility that T. pseudonana may not be 

as representative of the genus as once thought; further studies should explore this 
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possibility. Additionally, T. pseudonana has been in culture for over 50 years. It is quite 

possible that wild populations of T. pseudonana now differ in significant ways from the 

clone that is widely available to researchers. The genome, in particular, may be subject to 

change in response to different selective pressures experienced by cultivated and wild 

populations.   
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Chapter 6: Figures & Tables  
 
 

 
 
 
 
 

 

 
 

Figure 1. Generalized relationship between growth irradiance (µE) and specific growth 

rate (d-1) in phytoplankton. Adapted from Behrenfeld et al. (2008). 
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A. 

 
 

B. 

 
 

Figure 2. The percentage of total carbon allocated to carbohydrate, protein, and lipid in 

fast growing cells (1.5 d-1) and slow growing cells (0.2 d-1). Purple bars represent 

measurements taken 20 minutes after radiolabeling; orange bars represent 

measurements taken 24 hours after radiolabeling. Adapted from Fisher and Halsey 

(2016).  
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  A.  

 
B.  

 
C.  

 
 
 

Figure 3. Visualizations of data transformed via A) the shifted logarithm 

transformation, B) the variance stabilizing transformation, and C) the regularized 

logarithm transformation.  
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# raw reads # filtered 
reads 

Difference 
Overall 

alignment 
rate 

Unique 
alignment rate 

HLA 31,899,550 28,943,564 2,955,986 72.00% 70.24% 

HLB 43,029,531 39,243,254 3,786,277 72.12% 70.45% 

HLC 31,899,054 28,986,423 2,912,631 77.93% 76.32% 

MLA 33,008,985 30,082,760 2,926,225 60.28% 58.74% 

MLB 31,674,006 28,845,422 2,828,584 76.95% 75.32% 

MLC 37,597,108 34,505,209 3,091,899 48.85% 47.51% 

LLA 40,815,176 37,090,495 3,724,681 76.21% 74.29% 

LLB 40,946,123 37,259,305 3,686,818 73.65% 70.15% 

LLC 37,913,906 34,499,441 3,414,465 71.45% 69.79% 

 

Table 1. Alignment statistics for nine original samples. High light replicates: HLA, 

HLB, HLC. Medium light replicates: MLA, MLB, MLC. Low light replicates: LLA, 

LLB, LLC. Alignment rates are inconsistent in medium light samples, suggesting 

quality issues. These samples were excluded from downstream analyses. 
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Figure 4. Sample distance matrix calculated using Euclidean distances, showing 

similarity between samples. Low light samples are more similar to each other than to 

high light samples, and vice versa. 
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Figure 5. PCA plot showing relationships between the six samples chosen for 

differential expression analysis. Low light triplicates cluster together. One high light 

sample clusters separately from the others on PC2, which explains 9% of the variance 

in the data.   
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Figure 6. Fraction of small p-values binned by normalized counts. Weakly expressed 

genes are never called significantly differentially expressed; therefore, DESeq2 filters 

them out in a process called independent filtering.  
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Fold change 

cutoff 

Number of 

DE genes 

% of genome 

DE 

Number of 

upregulated 

genes 

Number of 

downregulated 

genes 

|FC| > 4 598 (13) 5 343 (4) 255(23) 

|FC| > 2 2904 (15) 25 1410 (6) 1494 (24) 

 

Table 2. Comparison of the number of genes that are called significantly differentially 

expressed using two fold-change cutoffs. Number in parentheses is the percentage of 

genes in each category that are annotated in the KEGG database. Upregulated genes are 

genes that have higher expression in slow-growing cells; downregulated genes have 

lower expression in slow-growing cells. Although lowering the fold-change cutoff 

increases the number of genes that are called significantly differentially expressed, the 

proportion of genes with annotations in the KEGG database stays relatively stable.  
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B.  

 
 

 

Figure 7. Summary of annotations for genes called differentially expressed using the 

thresholds |FC| > 4, p < 0.05. A) Annotations of genes downregulated in slow-growing 

cells relative to fast growing cells. B) Annotations of genes upregulated in slow-

growing cells relative to fast growing cells.   
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  A.  

 
B.  

 
Figure 8. Summary of annotations for genes called differentially expressed using the 

thresholds |FC| > 2, p < 0.05. A) Annotations of genes downregulated in slow-growing 

cells relative to fast growing cells. B) Annotations of genes upregulated in slow-

growing cells relative to fast growing cells.   
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Figure 9. Heatmap showing relative degrees of differential expression for the 1,000 

genes with highest variance between all samples. Colors are calculated based on rlog-

transformed count values and represent the difference between the rlog-transformed 

count value for a given sample and the mean rlog-transformed count value of all 

samples. 
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Figure 10. Results from Phyre 2 program for THAPSDRAFT_8336. This is an 

unannotated gene with 4,090-fold higher expression in slow-growing cells. Phyre 2 

was only able to model 3% of the full amino acid sequence with less than 50% 

confidence.  
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  Gene name Function Pathway Fold change Adjusted p-value 

THAPSDRAFT_795 2-oxoisovalerate E1 component alpha 
subunit 

Valine, leucine, and isoleucine 
degradation 

19.8 1.25E-29 

THAPSDRAFT_36291 2-oxoisovalerate E2 component 
Valine, leucine, and isoleucine 

degradation 10.3 4.88E-59 

THAPSDRAFT_413 3-hydroxyisobutyrate dehydrogenase Valine, leucine, and isoleucine 
degradation 

