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THE SOLUTIONS OF CERTAIN EQUATIONS IN A
VARIABLE AND ITS GREATEST INTEGER PART

INTRODUC TION

On many occasions one considers the greatest integer not ex-

ceeding a real number. If x is a real number, then the bracket

function of x, denoted by [*], is defined to be the greatest integer

not exceeding x. In this thesis we are concerned with equations in

x and ["] and more specifically, with the solution set and its car-

dinality of such equations.

The following problem from the Elementary Problem Section

of the American Mathematical Monthly was proposed by R. G.

Buschman (1, p. 66712 rrLet N(a) be the number of solutions of the

equation [*] = "*, where a and x are real and ["] denotes the

greatest integer not exceeding x. Find a simple formula for N(a)."

A solution appears in a later issue (2, p. 439-40).

After certain preliminary results concerning the bracket

function are developed in Chapter 1, the solution set and its cardi-

nality of the general linear equation in x and [*] are found in

Chapter 2. This is done first by a geometric argument and then by

an algebraic argurnent.

The geometric argument becomes too cumbersome and the

algebraic argument, of Chapter ?, is not applicable, in general, for

more cornplicated equations in x and [*]. In Chapter 3, a general
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algebraic method is developed for finding the solution set and its
lTt

cardinality of the equation flf" - S, ([xJ)) = 0, where m>l
i=I

and E.t for i = 1r2,3,..., m, is a real and single-valued function.
-1

This method is illustrated by applying it to the general linear equa-

tion where the coefficient of x is not zero, and is used, in Chapter

4, to find the solution set and its cardinality of the general quadratic

equation in x and [*].

In Chapter 5, certain results are extended to the cornplex

field. In particular, the bracket function of the complex number

z = x * iy, denoted by [r), is defined to be ["] + i [y], "
partial ordering is established for the cornplex field, certain ele-

mentary properties of l") are developed, and the general method

of Chapter 3 is extended and then used to find the solution set and

its cardinality of the general linear equation.

The theorem giving the cardinality of the solution set usually

preceeds the theorem giving the solution set. This is because the

cardinality and the solution set are obtained independently and the

former rnay be of more interest to the reader.



CHAPTER 1. PRE LIMINARY RESULTS

Throughout this thesis the letters n and m

Four elementary properties of [-],

will denote inte -

which will begral variables.

needed in this thesis, ?re given in the following theorem.

Theorem 1. The following properties hold for Ix]:

(a) x-1<[*]-(x(["] +

(b) if x - J' (n-(x, then n

t;

(c) if n-<x(n*1, then n=

(d) [x+n] =[x] +n.

[-];

[*];

Proof of (a). From the definition of [x], *" have [x] -< x.

If [x] -( x - 1, then [-] + I -( x and so [x] is not the greatest integer

nof exceeding x, a contradiction. Therefore, x - I < [t], which

implies x([x] +t.

Proof of (b) and (c). Suppose x - I ( n -( x and either

n<[x] or">[x]. If n<[*], thenr-([*] - I;butx - I (nwhich

implies x-1<["] -Iand x<[*], acontradiction. if [x] (rr,

then Ix] is not the greatest integer not exceeding x, a contradiction.

Thus we have n = [x], which proves (b). If n-( x ( n * 1, then

-x(-n(-xtl and x-l(n:(x; hence n=[x] by (b),which

prove s (c ).

Proof of (d). Since x - I < [x] < x is equivalent to
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x* I *n([*] +n-(x*n, wehave [x+n] = [*] *n, by (b), which

proves (d). This completes the proof of Theorem 1.

We will be concerned with the cardinality of sets; the nota-

tion to be used is given in Definition 1.

Definition 1. The cardinality of the set X wili be denoted

bV (X). If X is denumerable, then we will write (X) = D; if X

has the cardinality of the continuum, then we will write (X) = C.

We will be concerned with intervals of real numbers which

will be denoted as follows: Ir,b] - {*' a:( x -< b}; [a,b) - {x:

3:(x <b); (a,b] - {*,a (x-<b}; (a,b)= {x: a (x <b}; (--, a]

= { x:x-( a}. The symbols (--, a), (a, -), [", oo), and (-oo, oo)

are defined similarly. It will be necessary to know the cardinality

of the set of integers, n, such that ncR, where R is an interval.

Definition Z and Lemrna 1 prepare us for Theorern Z which provides

this information.

Definition 2. If R is an interval of real numbers, then

M(R) will denote the cardinality of the set of integers, n, such

that neR.

Lemma I. (a) The least integer not less than x is -[ -x];

(b) the least integer exceeding x is Ix] + l; (c) the greatest

integer not exceeding x is Ix]; (d) the greatest integer l.ess than

x is -[-*] - t.
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Proof. By (a)and (b) of Theorem 1, we have -x-l( [-x]-< -x,

x< [x* 1]-(x* 1, and -x< [-x+ 1] < -x t I, whichp.re equivalent

to X:(-[--] <x* 1, X(["] + I:(x* l, andx- l-(- [-*] - 1(x,

respectively, which in turn tmply (a), (b), and (d), respectively.

The definition of [*] is (c).

Theorem 2. For a ( b:

(a) M ([",b]) = [b] + [-a] + t;

(b) M ([r,b)) = [-a] - [-b];

(c) M((a,bl) =[b] -["];

(d) M ((a,b)) = -[a] - [-b] - t;

(e) if R is an infinite interval, then M(R) = p.

