AN ABSTRACT OF THE THESIS OF

Robert Ray Golden for the M.S, in Mathematics
(Name) (Degree) (Major)

Date thesis is presented June 5, 1963

. R_edvacted for Privacy

(Major professor)

Abstract approve

The solution set and its cardinality of the general linear equa-
tion in a real variable x and the greatest integer not exceeding x,
denoted by [x], are found by a geometric argument and then by an
algebraic argument. Then a general method is developed for finding
the solution set and its cardinality of the equation ]r_nT(x-gi([x])) = 0,
where m» 1 and g for 1gigm, is a real and sli;glle—valued func-
tion. This method is applied first to the general linear equation where
the coefficient of x is not zero and then to the general quadratic
equation. Some analogous results are obtained in the complex field

and, in particular, the general method is extended and then used to

find the solution set and its cardinality of the general linear equation.



THE SOLUTIONS OF CERTAIN EQUATIONS IN A
VARIABLE AND ITS GREATEST INTEGER PART

by

ROBERT RAY GOLDEN

A THESIS
submitted to

OREGON STATE UNIVERSITY

in partial fulfillment of
the requirements for the
degree of

MASTER OF SCIENCE

August, 1963



APPROVAL:

Redacted for Privacy

Associate Profesfbr of Mathematics

In Charge of Major

Redacted for Privacy

Chairman of Department of Mathematics

Redacted for Privacy

Dean of Graduate School

Date thesis is presented June 5, 1963

Typed by Jolene Hunter Wuest



TABLE OF CONTENTS

INTRODUCTION

CHAPTER

1

4

5

PRELIMINARY RESULTS

THE GENERAL LINEAR EQUATION

A GENERAL METHOD

THE GENERAL QUADRATIC EQUATION

EXTENSIONS TO THE COMPLEX FIELD

BIBLIOGRAPHY

Page

12

17

28

37



LIST OF FIGURES AND TABLES

Figure Page

Table




ACKNOWLEDGMENT

The author wishes to thank Professor Robert D. Stalley for his

assistance during the writing of this thesis.



THE SOLUTIONS OF CERTAIN EQUATIONS IN A
VARIABLE AND ITS GREATEST INTEGER PART

INTRODUC TION

On many occasions one considers the greatest integer not ex-
ceeding a real number. If x is a real number, then the bracket
function of x, denoted by [x], is defined to be the greatest integer
not exceeding x. In this thesis we are concerned with equations in
x and [x] and more specifically, with the solution set and its car-
dinality of such equations.

The following problem from the Elementary Problem Section
of the American Mathematical Monthly was proposed by R. G.
Buschman (1, p. 667): " Let N(a) be the number of solutions of the
equation [x] = ax, where a and x are real and [x] denotes the
greatest integer not exceeding x. Find a simple formula for N(@)."
A solution appears in a later issue (2, p. 439-40).

After certain preliminary results concerning the bracket
function are developed in Chapter 1, the solution set and its cardi-
nality of the general linear equation in x and [x] are found in
Chapter 2. This is done first by a geometric argument and then by
an algebraic argument.

The geometric argument becomes too cumbersome and the
algebraic argument, of Chapter 2, is not applicable, in general, for

more complicated equations in x and [x]. In Chapter 3, a general



algebraic method is developed for finding the solution set and its
cardinality of the equation ﬁ(x - g ((x])) = 0, where m3l
and gi, for 1=1,2,3,..., rIr: : is a real and single-valued function.
This method is illustrated by applying it to the general linear equa-
tion where the coefficient of x is not zero, and is used, in Chapter
4, to find the solution set and its cardinality of the general quadratic
equation in x and [x].

In Chapter 5, certain results are extended to the complex
field. In particular, the bracket function of the complex number
z = x + iy, denoted by [z ], is defined tobe [x] +i[y], a
partial ordering is established for the complex field, certain ele-
mentary properties of [z ] are developed, and the general method
of Chapter 3 is extended and then used to find the solution set and
its cardinality of the general linear equation.

The theorem giving the cardinality of the solution set usually
preceeds the theorem giving the solution set. This is because the

cardinality and the solution set are obtained independently and the

former may be of more interest to the reader.



CHAPTER 1. PRELIMINARY RESULTS

Throughout this thesis the letters n and m will denote inte-
gral variables. Four elementary properties of [x], which will be
needed in this thesis, are given in the following theorem.

Theorem 1. The following properties hold for [x]:

@) x-1<[x]<x<[x]+]1

b) if x - 1<n<x, then n=[x];
) fn<x<n+1, then n = [x];
d) [x +n] =[x] +n.

Proof of (a). From the definition of [x], we have [x] < x.

If [x] <x -1, then [x] + 1 £ x and so [x] is not the greatest integer
not exceeding x, a contradiction. Therefore, x - 1 <[x], which
implies x < [x] + I,

Proof of (b) and (c). Suppose x - 1 <n < x and either
n<[x] orn>[x]. Ifn<[x], thenn<[x] - 1; butx - 1 <n which
implies x - 1 <[x] - 1 and x < [x], a contradiction. If [x] <n,
then [x] is not the greatest integer not exceeding x, a contradiction.
Thus we have n = [x], which proves (b). If n<{x <n + 1, then
-x<-n<-x+1 and x -1<n<x; hence n=[x] by (b), which
proves (c).

Proof of (d). Since x -1 <[x] <x is equivalent to
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x-1+n<[x]+n<x+n, wehave [x+n] =[x] +n, by (b), which
proves (d). This completes the proof of Theorem 1.

We will be concerned with the cardinality of sets; the nota-
tion to be used is given in Definition 1.