6.42 8.52E-20 

THAPSDRAFT_25495 
Malonate-semialdehyde dehydrogenase 

(acetylating) 
Valine, leucine, and isoleucine 

degradation 2.34 1.04E-04 

THAPSDRAFT_32067 2-oxoisovalerate E1 component beta 
subunit 

Valine, leucine, and isoleucine 
degradation 2.08 8.46E-04 

HCD1 3-hydroxyacyl-CoA dehydrogenase 
Valine, leucine, and isoleucine 

degradation 2.57 4.36E-06 

PCB1 3-methylcrotonyl-CoA carboxylase 
beta subunit 

Valine, leucine, and isoleucine 
degradation 2.53 9.73E-04 

KCT2 Acetyl-CoA acyltransferase 
Valine, leucine, and isoleucine 

degradation -2.08 1.11E-05 

ACD3 Acyl-CoA dehydrogenase Fatty acid degradation; Valine, 
leucine, and isoleucine 

degradation 

5.29 4.94E-15 

GCD1 Glutaryl-CoA dehydrogenase Fatty acid degradation 2.29 5.07E-05 

FCL1 Long-chain fatty acid CoA-ligase Fatty acid degradation 8.76 4.88E-20 

THAPSDRAFT_262934 Probable malate synthase Glyoxylate cycle 1.93 4.76E-02 

MDH1 Malate dehydrogenase TCA cycle -3.36 3.01E-19 

THAPSDRAFT_269718 Alpha-ketoglutarate dehydrogenase E1 
component TCA cycle -1.46 1.73E-03 

THAPSDRAFT_36971 Alpha-ketoglutarate dehydrogenase E2 
component 

TCA cycle -1.78 9.27E-03 

SDH1 Succinate dehydrogenase (ubiquinone) 
iron-sulfur subunit TCA cycle -1.29 2.40E-13 

FUM1 Fumurate hydratase TCA cycle -2.45 1.80E-02 
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Gene name Function Pathway Fold change Adjusted p-value 

SCS1 Succinyl-CoA synthetase beta subunit TCA cycle -3.26 9.36E-19 

IDH1 Putative isocitrate dehydrogenase TCA cycle -2.43 1.14E-10 
PPC1 Phosphoenolpyruvate carboxylase TCA cycle -1.45 9.21E-3 

THAPSDRAFT_269908 Pyruvate carboxylase TCA cycle -1.86 2.05E-06 

THAPSDRAFT_264438 Peroxin 5 Peroxisomal transport 1.79 2.04E-04 

THAPSDRAFT_261078 Peroxin 1 Peroxisomal transport 1.87 1.35E-03 

THAPSDRAFT_37854 Peroxin 19 Peroxisomal transport 1.60 2.19E-02 

GDCT Glycine decarboxylase t-protein (GDC) Photorespiration -1.49 1.06E-02 

GDCP Glycine decarboxylase p-protein 
(GDC) 

Photorespiration -2.18 3.09E-05 

THAPSDRAFT_26031 Serine hydroxymethyltransferase 
(SHMT) 

Photorespiration -3.63 3.34E-18 

PDK1_2 Pyruvate-phosphate dikinase (PPDK) Gluconeogenesis 6.65 6.96E-20 

PCK1 Phosphoenolpyruvate carboxykinase Gluconeogenesis 7.26 4.82E-19 

PYK1 Pyruvate kinase Glycolysis -6.47 6.63E-15 

PYK2 Pyruvate kinase Glycolysis -2.27 8.83E-04 

 
Table 3. Summary of differentially expressed genes involved in the glyoxylate cycle, TCA cycle, and related pathways. 
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Figure 11. Genes involved in catabolic processes that produce acetyl-CoA are 
upregulated in slow-growing cells. Of 21 known genes involved in fatty acid 
degradation in T. pseudonana, two are upregulated; none are downregulated. Of 32 
known genes involved in BCAA degradation in T. pseudonana, eight are upregulated; 
one is downregulated. Acetyl-CoA produced by these processes enters the TCA or 
glyoxylate cycles.  
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Figure 12. Slow-growing cells differentially expressed genes involved in the glyoxylate 
cycle, TCA cycle, and photorespiratory pathway in order to conserve carbon. A) 
Differential expression of TCA and glyoxylate cycle genes. Solid lines represent steps 
of the TCA cycle; dashed lines represent the glyoxylate cycle’s two-step bypass. B) The 
glyoxylate cycle and photorespiration are closely related pathways that both utilize 
glycolate produced by rubisco’s oxygenase activity. Slow-growing cells upregulate 
processes that produce acetyl-CoA and peroxins that import proteins into the 
peroxisome, where the glyoxylate cycle occurs, while also downregulating genes 
involved in the photorespiratory pathway. 
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Figure 13. Slow-growing T. pseudonana upregulated genes involved in reactions that 
form PEP in order to increase flux through gluconeogenesis. Increasing flux through 
gluconeogenesis can stem the loss of carbon that results from high glycolytic activity in 
slow-growing cells. PEPCK=PEP carboxykinase; PPDK=pyruvate-phosphate dikinase; 
PK=pyruvate kinase; PC=pyruvate carboxylase; PEPC=PEP carboxylase. Fold changes 
and p values for these genes are shown in Table 3. 
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