Proof. If n is the greatest integer and m the least integer

in an interval R, then M(R) = n - m * l. By applying Lemma 1,

we have:

(a) u ([a,b]) = tbl - (- [-a]) + t = [b] + [-a] + 1;

(b) ra ([a,b)) = (-[-b] -tl- (-t-al)+ 1= [-a] - [-u];

(c) M ((a,bl) = tbl - (["] + 1) +1 = [b] - ["];
(d) M((a,b)) = (-[-b] - I)- ([a] +t)+1 =-[r]-[-b] -1.

The fact that the set of alI integers is denumerable implies

(e ).



CHAPTER 2. THE GENERAL LINEAR EQUATION

The general linear equation in x and [*] is of the form

(1) dx*e[*] +f =0,
))

where d'+ e" f O. if e = 0, then (1)becomes dx * f = 0, where

d 10, and there exists one and only one solution, namely -fld.

Hence it is assumed in the remainder of this chapter that e I O in

which case

Q\

The

(1) can be written in the form

axtb=[*].

cardinality of the solution set ot (Zl is given in the follow-

Theorem 3. The cardinality of the solution set S of the

equation ax*b= [x], where a and

ing theorem.

[-it'=t]
C if a=0

0 if a=0

real, is given by:

l*[ ira.-oand a*L;
La
ndb

ndb

b

t

AT

AI

are

a*b

(S) =

D if a=I and

is an integer;

is not an integer;

-1 ( b -( 0;

0 if a = I and b-( -I or b >0.

Theorem 3 is made quite intuitively apparent by a geometric

argurnent which we now present. Later we give an algebraic proof.

If the graph of the equation y = [*] and the graph of the

equation y = ax * b are constructed in the same x - y coordinate



system, then the solutions of. (Z) are the abcissas of the points of

intersection of the two graphs. Note that in Figure I, ,l and , 
Z

are the solutions.

With the aid of a figure such as that of Figure l, we are abLe

to make the following observations: If a = 0 and b is an integer,

then each point in [b, b + 1) is a point of intersection and (S) = C;

if a = 0 and b is not an integer, then there are no points of inter-

sectionand (S) =0; if a=1 and -I<b<0, thenthereisapoint

of i.ntersection on each step of the graph of y = [x] and (S) - D;

if a=l and b>0 or b<-1, thentherearenopointsof inter-

section and (S) - 0. It only remains to consider the case where

a*0 and a*1. If. at0 and a*t, thenthegraphof y=axtb

intersects the graph of y = x - I at (*r, yt) and the graph of

Y=ax+b

Figure
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y=x at (xr,yr). Since yl=*l- 1-"*I*b, wehave yI= l-
and since yZ= *Z= ^*Z* b, we have 

"r= *.. The graph of

y = ax * b will intersect the graph of y = [x] on each step with

ordinate n such that n is between yl and yrox n=yz. If a>1 or a<0,

then yzryt and (s) - 
"4 

{(yr, yzll = [yzj - [v, ] = t+J - tffit,
by Theorern Z. If 0 < a( 1, then ytry. and (S) = Ivt ([Vr, Vr))

= l-yzJ - [-vr] = t*l f i _-J f , by Theor ern z. rherefore,

if a*O and a*1, then, ineithercase, (S) = [L l, " ll .

r 
t- 

" 
Lllsrr' rrr ErLllsr LdDEt \u'l - 

[t ' f -i 
J

l- a+u I =al This completes the geometric argurnent and
L a , t-"J

now we proceed with the algebraic proof of Theorern 3.

Proof. If a * 0 and a * t, then necessary and sufficient

conditions for x to be a solution of (Z) are (i) x - I (ax*b:( x,

and (ii) ax * b is an integer, by parts (a) and (b) of Theorem 1.

If a ) l, then the following conditions are equivalent to (i):

- (b+l)< (a-l)x< -b, H ( x:( *, and * (axtb-(*

Therefore, if a ) l, then (S) = M (( i- , * t,. Sirnilarly, if

0 (a ( l, then the following conditions are equivalent to (i):

-(b+ l)< (a - l)x-( -o, * -( I ( i-, "ra *. -( ax+b < l*
Therefore, if o<a ( l, then (S) = M(fg, -r, if ,,. If a ( 0, then

the following conditions are equivalent to (i): - h + 1) < (a - 1) x -( -b,

b b+l a*b b
,_" :(x(r_", and ,_" 

(ax+b<-" Therefore, if a(0

then (s) =vi((i*, *t,. wenowhave (s) =[-!-r-J -til*t
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for a) I or a( 0, and (S) = t-# t-Hl for 0( a < 1.

These two expressions for (S) are special cases of the one given

in Theorem 3.

If a = 0, then (2)becornes U = [*]. If b is not an integer,

then (S) = Q. If b is an integer, then U = [*] is equivalent to

b (x <b + 1; therefore (S) = C.

If. a = l, then (2) can be written as x = [x] - b. Therefore,

every solution is of the form n - b. By substituting n - b into (2),

we obtain (n - b) +b = ltt - b], whichby Theorern ld is equivalent

to [-b] = 0, which in turn is equivalent to -1 < b < 0. Therefore,

if - I(b:(0, then (S) =p andif b(-lor b>0, then(S) =0.

This completes the proof of Theorem 3.

Two immediate results concerning the cardinality of the solu-

tion set of. (Z) are given in Corollaries I and Z.

Corollary l. If a ( 0, then (S) - 0 or (S) = ].