Definition 1. The cardinality of the set X will be denoted

by (X). If X is denumerable, then we will write (X) = D; if X

has the cardinality of the continuum, then we will write X) = C.
We will be concerned with intervals of real numbers which

will be denoted as follows: [a,b] = {x: a<x<b}; [a,b)= {x:

a<x<b}; (a,b]={x:a<x<b}; (a,b)={x:a<x<b}; (-o, a]

= { x:x<a}. The symbols (-%, a), (a,®), [a,®), and (-, )

are defined similarly. It will be necessary to know the cardinality

of the set of integers, n, such that neR, where R 1is an interval.

Definition 2 and Lemma 1 prepare us for Theorem 2 which provides

this information.

Definition 2. If R is an interval of real numbers, then

M(R) will denote the cardinality of the set of integers, n, such
that neR.

Lemma 1. (a) The least integer not less than x is -[-x];
(b) the least integer exceeding x is [x] + 1; (c) the greatest
integer not exceeding x is [x]; (d) the greatest integer less than

x is -[-x] - 1.
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Proof. By (a)and (b) of Theorem 1, we have -x-1<[-x]< -x,
x<[x+1]<x+1, and -x<[-x+ 1] € -x + 1, which are equivalent
to x<-[-x]<x+1, x<[x]+1<x+1, andx-1<-[-x] -1<x,
respectively, which in turn imply (@), (), and (d), respectively.
The definition of [x] is (c).
Theorem 2. For a <b:
(@) M ([a,b]) = [b] + [-a] + 1;
®) M ([a,b)) =[-a] - [-b];
[b] - [a];

{a] - [-b] - 1;

(c) M ((a,b])

1l

d) M ((a, b))

(e) if R is an infinite interval, then M(R) = D.
Proof. If n is the greatest integer and m the least integer
in an interval R, then M(R)=n - m + 1. By applying Lemma 1,

we have:

@) M ([a,b])=[b] - (-[-a])+1=[b] +[-a] +1;

®) M ([a,b)) = (-[-b] -1) - (-[-a]) t 1 =[-a] - [-b];

() M (@,b]) =[b] - ([a] +1)+1 =[b] - [a];

d) M ((a, b)) (-[-p] - 1) - ([a] + 1)+l = -[a]-[-b] -1.

The fact that the set of all integers is denumerable implies

(e).



CHAPTER 2. THE GENERAL LINEAR EQUATION

The general linear equation in x and [x] is of the form
(1) dx + e[x] +f=0,
where d2 + e2 # 0. If e =0, then (1) becomes dx + f = 0, where
d # 0, and there exists one and only one solution, namely -f/d.
Hence it is assumed in the remainder of this chapter that e # 0 in
which case (1) can be written in the form
2) ax +b = [x].

The cardinality of the solution set of (2) is given in the follow-
ing theorem.

Theorem 3. The cardinality of the solution set S of the

equation ax + b = [x], where a and b are real, is given by:

i) [ ] s omaa

C if a=0 and b is an integer;
(S) = < 0 if a =0 and b is not an integer;
D if a=1 and -1<b< 0;

0 if a=1 and b< -1 or b >0.

Theorem 3 is made quite intuitively apparent by a geometric
argument which we now present. Later we give an algebraic proof.
If the graph of the equation y = [x] and the graph of the

equation y = ax + b are constructed in the same x - y coordinate



syste.rh, then the solutions of (2) are the abcissas of the points of/
intersection of the two graphs. Note that in Figure 1, r and r

are the solutions.

Figure 1.

With the aid of a figure such as that of Figure 1, we are able
to make the following observations: If a = 0 and b is an integer,
then each point in [b, b + 1) is a point of intersection and (S) = C;
if a =0 and b 1is not an integer, then there are no points of inter-
section and (S) = 0; if a=1 and -1 <b £ 0, then there is a point
of intersection on each step of the graph of y = [x] and (S) = D;
if a=1 and b>0 or b< -1, then there are no points of inter-
section and (S) = 0. It only remains to consider the case where
a#0 and a#1. If a#0 and a # 1, then the graphof y=ax +tb

intersects the graph of y=x -1 at (Xl' yl) and the graph of
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ath
= . Si = - = + R =
y = x at (xz, yz) ince y, =x, 1 ax, b, we have vy T
‘ _ ~ _ b
and since v, =%, = ax, + b, we have Y, T 14 The graph of

y =ax + b will intersect the graph of y = [x] on each step with

ordinate n such that n is between 14 and ¥, O n=y,. If a>1 or a<O,

then y, >y, and (5) = M (ly;, y,1) = [y,]-[vy,] :[l?a]-[?f:]’
by Theorem 2. If 0 <a<l, then y >y, and (§)=M ([yz, v )
= [-yz] - [-yl] = [l-:ba] - [-al'j—ab] , by Theorem 2. Therefore,
if a# 0 and a # 1, then, in either case, (S) = Eg | 1 Z_La [l -
[_a:b | l?aﬂ . This completes the geometric argument and

now we proceed with the algebraic proof of Theorem 3.

Proof. If a# 0 and a # 1, then necessary and sufficient
conditions for x to be a solution of (2) are (i) x-1<ax+bgx,
and (ii) ax + b is an integer, by parts (a) and (b) of Theorem 1.

If a >1, then the following conditions are equivalent to (i):

+ ] +
~-b+1)<(a-1)x< -b, btl <x<i, and 2 b <ax+b < b .
l1-a l1-a 1-a l1-a
+b
Therefore, if a >1, then (S) = M((%_a , % ]). Similarly, if

0<a<1, then the following conditions are equivalent to {i):

+
-b+1)<(a-1)x< -b, b ex <2l L b cax+b < 2R
1-a 1-a l1-a 1 -a

b a+b

Therefore, if 0<a <1, then (S) = M([ﬁ T

)). If a <0, then

the following conditions are equivalent to (i): -(b+1) < (@-1)x < -b,

+
b <x<b+l, anda b<ax+b<—b—. Therefore, if a <0
l1-a 1-a 1-a l1-a
a+b b

]). We now have (S)=| b ]_[a+b]

then (S)=M((1_a’ I -2 l1-a l1-a




a+b]
l1-a

for a>1 or a<0, and (S)= [—I—t_)—;] - {- for 0<a<1.
These two expressions for (S) are special cases of the one given
in Theorem 3.

If a =0, then (2) becomes b = [x]. If b is not an integer,
then (S) = 0. If b is an integer, then b = [x] is equivalent to
b<x<b + 1; therefore (S)=C.

If a=1, then (2) can be writtenas x = [x] - b. Therefore,
every solution is of the form n - b. By substituting n - b into (2),
we obtain (n - b) +b = [n - b], which by Theorem 1d is equivalent
to [-b] = 0, which in turn is equivalent to -1 <b < 0. Therefore,
if -1<b<0, then (S) =D and if b&-1or b >0, then (S)= 0.
This completes the proof of Theorem 3.

Two immediate results concerning the cardinality of the solu-
tion set of (2) are given in Corollaries 1 and 2.

Corollary 1. If a <0, then (S) =0 or (S) = 1.
and

Proof. Suppose ax +b:[x1], ax, +b =[x

1 2 2]’

<x.. +b< + < , ich i
x <%, Then ax, b ax, b and so [XZ] [xl] which implys

that x2 < Xl’ a contradiction.

Corollary 2. If a # 1, then (S)=S(a,b) hasaperiodof 1 - al

in b.
Proof. Since b + 1 is an integer if and only if b is an

integer, we have S (0,b) =S (0, b +1)=C if b is an integer and
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S(0,b) = S(0, b+1)=0if b is not an integer. Therefore, SO, b)
has period 1.

If a#0 and a # 1, then by using Theorem 1d, we have

_ L J1-a]+b a a+ |1-al] +b a
S, |1-a] +b)= - | =1 - | 2 | 7]
. __lil.*_ El a I + _]9._] _ _a+b a '_ ‘EI al
T T a “all-a a a 1-a'l™ all-all”~

ath a _
l} " l l'aIl = S(a,b).

The solution set of (2), is given in the following theorem.
Theorem 4. The solution set S of the equation ax+b = [x],

where a and b arerealisgivenby the following statement:

- +
(a) If 0<a<1,thenS={P———b: b n<ab};
a l1-a l1-a
- +
b) if a>1ora<0, thenS ={= b, a b<n<-—b—};
a l-a l1-a

(c) if a

0 and b is an integer, then S = [b,b+1);

(d) if a=1 and -1 <b <0, then S={n-b: n is

an integer }.
Proof. In the algebraic proof of Theorem 3, we found the

following two necessary and sufficient conditions for x to be a

+
solution of (2), where a # 0 and a # 1: (i) lb;a <ax+thb <;-;—2

for 0<a <1, and

<ax+b<-1b—a for a>1 or a <0, and (ii)

ax t+ b is an integer. This pair of conditions is equivalent to the

following pair: (i) =x is of the form

+b
a n<
-a l-a

+
and (ii) b £n ath
. l-a l-a

for 0<a <1, and for a>1 or a < 0, which

proves (a) and (b).
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if a = 0, then (2) becomes b =[x]. If b is an integer
then b = [x] is equivalent to b < x <b + 1, which proves (c).
In the algebraic proof of Theorem 3, it was shown that if
a=1 and -1<b <0, then x is a solution of (2) if and only if x
is of the form n - b, which proves (d).

This completes the proof of Theorem 4.
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CHAPTER 3. A GENERAL METHOD

The geometric method becomes too cumbersome and the
algebraic method of Chapter 2 is not applicable, in general, for
more complicated equations in x and [x]. We now develop a
general algebraic method which can be applied to any equation in

x and [x] which can be written in the form

m

i=1

where m »1 and gi, for i=1,2,3,..., m, is a real and single-
valued function.

The general method will be developed for m =1 f{irst, then
applied to the general linear equation, and finally developed for
m 21.

If m =1, then (1) can be written as
(2) x =g ([x])
If x, and x_ are distinct solutions of (2), then [xl] # [XZ]’ for if

1 2
[xl] = [XZ]’ then g([xl]) =g ([xz]) and so X =%, a contradiction.
Therefore, there exists a one-to-one correspondence between the
solution set of (2), which will be denoted by T, and the range of

the bracket function with its domain restricted to T, which will be

denoted by I. The setI is shown to be the set of all n such that
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(3) ngg h)<n+l,
by the following argument. If [x] €I, then [x] < g([x])) <[x] + 1,
by Theorem la. If n satisfies (3), thenn = [gn)] and so
gn) = g({gn)]). Therefore, if x = g(n), thenxeT and n = [x] eI
Thus, we have (T)= (I) and T = {g(n): nel}, where I can be de-
termined by solving (3) for n.

This algebraic methed is now illustrated by applying it to the
general linear equation, where the coefficient of x is not zero,
which can be written as
(4) x = a[x] +Db
Letting S denote the solution set of (4), we have (S) = (I) and
S={an+b :nel}, where I is the set of all n such that
(5) n<antb <n+ 1.