Proof. Suppose ,-l * b = [xrJ, axrt b = lxal, and

*1 . *2. Then axr* b ( ax, * b and so [xa] < ["t], which implys

that *Z a *1, a contradiction.

Corollarv 2. If a * I, then (S)= S(a, b) has aperiod of lt - al

in b.

Proof. Since b + I is an integer if and only if b is an

integer, wehave S (0,b) =S(0, b+1)=C if b isanintegerand
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S(0,b) = S(0, b * l)= g i1 b is not an integer. Therefore, S(0,b)

has period 1.

If a * 0 and a { l, then by using Theorem 1d, we have

s(a, tr-"1+u; = Irf-. l*l lft]
= :+ + 

E :,ftf - # [+' +J= [: rft]
t-_"* l=ll = s(a,b). 

L- r
L a '1-rlJ

The solution set o{. (Z), is given in the following theorem.

Theorem 4. The solution set S of the equation ax*b = [*],

where a and b are real is given by the following statement:

(a) If o(a(1, thens={+,* (n(i*l'
(b) if a )l or a ( 0, then S =1"-! ' Io b

'a r-" (n(ir"i;

(c) if a=0and b isaninteger, then S=[b,b*1);

(d) if a = I and -1 <b -< 0, then $ ={n-b: n is

an integer ).

Proof. In the algebraic proof of Theorem 3, we found the

following two necessary and sufficient conditions for x to be a

solutionof. lZl,where a*O andaIl: (i) *(ax*U.H
for 0(a(1, and i- 

(ax+b<* for a>I ora(0, and (ii)

ax * b is an integer. This pair of conditions is equivalent to the

following pair: (i) x is of the form at' and (ii)* :( n (i*

for 0 ( a ( 1, and +l! a r, -. 3 for a ) I or a ( 0, whichI-a I-a
proves (a) and (b).
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If a = 0, then (2)becorne" U = [-]. If b is an integer

then f = [*] isequivalentto b-(x<b+I, whichproves (c).

In the algebraic proof of Theorem 3, it w:rs shown that if

a=1 and -I<b(0, then x isasolutionof (2) if andonlyif x

is of the form n - b, which proves (d).

This completes the proof of Theorern 4.
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CI{APTER 3. A GENERAL METHOD

The geometric method becomes too cumbersorrre and the

algebraic method of Chapter Z is not applicable, in general, for

more complicated equations in x and Ix]. We now develop a

general algebraic method which can be applied to any equation in

x and ["] which can be written in the form

(1) Ii" - gi([x]))= o,
i=1

where m )l and Br, for i = l,2,3,..., m, is a real and single-

valued function.

The general method will be developed for m = I first, then

appiied to the general linear eguation, and finally developed for

rn )zL.

If m = 1, then (1) can be written as

(zl

If *l

x = B (["]).

and *Z are distinct solutions of (2), then [*rJ I l*Z), for if

[*t] = l*Z), then g(["1]1 = g 1[xrJ) and so *L = *2, a contradiction.

Therefore, there exists a one-to-one correspondence between the

solution set of (2), whichwill be denoted by T, and the range of

the bracket function with its domain restricted to T, which will be

denoted by I. The set I is shown to be the set of all n such that
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(3) n < g (n) ( n * 1,

by the following argurnent. If [x] eI, then [x] -< B([*]) < [x] + t,

by Theorem la. If n satisfies (3), then n = [g(n)] and so

g(n)=g([g(r)]). Therefore, if x=g(n), thenxeT and n=[x] e I.

Thus, we have (T) = (I) and T - { g("): ne I}, where I can be de-

termined by solving (3) for n.

This algebraic method is now illustrated by applying it to the

general linear equation, where the coefficient of x is not zero'

which can be written as

(4) x - a[x] +r

Letting S denote the solution set of (4), we have (S) = (I) and

S = {an*b : ne I}, where I is the set of all n such that

o-(antb (n* 1.(5)

It is now necessary to solve (5) for n. In so doing, (5)

becomes -b ( (a- I)n < 1-b, which is equivalent to *, -. ".|+
if a)I, to0:(b<I if a=1, andto i* ."afr if a(I.

rhererore, (s) = M(*, H,, = t*rJ - tfit ir a>rl

(S) - p if a=l and 0-(b(I, (S) =Q if a-I and b(0or

b>r, and (s) = M((=, *,, = t*f - ffil ir a ( r.

Also,wehave s={an*b: **r.}}}, if a}1 $={n*b:

n is an integer) if a = I and o<b< 1, S = { an tb'H."**}

if a ( l.
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Note that the general linear equation is reduced to the form

x = a [-] + b here in order to apply the algebraic method of this

chapter, and to the form ax * U = [x] in Chapter 2 in order to

simplify the geometric and algebraic arguments appearing there.

With this in mind, the agreernent of the resllts can be verified.