It is now necessary to solve (5) for n. In sc doing, (5)

becomes -b < (a-1)n<1-b, which is equivalent to a;_bl £n <;_];
. . 1-b . -b .
if a>1, to0<b<1l if a=1, andto <n<a 1 if a<1.
-b 1-b b b-1
=M{l——, — = - i > 1%
Therefore, (S) (- ;730 = [l -[57] i a>l

(S) = D if a

1 and 0<b <1, (S) =0 if a=1 and b <0or

1-b -b -b 1-b
= — = - i < .
b>1, and (8) =M((—, 771 = [g71-[37] i a<l
-b 1-b .
Also, we have S = {an+b: ;——1<n<a }, if a>1 S={n+b
. . . 1-b _-b
n is an 1nteger} if a=1 and 0 b< 1, S:{an+b:a 1 <n~$;——l}

if a <1.
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Note that the general linear equation is reduced to the form
x =a [x] + b here in order to apply the algebraic method of this
chapter, and to the form ax + b = [x] in Chapter 2 in order to
simplify the geometric and algebraic arguments appearing there.
With this in mind, the agreement of the results can be verified.

The general method will now be developed for m >1. Let
T be the solution set of (1) and Ti the solution set of the equation

x - g ((x])=0, for 1 =1,2,3,..., m, so that T=i'r\:I}1Ti. By a

general combinatorial theorem (3, p. 105-107), we now have

(6) (T)=Z (T.)-Z (T. r\T.)+Z (T. "NT,. AT )-....
i i j i Jj k ?
1 1, ] i, J, k

where the summationindices are distinct. Equation (6)can bewrittenas

(A) +1
=) (pT:
A

where A varies over all nonempty subsets of the set of integers, 1

through m. Denoting iQATi by T(A), we see that if xle T(A),

e T(A), and x, # x_, then [x

x, 1] # [XZ]' for if [xl] = [xz],

2,

then g, ([xl]) = g ([xz]) for each ie¢A, and so X, = x a con-

2,
tradiction. Therefore, there exists a one-to-one correspondence
between T(A) and the range of the bracket function with its domain

restricted to T(A), which will be denoted by I(A). The set I(A)

is now shown to be the set of all n such that
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(7) ng gi(n) = gj(n) <n+ 1 forallieA and jeA
If [x] ¢« I(A), then x = gi([x]) for all ieA; consequently,
[x] €g.([x])= gj([x]) <[x] +1 for all ieA and jeA. If n
satisfies (7), then n = [gi(n)] for all ieA, and so gi(n) = gi([gi(n)]
for all ieA. Therefore, if x = gi(n) for all icA, then xe¢T(A) and
n=[x] e I(A).

We now have

8) (T) = Z 1) BTy
A

If (7) can be solved for n for all A then Theorem 2 can be applied
to determine (I(A)). If (7) can not be solved algebraically for n
for some A, then the aid of a high speed electronic computer
may still enable one to obtain I(A) for all A for an explicit equa-
tion of the form (1), which may be simpler than using the computer
directly on (1).

The solutions of (1) are now easily found. Let I(A) = Ii
if A= {i} for i=1,2,3,..., m. Since nel, if and only if

gi(n) € Ti’ we have Ti = {gi(n): neIi}, where Ii = {n: nsgi(n)<n+l},

for i=1,2,3,...,m. Consequently,
m

The procedure for finding T and (T) by this general method
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is given in the following theorem:

Theorem 5. The following algorithm gives a procedure for

determining the solution set T and its cardinality of an equation

m
that can be written in the form ]——[(x - gi([x])) =0 where m>1
1=1
and gi, for 1=1,2,3,..., m, is a real and single valued function:

Determine §, the set of all nonempty subsets of the integers, 1
through m. Let A be a variable with £ as its range; for each
value of A determine ([(A)) where I(A)={n:n < gi(n) = gj’_n)<n+l
for all ieA and jeA}. Also, determine Ii where Ii={n:n~<gi(n)<n+1}
and for each neIi determine gi(n), fori=1,2,3,...,m. Then (T)

and T can be found from (8) and (9) respectively.
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CHAPTER 4. THE GENERAL QUADRATIC EQUATION

The general quadratic equation in x and [x] is of the form

2 2

(1) ax +b[x] tecx[x] +dx +te[x] +f=0,

2 2 2 . . .
where a +b " +c # 0. We will also assume that a >0, since, if

2 . TR .
the coefficient of x is negative then multiplication by -1 gives an
2

equivalent equation where the coefficient of x is positive. The

cardinality of the solution set of (1) is given in the following

theorem.

Theorem 6. The cardinality of the solution set U of the

equation axz +b[x]2 tcx [x] +dx +e[x] +f=0, where a2 +b2

+ c:2 #0, a>0, and a,b,c,d,e, and f are real, is given by the
following statement: .

(@) If a >0, then (U} = (Jlr‘\ I, I, I ) + (Jlmisz T

7 8 4 8

' T - J
(Jlr\J3r\J4r\J6)+(Jlr\J4r\J ~ J) (Jof\ 3/\.1 where the

6 9 4):

sets Ji are given in Table 1;

(b) if a = 0 and there exists an integer n such that both
cn+d=0 and bn2+en+f:0,then(U)=C;

(c) if a = 0 and there does not exist an integer n such that
both ¢cn +d = 0 and bn2+en+f=0,then(U):(J4me\J)+

7 8

(J5 e J() F\Jg), where again the sets Ji are given in Table 1.



J. = {n: neR.}
i i

TABLE 1

18

Condition on coefficients

R

[od

2
c

2
c

Condition on coefficients

2—4ab>0

E >0

E<Q0

- 4ab = 0
cd - 2ae >0
cd - 2ae = 0

d2 - 4af >0

-~

d“ - 4af = 0
d% - 4af < 0
cd - 2ae <0
- 4ab < 0

E>0

E<O

2a

2a

2a

+c>0

+c=0

d>0

d<o0

+c <0

o]

[rl, rl] u[rz,rz]

¢
[r, r]
¢
(_w’ 00)
¢
[r, r]

(- r, Jolr,, )

('009 °°)

[r, )

(_00, OO)

(-, 2a+tc J



Table 1 (Continued)

Condition on coefficients R4
2a+d
+c> -0, -
2a +c¢c>0 (-0 atc
2atc=20
2a+d 20 (-c0, ©)
2a +d <0 o]
2atd
+c< -
2a tc <0 ( atc
Condition on coefficients R6

a+tb+c>0

F>0 (-0,85] w [s], )

F<0 (-0, o)

atbt+tc=0

f
d+e> —_—
e>0 [d+e )
d+e=0
£>0 -0, ©0)
f£0 ®
d+e< 0 0. - £
' d+te
atb+tc<O0
F2>0 [sl,sz]

F<O0 o]




Table 1 (Continued)

20

Condition on coefficients R

~a+b+c>0
G20
G<O0
at+t+b+c=0
2atctd+te>0
2Zatct+td+e=0
\a+d+f>0
atd+£f<g0
2atctd+e<O
atb+c<0
G20

G<o

Notation:

8

l16a (ae2 - cde + cfZ + bdz

d+e) - 4f@a+b+c)

('00’ tl) U(tzt OO)

(-0, o)

- 4abf)

(2a+c+d+e)2-4(a+d+f)(a+b+c)

4af - d2

" 2(cd-2ae)
_ -2cd + 4ae + NE

2((:2 - 4ab)
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Table 1 (Continued)

-2cd + 4ae - NE

r -—
2 2(c? - 4ab)
S _ -d - e +WF
1  2{(a+b+c)
s _-d-e-NF
2 2@ +b+c)
¢ _ atd+f{
"T"2atctd+te
., -.2atctdte-ANG
1 2(a+b+c)
2a+ct+d+ e+ NG
t, =-

2{a +b + c)

¢ denotes the empty set

In the proof of Theorem 6, it will be necessary to solve
inequalities of the form (i) Q (n) 20, (ii) Q (n) £ 0, (iii) Q (n) >0,
and (iv) Q (n) < 0, where Q (n)=a n2+ Bnty, a #0. Lemma 2
provides the solutions of (i) and (ii), from which the solutions of
(iii) and (iv) are easily obtained.

2 1

Lemma 2. If Qn)=an"+pfn+ty, a0, x =2—a-ﬁ+

1
\/[3 - 40.\(), and XZ =i (-ﬁ - BZ - 4ay), then:

(@) If a >0 and Bz - 4ay 20, then Q (n) >0 if and only if



b) if a>0 and BZ - 4ay 20, then Q (n) £ 0 if and only if

(c) if a>0 and [32- 4ay < 0, then Q (n) >0 for all n;

(d) if a<0 and [32- 4 ay >0 then Q (n) 20 if and only if

(e) if a<0 and Bz- 4 ay 20, then Q (n) < 0 if and only if

ng<x, or nzx.;

1 2
(f) if a< 0 and Bz - 4ay < 0, then Q (n) <0 for all n.

Proof. Q(n)=an2+[3n+y = a(n2+% n+_YcI)

2 2 )
:0(112+En ¥ - B _‘3_2 +l) = ol +-2£ )2 - : '24‘1Y ).  Therefore,
: 4a 40 ¢ ¢ 4o
\/Be - W2Y
if [32_ 4ay >0, then Q (n)=a((n+2_(i)2_( §2a4ay ] )

= a(n - XZ.) n - xl). If o >0, then X, 2x2 which implies that

Q (n) >0 if and only if n >x1 or n<x, and Q (n) £ 0 if and only

2
. 2 B B |2
if xzén\<xl. If a>0 and B~ -4 ay <0, thenQ(n)—u((n+-ﬁ)
2
+22Y-B ) 50 for all n.
2
4a

Parts (a), (b), and {c) have now been proved, and parts
(d), (e), (f) are proved in a similar manner.

Proof of Theorem 6, In order to apply Theorem 5, we must
write (1) in the form TrE[(x - gi([x])) = 0 and, therefore, must

i=1
consider the cases (i) a >0 and (ii) a = 0 separately.
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If a >0, then by means of the quadratic formula, we see that

@) (x5 (elx] +d VDI - 5-[x] +d + VDIxD) = o,

where D ([x]) = (c[x] + d)2 - 4a (b[x]2 +e [x] + f), is equivalent
to (1). Therefore, we are able to apply Theorem 5, and in so doing,
we use the notation of Chapter 3. Since m = 2, the values of A
are {1, 2}, {l}, and {2} The corresponding values of I(A) will
be denoted by 112’ Il, and IZ, respectively.

We now have

gl(n) = —2—{; (-cn - d + D)),
1
g,() = 5= (-cn-d - D@,

and
~
Il = {n:n<gl (n) <n+ 1},
I = i n < <n+1},
(4) < 5 {n:n g, (n)<n+ 1}
512: {n : n<gl(n):gz (n)<n+ 1}.
Substition of (3) into (4) leads to
(
Ilz{n: 22+ c)n+d< ,[5(n)<(2a+c)n+2a+d}
(5) <12:{n: a+c)n+d<-yD@) < (2a + ¢ )n+ 2a +d},
112: {n: 2a+c)n+2a+d>0, 2a+c)n+d< 0, D(n) = 0}.
-