The general method will now be developed for rn ) l. Let

T be the solution set of (1) and T. the solution set of the eguation

x - gi ([*])= 0, for i = I, 2,3,..,1 rn1 so that , =ipr rr. By a

general combinatorial theorem (3, p. 105-107), we now have

\- \-(6) (T)=) (T.)-) (T.nr.) +) (T.nr.nT,)-..../i'Lii'/_ijkT f,: - f,j,r
where the sumrnation indices are distinct. Equation (6),ca., be writtenas

(r)=T
L
A

A varie

rn. De

(A) +t
(- t ) ( ,?er,)'

where

through

s over all nonempty subsets of the set of integers,

noting i?aTi by T(A), we see that if xre T(A),

*2, T (A), and *t * -.,, then [*rJ I l*Z), for if [*t] [*Z],

then e, ([ xrl ) = g, ([*) ) for each i e A, and so *L = *2, a con-

tradiction. Therefore, there exists a one-to-one correspondence

between T(A) and the range of the bracket function with its domain

restricted to T(A), which will be denoted by I(A). The set I(A)

is now shown to be the set of all n such that
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(7) r-< gi(.) = Cr(n) < n l- I for all ieA and j.A

If [*] t I (A), then x - gi(["] ) for all ieA; consequently,

[*] -< Br([xJ)= er([*])< [x] + t for all i€A and iuA. If n

satisfies (7), then n = [Sr(n)] for all i<A, and so gr(n) = gi([Sr(n)1

for all i(A. Therefore, if * = g.(n) for all ieA, then xeT(A) and

n=[x] <161.

We now have

If (7) can be solved for n for all A then Theorern Z can be applied

to determine (I(A)). If (7) can not be solved algebraically for n

for some A, then the aid of a high speed electronic cornputer

rnay still enable one to obtain I(A) for all A for an explicit equa-

tion of the forrn (l ), which rnay be simpler than using the computer

directly on (t ).

The solutions of (1) are now easily found. Let I(A) = I,

if fl = {i} for i = l,2,3,..., rn. Since nel. if and only if

Br(n) . Ti, we have ,,. = {Br(n): ne I. }, where 1. = {n: ,1-(gi(n)<n+l},

for i = l, 2,3, .. . , m. Consequently,

T = pl {er('.): n€I.}

The procedure for finding T and (T) by this general method

(r)=I (-r)e) *'(r(o)).

A

(e)
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deterrnining the solution set T

that can be written in the form

is given in the following theorem:

Theorem 5. The following algorithm gives a procedure for

and its cardinality of
rn

T_[.k - s, ([x])) = o
t=l

and Ei, for i = 1,2,3,..., rn, is a real and single valued function:

Deterrnine S), the set of all nonempty subsets of the integers, I

through rrr. Let A be a variable with f,2 as its range; for each

value of A determine (I(A)) where I(A) ={n: n( g.(") = *r,rrr(n*l

for aII ieA and j.A). AIso, determine I. where 1.={n:n(g. (n)<n+l}

and for each ne I. determinu gr(.r), for i = 1,2,3,..., m. Then (T)

and T can be found frorn (B) and (9) respectively.

an equation

where m >- I
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CHAPTER 4. THE GENERAL QUADRATIC EQUATION

The general quadratic equation in x and Ix] is of the forrn

(I) ^*zru[-]z*cx[x] +dx*e[x] +f =0,

where 
^Z 

r bZ + .' i o. 'We will also assume that a )70, since, if

the coefficient of *Z is negative then multiplication by -l gives an

equivalent equation where the coefficient of *Z is positive. The

cardinality of. the solution set of (l ) is given in the following

theorern.

Theorem 5. The cardinality of the solution set U of the

equation ^*z rb[*]z+.r[-] tdx+e[x] +f = 0, where ^z*bz
+ .Z 7 O, a )0, and a, b, c, d, e, and f are real, is given by the

following statement:

(a) If a)0, then (IJ) = (Jt^ JZnJTn JB)+ (Jr^%nJnn.!)+

(Jt^J3^ J4nJ6) + (Jr^innt6n Jr) - (JOn J3 ^ Jn), where the

sets ,, are given in Table l;

(b) if a - 0 and there exists an integer n such that both

cn * d = 0 and b.rZ + en t f = 0, then (U) = 6;"

(c) if a = 0 and there does not exist an integer n such that

both cn * d = 0 and b.rZ + en * f = 0, then (U) =(%n Jrn Jr) +

(JS ^ JU nJr), where again the sets Ji are given in Table l.
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TABLE 1

I8

Condition on coefficients

.z - 4^b ro
E >.O

E<0

.z-4^b,.0

cd - Zae>O

cd-Zae=0

cd-2ae{0

"z - 4^b. o

E >0

E<0

Condition on coeff icients

Zatc)O

?a1'c=O

d >0

d<0

Za*c1O

Irr., .l] - frr,rr) (-oe rr.]uz[r,, oo)

(--, -)

It, r] I t, oo)

R *,

(--, r ]

Q

az - 4uf.>o q (-*, oo)

dZ - 4^f. = O (--, oo) (--, oo)

dz- ^f.<o g g

Ir, r]

Irr, rt] - lrr,rrl [rr,rrf
a

R 1L

.d
(- @' - za+c )

(--, -)

I
_d
[ -r-;;.' -)

a

R
3

-d[- 2;., @)

I
(- -, *)

-dG*' 7;-r. J
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Table I (Continued)

Condition on coeff icients

Zatc)0

2a*c=0

?a*d)0

2a*d<0

2a*c(0

Condition on coefficients

a*b*c)0

F >0

F<0

a*btc=0

d * e>0

dte=0

f>0

f -( 0

dte( 0

atb*c(0

F >0

F< 0

R
4

. 2atd(-@, - Z^+. )

t-#, oo)

(-€, m)

I
I(-e' - d+"- r

Isr, sri

a

R-
5

. Zatd(- 2;1; ' *)

I
(- -, *)

r-#,*,

(-*, s, J ., I sa, o)