It is now necessary to solve the inequalities in (5) for n. It

may be verified in a straight forward but tedious manner that
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L = {JlszmJ7mJ8}u{JlmJZmJ4mJ8},
(6) <12 = {JlmJ3mJ4r~.J6} u{Jl nT4 ~, mJg},
1,= {JOmJ3r\J4},
(N
where,
-
JO = {n:D@n) = 0},
J]_ = {n D(n) Zo}s
JZ, = {n: (2a + c)n + d >0},
J3 = {n: (2a + c)n + d < 0},
() 4 J, = {n: @a+cin+2a+d>0},
J5 = {n: (2a+c)n+2a+d<0},
J6 = {n hl (U)ZO},
J7 = {n hl (n) < 0},
Jg = {n h, (n) >0},
LJg = {n:h2 (n) < 0},

(22 + ¢) n + d)% - D(n))/4a

=
=)
1

= ((43.2 + 4ac + cz)n2 + (4ad + 2cd)n + dz— eznz- 2cdn
2 2
-d” + 4abn” + 4aen + 4af)/4a
2 2
= ((4a” + 4ab + 4ac)n” +4a (d + e + f)n + 4af)/4a

= (a+b+c)n2+(d+e)n+f,
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and

h_(n) ({2a + c)n + 2a + d)2 - D(n))/4a

i

= ((4a2 + 4ac + cz)n2 + (8a2 + 4ac + 4ad + 2cd)n

+ 4a.2 + 4ad + d2 - ezn2 - 2cdn - d2 + 4abn2 + 4aen

+ 4af)/4a
2
= atb+chn + (Rat+t+c+dt+temn+a+d+f.
From (6), we see that Il and IZ are each the union of twe disjoint

sets and it follows that (U) = (Il) + (Iz) - (112) = (JlmJZK\J7mJ8) +

- N —
(J K\Jz r\J4 mJ8)+(J1r'\J3r\J F\J()) (Jlr\J N r\Jg)

1 4 4 6
- (J. "I T ).
( 0 3 4)
The inequalities in (7) can be solved for n thus making it
possible to describe the sets Ji’ for i=1,2,3,...,9, in terms of

intervals of real numbers. For example, Jl is the set of all n

such that D(n) = (cn + d)2 - 4a (bnz + en + f) = (c2 - élab)n2

+ (2cd - 4ae)n + d2 - 4af 20. If c2 - 4ab £ 0and E = 4(cd - Zae)2

- 4((:2 - 4ab)(d2 - 4af) = 4c2d2 - lbacde + lf)aze2 - 4c2d2 + léafc2

+ léabd2 - 64a2bf = 16a(ae2 - cde + fzc + bdz - 4abf) 20 then let

- 2cd + d4ae + NE -2cd + 4ae - NE
r1 = > and r2 = >
¢ - 4ab ¢ - 4ab

By Lemma 2, we see that if c2 - 4ab >0, then D(n) >0 if and only if
n<r, or n>r; if En)>20, and D(n) >0 for all n if E{n) < 0.

Similarly, if c2 - 4ab < 0, then D{n) 20 if and only if rlénSrZ
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if EMm)>0 and D(n) <0 for all n if En)< 0. If cz - 4ab = 0,

then D(n) = 2(cd - 2ae)n + dz - 4af. Therefore, D{n) >0 if and

2 2

4af - d 4af - d
—_—, if d - >0,  —/m8m8m™— 1
2(cd - 2ae) woe 2ae >0, or ns 2(cd - 2ae) i

cd - 2ae < 0. If c2 - 4ab =0 and cd - 2ae = 0, then D(n) >0

only if n >

for all n if dz - 4af >0 and for no n if d2 - 4af < 0. Such re-
sults from solving the inequalities in (7) for n are given in Table
1. This completes the proof of (a).

If a =0, then (1) becomes
(8) b[x]2+cx[x] +dx +e[x] +£f=0,
where b2 + c2 # 0. If there exists an integer n suchthatcn+d =0
and bn2 +en+f =0, we see that x is a solution of {8) if n<x<n+l,
and so (U) = C, which proves (b). If there does not exist such an
integer n then c[x] +d#0 forallx, and (8) is equivalent to

b[x]% +e[x] + 1
c[x] +4d

(9)

Applying Theorem 5 to (9), we have (U) = (I), where

bn2+en+f

= : < < = - ]

I={n:n<glh)<n+ 1} and g(n) o1 d It may be

shown in a straight forward but tedious manner that I = {n:cn+d >0,

h,(n) >0, h, (n) < 0} w{nicn+d<0, h, () <0, h (n) >0}

= b h b h ’ 9 b 3 ’
{J4F\J7r\ Js}u{JSm JémJg} where h, h,, J,, J, J,, J,

J8, and J9 are defined in (7). Since J4 and J5 are disjoint,

I is the union of two disjoint sets and (I) = (J4mJ7 r\JS )+ (JSK\Jér\Jg),
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which proves (a).
The solution set of (1) is given in the following theorem.

Theorem 7. The solution set U of the equation

2
ax + b[x]2 +cx[x] +dx + e[x] + £ = 0, where a® +b%+ 2 # 0,

a >0, and a,b,c,d, e, and f are real, is given by the following
statement, where the sets Ji’ i=1,2,3,...,9, and D{(n) are given

in Table 1:
(a) If a>0, then U :{_Zia (-cn - d + VD (n)):

nef I, NI, N, mJS} u{;r1 m'fz ~I, mJ8}} U{zlz (-cn - d -YD@)):

ne{J1 r\J3 mJ4 r\Jé} u{J1 r\J4 F\J() mJg}};

(b) if a=0, then U ={[n,n+ 1):cn+d=0, and

bn2+en+f.

2 -
bn“ +en+f=0}u{- p——

ne{J4mJ r\JS} u{Jst r\Jg}}.

7 6

Proof. If a >0, by Theorem 5, we have U ='{gl (n):neIl}
u{gz(n) ‘tn e 12}, which is equivalent to (a). If a = 0, then
U = {[n, n+ 1l):icn+d =0, and bn2+en+f= 0} v S, where S
is the solution set of (9). By Theorem 5, S = {gn): nel} and (b)

follows immediately.