(-*, oo)

(-m, o) Q

Q (-oo, oo)

. Zatd Zatd(--, co) (-6, -;7 )aalc zaac

R, R-67

(-oo,s)u[st,-) ["r, "t]
(-@, oo) I
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Table 1 (Continued)

Condition on coefficients R
8

a*b*c)0

G )-0

G<0

aibtc=0

(-@, t,\ut(t], ) (rz,,,l

(- *, oo) Q

*9

Zatc +d+e)0 (t,*)

Za*c+d+e=0

(- rc, t)

a*d+f >0 (-*, m) q

atdtf -(0 p (-oo,oo)

Zatc +d+e(0 (--, t) (t,oo)

a*b*c(0

G >.0

G<0

Notation l

(t I, ,zl

q

(-*, t, ) r-u (tr, oo)

(-*, oo)

E = L6a (^"2 - cde * "fz + bdz - 4abf )

F = (d+")Z-4f.(a+b*c)

G = (Za+c *d*elz - +(a+d+f)(a+b +c)

-24at-dr = zt"a-2".t
-Zcdt4ae+{E

'I = 
zkJ-4^bl
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Table I (Continued)

s
I

,z

t

-d-e-\tF=-

-Zcd*4ae-lE
z(.2 - 4ab)

-d-e+\tr
ZET bE

Z(a + b * c)

a*d*f
2a*c*d*e

2a*c+d+.-ltC
Z(a + b + c)

?alc+d+e+lfG
2(a+ b + c)

denotes the empty set

,1

,z

Q

In the proof of Theorem 5, it will be necessary to solve

inequalities of the form (i) Q (n) )0, (ii) O (n) -( 0, (iii) Q (n) >0,

and (iv)Q (n)(0, where Q (n) =a nZ * pn*y, o t0 LemrnaZ

provides the solutions of (i) and (ii), from which the solutions of

(iii) and (iv) are easily obtained.

Lernrna Z. If Q (n) = o ,r2 * pn*y, ol0,x,

/pQ1, and *z= * (-e - 1F 4"y), then:

(a) If o )0

=*(-u*

n )x, or n:( xri

and pz - 4c,y >-0, then Q (.r) ) 0 if and only if



4oy )- 0, then Q (n)(o

ZZ

if and only if(b) if o)0 and pZ -

xr:(n(*1!

(.) if o)0 and

(d) if o(0 and

(e) if o(0 and

11 :< xI or n )xrl

Parts (a), (b ), and

(d), (e), (f ) are proved in a

Proof of Theorem 5.

write (1) in the forrn Tlt"i=l
consider the cases (i) a ) 0

(f) if o(0 and pZ-+q(0, then Q(n)<0 foralln.

Proof. Q (n) =onZ+ pn+y = o (rr2*t r+*)

pZ - + oy ) 0, then Q (n) ( O if and only if

). Therefore,

)')

(.) have now been proved, and parts

similar rnanner.

In order to apply Theorern 5, we must

- gi([*])) = o and, therefore, must

and (ii) a = 0 separately.

if

o

o

pz

pz

4o1 ( 0, then

4 a1 )- 0 then

(t) >o

(n) )o

for all n;

if and only

= o (n '*Z) (n - xr). If o )0, then *l'-*Z which implies that

Q (n) 2 0 if and only if n )x, or ,1 :( xZ and Q (n) -< 0 if and only

if xr-( n-( xl. If. o )0 and PZ - + ol 4 0, then Q(t) = o ((" +* )Z

._2
+4(LY-P ) >o foraII n.

+oZ



If & ) 0, then by rneans of the quadratic

(z) k *(.[*] + d -l6tf-tll)k - *(.[*]
where o ([*])- (c[*] + df - 4a (b[*]2 * e [x] + t1, is equivalent

to (I). Therefore, we are able to apply Theorern 5, and in so doing,

we use the notation of Chapter 3. Since rrt = Z, the values of A

are {t, z}, {t}, and {2}. The corresponding values of I(A) will

be denoted by I\2, II, and IZ, respectively.

We now have

f c'at

) g. (")
L"

z3

formula, we see that

+d+

I=- 2a
I=-2a

(3)

and

(4)

Ii
into (4)

+d< /DIi)<(?a*c)n+2a+d)
+ d< - 1E-fi) < (Za* c )n t za * d),

n

n

(2a + c)

(Za + c)

Substition of (3)

f, = {,, :ll
(5) {,r={''

I

[-',f t" '

It is now

rnay be verified

n * 1),

n * I),

(.r) <., + 1).

(2a+ c)n*2a*d)0, (2a+ c)n*d-(0, D(n) =g).

necessary to solve the inequalities in (5) for n. It

in a straight forward but tedious rnanner that

o ([ x] )))

(-.t - a + rFi(r1 1,

(-.r,-a-rffirr-)),

{n: n( E, (") <

{n:.r(gZ(n).