28

CHAPTER 5. EXTENSIONS TO THE COMPLEX FIELD

The domain of the bracket function is extended to the complex
field by Definition 3.

Definition 3. If z is the complex number x + iy, where x

and y are real, then [z ] is defined to be the complex number
[x] +i[y].

In the real field, we were concerned with integers. Corre-
spondingly, in the complex field we will be concerned with Gaussian
integers which are complex numbers of the form n, +in_, where

2

n, and n, are real integers. In this chapter, n will denote a
Gaussian integer.

In the real field, we saw that the order relation played an
important role; therefore, an order relation is established for the

complex field. This is done in Definition 4.

Definition 4. If a and b are the complex members

a, +ia, and b +1b2, where al, az, b

d
1 5 1 an b2 are real, then

l’
a <b if and only if a, sbl and aZSbZ; a<b ifandonly if a<b
and a #b; a >2b if and only if b< a; a >b if and only if b <a.

It is a simple matter to show that a < b is equivalent to

at+cs<b+c or a<b is equivalentto a +c <b +c. However,

if a and b are ordered by one of the order relations of Definition 4,
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then it does not necessarily follow that ac and bc are ordered
unless c¢ is real. This dissimilarity will prove to be the only
source of difficulty in the extensions to the complex field.

Two elementary properties of [z] are given in Theorem 8.

Theorem 8. (a) If z is a complex number, then
z - (1+i)<[z]<z<[z] +1+1i (b) if n<z<n+1+i, then
[z] = n.

Proof. Let z =x+ iy. We have by Theorem la,
x-1<[x]<x<[x]+1 and y-1<[y]<y<][y]+1l. From
Definition 3, we have iy - i <i[y] € iy <i[y] +i. Therefore,
x+iy - (1 +i)<[x] +i[y] <x+iy<[x] +i[y] +1+1i whichis
equivalent to (a). Let n = n, + inz. Then we have n, £x< n, + 1

<y<n, + 1. By Theorem lc, [x] =n, and [y] =n,. There-

) 1 2

fore, n=[x]+if[y] = [z].

In the real field, [x] was defined to be the greatest integer
not exceeding x. Let us see what analogous result we have in the
complex field. Suppose there exists an n such that [z ] = [x]

+ify] <n=n_ +in

) 2<z:x+iy. Either n_ >[x] orn, >[y],

1 2

which implies that n1 >x or n2> y, a contradiction. Therefore,
[z] is the greatest Gaussian integer less than or equal to z .

However, the greatest Gaussian integer not exceeding 2z does not

exist since [z ] + m, where m isapositive real integer, is unbounded
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and not ordered with respect to =z.

With these results an analog of Theorem 5 for the complex
field is easily proved. This analog is identical to Theorem 5
except that 1 is replaced by 1 + i in the condition n < g; (n)
= gj n) <n+ 1.

We now proceed to find the solution set and its cardinality,
of the general linear equation in z and [ z], which is of the form
(1) dz +e[z] +f = 0,
where d2 + ez # 0. If d=0, then (1) becomes e[z] +f =0,
where e # 0. In this case, if f/e is a Gaussian integer, then the
solution set is {z: -gf £z< -—i + 1+ i} and its cardinality is C;
if -i— is not a Gaussian integer, then there are no solutions. Hence,
it is assumed from here that d # 0, in which case, (1) can be
written in the form
(2) z = al[z] +b.

For the equation x = a[x] + b, in the real field, we saw
in Chapter 3 that there exists an interval R suchthat x isa solution
if and only if x is of the form an + b, where neR. The analogous
result for (2), in the complex field, is given in the following theorem.

Theorem 9. The equation z = af z] + b, where a = a, +ia2
and b = b1 + ibz are complex, holds if and only if 2z is of the

form an + b, where n = nl+ in2 lies in the rectangular region C
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in the complex plane which is defined by

- < - - <1 -
5) b1 < (a.1 1) n a.zn2 1 b

-b_ € - <1 - .
> aznl+(a.1 l)n2 1 b2

Proof. Letting V denote the solution set of (2), we have,
by the complex analog of Theorem 5, that (V) = (I) and
V= {an + b : nel }, where I 1is the set of all n such that
(4) n<an+b<n+1+i.

It is now necessary to solve (4) for n. In so doing, (4)
becomes -b<g(a-1)n<-b+1+1i, which can be written as

} . < ) ) ) D1 - ) ;|
b1 1b2 (a1 l)n a,n, + (a.zn1 + (a l)nz) i<1 b1+ (1 b2)1

which, in turn, is equivalent to the simultaneous pair of inequalities

(3)-
It will now be shown that (3) defines a rectangular region in

the complex plane. Let !1 and 22 be the parallel linear graphs of

the equations ax + by + ¢, = 0 and ax + by + c, = 0 respectively,

where <, >c1. Then n, + inz lies in the same open half plane

which is formed by ll as lz if and only if an, + an + o has the

same sign as ax +byl + ¢, where (xl,yl) is a pointon £_. If

1 1 2
CZ _CZ
b # 0, then (O,-b—) is a point on 12 and a-0+b-(b—) +c1=
“2

- < 0: if = Q, -—, i i d

(:l c2 0; if b = 0, then ( 2 0) is a point on 22 an
. i + . - - < . , + . . .

a - 5 ) b- 0+ ¢ "¢, 0. Thus n +in, lies in the

same open half plane as {

if and only if an, + an + < < 0.

2
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Similarly, it is shown that n, + in2 lies in the same closed half

plane which is formed by iz as 11 if and only if an, + bn2 + c2>0.