{n: n(gr(n)=g,

Ieads to
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(6)

fi
twhere

{Jt ^ Jzn Jz ^J8 }.r{ JI ^ Tzn.ln n Jr},

{ Jt ^ J3 ^ t n r-,J u} .r{ Jt r:Tn r:J u n Jr},

{Jo^JrnJn},

(7)

Jo

Ji

Jz

,,

Jn

J_
5

J,
o

t,

,g

tg

{n

{n

in

{n

{n

{n

{n

{n

{n

{n

D(n) = 0),

D(n) > o),

(Zatc)n*d>0),

(Za*c)n*d<0),

(Za+ c)n* 2a*d >0),

(Za+c)n*?aid<0),

h, (n) >-O1r,

n, (r) -< 0),

fr, (n) > 0),

n, (n)< 0),

where,

ht (rr) = (((Za*c)n+d)Z -Du.Dlaa

= 1(4az * 4ac + czlnz + (4ad * zcd)n + dz -"znz - zcdn

-a? + 4abn? * 4aen+ 4af.)l4a

(@^2 * 4ab * 4ac)nz + 4a (d, * e * f)n + 4af.) I 4a

(a + b + c) nz + (d + e) n * f,



AE
LJ

and

h'(n) ==',1,1)r*")"r 

r')r,.{r *)'r"::* 4ad * Zcd)n

+ 4az t 4ad n az - "znz - Zcdn - az * 4abnz t 4aen

+ 4atlf4a

= (a +b +.1.r2 + (Za*c *d * e)n*a * d +f.

From (6), we see that ,r. and ,Z are each the union of two disjoint

sets and it follows that ( U) - (It1 + Gr) - (ItZ) = (JtnJrr-..Jrr-.JB) +

(J, nT, ^J4 ^J8) + (JtnJrnJrnJ6) + (Jr^J+ nJ, nJr)

- (JOnJ, nJn).

The inequalities in (7) can be solved for n thus making it

possible to describe the sets Ji, for i = 1, 2,3, . . . ,9, in terms of

intervals of real numbers. For exarnple, J, is the set of all n

suchthat D(n) - (cnt ilZ - 4a(bnz *en*f) = (cZ - 4^b1nz

+ (Zcd -4ae)n+dZ -4af.)-0. If "Z -4^b l0and E=4(cd- Zae)Z

- 4(cz - n^b)(dz - 4afl = +"zd,z - t6acde + r6azeZ - 4"zaz * t6af.cz

+ l6abdz - 6+aZat = l6a (^"2 - cde * fzc + bdz - 4abf.\ >-o then let

-Zcd*4ae+\tr -Zcd*4ae-lEtl =
Zc -4ab

and ,Z =

By Lernrn a Z, we see that if .2 - n^b , O,

D r( r Z or n )zr, if E (n) ) 0, and D(.r)

?
Similarly, if c" - 4ab ( 0, then D(n) )0

"z - 4ub

then D(n) )0 if and only

)-0 for aII n if E(n) <

if and only if rr-(n-(r,

if

0.
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rf. cz - 4ab = o,

}aeln + d,Z - 4af.. Therefore, D(n) )0 if and

d,z
.Z

- 4af-d
"-'t6a:z".l ir

0, then D (n) ) 0

only if rt ).
Z(cd -r^'if cd-Zae)o' or

if E(") )0 and

then D(n) = 21"6

D(n) < 0 for all n if E(n)< 0.

4af.

cd-Zae(0. If "Z-4^b=O and cd-?ae=

for all n if d,Z - 4^f. >-O and for no n if dZ

(e)

- 4af. < O. Such re-

sults from solving the inequalities in (7)for n are give:n in Ta.ble

1. This completes the proof of (a).

If a = 0, then (l) becomes

(8) b[*]2*cx[x] +dx+e[x] *f=0,
))

where bo + c' * O. If there exists an integer n such that cn * d = 0

)
and bn" + en * f = 0, we see that x is a solution of (8) if n:(x(n*l,

and so (U) = C, which proves (b). If there does not exist such an

integer n then c["] + d l0 for all x, and (8) is equivalent to

u[x]z+e[*l +r
c[x] + d

Applying Theorem 5 to (9 ), we have (U ) = (I), where

lt rnay be

)
I = {n : n-( g(rr) < n * l} and g(n) = - bno * e-n-+ f

cn*d
shown in a straight forward but tedious manner that 1 = {n:cn + d > 0,

hr(n) >0, hI(") ( O) u,{ rr:c., + d < o, hz(t)< 0, hr(n) >0}

= { J+r-rJrn Jr}v{ Js^ J6 ^ Jr}, where hI, hz, J4, J5, t6, J7,

Jg, and J, are defined in (7). Since J+ and JS are disjoint,

I is the union of two disjoint sets and (I) = (JanJ, r-rJg )+ (JUnJrnJr),
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which proves (a).

The solution set of (1)is given in the following theorem.

Theorem 7. The solution set U of the equation

^*' rr[*]z * cx[x] + dx + e[x] * f = 0, where ^z 
r bz + .z * o,

a>0, and a,b,c,d,e, and f are real, is givenby the following

statement, where the sets J., i = I,2,3,. ,,9, and D(n) are given

in Table 1:

(a) If a )0, then U ={+ (-c, - a +rffin-)):'Za

n e { J, r-tJ 
- 

r-'J, nJr} ,, {Jt nTznJn nJr}} -{} (-c., - a -rt6in)):

ne {.1, nJ, nJn r-rJr} ., { Jt nJn nJ, n.rr}};

(b) if a = 0, then U = {[t,, * I): cn * d = 0, and

b'z+en*f = 0 )u,{-ot1*r"f *t: n€ {J+nJtnJr},.-., {.lun.lunJr}}.

Proof. If a ) 0, by Theorem 5, we have U = {8, (n):ne Ir}

u{eZ(n): n e Ir}, which is equivalent to (a). If a = 0, then

U = {[r, n*I):cn*d=0, and br-Z+en*f =0] vs,where S

is the solution set of (9). By Theorem 5, S = {g(n): nel} and h)

follows irnmediately.
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CI{APTER 5. EXTENSIONS TO THE COMPLEX FIELD

The domain of the bracket function is extended to the complex

field by Definition 3.

Definition 3. If z is the complex number x * iy, where x

and y are real, then I z ] is defined to be the complex number

[*] + i[v] .

In the real fieid, we were concerned with integers. Corre-

spondingly, in the complex field we will be concerned with Gaussian

integers which are complex numbers of the form n, f i nr, where

11 and n, are real integers. In this chapter, n will denote a

Gaussian integer.

In the real field, we saw that the order relation played an

important role; therefore, an order relation is established for the

cornplex fieid. This is done in Definition 4"

Definition 4. If a and b are the complex members

^l f i^Z and bl + ib., where ,1, ^2, bI, and b, are real, then

a(b if and only if a, (b, and ar-<br; a (b if and only if a:<b

and a*b; a)-b if andonlyif b-(a; a)b if andonlyif b(a.

It is a simple matter to show that a -( b is equivalent to

a*c<b+c or a(b isequivalentto a*c(b*c. However,

if a and b are ordered by one of the order relations of Definition 4,
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then it does not necessarily follow that ac and bc are ordered

unless c is real. This dissimilarity will prove to be the only

source of difficulty in the extensions to the complex field.

Two elementary properties of ["] are given in Theorem 8.

Theorem 8. (a) Tf. z is a complex number, then

z-0+i) <["]<"<l"J *t*i; (b) if n<z(n*l+i,then

l,f = n.

Proof. Let z = x * iy. We have by Theorern la,

x - I <[*] :(x( [*] + I and y - I <[y]-(y( [V] + t. From

Definition3, wehave iy- i<i[y] <iy<i[y] +i. Therefore,

x * iy - (I + i) < [x] + i[y] -<x * iy< [*] + i[y] + t + i which is

equivalent to (a). Let r = rl t inr. Thenwe have n, ( x ( n, * I

,Z -a y ( n, * t. By Theorem Ic, [x] = n, and [y] = rZ. There-

fore, n=[x] +i[y] = ["].

the real fieId, [*] was defined to be the greatest integer

not exceeding x. Let us see what analogous result we have in the

complex field. Suppose there exists an n such that Iz ] = [x]

+i[y] <n=.1 *inr( z =x +iy. Either .,, >[*J ornZ >[y],

which implies that ,l , * or nZ, y, a contradiction. Therefore,

l. ") is the greatest Gaussian integer less than or equal to z

However, the greatest Gaussian integer not exceeding z does not

exist since l") + rn, where m isapositiverealinteger, isunbounded
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and not ordered with respect to z.

With these results an analog of Theorem 5 for the complex

field is easily proved. This analog is identical to Theorem 5

except that I is replaced by I + i in the condition n -< g. (n)

=g.(n) (n*1.
J

We now proceed to find the solution set and its cardinality,

of the general linear equation in z and I z ], which is of the form

(l ) dz +e[z] +f = 0,

where aZ+uZ+0. if d=0, then (l) becomes elz] +f =0,

where e * 0. In this case, if f I e is a Gaus sian integer, then the

solution set is {r, 1l * ,. -{ + 1+ i} and its cardinality is C;

if I is not a Gaussian integer, then there are no solutions. Hence,
e

it is assumed from here that d + 0, in which case, (l) can be

written in the forrn

(z) z = a[z)+a.

For the equation x = a[x] + b, in the real field, we saw

in Chapter 3 that there exists an interval R suchthat x is a solution

if and only if x is of the form an * b, 'where ncR. The analogous

result f.or (Z), in the cornplex field, is given in the following theorem.

Theorem 9. The equation z = af z) + b, where a = ^lf ruz

and b=b, +ib" are
LL

form an * b, where n

complex, holds if and only if z is of the

= nr* in, lies in the rectangular region C
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i.n the cornplex plane which is defined by

(3)

Proof. Letting V denote the solution set of (2), we have,

by the cornplex analog of Theorern 5, that (V) = (I) and

V- {an i b : nel }, where I is the set of all n such that

-bl -. (at -

-bz -' uznL

t) nt-^ZnZar-Or,

*(at-llnZ.r-br.

(4)

It is now

becomes -b (

-bl-ibr((a,

which, in turn,

(3 ).

n:(an+b<n*1*i

necessary to solve (4) for n. In so doing, (41

(a - I)n < -b + I + i, which can be written as

- l)nt - ^ZnZ+ 
(a,nl * (at - l)n,) i< I - bt*(1-b,)i,

is equivalent to the simultaneous pair of inequalities

It will now be shown that (3) defines a rectangular region in

the complex plane . Let !", and I Z b" the parallel linear graphs of

the equations ax * by *.1 = 0 and ax * by f .Z= 0 respectively,

where "Zu"L. Then n, * in, lies in the sarne open half plane

which is formed by ,, as ,Z if and only if an, * bn, * c, has the

sarne sign as ax, * byl * .t where (-r, rr) is a point on !.2. If

o+b (*) *ct=
C,

.t - "z< 0; if b = 0, then (- *,0, is a point on ,, and

-c)
a (O ) + b'0+.1 =.L-.2<0. Thus, ,I*i.Z liesinthe

same open half plane as 1, if and only if an, t bna *.1 a 0.
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Similarly, it is shown that n, * in, lies in the same closed half

plane which is forrned by ,Z as ,, if and only if an, f bnr* cr>.20.