Thus, n1 +in2 lies between ll and 12 or on ,@2 if and only if

-c_ < <-c,. Let £ i
c,San; + bn2 < et 3 and 14 be the parallel linear

graphs of the equations ay - bx + cq = 0 and ay - bx + Cy = 0,

Then £ and £, are perpendicular

i , >c_.
respectively, where c4 3 3 4

. A , i i ,
to ll and lz 1so n1 +1n2 lies between 13 and 24 or on

£4 if and only if -c4<-bn1 +an2<-c3. Therefore, n, +in2

lies within or on two of the boundaries of the rectangle formed by

2 . .
.ﬂl, !2 3 and 14 if and only if

-c.<an_ +bn_ <-c_,
2 1 2 1
(5)

- < - < - .
04\ bn1+an2 c3

Finally, we see that (3) is of the form (5) since —bl + 1 >-b1 and

-bz +1> —bz. This completes the proof of Theorem 9.

We have shown that (V) is the number of Gaussian integers
n such that neC. A very complicated formula for this number
can be obtained by a straight forward counting method. It is only
when either a_, =0 or a_ 2 =1, that (3) can be easily solved for

2 1

n, and n, thereby giving a simple expression for (V). These two

cases correspond to the case where C 1is oriented such that its

boundaries are parallel to the coordinate axes.
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The following two theorems give (V) and V for
- - 1 = O'
az(al 1)
Theorem 10. The cardinality of the solution set of the

equation z =a[z | +b, where a = a, + ia2 and b = b1 -Hb2 are

complex and az(a1 - 1) = 0, is given by:

r _ .
b b.-1 b b.-1
1.— 1 ﬂ 2 - Z if aZ#O and alr:rlg
1220 ez ljill=2| |2 |
B b.-1 M\l b b1
1 1 2 2 L Y
(V) = <la‘1|_|a'1| -1 - qawlelfaz'—oand atl;

D if a=1, O<b1<l, and O<b2<l;

2

0 if a‘:landbl<0 or b2<0 or b1>1 or b_ 21

\

Proof. If a, # 0 and a, = 1, then inequalities (5) become

~b1 < —aznz <1 -bl and -b2 < aznl < lubz, which are equivalent

1-b

o8
i
(>3

1-b

if a2 >0, and to

[A]
o
N
~
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1 1 2 2 1
and (V)=M([;—, - —)) - M( 3 , ——_]):([-‘;‘]
2 2 2 2 2
l-bl b2 l-b2
- N(-—] - 1[ ]) if a_ < 0. These two expressions for
a, a, a, 2

(V) are special cases of the one given above.

If a, = 0 and a # 1, then inequalities (5) become

b, € (a - <1-b -b.< (a - <1 -b_, whi
bl\(a l)nl 1 1 and b2 (a 1)r1Z 1 bZ, which are

~b1 l-bl -b2 1-b
3 — S < ———— < < i >1g
equivalent to I n, P and 2o S, ST if a
l‘-b1 —b1 l—b2 -b
< L — < y  —— 1 <1. ° -
and to — nl\a-l and — nzga—l if a <1 There
—bl lnb1
fore, if a_. =0 and a# 1 , then (V)= M(| . )).
2 a-1 a -1
-b 1-b b 1-b b 1-b
2 1 1 2 2 .
M([a—l’ a-1 ) = ([a-l]_[-a—l ])([a-l]_[ a-l] i
1-b -b 1-b -b -b -
251, and (V)= M—dy 2101 MG, 2 ]y - (oL )
? a-1"a-1 a-1" a-1 a-1" 'a-1
-b 1-b
([a_l] -[a I ] if a< 1. These two expressions for (V) are

special cases of the one given above.
If a =1, then inequalities (5) become —b1 £0<1] - b1 and

-bzg 0<l1-% Therefore, if 0 < b1 <1 and 0< bZ <1, then all

5
Gaussian integers satisfy (5) and (V) = D; if b1 < 0or b2 <0

or bl >1 or b2 >1, then no Gaussian integer satisfies (5) and

(V) = 0. This completes the proof of Theorem 10.
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Theorem 11. The solution set of the equation z = a[z ] + b,

where a=a_, +1a_, and b :bl +ib2 are complex and az(a -1)=0

1 2 1

is given by the following statement:

(@) If a, >0 and a, = 1, then V = {a(n1 + inz) + b:
-b l1-b b, -1 b
__2_<nl< 2 and L <n2$'f_}$
a, a, a, a,

(b) if a2<0 and a, = 1, then V ={ a(n1+in2)+b:

1-b -b b b, -1
2<nl$—a—2- and—ISn2< la };
32 2 2 2
(c) if a, =0 and a >1, then V ={ a(n1+in2)+b:
_—i <n <1-bl and_—b_z <n 1___b2}
a-1 "1 a-1 -1 T2 -1 7
(@) if a, =0 and a<1, then V:{a(nl tin,)+ b
1-b -b 1-b -b
1 1 2
< < — d < $—— |
a -1 P Sao MY a n, <30 b

(e) if a =1, 0<b1<1, and O\<b2<1, then V =
{n+b: n is a Gaussian integer}.

Proof. By the complex analog of Theorem 5, V = { an+b:
nel}, where I is the set of all Gaussian integers satisfying (5).

Thus, Theorem 11 follows directly from results in the proof of

Theorem 10.
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Frequently, the application of the analog of Theorem 5 fails
because an algebraic solution of the inequalities, n g gi(n)
= gj(n) <n+1+1i forall ieA and je A, can not be found. For
the general quadratic equation, in the real field, it was necessary
to ""'square each side' in order to solve inequalities of the above
type. However, in so doing in the complex field, an ordering is

not preserved.
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