Thus, ,l * in, lies between ,, and lZ or on ,Z if and only if

-cr:( an, f bn, ( -cr. Let ,, and ,+ be the parallel linear

graphs of the equations ay - bx *.3 = 0 and ay - bx * cn = 0,

respectively, where "4r"3. Then la and ln are perpendj.cular

to , t and !. Z. Also, .I * i rZ lies between ,, and ! + or on

!+ if and only if -"4 ( - Ot, * anr a - c3 Therefore, tI * it,

lies within or on two of the boundaries of the rectangle formed by

l L, l Z, r, and , n if and only if

(-"r< an, * bn, ( -cr,(5) I
L-.n 

( -b., * anr. -c3

Finally, we see that (3) is of the form (5) since -bt * I >-b, and

-b, f , , -br. This completes the proof of Theorem 9.

We have shown that (V) is the number of Gaussian integers

n such that ne C. A very complicated formula for this number

can be obtained by a straight forward counting method. It is only

when either ^Z= 
0 or 

"l = 1, that (3) can be easiLy solved for

rI and n, thereby giving a simple expression for (V). These two

cases correspond to the case where C is oriented such that its

boundaries are parallel to the coordinate axes.
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The following two theorems give (V) and V for

a 6 * i) = 0.Z'I
Theorem I0. The cardinality of the solution set of the

and b .'b, *ib, areI-"l+ b, where ,="I *ia,

(", 1) = 0, is given by:

tHil ([*i L+JI
a i0Z' zrnd 

^ l

(v) = and a't

if a = I,

if a=1

0<bt<I, and0<b

andbl<0 or bra0 b, ,, or bZr.L

then inequalities (5) become

t *bZ, which are equivalent

1 - b,

laa'2,
b"

_ -( - ' if a^ ( 0. Ihere-laz
z

Z

or

Proof .

-bl -a -^ZnZa

1-b

If ar* 0 and ,1

I -bt and -br4a,

b,' -bz
and

^z ^z

1-b,
-Land

^z

-. L,

I

fore, if ar l O and "I = 1,

b) I-b, b
M (-+ ,4t) . (t+l -oz oz oz

t - ot
the.n (V) = M(( 

%
l-b, b, I-b,

f -;-l)(tfI - [--,j]) ir ^2,o,oz oz tz

bt

a
Z

(n

b I l)uz

fi+i t,-i)([*,i [_*5)',^z
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b

and (V) = M(l -] ,-a_Z

1-b, ,-bz
- ')) ' M((--, -uz 

^z
?,,= tt -ltoz o?,

These two expressions for'+nl-\t r'!n ir ^z.o"
(V) are special cases of the one given above.

If ^Z= 0 and a * l, then inequalities (5) becorne

-br( (a- l)^r.I -b, and -br( (a- I)tZ.I -b?,, whichare

-br i-b, -b) I-b,

I - b, -b, I -b, *b2
and to ; _, < r,, ( j and ;i ..,, -. ;i if a ( t. There-

fore,if uZ=O and a*t, then (V) =*tf},*,,.

,rr3,= )) =,r*l-r-=r)(rlrl -r-21 ,,

a )r, and (v)= *,,I-ti, 3,,' M((*, *l) = ([], f:+f,

,f 

=1 

- 1I!1 ,, a ( 1. These two expressions for (v) are

special cases of the one given above.

if a = I, then inequalities (5) become -bl -( 0 < 1 - b, and

-Or.-.0<1-LZ. Therefore, if 0<bla1 and 0<bZ<I, thenall

Gaussian integers satisfy (5) and (V) = D; if b, * 0 or b, ( 0

or bL>/1 or br).1, then no Gaussian integer satisfies (5)and

(V) = 0. This completes the proof of Theor:ern I0.



where a=aLf ,^Z and b=bt+ibZ arecornplexand ^Z@l-l)=0
is given by the following statement:

(a) If ^ZrO and "l = 1, then V = {a(.rt * inr) * b:

-b? t-b, bl-l b

^z'^z^z"uz

(b) if uZ.O and "I=1,then V={a(nr*inr) *b:

I -b, -bz b,. b - I

^z'^z^2"^z

(c) if ^Z=O and a)I, then v ={ a(nr*inr) +b:

-b- t-b- -b^ t-b^
,j -.'r . # ""a ;j4 -.'z . fi i,

(d) if ^z=o and a(I, then v={a(nr*inr)*b:

r -br -br t-o, -bz 
f

;l '^r-'"-, and 
"-I 

(tz-(a-l);

(e) if a=1, 0<Orar, and 0-<bZ<I, then V-

{ n * b: n is a Gaussian integer}.

35

Theorem 11. The solution set of the equation z = alz) +b,

Proof. By the complex analog of Theorem 5, V = { an*b:

ne I ), where I is the set of all Gaussian integers satisfying (5).

Thus, Theorern l1 follows directly frorn results in the proof of

Theorem 10.
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Frequently, the application of the analog of Theorern 5 fails

because an algebraic solution of the inequalities, n ( gr(n)

=g.(n) <n*1*i forall ieA and j.A, cannotbefound. For
j

the general quadratic equation, in the real field, it was necessary

to'rsquare each siderrin order to solve inequalities of the above

type. Hcwever, in so doing in the cornplex field, an ordering is

not preserved.
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